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Abstract: Dystonia is thought to be a network disorder due to abnormalities in the basal ganglia-
thalamo-cortical circuit. We aimed to investigate the white matter (WM) microstructural damage
of bundles connecting pre-defined subcortical and cortical regions in cervical dystonia (CD) and
blepharospasm (BSP). Thirty-five patients (17 with CD and 18 with BSP) and 17 healthy subjects
underwent MRI, including diffusion tensor imaging (DTI). Probabilistic tractography (BedpostX) was
performed to reconstruct WM tracts connecting the globus pallidus, putamen and thalamus with the
primary motor, primary sensory and supplementary motor cortices. WM tract integrity was evaluated
by deriving their DTI metrics. Significant differences in mean, radial and axial diffusivity between CD
and HS and between BSP and HS were found in the majority of the reconstructed WM tracts, while
no differences were found between the two groups of patients. The observation of abnormalities in
DTI metrics of specific WM tracts suggests a diffuse and extensive loss of WM integrity as a common
feature of CD and BSP, aligning with the increasing evidence of microstructural damage of several
brain regions belonging to specific circuits, such as the basal ganglia-thalamo-cortical circuit, which
likely reflects a common pathophysiological mechanism of focal dystonia.

Keywords: focal dystonia; cervical dystonia; blepharospasm; diffusion tensor imaging; structural
MRI; probabilistic tractography; white matter; basal ganglia-thalamo-cortical circuit

1. Introduction

Dystonia is a movement disorder characterized by abnormal postures and involun-
tary movements due to repetitive or sustained muscle contractions. It is now thought
that dystonia arises through the involvement of a network including the basal ganglia,
cerebellum, thalamus and sensorimotor cortices [1–3]. In line with this hypothesis, several
studies have found abnormalities in the basal ganglia thalamo-cortical circuit in patients
with dystonia [1,4–8].

In patients with the two most frequent forms of focal/segmental dystonia, charac-
terized by clinical involvement of a single body part, namely cervical dystonia (CD) and
blepharospasm (BSP), diffusion tensor imaging (DTI) studies demonstrated WM changes [9]
in several structures including the basal ganglia and cerebellum [10–12]. Microstructural
alterations were also found in the white matter (WM) adjacent to the primary sensorimotor,
inferior parietal and middle cingulate cortices in patients with CD [13–15] and BSP [16–18].
Finally, studies with whole-brain approaches showed WM microstructural disruption in
the corpus callosum, the internal capsule and the white matter underlying the sensorimotor
cortex in CD and BSP patients [11,19,20].

In CD, tractography-based studies also demonstrated abnormal connections between
infratentorial structures and the basal ganglia; specifically, between the pallidum and
brainstem [21], between the thalamus, middle frontal gyrus and brainstem [22], and within

Biomedicines 2023, 11, 753. https://doi.org/10.3390/biomedicines11030753 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines11030753
https://doi.org/10.3390/biomedicines11030753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0002-4018-169X
https://orcid.org/0000-0002-7732-2062
https://orcid.org/0000-0001-9088-7968
https://orcid.org/0000-0001-7150-9697
https://orcid.org/0000-0002-6631-6740
https://orcid.org/0000-0002-6338-2961
https://orcid.org/0000-0001-9659-8294
https://doi.org/10.3390/biomedicines11030753
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines11030753?type=check_update&version=2


Biomedicines 2023, 11, 753 2 of 15

the dentato-rubro-thalamic tract [23]. However, there have been no studies conducting
tractography in BSP, and it is unknown whether CD and BSP have specific microstructural
abnormalities, in line with recently demonstrated functional alterations [4], or whether
they share similar abnormalities to the basal ganglia thalamo-cortical network.

In this paper, we investigate in CD and BSP the possible microstructural changes of
WM bundles connecting predefined subcortical and cortical regions involved in the network
underlying the pathophysiology of focal dystonia. Using a probabilistic tractography
approach [24], we reconstruct WM tracts connecting the globus pallidus, putamen, and
thalamus with primary motor, primary sensory, and supplementary motor cortices. We
then evaluate the integrity of those WM tracts by deriving their DTI metrics. Finally, we
investigate possible correlations between WM microstructural damage and clinical features
of dystonic patients.

2. Materials and Methods
2.1. Participants and Clinical Assessment

Patients were consecutively recruited from the movement disorder outpatient clinic
of the Department of Human Neurosciences, Sapienza University of Rome (Italy). Patient
inclusion criteria consisted of a clinical diagnosis of CD or BSP according to diagnostic
criteria [25] and age > 18 years old. Exclusion criteria were neurological abnormalities
other than tremor, psychiatric diseases, concomitant systemic disease (e.g., diabetes, liver
disease, chronic renal failure, cardiovascular diseases) or contraindications to MRI. Forty-
two patients with adult-onset focal dystonia were enrolled. The Toronto Western Spas-
modic Torticollis Rating Scale (TWSTRS) [26] and the Blepharospasm Severity Rating Scale
(BSRS) [27] were used to assess the severity of CD and BSP, respectively, while quality of
life and disability were evaluated using the Cervical Dystonia Impact Profile (CDIP-58)
for CD and the Blepharospasm Disability Index (BSDI) for BSP. Disease duration and
handedness were recorded for all patients. All patients were evaluated at least 3 months
after the last botulinum toxin injection to exclude any possible confounders due to the
botulinum neurotoxin effect. None of the patients were under other treatment. A group of
17 age- and sex-matched healthy subjects (HS) from a pool of volunteers was enrolled as a
control group. All the participants gave their informed consent and the experimental pro-
cedure was approved by the ethics committee of Sapienza University of Rome (CE n 4041,
24 March 2016) and conducted in accordance with the Declaration of Helsinki.

2.2. MRI Acquisition

All participants underwent a multimodal 3T MRI scan (12-channel head coil for paral-
lel imaging, Verio, Siemens AG), including (1) high-resolution 3-dimensional T1-weighted
MPRAGE (3D T1) with 176 contiguous sagittal slices, 1 mm thick slice (repetition time
(TR) = 1900 ms, echo time (TE) = 2.93 ms, flip angle = 9◦, matrix = 256 × 256, field of view
(FOV) = 260 mm2; (2) T2-weighted images (TR = 3320 ms, TE = 10/103 ms, FOV = 220 mm2,
384 × 384 matrix, 4 mm thick slices, 30% gap); and (3) diffusion-tensor imaging (DTI),
single-shot echo-planar spin-echo sequence, with one b = 0 and 30 gradient directions, b = 0
and 1000 s/mm2, TR = 12,200 ms, TE = 94 ms, FOV = 192 mm, matrix = 96 × 96, 72 axial
2 mm thick slices, no gap.

2.3. MRI Data Analysis

Before data analysis, all images were visually inspected for a qualitative assessment
of artifacts.

Structural preprocessing was performed with FMRIB’s Software Library (FSL), version
6.0.1 (https://fsl.fmrib.ox.ac.uk/fsl (accessed on 1 September 2022)). Diffusion data were
visually inspected for artifacts and preprocessed using different tools from FDT (FMRIB
Diffusion Toolbox, part of FSL (FMRIB’s Software Library v.6.0.4, http://www.fmrib.ox.
ac.uk/fsl/) (accessed on 15 September 2022). Images were corrected for eddy current
distortion and head motion using a 12-parameter affine registration to each subject’s first
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no-diffusion weighted volume, and the gradient directions were rotated accordingly [28].
Non-brain tissue was removed from the eddy-corrected images using the Brain Extraction
Tool, part of FSL (FMRIB’s Software Library v.6.0.4, http://www.fmrib.ox.ac.uk/fsl/)
(accessed on 15 September 2022) (BET; [29]), creating a binary mask of the brain. Then,
maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and
radial diffusivity (RD) were estimated at the individual level using the DTIFIT tool, part
of FSL (FMRIB’s Software Library v.6.0.4, http://www.fmrib.ox.ac.uk/fsl/) (accessed on
30 September 2022) by fitting a tensor model to the eddy-corrected and brain masked
diffusion data. Registration between diffusion, structural and standard space images
was performed within FDT. Transformation matrices, and their inverses, were created to
transform images between spaces.

2.3.1. Selection of ROIs

To reconstruct WM tracts between the sensorimotor cortex and subcortical structures,
regions of interest (ROIs) were defined. We use probabilistic atlases to identify cortical re-
gions of interest (ROIs): the primary motor cortex (M1) (head/face region) and the primary
somatosensory cortex (S1) (face/upper limb region) were derived from the Brainnetome at-
las (https://atlas.brainnetome.org/download.html (accessed on 15 September 2022)) [30]),
and the juxtapositional lobule cortex (formerly supplementary motor cortex—SMA) was
identified from the Harvard-Oxford Cortical Structural Atlas (http://www.fmrib.ox.ac.
uk/fsl/data/atlas descriptions.html (accessed on 15 September 2022)). We thresholded at
25% M1, S1 and SMA ROIs and then divided on the sagittal plane x = 0 in the right and
left regions. We used FIRST-FSL to identify subcortical ROIs in each patient: left and right
globi pallidi, putamen and thalami. Finally, we registered cortical regions from standard
space and subcortical regions from structural space into subject diffusion space and visually
checked for accuracy.

2.3.2. Tractography

We performed probabilistic tractography within each participant’s diffusion space
using BedpostX, part of FSL (FMRIB’s Software Library v.6.0.4, http://www.fmrib.ox.ac.uk/
fsl/) (accessed on 1 October 2022) [31] with default parameters. We generated streamline
probability distribution maps between each predefined subcortical and cortical region of
interest (ROI). In each reconstructed map, we specified the subcortical region as the seed,
the cortical region as the target and the contralateral hemisphere as the exclusion mask. We
also specified the cortical target region as a termination mask, to identify the only and exact
connections between the given seed and the given target [32]. We then normalized pathway
probability maps for seed size by dividing the probability maps by the total number of
successfully generated streamlines, and we removed spurious connections by thresholding
the resulting maps by 5% [32,33]. We then binarized thresholded probability maps and
overlaid of FA, MD, AD and RD on individual maps, from which we extracted average
values [34] to evaluate WM tracts’ integrity.

2.4. Statistical Analysis

Statistical analysis was performed using SPSS software (IBM SPSS Statistics, version
25.0, IBM Corp., Armonk, NY, USA). One-way ANOVA was used to compare age and
the χ2 test was used to compare sex between patients and HS. Group differences in terms
of DTI (FA, MD, RD and AD) measures within the WM tracts of interest were tested via
multivariate analysis (Kruskal–Wallis). The significance level was set at p < 0.05, Bonferroni-
corrected for multiple comparisons.

To correlate WM microstructural damage of the tracts of interest with clinical scales,
altered DTI metrics of each WM bundle were non-parametrically correlated via Spearman’s
correlation test (Bonferroni corrected for multiple comparisons) with TWSTRS and CDIP-58
for the CD patients and with the BSRS and BSDI for the BSP group. Subsequently, to
limit the number of correlations, we derived indexes of global damage of subcortical-
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sensorimotor cortices WM tracts for each patient by averaging FA, MD, AD and RD values
of all reconstructed WM bundles, thus obtaining the FA index, MD index, AD index and
RD index. Each index was then correlated with clinical scores via a non-parametric test
(Spearman’s correlation test). The significance level was set at p < 0.05, Bonferroni-corrected
for multiple comparisons.

3. Results

Forty-two patients with adult-onset focal dystonia and 17 HS were enrolled in the
study. Due to motion artifacts in MRI images, seven patients were excluded (five with CD
and two with BSP). Thirty-five patients (17 with CD and 18 with BSP) and 17 HS were
included in the analysis. No differences in age (F = 2.35, p = 0.09) or sex (F = 2.89, p = 0.06)
were found between the three groups. All subjects were right-handed. The demographic
and clinical characteristics of study participants are reported in Table 1.

Table 1. Demographic and clinical characteristics of patients and healthy subjects.

Group
(Subjects)

Cervical Dystonia
(n = 17)

Blepharospasm
(n = 18)

Healthy Subjects
(n = 17) p-Value

Age, years 55.7 (10.1) 61.5 (8.8) 54.4 (13.9) >0.05

Sex (female/male) 14/3 12/6 8/9 >0.05

Disease duration, years 13.9 (9.9) 11.6 (3.8) - >0.05

TWSTRS 16.6 (11.2) - - NA

CDIP-58 56.4 (19.1) - - NA

BSRS - 9.1 (4.7) - NA

BSDI - 9.5 (6.6) - NA

Head tremor (Y/N) 9/8 NA NA NA

Data are shown as mean (standard deviation). Differences between groups were assessed using the t test;
differences for sex were assessed using the χ2 test. NA = not applicable; TWSTRS = Toronto Western Spasmodic
Torticollis Rating Scale; CDIP-58 = Cervical Dystonia Impact Profile; BSRS = Blepharospasm Severity Rating Scale;
BSDI = Blepharospasm Disability Index; Y = yes; N = no; R = right; L = left.

Streamlines of WM tracts were successfully generated for all participants (Figure 1).
Significant between-group differences in MD, RD and AD were found in the majority of
the reconstructed WM tracts, while FA was significantly different in one WM tract alone
(Tables 2–5). Post hoc testing (Dunn–Bonferroni) showed significant differences between
CD and HS and between BSP and HS, while no differences were found between the two
groups of patients. Specifically, patients showed lower FA and higher MD, RD and AD
compared to HS (Tables 2–5 and Figures 2–5).

In patients with BSP, a significant positive correlation was found between BSRS and
the MD and RD of all WM bundles (data not shown). No correlation was found between the
extent of WM damage and either TWSTRS or CDIP-58 in the CD group. When correlating
indexes of global damage of subcortical-sensorimotor cortices WM tracts with clinical
scales, a significant positive correlation was found between the MD and RD indexes and
BSRS in patients with BSP (Figure 6).
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Figure 1. Reconstructed white matter tracts in healthy subjects (HC) ((right) DST patients (left) and
BSP patients (center) overlaid on the MNI152 standard brain). Red-yellow colors mean the extent of
spatial overlap of reconstructed tracts between participants; specifically, red indicates at least 50%
overlap and yellow indicates 100%. Green areas are the regions of interest used for probabilistic
tractography.
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Table 2. Fractional anisotropy of subcortical-cortical WM tracts.

Healthy
Subjects
(n = 17)

Cervical
Dystonia
(n = 17)

Blepharospasm
(n = 18) p H Post Hoc

PALLIDUM—M1
Mean (SD)

0.494
(0.03)

0.462
(0.03)

0.467
(0.03) >0.05 8.75 -

PALLIDUM—S1
Mean (SD)

0.482
(0.03)

0.463
(0.03)

0.472
(0.03) >0.05 2.58 -

PALLIDUM—SMA
Mean (SD)

0.504
(0.03)

0.468
(0.03)

0.469
(0.03) 0.005 10.74

HS-BSP p = 0.026

HS-CD p = 0.008

BSP-CD ns

PUTAMEN—M1
Mean (SD)

0.443
(0.03)

0.421
(0.03)

0.423
(0.03) >0.05 3.68 -

PUTAMEN—S1
Mean (SD)

0.441
(0.03)

0.423
(0.03)

0.426
(0.04) >0.05 1.65 -

PUTAMEN—SMA
Mean (SD)

0.459
(0.03)

0.432
(0.03)

0.435
(0.03) >0.05 5.56 -

THALAMUS—M1
Mean (SD)

0.485
(0.03)

0.462
(0.03)

0.461
(0.04) >0.05 5.74 -

THALAMUS—S1
Mean (SD)

0.489
(0.03)

0.468
(0.04)

0.472
(0.04) >0.05 3.76 -

THALAMUS—SMA
Mean (SD)

0.487
(0.03)

0.457
(0.03)

0.459
(0.03) >0.05 9.15 -

Differences between the three groups (HS, CD and BSP) were assessed using the Kruskal–Wallis test (Bonferroni
corrected for multiple comparisons). M1 = bilateral primary motor cortex, head/face region; S1 = bilateral primary
sensory cortex, head/upper limb region; SMA = supplementary motor area; SD = standard deviation. Significant
p are shown in bold. ns = not significant.
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Figure 2. Differences in fractional anisotropy (FA) of cortical-subcortical white matter tracts among
subjects. HS: healthy subjects; CD: cervical dystonia; BSP: blepharospasm; M1: primary motor cortex
head/face region; S1: primary sensory cortex head/upper limb region; SMA: supplementary motor
area. Kruskal–Wallis post hoc analysis (* p < 0.05). Circles indicates outliers.
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Table 3. Mean diffusivity of subcortical-cortical WM tracts.

Mean Diffusivity

Healthy
Subjects
(n = 17)

Cervical
Dystonia
(n = 17)

Blepharospasm
(n = 18) p H Post Hoc

PALLIDUM—M1
Mean (SD)

0.00068
(0.00002)

0.00073
(0.00004)

0.00073
(0.00005) <0.0001 22.57

HS-BSP p < 0.0001

HS-CD p < 0.0001

BSP-CD ns

PALLIDUM—S1
Mean (SD)

0.00070
(0.00002)

0.00076
(0.00004)

0.00074
(0.0004) <0.0001 16.57

HS-BSP p = 0.014

HS-CD p < 0.0001

BSP-CD ns

PALLIDUM—SMA
Mean (SD)

0.00068
(0.00003)

0.00075
(0.00003)

0.00075
(0.00005) <0.0001 28.84

HS-BSP p < 0.0001

HS-CD p < 0.0001

BSP-CD ns

PUTAMEN—M1
Mean (SD)

0.00070
(0.00003)

0.00075
(0.00004)

0.00076
(0.00005) <0.0001 17.53

HS-BSP p = 0.001

HS-CD p = 0.001

BSP-CD ns

PUTAMEN—S1
Mean (SD)

0.00071
(0.00002)

0.00078
(0.00005)

0.00076
(0.00005) <0.0001 18.97

HS-BSP p = 0.02

HS-CD p < 0.0001

BSP-CD ns

PUTAMEN—SMA
Mean (SD)

0.00070
(0.00003)

0.00076
(0.00004)

0.00076
(0.00005) <0.0001 24.71

HS-BSP p < 0.0001

HS-CD p < 0.0001

BSP-CD ns

THALAMUS—M1
Mean (SD)

0.00069
(0.00002)

0.00073
(0.00003)

0.00074
(0.00002) <0.0001 21.33

HS-BSP p < 0.0001

HS-CD p < 0.0001

BSP-CD ns

THALAMUS—S1
Mean (SD)

0.00071
(0.00002)

0.00078
(0.00005)

0.00076
(0.00005) <0.0001 18.25

HS-BSP p = 0.006

HS-CD p < 0.0001

BSP-CD ns

THALAMUS—SMA
Mean (SD)

0.00069
(0.00002)

0.00075
(0.00003)

0.00075
(0.00005) <0.0001 27.91

HS-BSP p < 0.0001

HS-CD p < 0.0001

BSP-CD ns

Differences between the three groups (HS, CD and BSP) were assessed using the Kruskal–Wallis test (Bonferroni
corrected for multiple comparisons). H indicates the mean rank. M1 = bilateral primary motor cortex, head/face
region; S1 = bilateral primary sensory cortex, head/upper limb region; SMA = supplementary motor area;
SD = standard deviation. Significant p are shown in bold. ns = not significant.
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Figure 3. Differences in mean diffusivity (MD) of cortical-subcortical white matter tracts among
subjects. HS: healthy subjects; CD: cervical dystonia; BSP: blepharospasm; M1: primary motor cortex
head/face region; S1: primary sensory cortex head/upper limb region; SMA: supplementary motor
area. Kruskal–Wallis post hoc analysis (* p < 0.05, ** p < 0.001). Circles indicates outliers.

Table 4. Axial diffusivity of subcortical-cortical WM tracts.

Axial Diffusivity

HS
(n = 17)

CD
(n = 17)

BSP
(n = 18) p H Post Hoc

PALLIDUM—M1
Mean (SD)

0.001065
(0.000021)

0.001116
(0.000033)

0.001117
(0.000051) <0.0001 21.12

HS-BSP p < 0.0001

HS-CD p < 0.0001

BSP-CD ns

PALLIDUM—S1
Mean (SD)

0.001088
(0.000031)

0.001153
(0.000034)

0.001141
(0.000045) <0.0001 21.14

HS-BSP p = 0.002

HS-CD p < 0.0001

BSP-CD ns

PALLIDUM—SMA
Mean (SD)

0.001080
(0.000040)

0.001153
(0.000028)

0.001146
(0.000046) <0.0001 23.91

HS-BSP p = 0.001

HS-CD p < 0.0001

BSP-CD ns

PUTAMEN—M1
Mean (SD)

0.001050
(0.000022)

0.001101
(0.000037)

0.001107
(0.000056) <0.0001 16.07

HS-BSP p = 0.002

HS-CD p = 0.001

BSP-CD ns

PUTAMEN—S1
Mean (SD)

0.001064
(0.000024)

0.001137
(0.000040)

0.001124
(0.000049) <0.0001 25.75

HS-BSP p < 0.0001

HS-CD p < 0.0001

BSP-CD ns
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Table 4. Cont.

Axial Diffusivity

HS
(n = 17)

CD
(n = 17)

BSP
(n = 18) p H Post Hoc

PUTAMEN—SMA
Mean (SD)

0.001057
(0.000040)

0.001132
(0.000032)

0.001124
(0.000050) <0.0001 23.58

HS-BSP p = 0.001

HS-CD p < 0.0001

BSP-CD ns

THALAMUS—M1
Mean (SD)

0.001068
(0.000024)

0.001122
(0.000028)

0.001124
(0.000046) <0.0001 23.93

HS-BSP p < 0.0001

HS-CD p < 0.0001

BSP-CD ns

THALAMUS—S1
Mean (SD)

0.001113
(0.000035)

0.001186
(0.000042)

0.001166
(0.000039) <0.0001 24.46

HS-BSP p = 0.001

HS-CD p < 0.0001

BSP-CD ns

THALAMUS—SMA
Mean (SD)

0.001071
(0.000035)

0.001141
(0.000046)

0.001132
(0.000042) <0.0001 26.74

HS-BSP p < 0.0001

HS-CD p < 0.0001

BSP-CD ns

Differences between the three groups (HS, CD and BSP) were assessed using the Kruskal–Wallis test (Bonferroni
corrected for multiple comparisons). H indicates the mean rank. M1 = bilateral primary motor cortex, head/face
region; S1 = bilateral primary sensory cortex, head/upper limb region; SMA = supplementary motor area;
SD = standard deviation. Significant p are shown in bold. ns = not significant.
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Figure 4. Differences in axial diffusivity (AD) of cortical-subcortical white matter tracts among
subjects. HS: healthy subjects; CD: cervical dystonia; BSP: blepharospasm; M1: primary motor cortex
head/face region; S1: primary sensory cortex head/upper limb region; SMA: supplementary motor
area. Kruskal–Wallis post hoc analysis (** p < 0.001). Circles indicates outliers.
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Table 5. Radial diffusivity of subcortical-cortical WM tracts.

Radial Diffusivity

HS
(n = 17)

CD
(n = 17)

BSP
(n = 18)

p
(Bonferroni) H Post Hoc

PALLIDUM—M1
Mean (SD)

0.000481
(0.000029)

0.000536
(0.000044)

0.000533
(0.000050) <0.0001 15.83

HS-BSP p = 0.005

HS-CD p = 0.001

BSP-CD ns

PALLIDUM—S1
Mean (SD)

0.000505
(0.000032)

0.000559
(0.000050)

0.000539
(0.000051) 0.005 10.54

HS-BSP ns

HS-CD p = 0.005

BSP-CD ns

PALLIDUM—SMA
Mean (SD)

0.000478
(0.000028)

0.000546
(0.000039)

0.000545
(0.000058) <0.0001 23.73

HS-BSP p < 0.0001

HS-CD p < 0.0001

BSP-CD ns

PUTAMEN—M1
Mean (SD)

0.000531
(0.000034)

0.000581
(0.000047)

0.000583
(0.000054) 0.002 11.99

HS-BSP p = 0.009

HS-CD p = 0.007

BSP-CD ns

PUTAMEN—S1
Mean (SD)

0.000539
(0.000033)

0.000599
(0.000057)

0.000585
(0.000055) 0.003 11.32

HS-BSP p = 0.041

HS-CD p = 0.004

BSP-CD ns

PUTAMEN—SMA
Mean (SD)

0.000515
(0.000027)

0.000577
(0.000042)

0.000572
(0.000058) <0.0001 18.34

HS-BSP p = 0.003

HS-CD p < 0.0001

BSP-CD ns

THALAMUS—M1
Mean (SD)

0.000494
(0.000029)

0.000540
(0.000040)

0.000548
(0.000056) 0.001 14.0

HS-BSP p = 0.005

HS-CD p = 0.003

BSP-CD ns

THALAMUS—S1
Mean (SD)

0.000509
(0.000031)

0.000573
(0.000061)

0.000555
(0.000062) 0.005 10.78

HS-BSP ns

HS-CD p = 0.005

BSP-CD ns

THALAMUS—SMA
Mean (SD)

0.000494
(0.000026)

0.000556
(0.000036)

0.000552
(0.000052) <0.0001 21.75

HS-BSP p = 0.001

HS-CD p < 0.0001

BSP-CD ns

Differences between the three groups (HS, CD and BSP) were assessed using the Kruskal–Wallis test (Bonferroni
corrected for multiple comparisons). H indicates the mean rank. M1 = bilateral primary motor cortex, head/face
region; S1 = bilateral primary sensory cortex, head/upper limb region; SMA = supplementary motor area;
SD = standard deviation. Significant p are shown in bold. ns = not significant.
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Figure 5. Differences in radial diffusivity (RD) of cortical-subcortical white matter tracts among
subjects. HS: healthy subjects; CD: cervical dystonia; BSP: blepharospasm; M1: primary motor cortex
head/face region; S1: primary sensory cortex head/upper limb region; SMA: supplementary motor
area. Kruskal–Wallis post hoc analysis (* p < 0.05, ** p < 0.001). Circles indicates outliers.
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4. Discussion

This study investigated white matter microstructural features in the two most frequent
types of adult-onset focal dystonia, CD and BSP. For the first time, we studied CD and BSP
patients with a methodology recently used for WM tract reconstruction in patients with em-
bouchure dystonia [24] to evaluate specific WM bundles with a probabilistic tractography
approach. We found that both forms of dystonia shared extensive microstructural changes
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of WM bundles of the basal ganglia-sensorimotor network, without any DTI parameter able
to differentiate one form of dystonia from the other. The analysis of specific WM bundles
connecting subcortical structures and sensorimotor cortices showed extensive fiber loss in
CD and BSP compared to HS, with no differences between the two groups of patients.

Only a few tractography-based studies demonstrated abnormalities in WM tracts
in patients with CD while focusing on tracts between infratentorial structures and basal-
ganglia, specifically, between the pallidum and brainstem [21], between the thalamus,
middle frontal gyrus and brainstem [22], and within the dentato-rubro-thalamic tract [23].

In the present study, subcortical ROIs coincided with the putamen and the globus
pallidus as the primary basal ganglia input and output structures, respectively, and the
thalamus as a relay structure between the basal ganglia, cerebellum and cortex. Cortical
ROIs were identified in the head/face regions of the primary sensory and motor cortices
and the SMA. The choice of investigating direct cortico-pallidal connectivity was based
on animal studies describing direct projections from the cerebral cortex to the globus
pallidus [35,36] and on recent diffusion tractography studies showing direct cortico-pallidal
projections in humans [37–39], relevant in the pathophysiology of dystonia [40,41].

In CD and BSP patients, DTI analysis revealed a diffuse increase in MD, RD and AD
in the majority of the reconstructed WM tracts, and an FA reduction limited to pallidum–
SMA, without differences between the two groups of patients. An increase in MD, which
reflects cellular density and extracellular volume [42,43], indicates a less organized myelin
and/or axonal structure [44], while increased AD and RD, which give information about the
spatial orientation of fibers, suggest prevalent axonal damage [45] and demyelination [46],
respectively. Reduced FA can be caused by the degradation of myelin sheaths and/or axonal
membranes [45,47,48]. Overall, data of the present study support the hypothesis of axonal
and myelin loss due to microstructural abnormalities of the basal ganglia-thalamo-cortical
circuit, with alterations of both direct and indirect pathways [49] and direct cortico-pallidal
pathways [37,40,50].

The results of the present study showing changes in specific white matter tracts
expand previous literature on CD and BSP, demonstrating diffuse microstructural damage
in the basal ganglia, cerebellum and sensorimotor cortical areas [10–13], as well as in the
white matter [11,19,20,51,52]. Moreover, the WM tracts we reconstructed correspond to
brain regions with microstructural integrity loss in the WM adjacent to the pallidum and
putamen and the precentral and postcentral gyri [13,17,53]. Unlike our results, Berman
and colleagues found different patterns of altered microstructural WM changes in CD and
BSP. Specifically, when comparing CD and BSP patients, reduced FA in the cerebellum and
the bilateral caudate nucleus was found in CD patients, whereas reduced FA in the globus
pallidum internus and the red nucleus was found in BSP patients [10]. The reasons for our
different findings are probably the different methodological approaches of the studies and
the different brain regions investigated.

We also found a significant correlation between the MD and RD of all reconstructed
WM tracts and the severity of blepharospasm. This finding is in line with previous studies
that showed a correlation between altered DTI metrics in subcortical structures [10,12]
and long WM tracts [54] with clinical scales in BSP. The absence of a correlation between
the extent of WM damage and clinical scales in patients with CD is also consistent with
previous studies [10,23,52]. The development of unbiased and reliable clinical scales for
focal dystonia is an important field of research in the current literature.

This study is not without limitations. The cross-sectional design makes it impossible to
conclude whether the changes we described are causative or compensatory. DTI allows non-
invasive in vivo assessment of brain structural connectivity; however, caution is needed
when interpreting the results given the intrinsic limitations of the DTI technique for defining
the direction of structural connection change. The availability of more objective and reliable
clinical scales not biased by patient perception could overcome the difficulty of making
clinical–radiological correlations.
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To conclude, the present observation of changes in DTI metrics of specific WM tracts
suggests a diffuse and extensive alteration in WM integrity as a common feature of two
forms of focal dystonia, namely cervical dystonia and blepharospasm. The present re-
sults align with the increasing evidence of microstructural damage to several brain WM
bundles belonging to a specific circuit, i.e., the basal ganglia-thalamo-cortical circuit. Al-
tered structural connectivity between the basal ganglia and sensorimotor cortices parallels
functional connectivity abnormalities consistently reported in the basal ganglia-thalamo-
sensorimotor circuit in cervical dystonia and blepharospasm, likely indicating a common
pathophysiological mechanism underlying both forms of focal dystonia.
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