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multidimensional, diachronic analysis of 28 indi-
cators of territorial disparities, and ecological sta-
bility in 206 homogeneous administrative units of 
Czech Republic over almost 30  years (1990–2018). 
Mixing time-invariant factors with time-varying 
socio-environmental attributes, a dynamic factor 
analysis investigated the latent relationship between 
ecosystem functions, environmental pressures, and 
the background socioeconomic characteristics of the 
selected spatial units. We identified four geographi-
cal gradients in Czech Republic (namely elevation, 
economic agglomeration, demographic structure, and 
soil imperviousness) at the base of territorial divides 
associated with the increased polarization in areas Supplementary Information The online version 
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Abstract In light of global change, research on 
ecosystem dynamics and the related environmen-
tal policies are increasingly required to face with 
the inherent polarization in areas with low and high 
human pressure. Differential levels of human pres-
sure are hypothesized to reflect development paths 
toward ecological stability of local systems vis à vis 
socioeconomic resilience. To delineate the latent 
nexus between socioeconomic development paths and 
ecological stability of local systems, we proposed a 
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with low and high human pressure. The role of urban-
ization, agriculture, and loss of natural habitats reflec-
tive of rising human pressure was illustrated along 
the selected gradients. Finally, policy implications of 
the (changing) geography of ecological disturbances 
and local development paths in Czech Republic were 
briefly discussed.

Keywords Regional disparities · Geographical 
gradient · Indicators · Multiway factor analysis · 
Central Europe

Introduction

World ecosystems have experienced increased human 
pressures in recent times, leading to significant 
changes in their structure, relationships and func-
tions (Cinner & Barnes, 2019). All together, these 
factors made the negative impact of global change 
on ecological stability even more unpredictable and 
hard to assess quantitatively (Baho et  al., 2017). A 
declining capacity to cope with environmental change 
may lead to widespread erosion of ecological stabil-
ity and undesirable regime shifts in social and eco-
nomic equilibriums at both local and regional scales 
(Hughes et al., 2013). With this perspective in mind, 
ecological stability has been defined as the ability 
to maintain environmental functions despite distur-
bances (Turner et  al., 1993). Ecosystem resilience, 
the most discussed component of ecological stability 
(Carr, 2019), was in turn defined as the capacity of a 
system to absorb and respond to a given disturbance 
(Holling, 1973), while maintaining its essential struc-
ture and functions (Folke et  al., 2002). Resilience 
is frequently considered a measure identifying key 
ecological issues (Walker et al., 2009) and drivers of 
change in socioeconomic systems (Resilience Alli-
ance, 2010).

Different mechanisms play a role in ecological 
stability (Oliver et al., 2015), operating at multiple 
territorial and landscape levels in complex (adap-
tive) cycles that respond to external changes and 
influence each other (Falk et  al., 2019). Holling 
(2001) defined this hierarchy of adaptive cycles as 
“panarchy.” The (intrinsically multidisciplinary) 
nature of territorial complexity makes the opera-
tional definition of ecological stability hard to set 
up (Capdevila et al., 2020), and some scholars even 

find it unquantifiable (Quinlan et  al., 2016). At 
the landscape level, Bitterman and Bennett (2016) 
assumed ecological stability as dependent on (i) 
the state of system components, (ii) the complex 
interactions among components, as well as (iii) tim-
ing, location, and magnitude of disturbance. Based 
on this assumption, an integral assessment of eco-
logical stability should include a multidimensional 
measurement of both (natural and human-driven) 
disturbances and conditions for system’s stability, 
considering the intrinsic relationship with the back-
ground territorial and socioeconomic context (Egli 
et al., 2019).

In a given landscape, preconditions of ecological 
stability are features (or relationships) with a positive 
influence on ecological stability (Cumming, 2011; 
Carpenter et  al. 2001; Nickayin et  al. 2022). This 
implies consideration of both internal components 
(consisting of individual habitat features, their arrange-
ment, boundaries, or spatial change) and external com-
ponents (e.g. relationships, connectivity, dispersal of 
organisms, or spatial feedbacks). Biodiversity is one 
of the most frequently mentioned properties in connec-
tion with resilience and ecological stability influencing 
it positively at genetic, species, and landscape levels 
(Angeler & Allen, 2016; Brenkert & Malone, 2005; 
Folke, 2006; Mori et  al., 2013). Landscape structure 
and configuration in turn promotes the maintenance 
and exchange of genetic information (Kéfi et al., 2007). 
The theory of “species legacy” predicts how species 
that survive disturbance can create ecological memory 
(Nyström & Folke, 2001) and, in appropriate arrange-
ments (e.g., specific patterns and system connectiv-
ity), recolonize disturbed ecosystems and support their 
recovery (Jõgiste et al., 2017; Lavorel, 1999; McDon-
nell & Pickett, 1990). The ratio of natural to non-nat-
ural habitats has often used to approximate ecological 
stability at the landscape level (Hodgson et al., 2011). 
Landscape metrics evaluate shape and spatial arrange-
ment of patches in a landscape that influence diversity, 
fragmentation, and structural connectivity (Lipský 
et al., 2011), thus playing a role in ecosystem dynam-
ics and landscape stability (Lavorel et al., 2015). The 
statistical distribution of distances between patches is 
another indicator of biotic integrity related to habitat 
connectivity (Rüdisser et  al., 2012). To assess resil-
ience, McGarigal et al. (2018) used habitat connectiv-
ity together with hydrological connectivity and similar-
ity. Empirical investigations of functional connectivity 
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based on graph theory intensified more recently (e.g., 
Pascual-Hortal & Saura, 2006).

Disturbance regimes—especially in systems 
with a relatively low ecological stability—deter-
mine changes in species distribution and falling spe-
cies abundance (Turner et  al., 1993), and reduce 
the potential of stabilizing ecosystem mechanisms 
(Windsor et al., 2023). Such processes definitely lead 
to a deeper loss of ecological stability, narrowing the 
“resilience basin” (Scheffer et  al., 2015), and mak-
ing ecosystems even more vulnerable (Jackson et al., 
2001). There are many types of disturbance regimes 
(e.g., van Nes & Scheffer, 2007), and their charac-
teristics include duration, spatial extent, intensity, 
frequency, and type (Turner, 2010). Next to natural 
disturbances, ecosystems are also subject to human 
disturbances negatively impacting biodiversity and 
ecological integrity (McGarigal et  al., 2018). Such 
disturbances are frequently recognized as important 
factors causing a (more or less) rapid decline in eco-
logical stability (Sala et al., 2000). Representative dis-
turbance factors in ecological science include climate 
change, land-use transformations, nitrogen deposi-
tion, atmospheric  CO2 and biotic exchange (Thuiller, 
2007). Climate and land-use changes are expected to 
be particularly influential in temperate regions in the 
near future (Boulangeat et al., 2014).

As the result of urbanization, agricultural intensi-
fication and rural abandonment, land cover/land-use 
changes, a particularly impactful cause of ecological 
stability decline (e.g. Kairis et  al., 2015), are asso-
ciated with other negative aspects, such as the pro-
gressive reduction of natural and semi-natural habi-
tats (Ceccarelli et  al., 2014; Frondoni et  al., 2011; 
Plieninger, 2012), fragmentation and loss of connec-
tivity (Jongman, 2002; Van Eetvelde & Antrop, 2009; 
Wang et al., 2013), reduced water retention capacity 
and altered water regimes (Kedziora, 2010; Rock-
ström et al., 1999; Skaloš et al., 2014), nitrogen pollu-
tion (Koerner et al., 2016; Payne et al., 2017; Tilman 
et al., 2001), and land degradation at large (Erdogan 
et al., 2011; Kosmas et al., 2016; Salvati et al., 2008).

Being quantified as the ability to maintain core 
functionalities when exposed to disturbance (Bit-
terman & Bennett, 2016), ecological stability was 
more recently associated with the resilience of com-
prehensive socio-ecological systems including (and 
being representative of) the landscape matrix at a 
given location together with the local communities 

interacting with it (Zavaleta & Chapin, 2010). With 
this perspective in mind, the decline of ecological 
stability of a given landscape was intrinsically asso-
ciated with the continuous evolution of the socioeco-
nomic background (Serra et  al., 2014). Attempts to 
quantify ecological stability starting from this notion 
include rapid assessment approaches (Nemec et  al., 
2014), discontinuity approaches (Nash et  al., 2014), 
and thresholds for persistence of multiple functions 
(Standish et  al., 2014). By generalizing this con-
cept, measures of ecological stability were based on 
dynamic equilibriums of local community structures 
(e.g., socioeconomic/territorial attributes) and land-
scape patterns that emerge under a particular combi-
nation of abiotic conditions such as topography, soils, 
and climate (Cushman & McGarigal, 2019), assum-
ing such pattern-process dynamics as occurring pri-
marily at the landscape scale (Turner, 1989).

In this context, the relationship between different 
structural patterns and functions can be more effec-
tively investigated using the gradient approach (Allen 
et  al., 2019). The “gradient” paradigm can be sum-
marized with the assumption that graduated spatial 
environmental patterns determine the correspond-
ing structure and function of ecological systems—
whether populations, communities, or ecosystems 
(McDonnell & Pickett, 1990). The gradient approach 
allows for differentiation of stability conditions and 
succession rates and can help address modern con-
cerns about the socioeconomic consequences of dis-
turbance and the sustainability of ecosystem services 
(Walker, 2011). Ecologists, geographers, and environ-
mental scientists have extensively studied natural gra-
dients (e.g., soil moisture, air temperature, elevation, 
distance from the sea or inland water bodies) to elu-
cidate the relationship between environmental change 
and ecosystem structure/functions (e.g., Austin, 1985; 
Becker et al., 2007; Keddy, 1989). Ecological gradi-
ents tend to be complex and relate to many environ-
mental factors, creating multidimensional patterns of 
change that require specific measurement techniques 
and analytical strategies (Bajocco et  al., 2012; Falk 
et al., 2019; Kéfi et al., 2019). For instance, climate-
related factors such as precipitation and humidity, 
temperature and wind speed, as well as soil proper-
ties, change simultaneously with increasing elevation 
(Carr, 2019). Earlier studies have documented how 
these gradients have a given impact on forest, grass-
land, and other ecological systems (Liu et al., 2019; 
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Lu et al., 2014; Zhang et al., 2019). More specifically, 
soil and habitat quality seem to increase with eleva-
tion (Yu et al., 2021).

Natural gradients, however, are also relevant to 
social development because they create a contrast-
ing environment that promotes the expansion of set-
tlements and economic activities at specific loca-
tions along the relevant gradient (Galeotti, 2007). For 
instance, climate regimes, soil quality, and vegetation 
cover may influence the spatial distribution of urban, 
agricultural and industrial settlements (Antrop, 2005). 
Especially in regions with a millenary settlement his-
tory (Bajocco et  al., 2016; Egli et  al., 2019; Ferrara 
et  al., 2020), land resources and climate have likely 
been key drivers of socioeconomic disparities (Cor-
belle-Rico et al., 2012), being the base of any polari-
zation in land-use along both urban–rural and eleva-
tion gradients (Carr, 2019; Serra et  al., 2014; van 
Meerbeek et  al., 2021). Such territorial disparities, 
especially rural poverty and increased pressure on 
fragile areas, have been identified as a potential driver 
of land degradation (Iosifides & Politidis, 2005; 
Karamesouti et al., 2015; Smiraglia et al., 2016), rec-
ognized as one of the most powerful factors of land-
scape instability (Bajocco et al., 2012; Kosmas et al., 
2016; Salvati et al., 2017). In economically dynamic 
regions, land-use change results in fragmented rural 
landscapes that rapidly lose their pristine attrib-
utes because of the decline of crop-natural mosaics 
(Cimini et al., 2013; Feranec et al., 2010; Geri et al., 
2010; Pelorosso et al., 2009). By quantifying changes 
in ecosystem structures as a function of specific gra-
dients (Yang et  al., 2019), ecological studies may 
achieve a better understanding of the nature of exog-
enous impacts (e.g., clarifying the role of natural and 
human disturbance regimes) on forest, agricultural 
and urban ecosystems (McDonnell & Pickett, 1990). 
This will contribute answering pivotal research ques-
tions and developing innovative land management 
strategies (Gladstone-Gallagher et al., 2019).

With this perspective in mind, our study identi-
fied natural and human drivers that affect ecologi-
cal stability at the spatial level of (local) territorial 
systems that integrate enough wide (and homoge-
neous) landscape scenes and a coherent socioeco-
nomic community (Carr, 2019), by focusing on the 
combination of drivers that have caused the great-
est decline in the same dimension of change (Falk 
et al., 2019). We adopted a multivariate exploratory 

statistical analysis of a number of indicators reflec-
tive of territorial change to disentangle the com-
plexity of relationships between and within the 
various dimensions of ecological stability and ter-
ritorial gradients (e.g. Capdevila et al., 2020) reflec-
tive of different socioeconomic conditions and, 
hence, human pressure, in Czech Republic (Cen-
tral-Eastern Europe). In any exploratory study, the 
selection of relevant indicators is a basically sub-
jective matter. In our case, a graphical illustration 
of the logical framework (Supplementary Materials 
Fig. 1) coupled with a comprehensive description of 
the adopted statistical rationale adopted contributes 
to delineate the novel contribution of our approach 
to ecological science vis à vis socioeconomic stud-
ies. In this perspective, exploratory statistical tech-
niques provide an appropriate, flexible and multi-
dimensional exploration of the latent gradients 
at the base of ecological stability (or instability) 
conditions and the related socioeconomic contexts 
in a local perspective (Salvati & Serra, 2016). In 
other words, exploratory multivariate statistics were 
assumed as a way of delineating the intimate, com-
plex nexus between ecological dynamics and the 
background territorial and socioeconomic context 
in homogeneous local districts. For such reasons, 
despite the rigorous application of quantitative 
methodologies (Ferrara et  al., 2012), the selection 
of indicators should maintain a margin of flexibil-
ity depending on the specific characteristics of the 
study area (e.g., Ferrara et al., 2016).

Taken as representative of highly urbanized 
regions with a longstanding (urban, agricultural, 
industrial) settlement tradition, a diachronic analysis 
of a vast set of relevant indicators of ecological sta-
bility characteristic of Czech landscapes identifies 
important dimensions at the base of environmental 
conditions and, indirectly, ecosystem functions along 
multiple geographical gradients (Cinner & Barnes, 
2019). We thought the proposed approach (namely 
theory, indicators, and statistical techniques) as flex-
ible as possible in order to be applied in broader 
contexts of both advanced economies and emerging 
countries (e.g., Ferrara et al., 2012). A summary pres-
entation of the logical framework was provided in a 
graphical format (Supplementary Materials Fig.  1). 
Such approach and the related knowledge may rep-
resent an informative base contributing to spatial 
planning and environmental conservation policies in 
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Central-Eastern Europe and, with some generaliza-
tions, to the European continent at large.

Methodology

Study area

Territorial and socioeconomic contexts associated 
with ecological stability along specific geographical 
gradients were investigated over the entire territory 
of the Czech Republic, a Central European country 
extending 78,866  km2 (Cudlín et al., 2020) and with 
an undulated topography (20% lowlands, 39% uplands 
at 300–600  m above the sea level, 30% highlands 
at 600–900  m above the sea level and, finally, 11% 
mountains at more than 900 m above the sea level). 
The climate regime of Czech Republic is predomi-
nantly temperate, with oceanic and continental influ-
ences that cause intense precipitation variability with 
recurrent droughts mainly affecting lowlands—where 
temperatures are generally higher and rainfall lower 
(Trnka et al., 2016). The study area is also diversified 
as far as soil and vegetation conditions. The specific 
location on the border of two mountain systems (Her-
cynian and Carpathian Mountains) accounts for a het-
erogeneous geology and a high diversity of natural/
semi-natural habitat types (Cudlín et al., 2021). Low-
lands with the highest productivity potential are inten-
sively used as arable land or converted into urban and 
peri-urban settlements close to large cities and are 
therefore exposed to high human pressure (Pechanec 
et al., 2021). Conversely, population density is low in 
mountainous districts leading to extensive land man-
agement (Skaloš et al., 2011). In the last two decades, 
the main landscape changes included arable land 
abandonment and/or conversion to grassland; a more 
intense use of grassland and urbanisation of tourism-
specialized districts were observed more frequently in 
recent years (Skaloš et al., 2014).

Indicators

Because ecological stability depends on the state of 
landscape components (ecosystems) and their inter-
action, and the degree of disturbance (e.g., Bitter-
man & Bennett, 2016), we attempt to assess each 
of these dimensions in a separate set of predictors. 
Thus, when we have considered ecological stability 

drivers, we included not only indicators of distur-
bance (or pressure), but also indicators relating to 
landscape features that are important for ecological 
stability (referred to as “stability preconditions”). 
Therefore, we classified the adopted indicators into 
distinctive groups as follows: (i) descriptive variables 
distinguishing between different landscape types and 
states, (ii) anthropogenic pressures, (iii) ecological 
stability preconditions, and (iv) manifestation of eco-
logical stability, which we defined as the ability of the 
landscape to perform ecosystem functions in a stable 
manner over time. The list of selected indicators and 
the datasets used for their elaboration was presented 
in Table 1.

First, we used descriptive variables (i) to distin-
guish different conditions that may be important in 
identifying the relationship between various drivers. 
For this purpose, we used the classification of Land-
scape Types (LT) according to Löw (2005), specific 
territorial conditions as the total proportion of land 
belonging to LFAs, and population structure by age 
(index of elderly people, AGE). We also added sub-
sidies for environmental improvements as an indica-
tor evaluating the impact of financial support invested 
into the care for landscape (SUBS1) and into the 
care for landscape together with urban green spaces 
(SUBS2). To quantify the impact of landscape con-
servation on selected drivers and their relationship, 
an (expertly assessed) level of landscape protection 
(PLA) was used as additional variable.

Disturbance factors affecting ecosystems are 
both natural and anthropogenic; we have focused on 
anthropogenic disturbances to explain the effects of 
human pressures on ecosystems. Our goal was to con-
sider a broad range of anthropogenic pressures affect-
ing landscape stability. The factors selected to fall into 
the category of “anthropogenic pressures” include 
indicators related to climate change, land use change, 
and pollution; these three groups have been shown to 
have major impacts on ecological stability, leading to 
both reductions in ecological stability preconditions 
and ecosystem disturbances. The negative effects of 
land-use change (especially its intensification) on 
naturalness or biodiversity and thus, on ecological 
stability, were described by Jongman (2002), Fron-
doni et  al. (2011), Plieninger (2012), and Ceccarelli 
et  al. (2014); the negative effects of anthropogenic 
pollution (especially nitrogen) on biodiversity and 
thus, on ecological stability, were described by Borer 
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et al. (2014), Koerner et al. (2016), and Hautier et al. 
(2009). These scholars have used a range of indica-
tors, including land-use change, N-eutrophication, 

climate warming, and drought. The impact of climate 
change on ecological stability has also been discussed 
extensively, particularly in the context of drought 

Table 1  List of indicators used in the present study to assess 
ecological stability and to derive relevant geographical gradi-
ent and the related territorial conditions associated with eco-

logical stability in the Czech Republic. The specific method 
used for their quantification was delineated in the Supplemen-
tary Materials

Descrip�on of indicators
Short 

name in 
tables

Time series 
(number of 

layers)
Scale Years Baseline dataset

Eleva�on ELEV 1 10m/px 2018
DMR5G © Czech Office for Surveying, 

Mapping and Cadastre

Eleva�on range ELRANG 1 10m/px 2018
DMR5G © Czech Office for Surveying, 

Mapping and Cadastre

Total percentage area belonging to LFA LFA 1 1: 10 000 2015 Own source

Expertly assessed levels of landscape 
protec�on

PLA 1 1: 10 000 2020
Boundaries of protected areas ©  Nature 

Conserva�on Agency of the Czech Republic

Belonging to the landscape type LT 1 1: 50 000 2010 Own source
Subsidies for environmental improvement 
applied in landscape

SUBS1 1 MEP 2007-2013
Data from the State Environmental Fund 

of the Czech Republic
Subsidies for environmental improvement 
applied in landscape and urban greenery

SUBS2 1 MEP 2007-2013
Data from the State Environmental Fund 

of the Czech Republic
Popula�on age structure AGE 4 MEP 2001, 2006, 2012, 2018 ArcCR © ARCDATA PRAHA, ZÚ, CSO
Popula�on density POP 4 MEP 1991, 2001, 2011, 2018 ArcCR © ARCDATA PRAHA, ZÚ, CSO

Distance to nearest urban area DisU 5 1: 100 000
1990, 2000, 2006, 2012, 

2018
Corine Land Cover © Copernicus

Distance to nearest transport infrastructure DisT 5 1: 100 000
1990, 2000, 2006, 2012, 

2018
Corine Land Cover © Copernicus

Air pollu�on: Five-year average concentra�ons 
of NO2

NO2 5 500m/px
2007-2011, 2010-2014, 

2014-2018
CLIDATA © Czech Hydrometeorological 

Ins�tute
Air pollu�on: Five-year average concentra�ons 
of  PM10

PM10 5 500m/px
2007-2011, 2010-2014, 

2014-2018
CLIDATA © Czech Hydrometeorological 

Ins�tute
Air pollu�on:  Five-year average concentra�ons 
of PM2.5

PM2.5 5 500m/px
2007-2011, 2010-2014, 

2014-2018
CLIDATA © Czech Hydrometeorological 

Ins�tute
Air pollu�on:  Five-year average concentra�ons 
of BaP

BaP 5 500m/px
2007-2011, 2010-2014, 

2014-2018
CLIDATA © Czech Hydrometeorological 

Ins�tute
Water pollu�on and degrada�on: ecological 
status/poten�al of surface water bodies

WP 1 1: 50 000 2015
HEIS © T.G.Masaryk Water  Research  

Ins�tute

Exceedance of N-cri�cal load NCL 1 1: 10 000 2010
Detail combined layer of habitat (DCL), 

own source
Degree of soil sealing SSEA 3 20m/px 2006, 2012, 2018 Sen�nel-2 © ESA

Climate aridity index: Minar moisture index         ARI 1 500m/px 1990-2010
Climate data © Global Change Research 

Institute CAS & Czech Hydrometeorological 
Institute

Index of the ecological stability CES 1 1: 10 000 2018
Detail combined layer of habitats (DCL), 

own source
Naturalness of habitats according to HVM 
method

NAT 5 1: 100 000
1990, 2000, 2006, 2012, 

2018
Corine Land Cover © Copernicus

Landscape metrics: Edge Density ED 1 1: 10 000 2018
Detail combined layer of habitats (DCL), 

own source

Landscape metrics: Median Patch Size MedPS 1 1: 10 000 2018
Detail combined layer of habitats (DCL), 

own source

Rate of anthropogenic degrada�on according 
to Habitat mapping

DEG 1 1: 10 000 2019/2004
Biotope Natura2000 mapping layer by  © 
Nature Conserva�on Agency of the Czech 

Republic
Ecosystem func�ons performance: 
Evapotranspira�on

EVA 5 1: 100 000
1990, 2000, 2006, 2012, 

2018
Corine Land Cover © Copernicus

Ecosystem func�ons performance: Regula�on 
of short water cycle

SWC 5 1: 100 000
1990, 2000, 2006, 2012, 

2018
Corine Land Cover © Copernicus

Ecosystem func�ons performance: Produc�on 
func�on

PRO 5 1: 100 000
1990, 2000, 2006, 2012, 

2018
Corine Land Cover © Copernicus

Ecosystem func�ons performance: Carbon 
stock

CS 5 1: 100 000
1990, 2000, 2006, 2012, 

2018
Corine Land Cover © Copernicus
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and temperature rise impacts (Walker et  al., 1999) 
or pathogen and invasive species impacts (Chapin III 
et al., 2000; Duffy, 2002; Trumbore et al., 2015).

Indicators of air pollution (NO2, PM10, PM2.5, 
and BaP) that increase environmental toxicity, which 
is expected to negatively affect the health and repro-
duction of organisms and the stability of ecosystems, 
were used as factors influencing anthropogenic pol-
lution. Human pressures on watercourses and water 
bodies were expressed by the Water Pollution and 
Degradation (WP) indicator, which assesses human 
alteration and the chemical status of water bodies. 
The Critical Nitrogen Load (NCL) exceedance indi-
cator focuses on areas where nitrogen loading exceeds 
the ecosystem’s ability to tolerate it and is most likely 
to result in ecosystem alteration. The climate change 
indicator we chose focuses on drought, which is a 
major climate change issue in the Czech Republic 
(Trnka et  al., 2015). We quantified it diachronically 
using a standard Climate aridity index (ARI) derived 
from mean annual air temperature and total precipi-
tation. Land-use change was represented by increases 
in human pressure, expressed as per cent change in 
population density (POP) over four time periods since 
1991. Two other indicators were used as proxies for 
increasing urbanization, being determined as the dis-
tance from the nearest urban area (DisU) and the dis-
tance from the nearest transportation infrastructure 
(DisT), separately for five time periods beginning 
in 1990. Land degradation was also included, using 
a proxy, namely the percentage of soil sealed area 
(SSEA), which was assessed based on satellite data 
at three observation times; the issue of land degrada-
tion was already addressed in a previous study analys-
ing land degradation risk in the same municipal units 
(Pechanec et al., 2021).

Another group of indicators focuses on the precon-
ditions of ecological stability and assesses features 
of habitats and landscapes that have been shown to 
influence ecological stability. The most commonly 
discussed landscape characteristics that promote 
resilience or ecological stability include biodiversity 
(Folke, 2006; Lavorel, 1999; Mori et al., 2013), land-
scape structure (Nyström & Folke, 2001; Angeler & 
Allen, 2016; Jõgiste et  al., 2017), and connectivity 
(Lavorel et  al., 2015; Mitchell et  al., 2013; Pascual-
Hortal & Saura, 2006). The ratio of natural to non-
natural habitats has often been used to approximate 
ecological stability at the landscape scale (Hodgson 

et  al., 2011), using a gross indicator, namely the 
abundance of natural vegetation patches, such as 
O’Neill et al. (1997), who also adopted fragmentation 
and connectivity to describe landscape resilience and 
integrity, combining them with indicators of ecologi-
cal pressure (land-use, water pollution, erosion risk). 
With this perspective in mind, we used (i) the degree 
of naturalness of habitats according to the Habitat 
valuation method (HVM), assessed in five time peri-
ods to evaluate changes since 1990 (Cudlín et  al., 
2020), and (ii) the ratio between natural and unnatural 
habitats expressed in the Czech ecological literature 
as the Index of ecological stability (CES, Reháčková 
& Pauditšová, 2007). Landscape metrics (Edge Den-
sity, ED) and Median Patch size (MedPS) were used 
to evaluate the shape and spatial arrangement of 
patches in a landscape influencing landscape hetero-
geneity and habitat fragmentation.

Variables that express manifestation of landscape-
level stability or instability and relate to changes in 
landscape and ecosystem structures and functions 
were finally considered in this study. These included 
the rate of human degradation according to habitat 
mapping (DEG), which indicates the proportion of 
natural and semi-natural habitats that have remained 
unchanged between two habitat mappings in 2004 and 
2019; this indicator expressed the stability of habitats 
and their structures. The stability of ecosystem func-
tions was expressed as the performance of ecosystem 
functions in five time periods since 1990, including 
values for carbon production (PRO), climate regula-
tion expressed by evapotranspiration (EVA), short 
water cycle regulation (SWC), and carbon stock 
(CS). All these variables were made available at 
206 (homogeneous) administrative units, namely the 
municipalities with extended jurisdiction (MEP), cov-
ering the whole territory of the Czech Republic.

Statistical analysis

Assuming individual districts (hereafter Municipali-
ties of Extended Power, or MEPs) as the reference 
spatial unit of this study (Demšar et al., 2013), a spa-
tially explicit, dynamic factor analysis was run on a 
data matrix constituted of 28 indicators (see above) 
made available for each MEP (Pechanec et al., 2021). 
Allowing a summary overview of the structural (eco-
logical and socioeconomic) characteristics and back-
ground (territorial) conditions of each individual 
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district (e.g., Serra et  al., 2014), the broad approach 
of dynamic factor analysis include a family of (two-
way and multi-way) exploratory multidimensional 
techniques that can be run on a wide set of input 
variables at multiple locations and times (Salvati & 
Serra, 2016). This approach is particularly suitable 
to summarize first-order and higher-orders complex, 
multivariate relationships among input variables in a 
redundant data matrix (Ciommi et  al, 2018), outlin-
ing few relevant dimensions that can be fully charac-
terized by inspecting the pair-wise correlation coef-
ficients (i.e., loadings) with each input variable, i.e., 
the 28 background indicators in our case (Rontos 
et  al., 2019). The number of significant components 
was chosen according to the scree-plot criterion fix-
ing the minimum eigenvalue threshold to 1 (Ciommi 
et al., 2019).

Results were analysed considering both loadings 
(the ‘indicator’ side) and scores (the “municipality” 
side) over time (Rontos et al., 2016). Loadings were 
specifically extracted and analysed with the aim at 
identifying the multivariate relationship among indi-
cators (Kelly et  al., 2015). The spatial distribution 
of scores was illustrated through maps (Recanatesi 
et al., 2016). Based on (tabular and graphical) inspec-
tion of loadings and scores projected on the same 
axes’ system (i.e., the extracted factors correspond-
ing with the most relevant dimensions characteristic 
of the elementary analysis’ units), exploratory fac-
tor analysis allows a comprehensive investigation of 
both time-invariant descriptors and indicators vary-
ing (more or less rapidly) over time (Ciommi et  al., 
2019), even when they are available under a different 
number of temporal observations (e.g., years). More-
over, this technique provides a complete analysis of 
the distribution of each spatial unit (i.e., MEP), along 
the identified dimensions (Di Feliciantonio et  al., 
2018), giving a fundamental contribution to delineate 
geographical gradients at the base of territorial con-
ditions assuring ecological stability (or instability) 
of any local system (Colantoni et  al., 2015). Spatial 
coherence, namely close locations, of two (or more) 
reference units (namely, similar scores) over the same 
dimension indicate comparable conditions of ecologi-
cal stability (or instability). A study of the temporal 
coherency of (or break-points in) input variables was 
also intrinsically reflected in the structure of loadings 
over time, for all time-varying indicators (Ferrara 
et al., 2016).

Results

Descriptive statistics were elaborated for each input 
variable and survey year and tabulated accordingly 
(Supplementary Materials Table  2). Correlation 
matrices using pair-wise (parametric and non-para-
metric) coefficients were reported as Supplementary 
Materials Table  3 (Pearson coefficient) and Supple-
mentary Materials Table  4 (Spearman coefficient). 
The intrinsic redundancy in the data matrix was sub-
sequently treated using multidimensional statistical 
analysis with the aim at decomposing the dimensions 
of ecological stability/instability under specific terri-
torial contexts and, thus, identifying the most relevant 
geographical gradients linking ecological conditions 
with socioeconomic dynamics, removing in turn the 
multi-collinearity typical of real datasets formed by 
multi-domain indicators. Consequently, the empirical 
results of the multivariate analysis of ecological and 
socioeconomic indicators (as illustrated in Table  2) 
were based on the spectral decomposition of the 
latent dimensions of territorial complexity in Czech 
Republic. More specifically, we extracted the main 
factorial axes describing the latent dimensions of ter-
ritorial complexity on the basis of the scree-plot, and 
we studied the related loading structure (namely, the 
intensity of correlation with each latent dimension) 
for each indicator.

Four dimensions that reflect the territorial com-
plexity of 206 administrative units (MEPs) in Czech 
Republic were extracted and analyzed, explaining 
79% of the overall variability of the data matrix. 
Taken together, these dimensions summarized the 
correlation and redundancy structure of 28 ecologi-
cal and socioeconomic indicators. Dimensions 1 and 
2 explained respectively 51.5% and 18.2% of total 
variance, and delineated the most relevant geographi-
cal gradients and the related aspects of ecological 
stability and the associated socioeconomic conditions 
in Czech Republic. Conversely, Dimensions 3 and 4 
accounted for 5.7% and 4.6% of the overall variance, 
respectively, and delineated less important territo-
rial gradients. All together, the selected dimensions 
reflect the structure of key geographical gradients 
associated with distinctive socio-ecological functions 
(Fig.  1). Indicators’ loadings were used to describe 
the latent association between socio-ecological func-
tions and territorial gradients. Temporal dynamics of 
ecological functions along the selected gradients were 
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studied using indicators’ scores over the selected 
dimensions (Table 3).

The spatial structure of territorial gradients

Dimension 1 represents the elevation gradient in 
Czech Republic (lowlands and mountainous loca-
tions respectively associated with negative and posi-
tive indicators’ loadings) and the related ecological 
functions. On average, indicators of landscape quality 

(LFA, PLA, NAT, CES) and ecosystem functioning in 
a broad sense (EVA, SWC, PRO, CS) were positively 
associated with this gradient, suggesting how the 
level of ecological stability preconditions and ecosys-
tem functions increased with the reduction of human 
pressures – assumed to be less intense in uplands 
and mountainous districts than in lowlands. At the 
same time, all the indicators of environmental pres-
sure (e.g., air and water pollution) were negatively 
correlated with Dimension 1. Population density, the 

Table 2  Loadings of ecological and socioeconomic indicators delineating territorial complexity in the individual administrative 
units (Municipalities with Extended Power, MEPs) of Czech Republic* by extracted dimension

*  Dimensions 1 to 4 are representative of (i) the elevation gradient, (ii) the urban–rural gradient, (iii) a demographic gradient based 
on population age structure, and (iv) a land imperviousness gradient based on the increasing rate of sealed soils; bold indicates sig-
nificant coefficients over the selected dimensions

Descriptor Component 1 Component 2 Component 3 Component 4

Elevation (ELEV) 0.84 -0.18 0.10 0.00
Elevation range (ELRANG) 0.34 0.13 -0.14 0.07
Total percentage area belonging to LFA (LFA) 0.78 -0.11 0.22 -0.15
Expertly assessed levels of landscape protection (PLA) 0.66 0.21 -0.06 0.08
Naturalness of habitats (1990–2018) (NAT) 0.94 0.30 0.05 -0.02
Belonging to the landscape type (LT) 0.91 0.36 0.09 0.01
Population density (1990–2018) (POP) -0.45 0.79 0.16 0.25
Distance to nearest urban area (1990–2018) (DisU) 0.78 -0.27 -0.27 0.20
Distance to nearest transport infrastructure (1990–2018) (DisT) 0.59 0.17 -0.34 0.15
Five-year average concentrations NO2 (2007–2015) (NO2) -0.69 0.58 -0.03 0.20
Five-year average concentrations of PM10 (2007–2015) (PM10) -0.64 0.66 -0.23 -0.26
Five-year average concentrations of PM2.5 (2007–2015) (PM2.5) -0.62 0.65 -0.23 -0.33
Five-year average concentrations of BaP (2007–2015) (BaP) -0.44 0.73 -0.25 -0.31
Water pollution and degradation (WP) -0.60 0.01 -0.12 -0.01
Exceedance of N-critical load (NCL) -0.59 -0.28 0.29 0.02
Degree of soil sealing (2006–2018) (SSEA) -0.50 0.49 0.24 0.62
Edge density (ED) -0.21 0.76 0.34 -0.01
Median patch size (MedPS) -0.22 -0.60 -0.43 0.05
Subsidies for environ. improvement (landscape) (SUBS1) -0.20 -0.11 -0.10 0.17
Subsidies for environ. improvement (landscape and urban greenery) 

(SUBS2)
-0.29 0.35 0.12 0.04

Population age structure (2001–2018) (AGE) -0.05 -0.20 0.62 -0.23
Rate of anthropogenic degradation (DEG) -0.09 -0.06 -0.03 -0.12
Ecosystem functions performance: Evapotranspiration (1990–2018) 

(EVA)
0.91 0.38 0.04 -0.04

Ecosystem functions performance: Regulation of short water cycle 
(1990–2018) (SWC)

0.90 0.40 0.07 0.01

Ecosystem functions performance: Production function (1990–2018) 
(PRO)

0.96 0.19 0.07 -0.10

Ecosystem functions performance: Carbon stock (1990–2018) (CS) 0.95 0.22 0.11 0.01
Climate aridity index: Minar´s moisture index (ARI) -0.45 -0.11 -0.13 0.42
Explained variance (%) 51.5 18.2 5.7 4.6
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level of land imperviousness (namely the per cent rate 
of sealed soil), and a climate index reflective of the 
structural aridity level, were more weakly (and nega-
tively) correlated with Dimension 1.

Dimension 2 identified the urban–rural gradient in 
Czech Republic. Irrespective of the elevation gradi-
ent outlined above, this dimension associated high-
density urban areas with positive axis’ values. Envi-
ronmental pressure indicators related to air pollution 
and, in part, land imperviousness, as well as selected 
metrics (such as ED) reflecting landscape frag-
mentation, resulted to be associated positively with 
this axis. Dimension 3 outlined a specific territorial 
dimension (i.e., demography) independent of eleva-
tion and urban–rural gradients, and mostly associated 
with population structure by age; the elderly index 
was the variable showing the most intense correla-
tion with this dimension, which was in turn correlated 

negatively with landscape integrity (MedPS). Such a 
loadings’ structure suggests the existence of an indi-
rect relationship between demography (e.g., the older 
population seems to be concentrated in accessible, 
‘intermediate-density’ suburban areas) and land-use 
(e.g., landscapes in these demographically homo-
geneous areas seem to be particularly fragmented 
and diversified, reflecting a high human pressure). 
Finally, Dimension 4 outlined the spatial polarization 
of Czech municipalities (MEPs) in different levels of 
land imperviousness. Being statistically independ-
ent from Dimension 2 (reflective of the urban–rural 
gradient), Dimension 4 did not discriminate between 
strictly urban and strictly rural locations. It focused 
instead on the proportion of soil sealing, whose lev-
els can be locally high even in areas with low popula-
tion density (because of, e.g., industrial areas, com-
mercial districts, intense agricultural models based 

 

  

Dimension 1 (elevation gradient) Dimension 2 (urban-rural gradient) 

  

Dimension 3 (population age structure) Dimension 4 (soil sealing gradient) 

Fig. 1  The spatial distribution of factor scores for each Municipality of Extended Power (MEP) in Czech Republic by extracted 
dimension and the related geographical gradient
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Table 3  Temporal structure 
of indicators’ loadings 
(bold: >|0.6|; italics: 
|0.4|-|0.5|) by extracted 
dimension (abbreviations 
shown in Table 1)

Predictor Component 1 Component 2 Component 3 Component 4

NAT
1990 0.930 0.306 0.049 -0.021
2000 0.941 0.301 0.055 -0.018
2006 0.939 0.298 0.038 -0.021
2012 0.945 0.292 0.044 -0.029
2018 0.946 0.289 0.047 -0.031
POP
1990 -0.446 0.795 0.168 0.222
2000 -0.444 0.798 0.156 0.229
2012 -0.469 0.781 0.155 0.269
2018 -0.475 0.775 0.146 0.282
DisU
1990 0.783 -0.270 -0.264 0.197
2000 0.784 -0.270 -0.264 0.193
2006 0.775 -0.282 -0.285 0.206
2012 0.778 -0.280 -0.283 0.202
2018 0.781 -0.293 -0.266 0.186
DisT
1990 0.701 0.126 -0.389 0.088
2000 0.701 0.126 -0.389 0.088
2006 0.439 0.215 -0.273 0.285
2012 0.651 0.167 -0.360 0.144
2018 0.603 0.128 -0.385 0.102
NO2
2007 -0.552 0.609 0.078 0.302
2011 -0.736 0.560 -0.016 0.175
2015 -0.751 0.579 -0.091 0.143
PM10
2007 -0.617 0.682 -0.248 -0.242
2011 -0.609 0.681 -0.260 -0.266
2015 -0.684 0.621 -0.204 -0.278
PM2.5
2007 -0.579 0.667 -0.237 -0.342
2011 -0.583 0.661 -0.255 -0.356
2015 -0.667 0.621 -0.218 -0.300
BaP
2007 -0.400 0.719 -0.202 -0.229
2011 -0.456 0.736 -0.256 -0.326
2015 -0.458 0.726 -0.239 -0.380
SSEA
2006 -0.490 0.491 0.242 0.616
2012 -0.497 0.493 0.236 0.611
2018 -0.508 0.486 0.249 0.621
AGE
2001 -0.280 -0.283 0.618 -0.108
2006 -0.221 -0.186 0.647 -0.222
2012 -0.029 -0.141 0.678 -0.268
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on greenhouse crops or renewable energy plants 
on the ground). Conditions for climate aridity were 
finally observed in areas with a high level of soil seal-
ing, possibly underlining the (latent) spatial linkage 
between dry areas and land-use intensification.

Changes over time in territorial gradients

Based on the selected dimensions, Table 3 reports the 
temporal structure of indicators’ loadings. Increas-
ing or decreasing loadings over time, respectively, 
indicate a stronger (or weaker) relationship between 
individual variables and the four gradients identi-
fied above. For instance, the increase over time in the 
loadings of Dimension 1 characteristic of landscape 
integrity, naturalness of habitats (NAT), and fulfil-
ment of ecosystem functioning (EVA, SWC, PRO, 
and CS) suggests how these indicators were more 
strictly associated with the positive side of Compo-
nent 1 in recent times (2018) than in the past (1990). 

These findings also suggest how environmental qual-
ity increased in districts exposed to low human pres-
sure (such as uplands and mountainous areas) along 
the elevation gradient. At the same time, the correla-
tion structure between Dimension 1 and the average 
distance from urban settlements remained substan-
tially unaltered over time, and the coefficient of the 
distance from transport networks showed a marked 
decline. These findings may document the expan-
sion of infrastructural networks (basically roads and 
railways) in both “intermediate” upland locations and 
more remote districts, possibly causing an intense 
ecological pressure on pristine landscapes. A similar 
polarization was observed for pollution sources (air, 
soil, water) receiving higher (negative) loadings in 
recent times, and thus documenting the progressive 
consolidation of environmental disparities in high-
quality and low-quality districts along the elevation 
gradient. In other words, elevation in Czech Repub-
lic can be considered one of the best predictors of 

Table 3  (continued) Predictor Component 1 Component 2 Component 3 Component 4

2018 0.200 -0.118 0.549 -0.347
EVA
1990 0.896 0.410 0.042 -0.032
2000 0.896 0.403 0.030 -0.015
2006 0.907 0.382 0.044 -0.034
2012 0.913 0.363 0.044 -0.048
2018 0.912 0.366 0.042 -0.045
SWC
1990 0.887 0.433 0.069 0.009
2000 0.892 0.426 0.059 0.021
2006 0.903 0.408 0.071 0.007
2012 0.907 0.397 0.075 0.001
2018 0.907 0.398 0.069 0.000
PRO
1990 0.949 0.191 0.083 -0.102
2000 0.958 0.198 0.076 -0.081
2006 0.963 0.192 0.075 -0.092
2012 0.967 0.172 0.076 -0.096
2018 0.965 0.175 0.072 -0.099
CS
1990 0.938 0.230 0.109 0.002
2000 0.942 0.224 0.113 0.010
2006 0.946 0.214 0.112 0.007
2012 0.944 0.216 0.118 0.011
2018 0.945 0.216 0.112 0.006
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environmental quality, landscape integrity and, thus, 
human pressure.

Irrespective of elevation, Dimension 2 was repre-
sentative of the urban–rural gradient in Czech Repub-
lic, with compact settlements and low-density areas 
receiving positive and negative loadings, respec-
tively. Indicators of population/settlement density 
(including the land imperviousness rate), however, 
received less intense loadings on Dimension 2 over 
time, suggesting how urban sprawl into rural dis-
tricts was taken place in the most recent years, line 
with empirical evidence from other studies. A simi-
lar trend was observed for air pollution indicators 
 (NO2, PM10, PM2.5) whose spatial distribution was 
strongly associated with urban areas, with the only 
exception of BaP, a pollution source less related with 
dense socioeconomic contexts. Dimension 3 illus-
trated a demographic gradient becoming increasingly 
polarized over time, as clearly indicated in the sud-
den increase of the elderly index loadings. Finally, a 
slow consolidation of the imperviousness gradient in 
Czech Republic was observed along Dimension 4, in 
line with the moderate increase over time of the land 
imperviousness loadings.

Discussion

Territorial disparities are often reflected in (more 
or less intense) socioeconomic and ecological gaps 
among regions and districts (Allen et  al., 2019; 
Salvati & Zitti, 2009; van Meerbeek et  al., 2021). 
Moreover, the unsustainable management of land 
generating disparities in environmental quality and 
ecosystem integrity, is recognized as an accelerating 
factor of ecological deterioration and should be moni-
tored to mitigate the possible “land degradation syn-
dromes” (sensu Smiraglia et al., 2016) at the base of 
ecological instability and loss in ecosystem function-
ing. In this perspective, a rising human pressure has 
demonstrated to exacerbate the level of environmental 
quality leading to ecologically fragile environments 
(Biasi et  al., 2015; Falk et  al., 2019; Kairis et  al., 
2015). However, a common research framework for 
a comprehensive assessment of territorial disparities 
and the evolving socioeconomic contexts, landscape 
quality, ecological stability, and environmental integ-
rity, was (and still is) rather partial in Europe (e.g., 
Ciommi et al., 2018; Fares et al., 2017; Zambon et al., 

2018), and field studies covering large areas and 
informing policy implementation at both regional and 
country scale seem to be occasional and focused on 
specific, individual phenomena of environmental deg-
radation (Cinner & Barnes, 2019; Karamesouti et al., 
2015; Serra et al., 2014).

Territorial organizations at the base of the intimate 
linkage between human populations and natural eco-
systems have been mainly interpreted through linear 
thinking and explanations grounded on the analysis 
of individual variables referred to one (or two) geo-
graphical gradient(s), statically analysed or explored 
over short time horizons (Bajocco et al., 2015; Cec-
chini et al., 2019; Egli et al., 2019; but see also Kéfi 
et al., 2007). In this perspective, the intrinsic impact 
of factors bringing local systems out of ecologi-
cal stability conditions (sensu Chelleri et  al., 2015) 
was assumed to be spatially ‘neutral’ (determining 
equilibrium-disequilibrium conditions in the whole 
region) or “asymmetric” (determining conditions for 
equilibrium in some districts and disequilibrium in 
other areas). The latter scenario produces an ampli-
fication of the disparities existing between regions, 
with important consequences in terms of environmen-
tal policies and land management practices at both 
national and regional scale (Delfanti et al., 2016).

To answer the increasing demand of quantita-
tive assessments of ecological stability, ecosystem 
services, and resilience under intense territorial dis-
parities rising over time (Carr, 2019), relatively few 
studies have been devoted to explicitly analyse the 
spatio-temporal dynamics of environmental and 
socioeconomic indicators in Czech Republic, a broad 
areal coverage representative of ecological stability/
instability conditions and landscape complexity in a 
large part of Central-Eastern Europe (Cudlín et  al., 
2020, 2021). More specifically, we studied the latent 
association of selected human disturbance factors 
with ecological stability at the landscape level (Falk 
et al., 2019) considering a full coverage of adminis-
trative units, i.e. Municipalities with Extended Pow-
ers (MEP), as the appropriate spatial unit to inform 
trans-scalar policies of environmental conservation 
and sustainable planning of urban–rural districts 
(sensu Pechanec et  al., 2021). Moulded by rapid 
changes in societies and modifications in the eco-
nomic structures with impact on the spatial organiza-
tion of entire regions (Capdevila et al., 2020), empiri-
cal evidence of this study reject the hypothesis of a 
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uniform development path at the base of ecological 
stability (or instability) conditions in both time and 
space (Egli et al., 2019). On the contrary, it was dem-
onstrated how territorial factors assuring ecosystem 
stability or predisposing local systems to instabil-
ity evolve at different geographical scales determin-
ing hardly predictable conditions and environmental 
impacts (Bajocco et al., 2015; De Marco et al., 2019; 
Vogt et al., 2011).

More specifically, the empirical results of the mul-
tivariate analysis delineated the spatial gradients and 
the individual factors (sensu Jackson et  al., 2001; 
Hughes et al., 2013; Nash et al., 2014; Donohue et al., 
2016) contributing to environmental quality and terri-
torial stability in Czech Republic. From a static point 
of view, elevation and urban–rural gradients resulted 
to be the most relevant gradients in the area, in line 
with earlier studies (Pechanec et al., 2021). Consider-
ing MEP as the analysis’ reference unit, demographic 
structures and a residual dimension of human pres-
sure independent of the rural–urban gradient, pro-
vided a refined illustration of additional gradients 
possibly associated with ecological stability (or insta-
bility) in the study area (Cudlín et al., 2021). From a 
dynamic point of view, results of the analysis outline 
the increasing polarization in areas with high and low 
human pressure in recent times (Salvati & Zitti, 2008), 
in line with the empirical evidence of earlier studies 
reflective of similar European contexts (e.g., Cudlín 
et al., 2020; Seifollahi-Aghmiuni et al., 2022; Zambon 
et al., 2018). In other words, local socio-environmen-
tal conditions in Czech Republic have documented to 
worsen rapidly in the last decades when facing with 
global changes (Cudlín et  al., 2021). Combined with 
climate aridity and drought (Salvati et al., 2016), exten-
sive land-use transformations in Czech Republic have 
been demonstrated to be a driver of ecosystem instabil-
ity (Pechanec et al., 2021).

The (changing) role of territorial gradients sup-
posed to Influence conditions for ecological stabil-
ity remains an intriguing matter of investigation for 
policy application (Duvernoy et  al., 2018; Perrin 
et al., 2018; Zambon et al., 2017). For instance, while 
less endangered areas were found in mountainous 
districts, most of the actually degraded zones (basi-
cally, with high human impact) in the Czech Republic 
concentrated in flat areas with intensive agriculture 
(Nowak & Schneider, 2017). A low natural capital 
(namely, scarce precipitation, poor vegetation quality, 

and a high proportion of land with low water-holding 
capacity: Trnka et al., 2016) especially characterized 
the most economically dynamic (and environmentally 
instable) districts in the North-Western (Labe low-
land) and South-Eastern (South Moravia) quadrants 
of the country (Skaloš et  al., 2014). Geo-political 
facts were also involved in such a landscape transi-
tion (e.g., Chelleri et al., 2015). Similarly to what has 
been observed in other post-socialist countries, the 
long-term process of agricultural properties’ collec-
tivization led, at least indirectly, to land degradation 
(Prăvălie et  al., 2017; Rubio-Delgado et  al., 2019; 
Šarapatka & Bednář, 2015). This process paralleled 
the intrinsic decline of natural-crop matrices at the 
base of high-quality rural landscapes (Lipský et  al., 
2011), associated with land consolidation (Cudlín 
et  al., 2020), the progressive removal of woody ele-
ments (Pechanec et  al., 2021), and conversion of 
meadows into arable land (Skaloš et al., 2017).

In this framework, urbanization was another driver 
of environmental instability (Seifollahi-Aghmiuni 
et al., 2022). The formal expiration of Soil Protection 
Act—active since a long time—has indirectly stimu-
lated settlement sprawl into rural areas (Skaloš et  al., 
2011), opening natural and agricultural landscapes to 
vastly different commercial interests and speculations 
(Cudlín et  al., 2021). As major land-use changes are 
expected in the future as a result of climate change 
(Cudlín et  al., 2020), national and regional policies 
have to face with environmental degradation spirals 
through effective (i.e., spatially explicit and temporally 
coherent) measures managing the intimate factors of 
ecological instability delineated in our study (Skaloš 
et  al., 2014). Among others, land abandonment and 
forest degradation in uplands/mountainous districts, 
agriculture intensification and the consequent pollution 
in lowlands, as well as urban growth, infrastructural 
development and landscape fragmentation in acces-
sible (and economically dynamic) districts require an 
integrated, trans-scalar policy response at both nor-
mative (i.e., administrative) and functional (i.e., land-
scape) intervention level (Egidi et al., 2022; Smiraglia 
et al., 2016; Zambon et al., 2017).

The intrinsic difficulty of a truly sustainable man-
agement of land along defined geographical gradi-
ents stems from heterogeneous planning approaches 
possibly applicable at different operational scales 
(normative and functions), both relevant units for 
analysis and interpretation of the complex territorial 
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mechanisms at the base of ecological stability or 
instability of local systems (Recanatesi et al., 2016). 
While providing an exemplificative and simplified 
approach to local complexity in both territorial con-
texts and environmental conditions at the base of 
ecological stability (Delfanti et  al., 2016), our study 
delineates an expedite framework to interpret the 
latent inter-linkage between ecosystem dynamics and 
socioeconomic evolution in homogeneous local dis-
tricts (Zambon et al., 2018). This intrinsic (and rap-
idly evolving) nexus is assumed as a possible target 
of any spatially explicit policy integrating the three 
pillars of sustainability (Colantoni et  al., 2015) with 
the aim at preserving ecological stability conditions 
on the base of a given socioeconomic setting (Tom-
bolini et al., 2016). The geographical gradients delin-
eated in our study, and their latent relationship with 
both the intrinsic conditions for ecological stability/
instability and the background socioeconomic context 
(Salvati et al., 2012), represent a strategic concept in 
a sustainable development strategy (Colantoni et  al., 
2016), suggesting the relevance of integrated (socio-
economic and environmental) policies and spatially 
explicit measures finely tuned with (and possibly dif-
ferentiated along) the most relevant gradients.

Conclusions

Moving outside the operational perimeter of bio-
logical disciplines, conservation science, and envi-
ronmental policy, our study provides a simplified 
framework delineating medium- and long-term socio-
ecological dynamics along relevant geographical gra-
dients taken as the relevant spatial domain of appli-
cation for any strategy that promotes a sustainable 
development of local systems under complex evo-
lutionary paths. In light of climate change and more 
intense, human-driven land-use transformations, a 
country-scale assessment of conditions for ecological 
stability vis à vis socioeconomic transitions over time 
provides an appropriate information base to imple-
ment a sustainable land management strategy, con-
sidering together environmental protection and local 
development targets.

Socioeconomic and environmental dynamics 
frequently determine a sort of “spatial mismatch” 
between the background (local) context responding 
to broader-scale stimuli and the traditional (natural) 

organization of territories shaped by long-term 
human-nature interactions at both regional and coun-
try scale. For instance, the empirical results of our 
study outline a close, but spatially diversified in both 
intensity and direction, relationship between climate 
aridity, land-use intensity, and environmental degra-
dation, discriminating territorial contexts with more 
or less intense human pressure and a rising land 
vulnerability potential over time. With this perspec-
tive in mind, the notion of “geographical gradients” 
may resemble the intrinsic environmental and socio-
economic diversity characteristic of broad regions 
that experienced a millenary human settlement and 
continuous interaction with the landscape. Since 
resilience of local systems to external shocks was 
demonstrated to be spatially variable as well, adopt-
ing integrated (ecological and economic) measures 
of mitigation and adaptation to, e.g., local warming 
along defined geographical gradients is particularly 
appropriate under scenarios of global change.

Additional efforts are finally required to integrate 
ecological research with socioeconomic issues fur-
ther. First, the empirical findings of this study point 
out the key role of long time series of territorial indi-
cators and appropriate spatial domains for ecological 
analysis that could be integrated with consolidated 
data, approaches, and methodologies derived from 
social science at large. Second, moving towards 
cross-regional comparisons with the aim at informing 
strategies for the thorough conservation of environ-
mental quality, landscape complexity, and ecosystem 
stability is imperative in light of a spatially balanced 
development path of local systems. Projections of 
change based on climatic, demographic or economic 
scenarios can be particularly useful in this perspec-
tive. Third, the spatially varying development path 
of any local system definitely justifies a multi-scale 
planning approach specifically designed to cope with 
the emerging organisational models of socioeconomic 
systems and the related, “spatially asymmetric” bio-
physical change.
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