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Abstract
In this work we study various continuous finite element discretization for two dimen-
sional hyperbolic partial differential equations, varying the polynomial space (Lagrangian
on equispaced, Lagrangian on quadrature points (Cubature) and Bernstein), the stabilization
techniques (streamline-upwindPetrov–Galerkin, continuous interior penalty, orthogonal sub-
scale stabilization) and the time discretization (Runge–Kutta (RK), strong stability preserving
RK and deferred correction). This is an extension of the one dimensional study by Michel
et al. (J Sci Comput 89(2):31, 2021. https://doi.org/10.1007/s10915-021-01632-7), whose
results do not hold in multi-dimensional frameworks. The study ranks these schemes based
on efficiency (most of them are mass-matrix free), stability and dispersion error, providing
the best CFL and stabilization coefficients. The challenges in two-dimensions are related to
the Fourier analysis. Here, we perform it on two types of periodic triangular meshes varying
the angle of the advection, and we combine all the results for a general stability analysis.
Furthermore, we introduce additional high order viscosity to stabilize the discontinuities, in
order to show how to use these methods for tests of practical interest. All the theoretical
results are thoroughly validated numerically both on linear and non-linear problems, and
error-CPU time curves are provided. Our final conclusions suggest that Cubature elements
combined with SSPRK and OSS stabilization is the most promising combination.
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1 Introduction

We study several continuous finite element formulations to approximate the solution of the
two dimensional hyperbolic conservation laws

∂t u(x, t) + ∇ · f (u(x, t)) = 0 x ∈ � ⊂ R, t ∈ R
+, (1)

where � ⊂ R
2 is the domain, f : RD → R

2×D is the flux function and u : � → R
D is the

unknown of the system of equations.
The largest part of the paper is dedicated to the two-dimensional spectral analysis of

different stabilized approaches applied to the scalar (D = 1) transport equations obtained
for

f (u(x, t)) = au(x, t) a ∈ R
2. (2)

One of the main objectives of this paper is to identify strategies to build (linearly) stable fully
explicit high order continuous finite element schemes to discretize (1) on triangulations of
the spatial domain�. To this end we will vary the basis functions, the stabilization technique
and the time discretization. In general, the standard Finite Element Method (FEM) derived
by this approach require the inversion of a large sparse mass matrix. This procedure can be
expensive as either inverting the mass matrix and, hence, the matrix multiplications must be
repeated for every time step or the linear solver must be applied at each time step. Various
techniques have been introduced to overcome the mass matrix inversion while keeping the
high order accuracy of the scheme.

The first strategy we study is the one proposed in [1]. In the reference it is suggested to
combine mass lumping with a deferred correction (DeC) iterative time integration method
allowing to introduce appropriate corrections in the right–hand side in order to recover the
original order of accuracy. This approach can only be used in combinationwith finite elements
whose basis functions have positive integrals. Another approach is based on a careful choice
of approximation points defining sufficiently accurate quadrature formulas with all positive
weights. If the variational form is evaluated with this underlying quadrature, as in spectral
elementmethods, we obtain a diagonalmassmatrix without loosing the order of accuracy.We
refer to this case as cubature elements [40]. For this choice, the classical use of Runge–Kutta
methods will provide the high order accuracy also for the time discretization.

Secondly, we will study the influence of the stabilization strategy. When solving (1) with
continuous finite elements some additional stabilization operator is necessary to enforce the
L2 stability. Several stabilization techniques can be devised to introduce a level of dissipation
comparable to that of discontinuous Galerkin methods with upwind fluxes [46, 47]. Three
approaches will be studied: the streamline upwind Petrov–Galerkin (SUPG) stabilization
[12, 18], which is strongly consistent, but it is also introduces new terms in the mass matrix;
the continuous interior penalty (CIP) method [14, 16, 19], consisting in adding edge penalty
terms proportional to the jump of the first derivative of the solution; the orthogonal subscale
stabilization (OSS) [23], a term that penalizes the L2 projection of the gradient of the error
within the elements. As the CIP stabilization, this technique does not affect the mass matrix,
but it requires the solution of another linear system for the L2 projection. In this respect, the
choice of the finite element space and of the quadrature have enormous impact on the cost
of the method. Note that the strategy to impose boundary conditions also plays a major role
in ensuring stability [4, 5], but this will not be considered here.
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Our objective is to perform a fully discrete spectral analysis on triangulations of the spatial
domain to characterize the stability and accuracy of different combinations of approximation,
quadrature, stabilization, and time stepping. In the linear case, this allows to propose optimal
values of the CFL and stabilization parameters. Moreover, we analyze a further non-linear
high order diffusion operator that can be used to stabilize discontinuities and to provide extra
stability to the schemes that show to be unstable with the previous techniques. Numerical
simulations for both linear and non-linear scalar problems, and for the shallow water system
confirm the theoretical results, and allow to further investigate the impact of the discretization
choices on the performance of the schemes and on their cost.

The paper is organized as follows. In Sect. 2 we describe the continuous Galerkin
discretization, the stabilization techniques, the basis functions and the time integration tech-
niques. In Sect. 3we introduce the Fourier analysis space definitions that lead to vonNeumann
analysis, we discuss some technical details on the passage from physical functions to Fourier
modes for different meshes and we find the parameters for which the schemes are stable for
somemesh configurations. In Sect. 3.9, we also propose to introduce a viscosity term in order
to enforce stability when the previous von Neumann analysis reveals instabilities. In Sect. 4
and Sect. 5 we test the found parameters on some linear and nonlinear problems, checking the
order of accuracy and the computational times. Finally, in Sect. 6 we derive some conclusions
on the presented schemes and possible applications of the found results.

2 Numerical Discretization

In this section we describe the discretization of the hyperbolic conservation law (1). We
consider a tessellation of the spatial domain � consisting of non overlapping (triangular)
cells, which we denote by �h ⊂ R

2. The generic element of the tessellation �h will be
denoted by K , so that �h = ⋃

K . We denote the set of internal element boundaries (edges)
of �h by Fh , using f for a general element. h denotes the characteristic mesh size of �h .
Despite of the fact that most of the discussion is performed for the scalar case, most of it
generalizes readily to systems. If a significant difference arises in this generalization, this
will be explicitly discussed.

The discrete solution is sought in a continuous finite element space V p
h = {vh ∈ C 0(�h) :

vh |K ∈ Pp(K ), ∀K ∈ �h}. We will use nodal and modal finite elements, and we will denote
by ϕ j the basis functions associated to the degree of freedom j , so that V p

h = span
{
ϕ j
}
j∈�h

and we can write
uh(x) =

∑

j∈�h

u jϕ j (x),

where, with an abuse of notation, with j ∈ �h we mean the set of degrees of freedom with
support in �h . With a similar meaning, we will also use the notation j ∈ K to mean the
degrees of freedom with support on the cell K .

The unstabilized CG approximation of (1) reads: find uh ∈ V p
h such that for any vh ∈

Wh ⊂ L2(�h) := {v : �h → R : ∫
�h

|v|2 < ∞}
∫

�h

vh∂t uhdx −
∫

�h

∇vh f (uh) dx +
∫

∂�h

vh f (uh) · nd� = 0, (3)

where n is the outward facing normal to the boundary of the domain. The choice of Wh will
be based on Vh , but it may take different forms for different stabilizations.
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As already mentioned, we will consider several stabilized variants of (3) which can be all
formulated in the form: find uh ∈ V p

h that satisfies
∫

�

vh(∂t uh + ∇ · f (uh))dx + S(vh, uh) = 0, ∀vh ∈ V p
h (4)

where the flux term is written before the integration by part as we will consider only con-
tinuous piecewise polynomials approximations, whose derivatives are integrable. Here, S
denotes a bilinear stabilization operator defined on V p

h × V p
h . Several different choices for

S exist, and are discussed in detail in the following sections.

2.1 Stabilization Terms

2.1.1 Streamline-Upwind/Petrov–Galerkin: SUPG

The SUPG method was introduced in [31] (see also [12, 32] and references therein) and is
strongly consistent in the sense that it vanishes when replacing the discrete solution with
the exact one. It can be written as a Petrov–Galerkin method replacing vh in (3) with a test
function belonging to the space

Wh := {wh : wh = vh + τK∇u f (uh) · ∇vh; vh ∈ V p
h }. (5)

Here, ∇u f (uh) ∈ R
D×D×2 is the Jacobian of the flux, D the dimensions of the system, τK

denotes a positive definite stabilization parameter with the dimensions of D× D that we will
assume to be constant for every element. Although other definitions are possible, here we
will evaluate this parameter as

τK = δhK (JK )−1 (6)

where hK is the cell diameter and JK represents the norm of the flux Jacobian on a reference
value of the element K . In the scalar case, JK = ||∇u f (u)||K .

The final stabilized variational formulation of (4) reads
∫

�

vh∂t uh dx +
∫

�

vh∇ · f (uh) dx

+
∑

K∈�

∫

K

(∇u f (uh) · ∇vh
)
τK (∂t uh + ∇ · f (uh)) dx

︸ ︷︷ ︸
S(vh ,uh)

= 0. (7)

The main problem of this stabilization method is that it depends on the time derivative of
u and, hence, it does not maintain the structure of the mass matrix in most cases.

To characterize the accuracy of the method, we can use the consistency analysis discussed
inter alia in [7, §3.1.1 and §3.2]. In particular, of a finite element polynomial approximation
of degree pwe can easily show that given a smooth exact solution ue(t, x), replacing formally
uh by the projection of ue on the finite element space, we can write

ε(ψh) :=
∣
∣
∣

∫

�

ψh∂t (u
e
h − ue) dx −

∫

�

∇ψh · (∇ f (ueh) − ∇ f (ue)) dx

+
∑

K∈�

∑

l,m∈K

ψl − ψm

k + 1

∫

K

(∇u f (uh) · ∇ϕi )τK ·
(
∂t (u

e
h − ue) + ∇ · ( f (ueh) − f (ue))

)
dx

∣
∣
∣ ≤ Chp+1,

(8)
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with C a constant independent of h, for all functions ψ of class at least C 1(�), of which ψh

denotes the finite element projection. A key point in this estimate is the strong consistency
of the method allowing to subtract its formal application to the exact solution (thus sub-
tracting zero), and obtaining the above expression featuring differences between the exact
solution/flux and its evaluation on the finite element space. Preserving this error estimate
precludes the possibility of lumping the mass matrix, and in particular the entries associated
to the stabilization term. This makes the scheme relatively inefficient when using standard
explicit time stepping.

As a final note, for a linear flux (2), exact integration, with τK = τ and in the time
continuous case, a classical result is obtained for homogeneous boundary conditions by
testing with vh = uh + τ ∂t uh [12]:

∫

�h

∂t

(
u2h
2

+ τ 2
(a · ∇uh)2

2

)

+
∫

�h

a · ∇
(
u2h
2

+ τ 2
(∂t uh)2

2

)

= −
∫

�h

τ(∂t uh + a · ∇uh)
2.

(9)

For periodic, or homogeneous boundary conditions, this shows that the norm |||u|||2 :=
∫
�h

u2h
2

+ τ 2
(a · ∇uh)2

2
dx is non-increasing. The interested reader can refer to [12] for the

analysis of some (implicit) fully discrete schemes.

2.1.2 Note on the SUPG Technique Applied to Non Scalar Problems

The extension of the SUPG method to a non scalar problem is not straightforward. Here we
used the following formulation. First, we define the following system of dimension D:

{
∂tU + ∇ · F (U ) = S(U )

F = (F1, F2)
(10)

with U ∈ R
D , F (U ) ∈ R

2×D and S(U ) ∈ R
D . For example, in the results section we will

consider the shallow water equations with D = 3 which read

U =
⎛

⎝
h
hu
hv

⎞

⎠ F1(U ) =
⎛

⎝
hu

hu2 + g h2
2

huv

⎞

⎠ F2(U ) =
⎛

⎝
hv

huv

hv2 + g h2
2

⎞

⎠ and S(U ) =
⎛

⎝
0

−ghbx
−ghby

⎞

⎠

where S(U ) is the source term given by a topography term. Equation (10) can also be written
in its quasi-linear form

∂tU + ∇UF (U ) · ∇U = S(U ), (11)

where ∇UF (Uh) ∈ R
D×D×2 is the Jacobian of the flux F (Uh).

Following the definition of the SUPGmethod and [52, sec. 5], we define a positive-definite
stabilization matrix øK ∈ R

D×D constant for every element K . Here this matrix is evaluated
as [52]

τK = δhK

⎛

⎝
∑

j∈SK

∣
∣∇UF (ŪK ) · n j

∣
∣

⎞

⎠

−1

, (12)
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with SK the set of vertices of K , and n j the outward normal of the edge opposite to the
vertex j ∈ SK . hK is the cell diameter and ∇uF (ŪK ) represents the flux Jacobian of the the
average value of Uh on the element K .

The SUPG stabilized formulation reads, for each equation of the system i = 1, . . . , D
∫

�

vh (∂tUh + ∇ · F (Uh) − S(Uh))i +
(
∑

K∈�

∫

K

(∇vh · ∇UF (Uh)
)
τK (∂tUh + ∇ · F (Uh) − S(Uh)) dx

)

i︸ ︷︷ ︸
S(vh ,Uh)i

= 0, (13)

where (V )i denotes the i-th component of a vector V ∈ R
D .

2.1.3 Continuous Interior Penalty - CIP

Another stabilization technique, which maintains sparsity and symmetry of the Galerkin
matrix, is the continuous interior penalty (CIP) method. It was developed by Burman and
Hansbo originally in [15] and then in a series of works [14, 16, 19]. It can also be seen as a
variation of the method proposed by Douglas and Dupont [26].

Themethod stabilizes the Galerkin formulation by adding edge penalty terms proportional
to the jump of the gradient of the derivatives of the solution across the cell interfaces. The
CIP introduces high order viscosity to the formulation, allowing the solution to tend to the
vanishing viscosity limit. This term does not affect the structure of the mass matrix. The
method reads
∫

�h

vh∂t uh dx+
∫

�h

vh∇· f (uh) dx+
∑

f ∈Fh

∫

f
τ f [[n f · ∇vh]] · [[n f · ∇uh]] d�

︸ ︷︷ ︸
S(vh ,uh)

= 0, (14)

where [[·]] denotes the jump of a quantity across a face f , n f is a normal to the face f and
where Fh is the collection of internal boundaries, and f are its elements. Although other
definitions are possible, we evaluate the scaling parameter in the stabilization as

τ f = δ h2f ‖∇u f ‖ f , (15)

where ‖∇u f ‖ f a reference value of the norm of the flux Jacobian on f and h f a characteristic
size of the mesh neighboring f .

As stated above, a clear advantage of CIP is that it does not modify the mass matrix,
resulting in efficient schemes if a mass lumping strategy can be devised. On the other hand,
the stencil of the scheme increases as the jump of a degree of freedom interacts with cells
which are not next to the degree of freedom itself (up to 2 cells distance). Note that for higher
order approximations [17, 38] suggest the use of jumps in higher derivatives to improve the
stability of the method. However, here we consider the jump in the first derivatives in order
to be able to apply the stability analysis and to study the influence of δ on the stability of the
method. We note that the results presented herein might be improved by adding stabilization
of higher derivatives.

The accuracy of CIP can be assessed with a consistency analysis as discussed in [7, §3.1.1
and §3.2]. This consists in, formally substituting uh by the projection onto the finite element
polynomial of degree p space of ue, a given smooth exact solution ue(t, x), we can show that
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for all functionsψ of class at least C 1(�), of whichψh denotes the finite element projection,
we have the truncation error estimate

ε(ψh) :=
∣
∣
∣

∫

�

ψh∂t (u
e
h − ue) dx −

∫

�

∇ψh · ( f (ueh) − f (ue)) dx

+
∑

f ∈Fh

∫

f

τ f [[n f · ∇ψh]] · [[n f · ∇(ueh − ue)]]
∣
∣
∣ ≤ Chp+1,

(16)

withC a constant independent of h. The estimate can be derived from standard approximation
results applied to ueh − ue and to its derivatives, noting that τ f is an O(h2), leading to the
aimed order of accuracy.

The symmetry of the stabilization allows to easily derive an energy stability estimate for
the space discretized scheme only. In particular, for periodic boundary conditions and a linear
flux we can easily show that

∫

�h

∂t
u2h
2

= −
∑

f ∈Fh

∫

f

τ f [[n f · ∇uh]]2, (17)

which gives a bound in time on the L2 norm of the solution.
Note that for higher than second order it may be relevant to consider additional penalty

terms based on higher derivatives (see e.g. [3, 13, 17]). We did not do this in this work.

2.1.4 Orthogonal Subscale Stabilization - OSS

Another symmetric stabilization approach is the Orthogonal Subscale Stabilization (OSS)
method. Originally introduced as Pressure Gradient Projection (GPS) in [24] for Stokes
equations, itwas extended to theOSSmethod in [11, 23] for different problemswith numerical
instabilities, such as convection–diffusion–reaction problems. This stabilization penalizes the
fluctuations of the gradient of the solution with a projection of the gradient onto the finite
element space. The method applied to (3) reads: find uh ∈ V p

h such that ∀vh ∈ V p
h

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫
�h

vh∂t uh dx + ∫
�h

vh∇ · f (uh) dx +
∑

K∈�h

∫

K

τK∇vh · (∇uh − wh) dx

︸ ︷︷ ︸
S(vh ,uh)

= 0,

∫
�h

vhwh dx − ∫
�h

vh∇uh dx = 0.

(18)

For this method, the stabilization parameter is evaluated as

τK = δhK ‖∇u f ‖K . (19)

The drawback of this method, with respect to CIP, is the requirement of a matrix inversion to
project the gradient of the solution in the second equation of (18). This cost can be alleviated
by the choice of elements and quadrature rules if they result in a diagonal mass matrix, as is
the case for Cubature elements described below.

123



49 Page 8 of 48 Journal of Scientific Computing (2023) 94 :49

As before we can easily characterize the accuracy of this method. The truncation error
estimate for a polynomial approximation of degree p reads in this case

ε(ψh) :=
∣
∣
∣

∫

�h

ψh∂t (u
e
h − ue) dx −

∫

�h

∇ψh · ( f (ueh) − f (ue)) dx

+
∑

K∈�h

τK

∫

K

∇ψh · ∇(ueh − ue)

+
∑

K∈�h

τK

∫

K

∇ψh · (∇ue − we
h)

∣
∣
∣ ≤ Chp+1,

(20)

where the last term is readily estimated using the projection error and the boundness of ψh

as
∫

�h

ψh(w
e
h − ∇ue) dx =

∫

�h

ψh(∇ueh − ∇ue) = O(h p).

Finally, for a linear flux, periodic boundaries and taking τK = τ constant along the mesh,
we can test with vh = uh in the first equation of (18), and with vh = τwh in the second one
and sum up the result to get

∫

�h

∂t
u2h
2

= −
∑

K

∫

K

τK (∇uh − wh)
2, (21)

which can be integrated in time to obtain a bound on the L2 norm of the solution.
The truncation consistency error analysis presented above for the three stabilization terms

regards only consistency error, but it does not prove stability and convergence for these
schemes. These estimations tell us that the stabilization terms that we introduced are of the
wanted order of accuracy and that they are usable to aim at the prescribed order of accuracy.
This type of analysis has been already done for multidimensional problems inter alia in [2].

More rigorous proof of error bounds with h p+ 1
2 estimates can be found in [13] for the CIP.

We did not consider in this work projection stabilizations involving higher derivatives.

2.2 Finite Element Spaces and Quadrature Rules

In this section we describe three finite element polynomial approximation strategies used
in the paper. In particular, on a triangular element K of �h , we define in this section the
restriction of the basis functions of V p

h on each element K , which are polynomials of degree
at most p. We denote by {ϕ1, . . . , ϕN } the basis functions and they will have degree at most
p, and their definitions amounts to describe the degrees of freedom, i.e., the dual basis.

2.2.1 Basic Lagrangian Equispaced Elements

On triangles, we consider Lagrange polynomials with degrees at most p:

P
p =

⎧
⎨

⎩

∑

α+β≤p

cα,βx
α yβ

⎫
⎬

⎭
.
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We define the barycentric coordinates λi (x, y) which are affine functions on R
2 satisfying

the following relations
λi (v j ) = δi j , ∀i, j = 1, . . . , 3, (22)

where v j = (x j , y j ) are the vertexes of the triangle and, with an abuse of notation, they can
be written in barycentric coordinates as v j = (δ1 j , δ2 j , δ3 j ). Using these coordinates, we
can define the Lagrangian polynomials on equispaced points on triangles. The equispaced
points are defined on the intersection of the lines λ j = k

p for k = 0, . . . , p. A way to define
the basis functions corresponding to the point (xα, yα) = (α1/p, α2/p, α3/p) in barycentric
coordinates, with αi ∈ {0, . . . , p} and∑i αi = 1, is in Algorithm 1.

Algorithm 1 Lagrangian basis function in barycentric coordinates
Require: Point (xα, yα) = (α1/p, α2/p, α3/p) in barycentric coordinates

ϕα(x) ← 1
for i = 1, 2, 3 do

for z = 0, . . . , ai do
ϕα(x, y) ← ϕα(x, y) · (λi (x, y) − z

p )

end for
end for

The polynomials so defined in a triangle form a partition of unity, but they have also
negative values. This leads to negative or zero values of their integrals. This is problematic for
some time discretization and we will see why. We will use these polynomials in combination
with exact Gauss–Lobatto quadrature formulae for such polynomials and we will refer to
them as Basic elements.

2.2.2 Bernstein Polynomials

Bernstein polynomials are as well a basis of Pp but they are not Lagrangian polynomi-
als, hence, there is not a unique correspondence between point values and coefficients of
the polynomials. Anyway, there exist a geometrical identification with the Greville points
(xα, yα) = (α1/p, α2/p, α3/p).Given a tripletα ∈ N

3 withαi ∈ �0, . . . , p� and
∑

i αi = p,
the Bernstein polynomials are defined as

ϕα(x, y) = p!
3∏

i=1

λ
αi
i (x, y)

αi ! . (23)

Bernstein polynomials satisfy additional properties besides the one already cited for
Lagrangian points. As before, they form a partition of unity, the basis functions are nonneg-
ative in any point of the triangle, and so their integrals are strictly positive. More precisely

∫

K
ϕα = |K |

S
, S = #

{
α ∈ N

3 : |α|1 = p
}
.

These properties lead also to the fact that the value at each point is a convex combination of
the coefficients of the polynomials, so that it is easy to bound minimum and maximum of the
function by the minimum and maximum of the coefficients. This has been used in different
techniques to preserve positivity of the solution [10, 37]. We will use these polynomials with
corresponding high order accurate quadrature formulae. We will denote these elements with
the symbol Bp and we refer to them as Bernstein elements.
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Fig. 1 Comparison of the equispace repartition at left and the cubature repartition at right for elements of
degree p = 3

2.2.3 Cubature Elements

Contrary to the work done in 1D [42], the extension of Legendre–Gauss–Lobatto points
whichminimize the interpolation error do not exist for the triangle. They have to be computed
numerically such asFekete points [34, 55, 57]. The problem of this approach is that it requires
as classical finite elements the inversion of a sparse global mass matrix.

Cubature elements were introduced by G. Cohen and P. Joly in 2001 [25] for the wave
equation (second order hyperbolic equation), and are an extension of Lagrange polynomials
with the goal of optimizing the underlying quadrature formula error. We will denote the with
the symbol P̃p and they will be contained in another larger space of Lagrange elements, i.e.,
P
p ⊆ P̃

p ⊆ P
p′
, with p′ the smallest possible integer. Similar techniques have been used

to minimize the interpolation error [34, 55, 57]. The objective of these polynomials is to
use the points of the Lagrangian interpolation of the polynomials as quadrature points. This
means that the obtained quadrature is

∫
K f (x, y) = ∑

α ωα f (xα, yα), where
∫
K ϕα = ωα

and ϕα(xβ, yβ) = δαβ . This approach can be considered an extension of the Gauss–Lobatto
quadrature in 1D for non Cartesian meshes. The biggest advantage of this approach is to
obtain a diagonal mass matrix. The drawback is that one needs to increase the number of
basis function inside one element to obtain an accurate enough quadrature rule. In our work,
we propose to extend this approach to first order hyperbolic equations. A successful extension
to elliptic problem is proposed in [51]. A comparison between the equispace repartition and
the Cubature repartition for elements of degree p = 3 is shown in Fig. 1.

For completeness we detail further the construction of the basis functions. The challenges
of this approach are the following:

– Obtain a quadrature which is highly accurate, at least p + p′ − 2 order accurate [22];
– Obtain positive quadrature weights ωα > 0 for stability reasons [58];
– Minimize the number of basis functions of P̃p;
– The set of quadrature points has to be P̃p-unisolvent, so that the DoFs coincide with the

quadrature points without ambiguity [33];
– The number of quadrature points of edges has to be sufficient ensure the conformity of

the finite element.
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The optimization procedure that lead to these elements consists of several steps where the
different goals are optimized one by one. The optimization strategy exploits heavily the
symmetry properties that the quadrature point must have.

For p = 1 the Cubature elements do not differ from the Basic elements but in the
quadrature formula. For p = 2 the Cubature elements introduce an other degree of freedom
at the center of the triangle, leading to 7 quadrature points and basis functions per element.
For p = 3 the additional degree of freedom in the triangle are 3, leading to 13 basis functions
per triangle. All the details of such elements can be found in [25, 33]. We provide in Sect. 1
the detailed expressions of the polynomials used in this work. We will use the symbol P̃p

and the name Cubature elements to refer to them.
Other elements such as Fekete-Gauss points [29, 50] exist in the literature. They are

optimized to interpolate and integrate with high accuracy. However, it is shown that they
require more computing time to achieve similar results than cubature points for high order
of accuracy.

2.3 Time Integration

The spatial discretization leads to a coupled system of ordinary differential equation which
can be written as

M
dU

dt
= r(t) (24)

whereU is the vector of all the degrees of freedom on all the domain,M and r are the global
mass matrix and right-hand side terms obtained through the discretization of the previous
section with some finite elements and stabilization terms. We remark thatM is diagonal only
in the case of the Cubature elements without the SUPG stabilization, while, for all other
choices, it is a sparse non–diagonal matrix.

In the following, we describe two different time integration method: explicit Runge–
Kutta (RK) methods and their strong stability preserving (SSP) variants; and the Deferred
Correction (DeC) algorithm, which avoids the mass matrix inversion through the correction
iterations.

2.3.1 Explicit Runge–Kutta and Strong Stability Preserving Runge–Kutta Schemes

Runge–Kutta time integration methods are one step methods consisting in S stages defined
by

U (0) := Un,

U (s) := Un + �t
s−1∑

j=0

αs
jM

−1r(U ( j)) for s = 1, . . . , S,

Un+1 := Un + �t
S∑

s=0

βsM
−1r(U (s)).

(25)

Here, we use for the solution the superscript n to indicate the timestep and the superscript
in brackets (s) to denote the stage of the method. The coefficients αs

j and βs
j can be defined

in many different ways. In particular, we will refer to Heun’s method with RK2, to Kutta’s
method with RK3 and the original Runge–Kutta fourth order method as RK4. The respective
Butcher tables can be found in Sect. 2 in Table 12, see [20].
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Fig. 2 Subtimesteps inside the time step [tn , tn+1]

A subset of the RK methods are the SSPRK introduced in [56]. They consist in convex
combinations of forward Euler steps, and can be rewritten as follows

U (0) := Un,

U (s) :=
s−1∑

j=0

(
γ s
j U

( j) + �tμs
jM

−1r(U ( j))
)
for s = 1, . . . , S,

Un+1 := U (S),

(26)

with γ s
j , μ

s
j ≥ 0 for all j, s = 1, . . . , S. We will consider here the second order 3 stages

SSPRK(3,2) presented by Shu and Osher in [56], the third order SSPRK(4,3) presented in
[54, Page 189], and the fourth order SSPRK(5,4) defined in [54, Table 3]. For complete
reproducibility of the results, we put all their Butcher’s tableaux in Sect. 2 in Table 13.

2.3.2 The Deferred Correction Scheme

Deferred Correction methods were introduced in [27] as explicit time integration methods
for ODEs, but soon implicit [45], linearly implicit positivity preserving [48] versions and
extensions to PDE solvers [1] were studied. In particular, in [1, 3, 6, 8] the DeC is used in
a different formulation for finite element methods and it introduces two operator through
which it is possible to use a diagonal mass matrix without losing the order of accuracy. This
is only achievable when the lumped matrix (defined as the sum on the rows of the full mass
matrix) has only positive values on its diagonal. Hence, the use of Bernstein polynomials is
recommended in [1], but also Cubature elements can serve the purpose.

Consider a discretization of each timestep into M subtimesteps as in Fig. 2. For each
subtimestep we define a high order approximation of the integral form of the ODE (24) from
tn,0 to tn,m , i.e.,

M
(
Un,m −Un,0) −

∫ tn,m

tn,0
r(U (s))ds ≈ L 2(U )m

L 2(U )m := M
(
Un,m −Un,0) − �t

∑

z∈�0,M�

ρm
z r(Un,z) = 0,

(27)

with U = (
Un,0, . . . ,Un,M

)
. Moreover, the quadrature rule in time uses the subtimesteps

tn,m as quadrature points. The corresponding weights ρm
z for every different subinterval are

defined by Lagrangian basis functions in these subtimesteps (see [1, 3, 8] for details). The
algebraic system L 2(U∗) = 0 is in general implicit and nonlinear and, in order not to
recast to nonlinear solvers, the DeC procedure approximates the solution of L 2(U∗) = 0
by successive iterations relying on a low order easy–to–invert operatorL 1. This operator is
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typically a first order forward Euler approximation with a lumped mass matrix, i.e.,

M
(
Un,m −Un,0) −

∫ tn,m

tn,0
r(U (s))ds ≈ L 1(U )m

L 1(U )m := D
(
Un,m −Un,0) − �tβmr(Un,0) = 0.

(28)

Here,D denotes a diagonal matrix obtained from the lumping ofM, i.e.,Di i := ∑
j Mi j , and

βm := tn,m−tn,0

tn+1−tn
. The values of the coefficients βm and ρm

z for equispaced subtimesteps can
be found in Sect. 2. Denoting with the superscript (k) index the iteration step, we describe
the DeC algorithm as

Un,m,(0) := Un m = 0, . . . , M, (29a)

Un,0,(k) := Un k = 0, . . . , K , (29b)

L 1(U (k)) = L 1(U (k−1)) − L 2(U (k−1)) k = 1, . . . , K , (29c)

Un+1 := Un,M,(K ). (29d)

It has been proven [1] that if L 1 is coercive, L 1 − L 2 is Lipschitz with a constant
α1�t > 0 and the solution ofL 2(U∗) = 0 exists and is unique, then, the method converges
with an error of O(�t K ). Hence, choosing K = M + 1 we obtain a K -th order accurate
scheme.

Relying only on the inversion of the low order operator, the method gets rid of the com-
putational costs of the solution of the linear systems, leaving in the right hand side the mass
matrix of theL 2 operator, that should not be inverted. The only requirement that is necessary
for the DeC approach is the invertibility of the lumped mass matrixD, which limits its appli-
cation to spatial elements which possess this property. Beyond degree one, basic Lagrange
polynomials are not guaranteed to satisfy this property. Hence, only other polynomials as
Bernstein and Cubature can be used in combination with DeC.

Finally, for the following analysis we note that the DeC method can be cast in a form
similar to a Runge–Kutta method by rewriting (29c) as

Un,m,(k+1) = Un,m,(k) − D
−1

M

(
Un,m,(k) −Un,0,(k)

)
+

M∑

j=0

�tρm
j D

−1r(Un, j,(k)). (30)

Comparing with the system of equations (26), we can immediately define the SSPRK
coefficients associated to DeC as γ

m,(k+1)
m,(k) = I − D

−1
M with I the identity matrix,

γ
m,(k+1)
0,(0) = D

−1
M, μ

m,(k+1)
r ,(k) = ρm

r for m, r = 0, . . . , M and k = 0, . . . , K − 1 and
instead of the mass matrix, we use the diagonal one.

Remark 1 (DeC with SUPG) The iterative procedure of the DeC method overcomes the
difficulties presented by some implicit stabilizationmethods such asSUPG. Indeed, theSUPG
stabilization term can be added only to the L 2 operator, keeping the high order accuracy of
this operator. Since the L 2 operator is applied to the previously computed iteration, all the
terms of the SUPG, included the time derivative of u in (7), can be explicitly computed on
U (k−1), keeping then the diagonal mass matrix for the whole scheme.
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3 Fourier Analysis

3.1 Preliminaries and Time Continuous Analysis

In order to study the stability and the dispersion properties of the previously presented numer-
ical schemes, we will perform a dispersion analysis on the linear advection problem with
periodic boundary conditions:

∂t u(t, x) + a · ∇u(t, x) = 0, a ∈ R
2, (t, x) ∈ R

+ × �, (31)

with� = [0, 1]×[0, 1]. For simplicity, we consider a = (cos(�), sin(�))with� ∈ [0, 2π].
We then introduce the ansatz

uh(x, t) = Aei(k·x−ξ t) = Aei(k·x−ωt)eεt (32)

with ξ = ω + iε, i = √−1, k = (kx , ky)
T . (33)

Here, ε denotes the damping rate, while the wavenumbers are denoted by k = (kx , ky),
with kx = 2π/Lx and ky = 2π/Ly with Lx and Ly the wavelengths in x and y directions
respectively. The phase velocity c can be defined from

c · k = ω (34)

and represents the celerity with which waves propagate in space. It is in general a function
of the wavenumber. Substituting (32) in the advection equation (31) for an exact solution we
obtain that

ω = k · a , c = a and ε = 0. (35)

In other words

uh(x, t) = Aeik·(x−at) . (36)

The objective of the next sections is to provide the semi- and fully-discrete equivalents of the
above relations for the finite elementmethods introduced earlier.Wewill consider polynomial
degrees up to 3, for all combinations of stabilizationmethods and time integration techniques.
Thiswill also allow to investigate the parametric stabilitywith respect to the time step (through
the CFL number) and stabilization parameter δ. In practice, for each choice we will evaluate
the accuracy of the discrete approximation of ω and ε, and we will provide conditions for
the non-positivity of the damping ε, i.e., the von Neumann stability of the method.

3.2 The Eigenvalue System

The Fourier analysis for numerical schemes on the periodic domain is based on a discrete
Parseval theorem. Thanks to this theorem, we can study the amplification and the dispersion
of the basis functions of the Fourier space. The key ingredient of this study is the repetition
of the stencil of the scheme from one cell to another one. In particular, using the ansatz (32)
we can write local equations coupling degrees of freedom belonging to neighbouring cells
through a multiplication by factors eiθx and eiθy representing the shift in space along the
oscillating solution. The dimensionless coefficient

θx := kx�x and θy := ky�y (37)
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are the discrete reduced wave numbers which naturally appear all along the analysis. Here,
�x and �y are defined by the size of the elementary periodic unit that is highlighted with a
red square as an example in Fig. 3.

Formally replacing the ansatz in the scheme we end up with a dense algebraic problem of
dimension Ndof , where Ndof is the number of all the degrees of freedom in the mesh. The
obtained system with dimension Ndof in the time continuous case reads

Equations (31) and (32) ⇒ −iξMU + a · (KxU,KyU) + δSU = 0 (38)

(M)i j =
∫

�

φiφ j dx, (Kx )i j =
∫

�

φi∂xφ j dx, (Ky)i j =
∫

�

φi∂yφ j dx, (39)

with φ j being any finite element basis functions, U the array of all the degrees of freedom
and S being the stabilization matrix defined through one of the stabilization techniques of
Sect. 2.1. Although system (38) is in general a global eigenvalue problem, we can reduce its
complexity by exploiting more explicitly the ansatz (32). The choice of the mesh is crucial in
order to exploit the ansatz and to find a unit block that repeats periodically in space. Hence,
we must consider structured periodic meshes and we will focus, in particular, on two types
of meshes. The first one is the X -mesh that is depicted in Fig. 3 and the second one is the
T -mesh depicted in Fig. 4. In those pictures also the distribution of some P2 elements are
represented as an example.

More precisely, as it is done in [55] we can introduce elemental vectors of unknowns ŨZi j ,
where Zi j is the stencil denoted by the red square in Fig. 3, which repeats periodically on
the domain. So that ŨZi j , for continuous finite elements, is an array of d degrees of freedom
inside a periodic unitary block Zi j , excluding two boundaries (one on the top and one on
the right for example). This number depends on the chosen (periodic) mesh type and on the
elements. As an example, in Fig. 3 we display for the X type mesh the periodic elementary
unit (in the red square) withBasic and cubature degrees of freedomwith p = 2. In theX mesh
for Basic elements p = 2 we have d = 8, while for Cubature p = 2 we have d = 12. Using
the periodicity of the solution and the ansatz (32) and denoting by Zi±1, j±1 the neighboring
elementary units, we can write the neighboring degrees of freedom by

ŨZi±1, j = e±θx ŨZi, j , ŨZi, j±1 = e±θy ŨZi, j , (40)

and by induction all other degrees of freedom of the mesh.
This allows to show that the system (38) is equivalent to a compact system of dimension

d (we drop the subscript K as they system is equivalent for all cells)

− iξM̃Ũ + axK̃x Ũ + ayK̃yŨ + δS̃Ũ = 0, (41)

where the matrices M̃, K̃x , K̃y and S̃ are readily obtained from the elemental discretization
matrices by using Equations (40).

For the discrete Parseval theorem, we know that the norm or the reduced variable Ũ is
equivalent to the norm of the discrete vector U. Hence, studying the amplification factor of
the two is equivalent.

We apply the same analysis to stabilized methods. The interested reader can access all 2D
dispersion plots online [43]. From the plot we can see that the increase in polynomial degree
provides the expected large reduction in dispersion error, while retaining a small amount of
numerical dissipation, which permits the damping of parasite modes.

An example of dispersion curves is given in Fig. 5. Themethod usedCubature P̃2 elements,
the CIP stabilization technique, and a wave angle θ = 5π/4. We here show all 12 parasite
modes (see Fig. 3). The principal mode of this system is represented in green. This figure
also show the complexity of the analysis because of the number of modes to consider.
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Fig. 3 The X type triangular mesh. At left, the Basic finite element discretisation with P2 elements. At right,
the grid configuration for P̃2 Cubature elements. The red square represents the periodic elementary unit that
contains the degrees of freedom of interest for the Fourier analysis Color figure online

Fig. 4 The T type triangular mesh with degrees of freedom in blue and periodic unit in the red square for the
Fourier analysis. (color figure online)

We summarize the number of modes for the X mesh in Table 1. A representation of each
mesh is done in Sect. 1 for element of degree p = 2 and 3.

3.3 The Fully Discrete Analysis

We analyze now the fully discrete schemes obtained using the RK, SSPRK and DeC time
marching methods. Let us consider as an example the SSPRK schemes. If we define as
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Fig. 5 Dispersion curves related to the 12 modes of ŨZi j of the system given by Cubature P̃2 elements, the
CIP stabilization technique, and a wave angle θ = 5π/4 on an X mesh. Phases ω (left) and amplifications ε

(right)

Table 1 X mesh: Summary table
of number of modes per system

Element P1 P2 P3

Cub. 2 12 26

Basic. 2 8 18

Bern. 2 8 18

A := M
−1(axKx + ayKy + δS) we can write the schemes as follows

⎧
⎨

⎩

U(0) := Un,

U(s) := ∑s−1
j=0

(
γs jU( j) + �tμs j AU( j)

)
for s ∈ �1, S�,

Un+1 := U(S).

(42)

Expanding all the stages, we can obtain the following representation of the final stage:

Un+1 = U(0) +
S∑

j=1

ν j�t j A jU(0) =
⎛

⎝I +
S∑

j=1

ν j�t j A j

⎞

⎠Un, (43)

where coefficients ν j in (43) are obtained as combination of coefficient γs j and μs j in (42)
andI is the identity matrix. For example, coefficients of the fourth order of accuracy scheme
RK4 are ν1 = 1, ν2 = 1/2, ν3 = 1/6 and ν4 = 1/24.

We can now compress the problem proceeding as in the time continuous case. In particular,
using Equations (40) one easily shows that the problem can be written in terms of the local
d × d matrices Ã := M̃

−1
(
axK̃x + ayK̃y + δS̃

)
and in particular that

Ũn+1 = GŨn with G :=
⎛

⎝Ĩ +
S∑

j=1

ν j�t j Ã j

⎞

⎠ = eε�t e−iω�t , (44)

where G ∈ R
d×d is the amplification matrix depending on θ, δ, �t, �x and �y. Consid-

ering each eigenvalue λi of G, we can write the following formulae for the corresponding
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phase ωi and damping coefficient εi
{
eεi�t cos(ωi�t) = Re(λi ),

−eεi�t sin(ωi�t) = Im(λi ),
⇔

{
ωi�t = arctan

(−Im(λi )
Re(λi )

)
,

(eεi�t )2 = Re(λ)2 + Im(λ)2,

⇔
{ωi

k
= arctan

(−Im(λi )
Re(λi )

)
1

k�t ,

εi = log (|λi |) 1
�t .

For the DeC method we can proceed with the same analysis transforming also the other
involved matrices into their Fourier equivalent ones. Using (30) these terms would contribute
to the construction ofG not only in the Ãmatrix, but also in the coefficients ν j , which become
matrices as well. At the end we just study the final matrix G and its eigenstructure, whatever
process was needed to build it up.

The matrix G describes one timestep evolution of the Fourier modes for all the d different
types of degrees of freedom. The damping coefficients εi indicate if the modes are increasing
or decreasing in amplitude and the phase coefficients ωi describe the phases of such modes.

We remark that a necessary condition for stability of the scheme is that |λi | ≤ 1 or,
equivalently, εi ≤ 0 for all the eigenvalues. The goal of our study is to find the largest CFL
number for which the stability condition is fulfilled and such that the dispersion error is not
too large.

For our analysis, we focus on the X type triangular mesh in Fig. 3 with elements of degree
1, 2 and 3. This X type triangular mesh is also used in [39] for Fourier analysis of the acoustic
wave propagation system.

3.4 Methodology

The methodology we explain in the following, will be applied to all the combination of
schemes we presented above (in time: RK, SSPRK and DeC, discretisation in space: Basic,
Cubature and Bernstein, stabilization techniques: CIP, OSS and SUPG), in order to find the
best coefficients (CFL, δ), as in [42].

It must be remarked that the dispersion analysismust satisfy theNyquist stability criterion,
i.e., �xmax ≤ L

2 with �xmax the maximal distance between two nodes on edges. In other
words, kmax = 2π

Lmin
= 2π

2�xmax
= π

�xmax
. This tells us where k should vary, i.e., k ∈

[0, π/�xmax ].
The goal of this section is to minimize the dispersion error and guarantee stability, varying

the stabilization parameter and theCFLnumber.Hence,we look for an algorithm that provides
these optimal values. With the notation of [42], we will set for the different stabilizations

OSS : τK = δ�x |a|,
CIP : τ f = δ�x2|a|,

SUPG : τK = δ�x/|a|.
One of our objectives is to explore the space of parameters (CFL,δ), and to propose criteria

allowing to set these parameters to provide themost stable, least dispersive and least expensive
methods. A clear and natural criterion is to exclude all parameter values for which there exists
at least a wavenumber θ or an angle � ∈ [0, 2π ] such that we obtain an amplification of
the mode, i.e., ε(θ) > 10−12 (taking into account the machine precision errors that might
occur). Doing so, we obtain what we will denote as stable area in (CFL, θ) space. For all
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the other points we propose 3 strategies to minimize a combination of dispersion error and
computational cost.

In the following we describe the strategy we adopt to find the best parameters couple
(CFL,δ) that minimizes a global solution error, denoted by ηu , while maximizing the CFL in
the stable area. In particular, we start from the relative square error of u

∣
∣
∣
∣
u(t) − uex (t)

uex (t)

∣
∣
∣
∣

2

=
∣
∣
∣eεt−i t(ω−ωex ) − 1

∣
∣
∣
2

(45)

= [
eεt cos(t(ω − ωex )) − 1

]2 + [
eεt sin(t(ω − ωex ))

]2 (46)

=e2εt − 2eεt cos(t(ω − ωex )) + 1. (47)

Here, we denote with ε and ω the damping and phase of the principal mode and with
ωex = k · a the exact phase. For a small enough dispersion error |ω − ωex | � 1, we can
expand the cosine in the previous formula in a truncated Taylor series as

∣
∣
∣
∣
u(t) − uex (t)

uex (t)

∣
∣
∣
∣

2

≈ [
eεt − 1

]2

︸ ︷︷ ︸
Damping error

+ eεt t2 [ω − ωex ]
2

︸ ︷︷ ︸
Dispersion error

. (48)

We then compute an error at the final time T = 1, over the whole phase domain, using at least
3 points per wave 0 ≤ k�xp ≤ 2π

3 , with �xp = �x
p , and p the degree of the polynomials.

We obtain the following L2 error definition,

ηu(ω, ε)2 := 3

2π

[∫ 2π
3

0
(eε − 1)2dk +

∫ 2π
3

0
eε(ω − ωex )

2dk

]

. (49)

Recalling that ε = ε(k�x,CFL, δ,�) and ω = ω(k,�x,CFL, δ,�), we need to further set
the parameter �xp . We choose it to be large �xp = 1, with the hope that for finer grids the
error will be smaller. Moreover, we need to check that the stability condition holds for all the
possible angles � ∈ [0, 2π ].

Finally, we seek for the couple (CFL∗, δ∗) such that

(CFL∗, δ∗) = argmax
CFL

{

η(ω, ε,�′) < μ min
stable (CFL,δ)

max
�

η(ω, ε,�), ∀ �′ ∈ [0, 2π]
}

,

(50)
where the dependence on� of η is highlighted with an abuse of notation. For this strategy, the
parameter μ must be chosen in order to balance the requirements on stability and accuracy.
After having tried different values, we have set μ to 10 providing a sufficient flexibility to
obtain results of practical usefulness. Indeed, the found values will be tested in the numerical
section.

To show the influence of the angle� on the optimization problemwe show an example for
the X mesh. For a given couple of parameters (CFL,δ) = (0.4, 0.01) we compare the results
for � = 0 and � = 3π/16. In Fig. 6 we compare the phases ωi and the damping coefficients
εi for the two angles. It is clear that for the angle � = 0, on the left, there are some modes
which are not stable εi > 0, while for � = 3π/16 all modes are stable.

The angle canwidely influence the whole analysis as one can observe in the plot of maxi εi
in Fig. 7, where we observe that for the only angle � = 3π/16 we would obtain an optimal
parameter in (CFL,δ) = (0.4, 0.01), while, using all angles, this value is not stable anymore.

Remark 2 To define the stable region, we should only consider configurations for which the
damping is below machine accuracy. In practice, this cannot be done due to the fact that the
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Fig. 6 Comparison of dispersion curves ωi and damping coefficients εi , for Cubature P̃2 elements, with
SSPRK time discretization and OSS stabilization. � = 0 at the left and � = 3π/16 at the right

Fig. 7 Plot of log(maxi εi ) for Cubature P̃2 elements, SSPRK time discretization and OSS stabilization. The
blue and light blue region is the stable one. At the left only for � = 3π/16, at the right we plot the maximum
over all �

eigenvalue problem arising from (44) is only solved approximately using the linear algebra
package of numpy. This introduces some uncertainty in the definition of the stability region
as machine accuracy needs to be replaced by some other finite threshold.

3.5 Results of the Fourier Analysis Using the X TypeMesh

In this section, we illustrate the result obtained with the methodology explained above. For
clarity not all the results are reported in thiswork, howeverweplace all the plots for all possible
combination of schemes in an online repository [42]. We will provide some examples here
and a summary of the main results that we obtained.

The first type of plotwe introduce helps us in understanding howwe can define the stability
region in the (CFL, δ) plane. Thus, for every (CFL, δ) we plot the maximum of log(εi ) over
all modes and angles � ∈ [0, 2π ] (thanks to the symmetry of the mesh we can reduce this
interval). An example is given in the right plot of Fig. 7, it is clear that the whole blue area
is stable and the yellow/orange area is unstable. In other cases, this boundary is not so clear
and setting a threshold to determine the stable area can be challenging. In Fig. 8 we compare
different stabilizations for DeC with B3 elements. In the CIP stabilization case, we clearly
see that there is no clear discontinuity between unstable values and stable ones, as in SUPG,
because there is a transient region where maxi εi varies between 10−7 and 10−4.
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Fig. 8 Damping coefficients log(maxi εi ) for B3 Bernstein elements and the DeC method with, from left to
right, SUPG, OSS and CIP stabilization. The red dot is the optimum according to (50)

Fig. 9 log(ηu) values (blue scale) and stable area (unstable with black crosses), on (CFL, δ) plane. The red
dot denotes the optimal value. From left to right P1, P2, P3 Basic elements with SSPRK scheme and OSS
stabilization. (color figure online)

Fig. 10 log(ηu) values (blue scale) and stable area (unstable with black crosses), on (CFL, δ) plane. The red
dot denotes the optimal value. From left to right P1, P2, P3 Basic elements with SSPRK scheme and CIP
stabilization. (color figure online)

The second type of plot combines the chosen stability region with the error ηu . We plot
on the (CFL, δ) plane some black crosses on the unstable region, where there exists an i and
� such that εi > 10−7. The color represents log(ηu) and the best value according to the
previously described method is marked with a red dot. In Figs. 9, 10, 11 and 12, we show
some examples of these plots for some schemes, for different p = 1, 2, 3. In Figs. 9 and 10
we test the Basic elements with the SSPRK time discretization, while in Figs. 11, 12 we use
the Cubature elements with DeC time discretization. We compare also different stabilization
technique: in Figs. 9 and 11we use the OSS, while in Figs. 10 and 12 the CIP. One can observe
many differences among the schemes. For instance, for p = 3 we see a much wider stable
area for SSPRK than with DeC and, in the Cubature DeC case, we see that the CIP requires
a reduction in the CFL number with respect to the OSS stabilization.

We summarize the results obtained by the optimization strategy in Table 2 for all the com-
binations of spatial, time and stabilization discretization. The CFL and δ presented there are
optimal values obtained by the process above described, which we aim to use in simulations
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Fig. 11 log(ηu) values (blue scale) and stable area (unstable with black crosses), on (CFL, δ) plane. The red
dot denotes the optimal value. From left to right P̃1, P̃2, P̃3 Cubature elements with DeC scheme and OSS
stabilization. (color figure online)

Fig. 12 log(ηu) values (blue scale) and stable area (unstable with black crosses), on (CFL, δ) plane. The red
dot denotes the optimal value. From left to right P̃1, P̃2, P̃3 Cubature elements with DeC scheme and CIP
stabilization. (color figure online)

to obtain stable and efficient schemes. Unfortunately, as already mentioned above, for some
schemes the stability area is not so well defined for several reasons. One of these reasons is
the "shape" of the stability area as for one-dimensional problems, see [42]. Other issues that
affect this analysis are the numerical precision, see Sect. 3.6, and the mesh configuration, see
Sect. 3.7. In the following we study more in details these cases and how one can find better
values (Fig. 13).

3.6 Comparison with a Space-Time Split Stability Analysis

In this section, we show another stability analysis to slightly improve the results obtained
above. Indeed, the solution of the eigenvalue problem (44) is only obtained within some
approximation from the numpy numerical library. In some cases, the threshold used to define
the stability region is defined in a somewhat heuristic manner. So to confirm the results, we
use independently another criterion. To this end we treat independently the temporal and
spatial discretizations as in the method of lines. We then study only the spectral properties
of the spatial discretization alone, computing the eigenvalues of the corresponding matrix A
(cf. (42)). With this information, we then check whether they belong to the stability area of
the time discretization.

In particular, following [21], we write the time discretization for Dahlquist’s equation

∂t u − λu = 0, (51)

in this example, we consider the SSPRK discretization (42). From (43) we can write the
amplification coefficient �(λ), i.e.,

Un+1 = U(0) +
S∑

j=1

ν j�t jλ jU(0) =
⎛

⎝I +
S∑

j=1

ν j�t jλ j

⎞

⎠

︸ ︷︷ ︸
�(λ)

Un . (52)

123



Journal of Scientific Computing (2023) 94 :49 Page 23 of 48 49

Table 2 X mesh: Optimized CFL and penalty coefficient δ in parenthesis, minimizing ηu

Element & Time scheme P1 P2 P3

SUPG

Basic SSPRK 0.739 (0.127) 0.298 (0.058) 0.22 (0.026)

RK 0.403 (0.127) 0.298 (0.026) 0.22 (5.46e−03)

Cub. DeC 0.616 (0.28) 0.234 (0.04)∗ 0.144 (0.04)

SSPRK 1.062 (0.28) 0.379 (0.021)∗ 0.234 (0.011)∗
RK 0.616 (0.28) 0.234 (0.04) 0.144 (0.04)

Bern. DeC 0.739 (0.298) 0.455 (0.298)∗ 0.455 (0.153)∗
SSPRK 0.739 (0.127) 0.298 (0.058) 0.22 (0.026)

RK 0.403 (0.127) 0.298 (0.026) 0.22 (5.46e−03)

OSS

Basic SSPRK 0.403 (0.127) 0.298 (0.026) 0.22 (0.026)

RK 0.22 (0.058) 0.22 (0.026) 0.22 (0.012)

Cub. DeC 0.379 (0.207) 0.248 (0.03) 0.162 (0.018)

SSPRK 0.58 (0.336) 0.379 (0.03) 0.248 (0.018)

RK 0.379 (0.207) 0.248 (0.03) 0.162 (0.018)

Bern. DeC 0.173 (0.58) 0.036 (0.298) 0.025 (0.078)∗
SSPRK 0.403 (0.127) 0.298 (0.026) 0.22 (0.026)

RK 0.22 (0.058) 0.22 (0.026) 0.22 (0.012)

CIP

Basic SSPRK 0.403 (0.012) 0.298 (1.73e−03) 0.22 (7.85e−04)∗
RK 0.298 (0.012) 0.22 (1.73e−03) 0.22 (3.57e−04)

Cub. DeC 0.379 (0.026) 0.045 (7.85e−03)∗ –

SSPRK 0.58 (0.048) 0.07 (7.85e−03)∗ –

RK 0.379 (0.026) 0.045 (7.85e−03) –

Bern. DeC 0.173 (0.153) 0.012 (0.021) 0.004 (0.021)∗
SSPRK 0.403 (0.012) 0.298 (1.73e−03) 0.22 (7.85e−04)

RK 0.298 (0.012) 0.22 (1.73e−03) 0.22 (3.57e−04)

“–” means that the fourier analysis shown that the scheme is unstable. ∗ These values are not reliable, see
Sect. 3.6

The stability condition for this SSPRKscheme is given by�(λ) ≤ 1.Now,whenwe substitute
the Fourier transform of the spatial semidiscretization Ã to the coefficient λ and we diago-
nalize the system (or we put it in Jordan’s form), we obtain a condition on the eigenvalues
of Ã. Then, studying the Cubature case with SUPG stabilization of order 4 with parameters
(CFL,δ)=(0.234, 0.011), found in Fig. 13, see also Table 2, we plot the eigenvalues of Ã and
the stability region of the SSPRK scheme for different θ ∈ [0, π]. We notice that for some
values of θ some of the eigenvalues fall slightly outside the stable area, see Fig. 14a. There
are, indeed, few eigenvalues dangerously close to the imaginary axis and some of them have
actually positive real part (blue dots).

As suggested before, if we decrease the CFL and increase δ, we move towards a safer
region, so considering (CFL,δ)=(0.18, 0.04)with the same θ , we obtain all stable eigenvalues,
as shown in Fig. 14b.
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Fig. 13 Logarithm of the amplification coefficient log(maxi (εi )) for SUPG stabilization with P̃3 Cubature
elements and the SSPRK method. Unstable region in yellow, the red dot is the optimal parameter according
to (50)

Fig. 14 Eigenvalues of Ã using cubature discretization and the SUPG stabilization (varying k) and stability
area of the SSPRK method. In red the stable eigenvalues, in blue the unstable ones. (color figure online)

The summary of the optimal parameters of Table 2 updated taking into account also a
larger safety region in the (CFL, δ) plane (as explained in this section) can be found in
Table 15 in Appendix 2.

3.7 Different Mesh Patterns

Another important aspect about this stability analysis is the influence of the mesh structure
on the results. As an example, we use the T -mesh, another regular and structured mesh type
depicted in Fig. 4. In Fig. 4 we plot also the degrees of freedom for elements of degree 2
and the periodic elementary unit that we take into consideration for the Fourier analysis. The
number of modes in the periodic unit for this mesh type are summarized in Table 3. The
elements of degree 3 can be found in Fig. 28 in Appendix 1.
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Table 3 Number of modes in the
periodic unit for different
elements in the T mesh

Element P1 P2 P3

Cub. 1 6 13

Basic. 1 4 9

Bern. 1 4 9

Fig. 15 log(ηu) values (blue scale) and stable area (unstable with black crosses), on (CFL, δ) plane. The red
dot denotes the optimal value. From left to right P1, P2, P3 Basic elements with SSPRK scheme and CIP
stabilization. (color figure online)

Even if for several methods we observe comparable results for the two mesh types, for
some of them the analyses are quite different. An example is given by the Basic elements
with SSPRK schemes and CIP stabilization. For this method, we plot the dispersion error
(49) and the stability area in Fig. 15a for the X mesh and in Fig. 15b for the T mesh. We
see huge differences in P2 and P3 where in the former a wide region becomes unstable for
δL ≤ δ ≤ δR and for the latter we have to decrease a lot the value of δ to obtain stable
schemes.

In the case of Cubature elements with the OSS stabilization and SSPRK time integration,
we have already seen in the previous section that the optimal parameters found were in a
dangerous area. Repeating the stability analysis for the T mesh we see that the situation is
even more complicated. In Fig. 16a we plot the analysis for the X mesh and in Fig. 16b the
one for the T mesh. P̃3 elements, though being stable for some parameters for the X mesh,
are never stable on the T mesh. This means, that, when searching general parameters for the
schemes, we have to keep in mind that different meshes leads to different results.

For completeness, we present the optimal parameters also for the T mesh in Table 16 in
Appendix 2.

In general, it is important to consider more mesh types when doing this analysis. In
practice, we will use the two presented above (X and T meshes). In the following, we will
consider the stability region as the intersection of stability regions of both meshes.
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Fig. 16 log(ηu) values (blue scale) and stable area (unstable with black crosses), on (CFL, δ) plane. The red
dot denotes the optimal value. From left to right P̃1, P̃2, P̃3 Cubature elements with SSPRK scheme and OSS
stabilization

Fig. 17 Maximum logarithm of the amplification coefficient log(maxi (εi )) for P̃3 Cubature elements on the
X and T meshes

Fig. 18 Logarithm of the amplification coefficient log(maxi (εi )) for P̃3 Cubature elements on the X mesh

3.8 Final Results of the Stability Analysis

Taking into consideration all the aspects seen in the previous sections, it is important to
have a comprehensive result, which tells which parameters can be used in the majority of
the situations. A summary of the parameters obtained for the X and T mesh is available in
Appendix 2. In Table 4, instead, we present parameters obtained using the most restrictive
case among different meshes and that insure a sufficiently large area of stability around them,
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Table 4 Optimized CFL and penalty coefficient δ in parenthesis, combining the two mesh configurations

Element & Time scheme P1 P2 P3

SUPG

Basic SSPRK 0.739 (0.127) 0.2 (0.1)∗ 0.22 (0.026)

Cub. SSPRK 1.062 (0.28) 0.12 (0.13)∗ 0.09 (0.05)∗
DeC 0.616 (0.28) 0.144 (0.078) 0.05 (0.05)∗

Bern. DeC 0.739 (0.298) 0.12 (0.45)∗ 0.2 (0.153)∗
OSS

Basic SSPRK 0.403 (0.127) 0.2 (0.05)∗ 0.22 (0.026)

Cub. SSPRK 0.58 (0.336) 0.2 (0.08)∗ 0.28 (0.018)∗∗
DeC 0.379 (0.207) 0.12 (0.07)∗ 0.162 (0.018)∗∗

Bern. DeC 0.173 (0.58) 0.02 (0.2)∗ 0.015 (0.078)∗
CIP

Basic SSPRK 0.403 (0.012) 0.1 (1.00e−03)∗ 0.1 (5.00e−04)∗
Cub. SSPRK 0.58 (0.048) 0.06 (0.01)∗ –

DeC 0.379 (0.026) 0.025 (0.01)∗ –

Bern. DeC 0.173 (0.153) 0.012 (0.01)∗ 0.001 (0.01)∗

The values denoted by ∗ are not the optimal one, but they lay in a safer region, see Sect. 3.6. The values marked
by ∗∗ cannot be used on the T mesh. “–" means that it is unstable for every parameter

as explained in Sect. 3.6. These parameters can be safely used in many cases and we will
validate them in the numerical sections, where, first, we validate the results of the X mesh
on a linear problem on an X mesh, then we used the more general parameters in Table 4 for
nonlinear problems on unstructured meshes.

A special remark must be done for Cubature P̃3 elements combined with the OSS and
the CIP stabilizations. In Fig. 17 we see how the amplification coefficient maxi εi has always
values far away from zero. For the CIP stabilization this is always true and even for the P̃2

elements the stability region is very thin. As suggested in [17, 38] higher order derivatives
jump stabilization terms might fix this problem, but it introduces more parameters. This has
not been considered here. Another remark is that the T configuration is very peculiar and,
as we will see, on classical Delauney triangulations the issue seem to not affect the results.
Moreover, the use of additional discontinuity capturing operators may alleviate this issue as
some additional, albeit small, dissipation is explicitly introduced in smooth regions.

In Sect. 3.9, we propose to add an additional stabilization term for these unstable schemes,
i.e., Cubature P̃3 elements and OSS or CIP stabilization techniques. This term is based
on viscous term [2, 30, 36, 41] and allows to stabilize numerical schemes for any mesh
configuration.

For the OSS stabilization we observe a similar behavior in Fig. 17. The stability that we
see in that plot are only due to the the T mesh. Indeed, for the OSS stabilization on the X
mesh there exists a corridor of stable values, which turn out to be unstable for the T mesh,
see Fig. 18. In practice, also on unstructured grids we have not noticed instabilities when
running with the parameters found with the X mesh. Hence, we suggest anyway some values
of CFL and δ for these schemes, which are valid for the X mesh, noting that they might be
dangerous for very simple structured meshes. The validation on unstructured meshes also for
more complicated problems will be done in the next sections.
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Overall, Table 4 gives some insight on the efficiency of the schemes. We remind that, in
general, we prefer matrix free schemes, so this aspect must be kept in mind while evaluating
the efficiency of the schemes. All the SUPG schemes, except when with DeC, and all the
Basic element schemes have a mass matrix that must be inverted. Among the others we see
that for first degree polynomials schemes the DeC with Bernstein polynomials and SUPG
stabilization gives one of the largest CFL result, while for second degree polynomials the
OSS Cubature SSPRK scheme seems the one with best performance and, for fourth order
schemes, again the Bernstein DeC SUPG is one of the best.

In conclusion of this section, there are important points to highlight:

– The extension of the Fourier analysis to the two-dimensional space leads to significantly
different results with respect to the one-dimensional one. Both in terms of global stability
of the schemes, and in terms of optimal parameters.Moreover, in opposition to [42],Bern-
stein elements with SUPG stabilization technique lead to stable and efficient schemes.
Cubature elements, which were the most efficient in one-dimensional problems, have
stability issues on the two-dimensional mesh topologies studied.

– The complexity of the analysis in two-dimensional space is increased. This not only
implies a larger number of degrees of freedom, but also more parameters to keep into
account, including the angle of the advection term and the possible different configuration
of the mesh. The visualization of the stability region of the time scheme as shown in
Fig. 14 with the eigenvalues of the semi-discretization operators helps in understanding
the effect of CFL and penalty coefficient on the stability of the scheme, only for methods
of lines. This helps in choosing and optimizing the couple of parameters.

Remark 3 Another possibility to characterize the linear stability of numerical method is
proposed by J.Miller [44]. This method is based on the study of the characteristic polynomial
of the amplification matrix G. However, this method does not provide information about
the phase ω, since it does not compute eigenvalues of G. For this reason, we choose the
eigenanalysis.

3.9 Accounting for Discontinuity Capturing Corrections

The stabilization terms accounted for so far are linear stabilization operators. For more
challenging simulations, additional non-linear stabilization techniques might be added to
control the numerical solution in vicinity of strong non-linear fronts and/or discontinuities.
We consider here the effect of adding an extra viscosity term, as in the entropy stabilization
formulations proposed e.g. in [2, 30, 35, 36, 41]. We in particular look at the approach
proposed in [30], and used for shallowwater waves in [41, 49] and in [9, 28]. In this approach
theviscosity is designed to provide afirst order correctionμK = O(h) close to discontinuities,
while for smooth enough solutions μK = ch p+1.

Our idea is to embed this high order correction explicitly in the analysis of the previous
section to provide a heuristic characterization of the fully discrete stability of the resulting
stabilized formulation: find uh ∈ V p

h that satisfies for any vh ∈ Wh

∫

�

vh(∂t uh + ∇ · f (uh))dx + S(vh, uh)︸ ︷︷ ︸
Diffusive term

+
∑

K

∫

K
μK (uh)∇vh · ∇uh

︸ ︷︷ ︸
Viscosity term

= 0. (53)
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3.9.1 Note on the Stability of the Method

As it is done for previous stabilization terms in Sect. 2.1, we can characterize the accuracy
of this method estimating the truncation error for a polynomial approximation of degree p.
Considering the smooth exact solution ue(t, x) of (53), for all functions ψ of class at least
C 1(�) of which ψh denotes the finite element projection, we obtain

ε(ψh) :=
∣
∣
∣

∫

�h

ψh∂t (u
e
h − ue) dx −

∫

�h

∇ψh · ( f (ueh) − f (ue)) dx

+
∑

K∈�h

μK

∫

K

∇ψh · ∇(ueh − ue)dx
∣
∣
∣ ≤ Chp+1,

(54)

withC a constant independent of h. The estimate can be derived from standard approximation
results applied to ueh − ue and to its derivatives, knowing that μK = O(h p+1).

Then, for a linear flux, periodic boundaries and taking μK = μ constant along the mesh,
we can test with vh = uh in (53), we get

∫

�h

dt
u2h
2

= −
∑

K

∫

K

μ(∇uh)
2 ≤ 0, (55)

which can be integrated in time to obtain a bound on the L2 norm of the solution.

3.9.2 The von Neumann Analysis

As we saw in Sect. 3.8, the T mesh configuration has stability issues. In particular, the
numerical schemes using Cubature P̃3 elements, SSPRK and DeC time integration methods,
and the OSS and the CIP stabilization techniques are unstable. We propose to evaluate
these schemes adding the viscosity term in (53). For the von Neumann analysis, we use
μK (u) = ch p+1

K in (53), with c ∈ R
+, hK the cell diameter and p the degree of polynomial

approximation. We show the plot of maxi εi to understand how the stability region behaves
with respect to c using Cubature P̃3 elements. In Fig. 19 the maximum amplification factor
ε is represented for varying c, using the OSS stabilization technique and the SSPRK time
integration method. We note that the same behaviour is observed with CIP and DeC. Plots
are available online [43].

We can observe two main results. First, increasing the parameter c up to around 0.1 allows
to expand the stability region. Second,when the viscosity coefficients reaches too high values,
it is necessary to decrease the CFL (see Fig. 19c with μ = 0.05 and Fig. 19d with μ = 0.5
as an example).

4 Numerical Verification

We now perform numerical tests to check the validity of our theoretical findings. We initially
focus on the structured grids, and in particular on the X mesh configuration, although similar
verifications have been performed on the T mesh. We will use elements of degree p, with
p up to 3, with time integration schemes of the corresponding order of accuracy to ensure
an overall error of O(�x p+1), under the CFL conditions discussed earlier (see also Table
15 in Sect. 2). As already stressed, numerical integration is performed with Gauss–Legendre
formulae of the appropriate order to exactly integrate the variational form for Basic and
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Fig. 19 T mesh: Von Neumann analysis using an additional viscosity term (see (53)). Cubature P̃3 elements
with SSPRK and OSS. Comparison of different μ

Bernstein elements, while forCubature elements we use those associated to the interpolation
points.

The mesh used in the Fourier analysis is the basis of the one we will use in the numerical
simulations. We will extend it periodically for the whole domain, see an example in Fig. 20a.

4.1 Linear Advection Equation Test

We start with the linear advection equation 1 on the domain� = [0, 2]×[0, 1] usingDirichlet
inlet boundary conditions:

⎧
⎪⎨

⎪⎩

∂t u(t, x) + a · ∇u(t, x) = 0, (t, x) ∈ [t0, t f ] × �, a = (ax , ay)T ∈ R
2,

u(0, x) = u0(x),

u(t, xD) = uex (t, xD), xD ∈ �D = {(x, y) ∈ R
2, x ∈ {0, 2} or y ∈ {0, 1}},

(56)
where u0((x, y)T ) = 0.1 cos(2π r(x, y)), with r(x, y) = cos(θ)x + sin(θ)y the rotation by
an angle θ around (0, 0), a = (ax , ay)T = (cos(θ), sin(θ))T and θ = 3π/16. The final time
of the simulation is t f = 2s.

The exact solution is uex (x, t) = u0(x − ax t, y − ay t) for all x = (x, y) ∈ � and
t ∈ R

+. The initial conditions are displayed in Fig. 20b. We discretize the domain with
the X mesh pattern, see Fig. 20a. To have approximately the same number of degrees of
freedom for different degrees p, we use different mesh sizes for each order of accuracy:
�x1 = {0.1, 0.05, 0.025} for P1, �x2 = 2�x1 for P2, and �x3 = 3�x1 for P3 elements.

In Fig. 21a, b, we study the error convergence for different schemes. In the x-axis the
values of �t are displayed, which we remind are proportional to �x , and the error is plotted
on the y-axis. These figures show a comparison between Cubature and Basic elements with
OSS stabilization and SSPRK time integration. As we can see, the two schemes have correct
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Fig. 20 Linear advection simulation on the X mesh

Fig. 21 Error decay for linear advection problem with different elements and OSS stabilization and SSPRK
time discretization: P1 in blue, P2 in green and P3 in red. (color figure online)

Fig. 22 Error for linear advection problem (56) with respect to computational time for SSPRK time discretiza-
tion, comparing Basic and Cubature elements and all stabilization techniques

slopes (i.e. correct order of accuracy), and very similar errors except for P1 where the larger
CFL increases the error. The Basic elements require stricter CFL conditions, see Table 15,
and have larger computational costs because of the inversion of the mass matrix.

To show the main benefit of using the Cubature elements (diagonal mass matrix), we
plot in Fig. 22 the computational time of Basic and Cubature elements for the SSPRK time
scheme and all stabilization techniques.

As a first interesting result of numerical test, looking at the Fig. 22, we can clearly see
that, for a fixed accuracy, Cubature elements obtain better computational times with respect
to Basic elements. Moreover, as expected, the SUPG stabilization technique requires more
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Table 5 Convergence order for all schemes on linear advection test, using coefficients obtained in Table 15

Element & SUPG OSS CIP

Time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3

Basic SSPRK 1.93 2.96 4.02 2.0 2.62 4.1 1.44 2.45 3.77

Cub. SSPRK 1.97 2.39 4.38 2.03 2.49 4.41 1.96 2.35 –

DeC 1.97 2.27 4.34 2.02 2.49 4.41 2.01 2.35 –

Bern. DeC 1.97 2.61 1.8 2.29 2.52 2.27 1.97 2.7 2.06

“–” means that the Fourier analysis showed that the scheme is unstable

computational time as it requires the inversion of a mass matrix, even in the case where the
CFL used is larger than the ones for OSS or CIP stabilization, see Table 15.

The order of accuracy reached by each simulations is shown in Table 5. The plots and all
the errors are available at the repository [43].

Looking at the Table 5, we observe that almost all the stabilized schemes provide the
expected order of accuracy. Exception to this rule are several P2 discretization which reach
an order of accuracy of ≈ 2.5, and all Bernstein B3 polynomials with the DeC which reach
an order of accuracy of 2. This result is very disappointing and it does not improve even
adding more corrections, as suggested in [1, 3]. Moreover, it has been independently verified
that also in Fourier space the accuracy of DeC with Bernstein polynomials of degree 3 is
only of order 2. This problem do not show up for steady problems, as there only the spatial
discretization determines the order of accuracy. We will show it in Sect. 5.3, where we study
also some steady vortexes. The authors still do not understand why the optimal order of
accuracy is not reached. This opens doors to further research on this family of schemes.

Note that we do not show results for Bernstein elements with SSPRK technique because
they are identical to Basic elements, but are more expensive because of the projection in the
Bernstein element space and the interpolation in the quadrature points.

More comparisons on different grids (unstructured) will be done in Sect. 5.

4.2 ShallowWater Equations

We consider the non linear shallow water equations (no friction and constant topography):
⎧
⎪⎨

⎪⎩

∂t h + ∂x (hu) + ∂y(hv) = 0, x ∈ � = [0, 2] × [0, 1],
∂t (hu) + ∂x (hu2 + g h2

2 ) + ∂y(huv) = 0, t ∈ [0, t f ]
∂t (hv) + ∂x (huv) + ∂y(hv2 + g h2

2 ) = 0, t f = 1s.

(57)

An analytical solution of this system is given by travelling vortexes [53].We use here a vortex
with compact support and in C 6(�) described by

⎛

⎝
h(x, t)
u(x, t)
v(x, t)

⎞

⎠ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜
⎝

hc + 1
g

�2

ω2 · (λ(ωR(x, t)) − λ(π)) ,

uc + �(1 + cos(ωR(x, t)))2 · (−I (x, t)y),

vc + �(1 + cos(ωR(x, t)))2 · (I (x, t)x ),

⎞

⎟
⎠ , if ωR(x, t) ≤ π,

(
hc uc vc

)T
, else,

(58)
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Fig. 23 Error for shallow water system (57) with respect to computational time for SSPRK method with
Cubature (left) and Basic (right) elements and CIP and OSS stabilizations

Table 6 Convergence order on
shallow water, using coefficients
obtained in Table 15

Element & OSS CIP

Time scheme P1 P2 P3 P1 P2 P3

Basic SSPRK 2.3 3.18 3.8 2.34 3.3 4.47

Cub. SSPRK 1.25 3.31 3.94 2.03 2.56 –

DeC 1.45 3.31 3.94 1.98 2.56 –

Bern. DeC 1.52 2.93 2.97 2.92 2.12 2.91

“–” means that the fourier analysis shown that the scheme is unstable

with

λ(r) =20 cos(r)

3
+ 27 cos(r)2

16
+ 4 cos(r)3

9
+ cos(r)4

16
+ 20r sin(r)

3

+ 35r2

16
+ 27r cos(r) sin(r)

8
+ 4r cos(r)2 sin(r)

3
+ r cos(r)3 sin(r)

4
.

where Xc = (0.5, 0.5) is the initial vortex center, (hc, uc, vc) = (1., 0.6, 0) is the far field
state, r0 = 0.45 is the vortex radius, �h = 0.1 is the vortex amplitude, and the remaining
paramters are defined as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω = π/r0 angular wave frequency,

� = 12π
√
g�h

r0
√
315π2−2048

vortex intensity parameter,

I (x, t) = x − Xc − (uct, vct)T coordinates with respect to the vortex center,
R(x, t) = ‖I (x, t)‖ distance from the vortex center.

(59)

We discretize the mesh with uniform square intervals of length �x (see Fig. 20a), and
as before we perform a grid convergence by respecting the constraint �x2 = 2�x1 for
P2 elements and �x3 = 3�x1 for P3 elements. Because of the high cost of the SUPG
technique, we only compare the OSS and the CIP stabilization techniques. As an example
of results, we again show the benefit of using Cubature elements in Fig. 23. We can see
that since the dimension of the discretized system is even larger than before (three times
larger), the differences between Cubature and Basic elements are even more pronounced in
the error-computational time plot.

In Table 6 we show the convergence orders for this shallow water problem with the CFL
and δ coefficients found in Table 15.

The results obtained are similar to those of the linear advection case. We can also notice
theP2 discretization reaching the proper convergence order, i.e., 3, andBernsteinB3 elements
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Fig. 24 Unstructured mesh on � = [0, 2] × [0, 1]

Table 7 Convergence order for linear advection on unstructured mesh, using coefficients obtained in Table 4

Element & SUPG OSS CIP

Time scheme P1 P2 P3 P1 P2 P3 P1 P2 P3

Basic SSPRK 1.9 2.57 3.76 1.99 2.5 3.76 1.57 2.14 3.66

Cub. SSPRK 1.73 2.4 3.83 1.81 2.53 3.98∗∗ 1.8 2.17 –

DeC 1.81 2.21 2.56 1.82 2.48 3.98∗∗ 1.83 2.17 –

Bern. DeC 1.78 2.12 1.94 2.31 2.48 2.12 1.56 2.03 2.24

∗∗ These values are found using only the X mesh (see Fig. 17 and Sect. 3.7). “–” means that the scheme is
clearly unstable

reaching an order of accuracy of ≈ 3 which is more satisfying than the results obtained for
the linear advection test, but still disappointing knowing that we were expecting 4.

5 Simulations on UnstructuredMeshes

We now perform numerical tests to check the validity of our theoretical findings using an
unstructured mesh, and the most restrictive parameters in Table 4. These parameters make
sure that we are stable for both T and X mesh configurations. The results have similar
convergence rate to the tests on the structured meshes of the previous section.

The unstructured mesh used in this section is shown in Fig. 24, and it was created by the
mesh generator gmsh.1

5.1 Linear Advection Test

Weuse the same test case of Sect. 4.1. Convergence orders for all schemes are summarized
in Table 7. We observe that all P1 discretizations provide the proper convergence order. For
P2 discretization we spot a slight reduction of the order of accuracy, which lays for most of
the schemes between 2 and≈ 2.5 instead of being 3. For polynomials of degree 3, we observe

1 https://gmsh.info/.
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Fig. 25 Error for linear advection problem (56) with respect to computational time for all elements and
stabilization techniques

an order reduction to 2 for the same schemes that lost the right order of accuracy also for X
mesh in the previous section. In particular, we have that Bernstein B3 polynomials with the
DeC result in an order of accuracy of ≈ 2 instead of 4, as well as the P̃3 discretization with
the combination DeC and SUPG stabilization. As for the X mesh, the Basic P3 discretization
reach order of accuracy ≈ 4 for all stabilization techniques, as well as Cubature P̃3 with
SUPG and OSS stabilizations.

Also in this case, the results obtainedwith P̃3 Cubature elements andOSS stabilization are
stable as we can see from the convergence analysis. This might mean that just few unfortunate
mesh configurations, as the T one, result in an unstable scheme and that, most of the time, the
parameters found in Table 4 are reliable for this scheme. On the other hand, the combination
P̃3 and CIP gives an unstable scheme.

We compare error and computational time for all methods presented above in Fig. 25.
Looking at P2 and the P3 discretizations, as expected, the mass-matrix free combination,
i.e., Cubature elements with SSPRK and OSS, gives smaller computational costs than other
combinations with Basic elements. Conversely, the SUPG technique increase the computa-
tional costs with respect to all other stabilizations for all schemes. That is why we will not
use it for the next test. The plots and all the errors are available at the repository [43].

Remark 4 (Entropy viscosity)
As remarked in Sect. 3.9, we can improve the stability of some schemes (Cubature OSS)

with extra entropy viscosity. Here, we test the convergence rate on the T mesh configuration,
i.e., the one with more restrictive CFL conditions and most unstable. This test is performed
using Cubature P̃3 elements, SSPRK and DeC time integration methods, and the OSS and
the CIP stabilization techniques. We solve again problem (56).
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Table 8 Convergence order of methods using Cubature P̃3 elements and viscosity term (53) with tuned
parameters

Element & Cubature P̃3 OSS Cubature P̃3 CIP

Time scheme CFL(δ) c order CFL(δ) c order

Cub. SSPRK 0.15 (0.02) 0.05 4.08 0.12 (0.0004) 0.5 3.60

DeC 0.15 (0.02) 0.05 4.09 0.08 (0.001) 0.2 3.76

Table 9 Convergence order on
shallow water for unstructured
mesh, using coefficients obtained
in Table 4

Element & OSS CIP

Time scheme P1 P2 P3 P1 P2 P3

Basic SSPRK 1.94 2.98 4.25 2.15 2.52 4.11

Cub. SSPRK 1.03 3.17 3.59∗∗ 1.39 2.57 –

DeC 1.2 3.14 3.59∗∗ 1.48 2.57 –

Bern. DeC 1.28 3.14 3.15 1.36 2.73 2.66

∗∗ These values are found using only the X mesh (see Fig. 17). “–”means
that the scheme is clearly unstable

Using formulation (53) and tuning stability coefficient δ, CFL and viscosity coefficient c
found in Fig. 19, we obtain fourth order accurate schemes. These tuned coefficients, and the
corresponding convergence orders are summarized in Table 8.

Many other formulations of viscosity terms exist in literature and can ensure convergent
methods of order p + 1 (using Pp elements) [30, 36, 41]. The majority use a nonlinear
evaluation of the parameter μK , based on the local entropy production.

5.2 ShallowWater Equations

In this section we test the proposed schemes on the test case of Sect. 4.2 with the unstruc-
tured mesh in Fig. 24. Convergence orders are summarized in Table 9.

Also for the shallow water equations, we have results that resemble the ones of the struc-
tured mesh. There are small differences in the order of accuracy in both directions in different
schemes. Comparing also the computational time of all the schemes in Fig. 26, we can choose
what we consider the best numerical method for these test cases:Cubature discretization with
the OSS stabilization technique. This performance seems fully provided by the free mass-
matrix inversion, as the CFLs for the OSS technique (with SSPRK scheme) is approximately
the same between Basic and Cubature elements (see Table 4).

The plots and all the errors are available at the repository [43].

5.3 Remark on the SteadyVortex Case

For completeness we consider now a steady vortex, similarly to what reported in [3] for the
isentropic Euler equations. So, we consider again the traveling vortex proposed in Sect. 4.2
with t f = 0.1s. We compare the convergence orders between uc = 0 (steady case) and
uc = 0.6 (unsteady case) in Tables 10 and 11. As we can see, in the steady case we obtain,
without any additional viscous stabilization, the expected convergence order for all schemes,
in particular for the DeC with Bernstein polynomial function. These results agree with the
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Fig. 26 Error for shallow water problem (57) with respect to computational time for all elements and stabi-
lization techniques

Table 10 Convergence order for
steady vortex, t f = 0.1s

Element & OSS CIP

Time scheme P1 P2 P3 P1 P2 P3

Basic SSPRK 2.31 2.67 3.89 1.97 2.64 3.62

Cub. SSPRK 2.05 3.2 3.56 1.79 2.83 –

DeC 2.17 3.18 3.57 1.74 2.83 –

Bern. DeC 2.33 3.28 3.65 1.85 3.0 3.63

“–" means that the scheme is clearly unstable

Table 11 Convergence order for
unsteady vortex, t f = 0.1s

OSS CIP

P1 P2 P3 P1 P2 P3

2.34 2.68 3.86 1.94 2.53 3.61

2.03 3.13 3.57 1.74 2.7 –

2.13 3.09 3.57 1.71 2.7 –

2.33 3.19 2.87 1.75 2.77 2.76

ones in [3]. Comparing with the unsteady case, all the other schemes reach similar order of
accuracy as obtained in Table 9. Running the test with additional corrections in DeC scheme,
as often suggested in [1, 3], does not improve the convergence order in the unsteady case
(even with K = 50).

These results show that a numerical error appears in the spatio-temporal integration part
of the solution (27), which might be related to the fact that the high order derivatives are
never penalized in our stabilizations and might produce some small oscillations.
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6 Conclusion

This work shows also that the stability results obtained in the one dimensional analysis [42]
can not be generalized for two dimensional problems on triangular meshes. In this direction,
it could be interesting to perform the stability analysis on Cartesian quadrilateral meshes, to
check whether in that situation the one dimensional results still hold true.

In the numerical test section, the order of accuracy found is not the expected one for all
the methods, i.e., p + 1 using Pp elements. For several cases, we reach only p + 1/2 or
p. Among the schemes that are stable and with the right order of accuracy, the method that
uses Cubature elements with OSS stabilization technique and SSPRK method of order 4
has proven to be the most accurate and less expensive. Secondly, comparing to the SUPG
stabilization technique, very often used in the literature for hyperbolic system, we showed
that other stabilization techniques such as CIP and OSS can provide the same accuracy and
are cheaper in term of computational costs.

In this direction, it would be interesting to evaluate the stability of the CIP adding a
additional penalty term on the jump of higher order derivatives as suggested in [3, 13, 17].
Moreover, it could be interesting to see the stability ofCubature elements using higher degree
polynomials. Another interesting point to explore is the loss of accuracy obtained using the
DeC with Bernstein third order polynomial basis functions for unsteady cases.

Finally, we provided a heuristic approach characterized by additional discontinuity cap-
turing viscous operators such as those proposed in [30, 36]. Even for smooth solutions, the
very small additional dissipation introduced by these terms is enough to stabilize some of the
symmetric mass-matrix-free approaches, otherwise linearly unstable. This allows to obtain
interesting schemes for practical purposes.
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Cubature Elements, Definition and Construction

In this section we give a description of the Cubature finite elements [25, 29]. In Fig. 27 we
show the P̃3 example comparing the Lagrangian nodes of Basic and Cubature elements.

As defined in Sect. 2.2.3, there are several requirements and optimization procedures in
order to obtain the Cubature elements. These elements are very import in our study because
they permit to obtain diagonal mass matrix, and so they decrease considerably the time of
computation. We describe for p = 1, 2, 3 the basis functions of the Cubature elements.

Cubature Elements of Degree 1

The P̃1 element contains 3 degree of freedom. Their nodes are located at the vertices v1 =
(1, 0, 0), v2 = (0, 1, 0) and v3 = (0, 0, 1) of the triangle.

– At vertices of the triangle:
φvi (λ) = λi , for i = 1, 2, 3.

Corresponding weights are wvi = 1
3 .

Cubature Elements of Degree 2

The P̃2 element contains 7 degrees of freedom: three at the vertices v1, v2 and v3 and three
at the midpoint of the edges that we denote as ei j = vi+v j

2 for (i, j) ∈ {(1, 2), (2, 3), (3, 1)}
and one at the centroid point Gβ := v1+v2+v3

3 . Respectively, we have the following basis
functions and weights:

– At vertices of the triangle

φvi (λ) = λi (2λi − 1) + 3λ1λ2λ3, for i ∈ �1, . . . , 3�,

Fig. 27 Comparison of two element of degree three: at left the classical one P3, at right the Cubature one P̃3
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Table 12 Butcher Tableau of RK
methods

RK2

α 1

β 1
2

1
2

RK3

α 1
2
−1 2

β 1
6

2
3

1
6

RK4

α 1
2

0 1
2

0 0 1

β 1
6

1
3

1
3

1
6

wv = 1

20
;

– At edge midpoints

φei j (λ) = 4λiλ j (1 − 3λk), for all i �= j �= k �= i ∈ �1, . . . , 3�,

we = 2

15
;

– At the centroid

φGβ (λ) = 27λ1λ2λ3,

wβ = 9

20
.

Cubature Elements of Degree 3

Following [25, 29] we derive the definitions of all the basis functions and points of Cubature
elements P̃3. The notations are not uniform among different works, so we use the following
one which can be used with all the different elements we have used in this work.

The space P̃3 contains 12 degrees of freedom: 3 vertices v1, v2 and v3, 6 on edges: eα
i j for

i, j ∈ �1, . . . , 3� with i �= j defined by

eα
i j = (δ1iα + δ1 j (1 − α), δ2iα + δ2 j (1 − α), δ3iα + δ3 j (1 − α))

with α = −15
√
7 − 21 +

√
168 + 174

√
7

2(−15
√
7 − 21)

,

with δi j is the Kronecker delta and three internal points G
β
i for i ∈ �1, . . . , 3�, with

Gβ
i =

(

βδi1 + 1 − β

2
(1 − δi1), βδi2 + 1 − β

2
(1 − δi2), βδi3 + 1 − β

2
(1 − δi3)

)

with β
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Table 14 DeC coefficients for
equispaced subtimesteps

Order 2

m βm ρmz

1 1 1
2

1
2

Order 3

m βm ρmz

1 1
2

5
24

1
3 − 1

24

2 1 1
6

2
3

1
3

Order 4

m βm ρmz

1 1
3

1
8

19
72 − 5

72
1
72

2 2
3

1
9

4
9

1
9 0

3 1 1
8

3
8

3
8

1
8

= 1

3
+ 2

√
7

21
,

where α and β are found through an optimization process [25, 29]. Let us start giving the

definitions of the weights for the different types of points. We have thatwv = 1369+767
√
7

120(859+395
√
7)

is the weight for the vertices of the triangle,wα = 287+115
√
7

40(173+49
√
7)
is the weight on edges points,

and wβ the weight for barycentric points.

The weights corresponding to these types of points are wv = 1369+767
√
7

120(859+395
√
7)
, wα =

287+115
√
7

40(173+49
√
7)

and wβ = 21
√
7

40(2
√
7+1)

. In order to simply the formulation of the basis functions,

let us introduce some polynomials:

pi (λ) := λi

(
3∑

l=1

λ2l − 1 − 2α + 2α2

α(1 − α)
λi (λ j + λk) + Aiλ jλk

)

, with j �= i �= k, (60)

with

Ai =
(
wv − 1

10 − 1
15

(
1 − 1−2α+2α2

α(1−α)

)
− 1

90
8

β(1−β)2(3β−1)

(∑3
l=1 pi (Gl)

))

× 360
6+ 8(1+β)

β(1−β)(3β−1)

; (61)

pi j (λ) := 1
α(1−α)(2α−1) λiλ j (αλi − (1 − α)λ j + (1 − 2α)λk), with i �= j �= k �= i .

(62)

We can then write the definition of the basis functions:

– At vertices of the triangle

φvi (λ) =pi (λ) − 8

β(1 − β)2(3β − 1)

(
3∑

l=1

pi (Gl)

(

λl − 1 − β

2

)) 3∏

l=1

λl , for i ∈ �1, . . . , 3�;
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Fig. 28 Degrees of freedom and periodic unit for different mesh patterns and elements of degree 3

– At the nodes on edges

φeα
i j
(λ) =

pi j (λ) − 8

β(1 − β)2(3β − 1)

(
3∑

l=1

pi j (Gl)

(

λl − 1 − β

2

)) 3∏

l=1

λl , for i �= j ∈ �1, . . . , 3�;

– At the internal points

φ
Gβ
i
(λ) = 8

β(1 − β)2(3β − 1)

(

λi − 1 − β

2

) 3∏

l=1

λl , for i ∈ �1, . . . , 3�.
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Time Discretization Coefficients

In this appendix we introduce the time integration coefficients used in this work, to make the
study fully reproducible. In Table 12 there are the RK coefficients, in Table 13 the SSPRK
coefficients and in Table 14 the DeC coefficients.

Fourier Analysis

In this section we collect all the plots and results that are essential to show the results of this
work, but for structural reasons were not put in the main text.

Mesh Types and Degrees of Freedom

We represent in Fig. 28 the mesh configurations used in the Fourier analysis and the degrees
of freedom of the elements of degree 3. The red square represents the periodic elementary
unit that contains the degrees of freedom of interest for the Fourier analysis.

Table 15 X mesh: Optimized CFL and penalty coefficient δ in parenthesis

Element & SUPG

Time scheme P1 P2 P3

Basic SSPRK 0.739 (0.127) 0.298 (0.058) 0.22 (0.026)

Cub SSPRK 1.062 (0.28) 0.1 (0.1)∗ 0.18 (0.04)∗
DeC 0.616 (0.28) 0.1 (0.04)∗ 0.144 (0.04)

Bern DeC 0.739 (0.298) 0.2 (0.2)∗ 0.2 (0.153)∗

Element & OSS

Time scheme P1 P2 P3

Basic SSPRK 0.403 (0.127) 0.298 (0.026) 0.22 (0.026)

Cub SSPRK 0.58 (0.336) 0.379 (0.03) 0.248 (0.018)

DeC 0.379 (0.207) 0.248 (0.03) 0.162 (0.018)

Bern DeC 0.173 (0.58) 0.036 (0.298) 0.015 (0.078)∗

Element & CIP

Time scheme P1 P2 P3

Basic SSPRK 0.403 (0.012) 0.298 (1.73e−03) 0.1 (1.00e−03)∗
Cub SSPRK 0.58 (0.048) 0.06 (0.01)∗ –

DeC 0.379 (0.026) 0.06 (0.01)∗ –

Bern DeC 0.173 (0.153) 0.012 (0.021) 0.002 (8.00e−03)∗

The symbol “/" means that the fourier analysis for the scheme results always in instability. The values denoted
by ∗ are not the optimal one, but they lay in a safer region, see Sect. 3.6
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Table 16 T mesh: Optimized CFL and penalty coefficient δ in parenthesis. The symbol "/" means that the
fourier analysis for the scheme results always in instability

Element & SUPG

Time scheme P1 P2 P3

Basic SSPRK 0.739 (0.127) 0.403 (0.026) 0.298 (0.012)

Cub SSPRK 1.062 (0.28) 0.234 (0.078) 0.055 (0.153)

DeC 1.062 (0.127) 0.144 (0.078) 0.034 (0.153)

Bern DeC 0.739 (0.298) 0.739 (0.153) 0.455 (0.153)

Element & OSS

Time scheme P1 P2 P3

Basic SSPRK 0.546 (0.127) 0.403 (0.058) 0.298 (0.012)

Cub SSPRK 0.886 (0.336) 0.379 (0.048) /

DeC 0.58 (0.207) 0.379 (0.03) /

Bern DeC 0.28 (0.58) 0.025 (0.153) 0.074 (0.078)

Element & CIP

Time scheme P1 P2 P3

Basic SSPRK 0.546 (0.026) 0.298 (7.39e−05) 0.298 (3.36e−05)

Cub SSPRK 0.886 (0.048) 0.106 (7.85e−03) /

DeC 0.58 (0.026) 0.045 (7.85e−03) /

Bern DeC 0.455 (0.078) 0.025 (5.46e−03) 0.017 (0.04)

Fig. 29 log(ηu) values (blue scale) and stable area (unstable with black crosses), on (CFL, δ) plane. The red
dot denotes the optimal value. From left to right P1, P2, P3 Basic elements with SSPRK scheme and OSS
stabilization Color figure online
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Fourier Analysis Results: Optimal Parameters

In this section, we put the optimal values of the stability analysis of Sect. 3.5 after the mod-
ification proposed in Sect. 3.6. In Table 15 we show the parameters for the X mesh and in
Table 16 we show the parameters for the T mesh.

Fourier Analysis Results: Stability Area

Finally, we present a comparison of stability area between the T and the X mesh. This
comparison if perform as before, for all wave angles θ .We choose as example the comparison
using Basic element, SSPRK time integration method and the OSS stabilization technique
in Fig. 29. The interested reader can access to results for all methods online [43].

References

1. Abgrall, R.: High order schemes for hyperbolic problems using globally continos approximation and
avoiding mass matrices. J. Sci. Comput. (2017). https://doi.org/10.1007/s10915-017-0498-4

2. Abgrall, R.: A general framework to construct schemes satisfying additional conservation relations.
Application to entropy conservative and entropy dissipative schemes. J. Comput. Phys. 372, 640–666
(2018). https://doi.org/10.1016/j.jcp.2018.06.031

3. Abgrall, R., Bacigaluppi, P., Tokareva, S.: High-order residual distribution scheme for the time-dependent
Euler equations of fluid dynamics. Comput. Math. Appl. 78(2), 274–297 (2018). https://doi.org/10.1016/
j.camwa.2018.05.009

4. Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite
element methods part I: linear problems. J. Sci. Comput. 85(43), 1573–7691 (2020)

5. Abgrall, R., Nordström, J., Philipp, Ö., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite
element methods part II: entropy stability. Commun. Appl. Math. Comput 1, 1–10 (2021). https://doi.
org/10.1007/s42967-020-00086-2

6. Abgrall, R.,Öffner, P.,Ranocha,H.:Reinterpretation and extension of entropy correction terms for residual
distribution and discontinuous Galerkin schemes: application to structure preserving discretization. J.
Comput. Phys. 453, 110955 (2022)

7. Abgrall, R., Ricchiuto, M.: High order methods for CFD. In: R.d.B. Erwin Stein, T.J. Hughes (eds.)
Encyclopedia of Computational Mechanics, Second Edition. John Wiley and Sons (2017)

8. Abgrall, R., Torlo, D.: High order asymptotic preserving deferred correction implicit–explicit schemes for
kinetic models. SIAM J. Sci. Comput. 42(3), B816–B845 (2020). https://doi.org/10.1137/19M128973X

9. Arpaia, L., Ricchiuto, M., Filippini, A.G., Pedreros, R.: An efficient covariant frame for the spherical
shallow water equations: well balanced DG approximation and application to tsunami and storm surge.
Ocean Model. 169, 101915 (2022). https://doi.org/10.1016/j.ocemod.2021.101915

10. Bacigaluppi, P., Abgrall, R., Tokareva, S.: "APosteriori" limited high order and robust residual distribution
schemes for transient simulations of fluid flows in gas dynamics. arXiv preprint arXiv:1902.07773 (2019)

11. Badia, S., Codina, R.: Unified stabilized finite element formulations for the stokes and the darcy problems.
SIAM J. Numer. Anal. (2009). https://doi.org/10.1137/08072632X

12. Burman, E.: Consistent SUPG-method for transient transport problems: stability and convergence. Com-
put. Methods Appl. Mech. Eng. 199, 1114–1123 (2010). https://doi.org/10.1016/j.cma.2009.11.023

13. Burman, E.: Weighted error estimates for transient transport problems discretized using continuous finite
elementswith interior penalty stabilization on the gradient jumps. arXiv preprint arXiv:2104.06880 (2021)

14. Burman, E., Ern, A., Fernández, M.: Explicit Runge–Kutta schemes and finite elements with symmetric
stabilization for first-order linear PDE systems. SIAM J Numer Anal (2010). https://doi.org/10.1137/
090757940

15. Burman,E.,Hansbo, P.: Edge stabilization forGalerkin approximations of convection–diffusion problems.
Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004). https://doi.org/10.1016/j.cma.2003.12.032

16. Burman, E., Hansbo, P.: The edge stabilization method for finite elements in CFD. In: Numerical Math-
ematics and Advanced Applications, pp. 196–203. Springer (2004)

17. Burman, E., Hansbo, P., Larson, M.G.: A cut finite element method for a model of pressure in fractured
media. Numerische Mathematik 146(4), 783–818 (2020). https://doi.org/10.1007/s00211-020-01157-5

123

https://doi.org/10.1007/s10915-017-0498-4
https://doi.org/10.1016/j.jcp.2018.06.031
https://doi.org/10.1016/j.camwa.2018.05.009
https://doi.org/10.1016/j.camwa.2018.05.009
https://doi.org/10.1007/s42967-020-00086-2
https://doi.org/10.1007/s42967-020-00086-2
https://doi.org/10.1137/19M128973X
https://doi.org/10.1016/j.ocemod.2021.101915
http://arxiv.org/abs/1902.07773
https://doi.org/10.1137/08072632X
https://doi.org/10.1016/j.cma.2009.11.023
http://arxiv.org/abs/2104.06880
https://doi.org/10.1137/090757940
https://doi.org/10.1137/090757940
https://doi.org/10.1016/j.cma.2003.12.032
https://doi.org/10.1007/s00211-020-01157-5


Journal of Scientific Computing (2023) 94 :49 Page 47 of 48 49

18. Burman, E., Quarteroni, A., Stamm, B.: Stabilization strategies for high order methods for transport
dominated problems. Bolletino dell’Unione Matematica Italiana 9(1), 57 (2008)

19. Burman, E., Quarteroni, A., Stamm, B.: Interior penalty continuous and discontinuous finite element
approximations of hyperbolic equations. J. Sci. Comput. 43, 293–312 (2010). https://doi.org/10.1007/
s10915-008-9232-6

20. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley & Sons, Ltd (2008).
https://doi.org/10.1002/9780470753767.fmatter

21. Butcher, J.C.: Numerical differential equation methods. In: Numerical Methods for Ordinary Differential
Equations, chap. 2, pp. 55–142. JohnWiley & Sons, Ltd (2016). https://doi.org/10.1002/9781119121534.
ch2

22. Ciarlet, P.G.: The Finite ElementMethod for Elliptic Problems. Studies inmathematics and its applications
4. North-Holland (1978)

23. Codina, R.: Stabilization of incompressibility and convection through orthogonal sub-scales in finite
element methods. Comput. Methods Appl. Mech. Eng. 190(13), 1579–1599 (2000). https://doi.org/10.
1016/S0045-7825(00)00254-1

24. Codina, R., Blasco, J.: A finite element formulation for the Stokes problem allowing equal velocity-
pressure interpolation. Comput. Methods Appl. Mech. Eng. 143(3), 373–391 (1997). https://doi.org/10.
1016/S0045-7825(96)01154-1

25. Cohen, G., Joly, P., Roberts, J., Tordjman, N.: Higher order triangular finite elements with mass lumping
for the wave equation. Siam J. Numer. Anal. (2001). https://doi.org/10.1137/S0036142997329554

26. Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic galerkin methods. In:
Computing Methods in Applied Sciences, pp. 207–216. Springer (1976)

27. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equa-
tions. BIT Numer. Math. 40(2), 241–266 (2000)

28. Filippini, A.G., De Brye, S., Perrier, V., Marche, F., Ricchiuto, M., Lannes, D., Bonneton, P.: UHAINA :
A parallel high performance unstructured near-shore wavemodel. In: D. Levacher, M. Sanchez, X. Bertin,
I. Brenon (eds.) Journées Nationales Génie Côtier - Génie Civil, Journées Nationales Génie Côtier - Génie
Civil (JNGCGC), vol. 15, pp. 47–56. Editions Paralia, La Rochelle, France (2018). https://doi.org/10.
5150/jngcgc.2018.006

29. Giraldo, F., Taylor, M.: A diagonal-mass-matrix triangular-spectral-element method based on cubature
points. J. Eng. Math. 56, 307–322 (2006)

30. Guermond, J.L., Pasquetti, R., Popov, B.: Entropy viscosity method for nonlinear conservation laws. J.
Comput. Phys. 230(11), 4248–4267 (2011). https://doi.org/10.1016/j.jcp.2010.11.043

31. Hughes, T., Brook, A.: Streamline upwind Petrov–Galerkin formulations for convection dominated flows
with particular emphasis on the incompressible Navier-Stokes equations. Comp. Meth. Appl. Mech.
Engrg. 32, 199–259 (1982)

32. Hughes, T., Scovazzi, G., Tezduyar, T.: Stabilized methods for compressible flows. J. Sci. Comp. 43,
343–368 (2010)

33. Jund, S., Salmon, S.: Arbitrary high-order finite element schemes and high-order mass lumping. Int. J.
Appl. Math. Comput. Sci. 17(3), 375 (2007)

34. Komatitsch, D., Martin, R., Tromp, J., Taylor, M., Wingate, B.: Wave propagation in 2-D elastic media
using a spectral element method with triangles and quadrangles. J. Comput. Acoust. 9, 703–718 (2001).
https://doi.org/10.1142/S0218396X01000796

35. Kuzmin, D.: Entropy stabilization and property-preserving limiters for P1 discontinuous Galerkin dis-
cretizations of scalar hyperbolic problems. J. Numer. Math. 29(4), 307–322 (2021)

36. Kuzmin, D., de Quezada Luna, M.: Entropy conservation property and entropy stabilization of high-order
continuous Galerkin approximations to scalar conservation laws. Comput. Fluids 213, 104742 (2020).
https://doi.org/10.1016/j.compfluid.2020.104742

37. Kuzmin, D., de Quezada Luna,M.: Subcell flux limiting for high-order bernstein finite element discretiza-
tions of scalar hyperbolic conservation laws. J. Comput. Phys. 411, 109411 (2020). https://doi.org/10.
1016/j.jcp.2020.109411

38. Larson, M.G., Zahedi, S.: Stabilization of high order cut finite element methods on surfaces. IMA J.
Numer. Anal. 40(3), 1702–1745 (2019)

39. Liu, T., Sen, M., Hu, T., De Basabe, J., Li, L.: Dispersion analysis of the spectral element method using
a triangular mesh. Wave Mot. 49, 474–483 (2012). https://doi.org/10.1016/j.wavemoti.2012.01.003

40. Liu, Y., Teng, J., Xu, T., Badal, J.: Higher-order triangular spectral element method with optimized
cubature points for seismic wavefield modeling. J. Comput. Phys. 336, 458–480 (2017). https://doi.org/
10.1016/j.jcp.2017.01.069

41. Llobell, J., Minjeaud, S., Pasquetti, R.: High order CG schemes for KdV and Saint-Venant flows. In:
Numerical Methods for Flows, pp. 341–352. Springer (2020)

123

https://doi.org/10.1007/s10915-008-9232-6
https://doi.org/10.1007/s10915-008-9232-6
https://doi.org/10.1002/9780470753767.fmatter
https://doi.org/10.1002/9781119121534.ch2
https://doi.org/10.1002/9781119121534.ch2
https://doi.org/10.1016/S0045-7825(00)00254-1
https://doi.org/10.1016/S0045-7825(00)00254-1
https://doi.org/10.1016/S0045-7825(96)01154-1
https://doi.org/10.1016/S0045-7825(96)01154-1
https://doi.org/10.1137/S0036142997329554
https://doi.org/10.5150/jngcgc.2018.006
https://doi.org/10.5150/jngcgc.2018.006
https://doi.org/10.1016/j.jcp.2010.11.043
https://doi.org/10.1142/S0218396X01000796
https://doi.org/10.1016/j.compfluid.2020.104742
https://doi.org/10.1016/j.jcp.2020.109411
https://doi.org/10.1016/j.jcp.2020.109411
https://doi.org/10.1016/j.wavemoti.2012.01.003
https://doi.org/10.1016/j.jcp.2017.01.069
https://doi.org/10.1016/j.jcp.2017.01.069


49 Page 48 of 48 Journal of Scientific Computing (2023) 94 :49

42. Michel, S., Torlo, D., Ricchiuto, M., Abgrall, R.: Spectral analysis of continuous FEM for hyperbolic
PDEs: influence of approximation, stabilization, and time-stepping. J. Sci. Comput. 89(2), 31 (2021).
https://doi.org/10.1007/s10915-021-01632-7

43. Michel, S., Torlo, D., Ricchiuto, M., Abgrall, R.: Stability analysis of several FEM methods 2D: results.
https://gitlab.inria.fr/simichel/stability-analysis-of-several-fem-methods-in-2d.-results (2021)

44. Miller, J.: On the location of zeros of certain classes of polynomials with applications to numerical
analysis. J Inst Math Appl (1971). https://doi.org/10.1093/imamat/8.3.397

45. Minion, M.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Com-
mun. Math. Sci. (2003). https://doi.org/10.4310/CMS.2003.v1.n3.a6

46. Moura, R.C., Aman, M., Peiró, J., Sherwin, S.J.: Spatial eigenanalysis of spectral/hp continuous Galerkin
schemes and their stabilisation via DG-mimicking spectral vanishing viscosity for high Reynolds number
flows. J. Comput. Phys. 406, 109112 (2020). https://doi.org/10.1016/j.jcp.2019.109112

47. Moura, R.C., da Silva, A., Burman, E., Sherwin, S.J.: Eigenanalysis of gradient-jump penalty (gjp)
stabilisation for cg. Tech. rep., Technical report. https://doi. org/10.13140/RG. 2.2. 32887.85924 (2020)

48. Öffner, P., Torlo, D.: Arbitrary high-order, conservative and positivity preserving Patankar-type deferred
correction schemes. Appl. Numer. Math. 153, 15–34 (2020). https://doi.org/10.1016/j.apnum.2020.01.
025

49. Pasquetti, R., Guermond, J.L., Popov, B.: Stabilized spectral element approximation of the saint venant
system using the entropy viscosity technique. In: Kirby, R.M., Berzins, M., Hesthaven, J.S. (eds.) Spectral
and High Order Methods for Partial Differential Equations ICOSAHOM 2014, pp. 397–404. Springer
International Publishing, Cham (2015)

50. Pasquetti, R., Rapetti, F.: Cubature versus Fekete-Gauss nodes for spectral element methods on simplicial
meshes. J. Comput. Phys. 347, 463–466 (2017). https://doi.org/10.1016/j.jcp.2017.07.022

51. Pasquetti, R., Rapetti, F.: Cubature points based triangular spectral elements: an accuracy study. J. Math.
Stud. 51(1), 15–25 (2018). https://doi.org/10.4208/jms.v51n1.18.02

52. Ricchiuto, M., Bollermann, A.: Stabilized residual distribution for shallow water simulations. J. Comput.
Phys. 228(4), 1071–1115 (2009). https://doi.org/10.1016/j.jcp.2008.10.020

53. Ricchiuto, M., Torlo, D.: Analytical travelling vortex solutions of hyperbolic equations for validating very
high order schemes. arXiv preprint arXiv:2109.10183 (2021)

54. Ruuth, S.:Global optimization of explicit strong-stability-preservingRunge–Kuttamethods.Math. Comp.
75, 183–207 (2006)

55. Sherwin, S., Karniadakis, G.: A triangular spectral element method; applications to the incompressible
Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 123(1), 189–229 (1995). https://doi.org/
10.1016/0045-7825(94)00745-9

56. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes.
J. Comput. Phys. 77, 439–471 (1988)

57. Taylor, M.A., Wingate, B.A., Vincent, R.E.: An algorithm for computing Fekete points in the triangle.
SIAM J. Numer. Anal. 38(5), 1707–1720 (2000). https://doi.org/10.1137/S0036142998337247

58. Tordjman, N.: éléments finis d’ordre élevé avec condensation de masse pour l’équation des ondes. Ph.D.
thesis, Université Paris VI (1995). http://www.theses.fr/1995PA090002. Thése de doctorat dirigée par
Cohen, Gary Chalom Mathématiques appliquées à l’ingénierie Paris 9 1995

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10915-021-01632-7
https://gitlab.inria.fr/simichel/stability-analysis-of-several-fem-methods-in-2d.-results
https://doi.org/10.1093/imamat/8.3.397
https://doi.org/10.4310/CMS.2003.v1.n3.a6
https://doi.org/10.1016/j.jcp.2019.109112
https://doi.org/10.1016/j.apnum.2020.01.025
https://doi.org/10.1016/j.apnum.2020.01.025
https://doi.org/10.1016/j.jcp.2017.07.022
https://doi.org/10.4208/jms.v51n1.18.02
https://doi.org/10.1016/j.jcp.2008.10.020
http://arxiv.org/abs/2109.10183
https://doi.org/10.1016/0045-7825(94)00745-9
https://doi.org/10.1016/0045-7825(94)00745-9
https://doi.org/10.1137/S0036142998337247
http://www.theses.fr/1995PA090002

	Spectral Analysis of High Order Continuous FEM for Hyperbolic PDEs on Triangular Meshes: Influence of Approximation, Stabilization, and Time-Stepping
	Abstract
	1 Introduction
	2 Numerical Discretization
	2.1 Stabilization Terms
	2.1.1 Streamline-Upwind/Petrov–Galerkin: SUPG
	2.1.2 Note on the SUPG Technique Applied to Non Scalar Problems
	2.1.3 Continuous Interior Penalty - CIP
	2.1.4 Orthogonal Subscale Stabilization - OSS

	2.2 Finite Element Spaces and Quadrature Rules
	2.2.1 Basic Lagrangian Equispaced Elements
	2.2.2 Bernstein Polynomials
	2.2.3 Cubature Elements

	2.3 Time Integration
	2.3.1 Explicit Runge–Kutta and Strong Stability Preserving Runge–Kutta Schemes
	2.3.2 The Deferred Correction Scheme


	3 Fourier Analysis
	3.1 Preliminaries and Time Continuous Analysis
	3.2 The Eigenvalue System
	3.3 The Fully Discrete Analysis
	3.4 Methodology
	3.5 Results of the Fourier Analysis Using the X Type Mesh
	3.6 Comparison with a Space-Time Split Stability Analysis
	3.7 Different Mesh Patterns
	3.8 Final Results of the Stability Analysis
	3.9 Accounting for Discontinuity Capturing Corrections 
	3.9.1 Note on the Stability of the Method
	3.9.2 The von Neumann Analysis


	4 Numerical Verification
	4.1 Linear Advection Equation Test
	4.2 Shallow Water Equations

	5 Simulations on Unstructured Meshes
	5.1 Linear Advection Test
	5.2 Shallow Water Equations
	5.3 Remark on the Steady Vortex Case

	6 Conclusion
	Acknowledgements
	Cubature Elements, Definition and Construction
	Cubature Elements of Degree 1
	Cubature Elements of Degree 2
	Cubature Elements of Degree 3

	Time Discretization Coefficients
	Fourier Analysis
	Mesh Types and Degrees of Freedom
	Fourier Analysis Results: Optimal Parameters
	Fourier Analysis Results: Stability Area

	References




