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Abstract: User requests to a customer service, also known as tickets, are essentially short texts in
natural language. They should be grouped by topic to be answered efficiently. The effectiveness
increases if this semantic categorization becomes automatic. We pursue this goal by using text mining
to extract the features from the tickets, and classification to perform the categorization. This is
however a difficult multi-class problem, and the classification algorithm needs a suitable hyperpa-
rameter configuration to produce a practically useful categorization. As recently highlighted by
several researchers, the selection of these hyperparameters is often the crucial aspect. Therefore,
we propose to view the hyperparameter choice as a higher-level optimization problem where the
hyperparameters are the decision variables and the objective is the predictive performance of the
classifier. However, an explicit analytical model of this problem cannot be defined. Therefore, we
propose to solve it as a black-box model by means of derivative-free optimization techniques. We
conduct experiments on a relevant application: the categorization of the requests received by the
Contact Center of the Italian National Statistics Institute (Istat). Results show that the proposed
approach is able to effectively categorize the requests, and that its performance is increased by the
proposed hyperparameter optimization.

Keywords: machine learning; black-box optimization; Auto ML; classification; customer support;
statistical surveys

1. Introduction

The assistance requests issued by the users to a customer service center are often
called trouble or support tickets. These tickets generally need to be grouped by the topic of
the question, so that each one is answered by an expert on the specific subject. This also
aims to provide equity of treatment and prevent possible incoherence between different
answers to similar questions. The effectiveness of the whole ticketing system increases
when the described semantic categorization of the tickets can be done automatically: besides
the obvious throughput boost and economic advantages, this will also provide a more
consistent and unbiased subdivision. Ticket categorization problems arise in several
different areas, and can be tackled by using machine learning techniques.

In the literature, these problems have been approached with a variety of techniques,
more and more switching to deep learning in recent times. Quite often, the overall strategy
requires a first phase to extract from the text of each ticket the features describing that ticket,
and then another phase to determine the partitioning. The first phase generally uses Text
Mining, which is the branch of Data Mining concerning the process of deriving high-quality
information from texts, see for details, e.g., [1]. In our case, the aim is to describe each
free-form textual ticket with a standardized data record. On the other hand, the second
phase can be viewed as a classification operation. Classification is the supervised process
that takes a training set of elements, each of which is labeled with a class value, and learns a
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criterion to predict the class label of other unseen elements. In our case, it assigns a subject
to each data record representing a ticket.

Focusing on recent works, Ref. [2] proposes a hierarchical multi-label classification
method to classify the monitoring tickets on the basis of the problem encountered. The
authors introduce a contextual hierarchy loss and make also use of knowledge from the
domain experts. In [3] the authors propose a multi-purpose text classifier that can tackle
tasks independently of domain and language, based on hyperparameter optimization.
In [4] the authors propose the use of Convolutional Neural Networks to extract features
from the text of IT tickets. In [5] the authors present a whole framework for knowledge
extraction from call-center data and other textual data sources such as social networks, to
obtain data patterns. Work [6] proposes a Financial Ticket Classification network based on
weakly supervised fine-grained classification discriminative filter learning networks. The
authors use a deep Convolution Neural Network to extract highly descriptive features of
the tickets, and a large-margin softmax loss function to improve the classification accuracy.
In [7] the authors use specifically designed features based on linguistic representation, and
then various classifiers, to predict the ticket class label of low, medium, or high complexity,
showing that even simple algorithms can deliver high-quality predictions when using
appropriate linguistic features. The authors of [8] classify emails in four classes, and then
compare Naive Bayes, Support Vector Machines (SVMs), and K-NN, integrated with some
Natural Language Processing (NLP) techniques (Stop-words removal, Stemming, and
feature extraction using TF-IDF and Word2vec). In [9] the authors present a classification
of trouble tickets regarding telecommunications networks, designed to use past troubles
for the resolution of the problems asked in the current trouble tickets. Finally, [10] classifies
support tickets by using multiple methods of text classification and recognition, in particular
by embedding documents into feature vectors and using these embeddings for finding
similarities between them.

In any case, the categorization of textual tickets turns out to be a particularly chal-
lenging multi-class problem. Many words may be in common between messages dealing
with completely different subjects, and on the other hand, messages dealing with the
same subject may use completely different words. Hence, grasping the semantics may
be tricky. Several approaches to multi-class classification exist, based on different models
and paradigms. However, to obtain a practically useful subdivision of the tickets, the
hyperparameters of the selected classification algorithm should be carefully tuned. Indeed,
as recently highlighted by several researchers, the selection of these hyperparameters is
often the weak link in many machine learning applications [11,12], because the difference
in the classification performance between a “good” and a “bad” hyperparameter choice
can be dramatic, especially for hard problems.

For this reason, in the recent subfield of Auto Machine Learning, the values of those
hyperparameters are searched by automatic procedures. This constitutes an important
meta-learning step. For example, [13] presents hyperopt, a reusable software engine for
hyperparameter optimization which could outperform domain experts in the tuning of
Deep Belief Networks (DBNs). Work [14] observes that hyperparameter tuning may be
very computationally demanding, and proposes a recommender system based on meta-
learning to exactly identify when to use default values and when to tune hyperparameters,
focusing the analysis on Support Vector Machines and extending it to decision trees. In
[15], the author proposes a method to find the hyperparameter tuning for a deep neural
network by using a univariate dynamic encoding algorithm. Work [16] presents a hyperpa-
rameter tuning framework that works on a small subset of training data using Bayesian
optimization, and then it leverages the insights from the learning theory to seek more
complex models by using directional derivatives. In [17] the authors propose MonkeyKing,
a system that exploits past experience and collects new information to adjust parameter
configurations of big data platforms. It can recommend key parameters and combine deep
reinforcement learning (DRL) to optimize these key parameters to improve performance.
Work [18] presents Hyperband, an algorithm for hyperparameter optimization speeding
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up random search through adaptive resource allocation and early-stopping. The problem
is formulated as a pure-exploration non-stochastic infinite-armed bandit problem. Finally,
ref. [19] proposes an approach named Auto-CASH to select both the algorithm and the hy-
perparameters, learning them from prior experience by means of a reinforcement learning
strategy, so as to be less dependent on human expertise.

In this work, we propose an approach for the automatic categorization of the tickets
received by the Contact Center of the Italian National Statistics Institute (Istat) for assistance
to users involved in surveys (e.g., Census of Population, Research, and Development
Business survey, etc.). This Contact Center has been in operation since January 2016, and
currently manages about 60 large statistical investigations and processes an average volume
of about 80,000 requests per year. An efficient and accurate automatic categorization of
these tickets is particularly needed. The proposed approach is composed of an initial Text
Mining phase, which includes tokenization, stop-word elimination, Lemmatization with
Part-Of-Speech recognition, and finally feature extraction by using Word2vec [20]. The
tickets are written in the Italian language, however, the above text processing is based on
the use of a dictionary. Hence, the language can be easily modified by simply changing the
dictionary. After this, our approach contains a classification phase, in which we use both
deep and traditional learning. In particular, we use Convolutional Neural Networks (CNN)
[21] and Support Vector Machines (SVMs) [22]. Our approach is formal and data driven: all
the relevant information is extracted from the data, except for the class labels of the training
set which are of course externally defined. Hence, the proposed technique is not confined
to the specific context described above but can be adapted to the categorization of other
texts with different origins.

Moreover, we present an innovative technique for the determination of the hyper-
parameters of the two classifiers. We propose to view the hyperparameter choice as a
higher-level optimization problem, where the hyperparameters are the decision variables
and the objective is the performance of the classifier. Note that this approach could also be
used in several other learning tasks. However, an explicit analytical model of this problem
cannot be defined. Therefore, we propose to consider it a black-box model and solve it
by means of derivative-free optimization techniques. These techniques do not need the
explicit optimization model, in particular, the analytic expression of the objective function;
they only need to numerically evaluate this objective function over a number of points, see
e.g., ref. [23] for further details. Due to the discrete nature of the choices, we use for this
task a recently proposed algorithm [24] based on primitive directions and non-monotone
line search which can deal with integer decision variables.

Hence, the main contributions of this work include: (1) A methodology to solve
the difficult multiclass classification problem of the categorization of tickets written in
natural language, based on text mining and classification, which works at the formal level
and is based on a data-driven approach. Thus, it works independently from the specific
content of the tickets, and it could also be applied to the semantic categorization of other
texts with different origins or in different languages. (2) An approach to the difficult
problem of determining the hyperparameter configuration of a generic machine learning
procedure. Again, this approach is purely formal, hence it can solve other problems of
hyperparameter optimization, dealing with hyperparameters assuming integer, continuous,
or even categorical values.

2. Feature Extraction from Textual Tickets

Each ticket is essentially a small text describing some problem(s) and/or asking some
question(s) in natural language. The level may go from very elementary sentences to
complex and involved periods. The mentioned semantic categorization of the tickets is
needed to assign the tickets to the employees, so that each one is answered by an expert
on the specific subject. This would pursue the advantages already described in Section 1.
Moreover, this categorization helps in the design and the improvement of the process (e.g.,
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the survey), since an abnormal frequency of tickets on a specific aspect may highlight the
presence of problems (e.g., unclear questions, defective prompts, etc.).

In many cases, for example, requests received by telephone and recorded, there is
no metadata supporting the semantic categorization. In other cases, such as emails, the
metadata (e.g., the subject of the email) may be present, but they are often too generic, not
reliable enough, or not concerning the desired categorization. In all the above cases tickets
need to be categorized homogeneously and preferably automatically. Evidently, basic
features of the tickets, like the length of the message or similar measures, are not meaningful
for semantic categorization. Even the basic presence or absence of predetermined words is
not enough, because in many cases similar words (answer, form, compile, fill, etc.) may
describe completely different types of problems. Therefore, a more in-depth analysis is
needed to extract the significance of a ticket from its text in natural language.

A scheme of the overall procedure described in this work is reported in the subsequent
Figure 1, while the sequence of the steps is reported in Algorithm 1.

Algorithm 1: Categorization of Tickets.
1. Extraction of Relevant Terms from the Corpus of 15,000 Tickets

1.a Tokenization
1.b Stop-words Elimination
1.c Lemmatization and Part-Of-Speech recognition

2. Preparation of the Records (=Standardized Description) of the Tickets
2.a Word Embedding to associate Relevant terms with vectors
2.b Selection within the 31,000 Relevant Terms

of the 424 Most Relevant Terms
2.c Projection of the Tickets in the space of the Most Relevant Terms

to obtain the Records

3. Labeling of 8076 Records by Human Experts

4. Training of the Classifier with the 8076 Labeled Records
4.a Splitting of training and test sets
4.b Optimization of the Hyperparameters: For every

combination of Hyperparameters V’ do the following:
4.b.i Training with Hyperparameters V’
4.b.ii Testing and evaluation of the performance with Hyperp.V’

4.c Final training with the optimal Hyperparameters

5. Categorization of all the Tickets (193,419 Records) using
the optimal Hyperparameters

After an initial Tokenization (individuation of the words within the sequence of
characters) and Stop-words Elimination (elimination of useless parts, like articles, etc.),
we perform Lemmatization with Part-Of-Speech recognition. This means that, for each
word, we remove the inflectional ending to identify its basic lemma. This allows us to
recognize together the different inflected forms of a word (e.g., plurals of nouns, tenses of
the verbs, etc.). Moreover, we still keep track of which part of speech each word is (e.g.,
noun, verb, adjective, etc.). This Natural Language Processing (NLP) is done by using the
Gensim python library from scikit learn [25]. Since the tickets are in the Italian language,
we perform the above operations by using an Italian dictionary. However, the language
can easily be changed by simply switching the underlying dictionary.

After this, we need to convert each ticket into a data record constituting a “standard-
ized description” of the ticket. This feature extraction is done by using the word embedding
algorithm Word2vec [20], still in the Gensim python library. This algorithm uses a shallow
neural network to learn word associations in a large corpus of text, all the tickets in our
case. Hence, it can detect synonymous words. In particular, Word2vec represents each
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distinct word with a particular list of numbers called a vector. The vectors are generated in
such a way that the cosine similarity between the vectors indicates the level of semantic
similarity between the corresponding words. In more detail, we have assembled a corpus
composed of the text of 15,000 real tickets received by the Contact Center of the Italian
National Statistics Institute (Istat). After the above-described NLP steps, we identified in
the word embedding operations a vocabulary with 31,000 relevant lemmas, among which
we later selected the 424 most relevant lemmas (the top of the list). By projecting on this set
of 424 lemmas, each ticket is now converted into a vector with 424 elements, each of which
is computed as the frequency of each relevant lemma in that ticket (number of occurrences
normalized by the size of the ticket).

Some of those vector representations of the tickets have been labeled by human experts
of the Italian National Statistics Institute with 7 distinct classes, representing the subdivision
that was wanted, obtaining so a training set of 8076 units. Note that this is a costly operation
and no more than 8076 records could be labeled. This set of labeled records will constitute
our source of information in the semantic categorization of new unseen tickets, as explained
in the next Section, and the procedure will later be used to classify a total of 193,419 records.

Features Generation

Dictionary of the Language

Word Embedding

Labeled Records

Human Experts

Natural Language Processing

Corpus of Tickets

Records of the Tickets Subject Attribution

Best Classifier

Vocabulary of relevant Terms

Blackbox
Optimization

to solve max P(H)
Classification Algorithm

Processing

according to LabelNew (unlabeled) Ticket Labeled Ticket

Training Set extraction

Training with Hyperparameters V’

Testing and Performance Evaluation

Figure 1: Overall scheme of the proposed approach, including both the text mining phase and
the classification phase with hyperparameters optimization.

of the classifier, which constitutes an “inner loop” of our procedure (see also
Figure 1).

Generally speaking, the majority of the hyperparameters are bounded to
take integer values (e.g., the number of neurons in a neural network), even if
some can vary with continuity within a given interval (e.g., the kernel coefficient
γ in a support vector machine), and some are categorical (e.g., the choice of
the activation function of a neuron). Thus, each value vi must belong to its
feasible domain Di, and consequently we can define the set H of all the feasible
tuples of hyperparameter values. The choice of a tuple of values, that is, the
choice of a point in H, determines the behavior of the classifier, and so it may
dramatically affect its prediction performance P . As a matter of fact, small
variations in hyperparameter values may sometimes determine a huge variation
in P . Therefore, the values assigned to the hyperparameters must be selected
very carefully, and they cannot simply be “default” values or similar.

We propose to view the choice of these values as a higher-level optimization
problem, where the hyperparametersH are the decision variables and the objective
is the performance P of the classifier, evaluated by choosing a performance
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Figure 1. Overall scheme of the proposed approach, including both the text mining phase and the
classification phase with hyperparameters optimization.

3. Optimizing the Hyperparameters of the Classifiers

After obtaining the training set of labeled tickets, we set up a classification phase,
which can predict the class of unlabeled tickets by learning the classification criteria from
the above training set. We perform experiments with both deep and traditional learning
strategies. In particular, we use Convolutional Neural Networks (CNN) [21] and Support
Vector Machines (SVM) [22] classifiers.

In general, to use each of these classifiers, a tuple of values V = (v1, ..., vn) must
be assigned to a set H of hyperparameters. Note that, for simplicity, we call here “hyper-
parameters” all the values needed by the classifier which are not learned by data, not
distinguishing between the categories of those values. On the contrary, the values learned
by data (e.g., neuron weights in a neural network) are generally called only “parameters”
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and will not be set in our hyperparameters optimization but will be determined during
the training of the classifier, which constitutes an “inner loop” of our procedure (see also
Figure 1).

Generally speaking, the majority of the hyperparameters are bounded to take integer
values (e.g., the number of neurons in a neural network), even if some can vary with
continuity within a given interval (e.g., the kernel coefficient γ in a support vector machine),
and some are categorical (e.g., the choice of the activation function of a neuron). Thus, each
value vi must belong to its feasible domain Di, and consequently, we can define the setH of
all the feasible tuples of hyperparameter values. The choice of a tuple of values, that is, the
choice of a point inH, determines the behavior of the classifier, and so it may dramatically
affect its prediction performance P. As a matter of fact, small variations in hyperparameter
values may sometimes determine a huge variation in P. Therefore, the values assigned to
the hyperparameters must be selected very carefully, and they cannot simply be “default”
values or similar.

We propose to view the choice of these values as a higher-level optimization problem,
where the hyperparameters H are the decision variables and the objective is the perfor-
mance P of the classifier, evaluated by choosing a performance measure appropriate to the
specific classification case.

max P(H)
H ∈ H (1)

In our case with 7 classes, the accuracy (defined as the overall percentage of correct class
predictions over the test set) was deemed to be the appropriate measure, even if in other
cases one may prefer precision, sensitivity, F-1 score, etc. However, the above problem
has a main difficulty. Even though P clearly depends on H, this dependency cannot be
expressed in analytical form. This is not only due to the complexity of such a relationship,
but also because the performance P depends not solely on the rules governing the classifier,
but also on the data handled by it. Hence, an explicit optimization model cannot be written
for Problem 1.

To solve despite this issue, we propose to adopt a black-box optimization approach and
use a derivative-free algorithm. Similar algorithms do not need the explicit optimization
model, in particular, the analytic expression of the objective function; they only need to
numerically evaluate the objective function over a number of points (i.e., tuples of values
of the hyperparameters). In practice, to evaluate a set of hyperparameter values V′, we run
the classifier on the dataset using values V′, doing both training and testing (using 5-fold
cross-validation in our experiments), and so we obtain the classification performance P′

corresponding to V′.
Due to the discrete nature of the majority of the choices, we use for this task a recently

proposed algorithm [24] based on primitive directions and non-monotone line search which
can deal with integer variables. Indeed, many hyperparameters assume integer values, or
even categorical values which we encode with integers (e.g., the choice of the activation
function of a neuron). Also, continuous hyperparameters are discretized, as it is often
done, for example in a standard grid search. In particular, such an algorithm can guarantee
theoretical convergence to a local optimum of Equation (1) by locally exploring the behavior
of the objective function corresponding to variations in the optimization variables. This is
obtained in practice by means of an iterative procedure evaluating the objective function
over a sequence of points (V′, V′′, . . . ). Each new point is obtained from the previous one
Vi by choosing a direction from a set of directions D(Vi) which is specific to the current
position, and by exploring the chosen direction by means of a non-monotone line search, to
find a new point Vi+1 that both guarantees a sufficiently large movement along the search
direction and an improvement in the value of the objective function.

To avoid getting stuck in points of the integer lattice that cannot be further improved,
the set of possible directions is enriched by considering the so-called primitive directions as
soon as the algorithm gets stuck. When moving over those points, the algorithm maintains
the integrality of the variables and respects box constraints. Possible constraints delimiting
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the feasible set are handled by using a penalty approach. The iterations are stopped either
when the improvements become numerically negligible, or when an overall maximum
number of hyperparameters evaluations is reached, or when a maximum number of
evaluations without improvements is obtained. This algorithm is repeatedly restarted
from several different starting points, to improve the quality of the final solution (multi-
start technique).

To evaluate the advantages of the above optimization approach, we compare it to the
selection of the values of the hyperparameters by using a standard technique called grid
search, which is very often used in the literature. A grid search is the simple evaluation of
all the combinations of the possible hyperparameter values. This corresponds to a complete
enumeration approach in the solution of problem 1. If not interrupted, it clearly guarantees
completeness, hence in theory it always reaches the optimal solution, however, this may
require in practice very long times, often excessive.

For each tested classifier, we list below all the values of the hyperparameters that were
considered in our experiments. Due to the time required by each hyperparameter evaluation
(full training and testing with 5-fold cross-validation), we could experiment with only the
sets of values for the hyperparameter that were deemed sufficiently promising. However,
in principle, our technique can handle any set of hyperparameter values, provided that
the required computations can be carried out in practice. Furthermore, since the number
of points tested in a grid search tends to be exponential (all the possible combinations),
for mere computational reasons we are forced to reduce in the grid search the number of
values tested for each hyperparameter with respect to those considered in the optimization
approach.

In particular, we consider two variants of the grid search, which we call “Grid Search”
and “Extended Grid Search”. The first is intended to run in a reasonable time, thus the
size of the search space, fixed in advance, must be quite smaller than that of the Black
Box procedure.

The second is intended only as a validation of our Black Box procedure, and not as
a practically useful alternative. This is because the grid search clearly guarantees to find
the best solution within its search space, and so, when its search space is the same as the
Black Box procedure, we can say that the Black Box procedure is running fine if it finds
a solution comparable to the one given by the grid search. On the other hand, the time
required by such an extended grid search would be excessive for most practical cases. In
our experiments, the size of the search space of this extended grid search is the same as
the Black Box whenever the running time allows that, and it has been reduced when the
running time was really excessive (more than 10 days). This issue is further discussed in
Section 4.

3.1. Convolutional Neural Networks

The deep strategy used for our classification is a Convolutional Neural Network
(CNN). In general, an artificial Neural Network is a collection of connected nodes called
artificial neurons, which resemble the neurons in a biological brain. These artificial neurons
are typically organized in layers, according to different architectures, and the resulting
network can perform classification tasks by training the neuron input weights to minimize
misclassification errors. In particular, CNN includes internal layers that perform convolu-
tions. Such convolutional filters are sometimes called kernels. These networks are often
used in image recognition or classification because they behave similarly to neurons in the
visual cortex of animals. However, their classification capability can also be successfully
applied to texts (see, e.g., [26]), since this type of architecture can extract “deep” features of
the data, i.e., distinctive local motifs, regardless of their position in the data record.

In more detail, we build a CNN with three layers of type 2D convolutional, each
followed by a 2D Max Pooling layer, and one Dense layer in output. We choose this
architecture as a good compromise between speed and performance, since the solution of
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problems 1 requires us to train and execute the network a large number of times with many
different sets of hyperparameter values. The hyperparameter tested for this CNN are:

• Embedding_dim: width of the kernel matrix for the 2D convolution window. The
considered values are (200; 300; 400; 500), both for the optimization approach and for
the grid search approach. For the extended grid search, to keep the computational
time within 250 h (>10 days) and explore in detail the other hyperparameters, we are
forced to consider only (200; 300) which are however the most promising values.

• Filter_sizes: height of the 2D convolution window; in other words, the number of
words we want our convolutional filters to cover. We specify 3 different values for
the three layers. The values tested with the optimization approach are ([3,4,5]; [5,4,3];
[3,5,7]; [7,5,3]). For the grid search approach, for the computational reasons explained
above, we use only ([3,4,5]). For the extended grid search we use ([3,4,5]; [5,4,3]).

• Num_filters: the number of output filters in the convolution. We consider for all
the approaches only the value 512, since preliminary experiments showed not much
sensitivity to this parameter.

• Optimizer: the optimization technique used in the gradient descent when training the
network. For all the approaches we consider (adam; adamax; RMSprop; sgd).

• Loss_function: the function used to calculate the error when training the network.
For our multi-class problem, we selected only categorical cross-entropy as the loss
function in all the approaches, since it was deemed the most suitable.

• Activation_Conv: activation function for the convolutional layers. The activation
functions of a neuron determine whether it should be activated (“fired”) or not, based
on the inputs received. Many activation functions exist, see also [27]. They must also
be computationally efficient because they are calculated across many neurons for each
data sample. For the optimization approach, we use (linear; relu; elu; selu; softsign;
softplus; sigmoid; hard_sigmoid; exponential; tanh). For the grid search approach,
we slightly limit the choice to the most promising and use (relu; softsign; sigmoid;
exponential; tanh). For the extended grid search, we use (relu; elu; softsign; sigmoid;
exponential; tanh).

• Activation_Dense: activation function for the final dense layer. For the optimization
approach, we use (relu; softmax; sigmoid). For the grid search approach, for the
computational reasons explained above, we only use (softmax). For the extended grid
search, we use (softmax; sigmoid).

• Epochs: an epoch is one complete pass through the training data. Generally, a network
is trained for multiple epochs; as a compromise between speed and performance, we
select 5 for all the approaches.

• Class_weights: specifies how the errors in the different classes are weighed in the loss
function. In keras the possible options are as follows: 1 allows to specify individual
weights, in particular, weights proportional to the class frequencies; 2 provides bal-
anced class weights, that is, weights are inversely proportional to the class frequencies;
3 provides uniform class weights, an error that has the same importance for any
class. For both the optimization approach and the grid search approaches we use all
possibilities (1; 2; 3).

3.2. Support Vector Machines

The traditional (non-deep) strategy that we select for our classification is Support
Vector Machines (SVMs). SVMs are supervised learning models that build a deterministic
linear classifier. They are based on finding a separating hyperplane that maximizes the
margin between the extreme training data of opposite classes. New examples are then
mapped into that same space and predicted to belong to a class, on the basis of which
side of the hyperplane they fall on. In addition to performing linear classification, SVMs
can efficiently perform a non-linear classification using what is called the kernel trick,
by implicitly mapping their inputs to a higher dimensional space, see also [22,28]. The
hyperparameters tested for SVMs are:
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• Kernel: the type of kernel used. For both the optimization approach and the grid
search approaches we use (Linear; Radial Basis Function (RBF)). In the case of RBF,
it is important to define the penalty parameter c of the error term and the kernel
coefficient γ.

• Coefficient γ: is the inverse of the standard deviation of the radial basis kernel, and
can be seen as the inverse of the radius of influence of samples selected by the model
as support vectors. For the optimization approach and for the extended grid search
we use γ = (2−19, 2−18.7, . . . , 220) with step 2i+0.3 for a total of 131 values. For the grid
search we use γ = (2−19, . . . , 220) but step 2i+1, for a total of 40 values.

• Penalty c: is the regularization parameter of the error term. This value allows one to
trade off training error vs. model complexity. For the optimization approach and for
the extended grid search we use C = (2−8, 2−7.7, . . . , 223) with step 2i+0.3 for a total of
95 values. For the grid search we use C = (2−8, . . . , 223) with step 2i+1 for a total of
32 values.

• Class_weights: specifies how the errors in the different classes are weighed during the
training. The possible options are: (1) weights proportional to the class frequencies;
(2) weights inversely proportional to the class frequencies; (3) provides uniform class
weights, an error that has the same importance for any class. For both the optimization
approach and the grid search approaches we use all possibilities (1, 2, and 3).

4. Experimental Results

The derivative-free optimization algorithm described in Section 3 to solve the black-
box problem 1 has been implemented in Python, and the CNN and SVM classifiers have
been realized in the same language by using keras library [29] form scikit learn [25]. We
design our experiments to determine the effectiveness of an automatic approach for ticket
categorization problems, given the difficulties of a real-world case, and to compare the
black-box approach proposed for the optimization of the hyperparameters to a standard
grid search.

We consider the case of the tickets received by the Contact Center of the Italian
National Statistics Institute (Istat) for assistance to users involved in surveys. This Contact
Center has been in operation since January 2016, and currently manages about 60 statistical
investigations and processes an average volume of about 80,000 requests per year. The
ticket categorization operation is currently performed by human experts, and though it
is often performed in a more coarse-grained manner, it requires a considerable amount
of work. In our experiments, we have focused on the tickets arising from some economic
surveys, such as the “Research and Development Business” survey and the “Information
and Communication Technologies usage in Enterprises” survey. This type of survey
contains many of the critical issues that users may encounter during the compilation, due
to the complexity of the questionnaires. Indeed, they have the following characteristics:
they require detailed quantitative information; they use tabular forms for filling out many
questions; they contain a large number of prompts, many of which are blocking (also
known as hard prompts). Therefore, this dataset is well representative of the various cases of
requests for assistance.

We prepared a training set of 8076 tickets, whose class has been determined by experts
in the field using 7 distinct classes, which are listed below:

1. General information: tickets that require generic information on the survey, like topic
or use of the data, etc.

2. Usability: tickets relating to the difficulties in accessing the site or which highlight
problems relating to the usability of the electronic questionnaire (e.g., non-editable
fields, methods of sending the questionnaire, etc.) or tickets requesting the reopening
of the questionnaire already sent, to proceed with the correction of data entered
incorrectly.
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3. Information on questions: tickets requesting assistance in completing a specific ques-
tion in the questionnaire (e.g., the question is not applicable to the case of the user, or
the case of the user is not present in the questionnaire).

4. Interaction with Istat: tickets that highlight a criticality in the communication process
that took place between Istat and end users (e.g., requests for information on the
reference year of the survey, the obligation to reply, the deadline for completion,
confirmation of the sending of the questionnaire, extensions for the completion of the
questionnaire).

5. Eligibility: tickets that show difficulties in understanding whether the unit has the
characteristics to be part of the sample or not and therefore is actually required to
participate in the survey.

6. Indeterminable / Unclassifiable: tickets with ambiguous content, or tickets with
several problems highlighted at the same time, so they cannot be classified.

7. Rest: tickets describing well-defined problems not belonging to the previous classes,
however, these problems have a small frequency (they appear rarely). So, instead of
using several other small classes, they have been put all into one class: “the rest of
the tickets”.

The class subdivision of the mentioned training set is the following: 239 in class 1, 219
in class 2, 712 in class 3, 2714 in class 4, 1200 in class 5, 418 in class 6, and 2574 in class 7.

To perform the classification task, we have selected 4,038 records as a training set, that
is 50% of the total dataset, and the rest has been used for testing. The extraction has been
randomly performed 5 times, and all performance results are averaged on the 5 trials. The
resulting 7-class problem is not trivial. Just as an example, preliminary tests with some
“default” hyperparameter values obtain less than 50% in accuracy.

As reported in Tables 1 and 2, by considering all the values of the hyperparameters de-
scribed in the previous Section, in the case of CNN we obtain 5760 possible hyperparameter
configurations for the black-box optimization approach, 240 hyperparameter configurations
for the grid search approach, and 576 hyperparameter configurations for the extended
grid search. Hence, the search space of the extended grid search is one-tenth of the black
box, however, it was impossible to extend it further, since this already requires 250 h of
computation (more than 10 days). Indeed, if the grid search was extended to the full search
space of the black box, the required time could be roughly estimated as (375,000/240) ∗
5760 = 9,000,000 s, which is about 104 days, in the case of CNN.

Table 1. Comparison of black-box optimization and 2 variants of grid search for CNN.

Black Box Grid Search Ext. Grid Search

Hyperparameter configurations 5760 240 576
Evaluated points 212 240 576
Enumeration percentage 2.76% 100% 100 %
Time in sec. 318,500 375,000 901,000 (>10 days)
Solution accuracy 89.72% 86.15% 89.75%

Table 2. Comparison of black-box optimization and 2 variants of grid search for SVM.

Black Box Grid Search Ext. Grid Search

Hyperparameter configurations 49,780 1280 49,780
Evaluated points 291 1280 49,780
Enumeration percentage 0.58% 100% 100%
Time in sec. 3490 15,360 597,360 (∼7 days)
Solution accuracy 74.53% 71.87% 74.53%

In the case of SVMs, we obtain 49,780 possible parameter configurations for the
black-box optimization approach and for the extended grid search, and 1280 parameter
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configurations for the grid search. In this case, the extended grid search can cover the same
search space of the optimization approach.

In conclusion, the size of the search space of the optimization approach may be quite
larger than that of the grid search. However, only a small fraction of the points of this
search space is actually evaluated by the optimization approach (see Evaluated points in
Tables 1 and 2), so this last approach can find a solution in less time. The tables also report
the percentage of points evaluated by each approach (Enumeration percentage).

In the case of our 7-class problem, we select, as an appropriate performance metric,
the accuracy, defined as the overall percentage of correct class predictions over the test
set. Hence, in our experiments, we pursue maximum accuracy both during the black-box
optimization and during the grid search.

Tables 3 and 4 report respectively the best hyperparameter configurations obtained
in the case of CNN and SVM. Clearly, the extended grid search guarantees us to find
the best accuracy within its search space, and it was intended to validate the result of the
optimization approach. It turns out that the solution obtained by the black-box optimization
approach is, for both classifiers, fully comparable with that of the extended grid search. In
particular, it is slightly different but with almost the same value in the case of CNN, and
it is exactly the same in the case of SVM. However, the time required by the optimization
procedure is only a small fraction of that of the extended grid search.

Table 3. Best hyperparameter configuration for CNN.

Black Box Grid Search Ext. Grid Search

Embedding_dim 300 300 300
Filter_sizes [5,4,3] [3,4,5] [5,4,3]
Num_filters 512 512 512
Optimizer Adam Adamax Adamax
Loss_function Cat. Cross entropy Cat. Cross entropy Cat. Cross entropy
Activation_Conv Elu Tanh Elu
Activation_Dense Sigmoid Softmax Sigmoid
Epochs 5 5 5
Class_weights 2 1 2

Table 4. Best hyperparameter configuration for SVM.

Black Box Grid Search Ext. Grid Search

Kernel RBF RBF RBF
γ 42 32 42
c 10 8 10

Class_weights 2 2 2

On the other hand, the comparison between the optimization approach and the version
of grid search requiring a more reasonable time gives slightly different results. Therefore,
the advantages of the proposed optimization approach with respect to the grid search can
be described as follows.

1. If we allow a reasonably comparable amount of time for the two approaches, then the
optimization approach can explore a much larger search space, hence it can likely find
a better hyperparameter configuration that will lead to better predictive performance.

2. If, on the other hand, we allow the same size of the search space for the two approaches,
then we have two possible subcases:

• either we need to use a search space small enough to allow the termination of
the grid search in a reasonable time, and in this case, the optimization approach
can probably find the same best configuration of the grid search (or a slightly
suboptimal one, given the nature of the technique) but using considerably less
computational effort,
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• or we chose a search space large enough to consider all interesting hyperpa-
rameter configurations, and in that case, the grid search may simply become
computationally infeasible.

Finally, to further test our approach, we have applied this procedure on a large
dataset of 193,419 unlabeled tickets arising from several surveys of economic scope in the
period 2016–2019. Although those data were not labeled, and so the exact accuracy is not
computable, the results have been judged very satisfactory from a practical point of view,
and show that an automatic treatment of these tickets is feasible and useful. This was
determined by means of analyses conducted by experts of the field over a random sample
of those tickets: the accuracy for the sample was judged to be aligned to that obtained for
the 8076 labeled records.

5. Conclusions

The semantic categorization of tickets received by a contact or customer center is
an important practical problem. Its solution can provide several advantages, improving
both the efficiency of the ticketing system and the quality of the answers, and it may also
help in designing or improving the procedures object of the tickets. However, such a
categorization is a particularly difficult task, since it requires an automatic extraction of
the meaning of the text, followed by a classification, which is often multiclass. This work
proposes an approach to this problem, based on text mining and classification, which can
use either deep or traditional learning algorithms. The proposed methodology works at the
formal level using a data-driven approach, and thus it could also be applied to the semantic
categorization of other texts with different origins or in different languages.

Experiments on real-world data from the Contact Center of the Italian National Statis-
tics Institute (Istat) confirm that automatic ticket categorization is practically feasible and
very useful. In particular, experiments on the classification of tickets whose real class
was known, show that the proposed approach can reach a very good accuracy in very
reasonable times.

However, suitable values must be found for the hyperparameters of the classifier,
otherwise, the performance may be considerably degraded. Therefore, this work also
proposes a technique for the automatic determination of such hyperparameters. The
problem is viewed as a higher-level optimization problem where the hyperparameters
are the decision variables and the objective is the performance of the classifier. Since an
explicit analytical model of this problem cannot be defined, it has been considered as a
black-box and it has been solved by means of derivative-free optimization techniques.
These techniques do not need the analytic expression of the objective function; they only
need to numerically evaluate this objective function over a number of points. In particular,
we have used a derivative-free approach that can deal with integer decision variables. All
the possible hyperparameter values have been converted into integers, the categorical
ones by encoding them with integer values, and the continuous ones by discretizing them.
Again, this approach is purely formal, hence it can solve other problems of hyperparameter
optimization, even for different machine learning strategies. Future work includes the
integration of the proposed hyperparameter optimization methodology in other machine
learning techniques, such as those described in [30–32].
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