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Abstract: The environmental impacts of cement manufacturing are becoming a real-time issue that
requires attention. This paper investigates the mechanical and physical properties of mortars with
finely ground sand as a substitute for cement. The experimental program consisted of three silica
sands with a Blaine Specific Surface (BSS) area of 459 m2/kg, 497 m2/kg, and 543 m2/kg and four
substitution ratios of 10%, 20%, 30%, and 40%. A total of 12 mixtures have been prepared and
tested for comparison to the reference mortar. The pozzolanic effect of the sand was evaluated using
thermogravimetric analysis (TGA). The results revealed that the fineness variation from 459 m2/kg
to 543 m2/kg resulted in an increase of 20% and 30% in water absorption and compressive strength,
respectively. However, increasing the substitution ratio from 10% to 40% led to a 40% decrease in
mechanical strength and a 25% increase in water absorption. The statistical analysis of the results
demonstrated that both factors under study influenced compressive strength and water absorption.
The ANalysis of VAriance (ANOVA) confirmed that the proposed regression equations predict
the experimental results. Further studies will investigate both the technical and environmental
performances of cement mortars with finely ground silica sand.

Keywords: water absorption; compressive strength; silica sand; cement substitution

1. Introduction

The cement industry contributes to greenhouse gas emissions, particularly carbon
dioxide [1–4]. The main contribution is due to the production of clinker, which is the
main component of cement. It involves a chemical reaction where carbonates (e.g., CaCO3)
decompose into oxides (e.g., CaO) and CO2 through heat application [3]. This reaction
requires fuel combustion to feed rotary kilns [5]. Accordingly, research for low-impact
cement composed of alternative raw materials became a concern to solve this issue. De
Medeiros et al. [6] tested the effects of fly ash on cement paste durability. The results
indicated a decrease in the alkali contribution and compressive strength at 28 days, while
there was an increase in the carbonation ratio. Patil et al. [7] conducted an experimental
study by partially substituting cement with fly ash and bagasse ash in different ratios
ranging from 0% to 30%. The results of the Frattini test showed that cement with 20% fly
ash and 10% bagasse ash was pozzolanically active. The activity index of strength at 7
and 28 days exceeds the recommended value of 0.75. Hamidi et al. [8] investigated the
andesite rock as a partial substitute for cement. Andesite exhibited moderate pozzolanic
activity, surpassing that of natural pozzolans. Tayeh et al. [9] tested a mortar containing
glass powder and observed an up to 8% increase in compressive strength for mixtures
containing 20% glass powder; these findings comply with [10]. Furthermore, mortars
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containing glass powder exhibited good performance in external exposure to MgSO4
solution. Ramezanianpour et al. [11] observed that natural pozzolans and nanosilica reduce
mortars’ workability due to their morphology and specific surface area higher than that
of Portland cement. Cheah et al. [12] tested granulated blast furnace slag and ground
granulated blast furnace slag containing calcium carbonate as partial substitutes for cement.
A comparison between cement substitution with quartz and ash revealed that cement
pastes containing quartz powder exhibited higher early compressive strength due to the
physical filling of quartz particles [13]. Lin et al. [14] have reported that the quartz powder
has both effects of dilution and crystal nucleation on cement hydration. Therefore, the
incorporation of quartz powder does not affect the hydration product. Ma et al. [15]
found a dilution effect of coral sand powder that delays the exothermic ratio of the cement
system. Mortars containing fly ash and crushed river sand were more resistant to chloride
penetration than the reference mortar [16]. This improvement is due to the filling effect,
increased nucleation sites, a decrease in Ca(OH)2 content, and the presence of fine fly ash
particles. The Kubuqi desert sand powder (North China) improved the early hydration of
cement through nucleation, filling, and dilution [17]. Indeed, the sand particles enhanced
the cement hydration, and their quartz and calcite contributed to the precipitation of early
hydration products.

Other studies focused on supplementary materials in cement production [18] to reduce
costs from quarries [19], decrease CO2 emissions [18,20], and enhance construction materi-
als [21]. In the last few years, the use of industrial or natural pozzolanic materials (e.g., blast
furnace slag, fly ash, silica fume, kaolin, and pozzolana) has been significantly reduced due
to [22,23] environmental pressures related to energy consumption, steel recycling, which
reduced the production of waste materials to be recycled, and the depletion of natural
deposits [24,25].

In this context, finding abundant and alternative pozzolanic materials equivalent to
those in use is strategic. Silica sand is one of the most widely available materials around
the world. It derives from natural sources and is composed of SiO2 [21]. Quartz exhibits
physical interactions with the cement hydration process (e.g., cement grain dilution, cement
hydrate nucleation, and space-filling [14,26]). Table 1 summarizes the results of studies on
silica sand as a substitute or mineral addition to construction materials.

Table 1. Studies on silica sand as a substitute or mineral addition.

Reference Used
Material Independent Variables Main Results

[17] Desert sand Cement substitution ratio
(0% to 60%)

The desert sand powder in cement hydration was effective for
compressive strength between the 28th and 112th days.

[21,27] Desert sand Cement substitution ratio
(0% to 40%)

The compressive strength decreased with increasing cement substitution
by ground desert sand under standard curing. However, it can be a

partial cement substitute in precast concrete production.

[28] Desert sand
BSS (300 and 400 m2/kg)
Cement substitution ratio

(0 to 20%)

The desert sand powder added to Portland cement can reduce CO2
emissions and improve the compressive strength and even the

consistency of the fresh mixture.

[29] Desert sand Cement substitution ratio
(0% to 20%) Desert sand powder improves the workability of fresh mortars.

[30] Desert sand Cement substitution ratio
(0% to 20%)

Approximately 10% of pozzolan and 10% of dune sand powder ensure
optimum resistance. There is a decrease in strength above this percentage.

[31] Desert sand Cement substitution ratio
(15% to 25%)

Modified mortars made from 20% desert sand are economical
and sustainable.

[32] Quartz Cement substitution ratio
(0% to 20%)

Quartz increases compressive strength and improves the carbonation
efficiency of cement mortars.

[33] Quartz Cement substitution ratio
(0% to 20%) Quartz reduces the heat of hydration.

[34] Quartz BSS (456 and 1232 m2/kg)
Quartz contributes to nucleation sites conducive to calcium silicate

hydrates in cement mortars.

[35] Desert and river sand
Crushed sand

substitution ratio
(0% to 20%)

Binary sands have a positive effect on high-performance
self-compacting concrete.
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Despite its availability, few studies have investigated silica sand and proven a signifi-
cant gap concerning the sand fineness effect on the mechanical and physical properties of
binary mortars. Therefore, this study aims to predict the mechanical and physical behavior
of mortars containing silica sand by varying its fineness and cement substitution ratio (SP).

2. Materials and Methods

In this study, the samples were prepared and manufactured with CEM I 52.5 N
Portland cement (Schwenk, Ulm, Germany). The used cement has 3150 kg/m3 density
and 342 m2/kg Blaine Specific Surface (BSS). Its chemical composition is in Table 2. The
sand used as a substitute was quarried in the municipality of El Gor, Tlemcen province
(north-west Algeria), and had a high quartz content (98.91% by weight in Table 2). It was
dried and ground in a ball mill to achieve a fineness lower than that of the cement.

Table 2. Chemical analysis of Portland cement and silica sand.

Material (%) SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3

Cement CEM I 52.5 21.85 4.33 5.22 66.47 - 0.33 - 0.87
Silica sand 98.91 - 0.5 0.52 - - - -

Three types of silica sand with 459 m2/kg, 497 m2/kg, and 543 m2/kg BSS (BSS1,
BSS2, and BSS3, respectively) were investigated.

Figure 1a,b show the particle size distribution of cement and silica sand. The particle
size analysis was compliant with [36] using a Mastersizer 2000 laser analyzer (Malvern
Panalytical, Malvern, UK) and the scanning electron microscope “SEM” Philips/FEI XL
30S FEG Chatsworth, CA, USA. It is possible to observe an almost homogeneous size dis-
tribution for a range of sizes from 0 to 100 µm (Figure 1a). According to Figure 1b, grains
of silica sand have an angular-shaped morphology. X-ray fluorescence spectroscopy
was used to determine the chemical composition of the investigated materials, and a
powder X-ray diffractometer identified the minerals in the samples. In Figure 1c, the
X-ray diffraction pattern of silica sand confirms that quartz is the main mineral with a
hexagonal structure.

Materials 2023, 16, 6861 4 of 16 
 

 

  
(a) (b) (c) 

Figure 1. (a) Particle size distribution of cement and silica sand; (b) SEM image of silica sand; (c) X-
ray diffraction of silica sand. 

This study compared four mixtures with 10%, 20%, 30%, and 40% cement substitu-
tion (M1, M2, M3, and M4, respectively) to the reference mixture (M0). Table 3 illustrates 
their chemical composition. 

Table 3. Main chemical composition of mortars. 

Mixture ID SiO2 Al2O3 Fe2O3 CaO K2O SO3 
M0 21.85 4.33 5.22 66.47 0.33 0.87 
M1 29.56 3.90 4.75 59.87 0.30 0.78 
M2 37.26 3.46 4.28 53.28 0.26 0.70 
M3 44.97 3.03 3.80 46.68 0.23 0.61 
M4 52.67 2.60 3.33 40.09 0.20 0.52 

The hydraulic index (I) of M0 (i.e., 0.39 in Table 4) indicates it is neutral. It is the ratio 
of the acidic to the basic fraction of cement. The increasing substitution ratio of up to 40% 
allowed the transition of M0 to silica-rich mixtures (i.e., I > 1) (Table 4). Therefore, the 
hydraulic index has a direct correlation with the substitution ratio of crushed sand. 

Table 4. Mixture recipes. 

Mixture ID Crushed Sand (g) Cement (g) Sand (g) Water (g) Hydraulic 
Index 

M0 - 450 1350 225 0.39 
M1 45 405 1350 225 0.55 
M2 90 360 1350 225 0.76 
M3 135 315 1350 225 1.02 
M4 180 270 1350 225 1.37 

The ratios of binder/sand and water/binder were 0.33 and 0.5, respectively (Table 4). 
After mixing according to [37], each mixture was poured into 40 × 40 × 160 mm3 molds. 
Twenty-four hours after the initial set, the specimens were removed from the molds and 
stored in a water tank at room temperature until the test. A total of thirteen mixes were 
prepared and tested. Three samples were tested for each mortar. 

Thermogravimetric analyses (TGA) quantified the non-evaporable water (NEW) and 
the portlandite percentage. Mortar samples were taken from crushed mixture cubes and 
immersed in acetone to halt hydration and prevent carbonation. After this step, the sam-
ples were carefully dried in a desiccator to eliminate residual moisture. Finally, the sam-
ples were ground and sieved through an 80 µm mesh sieve to obtain a homogeneous par-
ticle size distribution. Equation (1) allows NEW calculation [38]: 

Figure 1. (a) Particle size distribution of cement and silica sand; (b) SEM image of silica sand; (c) X-ray
diffraction of silica sand.

This study compared four mixtures with 10%, 20%, 30%, and 40% cement substitution
(M1, M2, M3, and M4, respectively) to the reference mixture (M0). Table 3 illustrates their
chemical composition.
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Table 3. Main chemical composition of mortars.

Mixture ID SiO2 Al2O3 Fe2O3 CaO K2O SO3

M0 21.85 4.33 5.22 66.47 0.33 0.87
M1 29.56 3.90 4.75 59.87 0.30 0.78
M2 37.26 3.46 4.28 53.28 0.26 0.70
M3 44.97 3.03 3.80 46.68 0.23 0.61
M4 52.67 2.60 3.33 40.09 0.20 0.52

The hydraulic index (I) of M0 (i.e., 0.39 in Table 4) indicates it is neutral. It is the ratio
of the acidic to the basic fraction of cement. The increasing substitution ratio of up to 40%
allowed the transition of M0 to silica-rich mixtures (i.e., I > 1) (Table 4). Therefore, the
hydraulic index has a direct correlation with the substitution ratio of crushed sand.

Table 4. Mixture recipes.

Mixture ID Crushed Sand (g) Cement (g) Sand (g) Water (g) Hydraulic
Index

M0 - 450 1350 225 0.39
M1 45 405 1350 225 0.55
M2 90 360 1350 225 0.76
M3 135 315 1350 225 1.02
M4 180 270 1350 225 1.37

The ratios of binder/sand and water/binder were 0.33 and 0.5, respectively (Table 4).
After mixing according to [37], each mixture was poured into 40 × 40 × 160 mm3 molds.
Twenty-four hours after the initial set, the specimens were removed from the molds and
stored in a water tank at room temperature until the test. A total of thirteen mixes were
prepared and tested. Three samples were tested for each mortar.

Thermogravimetric analyses (TGA) quantified the non-evaporable water (NEW) and
the portlandite percentage. Mortar samples were taken from crushed mixture cubes and
immersed in acetone to halt hydration and prevent carbonation. After this step, the samples
were carefully dried in a desiccator to eliminate residual moisture. Finally, the samples
were ground and sieved through an 80 µm mesh sieve to obtain a homogeneous particle
size distribution. Equation (1) allows NEW calculation [38]:

NEW =
W105◦ −W450◦

W450◦
(1)

Equation (2) gave the portlandite percentage (CH) [38]:

CH = (W450◦ −W550◦)
MCa(OH)2

MH2O
+ (W680◦ −W780◦)

MCa(OH)2

MCO2

(2)

where W105◦ , W450◦ , W550◦ , W680◦ , and W780◦ are the mass losses at 105 ◦C, 450 ◦C, 55 ◦C,
680 ◦C, and 780 ◦C, respectively; MCa(OH)2

, MH2O, and MCO2 are the molecular masses of
portlandite, water, and carbon dioxide, respectively.

The flexural and compressive strength values at 7 and 28 curing days (i.e., Rf7, Rf28,
CS7, and CS28) derive from Equations (3) and (4) [37], respectively:

R f =
1.5× Ff × l

b2 × d
(3)

CS =
Fc

b2 (4)
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where l is the distance between supports, b2 is the cross-sectional area of the specimen, d is
the specimen thickness, and Ff and Fc are the applied forces.

Immersion absorption tests were conducted to evaluate the durability of mortars [39,40].
After a curing process of 28 days, the samples were dried in an oven until their mass reached
a constant value. Subsequently, they were immersed in a water tank for 24 h. Equation (5)
allowed the calculation of the water absorption (WA) coefficient:

WA =
M2 −M1

M1
× 100 (5)

where M1 and M2 are the initial (i.e., after drying) and the final (i.e., after immersion) mass,
respectively.

A rigorous statistical analysis investigated the influence of two independent variables
(i.e., substitution ratios of 10%, 20%, 30%, and 40%, and Blaine fineness of 459 m2/kg,
497 m2/kg, and 543 m2/kg) on CS7, CS28, and WA. The authors used the JMP Pro 17
software, SAS for Universities Edition (SAS Institute Inc., Cary, NC, USA) [41] to obtain
full factorial models (Equations (6)–(8)).

CS7 =37.25 + 9.31×


(

BSS
(

m2

kg

)
− 501

)
42

− 10.89×
(
(SP(%)− 25)

15

)

+


(

BSS
(

m2

kg

)
− 501

)
42

×( (SP(%)− 25)
15

)
×−2.78


(6)

CS28 =47.86 + 5.90×


(

BSS
(

m2

kg

)
− 501

)
42

− 12.97×
(
(SP(%)− 25)

15

)

+

 
(

BSS
(

m2

kg

)
− 501

)
42

×( (SP(%)− 25)
15

)
×−0.87


(7)

WA =5.68 + 0.59×


(

BSS
(

m2

kg

)
− 501

)
42

+ 0.67×
(
(SP(%)− 25)

15

)

+

 
(

BSS
(

m2

kg

)
− 501

)
42

×( (SP(%)− 25)
15

)
×−0.024


(8)

The ANalysis Of VAriance (ANOVA) evaluated the components’ contribution to the
responses. The statistical significance of the models was assessed using the Fisher test
distribution with a 95% confidence level [42]. The factors’ influence and their interaction
were assessed using the Student’s t-test (Equation (9)).

t =
x− µ

Sx/
√

n
(9)

where t is the test statistic, x is the sample mean, µ is the population mean, Sx is the sample
standard deviation, and n is the sample size.

t is compared to a critical value tcrit for a significance level α and degree of freedom
(d f = n− p) where p is the number of coefficients in the model. The critical value can be
read from the Student’s t-distribution table [42]. If the absolute value of t is higher than
tcrit, the effect of ai is significant; otherwise, it is not.
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The compressive and flexural strengths at 7 and 28 days of the mortars have been
investigated according to Equation (10) using the mechanical performance ratio (MPR) [43].

MPR7days, 28days =
4× (CS7, 28Mi/CS7, 28M0) + 2× (Rf7, 28Mi/Rf7, 28M0)

6
× 100 (10)

3. Results

Table 5 lists the mechanical and physical performances of the mortars according to
Equations (3)–(5).

Table 5. Mechanical and physical performances of the mortars.

Mixture ID
7 Days 28 Days

CS7 (MPa) Rf7 (MPa) CS28 (MPa) Rf28 (MPa) WA (%)

M0 36.6 5.24 59.35 8.03 4.22
M1-BSS1 30.6 4.97 51.0 6.75 4.38
M2-BSS1 27.6 4.35 43.4 5.49 5.22
M3-BSS1 22.3 3.80 37.7 4.89 5.47
M4-BSS1 16.9 2.92 26.7 3.47 5.70
M1-BSS2 54.9 8.91 65.5 8.67 4.60
M2-BSS2 48.0 7.57 54.5 6.89 5.36
M3-BSS2 39.3 6.70 47.9 6.21 5.80
M4-BSS2 29.5 5.10 37.8 4.91 5.98
M1-BSS3 55.5 9.01 66.1 8.75 5.48
M2-BSS3 48.7 7.68 55.0 6.95 6.33
M3-BSS3 40.1 6.84 48.4 6.27 6.77
M4-BSS3 30.1 5.20 38.1 4.95 6.85

Note: The acronyms of samples refer to the substitution ratio and Blaine fineness of silica sand.

M0 and M4-BSS2 have been tested for 90 days. Their compressive strength values
are 62 MPa and 39.6 MPa, and their flexural strength values are 8.46 MPa and 4.90 MPa,
respectively. Therefore, the highest SP with 497 m2/kg silica sand implies a 40% decrease
in mechanical strength after 90 curing days.

Figure 2 presents the TGA results of M4 after 1-day curing by varying BSS. Figure 2a
has residual mass curves, and Figure 2b shows NEW and portlandite content.
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Figure 2 shows a slight mass loss of M4 caused by silica sand fine particles at an early
age. However, the variation in NEW and Ca(OH)2 content concerning BSS is not significant
due to the nucleation phenomenon [44,45].

Figure 3 shows the average mortar properties of CS7, CS28, and WA with their
coefficient of variation (Cv). In Figure 3a,b, the compressive strength exhibits a comparable
qualitative trend with varying BSS [46,47]. At the same age, CS decreases with the increase
in cement substitution and the resulting increase in water-to-cement ratio (W/C) [48]. The
decrease in cement content increases the hydraulic index (Table 4), reduces hydration
products that confer mechanical strength to mortars [49,50], and causes the formation of
large capillary pores. On the other hand, CS increases with an increase in silica sand BSS.
This behavior is due to the sand’s fineness exceeding that of cement (Figure 1a). The BSS2
and BSS3 values ensure that M1 to M3 CS7 and M1 CS28 are higher than M0. The pozzolanic
effect of the silica sand justifies its mechanical performance because it contributes to the
formation of the amorphous and dense calcium silicate hydrate gel [51,52]. Whatever
the cement substitution ratio, the CS7 and CS28 values of mortars containing BSS2 sand
are close to those containing BSS3 sand (red and blue bars in Figure 3a,b, respectively).
It demonstrates the benefits of silica sand as pozzolanic and a filler material [49,53,54].
Therefore, BSS2 sand is recommended for binary mortars because it balances mechanical
and environmental goals concerning high CS values and low grinding energy.

In Figure 3c, the increase in sand BSS implies an increase in WA because the sand
particles are finer than those of cement (Table 1) and require more water. It causes a
decrease in the cement hydrate volume and an increase in porosity and water absorption.
The simultaneous increase in BSS and substitution ratio causes an increase in WA from
4.2% (M0) to 6.8% (M4-BSS3). The observed trend is attributed to the angular shape of
silica sand grains, making granular stacking a bit challenging. However, the WA of binary
mortars remains below 10% and ensures durability in aggressive environments [55].

Figure 4a shows the residual masses of M0 and binary mortars containing BSS2 sand
by varying the cement substitution ratio. Figure 4b represents the NEW and portlandite
content of M0 and binary mortars containing BSS2 sand after 7-day curing.

The results revealed an inversely proportional relationship between the sand substitu-
tion ratio and NEW, which decreased from 8.65% to 6.22% from M0 to M4-BSS2, respectively
(Figure 4b). According to [56], the dilution effect occurring when a pozzolanic additive
substitutes the cement can explain that. The pozzolanic behavior of silica sand causes the
partial consumption of calcium hydroxide ions produced during the cement hydration,
resulting in a M0 to M4 decrease in Ca(OH)2 from 14.55% to 1.19%, respectively (Figure 4b).

Table 6 compares M0 and M4-BSS2 NEW and CH values at 7 and 90 days.
According to Table 6, NEW increases with time. M4-BSS2 is 28% and 18% lower than

M0 after 7 and 90 days of hydration, respectively. A dilution effect [57,58] can explain
this trend. Furthermore, the effective contribution of sand to hydration occurs in the long
term. Over time, an increase in Ca(OH)2 in both samples reveals the formation of hydrated
calcium silicate compounds due to hydration reactions [8,17]. In M0, CH contents increase
with sample age because hydration leads to the formation of hydrated solids. The quantity
of CH in M4-BSS2 is lower than in M0 due to dilution and pozzolanic reactions. After 7 and
90 days of curing, a decrease in CH of 91% and 54% (Table 6) is observed compared to M0,
respectively. Finely ground sand promotes long-term hydration reactions by consuming
portlandite from cement hydration [59].

Figure 5 shows the TGA results of M0 and M4 at 7 and 90 days. At an early age
(7 days), the mass loss of M0 is higher than that of M4-BSS2. At 90 days, both curves
are similar below 450 ◦C because sand hydration products accelerate the long-term
hydration processes.
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Mixture ID
NEW (%) CH (%)

7 Days 90 Days 7 Days 90 Days

M0 8.65 14.89 14.55 17.40
M4-BSS2 6.22 12.20 1.19 8.51
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The evolution of compressive strength with age (Figure 6) and the data in Table 6
suggest a correlation between the variation in NEW and CS. Whatever the tested mixture,
CS has a decreasing rate over time. CS7 is about 73% of CS90 for M4-BSS2 and 51% of CS90
for M0; CS28 is about 90% of CS90 for both mixtures.
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The non-evaporable water content can predict the compressive strength of binary
mortars containing finely ground sand. Further studies will confirm the hypothesis and
investigate the responsible mechanism.

4. Statistical Analysis

The models proposed by Equations (6)–(8) have high correlation coefficients (R2 > 0.8
in Table 7) between the predicted and obtained mechanical and physical properties.

Table 7. Summary of fit.

Parameter CS7 CS28 WA

R2 0.84 0.92 0.91
Adjusted R2 0.78 0.89 0.88

RMSE 5.92 3.80 0.26
Mean of response 36.96 47.67 5.66

Table 8 shows the results of the ANOVA for each modeled response. Since the t value
of each model is higher than tcrit (tcrit for α = 0.05, p − 1 = 3, and n − p = 8 is equal to 4.07),
at least one significant variable is in each model.

Table 8. ANOVA results for the proposed models.

Variable Source df Sum of Squares Mean Square t

CS7
Model 3 1508.67 502.89

14.36Error 8 280.03 35.00
Total 11 1788.70 -

CS28
Model 3 1400.21 466.73

32.24Error 8 115.78 14.47
Total 11 1516.00 -

WA
Model 3 5.77 1.92

27.57Error 8 0.55 0.07
Total 11 6.33 -

Table 9 presents the contribution of each independent variable (i.e., BSS in m2/kg and
SP in %) and their interaction with SC7, SC28, and WA. In this study, tcrit was 2.306 for
n = 12 experiments and p = 4 coefficients.
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Table 9. Effect test.

Variable Model Term Estimation Standard Error t

CS7

Constant 37.25 1.70 21.80
BSS (m2/kg)(459–543) 9.31 2.08 4.46

SP (%)(10–40) −10.89 2.29 −4.75
BSS (m2/kg) × SP (%) −2.77 2.80 −0.99

CS28

Constant 47.86 1.09 43.55
BSS (m2/kg)(459–543) 5.90 1.34 4.40

SP (%)(10–40) −12.97 1.47 −8.80
BSS (m2/kg) × SP (%) −0.87 1.80 −0.48

WA

Constant 5.68 0.07 74.41
BSS (m2/kg)(459–543) 0.59 0.09 6.34

SP (%)(10–40) 0.66 0.10 6.52
BSS (m2/kg) × SP (%) 0.02 0.12 0.20

According to Table 9, the independent variables (i.e., SP and BSS) affect CS7, CS28,
and WA since |t| > tcrit. However, the Student’s t-test shows that the interaction between
BSS (m2/kg) × SP (%) is not significant since |t| < tcrit. Therefore, the proposed models
can predict the sand powder effects on the mechanical and physical properties of mortars.

The adopted models allow iso-response curves to be drawn based on the independent
variables. The main effect plot in Figure 7 confirms that the sand substitution hurts com-
pressive strength, and an increase in SP causes a decrease in CS. On the other hand, BSS has
a positive effect on CS. Its influence is more significant at 7 days than at 28 days of curing.
This conclusion aligns with the estimation coefficients in Table 9, where the coefficients
for BSS and SP are 9.31 and −10.89 at 7-day curing, respectively, and 5.90 and −12.97 at
28-day curing, respectively. Concerning WA, the statistical results indicate that BSS and SP
positively affect water absorption. Therefore, an increase in these two variables leads to an
increase in water absorption, as in Table 9, where the coefficients for BSS and SP are 0.59
and 0.67, respectively.
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Table 10 lists the mechanical properties of the cementitious mortars according to
Equation (10).
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Table 10. MPR results.

Mixture ID MPR7Days(%) MPR28Days(%)

M0 100% 100%
M1-BSS1 95% 84%
M2-BSS1 85% 70%
M3-BSS1 70% 62%
M4-BSS1 53% 44%
M1-BSS2 170% 108%
M2-BSS2 147% 88%
M3-BSS2 124% 78%
M4-BSS2 93% 62%
M1-BSS3 172% 109%
M2-BSS3 149% 89%
M3-BSS3 126% 79%
M4-BSS3 95% 62%

Figure 8 depicts the evolution of MPR as a function of SP and BSS and confirms that
both significantly affect the mechanical response.
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5. Conclusions

The environmental burdens of manufacturing are a challenge faced by cement produc-
tion companies to offer sustainable cement. This study investigates the mechanical and
physical properties of binary mortars with finely ground silica sand as a partial substitute
for cement. Thirteen mortars have been investigated by varying four substitution ratios
from 0% to 40% and three sand fineness values from 459 m2/kg to 543 m2/kg. Experimental
evaluations and statistical data analysis allowed the following conclusions:

• At a young age, the sand BSS does not significantly affect the degree of hydration or
amount of portlandite. The increase in sand fineness from 459 to 497 and 543 m2/kg
decreases the non-evaporable water content from 2.50% to 2.12% and 2.01%, respec-
tively. Moreover, the portlandite content decreased from 4.73% to 4.06% and 4.00%
due to the increase in sand fineness.

• Increasing the substitution ratio from 0% to 40% causes a decrease in the non-evaporable
water content from 8.65% to 6.22% due to the dilution effect and the portlandite content
from 14.55% to 1.19% due to the sand pozzolanic properties.
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• The increase in fineness from 459 m2/kg to 543 m2/kg and the substitution ratio from
0% to 40% led to an increase in water absorption from 4.38% to 6.85% due to the sand’s
specific surface area being higher than cement.

• The increase in sand BSS and substitution ratios reduces the volume of cement hydrates
and increases porosity and water absorption. Whatever the curing period, the increase
in silica sand content causes a decrease in the compressive strength of cement mortars.

• Despite the increase in sand BSS, all mortars maintain water absorption below 10%,
ensuring durable and high-performing properties in aggressive environments.

• The statistical analysis of compression and water absorption results demonstrated a
strong correlation between the obtained and predicted outcomes, with an R2 value
exceeding 0.84 and a 95% confidence interval, confirming the validity of the proposed
regression models.

Further research should be conducted because this study only included three BSS silica
sands, and more binary mixtures should be investigated. Other testing procedures should
be conducted to analyze the rheological characteristics of mortars through flow, setting
times, shrinkage, microstructure, and durability. Moreover, it is suggested to deepen the
micro-mechanisms responsible for water absorption. Finally, the life cycle impacts of binary
mortars shall be compared to those of the reference material to assess their environmental
effectiveness. This approach will result in better knowledge for practical applications.
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