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Abstract: In this paper, we extend the previously described general model for charge transfer
reactions, introducing specific changes to treat the hopping between energy minima of the electronic
ground state (i.e., transitions between the corresponding vibrational ground states). We applied
the theoretical–computational model to the charge transfer reactions in DNA molecules which
still represent a challenge for a rational full understanding of their mechanism. Results show that
the presented model can provide a valid, relatively simple, approach to quantitatively study such
reactions shedding light on several important aspects of the reaction mechanism.
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1. Introduction

The charge migrations through DNA represent a very interesting subject because
they are relevant in different areas, ranging from biochemistry to technology. In fact, the
understanding of the charge fluxes occurring within DNA can help to describe, among
others, cell oxidative damage processes as well as to design DNA-based sensors [1,2].
Therefore, this subject has been extensively studied by both experimental and theoretical–
computational techniques. Although so far the high complexity of the system has partially
hindered a complete characterization of the charge transfer processes in DNA, recent tech-
nical advances in spectroscopic instrumentation contributed to enhance our understanding
of the kinetics of such phenomena. That is, starting from the first direct measurement
of the photoinduced hole transport in DNA by time-resolved spectroscopy [3], several
experimental works have contributed to shed light on this subject [4–11]. In particular,
DNA hole transfer kinetics through π-stack arrays have been proved to depend not only
from the redox potential of the single nucleobases but also on the DNA specific sequence
and conformation [12] as revealed by means of time-resolved spectroscopic data. From
a mechanistic viewpoint, charge migration along DNA is explained by super exchange
and hole hopping [13–16]. In the former, the hole migration occurs via direct tunneling
from the charge donor to the charge acceptor, as observed in relatively short DNA hairpins
and sequences [17–19]. On the other hand, in longer hairpins and sequences [20–22] within
G-rich double-stranded DNA, the charge migration is achieved by subsequent charge
hopping steps where Guanines, the nucleobases with the lowest oxidation potentials, act
as charge carriers thus indicating a charge flux mechanism based on subsequent Gua-
nines hole hopping steps, where at each step the super exchange mechanism provides the
charge transfer between the subsequent Guanines, regardless of the in between base bridge
present. However, the possible charge delocalization along DNA has prompted the idea
that formation of polarons [23,24], i.e., radical cations where the excess of positive charge is
shared by nucleobases, could be relevant in DNA charge transfer [16,25]. In recent papers
it has been hypothesized that weak fluctuations around the DNA equilibrium structure
can induce charge delocalized bridge states from an initial localized charge donor state in
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a single thermally activated step, i.e., quantum unfurling [26]. This mechanism should be
dominating in ordered bridges, but local uncorrelated fluctuations could lead to charge
localized electronic bridge states, resulting in a base to base hopping-like mechanism [27].
The role of fluctuations has been also invoked in the flickering resonance mechanism,
suggesting that molecular structure/medium thermal fluctuations can produce transient
energy degeneracy among multiple CT sites, possibly explaining the exponential rate decay
with the bridge length and coexisting with other mechanisms (super exchange, base to base
hopping, etc.) [28]. The need of a detailed explanation of the charge transfer along DNA,
still representing a matter of debate [29,30], stimulated several theoretical–computational
groups aiming to rationalize the available experimental data. Unfortunately, in-silico ap-
proaches are still limited by the necessity to provide an accurate description of the electronic
properties of the donor and acceptor over an extended sampling of the DNA molecule
structures, in particular including the effect of a realistic dynamical perturbing environ-
ment, typically disregarded in the available models, resulting in fluctuating donor-acceptor
quantum properties. To address the charge transfer kinetics in DNA by means of a general
theoretical–computational approach specifically including the dynamical environment
perturbation and DNA fluctuations, we report here our modelling of the super exchange
charge transfer within a single step hole hopping between Guanine bases, as occurring
in different double-stranded DNA molecules, and compare our results with the available
experimental data [8]. More specifically, in the Theory section we derive a general model
to treat charge transfer (CT) reactions corresponding to the hopping (i.e., vibrational state
tunnelling) between different minima of the electronic ground state (the relevant case
for DNA base CT, according to our data) and in the results section we characterize in detail
the CT process as obtained for different lengths and types of the bridge separating the
Guanine bases involved in the reaction.

2. Theory
2.1. General Considerations

In a previous paper [31] we described, in detail, the general model to treat CT reactions
in complex systems. However, in that paper we specifically considered CT reactions involv-
ing diabatic states defined by vibronic states corresponding to different electronic states,
disregarding the case of diabatic states involving the same electronic state (e.g., defined
via the vibrational ground states of different energy minima of the electronic ground state).
Although such a condition (the case presently studied) can be still treated via the general
model we presented, specific changes and discussions are necessary. First we need to
introduce a few basic definitions/assumptions to be used:

• We assume that we can divide the simulated system into the QC, the subpart where
the reaction occurs thus requiring a quatum mechanical treatment, and its atomic-
molecular environment which we model as a semiclassical atomistic subsystem; more-
over, we consider the environment subsystem internal energy as invariant for each QC
quantum state transition and thus disregarded when evaluating the energy change
involved in the reaction.

• We define the QC adiabatic states via the QC vibronic eigenstates (adiabatic vibronic
states) possibly involving the nuclei-electron coupling (non-adiabatic coupling) which can
be non-negligible when degenerate or quasi-degenerate electronic states are concerned.

• As QC diabatic states we define the vibronic Born–Oppenheimer eigenstates of the
perturbed QC corresponding to the electron distribution constrained to be fixed in either
the reactant (R) or the product (P) chemical state, according to the R and P chemical
species involved in the reaction. Moreover, we assume the non-adiabatic coupling as
providing approximately negligible effects when using the diabatic states basis set.

• We assume each possible reactive event as properly described by only two QC adiabatic
states. We always consider such adiabatic states as virtually indistinguishable from the
corresponding diabatic ones except within a tiny perturbation region (the transition
region, TR), including the crossing of the diabatic energy surfaces, where the reaction
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event occurs. We also always assume that outside the transition region the reaction
statistical ensemble (the ensemble of the reactive trajectories) be fully equivalent to the
one provided by reactive trajectories with the QC in either the R or P QC diabatic state:
i.e., although within a single reactive trajectory the QC can be in a linear combination
of the two diabatic states, the statistics can be conceived as given by QC sub-populations
in either the R or P state. Therefore, for each trajectory of the reactive ensemble corre-
sponding to e.g., the R→ P transition, the QC can be thought to be in the R state when
entering the TR and in either the R or P state when leaving the TR and hence the reaction
dynamics within the reactive ensemble (the R to P inter-conversion) can be modeled by
the usual equations of chemical kinetics (i.e., we assume the QC-environment system as
a dissipative quantum system within the Markoff approximation [32–34]). Only when
considering the reactive trajectories within the TR’s we need to explicitly account for the
quantum dynamics of each reactive trajectory as within the TR the Markoff approxima-
tion is typically inapplicable and the QC quantum dynamics usually involves mixing
of the diabatic/adiabatic states.

• We assume that, given its tiny dimension, each TR traversing be fast enough to avoid
any relevant change of the QC semiclassical coordinates and thus of the diabatic
states, which can be then considered as time-independent within the whole reaction
event (i.e., the TR crossing) with a virtually constant coupling term and linear time-
dependent diabatic energies. By also assuming that such a short traversing time may
correspond to a large (virtually infinite) relaxation time for the QC dynamical quantum
state, we can use the Landau–Zener approach [35,36] to model the diabatic/adiabatic
behaviour of the reaction event, i.e. the probability for the R and P diabatic states as
obtained by the QC quantum dynamics when emerging from the TR.

From Figure 1 and according to our previous paper [31], defining with A and B the I
and I I adiabatic surface index, respectively, the rate equations for the R→ P reaction when
considering RA the initial reactant state and RB within a steady state condition, are

˙[RA] ∼= −α(2− α)KRA [RA] (1)
˙[P] ∼= − ˙[RA] ∼= α(2− α)KRA [RA] (2)

where KRA is the reaction kinetic constant and α is the transmission coefficient as obtained
by the TR crossings via the Landau-Zener approximation (see the Appendix A for more
details), providing

[RA] ∼= [RA]0 e−α(2−α)KRA t (3)

[P] ∼= [RA]0
[
1− e−α(2−α)KRA t

]
(4)

with [RA]0 the RA concentration at the beginning of the RB steady state condition (see
the Appendix A). In the following we will always consider the charge transfer reaction as
occurring according to Equations (1)–(4) (i.e., RA is the initial reactant state).

Figure 1. Schematic description of the diabatic (solid lines) and adiabatic (dashed lines) energy
surfaces within the energy vs. perturbation plane.
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2.2. The Gaussian Approximation

Equations (1)–(4) provide the link between the chemical kinetics model and the data
obtained by the computational simulation. In fact, by means of a large set of proper
MD simulations in combination with quantum calculations it is possible, for a given
R and P diabatic state couple, to evaluate the distribution of the time-lengths needed by
the QC for reaching the diabatic energy surface crossings in the reactant ensemble and
thus to reconstruct the kinetic trace of [RA] providing the corresponding kinetic constant
KRA , as shown in previous papers [31,37–40]. Moreover, by means of the Landau–Zener
approximation, from the ensemble of the diabatic surface crossings as obtained by the
reactive trajectories we can estimate α = 〈χ〉 by evaluating the adiabatic fraction χ at each
crossing and then averaging over all the crossings. In the unfortunate case the kinetics is
too slow to obtain a proper crossing sampling from MD simulations (as for the CT reactions
investigated in this paper), we can still reasonably evaluateKRA assuming an approximately
Gaussian behavior for the diabatic energy difference (the transition energy ∆U ) fluctuations
around the transition energy mode value (i.e., the transition energy corresponding to the
probability distribution maximum) ∆URA

∼= 〈∆U〉RA , with such a Gaussian range including
the diabatic energy crossing, i.e., ∆U = 0 (note that the RA subscript of the angle brackets
indicates that averaging is performed in the RA equilibrium ensemble). In fact, considering
that within each TR we have a virtually unidirectional flux (k− ∼= 0, see the Appendix A)
with an exit rate constant k+ ∼= vcr/δ where δ is the TR transition energy range that we
assume virtually identical for all the transition regions and vcr the norm of the crossing
velocity, we obtain [41] that at equilibrium the corresponding rate constants (i.e., the rate
constants for the TR forward and backward fluxes) must be virtually identical and well
approximated by vcr/(2δ), and hence

KRA
∼= 〈kRA〉A ∼=

〈kRA〉A
〈vcr〉TR/(2δ)

〈vcr〉TR
2δ

∼=
QTR
QRA

〈vcr〉TR
2δ

=
QTR
QRA

〈v〉
2δ

(5)

where kRA is the kinetic constant for the RA → P transition as occurring within a single
TR reaction (i.e., a reaction process defined by crossing events with an almost identical χ
value) as shown by Figure A1 in the Appendix A, the subscript A of the angle brackets
means that averaging was obtained over all the TR reactions within the RA → P reactive
ensemble, 〈v〉 = 〈v〉RA = 〈vcr〉TR (with v the norm of the transition energy time derivative
and the TR subscript indicating averaging within the equilibrium full TR ensemble), QTR
and QRA are the canonical partition functions of the TR and RA chemical state, respectively,
and we assumed

〈kRA〉A ∼= 〈kRA〉RA (6)

providing
〈kRA〉A

〈vcr〉TR/(2δ)
∼=

〈kRA〉RA

〈vcr〉TR/(2δ)
∼=

QTR
QRA

(7)

Note that the chemical states refer always to a single QC with thus the corresponding
canonical partition functions obtained for the QC-environment system when constraining
the QC into a given chemical state.

Equation (6) simply means that the RA sub-populations involved into the different single
TR reactions are in fast inter-conversion, allowing us to consider their distribution within the
reactive trajectory ensemble used (i.e., the RA → P ensemble) as a stationary pre-equilibrium
distribution virtually identical to the corresponding reactant full equilibrium one. We can
express the partition function QRA via the reactant Landau free energy AR defined by [42]

AR(∆U ) = −kBT lnQR(∆U ) (8)
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with QR(∆U ) the reactant partition function density providing

QRA =
∫ ∞

δ/2
QR(∆U )d∆U (9)

and hence the equilibrium probability density for the RA ensemble (ρRA ) is obtained via

ρRA(∆U ) =
QR(∆U )

QRA

=
e−AR(∆U )/(kBT)

QRA

(10)

δ

2
≤ ∆U ≤ ∞ (11)

Note that δ
2 ≤ ∆U ≤ ∞ is the transition energy range defining the RA chemical state.

Once assuming Gaussian fluctuations for the transition energy within a large range
around ∆URA with then

∆URA
∼= 〈∆U〉RA (12)

we can introduce the RA quadratic Landau free energy (ARA ) approximating the reactant
Landau free energy AR within the proper Gaussian range

ARA(∆U ) = AR(∆URA) +
kBT
2σ2

RA

(
∆U − ∆URA

)2
(13)

where kB is the Boltzmann constant, T is the absolute temperature, σ2
RA

is the transition
energy variance for the RA equilibrium ensemble, and

AR(∆URA)
∼= AR(〈∆U〉RA) (14)

is the corresponding minimum of the Landau free energy. From the last equations, assuming
the Gaussian approximation valid within the whole RA range with |∆URA |/σRA > 3, we
can write

QRA =
∫ ∞

δ/2
e−AR(∆U )/(kBT)d∆U ∼=

∫ ∞

−∞
e−ARA (∆U )/(kBT)d∆U

= e−AR(∆URA )/(kBT)
√

2πσ2
RA

(15)

For the TR chemical state (i.e., the chemical state defined by all the TR’s), given the
tiny transition energy range δ, we can assume its Landau free energy ATR being virtually
constant with ATR = AR(0) ∼= ARA(0), and hence

QTR ∼=
∫ δ/2

−δ/2
e−AR(∆U )/(kBT)d∆U ∼= e−ATR/(kBT)δ

∼= e−ARA (0)/(kBT)δ (16)

From Equations (15) and (16) we readily obtain

QTR
QRA

∼=
e−∆A†

RA
/(kBT)

δ√
2πσ2

RA

(17)

with (see Equations (12) and (13))

∆A†
RA

= AR(0)−AR(∆URA)

∼= ARA(0)−AR(∆URA)
∼=

kBT
2σ2

RA

〈∆U〉2RA
(18)

providing, using Equation (5),
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KRA
∼=

e−∆A†
RA

/(kBT)
δ√

2πσ2
RA

〈v〉
2δ
∼=

e−〈∆U〉
2
RA

/(2σ2
RA

)√
2πσ2

RA

〈v〉
2

(19)

The last equation furnish a typically good approximation for CT processes where
the crossing is not too far from the Landau free energy minimum, thus ensuring that
the quadratic approximation for modeling the activation Landau free energy (∆A†

RA
) is

reasonably accurate, although still providing a large Gaussian range (a typically good
criterion is 3 < |∆URA |/σRA < 10).

2.3. The Diabatic States

In the present case we consider CT reactions involving the diabatic energy crossings due
to two vibrational states of the electronic ground state, with hence each reaction event essen-
tially equivalent to the hopping between different energy minima (i.e., tunnelling between the
corresponding vibrational ground states). Defining such electronic ground state minima as R
and P, providing the two different charge distributions, we can define the corresponding QC
local vibrational ground eigenstates (in the coordinate representation) via

φR(ξ, β) ∼= ΠlφR,l(βl) (20)

φP(ξ, β) ∼= ΠlφP,l(βl) (21)

where ξ, β are the QC nuclear (internal) semiclassical and quantum (harmonic) mode coor-
dinates (defined by the mass weighted Hessian eigenvectors), respectively, and φR,l , φP,l
are the (harmonic) lth quantum mode vibrational ground states for the R and P minima.
Note that we assume that both minima can be well described by the same harmonic
modes and frequencies, differing only for their position ξR, βR and ξP, βP and energy value
(i.e., φR,l and φP,l , approximately independent of the ξ coordinates, only differ for the βl
minimum energy position: βl,R or βl,P), always considering the roto-translational coordi-
nates as semiclassical degrees of freedom. It is worth to remark that such an assumption,
providing Equations (20) and (21), is typically a good approximation when ξR ≈ ξP,
possibly becoming inaccurate when a large variation of the semiclassical coordinates is
involved in the two energy minima (note that the thermal energy of the system can be used
for discriminating between semiclassical and quantum modes, with the quantum modes
being those corresponding to an energy gap higher than the thermal energy). Moreover,
dealing only with the electronic ground state we always disregard any spin effect on the
Hamiltonian operator and hence on the local vibrational eigenstates. In order to obtain
two proper diabatic states for the CT reaction (essentially the transition from the R to P
minimum) we only have to search for two linear combinations of φR and φP providing
two orthonormal diabatic states ηR and ηP as closest as possible to φR and φP, respectively.
Considering that the harmonic vibrational eigenstates are real wavefunctions, we obtain

ηR = c1φR − c2φP (22)

ηP = −c2φR + c1φP (23)

c2
1 + c2

2 =
1

1− 〈φP|φR〉2
(24)

2c1c2 =
〈φP|φR〉

1− 〈φP|φR〉2
= (c2

1 + c2
2)〈φP|φR〉 (25)

where c1, c2 are real coefficients,

〈φP|φR〉 = Πl〈φP,l |φR,l〉
= Πl〈φR,l |φP,l〉 = 〈φR|φP〉 (26)

is the Hermitian product of the (real) local vibrational eigenstates (i.e., in the coordinate rep-
resentation the integral of their algebraic product over the β coordinates) with 〈φP|φR〉2 ≈ 0
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and thus c2
1 ≈ 1 c2

2 ≈ 0. In order to obtain the CT kinetics we need to evaluate the diabatic
energy difference HP,P−HR,R (i.e., the transition energy ∆U ) to identify the diabatic energy
crossings (i.e., the conical intersections) and the corresponding Hamiltonian coupling HR,P
necessary for obtaining the transmission coefficient α

HP,P − HR,R = 〈ηP|Ĥ|ηP〉 − 〈ηR|Ĥ|ηR〉
= (c2

1 − c2
2)[〈φP|Ĥ|φP〉 − 〈φR|Ĥ|φR〉]

∼= (c2
1 − c2

2)[Ue(ξP, βP)−Ue(ξR, βR)]

≈ Ue(ξP, βP)−Ue(ξR, βR) (27)

HR,P = HP,R = 〈ηP|Ĥ|ηR〉
= −c1c2[〈φR|Ĥ|φR〉+ 〈φP|Ĥ|φP〉] + c2

2〈φR|Ĥ|φP〉+ c2
1〈φP|Ĥ|φR〉

= −c1c2[〈φR|Ĥ|φR〉+ 〈φP|Ĥ|φP〉] + (c2
1 + c2

2)〈φP|Ĥ|φR〉 (28)

where Ĥ ∼= Ue + K̂β + Kξ is the Born–Oppenheimer QC (vibrational) Hamiltonian op-
erator (including the QC-environment interaction) with Ue the electronic ground state
energy, K̂β the kinetic energy operator of the nuclear quantum mode coordinates β,
Kξ the classical kinetic energy of the semiclassical mode coordinates ξ, and we used
〈φP|Ĥ|φP〉 − 〈φR|Ĥ|φR〉 ∼= Ue(ξP, βP) − Ue(ξR, βR) and 〈φR|Ĥ|φP〉 = 〈φP|Ĥ|φR〉 as fol-
lowing from the fact that φR, φP are real wavefunctions differing only for their minimum
energy position. Note that since ξ, β are mass weighted coordinates, we necessarily have
K̂β = ∑l π̂2

βl
/2 and Kξ = ∑j π2

ξ j
/2 with π̂βl and πξ j the conjugated momentum operators

and classical conjugated momenta of the β and ξ coordinates, respectively. It is also worth
noting that the use in Equations (27) and (28) of the Born–Oppenheimer vibrational Hamil-
tonian, disregarding any (electronic) non-adiabatic coupling, means that we are assuming
negligible non-adiabatic coupling for Born–Oppenheimer diabatic states involving the
same electronic state.

From Equation (27) it is evident that at each diabatic energy crossing we must have
Ue(ξP, βP)−Ue(ξR, βR) ≈ 〈φP|Ĥ|φP〉 − 〈φR|Ĥ|φR〉 = 0 and thus (using also Equations (24)
and (25)) we obtain for the coupling term at the crossing

HR,P = HP,R = −2c1c2〈φR|Ĥ|φR〉+ (c2
1 + c2

2)〈φP|Ĥ|φR〉
= (c2

1 + c2
2)[〈φP|Ĥ|φR〉 − 〈φP|φR〉〈φR|Ĥ|φR〉]

≈ 〈φP|Ĥ|φR〉 − 〈φP|φR〉〈φR|Ĥ|φR〉 (29)

We can express the Hamiltonian operator via the approximation of independent
quantum mode terms (i.e., we disregard anharmonic mode coupling and quantum and
semiclassical subspace mixing)

Ĥ(ξ, β) ∼= Ue(ξR, βR) + ∑
l

[
K̂βl + ∆Ue(ξR, β′R, βl)

]
+ Kξ + ∆Ue(ξ, βR) (30)

with K̂βl = π̂2
βl

/2 the lth quantum mode kinetic energy operator, ∆Ue(ξR, β′R, βl) the
electronic energy change, with respect to the R energy minimum, as obtained moving along
the βl mode coordinate only (β′R corresponds to all the other quantum coordinates fixed at
their minimum energy position) and ∆Ue(ξ, βR) the electronic energy change, with respect
to the R energy minimum, as obtained moving only the semiclassical mode coordinates.
By using Equation (30) into Equation (29) we then obtain

HR,P = HP,R ≈ 〈φP|φR〉∑
l

{ 〈φP,l |∆Ue(ξR, β′R, βl)− ∆UR,l(βl)|φR,l〉
〈φP,l |φR,l〉

− 〈φR,l |∆Ue(ξR, β′R, βl)− ∆UR,l(βl)|φR,l〉
}

(31)
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where ∆UR,l(βl) is the electronic energy change, with respect to the R energy minimum,
as provided by the R purely harmonic behavior of the lth quantum mode (with ∆UP,l we
can define the electronic energy change from the P energy minimum, as provided by the P
purely harmonic behavior of the lth quantum mode). Finally, it is worth to remark that we
assume the R and P minima as sharing the same quantum modes and frequencies.

2.4. Practical Strategy

In order to obtain a reasonable evaluation of the transition energy and related R, P
coupling, according to the previous subsection, we need to properly evaluate the QC
electronic ground state energy when including the QC-environment interaction (perturbed
electronic ground eigenstate energy). The CT reactions we consider in this paper involve as
charge donor and acceptor two Gauanine bases separated by 1–3 in between other bases.
Therefore, we should in principle consider as QC the whole chemical complex including
the two Guanines as well as the in between other bases, thus requiring to address several
difficulties for modeling such a large and flexible QC. However, due to the essentially
electronically uncoupled donor and acceptor chemical groups (i.e., the two Guanines),
we can evaluate the electronic transition energy ∆Ue(ξP, βP) = Ue(ξP, βP)− Ue(ξR, βR)
approximating the whole transition energy (i.e., ∆Ue(ξP, βP) ≈ ∆U , see Equation (27))
and thus using it to evaluate the diabatic energy crossing (i.e., ∆U = 0), by treating the
acceptor and donor groups as two electronically independent QC’s each perturbed by
its environment [37]. In fact, within such an approximation we can obtain the transition
energy of the CT process via either the reaction scheme I

e− + D+ + A→ D + A→ D + A+ + e− (32)

or the equivalent reaction scheme II

D+ + A→ D+ + A+ + e− → D + A+ (33)

where e− is the electron formally added or subtracted in the process, D+ and D are the
charged and neutral hole donor species, A+ and A are the charged and neutral hole acceptor
species, in the first step of scheme I as well as in the second step of scheme II, the QC is the
donor only (i.e., A and A+ are treated as part of the perturbing environment) and in the
second step of scheme I as well as in the first step of scheme II, the QC is the acceptor only
(i.e., D and D+ are treated as part of the perturbating environment).

Therefore, we can write

Ue(ξP, βP)−Ue(ξR, βR) ∼= ∆U I
e,D+ ,red + ∆U I

e,A,ox
∼= ∆U I I

e,A,ox + ∆U I I
e,D+ ,red (34)

where ∆U I
e,D+ ,red, ∆U I I

e,D+ ,red are the donor species perturbed electronic ground state energy
change due to reduction in the reaction steps e−+ D+ + A→ D + A and D+ + A+ + e− →
D + A+, respectively, and ∆U I

e,A,ox, ∆U I I
e,A,ox are the acceptor species perturbed electronic

ground state energy change due to oxydation in the reaction steps D + A→ D + A+ + e−

and D+ + A→ D+ + A+ + e−, respectively.
We obtained the perturbed electronic ground state energy at each Molecular Dynamics

(MD) simulation frame for each of the QC considered by means of the Perturbed Matrix
Method (PMM) [43–45] diagonalizing at each MD step the QC electronic Hamiltonian
matrix given by the elements [45]

He,l,l′
∼= δl,l′

[
U 0

e,l + ∑
n
Vnq0

n,l

]
− (1− δl,l′)EG · µ0

e,l,l′ + δl,l′∆V (35)

where U 0
e,l is the lth unperturbed electronic state energy, n runs over all the QC atoms,

Vn is the perturbing electric potential at the n atom position, EG is the perturbing electric
field at the QC centre of mass, q0

n,l is the n atom charge provided by the lth unperturbed
electronic state, µ0

e,l,l′ is the QC unperturbed l, l′ electronic dipole and ∆V approximates all



Molecules 2022, 27, 7408 9 of 23

the higher order terms as a short range potential depending only on the nuclear positions
(i.e., identical for all the matrix elements).

Finally, considering that the perturbation can only provide slight variations of the
vibrational wavefunctions (i.e., the perturbed vibrational eigenstates) we used the unper-
turbed harmonic wavefunctions of the R and P minima (i.e., the unperturbed harmonic
vibrational eigenstates as obtained by the gas-state donor-acceptor complex, including the
in between bases) to obtain the R, P coupling at the crossing, according to Equation (31)
(we used the thermal energy for discriminating between semiclassical and quantum modes,
with the quantum modes being those corresponding to an energy gap higher than the ther-
mal energy). Moreover, considering also that from Equation (30) we assume the electronic
energy change along each quantum mode as independent of the other coordinates position,
we approximated the electronic energy change along each l quantum mode, ∆Ue(ξR, β′R, βl),
by the corresponding R and P unperturbed harmonic energies (∆U 0

R,l and ∆U 0
P,l , respec-

tively): switching from ∆U 0
R,l to ∆U 0

P,l at the intersection of these two unperturbed harmonic
energy curves, as shown in Figure 2. Note that the approximation of using the unperturbed
vibrational eigenstates and frequencies for evaluating the diabatic state coupling, means
that we assume negligible perturbation effects on HR,P, and thus for a rigid or semirigid
QC (the case studied in this paper) a single unperturbed QC structure calculation is needed
to evaluate the transmission coefficient α.

Figure 2. R and P unperturbed harmonic energies. After the intersection ∆U0
R,l is represented as

a black dashed line and before the intersection ∆U0
P,l is represented as a red dashed line.

3. Computational Details
3.1. Computational Strategy

The MD-PMM procedure is at the basis of the whole work and requires the production
of MD simulations of the entire system and quantum-chemical calculations on the isolated
region of the system selected as the quantum center (QC). In the present case, the Guanine
base, is selected as a semi-rigid QC in each investigated system. Two Guanine bases,
one (neutral) acting as an electron donor and one (cationic) as an electron acceptor, were
selected in each considered double strand. One step is the simulation of the solvated double
strand that presents an electronic hole in correspondence of a Guanine site. The double
strand sequences were selected from the work of Takada et al. [8] to provide a comparison
with experimental data and are the following: ds-5′-d(AAAAAAG1AG2XG3AG4A)-3′,
where X = {A, AA, AAA, T, TT, TTT} is the bridge of nucleobases between G2 and G3.
The electron hole was simulated in correspondence of the second Guanine base in the
double strand, i.e. G·+2 is the electron acceptor and G3 is considered as the electron donor.
Hence, the considered reactions are the intrastrand electron transfer between G·+2 (electron
acceptor) and G3 (donor) in substrates with different bridge type and length, X, and the
rate constants for this process were calculated using scheme I (32).
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Additional simulations of solvated double strands with sequence:
ds-5′-d(AAAAAAG1AG2XC3AC4A)-3′, with X = {A, T}, were conducted in order to eval-
uate the intermolecular rate constants of the electron transfer process between G·+2 (electron
acceptor) and the complementary Guanine base of C3 (donor), again using scheme I
(Equation (32)).

The other step is the quantum chemical calculations performed on the QC in each
redox state, i.e., Guanine base in neutral and radical cation state, in order to apply the
reaction scheme in the MD-PMM framework.

After the evaluation of the QC unperturbed properties and the substrates MD simu-
lations, it is possible to apply the MD-PMM procedure to obtain the electronic transition
energy distribution and performing the evaluation of the charge transfer rate constant (via
Equation (19)).

The calculation of the hessian matrices of the structures of the acceptor-bridge-donor
base stack, G2XG3, where G2 is in the equilibrium geometry of cationic Guanine and G3 is in
the equilibrium geometry of the neutral Guanine (R) and vice versa (P), are necessary for the
estimation of the R, P coupling. From the hessian matrices, the ground state vibrational
eigenstates of R and P and the frequencies of the quantum vibrational modes are obtained.
From single point calculations along the selected eigenvectors, the electronic energy change,
with respect to the R and P minimum are obtained and necessary for the evaluation of the
coupling term at crossing expressed by Equation (31).

3.2. Molecular Dynamics Simulations

All simulations were carried out using Gromacs software package [46] and AMBER99
force field [47]. The initial structures of the double strands were built in an ideal B-DNA
conformation. For the atomic charges of the hole donor G.+

2 in the double strands we
used the ESP charges [48] as obtained for the isolated (gas-phase) radical cation Guanine
base, employing the same procedure utilized in the AMBER force field [47] and hence
we modified accordingly the original force field to model the reactant state ensemble.
Double strands were simulated within a cubic box with edge of 7.95 nm filled with 16490
SPC [49] (simple point charges) water molecules and a number of Na+ ions to achieve
the system electroneutrality. The velocity rescaling algorithm [50] was used to keep the
temperature constant at 300 K. The simulations lasted 100 ns and we used a time step of 2 fs.
The volume of the simulation box was fixed, with the MD simulation providing the NVT
ensemble statistics.

Additional MD simulations using the BSC1 [51] force field and TIP3P [52] water model
were conducted (details in Supplementary Materials).

3.3. Unperturbed Quantum States and Properties

The electronic structure calculations were performed using Gaussian 16 [53] soft-
ware package. The geometries of Guanine base in neutral and radical cation state in gas
phase were optimized with density functional theory (DFT) at CAM-B3LYP [54,55]/6-
311++G(2d,2p) [56,57] level of theory. The unperturbed electronic properties (energies,
electric dipole moments, atomic charges) of the electronic ground and first six excited states
were calculated at the DFT and time dependent-DFT (TD-DFT) level of theory using the
CAM-B3LYP functional and the 6-311++G(2d,2p) basis set.

The acceptor-bridge-donor stacks used to evaluate the R and P mass-weighted Hes-
sians were constructed using the optimized geometries of the single bases (at DFT/CAM-
B3LYP level of theory), placing them in the conformation of an ideal B-DNA. For the
vibrational frequency calculations on the acceptor-bridge-donor stacks, we again made use
of DFT at CAM-B3LYP/6-31G(d) [57–59] level of theory.

Calculations of the partial atomic charges (ESP charges) for the acceptor-bridge-donor
stack, at DFT/CAM-B3LYP and MP2 level of theory, with 6-31G(d) basis set, were made
for checking the (positive) charge localization on the single Guanine base.
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4. Results and Discussion

In line with the available literature, we assumed the relevant hole transfer reaction
in DNA molecules as corresponding to the charge transfer between Guanines, even when
separated by in between bridge bases (superexchange process): each hole transfer step
involves a single donor-bridge-acceptor unit, with the Guanine bases acting as hole donor
and acceptor. Note that we disregard the possible involvement of proton transfer in the
CT reaction mechanism, as the only evidence for such an effect in the DNA sequences
we studied, based on a kinetic isotope-effect experiment, provided the suggestion of only
a slight effect on the hole transfer kinetics [8] which is beyond the resolution of our data.
The rate constants KCT for the CT reactions between the electron donor (neutral) Guanine
base (i.e., the hole acceptor) and the electron acceptor (cationic) Guanine base (i.e., the hole
donor) were calculated by means of the MD-PMM procedure as described in the Theory
section and compared to the available experimental data as obtained by time-resolved
spectroscopy measurements [8].

Firstly, the possible charge delocalization among nucleobases was estimated calculat-
ing the atomic charges in different DNA base triplets in cationic form, i.e., (GAG)+ and
(GTG)+. To this end, electronic structure calculations of these (gas-phase) DNA triplets
in the typical B-DNA geometry at different levels of theory, e.g. MP2 and DFT, were per-
formed. For each base triplet, two sets of nucleobase atomic charges were estimated: one
with the 5′ Guanine in its neutral relaxed geometry and the 3′ Guanine in its cationic relaxed
geometry (the P relaxed structure) and the other where such geometries were swapped (the
R relaxed structure). The results, showing an almost complete localization of the positive
charge on a single Guanine (see Table 1) and in agreement with previous computational
and experimental works [60–62], allowed us to treat the charge transfer process as a charge
hopping between two basically electronically independent Guanines as provided (via the
super exchange mechanism) by the transition between two energy minima of the electronic
ground state of the donor-bridge-acceptor system, in line with the model described in the
Theory section (when including in such calculations the SMD implicit solvent model [63]
for mimicking the mean solvent effect and the GD3 empirical dispersion [64] we obtain
an even stronger charge localization, see Supplementary Materials). It is worth to remark
that the use of R and P diabatic vibrational states each essentially corresponding to a single
(ground state) electronic energy minimum with the excess charge localized on one of the
two Guanine bases, does not avoid, due to the TR crossing (see Figure 1), the occurrence
of charge delocalization (possibly involving also the bridge bases) as suggested by experi-
mental data [65,66] and computational results [16,27]. In fact, within the TR it is expected
that the dynamical quantum state of the reaction center (the donor-bridge-acceptor system)
become a mixture of the two diabatic states, thus providing charge delocalization. Note
that we tested the first electronic excitation as a possible alternative CT reaction channel.
However, in the excited electronic state we found an incomplete charge transfer involving
very high transition energies (i.e., very slow reaction rate), thus preventing any efficient CT
reaction process.

In the CT reaction investigated in this paper, from preliminary PMM-MD calculations,
the RA chemical state (the lower energy RI state in Figure 1) is the initial reactant condition
with then the RB population (the population of the higher energy RI I state in Figure 1)
within the steady state approximation. To evaluate the charge transfer rate constant
KCT ∼= α(2 − α)KRA (see Equations (1)–(4) and the reaction scheme of Figure A2) as
a function of the length and type of the bridge between the charge donor and acceptor,
different double stranded DNA sequences reported in Figure 3 and 4, were considered.
Note that due to the slow CT kinetics we always used the Gaussian approximation (see the
Theory section) to estimate the kinetic constant KRA .

According to the reaction scheme I (Equation (32)), the electronic transition energies
for each DNA molecule were estimated by means of the MD-PMM procedure (see the
Theory section). Note that the use of the other, within our approximations, equivalent
reaction scheme (reaction scheme II Equation (33)) provided almost identical electronic
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transition energies and (within the noise) the same results, thus showing the reliability of the
approximations employed. In Figure 5, the electronic transition energies and its Gaussian
behavior is reported for the ds-5′-d(AAAAAAG1AG2TG3AG4A)-3′ as an example.

Table 1. ESP charges of (GAG)+ and (GTG)+ stacks. Two sets of ESP charges for each triplet are
reported: one where the 5′ Guanine is in its neutral relaxed geometry and the 3′ Guanine in its
cationic relaxed geometry and one where the Guanine geometries were swapped.

Base q q

CAM-B3LYP MP2

5′ G.+ 0.87 0.90
A 0.07 0.06
3′ G 0.06 0.04

5′ G.+ 0.92 0.94
T 0.02 0.01
3′ G 0.06 0.04

5′ G 0.08 0.01
A 0.09 0.06
3′ G.+ 0.83 0.93

5′ G 0.09 0.04
T 0.00 −0.02
3′ G.+ 0.91 0.96

According to Equation (27), from the mean and the variance of the electronic transition
energy distribution by means of Equation (19) we calculated the kinetic constantKRA for the
intrastrand and interstrand hole transfer between G.+

2 and G3 in the
ds-5′-d(AAAAAAG1AG2XG3AG4A)-3′ substrates (see Tables 2 and 3).

Figure 3. Schematic representation of intrastrand charge transfer in double strands where the bridge
is X = {A, AA, AAA, T, TT, TTT} and Y is the complementary strand of X. The electron donor is G3

(in blue) and the acceptor is G.+
2 (in red). These two Guanine bases belong to the same strand.

Figure 4. Schematic representation of interstrand charge transfer in double strands where the bridge
is X = {A, T} and Y is the complementary strand of X. The electron donor is G3 (in blue) and the
acceptor is G.+

2 (in red). These two Guanine bases belong to different strands.
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Figure 5. Trajectory and distribution of the electronic transition energies along the MD simulation
and its Gaussian behaviour for the ds-5′-d(AAAAAAG1AG2TG3AG4A)-3′ system.

Table 2. Comparison between the calculated kinetic constant KRA and the experimentally measured
rate constant KCT for the intrastrand charge transfer of the G.+

2 – [A]n–G3 and G.+
2 –[T]n–G3 sequence

containing substrates. For all the calculated KRA the relative standard error is about 30 per cent of the
estimated kinetic constant.

n KRA(s−1) KCT(s−1)

[A]n PMM exp. [8]

1 2.8× 104 4.8× 107

2 5.2× 103 9.7× 104

3 2.0× 103 1.4× 104

[T]n

1 1.6× 105 4.6× 105

2 1.4× 104 3.6× 104

3 1.7× 104 9.1× 103

As expected, the kinetic constantKRA for the intrastrand hole transfer between G.+
2 and

G3 decreases as the length of the bridge is increasing. This is observed for both the A-type
and T-type bridges (see Table 2), in line with the experimental data [8]. Interestingly, the ob-
tained KRA are always close or slower than the experimental rate constants thus suggesting
that no relevant diabatic effects are present and hence KCT ∼= limα→1 α(2− α)KRA = KRA .
In order to verify the reliability of the α → 1 hypothesis, the transmission coefficient α
for the hole transfer process in the substrates containing the sequences G2AG3 and G2TG3
was estimated, according to the Theory section. For both cases, we considered the (unper-
turbed) QC formed by the acceptor/donor Guanines and the bridge (the A or T base) in
between, calculating the mass-weighted Hessian matrix of the reactant and product elec-
tronic ground state energy minimum. By inspecting the squared elements of the Duschinsky
matrix (the matrix obtained by the inner products between the R and P mass-weighted
Hessian eigenvectors) for (GAG)+ triplet reported in Figure 6, we can safely conclude
that no relevant mixing of the quantum modes is provided by the reactant to product
transition, thus allowing us to consider each R quantum vibrational mode as essentially
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coinciding with a P mode of virtually identical frequency, with only a significant shift of the
minimum energy position (note that the R and P modes with identical eigenvector index
have virtually identical frequencies).

Figure 6. Squared elements of the Duschinsky matrix for the R and P vibrational eigenvectors (i.e., the
R and P mass-weighted Hessian eigenvectors).

The electronic energy change along the relevant quantum modes were then obtained
and hence, via Equation (31) and the Landau-Zener approximation, the value of α ≈ 0.8
and α(2− α) ≈ 0.96 for both triplets were estimated. This clearly confirms that for the
G2AG3 and G2TG3 sequences the investigated hole transfer is essentially adiabatic and
hence, for sake of simplicity, we assumed KCT ∼= KRA as a reasonable approximation for all
the sequences considered. Similar calculations for larger QC involving longer bridges are
computationally very demanding and possibly inaccurate due to the complexity of the
system and the large dimension of the Hessian to be used.

Remarkably, from Table 2 it is evident that our estimate of the (intra-strand) rate
constant (i.e., KCT ∼= KRA ) for the T-type bridge systems well matches the experimental
value for all the sequences, irrespective of the bridge length, while for the A-type bridge
systems our calculations always underestimate the rate constant and, in particular, for the
single Adenine bridge case a large discrepancy is present. Interestingly, when dissecting the
mean electronic transition energy 〈∆Ue(ξP, βP)〉 = 〈∆U I

e,D+ ,red + ∆U I
e,A,ox〉 into the solvent

〈∆Ue,solv(ξP, βP)〉 and DNA 〈∆Ue,helix(ξP, βP)〉 contributions (i.e., as obtained considering
either only the solvent or only the DNA perturbation), it emerges that for the intra-strand
CT the main difference between the A-type and T-type bridge systems is the solvent
contribution being much larger in the A-type bridge systems (in the T-type bridge systems
an almost null solvent contribution is present, see Supplementary Materials, thus indicating
an almost identical solvent average perturbation for G.+

2 and G3) with a clear negative
correlation only for the T-type bridge systems (for the A-type bridge systems the solvent
contribution seems basically independent of the DNA one, see Figure 7). Such results
suggest a possible MD force field inaccuracy for treating the interaction between the solvent
and G.+

2 –[A]n–G3, providing a too high solvent contribution to the mean transition energy:
e.g., the lack of a proper stacking term between the oxidized Guanine and the Adenine
bases could provide an excessive solvent-G.+

2 interaction in the R ensemble, over-stabilizing
G.+

2 as suggested by the comparison of the solvent-G.+
2 interaction energy distributions

as obtained by the MD simulations of the G.+
2 –A–G3 and G.+

2 –T–G3 sequence containing
substrates (see Figure 8). Note that in order to test other force fields, we performed the
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same calculations using the BSC1 [51] force field or the TIP3P [52] water model finding
(within the noise) identical results, see Supplementary Materials.

Figure 7. Solvent contribution to the mean electronic transition energy versus the DNA contribution
to the mean electronic transition energy. Note that larger DNA contributions correspond to larger
bridge lengths and in the T-type bridge systems only for the inter-strand CT the solvent contribution
(the highest value) is comparable to the solvent contributions of the A-type bridge systems. The solid
lines are the linear regressions of the data.

Figure 8. Solvent-G.+
2 long range interaction energy distributions.

Considering that in the present study we deal with the electronic ground state en-
ergy and thus our PMM calculations are basically equivalent to the first order pertur-
bation theory and also realizing that within our reaction model we have null unper-
turbed electronic transition energy (i.e., ∆U 0

e (ξP, βP) = 0), it follows 〈∆Ue(ξP, βP)〉 ∼=
〈∆Ue,solv(ξP, βP)〉+ 〈∆Ue,helix(ξP, βP)〉 (see Figure 9) clearly allowing us to roughly simu-
late the effect of a reduced solvent-G.+

2 interaction for the A-type bridges by simply partly
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or fully removing from the mean electronic transition energy the solvent contribution (we
assume that both the DNA contribution as well as the overall electronic transition energy
variance be always properly provided by the MD simulations). In Table 4 we show the
calculated kinetic constants for the G.+

2 –[A]n–G3 sequence containing substrates, when
removing/reducing the solvent contribution to the mean electronic transition energy. From
the Table it is indeed evident that when using such a rough correction we can obtain a good
reproduction of the experimental CT rate constants, with a clear indication that the over-
estimation of the solvent contribution reduces as the A-type bridge becomes larger and the
two Guanines are subjected to an increasingly different average solvent perturbation field.
Similar results are obtained when the electron acceptor G.+

2 and the electron donor G3 are
on different strands as for the G.+

2 –A–C3 and G.+
2 –T–C3 sequence containing substrates

(see Tables 3 and 5). Again the CT rate constant is properly obtained for the T-type bridge
system (although now the solvent contribution to the mean electronic transition energy is
relevantly larger than zero), while for the A-type bridge system a reasonable reproduction
of the experimental rate constant can be obtained only when reducing the solvent contribu-
tion to the mean electronic transition energy. It is worth noting that, differently from the
intrastrand CT case, the single Adenine bridge system requires a reduction of the solvent
contribution instead of a full removal, as expected from the larger difference of the average
perturbation fields experienced by the two Guanines on the different strands, in line with
what observed for the intrastrand CT in the largest A-type bridge system.

Figure 9. Comparison between the mean electronic transition energy and the sum of the solvent and
DNA contributions. The solid line is the bisector of the plane.

Table 3. Comparison between the calculated kinetic constantKRA and the experimentally measured rate
constant KCT for the interstrand charge transfer of the G.+

2 –A–C3 and G.+
2 –T–C3 sequence containing

substrates. In this case, the electron donor, G3 Guanine base, is in the complementary strand.

KRA(s−1) KCT(s−1)

PMM exp. [8]

A 1.8× 105 1.4× 106

T 2.9× 106 1.6× 106
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Table 4. Comparison between the calculated kinetic constant KRA (obtained removing from the mean
transition energy the solvent contribution) and the experimentally measured rate constant KCT for the
intrastrand charge transfer of the G.+

2 –[A]n–G3 sequence containing substrates. When not specified
the data refer to fully removed solvent contribution.

n KRA(s−1) KCT(s−1)

[A]n PMM exp. [8]

1 9.1× 106 4.8× 107

2 3.4× 105 9.7× 104

2 a 4.5× 104 9.7× 104

3 1.2× 106 1.4× 104

3 a 7.7× 104 1.4× 104

a Value obtained including in the mean transition energy one half of the solvent contribution.

Table 5. Comparison between the calculated kinetic constant KRA (obtained removing from the mean
transition energy the solvent contribution) and the experimentally measured rate constant KCT for the
interstrand charge transfer of the G.+

2 –A–C3 sequence containing substrates. In this case, the electron
donor, G3 Guanine base, is in the complementary strand. When not specified the data refer to fully
removed solvent contribution.

KRA(s−1) KCT(s−1)

PMM exp. [8]

A 3.1× 107 1.4× 106

A a 2.6× 106 1.4× 106

a Value obtained including in the mean transition energy one half of the solvent contribution.

In order to better understand the mechanism determining the CT reaction studied, we
compared the mean electronic transition energies of the two steps of the reaction scheme I,
as obtained for the A-type and T-type bridge systems. A detailed analysis of these single
step mean transition energies, also dissecting them into the solvent and DNA contributions
(see Supplementary Materials), showed for both systems a similar behavior: the overall
perturbation (DNA plus solvent) provides in the R ensemble a relevant stabilization of the
charged Guanines (G.+

2 in the first reaction step and G.+
3 in the second reaction step), as

shown by the positive mean electronic transition energy in the first step 〈∆Ue,1(ξP, βP)〉 =
〈∆U I

e,D+ ,red〉 (once subtracted of the corresponding unperturbed electronic transition energy
∆U 0

e,1(ξP, βP) = −0.2796 a.u.) and the negative mean transition energy in the second
step 〈∆Ue,2(ξP, βP)〉 = 〈∆U I

e,A,ox〉 (once subtracted of the corresponding unperturbed elec-
tronic transition energy ∆U 0

e,2(ξP, βP) = 0.2796 a.u.), resulting in an increasing preferential
stabilization of G.+

2 (i.e., 〈∆Ue(ξP, βP)〉 = 〈∆Ue,1(ξP, βP)〉 + 〈∆Ue,2(ξP, βP)〉 > 0) as the
bridge length becomes larger and a clear negative correlation between them, see Figure 10
(note again that ∆U 0

e,1(ξP, βP) + ∆U 0
e,2(ξP, βP) = ∆U 0

e (ξP, βP) = 0). However, while the
DNA perturbation effect favors the charged Guanine state (i.e., 〈∆Ue,helix,1(ξP, βP)〉 −
∆U 0

e,1(ξP, βP) > 0 and 〈∆Ue,helix,2(ξP, βP)〉 − ∆U 0
e,2(ξP, βP) < 0), the solvent perturbation

effect favors the neutral Guanine state (i.e., 〈∆Ue,solv,1(ξP, βP)〉 − ∆U 0
e,1(ξP, βP) < 0 and

〈∆Ue,solv,2(ξP, βP)〉 − ∆U 0
e,2(ξP, βP) > 0), with again a clear negative correlation between

such solvent and DNA contributions (see Supplementary Materials).
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Figure 10. Mean electronic transition energy of the first reaction step of scheme I (subtracted of the
corresponding unperturbed electronic transition energy), versus the mean electronic transition energy
of the second reaction step of scheme I (subtracted of the corresponding unperturbed electronic
transition energy). Note that larger first step mean transition energies correspond to larger bridge
lengths. The solid lines are the linear regressions of the data.

5. Conclusions

In this paper we extend the general model [31] for the kinetics of CT reactions, in-
troducing specific modifications to treat the CT processes as occurring via the hopping
between energy minima of the same electronic state (i.e., tunnelling between the corre-
sponding vibrational ground states). In the Theory section we describe the theoretical
framework and practical strategy for modelling such CT reactions, deriving and discussing
in details the Gaussian approximation. Application of the theoretical–computational model
to CT reactions in DNA molecules confirmed the widely shared idea that Guanine bases act
as the relevant charge carriers (i.e., hole donor and acceptor), characterizing the CT process
for the considered sequences as the charge hopping between subsequent Guanines via the
super exchange mechanism [8,17,22,30].

Comparison of our data with the available experimental ones provided several impor-
tant results:

• The CT reaction within a single hole hopping step can be conceived as the tunnelling
between the vibrational ground states of two different electronic ground state energy
minima of the donor-bridge-acceptor unit, each characterized by the excess charge
located on one of the two Guanine bases involved.

• In modelling the transition energy, the hole donor and acceptor Guanine bases can
be treated as essentially electronically independent quantum systems, suggesting
that delocalization of the excess charge is not relevant for modelling the kinetics
of these reactions. Note that such finding does not avoid the occurrence of charge
delocalization due to the TR crossing, see Figure 1.

• The fluctuating perturbation field acting on the Guanine bases, due to the DNA and
solvent dynamics, is the driving force of the CT reactions studied, confirming the
essential role of the perturbing environment we found in previous works on different
chemical systems.

• All the CT reactions investigated can be described as largely adiabatic processes,
regardless of the bridge type, in line with our explicit evaluation of the transmission
coefficient in the single base bridge systems.

• While for the T-type bridge systems our model provides an accurate reproduction of the
experimental reaction rate constants, for the A-type bridge systems significant deviations
between the calculated and the experimental rate constants are present, probably due
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to the inaccuracy of the MD force field in treating the interaction between the solvent
and the A-type bridge systems (resulting in an over-stabilized G.+

2 ) as suggested by
the reasonably accurate rate constants for the A-type bridge systems when the solvent
contribution is partly or fully removed from the mean transition energy.

• While the DNA perturbation favors the charged Guanine state, the solvent perturbation
favors the neutral Guanine state with the resulting overall perturbation providing a de-
creasing rate constant (increasing mean transition energy) as the bridge length increases.

Finally, it is worth to remark that the presented theoretical–computational model,
specifically designed for CT reactions due to the tunnelling between (diabatic) vibrational
states of the same electronic state, could furnish a general proper quantitative descrip-
tion of the CT reactions as occurring without requiring prior electronic excitation, thus
involving the electronic ground state only. Therefore, such an approach for treating the
hopping between vibrational states of different minima of the electronic ground state to-
gether with the previously described method [31] for CT reactions involving tunnelling
between different (diabatic) electronic states, can provide a general relatively simple ap-
proach to quantitatively describe CT reactions, particularly suited when dealing with
complex systems.
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and BSC1 force fields and between SPC and TIP3P water models are given.
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Appendix A

Whenever a diabatic energy crossing occurs, i.e., a TR traversing, a possible reaction
event can be present according to the scheme of Figure 1. From the Figure, beyond the TR
itself, we can identify four different chemical states (RI , RI I and PI , PI I) corresponding to
perturbation regions where the adiabatic states I and I I are virtually identical either to the

https://www.mdpi.com/article/10.3390/molecules27217408/s1
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R or the P diabatic state. According to Figure 1, using the definitions and assumptions
previously described, at each TR crossing process the adiabatic fraction χ is provided

by the Landau-Zener approximation: i.e., χ ∼= 1− e−
2π|HR,P |2

h̄ vcr with HR,P the Hamiltonian
reactant-product coupling and vcr the absolute value of the diabatic energy difference
time derivative at the crossing (i.e., crossing velocity). Defining with A and B the I and
I I adiabatic surface index, respectively, the reaction scheme for the RA → P transition as
occurring within a single TR reaction (i.e., a reaction process defined by crossing events
characterized by almost identical HR,P, vcr and hence with an almost identical χ value) is
provided by Figure A1.

R
k

AR

k
-A TR AR

k
+

(1- )c

c
k +

RB

PA

Figure A1. Reaction scheme for the RA → P transition as occurring within a single TR reaction (see
text). TRRA represents the TR ensemble provided by the reactive trajectories entering the transition
region from RA. A similar scheme can be used for the RB → P transition.

Therefore, according to the complete reaction scheme (see Figure A2) for the R→ P
transition as occurring through all the TR reactions (i.e., considering all the crossing events),
we can write [31]

˙[RA] ∼= −KRA [RA] + (1− α) KRB [RB] (A1)
˙[RB] ∼= (1− α) KRA [RA]−KRB [RB] (A2)
˙[P] ∼= −( ˙[RB] + ˙[RA]) ∼= αKRA [RA] + αKRB [RB] (A3)

where α = 〈χ〉A = 〈χ〉B = 〈χ〉 and assuming the stationary state for the TR concentration
from Figure A1 we have

KRA
∼=

〈
kRA k+

k+ + k−

〉
A

∼= 〈kRA〉A (A4)

KRB
∼=

〈
kRB k+

k+ + k−

〉
B

∼= 〈kRB〉B (A5)

with the angle brackets meaning the average over all the TR reactions, as obtained by
either the RA → P (A subscript) or the RB → P (B subscript) transitions, we assumed

χ as statistically independent from
kRA k+

k++k− and
kRB k+

k++k− with invariant average value when
obtained via the RA → P or the RB → P transitions and we used k− ∼= 0 as it follows
from the tiny perturbation interval corresponding to each TR, implying that its mean
residence time is shorter than the autocorrelation mean time of the crossing velocity [31,41].
Equations (A1)–(A3) can be simplified by assuming the stationary condition either for RB
(RA is the proper initial reactant state) or for RA (RB is the proper initial reactant state). In
the former case (i.e., ˙[RB] ∼= 0 and hence [RB] ∼= (1− α) KRA [RA]/KRB ) we have

˙[RA] ∼= −α(2− α)KRA [RA] (A6)
˙[P] ∼= − ˙[RA] ∼= α(2− α)KRA [RA] (A7)
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readily providing when defining with [RA]0 the initial RA species concentration (i.e. at
the beginning of the RB stationary state condition) and neglecting the RB concentration
(i.e., [P] ∼= [RA]0 − [RA]),

[RA] ∼= [RA]0 e−α(2−α)KRA t (A8)

[P] ∼= [RA]0
[
1− e−α(2−α)KRA t

]
(A9)

For the latter case (i.e., ˙[RA] ∼= 0 and hence [RA] ∼= (1− α) KRB [RB]/KRA) we can write

˙[RB] ∼= −α(2− α)KRB [RB] (A10)
˙[P] ∼= − ˙[RB] ∼= α(2− α)KRB [RB] (A11)

providing

[RB] ∼= [RB]0 e−α(2−α)KRB t (A12)

[P] ∼= [RB]0
[
1− e−α(2−α)KRB t

]
(A13)

with obviously [RB]0 the initial RB species concentration (i.e., at the beginning of the
RA stationary state condition) and again neglecting the RA concentration (i.e., [P] ∼=
[RB]0 − [RB]).

Finally, it is worth noting that in the present case where we deal with diabatic states
defined via the vibrational states of different minima of the electronic ground state, consid-
ering that the R diabatic state corresponding to the relevant reactant condition involves only
the vibrational ground state, we can disregard all the possible diabatic energy crossings
due to the P diabatic states involving the excited vibrational states (i.e., highly diabatic
crossings), thus assuming as productive crossings only those due to the R and P diabatic
states involving the vibrational ground states (on the contrary when dealing with diabatic
states defined via different electronic states several P diabatic vibronic states must be
considered [31]).

B

A

A B

A

B

Figure A2. Reaction scheme for the complete R → P transition as occurring through all the TR
reactions (see text).
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