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Abstract

This dissertation presents two analyses of Higgs boson processes within
the ATLAS experiment at the Large Hadron Collider (LHC). The
primary analysis focuses on the legacy V H(bb̄/cc̄) process, examining
the decays of the Higgs boson into bottom quarks (H → bb̄) and
charm quarks (H → cc̄). Utilizing data from Run 2, a multi-variate
approach with improved b-tagging algorithms was employed to increase
sensitivity. The secondary analysis explores the Di-Higgs process,
specifically HH(bb̄)H(γγ), investigating the simultaneous production
of two Higgs bosons decaying into bottom quarks and photons. This
analysis aims to provide insights into Higgs self-coupling, contributing
to our understanding of the Higgs potential and Electroweak symmetry
breaking.

The performance enhancements discussed are crucial to the suc-
cess of these analyses. Key improvements include advanced Flavour
Tagging techniques, a study on the potential impact of 4D tracking,
and a Machine Learning-based approach to the Global Particle Flow
(PFlow) algorithm.

Flavour Tagging, essential for identifying jets originating from
heavy quarks, has seen significant advancements with the DL1 series
tagger algorithms and Graph Neural Networks (GNNs), which provide
a more precise classification of jet flavors.

4D tracking, incorporating precise timing information in the track-
ing system, shows that the object reconstruction of particles can
significantly impact vertexing and b-tagging algorithms for HL-LHC
and beyond.

Global PFlow algorithms, which combine information from various
detector components, enable a more accurate reconstruction of the
overall event topology.

The dissertation shows that these performance improvements di-
rectly reflect on the physics outcomes of the described analyses, bring-
ing us closer to understanding the most fundamental laws of the
universe.
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Preface

During my Ph.D., I had the opportunity to work on several aspects of
High Energy Physics. As a member of the ATLAS Collaboration at
CERN, most of the work presented in this dissertation is the outcome of
teamwork projects in which I had a central role. Teamwork is crucial
for advancing the knowledge in High Energy Physics. Achieving
such results wouldn’t have been possible without the contributions
of everyone involved, demonstrating the importance of collaborative
work in reaching significant milestones.

To become an Author for the ATLAS Collaboration, I performed
my Qualification Task in 2021 within the Flavour Tagging Group. I
measured the b-tagging efficiency, this measurement can also be used
as a data-to-Monte Carlo calibration, during the second data-taking
period of the LHC (Run2: 2015-2018) using an alternative method that
allows to calibrate the efficiency at higher transverse momentum with
semi-leptonically decaying top-quarks. I then performed a statistical
combination of this calibration with the standard method used in
ATLAS. Within the Flavour Tagging group I am one of the Offline Data
Quality experts with the task of assessing the quality of the ongoing
data taking (Run 3: 2022-2026) in terms of b-tagging performance.

Simultaneously, I joined the Higgs Group, where I was one of the
primary analyzers for the V H legacy Run 2 analysis. This analysis
aims to simultaneously measure the H → bb̄ and H → cc̄ decay
channels of the Higgs boson. The legacy analysis utilizes the same
Run 2 data but incorporates new techniques and exploits correlations
between different decay channel uncertainties. The main results of
this analysis include the first observation of the WH,H → bb̄ process,
the best ATLAS limits set on the cross-sections of the V H,H → cc̄
process, and the first observation of the V Z,Z → cc̄ cross-check
process. My contributions included incorporating a new region at low
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transverse momentum of the Higgs boson in the WH channel, deriving
the QCD background modelling using data-driven methods, working
on the Multi Variate Analysis for signal-background discrimination,
and contributing to the development of the statistical analysis for the
combined fit.

During the last year of my Ph.D., I joined the Di-Higgs Group,
where I am one of the main analyzers for the search that considers two
b-quarks and two photons in the final state (H(bb̄)H(γγ)) exploiting on
Run 2 and partial Run 3 data. New algorithms and analysis techniques
are being developed, and my contributions focus on the impact of the
improved b-tagging, particularly at low transverse momentum.

During my second year if my Ph.D, I was awarded a scholarship
as a CERN Doctoral Student to work on the potential impact of a
4-Dimensional tracker in ATLAS. We know that after about 2ab−1 of
data at the HL-LHC the innermost part of the ATLAS Inner Tracker
(ITk) will be replaced, this leads to a unique opportunity in terms of
technological advancements. For this reason we studied the feasibility
of such a timing detector in terms of performance, to assess what could
be the impact on physics. This work is the first study in ATLAS and it
is documented in a PUB Note [1], for which I was the primary author.
In this work, I assessed the impact of a potential timing detector,
with a spatial and temporal resolution of O(10µm) × O(10ps), at
the HL-LHC on physics object reconstruction, such as vertexing and
b-tagging, demonstrating how performances could improve if ATLAS
would implement a timing detector with hermetic coverage in the
tracking system.

In parallel with my Ph.D., as a continuation of my Master’s work
[2] on simultaneous reconstruction using Machine Learning methods,
I was part of a team outside ATLAS investigating the potential of
Graph Neural Networks in Global Object Reconstruction (Global
Particle Flow) in collider experiments. This project culminated in
two papers. The first describes a configurable detector simulation of a
calorimeter designed for Machine Learning studies [3], and the second
introduces a novel advanced technique for Global Particle Flow using
Hyperedges Graph Neural Networks tested in a jet environment [4].
In these projects, I was one of the primary authors, contributing to
the development and performance assessment of the detector and the
algorithms.
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Introduction

Despite its name, the Standard Model can be considered both a
theory and a model. It aims to describe three of the four fundamental
interactions currently discovered by the human kind, albeit not without
difficulties:

· Strong Interactions
· Electromagnetic Interactions
· Weak Interactions

Over the past century, experiments and theoretical developments
have progressed hand-in-hand, solidifying the SM’s dual status. In
this context, two complementary perspectives have emerged in the
physics of the fundamental interactions: Quantum Field Theory, which
focuses from a theoretical point of view on fields, and Particle Physics,
which emphasizes particle-based experimentation.

The primary tools for probing the Standard Model are particle
colliders, capable of achieving incredibly high energies. The pioneering
result of Einstein in 1905 [5] relating energy and mass in the equation
E = mc2 underscores the principle that mass can be converted into
energy and vice versa, explaining how it is possible to create new par-
ticles from high-energy collisions. With technological advancements
since the mid-20th century, experiments have evolved from analyzing
cosmic rays to actively generating particles through collisions of pro-
tons or electrons, the only known and available stable particles. At
first, particle beams were directed at fixed targets, but it soon became
evident that colliding beams could achieve much higher energies.

Bruno Touschek, often considered as the father of colliders, pro-
posed the concept of an electron-positron (e+e−) collider in Rome
during the 1960s. This innovation served as the precursor to the



4 Contents

development of the Large Hadron Collider (LHC).

The Large Hadron Collider (LHC) is a proton-proton (pp) col-
lider constructed by the European Organization for Nuclear Research
(CERN) in Geneva between 1998 and 2008. Positioned in a 27 km
underground tunnel, the LHC is the largest and most powerful particle
collider to date. Since its initial run in 2009, the LHC has progres-
sively reached higher energies and is currently (2024) operating at√
s = 13.6 TeV in its third run. It occupies the same tunnel previously

used by the Large Electron-Positron (LEP) collider, which collided
e+e− from 1989 to 2000. The LHC is the final stage in a series of
progressively larger accelerators that incrementally increase the energy
of protons. Each LHC experiment occurs at specific points along the
LHC ring, where the proton beams are collided, and data is captured
by dedicated experimental setups.

Many significant milestones have been achieved at the LHC, start-
ing with the groundbreaking discovery of the Higgs boson in 2012 by
both the ATLAS and CMS experiments independently. This discovery
was a monumental achievement, providing the missing piece of the
puzzle in the Standard Model of particle physics and confirming the
existence of the Higgs field, which is responsible for providing mass to
all particles, including the Higgs boson itself.
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Since the Higgs Boson’s discovery, extensive research has been
conducted to explore its properties in greater detail. These studies
aim to validate the Higgs boson’s predicted behavior and interactions
as outlined by the Standard Model. Researchers have focused on
measuring its mass, spin, and parity, as well as its coupling with other
fundamental particles. These investigations are crucial for determining
whether the Higgs boson fits within the Standard Model’s framework
or if it points to new physics beyond the Standard Model.

Thus the LHC has been crucial in studying the Higgs Boson’s rare
decay modes and production mechanisms, enhancing our understand-
ing of electroweak symmetry breaking. The continuous data collection
and analysis from successive LHC runs have allowed physicists to
refine their measurements and improve the precision of these funda-
mental parameters. These efforts not only solidify our comprehension
of the Higgs boson but also open avenues for discovering potential
discrepancies that could indicate phenomena of physics beyond the
Standard Model.

Thesis Content
This dissertation outlines my research and contributions as a Ph.D.
student, a journey I commenced in late 2020 at the University of
Rome "La Sapienza". Throughout my doctoral studies, I have been
primarily based at CERN in Geneva, as I was awarded a scholarship as
a Doctoral Student within the ATLAS Collaboration. My involvement
with ATLAS has encompassed various aspects of the experiment.

It begins with a detailed theoretical foundation in Chapter 1, where
I describe the underlying principles of the Standard Model, including
a thorough discussion of Electroweak interactions, the Brout-Englert-
Higgs mechanism, and an overview of Quantum Chromo-Dynamics,
which governs strong interactions. This theoretical groundwork is
essential for understanding how the Higgs boson is investigated at the
LHC.

Chapter 2 includes an overview of the LHC experiment, highlight-
ing its significance as the world’s largest and most powerful particle
collider. Then in the same Chapter, I provide a summarized de-
scription of the ATLAS Detector at the LHC, detailing its various
subsystems and their roles in particle detection and data collection.

After the theoretical and experimental overview the following
Chapters are focused on the work I personally contributed to.

The focus then shifts to Flavour Tagging in Chapter 3, where I
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delve into the algorithms developed for identifying heavy flavor quarks
generated in the collisions and detected by the ATLAS experiment.
I discuss the evolution of these algorithms and their calibration on
experimental data. In the Section 3.2 a measurement of the b-tagging
efficiency on data is shown, orthogonal to the standard measurement
used for the calibration, that I personally performed using the Run 2
of the LHC dataset. I also performed the statistical combination with
the standard b-tagging calibration used in the Collaboration.

The core of this dissertation is detailed in Chapter 4, which focuses
on the experimental aspects of Higgs boson physics. The chapter
begins with an overview of the Higgs boson from an experimental
perspective, followed by a discussion of previous analyses involving
the Higgs boson produced in association with a leptonically decaying
vector boson and decaying into heavy flavor quarks, commonly referred
to as V H(bb|cc). This chapter presents the legacy analysis using the
data from the LHC’s second run. As one of the principal analysers,
I played a significant role in this research, contributing extensively
to the final results of the V H(bb|cc) analysis. I employed a data-
driven template method to estimate the QCD background in the
decay channel where the vector boson is a W boson. Additionally,
I explored and incorporated a previously unprobed region in the
Simplified Template Cross Section (STXS) scheme, specifically at
low transverse momentum of the Higgs boson when the vector boson
is a W . I worked in the development and training of the Boosted
Decision Trees (BDTs) to effectively discriminate between signal and
background events. These machine learning models were crucial for
enhancing the sensitivity of the analysis by improving the separation
between the Higgs signal and various background processes. Moreover,
I made substantial contributions to developing the statistical analysis
strategy for the combined fit of the V H(bb|cc) and the cross-check
analysis of V Z(bb|cc). This measurement aims to be the most precise
ever performed regarding the Higgs coupling to the b-quark (V H(bb))
and establishes the most stringent limits on the Higgs coupling to
the c-quark (V H(cc)) for ATLAS. Furthermore, it marks the first
observation of the exclusive processes WH(bb) and V Z(cc).

During the last year of my Ph.D., I joined the effort in one of the
Di-Higgs ATLAS analyses, which aims to probe the Higgs boson self-
interaction, a critical aspect of understanding the Brout-Englert-Higgs
mechanism and electroweak symmetry breaking. Chapter 5 provides
an overview of the significance of this measurement, explaining why it
is considered one of the most crucial objectives at the LHC following
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the Higgs boson discovery. The Di-Higgs analysis discussed in this
dissertation focuses on events with two b-quarks and two photons in
the final state (H(bb)H(γγ)). This channel is one of the most sensitive
to probe the Higgs self-coupling, which is essential for verifying the
Standard Model’s predictions and searching for new physics. In this
chapter, I first present the state-of-the-art analysis utilizing data
from the LHC’s second run. Then I show my contributions for the
ongoing analysis combining the Run 2 and part of the Run 3 the LHC
data taking. My work has particularly focused on the impact of low
transverse momentum b-tagging, which is crucial for improving the
identification of b-jets from Higgs decays. Additionally, I explored
the potential to simultaneously measure for the first time the single
Higgs background in association with a Z boson decaying into b-quarks
(Z(bb)H(γγ)). This measurement would benefit from low transverse
momentum b-tagging because of the softer spectrum of the Z boson.

In Chapter 6, I detail my research as main analyser on the potential
impact of integrating a 4D tracker within the ATLAS tracker during
the High-Luminosity Phase of the LHC. This upgrade could eventually
occur only after the LHC’s fourth run. My study highlights the
benefits of an hermetic timing detector on key physics objects, such
as b-tagging and vertexing, as well as its broader implications for
physics analyses. Impacting the physics objects exploited by the above
described analyses, timing information in the tracker could have a
significant impact on enhancing the Higgs physics program, this is the
case of my work as a CERN Doctoral Student.

In the final chapter, Chapter 7, I present two projects on which I
collaborated outside of the ATLAS Experiment. One of these projects
involved the development of the A COnfigurable CalOrimeter simula-
tion for AI (COCOA). The goal of this is to provide a versatile tool for
developing Machine Learning algorithms in High Energy Physics, uti-
lizing realistic particle shower simulations. My contributions included
developing the simulation framework and assessing the detector’s per-
formance. Additionally, this chapter introduces a novel approach to
Global Particle Flow, employing advanced Machine Learning tech-
niques based on Graph Neural Networks. In essence, Global Particle
Flow aims to reconstruct physics objects simultaneously, streamlin-
ing the process by minimizing overlap removal between objects and
leveraging redundant information from different sub-detectors. This in-
novative method is built upon the simulations provided by the COCOA
framework. I played a key role in training the models and evaluating
their performance. This new approach to Global Particle Flow is built
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to benefit both current and future collider experiments. This work
holds broad implications for the High Energy Physics community,
providing a robust framework for advancing particle reconstruction
techniques.
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1 | Theoretical
Overview

A comprehensive theoretical exposition of the Standard Model (SM) is
beyond the scope of this dissertation. Nevertheless, a concise overview
of the SM and its foundational elements is essential to appreciate
the motivations driving contemporary analyses at the LHC. The SM
serves as both a theory and a model, encapsulating three of the four
known fundamental interactions: Strong, Weak, and Electromagnetic
interactions. These interactions are integral to our understanding of
particle physics and are intricately woven into the fabric of the SM.

In Section 1.1, we will explore the objectives and historical evolution
of the Standard Model, shedding light on its development and the
pivotal discoveries that have shaped its current form. This section
will provide a foundational understanding necessary to appreciate the
subsequent discussions on particle interactions.

Section 1.3 delves into the realm of Quantum Chromo-Dynamics
(QCD), the theory describing strong interactions. This section traces
the journey from the parton model and Deep Inelastic Scattering to
the sophisticated models that depict proton-proton collisions at the
LHC. A thorough understanding of QCD is crucial for interpreting
collision data and the behavior of quarks and gluons within protons.

Finally, Section 1.2 describes the electroweak interactions within
the Standard Model, focusing on the theoretical discovery of the Higgs
mechanism. This section will explain how the Higgs field imparts
mass to elementary particles thorough the Spontaneous Symmetry
Breaking, a cornerstone of the SM, and set the stage for discussing
Higgs boson physics and its implications in modern experiments.
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1.1 The Standard Model

In the ’70s, weak, strong, and electromagnetic interactions had been
observed for several years. Within the formalism of Quantum Field
Theory (QFT) [6, 7, 8, 9, 10], it has been possible to create a predictive
theory unifying the above interactions, capable of predicting new
features, such as cross-sections at colliders. This theory also provides
the possibility to classify all the particles discovered over the years,
resulting in the Standard Model. It is the most fundamental theory
in our hands and describes our understanding of elementary particles
and the universe [11, 12, 13].

From a particle point of view, one can classify all particles ac-
cording to their statistics. In particular, it is possible to distinguish
fermions obeying the Fermi-Dirac statistic from bosons obeying the
Bose-Einstein statistic. Fermions are particles with half-integer spin;
all elementary fermions known have a spin of 1

2 . They can be separated
into leptons, which participate in weak and electromagnetic interac-
tions, and quarks, which can also interact via the strong interaction.
Both quarks and leptons can be divided into three families. Bosons
are particles with integer spin, and the known elementary bosons
have either spin-1 (vectorial particles) or spin-0 (scalar particle). Ele-
mentary vectorial particles are known as gauge bosons, and they are
distinguished according to the interaction in which they participate.
The only known scalar elementary particle is the Higgs boson. All
elementary particles are listed in Figure 1.1.

In the context of Quantum Field Theory, each particle can be
described by a quantized field, which is the superposition of creation
and annihilation operators that, when acting on the vacuum, can
create or annihilate a particle. The Standard Model is based on the
breakthrough concept of symmetry within the Lagrangian formalism.
As well demonstrated by Nöether, for each continuous symmetry of
the Lagrangian, one has a conserved quantity or a conserved current.

Studying hadron decays and conducting Deep Inelastic Scattering
experiments, it became possible to develop the theory of strong interac-
tions, leading to Quantum Chromo-Dynamics (QCD). Simultaneously,
starting from nuclear β-decay and Fermi’s theory in the ’30s, the weak
theory was developed. Important experimental discoveries include the
observation of parity violation in the ’50s, the Electroweak unification
by Glashow, Weinberg, and Salam in the ’60s, exploiting the process
of Spontaneous Symmetry Breaking (SSB). This continued with the
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Figure 1.1. List of all elementary particles known in the Standard Model
(SM). In purple are three quark families. In green are three lepton
families. In red are the gauge bosons: three massive vector bosons
V = W ±, Z0; one massless photon γ and the 8 massless gluons ga. In
Yellow the scalar Higgs boson.

discovery of massive vector bosons in the ’80s, culminating in the
identification of the Higgs boson in 2012.

Nowadays the Standard Model (SM) can be described by a La-
grangian invariant under three local gauge symmetry groups [14] in
the context of Spontaneous Symmetry Breaking (SSB):

SU(3)C ⊗ SU(2)L⊗ U(1)Y SBB−−−→ SU(3)C ⊗ U(1)Q (1.1)

The strong interactions are described by SU(3)C, which is the color
symmetry group, while the electroweak interactions are described
by SU(2)L ⊗ U(1)Y → U(1)Q, where, in analogy to strong isospin,
SU(2)L describes weak isospin, and all fermions are embedded into
Left doublets and Right singlets. Finally, to include a weak neutral
current, one introduces the hypercharge symmetry U(1)Y . The arrow
signifies that the vacuum of the theory doesn’t have the same symmetry
as the Lagrangian, indicating that the theory has a Spontaneously
Broken Symmetry. The surviving symmetry is the known as the charge
U(1)Q, resulting with a single gauge boson remaining massless. This
mechanism is known as the Higgs mechanism.
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1.2 Electro-Weak Interactions and Higgs
Mechanism

The Electro-Weak (EW) interactions and the Higgs boson searches
are the main topic of this dissertation. For this reason a theoreti-
cal overview is necessary to understand the physical and historical
developements of this fundamental theory.

Weak interactions at low energies are well described by the Fermi
current− current interaction [15] which can be extended including
axial currents after the discovery of parity violation. The first thing
that it points out is that experimentally only left-handed helicity
neutrinos and right-handed helicity antineutrinos are involved in weak
interactions. In this sense as far as it is know one can use chiral
states to describe leptons within the context of weak interactions. In
particular it is well known that only left chiral states are selected in
weak interactions. Thus the weak currents can be described by:

jµ
+ = ēγµ 1

2(1 − γ5)ν jµ
− = ν̄γµ 1

2(1 − γ5)e (1.2)

The same current can be written for quark families instead of leptons.
It is immediately evident that this current describes either a left-
handed neutrino or a right-handed antineutrino.

The problems arose when neutral currents were observed coupling
not only with left-handed particles but even with right-handed particles
(such as eR, uR and dR, right-handed neutrino is not considered in
the SM):

jµ
0 = q̄γµ 1

2(cq
V − cq

Aγ5)q (1.3)

This suggests that weak interactions can be described by a gauge
theory. And for sake of simplicity only leptons are considered, quarks
will be introduced for later purposes:

eL = 1
2(1 − γ5)e eR = 1

2(1 + γ5)e νL = 1
2(1 − γ5)ν (1.4)

The fields in any representation of the gauge group must have the
same Lorentz-transformation properties, hence the representations of
the gauge group divide into a left-handed doublet and a right-handed
singlet:

L =
(
νL

eL

)
R = eR (1.5)
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As mentioned before the largest possible gauge group is:

SU(2)L ⊗ U(1)Y (1.6)

The idea of electroweak theory [16, 17] is to use a mixing of third
generator of SU(2)L and the generator of U(1)Y to get a neutral
massless photon (γ) and a neutral massive vector boson (Z0). Under
this group the fields transform as:

USU(2) = eig σ
2 α(x) UU(1) = eig′ Y

2 β(x) (1.7)

Where σi are the Pauli matrices and Y is the Hypercharge operator.
At this point Y can be used in linear combination with T3 = σ3/2
to obtain the charge operator Q with the famous Gell-Mann relation
already known for SU(3)F :

Q = T3 + Y

2 (1.8)

For all the fermions the values are displayed in table 1.1.
To explain the procedure described previously one must observe

that since the weak currents in eq. 1.2 can be rewritten in terms of
generators of the symmetry group SU(2)L it is possible to include an
extra group U(1)Y in order to obtain the neutral current.

f Q T3 Y
νL 0 1/2 -1
eL -1 -1/2 -1
eR -1 0 -2
uL 2/3 1/2 1/3
dL -1/3 -1/2 1/3
uR 2/3 0 4/3
dR -1/3 0 -2/3

Table 1.1. For the first family of leptons and quarks doublet the values of
charge (Q), weak isospin (T3) and hypercharge (Y ) are shown.

The reason is that the third generator of SU(2)L gives a current
coupling only to left-handed particles and therefore can’t represent the
required neutral current. It is reasonable to include the electromagnetic
current in the theory (jµ

em = L̄γµQL+ R̄γµQR) which couples also
to right, but it is not invariant under SU(2)L. Thus the idea is to
take two orthogonal combination of jµ

em and jµ
0 . One combination
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complete the weak isospin triplet jµ
3 , while the second combination

must be invariant under SU(2)L that is jµ
Y given by the Gell-Mann

relation:
jµ

em = jµ
3 + 1

2j
µ
Y (1.9)

To do so another symmetry group (U(1)Y ) had been introduced. A
gauge boson field for each generator of each symmetry group appears in
the theory: 3 Wµ(x) for SU(2)L and a single Bµ for U(1)Y . Similarly
to non abelian QCD Lagrangian, it is possible to write the Electroweak
Lagrangian:

L = −1
4Wµν · Wµν − 1

4B
µνBµν + L̄i /DL+ R̄i /DR (1.10)

In this Lagrangian the covariant derivative acts differently between
left-handed and right-handed fields and from tab. 1.1 it is clear that
YL = −1 and YR = −2. The covariant derivative definition is:

DµL = (∂µ+igσ

2 Wµ−ig′ 1
2B

µ)L DµR = (∂µ−ig′Bµ)R (1.11)

From each gauge boson it is possible to construct its tensor field and
its infinitesimal gauge transformation as:

Wµν = ∂µWν − ∂µWν − gWµ ∧ Wν

W′
µ = Wµ − 1

g
∂µα(x) − α(x) ∧ Wµ

Bµν = ∂µBν − ∂µBν

B′
µ = Bµ − 1

g′ ∂µβ(x) (1.12)

In this theory the main missing thing is a mechanism to give the
mass to the gauge boson fields and to the fermions. Certainly one of the
four gauge fields, or more accurately the linear combination generating
the electromagnetic field Aµ coupled with jµ

em, must remain massless.
In this sense the assumption is that SU(2)L ⊗U(1)Y is spontaneously
broken to U(1)Q [18, 19, 20]. The details of this procedure are
explained by the Higgs mechanism [7, 21]. Whatever the mechanism
is the fields corresponding to charged vector bosons with mass mW

and coupled with weak currents in 1.2 are a combination of Wµ
1 and

Wµ
2 :

Wµ
± = 1√

2
(Wµ

1 ∓ iWµ
2 ) (1.13)
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At the same time two electrically neutral fields of mass mZ and zero
are obtained from a rotation of Wµ

3 and Bµ. The angle for this rotation
is the so called Weinberg angle or θW . The rotation is needed because,
as previously said, the combination of jµ

3 and jµ
Y to get jµ

0 and jµ
em

must be orthogonal:(
Aµ

Zµ

)
=
(

cos θW sin θW

− sin θW cos θW

)(
Bµ

Wµ
3

)
(1.14)

Finally to get a proper unification it is necessary to express the weak
couplings in terms of the electromagnetic coupling e. The lepton
Lagrangian at this point can be rewritten as:

L =L̄i/∂L+ R̄i/∂R+

− g√
2

(jµ
+W

+
µ + jµ

−W
−
µ )+

− (g sin θW jµ
3 + g′ cos θjµ

Y )Aµ

− (g cos θW jµ
3 − g sin θjµ

Y )Zµ

(1.15)

Immediately it is clear that the Fermi coupling constant can be
rewritten in terms of g and that it can be obtained from the propagator
of a massive gauge boson for small transferred momenum:

GF√
2

= g2

8m2
W

(1.16)

Knowing that the current coupled to Aµ must be the electromagnetic
current expressed in the relation 1.9 and that the coupling constant
must be e:

g sin θW = g′ cos θW = e e = gg′√
g′2 + g2

(1.17)

The Lagrangian can now be expressed as:

L =L̄i/∂L+ R̄i/∂R+

− e√
2 sin θW

(jµ
+W

+
µ + jµ

−W
−
µ )+

− ejµ
emAµ

− e

sin 2θW
(jµ

3 − sin2 θW jµ
em)Zµ

(1.18)

The amazing fact is that a gauge boson field of neutral charge is coupled
asymmetrically to left-handed and right-handed fields. Comparing
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with the current jµ
0 in eq. 1.3 it is possible to extract the values

reported in tab. 1.2 of cV = T3 − 2Q sin2 θW and cA = T3 for
all the fermions. To complete the theory some assumptions about
the spontaneous symmetry breaking are necessary. As it might be
noticed not only to the W± and Z0 need a mass, but also fermions
as well. This must holds since a mass term is not gauge invariant
and with this mechanism fermions acquire a mass dynamically. The
only renormalizable way is to have a scalar field coupled without
derivatives to L and R. Requiring the invariance of this Yukawa term
in the Lagrangian is equivalent to require the scalar to be an SU(2)L

complex doublet with Y = 1 properly chosen:

ϕ(x) =
(
ϕ+(x)
ϕ0(x)

)
= 1√

2

(
Reϕ+(x) + iImϕ+(x)
Reϕ0(x) + iImϕ0(x)

)
(1.19)

A gauge invariant term involving the scalar and the gauge fields can

f cV cA cL cR

νL 1/2 1/2 1/2 0
eL −1/2 + 2 sin θW -1/2 −1/2 + sin2 θW sin2 θW

eR 2 sin θW 0 sin2 θW sin2 θW

uL 1/2 − 4
3 sin θW 1/2 1/2 − 2

3 sin θW − 2
3 sin θW

dL −1/2 + 2
3 sin θW -1/2 −1/2 + 2

3 sin θW
1
3 sin θW

uR − 4
3 sin θW 0 − 2

3 sin θW − 2
3 sin θW

dR
1
3 sin θW 0 2

3 sin θW
1
3 sin θW

Table 1.2. Values for the axial and vectorial fermion couplings to the Z0.
Also the values for the left and right fermion couplings are reported,
where cL = (cV + CA)/2 and cR = (cV − cA)/2.

be added. The most general form is, including the Yukawa part:

L = |Dµϕ(x)|2 +m2ϕ†(x)ϕ(x)
− λ(ϕ†(x)ϕ(x))2 −Ge[L̄ϕR+ R̄ϕ†L] (1.20)

To have a lower bound on the energy the parameter λ is required
to be positive. Then the choice m2 > 0 needs to break the symmetry.
It means that the Lagrangian still is gauge invariant, but its vacuum is
not. The potential defined is the complex version of the shape shown in
figure. 1.2. The tree-approximation for the vacuum expectation value
(VEV or v) is the minimal of the potential V (ϕ) = −m2ϕ†ϕ+λ(ϕ†ϕ)2:

⟨|ϕ|2⟩ = v2

2 = m2

2λ (1.21)
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Figure 1.2. Shape of the potential for a spontaneous symmetry breaking.

From the goldstone theorem each broken generator of the symmetry,
namely each generator which doesn’t leave the vacuum invariant,
generates a massless field. In this case there are 3 goldstone bosons.
Since the Lagrangian is still invariant under SU(2)L ⊗ U(1)Y a gauge
transformation can always be performed. The idea is to apply the so
called unitary gauge in which ϕ+ = 0 and ϕ0 is hermitian or real with
a positive VEV. In some sense the goldstone boson degrees of freedom
disappear in this gauge in favor of express the theory in terms of
physical fields. In the unitary gauge the VEV and the field associated
to the remaining scalar field (the Higgs) are:

⟨ϕ⟩ = 1√
2

(
0
v

)
ϕ = 1√

2

(
0

v +H(x)

)
(1.22)

Using this gauge on the kinetic term of the scalar field the mass terms
for the vector bosons appear together with the Higg-Vector Boson
interactions:

|Dµϕ(x)|2 = 1
2 |∂µϕ|2 + 1

8(v +H(x))2×

×
[
2g2Wµ

+W−µ +
(
W3µ Bµ

)( g2 −gg′

−gg′ g′2

)(
Wµ

3
Bµ

)] (1.23)

It is immediate to cross check that the diagonalization of the matrix in
this expression gives the correct rotation of the fields expressed in eq.
1.14. It is evident that the symmetry is broken with a massless gauge
boson, the photon Aµ. The mass of the gauge fields can be written in
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terms of the gauge coupling constant and the VEV obtaining:

mW = vg

2 mZ = vg

2 cos θW
(1.24)

From the Yukawa term there is the possibility to give a mass to
the electron-like fermions and it is also noticed that the coupling of
fermions to the Higgs is proportional to their mass, as well as for the
gauge bosons:

me = Gev√
2

(1.25)

In order to give the mass to the neutrino-like the charge conjugate
Higgs field mus be introduced:

ϕc(x) = −iσ2ϕ
∗(x) =

(
−ϕ̄0(x)
ϕ−(x)

)
SBB−−−→ 1√

2

(
v +H(x)

0

)
(1.26)

If A SBB−−−→ B boh Let’s note that Ge is arbitrary and, differently
from the vector boson masses, the fermion masses are not predicted.
It is easy to extend this method to all the families of fermions. Phe-
nomenologically it is possible to deduce the VEV value from the Fermi
constant measure in muon decays:

GF = 1.1663787(6) × 10−5 GeV −2

v = 1
21/4G

1/2
F

= 246.219651(11) GeV (1.27)

Then it is possible to express all the constant as a function of
the best measured values in the standard model such as GF or α. A
relation between the vector boson masses also occurs. Using the value
of electromagnetic coupling at the electroweak scale (α(mV ) = 1/128):

ρ = mW

cos θWmZ
= 1

mW = ve

2 sin θW
= 38.54 GeV

sin θW

mW = ve

2 sin θW
= 77.08 GeV

sin 2θW
(1.28)

From purely leptonic neutral processes such as νµ(ν̄µ) + e− →
νµ(ν̄µ) + e− it has been possible to obtain sin2(θW ) = 0.231 which
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would give, without higher order corrections mW = 80.2 GeV and
mZ = 91.4 GeV .
Finally the potential can be written as the sum of mass, trilinear
self-interaction and quartic self-interaction terms:

V (H) = 1
2(2λv2)H2(x) + λvH3(x) + λ

4H
4(x) (1.29)

The Higgs mass, M2
H = 2λv2 at tree level, is not predicted in the

Standard Model. Therefore the electroweak Lagrangian is summarized
as in Table 1.3.

Lkg + Lgg =
= − 1

4 Wµν · Wµν − 1
4B

µνBµν

W±, Z0 and γ
kinetic terms self

interactions

LkL + LLg = L̄i /DL+ R̄i /DR
Lepton: kinetic

and gauge
interaction

Lkq + Lqg =
= Q̄Li /DQL + ūRi /DuR + d̄Ri /DdR

Quark: kinetic and
gauge interaction

LkH + Lmg + LHg = |Dµϕ|2 − V (ϕ)
Higgs: kinematic
and interactions

with gauge bosons

LmL + LLH = −Ge[L̄ϕR+ h.c.] Higgs interaction
with Leptons

Lmu + LuH = −Gu[Q̄LϕcuR + h.c.]
Higgs interaction

with Up-like
Quarks

Lmq + LqH = −Gd[Q̄LϕdR + h.c.]
Higgs interaction
with Down-like

Quarks
Table 1.3. Lagrangian pieces

Even before the discovery of neutral currents, the electroweak
theory was extended to the interactions of hadrons with each other
and with leptons. From the non conservation of the strangeness in
the model of SU(3)F Cabibbo [22, 23] proposed a mixing (rotation)
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(a) Gauge boson self interaction (b) Fermion interaction with gauge
bosons

(c) Higgs interactions with gauge
bosons

(d) Higgs self interaction

(e) Higgs interactions with
fermions

Figure 1.3. Elementary Feynman vertices and propagator of Standar
Model.

of down and strange quarks writing the quark doublet as:

Q1
L =

(
uL

dL cos θC + sL sin θC

)
(1.30)

Assuming only this quark doublet and even excluding a neutral current
exchange this model would lead to rates for processes like K0 − K̄0
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oscillations computed with the loop in fig. 1.4 much greater than
observed of magnitude [24]. To avoid this difficulty Glashow, Iliopoulos
and Maiani [25] proposed the existence of another up-like quark the c
quark filling the second family of quarks which cancels the contribution
of the u quark in the loop. The second left-handed quark doublet can
be written as:

Q2
L =

(
cL

−dL sin θC + sL cos θC

)
(1.31)

Figure 1.4. Contribution to neutral Kaons oscillations.

The discovery of the τ was the sign of the existence of a third
generation. Soon after a fifth quark type (the b) was discovered and
the sixth became theoretically necessary and after a long time it too
was discovered. At the end the hadronic current can be expressed as:

jµ
had =

(
ū c̄ t̄

)
γµ 1

2(1 − γ5)Vckm

ds
b

 (1.32)

The matrix Vckm is the Cabibbo, Kobaiashi and Maskawa matrix [26].
It is extension to three generations of the quark mixing. The matrix
is unitary. This is just what one would naturally expect with three
quarks generations in the Higgs mechanism. The 3 × 3 matrix Vckm

appears in the fermion-gauge boson interaction in order to diagonalize
the mass terms after the SSB of the quark Yukawa Lagrangian:

Lmq = −
∑

ij

Gd
ij [
(
Ū i

L D̄i
L

)
ϕdj

R + h.c.]−

−
∑

ij

Gu
ij [
(
Ū i

L D̄i
L

)
ϕcu

j
R + h.c.] (1.33)
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With only two generations (with u, d, c and s quarks) it is possible
to chose the phases of the quark fields in order to have a real 2×2 matrix
or rather an orthogonal matrix as made with the GIM mechanism
and the Cabibbo rotation. As a consequence Charge conjugation
and Parity together (CP) are simultaneously conserved . The great
importance of the third quark generations is that it is not possible
to choose the quark phases so that the V is real and therefore the
electroweak interactions can violate CP conservation.

Vckm

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (1.34)

Since the third generation is weakly coupled with the first two the
Cabibbo assumption works well and the CP violations are weak.

1.3 Quantum Chromo-Dynamics
and Strong Interactions

As already mentioned in Section 1.1, in order to have the possibilities
of studying the Higgs boson processes and all its properties described
in Section 1.2 the Large Hadron Collider had been built. For this
reason its fundamental to understand how protons interact at LHC to
produce the interested events. These interactions are mediated by the
Quantum Chromo-Dynamics and the so called strong interactions.

In this section, the strong interactions are discussed in the context
of the SM [8, 11, 27, 28]. The theory of strong interactions is known
as Quantum Chromo-Dynamics (QCD) and it is described by SU(3)C

gauge symmetry. Each strong interacting particle carries a quantum
number known as the color number. Fermions carrying color numbers
are called quarks and they were postulated by Gell-Mann in 1964
[29, 30] to explain the spectrum of the strongly interacting particles
known as hadrons. In this framework, mesons can be described as
quark-antiquark bound states while baryons are bound states of three
quarks. To make hadrons with integer charge a fractional electric
charge for quarks is needed. Quarks appear in 6 different flavours
placed into 3 generations: up (u), down (d), charm (c) strange (s),
top (t), bottom (b). The up-like quarks have Q = 2/3 while the
down-like quarks have Q = −1/3. Then the proton can be seen as
a bound state of uud while the neutron as udd. The symmetry in
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the interchange of u and d is the strong isospin symmetry SU(2)I . It
can be enlarged to the approximate symmetry SU(3)F including the
strange quark. All the baryon and meson multiplets fill out irreducible
representations of this symmetry. To reconcile baryons as ∆++ = uuu
with the spin-statistic theorem it has been proposed a new quantum
number carried by each quark: the Color.

Thus quarks transform under the fundamental representation (3)
of the SU(3)C while anti-quarks transform as the 3̄ representation.
The phenomenological assumption is that no colored particle can be
observed as a free state and this postulate is called confinement of
color. It means that all hadrons must be invariant (singlets) of SU(3)C

and the most stable combinations are quark-antiquark bound states
and three quark bound states:

q̄iqi ϵijkqiqjqk (1.35)
To test these properties e − p Deep Inelastic Scattering (DIS) ex-

periments were performed. Since the color symmetry had no other
obvious physical role it was natural to identify this symmetry with
a gauge group. The consequence is the appearance of a gauge field
transforming with the adjoint (8) of the group. Thus this model
predicted the existence of a field known as gluon which could take
8 color quantum numbers. In a non-abelian theory, it is possible to
prove the asymptotic freedom [31, 32] namely the coupling constant
(αs for QCD) becomes penetrative in the high-energy regime .

The Lagrangian of QCD is the following:

L = −1
4F

µνaF a
µν + q̄i(i /D −mq)ijqj

a = 1...8 i, j = 1...3 (1.36)
In this expression, the covariant derivative had been defined as

(Dµ)ij = δij∂µ + ig3A
a
µλ

a
ij to ensure the invariance of L under SU(3)C .

The matrices λa
ij are the 8 Gell-Mann matrices that are the generators

of the symmetry group. Moreover, the field tensor can be constructed
by the commutator of covariant derivatives to get an invariant tensor
obtaining:

F a
µν(x) = ∂µAν(x)a − ∂νAµ(x)a − g3f

abcAb
µ(x)Ac

ν(x) (1.37)
Thus the Lagrangian is invariant under the following local transfor-

mations of SU(3)C of fundamental representations (quarks):

q′
i(x) = Uij = ei

λa
ij
2 θa(x)qj(x) (1.38)
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and for adjoint representation (gluons):

Aa
µ

′
(x) = Aa

µ(x) − 1
g3
∂µθ

a(x) − fabcθb(x)Ac
µ(x) (1.39)

It is immediately evident that a non abelian group, Yang-Mills theory
[33], produces a self-interacting gauge boson. In particular from the
kinetic term one can observe trilinear and quartic self couplings. This
feature is not possible in QED where the gauge symmetry group is
the abelian U(1)Q.

Starting from ep elastic scattering it is possible to test the inelastic
region. Assuming the proton not point like, it is possible to compute
the expression of the differential cross section in the Laboratory (LAB)
frame. Firstly the kinematic variables of the scattering are defined.
The energy of the incoming and outgoing electron are E1 and E3 while
the angle with respect to the incoming electron is θ. Finally the the
differential cross-section results to be:

dσep

dΩ
|LAB = α2

4E2
1sin

4( θ
2 )
E1

E3
×

× [GE(q2) + τGM (q2)
1 + τ

cos2(θ2) + 2τGM (q2)sin2(θ2)] (1.40)

In this expression, the momentum transferred to the proton is
q2 = (p1 − p3)2 = −E1E3(1 − cos(θ)) with τ = −q2/4M2

P . The
electric and magnetic form factors (GE(q2) and GM (q2)) can be used
to understand the dimension and the structure of the proton. It
is important to understand that in the case of point-like particles
GE(q2) = GM (q2) = 1. From experiments rises the evidence of the
internal structure of the proton obtaining that:

GE(q2) = GM (q2)
2.79 = 1

(1 − q2

0.71 GeV 2 )2
(1.41)

Which corresponds to a radius of rP = 0.81 fm. In the case of elastic
scattering p2

4 = M2
P = (q+p2)2 and as a consequence q2 = −2MP (E1−

E3). Only in this case, the kinematic variables are functions only of
the angle θ. The expressions of E3(θ) and Q2(θ) = −q2(θ) for a given
fixed E1 are:

E3(θ) = E1MP

MP + E1(1 − cos(θ)) (1.42)

Q2(θ) = 2E2
1MP (1 − cos(θ)

MP + E1(1 − cos(θ)) (1.43)
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Since there is only one free parameter, the cross section in case of
point-like target as a function of a new variable, the fraction of energy
loss by the electron defined as:

y = p2 · q
p2 · p1

= (1 − E3

E1
)LAB = (sin2(θ2))CM (1.44)

Increasing the energy the electrons interacts with a point-like con-
stituent of the proton, that is a parton (either a quark or a gluon):

dσ̂eq

dQ2 = 4πα2

Q4 [1 − y + 1
2y

2]e2
q (1.45)

In this expression, the possibility to have a fractional charge eq had
been taken into account. To express the inelasticity of the scattering
one must assume that in the ep scattering the final state is no more
a proton: p2

4 = M2
X > M2

P where X as reported in fig. 1.5 is the set
of products of an inelastic collision. Therefore a new independent
variable describing the inelasticity of the collision can be built, the
Bjorken variable which is defined as follows:

x = Q2

2p2 · q
→ 1 (1.46)

At this point it is possible to introduce the Parton Distribution Func-
tions (PDF), fundamental for the LHC physics, which are the prob-
ability to find a parton (q) with a fraction of momentum fq of the
proton. It is possible to show that in the Infinite Momentum Frame
(IMF), where partons looks at rest in the transverse direction of motion
during the collision, the fraction fq corresponds to the Bjorken x. The
immediate consequence is that the cross section of DIS must coincide
with the scattering over all the possible point-like constituents of the
proton:

d2σ(ep)
dxdQ2 = 4πα2

Q4 [(1 − y)F2(x,Q2)
x

+ y2F1(x,Q2)]e2
q =

=
∑

q

dσ̂eq

dQ2 fq(x) (1.47)

The main results of this naive parton model are the Bjorken scaling
and the Callan-Gross relations whose experimental signatures showed
respectively that quarks are point-like and that they carry spin- 1

2 :

F2(x,Q2) = 2xF1(x,Q2) =
∑

q

xfq(x) (1.48)
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This is both a confirm of SU(3)F and SU(3)C . Experimentally the
fraction proton momentum carried by the up quark (fu =

∫ 1
0 xfu(x))

is twice the the one carried by the down quark (fd) and at the same
time something else (gluons) are missing since fu + fd ≈ 0.5.

Figure 1.5. Representation of electron − proton Deep Inelastic Scattering
(DIS).

To simplify the notation fq(x) = q(x) for quarks and fg(x) = g(x)
for gluons. Including the gluon emission in the naive parton model the
scaling is violated, meaning that q(x) → q(x,Q2). Then it is possible
to construct coupled evolution equations for PDFs (Altarelli-Parisi
equations [34]) which represent the non perturbative part of QCD in
scattering processes. They are necessary for the LHC experiment and
all the proton proton colliders.

dq(x,Q2)
d lnQ2 =

∫ 1

x

dy

y
[q(x
y
,Q2)Pqq(x

y
) + g(x

y
,Q2)Pqg(x

y
)]

dg(x,Q2)
d lnQ2 =

∫ 1

x

dy

y
[g(x

y
,Q2)Pgg(x

y
) +

∑
q

q(x
y
,Q2)Pgq(x

y
)]

(1.49)

In this expression Pab(z) is the splitting function, or the probability to
find the parton a with fraction of proton momentum x = zy generated
from an initial parton b with a proton fraction momentum y. The
peculiar fact is that Pgg(z) has a non-δ distribution. This confirms
the presence of self-interacting gluons.

As previously said PDFs cannot be computed perturbatively and
they must be measured in scattering experiments. AP equations let
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Figure 1.6. Fitted measured values for PDFs of proton in a range of
10−3 < x < 1 for Q = 2 GeV (left) and Q = 100 GeV (right). The
difference are explained by the Altarelli-Parisi equations. The peaks at
1/3 for u(x) and d(x) together with their proportions are the evidence
of SU(3)F .

us to predict the values of PDFs at higher values of Q2 measuring
them at low Q2. At the end to give an expression for an LHC process
two arbitrary scales must be included: the factorization scale (µf )
which defines the independence of the perturbative and unpertur-
bative part of the process and it is arbitrary to avoid Infrared (IR)
divergences; the renormalization scale (µr) which avoid the Ultraviolet
(UV) divergences at more than one loop calculations in the parton
cross sections. In the end a proton-proton collision can be displayed
as in fig. 1.7. As it can be seen immediately several soft and hard
interaction can happen in the same collision. All these effects must
be taken into account with Monte Carlo simulations, starting from
the hard scattering parton collision which can be computed nowadays
up to NNNLO obtaining:

σpp→X =

=
∑
ab

∫ 1

0
dxadxbfa(xa, µ

2
f )fb(xb, µ

2
f )σ̂ab→X(xa, xb, µ

2
r, µ

2
f ) (1.50)

Subsequently, because of asymptotic freedom, which is shown in
Figure 1.8, two other phenomena are considered: Parton Showering
and the Hadronization. The first represents the production of several
partons from a native parton until Q2 is high enough in each parton
produced. The latter represent the hadron formation from colored
partons due to color confinement of low energy partons. The set of
particles produced from a native parton is called Jet. Thus in the end
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there is a Jet for each parton produced during the collision.

Figure 1.7. Schematic view of a proton − proton collision. In red there
is the elementary parton collision that can be computed at NNNLO.
In purple a secondary interaction within the same collision. PDFs are
embedded into the selection of the parton. Then the blue lines represent
the parton emissions. The hadronization of uncolored is represented
in light green. The hadronic shower into the calorimeter detector is
represented in dark green.

In a suggestive way it is possible to talk about time scales. To
ensure that a parton is bound into a hadron it is necessary an approx-
imate time of τhad ≈ γR = pR2. In this expression γ is the Lorenz
factor of the parton, p is its momentum and R is approximately the
scale hadron dimension of about 1 fm. For light quarks at high
energies we’re talking about tens fm). During this time the parton
can radiate a gluon being a quark or split in a quark-antiquark pair
being a gluon it this formation time (τform) is much lower than the
hadronization time. The top quark is a special case: because of his
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high mass (mt ≈ 173 GeV ) the top quark decays (t → W+b) before
its hadronization, τt ≈ 0.1 fm; as a consequence there are no hadrons
composed by a top quark. The formation time can be described
by the virtuality of the parton τform ≈ p/q2 ≈ p/p2

T for soft and
collinear emissions. Therefore to create a new parton the condition is
τform << τhad or pT >> 1/R. The one can introduce the separation
time or τsep = τformpTR representing the time for a produced parton
to fall into a different hadron with respect to the native parton.

τform = p

p2
T

τsep = τform(pTR) τhad = τform(pTR)2 (1.51)

If the three time scales are well separated with pT >> 1/R a parton
shower occurs.

Figure 1.8. Measured values of QCD coupling constant αs showing the
asymptotic freedom.

The parton shower is due mostly to soft and collinear emissions
in the perturbative region where αs ≪ 1. This is possible because,
despite the coupling is small, each emission is weighted with αs

2π ln2 p.
Hard and non collinear emission do not contribute so much and as a
consequence a hadron jet is most of all formed by the native parton.
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2 | Experimental
Overview

Chapter 2 provides a detailed examination of the ATLAS Detector at
the Large Hadron Collider (LHC), an essential tool in the exploration of
fundamental particles and their interactions. This chapter is crucial for
understanding the experimental framework within which the research
described in this dissertation is conducted.

In Section 2.1, we offer an overview of the Large Hadron Collider
itself, the world’s most powerful particle accelerator, constructed by
the European Organization for Nuclear Research (CERN). This sec-
tion will cover the LHC’s design, its operational capabilities, and its
role in advancing high-energy physics. We will discuss the LHC’s
infrastructure, including its 27 km ring and the series of accelera-
tors that precede the final collision stage, elucidating how protons
are accelerated to nearly the speed of light before being collided at
unprecedented energies.

Furthermore, Section 2.3 will delve into the reconstruction of
physics objects from raw detector data. This includes tracking and
vertexing techniques, the Particle Flow algorithm, and the identifi-
cation of electrons, photons, muons, jets, tau leptons, and missing
energy. These reconstructed objects are critical for the analysis of
collision events and the extraction of meaningful physical insights.

This chapter lays the groundwork for understanding the experi-
mental setup and methodologies employed in the research, providing
the necessary context to appreciate the complexity and capabilities of
the ATLAS Detector and its pivotal role in probing the fundamental
aspects of particle physics.
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2.1 The Large Hadron Collider

Figure 2.1. Schematic view of the path of protons to be injected in the
Large Hadron Collider to reach an energy of Ep = 7.5 T eV . The three
injection rings (PSB, PS, SPS) are well visible.

The Large Hadron Collider (LHC) at Conseil Européen pour la
Recherche Nucléaire (CERN) in Geneva is the world’s largest and
most powerful particle accelerator. It was built between 1998 and
2008 in the tunnel previously used for the Large Electron-Positron
(LEP) collider. The LHC ring has a circumference of 26.7 km and it is
located at a depth of between 45 and 175 m. The Collider accelerates
protons (and ions, although for this thesis they are not discussed).
The protons can be potentially accelerated inside the collider up to
E = 7 TeV , equivalent to a centre of mass energy of

√
s = 14 TeV .

When the LHC was built in 2010, the center of mass energy was√
s = 7 TeV and it has increased over the years. Superconducting

magnets are used to bend the protons inside the ring. A scheme of
the LHC architecture is shown in Figure 2.1. At the LHC, four points
of interactions of the beams are placed along the ring. For each, a
main experiment is built:

• ATLAS (A Toroidal LHC ApparatuS)

• CMS (Compact Muon Solenoid)
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• ALICE (Large Ion Collider Experiment)

• LHCb (Large Hadron Collider beauty)

In particular, ATLAS and CMS [35, 36] are designed to detect a wide
range of signals both in the Standard Model and beyond. For this
reason, they are commonly known as multi-purpose experiments. Up
to now (2024), LHC has run twice and since 2022 the third Run is
ongoing.

During the first Run (Run1: 2010-2012), the energy in the center of
mass was

√
s = 7−8 TeV . During the first long shutdown (LS1: 2012-

2015), some of the detector systems were upgraded and the centre of
mass energy was raised to

√
s = 13 TeV . The second run lasted until

2018 (Run2: 2015-2018) and the collected integrated luminosity during
the first two runs was L = 140fb−1. With the end of the second long
shutdown (LS2: 2018-2022), which finished on the 4th of July of 2022
(10 years after the Higgs boson discovery), the third run of LHC started
(Run3: 2022-2025). During this shutdown, many upgrades were
performed on LHC and the individual experiments. The centre of mass
energy for Run3 is

√
s = 13.6 TeV and the instantaneous luminosity

is twice that of Run2. After the third shutdown (scheduled LS3:
2026-2029), the High Luminosity era should start with an integrated
luminosity expected to reach L = 3ab−1; this program is called HL-
LHC.

At the moment, the procedure of injection in the Large ring works
as shown in Figure 2.1. Protons must follow several phases before the
collisions. In a first step, Hydrogen gas is ionized and the protons
are accumulated to be accelerated up to Ep = 50 MeV energy by the
Linear Accelerator 2 (LINAC2). Then they are injected into three
successive circular accelerators. The first ring, the Proton Synchrotron
Booster (PSB), brings the proton energy up to Ep = 1.4 GeV ; the
second, the Proton Synchrotron (PS), up to Ep = 26 GeV ; and the
latter, the Super Proton Synchrotron (SPS), to Ep = 450 GeV . The
protons are organized in bunches ofNb = 1.1×1011 protons, temporally
spaced by t = 25 ns. At the end, they are injected into the LHC
ring where, thanks to 16 Radio-Frequency cavities (RF), the energy
ramps to Ep = 7.5 TeV . They work at T = 4.5 K, and a potential of
V = 2MV . The protons are confined within the ring thanks to 9300
magnets and dipoles reaching a magnetic field of B = 8.3 T . Moreover,
392 quadrupoles are used to focus the beam, which converge at four
points on the ring where the detectors are placed.
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The synchrotron is the ultimate frontier for the collider physics
[37]. The ancestor of this collider was the cyclotron which couldn’t
keep the orbital radius fixed with increasing energy. As a consequence
all the circle must be covered by a bending magnetic field. As a
consequence the synchrotron idea is to keep the radius fixed and
modify the magnetic field along the trajectory. The momentum of the
protons can be defined by:

p = βγv (2.1)

At the same time the protons are bended by the Lorentz force [38]
due to magnetic dipoles along the ring.

F = qv ∧ B (2.2)

Imposing a circular orbit the Lorentz force must be equal to the
centripetal force

F = mγ
v2

r2 r (2.3)

From these qualities the famous relation between the momentum
expressed in GeV (p), the magnetic field expressed in T (B) and the
radius of curvature expressed in m (ρ) is obtained:

p[GeV ] = 0.3zρ[m]B[T ] (2.4)

In particular, to have a fixed radius for protons p/0.3B must be
constant; therefore, B must increase to accelerate protons. At the
LHC, there are two vacuum pipes, and the protons to be collided flow
into them in opposite directions. As a consequence, pairs of bending
dipoles along the ring are placed. A schematic figure of the bending
dipoles and quadrupoles is shown in Figure 2.2. The quadrupoles are
responsible for the beam focusing.

The characteristic of an accelerating particle is the emission of
radiation. In particular, the emission radiation from synchrotrons is
called synchrotron radiation, and the energy loss can be estimated as:

∆E = E2

m4ρ
(2.5)

It is immediately clear that to reduce the energy loss, a huge ring is
needed. Moreover, it is convenient to accelerate particles with a higher
mass, such as protons. For example, the ratio between the energies



2.1 The Large Hadron Collider 35

Figure 2.2. (left) Transverse section of magnet dipoles. The magnetic
field in Blue is generated by the superconductor currents shown in Red.
The proton directions flows inside the beam pipes in Green in opposite
directions. The Lorentz force is shown in Black. (right) With the same
nomenclature a quadrupole is shown. The left quadrupole focuses along
the Y axis while the righ one focuses on the X axis. Subsequential
quadrupoles are used to focus the beam.

lost by protons and electrons is ≈ (me/mp)4 ≈ 10−13. In fact, protons
lose much less energy than electrons and can be accelerated more
easily. This is one of the main advantages of using hadron colliders to
probe the Standard Model at the highest energies possible. One of the
main disadvantages is that protons are composite particles and the
events are never pure; mostly, one cannot be sure that the transverse
momentum pT in the collision is null.

Another important feature of colliders is the instantaneous lumi-
nosity (L[fb−1s−1]) which enters into the cross-section formula. In
particular, it is possible to express the rate (R[s−1]) of a certain event
in terms of the luminosity, containing the collider’s properties, and
the cross section (σ[fb]), containing the fundamental physics:

R = dNev

dt
= σL (2.6)

The luminosity in this expression is also called instantaneous
luminosity to distinguish it from its integration over time, known as
integrated luminosity. Luminosity is a parameter that can be expressed
as a function of the beam parameters. In particular, assuming that
the protons within the beam are collected in bunches with a Gaussian
distribution, the instantaneous luminosity can be expressed as follows:

L =
N2

pNbf

4πσxσy
F =

N2
pNbfγ

4πϵNβ∗ F (2.7)
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In this expression the nominal values (for Run2) are:

• Np = 1.15 × 1011 is the number of proton in each bunch

• Nb = 2808 is the number of bunches

• f = 11.245 kHz is the revolution frequency

• σx/y = 15.9 µm is the transverse spatial dispersion of a beam

• σz = 8.4 cm is the longitudinal spatial dispersion of a beam

• β∗ = 0.55 m is the focusing of the beam

• ϵN = 3.75 µm rad is the normalised emittance.

• θc = 295 µrad is the convergence angle between two beams

• F = (1 + ( θC σz

2σx
)2)−1/2 takes into account the non collinearity of

the two beams

• L = 1034 fb−1 s−1

The second expression takes into account the Liouville theorem and the
conservation of phase space along the ring, considering the emittance
imposed at injection and defined by a distribution on the plane px/pz

vs x. The integrated luminosity for ATLAS over the years is shown in
Figure 2.3.

Another important effect that could occur at LHC is the Pile-Up
(PU), usually indicated as the average number of interactions per
bunch crossing, ⟨µ⟩. This phenomenon is due to multiple simultaneous
interactions that can be detected by the experiment. It is possible to
distinguish between in-time and out-of-time pile-ups according to their
origin. The Pile-Up is said to be in-time if the events are initiated
by two interactions in the same bunch; otherwise, if the events start
from different bunches, they are called out-of-time pile-up. Assuming
a Poissonian distribution, it is possible to give an estimation of the
number of pile-ups as µ = Lσinel/Nbf . This value differs depending
on the beam setting, which varies in each Run of the LHC. In Run2,
⟨µ⟩ ≈ 33.7. In Run3, it has increased to ⟨µ⟩ ≈ 33.7 with HL-LHC.
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(a) Run2 Luminosity (b) Run3 Luminosity

(c) Pile-Up Conditions

Figure 2.3. Integrated Luminosity over the years for the ATLAS exper-
iment during Run2 (top left) and Run3 (top right). Average Pile-Up
conditions during Run1, Run2 and Run3 (bottom)

2.2 The ATLAS Detector

A Toroidal LHC ApparatuS (ATLAS) is one of the four experiments
along the 27 km ring of the LHC [35]. It is the largest multi-purpose
particle detector ever built, measuring 25 m in diameter, 44 m in
depth, and weighing 7000 t. It is followed by the Compact Muon
Solenoid (CMS) detector, which is also placed along the same ring.
Both the ATLAS and CMS detectors are shown in Figure 2.4.

The ATLAS detector has cylindrical symmetry and shape around
the interaction point of the two beams. To achieve the highest possible
coverage around the interaction point, the detector is composed as
follows: There is an Inner Detector (ID), which is an inner tracking
system that allows for the reconstruction of interaction vertices and
the tracks of charged particles. The ID is contained within a super-
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conducting solenoid generating a 2 T axial magnetic field, capable
of bending charged particles. Outside of this tracker system, there
is an Electromagnetic Calorimeter (ECAL) followed by a Hadronic
Calorimeter (HCAL), which together allow for the measurement of
energy deposited by electromagnetic and hadronic particles that reach
it. A characteristic part of ATLAS is the final muon spectrometer
(MS) composed of toroidal magnets providing a 1 T magnetic field [39]
around the experiment. A schematic view of the ATLAS experiment
is shown in Figure 2.5.

Figure 2.4. (left) ATLAS detector. (right) CMS detector.

This complex experiment has been designed to further study and
investigate the Standard Model (and beyond). It is necessary for the
detectors to have as fast a response as possible in order to acquire
the greatest possible set of data. Moreover, each part of the detector
must have enough efficiency and resolution to be able to distinguish
interesting events among the collisions. To provide a brief description
of the particle interactions, one can observe different behaviors for
different particles. Charged particles are bent by the compact solenoid
in the ID, and their momentum can be measured from their geometrical
sign in the ID. The ECAL is able to measure the energy released by
photons and electrons, producing electromagnetic showers within
it. The HCAL, on the other hand, is able to measure the energy
released by both charged and neutral strongly interacting particles
such as protons, neutrons, and charged pions, generating hadronic
showers within it. Muons are then able to travel many meters within
the detector, leaving a sign in the ID, but are not stopped by the
Calorimeters. For this reason, the MS is needed to identify them. The
only particle in the Standard Model that cannot be directly measured
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Figure 2.5. ATLAS detector and its composition.

with this detector is the neutrino, which almost doesn’t interact at
all with the detector. For this reason, it is possible to measure it
indirectly through the missing energy in the event.

2.2.1 Coordinate System
Given the symmetry of the detector, it is useful to introduce an
appropriate coordinate system. In particular, it is possible to describe
the products of proton-proton collisions in terms of relativistic invariant
quantities. Therefore, since the collisions are head-on, everything
along the transverse plane (x− y) is invariant. The most important
parameters include the azimuthal angle ϕ ∈ (−π, π]. The transverse
momentum pT before the collision is known to nearly vanish, and due
to its conservation, it is natural to infer that the sum of the collision
products’ transverse momenta must also vanish.

In general, in the LAB frame, it is possible to use polar coordinates
with the polar angle θ ∈ [0, π]. This angle is formed with respect to the
z-axis and is not Lorentz invariant. Consequently, another parameter
to define is the longitudinal direction. In particular, it is possible to
introduce the concept of rapidity y and its boost transformations:

y = 1
2 ln

(
E + pz

E − pz

)
⇒ y′ = y + 1

2 ln
(

1 + β

1 − β

)
(2.8)
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It becomes immediately clear that differences in rapidity are Lorentz
invariant, even though rapidity itself is not.

Figure 2.6. Pseudo-rapidity (η) values and corresponding polar angle (θ)
values.

Evaluating the rapidity for p ≫ m, one obtains the pseudo-rapidity
η, which is itself Lorentz invariant and can be expressed as a function
of the polar angle cos(θ) = pz/p:

y
β→1−−−→ η = − ln

(
tan

(
θ

2

))
(2.9)

This correspondence is shown in Figure 2.6. Another parameter,
particularly important for jets, is the radius describing an angular
distance that is relativistic invariant:

∆R =
√
∆ϕ2 +∆η2 (2.10)

2.2.2 Magnetic systems
The ATLAS experiment is equipped with four magnetic fields gen-
erated by superconductive coils. The central solenoid provides the
magnetic field for the Inner Detector (ID), and three solenoids are
used for the Muon Spectrometer (MS); one composes the barrel part
of the spectrometer, while the last two are placed at the end-caps. A
schematic of the magnets is shown in Figure 2.7.
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Figure 2.7. Design of the 4 magnets of the ATLAS experiment.

The central solenoid is designed with a diameter of 2 m to optimize
the amount of material in front of the calorimeters, providing an axial
magnetic field of 2 T . With the toroidal magnets, the length and the
diameter reach about 20 m and 24 m respectively. The magnetic field
varies with space from 0.1 T to 3 T .

The magnetic fields are necessary to bend charged particles and
therefore to measure their momentum. As described in the previous
section, the momentum depends on the radius of curvature ρ and the
magnetic field:

pT [GeV ] = 0.3zB[T ]ρ[m] (2.11)

Thus, the transverse momentum can be measured with the mea-
surement of the sagitta s, namely the distance between the straight
direction and the bent direction. From geometrical considerations,
shown in Figure 2.8, if s ≪ ρ then:

pT [GeV ] = 0.3B[T ]l2[m2]
8s[m] (2.12)

2.2.3 The Inner Detector
The ATLAS Inner Detector (ID), shown in Figure 2.9, is a tracking
sub-detector surrounding the interaction point. It serves as the ATLAS
tracking system for Run2 and Run3. It has a diameter of 2.1 m and
a length of 6.2 m, and is fully immersed in the solenoidal magnetic
field. Its purpose is to measure the bending of charged particles’
tracks in the magnetic field and to reconstruct the primary vertices
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Figure 2.8. Scheme of the momentum measurement with the sagitta s of
a bending particle within a magnetic field.

as well as secondary vertices from decay products. From the bent
trajectory, it is then possible to reconstruct the sign of the charge of the
particle crossing the ID, its relative momentum, and the extrapolated
production point.

Figure 2.9. Scheme of the Inner Detector and transversal view of the four
sub-systems with their spacing from the center.

The ID consists of four sub-systems, covering a total range of
|η| < 2.5:

• Insertable B-Layer (IBL)
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• Pixel Detector (PD)

• Semiconductor Tracker (SCT)

• Transition Radiation Tracker (TRT)

The Insertable B-Layer [40], the innermost pixel layer, was built
around the beryllium beam pipe and inserted into the Pixel Detector
during the first upgrade after Run1. It surrounds the beam pipe
at 33 mm and enables more precise measurements near the Interac-
tion Point (IP). It is particularly effective in distinguishing between
displaced secondary vertices, i.e., decay products of B-Hadrons, and
primary vertices from p-p interactions.

The Pixel Detector offers higher granularity compared to the outer
detectors. It consists of 1744 silicon pixel modules arranged in three
concentric barrel layers and two end-caps, each with three disks. The
pixels are fragmented along η, ϕ, and z axes, with dimensions of
50 × 400 µm2. The last cylindrical layer is positioned 122.5 mm from
the center.

The Semiconductor Tracker (SCT) spans radial distances from
299 mm to 514 mm. The detector comprises 4088 modules of silicon-
strip detectors arranged in four concentric barrels and two end-caps,
each with nine disks. The strips in the barrels are parallel to the
solenoid field and beam axis, and have a constant pitch of 80 µm.

The Transition Radiation Tracker (TRT) is the outermost system
of the ID, covering radial distances from 554 mm to 1062 mm. Unlike
the inner parts, it is a gas detector. The detector consists of 298,304
proportional drift Xenon tubes, each 4 mm in diameter. The straws
in the barrel region are arranged in three cylindrical layers. It is
highly sensitive to distinguishing electrons from pions. Its operating
principle involves transition radiation in dielectrics, which enables
particle identification (PID) because the number of photons produced
in the transition radiation is proportional to the mass of the crossing
particle.

The ID is ultimately designed to detect particles with pT >
0.4 GeV , and it is possible to estimate the overall relative uncer-
tainty on the momentum as follows:

σpT

pT
= 0.05% pT [GeV ] ⊕ 1% (2.13)
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2.2.4 The Calorimeters

Unlike the trackers, calorimeters measure the energy of a particle by
absorbing it. A key feature of calorimeters is that their resolution
improves with the energy of the particles. ATLAS is equipped with
two types of calorimeters: the Electromagnetic Calorimeter (ECAL)
and the Hadronic Calorimeter (HCAL). The layout of the ATLAS
calorimeters is shown in Figure 2.10, and they are positioned around
the ATLAS Inner Detector (ID) outside the solenoid magnet.

Unlike the CMS calorimeters, the ATLAS calorimeter is a sampling
calorimeter, which means it consists of alternating layers of active
medium and passive absorber. The overall energy resolutions for
ECAL and HCAL are respectively:

σE

E
= 10%√

E
⊕ 0.7% σE

E
= 50%√

E
⊕ 3% (2.14)

The critical parameters defining ECAL and HCAL are the radiation
length X0 and the interaction length λI , respectively.

Figure 2.10. Schematic view of both Electromagnetic Calorimeter and
Hadronic Calorimeter.
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Figure 2.11. ECAL accordion geometry with LAr active material and Pb
absorber.

The Electromagnetic Calorimeter

The electromagnetic calorimeter operates based on two physical pro-
cesses: pair production and Bremsstrahlung. In physics, it is well
known that an electron or a positron in a medium can radiate a photon
(Bremsstrahlung). The characteristic length for this process is the
radiation length X0. Simultaneously, a photon with sufficient energy
in a medium can split into an e+ − e− pair. The characteristic length
for this process is 9X0

7 . Radiation emission occurs predominantly
above the critical energy for electrons in the medium, which is defined
as:

Esolid
c = 610 MeV

Z + 1.24 Egas
c = 710 MeV

Z + 0.92 (2.15)

Below the critical energy, electrons cease motion primarily through
ionization. The sequence of pair production and Bremsstrahlung in a
medium suggests that the calorimeter can be defined in terms of the
number of radiation lengths it spans. Furthermore, X0 depends on
the chosen medium and follows an empirical expression:

X0 = 1433[g cm−1]A
Z(Z + 1) ln 183

Z1/3

(2.16)

The ECAL is a sampling calorimeter consisting of alternating
layers of Liquid Argon (LAr, X0 = 140 mm) as the active material
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and Lead (Pb, X0 = 5.6 mm) as the absorber. A simple view of this
geometry is shown in Figure 2.11. The calorimeter is divided into
a barrel section with |η| < 1.475 and two end-cap components with
1.375 < |η| < 3.2. The total thickness of the ECAL exceeds 22 X0 in
the barrel and 24 X0 in the end-caps.

Hadronic Calorimeter

A hadronic shower is initiated by a strongly interacting particle,
such as charged pions. Neutral pions decay, with a lifetime of τ =
8×10−17 s, into two photons, which then produce two electromagnetic
showers. Describing a hadronic shower is more complicated than
describing an electromagnetic shower because other particles can be
produced in nuclear reactions. The products of the hadronic shower
are mostly pions, hence there could be an electromagnetic component.
The energy deposited within a hadronic shower can be divided into
three categories: ionizing particles (approximately 60%), neutrons
(approximately 10%), and invisible energy (approximately 30%). The
most important parameter of a hadronic calorimeter is the interaction
length λI , which is the average distance a hadron must travel inside
a medium before a nuclear interaction occurs. The ATLAS HCAL
is composed of three parts with a total thickness at η = 0 of 11 λI .
With this configuration, it is possible to achieve a high resolution for
measuring the missing transverse energy in an event (Emiss

T ), which
is used to infer the presence of neutrinos.

The Tile Calorimeter (TC) is placed outside the ECAL. Its barrel
covers the region with |η| < 1.0, with two extensions in the region
of 0.8 < |η| < 1.7. It is a sampling calorimeter using steel (Fe,
λI = 168 mm) as the absorber and scintillating tiles as the active
material. Radially, the Tile Calorimeter extends from an inner radius
of 2.28 m to an outer radius of 4.25 m. It is segmented in depth into
three layers, approximately 1.5, 4.1, and 1.8 interaction lengths λI

thick for the barrel, and 1.5, 2.6, and 3.3 λI for the extended barrel.
The total thickness at η = 0 is 9.7 λI .

The LAr hadronic end-cap calorimeter (HEC) consists of two
independent wheels per end-cap, located directly behind the end-cap
electromagnetic calorimeter. To reduce the material density drop
at the transition between the end-cap and the forward calorimeter,
which starts at η = 3.1, the HEC extends out to |η| < 3.2, thereby
overlapping with the forward calorimeter. Similarly, the HEC’s η
range also slightly overlaps that of the Tile Calorimeter by extending
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to |η| > 1.5. Each wheel is divided into two segments in depth, totaling
four layers per end-cap.

The LAr forward calorimeter (FCal) is integrated into the end-cap
cryostats, providing clear benefits in terms of uniformity of calorimetric
coverage. The FCal is approximately 10 interaction lengths deep and
consists of three modules in each end-cap: the first, made of copper,
is optimized for electromagnetic measurements, while the other two,
made of tungsten, predominantly measure the energy of hadronic
interactions. Ultimately, it provides coverage from 3.1 < |η| < 4.9.

2.2.5 The Muon Spectrometers
The muon is the most penetrating particle (excluding the neutrino)
due to its mass of mµ = 105.66 MeV . Its main characteristic is that it
is a lepton and does not interact strongly. Additionally, its relatively
small mass allows for a long decay time, expressed as:

τ−1µ = G2
Fmµ

5

192π3 F

(
m2

e

m2
µ

)
H

(
m2

e

m2
µ

, α(mµ)
)

= (2.20 × 10−6 s)−1

(2.17)
Given that its critical energy is much higher than that of the electron:

Esolid
c = 5700 GeV

(Z + 1.47)0.838 Egas
c = 7980 GeV

(Z + 2.03)0.879 (2.18)

at the energies produced at LHC, the muon does not radiate Bremsstrahlung
photons but primarily behaves as a Minimum Ionizing Particle (MIP).
This means that the muon traverses the detectors at the minimum
of the Bethe-Bloch function, losing 1

ρ
dE
dx ≈ 1 − 2 MeV cm2/g, as

depicted in Figure 2.12.
Consequently, a specialized apparatus is required to detect muons

and all particles that penetrate the calorimeters. This is the purpose of
the Muon Spectrometer (MS) in ATLAS. Within the range |η| < 1.4,
the magnetic bending by the large barrel toroid is employed. For
1.6 < |η| < 2.7, muon tracks are bent by two smaller end-cap magnets
inserted at both ends of the barrel toroid. The transition region,
1.4 < |η| < 1.6, utilizes magnetic fields provided by both the barrel
and end-cap magnets. This configuration ensures that the field is
mostly orthogonal to the muon tracks, minimizing errors due to
multiple scattering.

In the barrel region, tracks are measured in chambers arranged in
three cylindrical layers around the beam axis. In the transition and



48 2. Experimental Overview

Figure 2.12. Bethe-Bloch functions for muons on Cu.

end-cap regions, the chambers are installed in planes perpendicular to
the beam, also in three layers. A schematic of the system is shown in
Figure 2.13.

Over most of the η-range, precision measurements are provided
by Monitored Drift Tubes (MDT). These are aluminum tubes with a
3 cm diameter and lengths ranging from 1 to 6 m, filled with Ar−CO2
at a 93 : 7 ratio. At the center of each tube, there is a tungsten (W)
anode wire. Since the drift time of the electrons inside the tube is
700 ns, significantly greater than the 25 ns time separation between
two bunches, the MDTs are not suitable as a first-level trigger system.
Cathode Strip Chambers (CSC) are used in the innermost tracking
layer due to their higher rate capability and time resolution. CSC
covers the region of 2.0 < |η| < 2.7.

The trigger system covers the pseudo-rapidity range |η| < 2.4.
Resistive Plate Chambers (RPC) are used in the barrel and Thin
Gap Chambers (TGC) in the end-cap regions. The trigger chambers
for the muon spectrometer serve threefold purposes: they provide
bunch-crossing identification, define well-established pT thresholds,
and measure the muon coordinate in the direction orthogonal to that
determined by the precision-tracking chambers. The resolution on
the momentum depends on the muon’s momentum and η. Overall,
the relative uncertainty for muons at pT = 100 GeV is σpT

/pT = 3%.
This grows to σpT

/pT = 3% for pT = 1 TeV .
During the LS2, the small wheel was replaced with a New Small

Wheel (NSW) [41]. The NSW is one of the main upgrades in Run3
but is beyond the scope of this dissertation.
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Figure 2.13. Muon spectrometer and magnetic toroid system.

2.2.6 Trigger System
During the data taking of Run2, two consecutive bunches are separated
by 25 ns, providing a collision frequency of 40 MHz. Acquiring
the entirety of the events would be very difficult, unnecessary, and
impossible. For this reason, a multi-tier trigger system is necessary
to select the interesting events for reconstruction. The trigger must
make decisions quickly and use simple criteria to determine which
events to store on tapes.

The trigger system from the second run is divided into two levels:

• the Level 1 (L1) Trigger, which reduces the number of events to
100 kHz with a latency time of 2.5 µs,

• the High Level Trigger (HLT), comprising the previous Level 2
(L2) and Level 3 (L3) triggers, which further reduces the number
of events to 1k Hz.

In this dissertation, the dataset analyzed mainly comes from the
entire Run2 and from partial Run3 data taking.
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2.3 Physics Objects Reconstruction
To convert the data collected by the sub-detectors of the ATLAS
experiment into physics objects that can be used by the analysis
teams, dedicated software named ATHENA [42] has been developed.
All algorithms are centrally developed within the ATHENA framework.
Each physics object is then calibrated to account for single detector
effects or systematic errors during data acquisition.

The reconstruction process starts from lower-level reconstructed
objects, such as hits in the Tracker or cells in the Calorimeter, to
produce higher-level objects like tracks or calorimeter clusters. From
these variables, it is then possible to produce physics objects like
reconstructed particles. Given the complexity of this process, the
algorithms used may encounter identification or isolation problems.
To discriminate a reconstructed object from a similarly behaving one
(background), it is also possible to define various working points to
achieve a good compromise between signal efficiency and background
misidentification.

2.3.1 Tracking and Vertexing
Charged particles are reconstructed from the energy deposits in the
ATLAS tracking systems, the ID and the MS. This section focuses
on the reconstruction in the ID [43]. During Run 2 data taking,
hundreds of charged particles were produced at each BC, and their
reconstruction is crucial for the physics program since many physics
objects rely on the tracking system: vertexing, lepton identification,
flavor tagging, etc. ATLAS tracking uses as input, hit clusters in the
Pixel and SCT detectors, and drift circles in the TRT.

The two algorithms used to reconstruct a track are as follows:

• Inside-out algorithm: This algorithm is performed in two
main steps: Seeding and Finding. Segments are created by
connecting triplets of space-points, searching for patterns of hits
that could belong to the same particle. This way, the algorithm,
assuming some knowledge of the expected curvature of the tracks
in the magnetic field and compatibility of the hit position with
the track path, can efficiently reconstruct charged particles from
the innermost part of the tracker outward. After identifying
the track segments, these are fitted together into complete track
trajectories. Track fitting uses a Combinatorial Kalman Filter
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(CKF) mathematical method to estimate the most likely path
of the charged particles, creating track candidates. These tracks
take into account effects arising from Multiple Scattering (MS)
or energy loss in the material. Once the track candidate is
reconstructed, the quality of the track can be evaluated via the
goodness of the fit or the number of hits associated with the
track. If ambiguities arise with overlapping tracks or shared hits,
an ambiguity solver is applied, ranking track candidates based
on their quality. Finally, a refinement and extension to TRT are
applied.

• Outside-in algorithm: To increase the acceptance of particles
created at great distances with fewer hits in the ID, such as
products from long-lived particles like heavy hadrons, photon
conversions, and hadronic interactions, a complementary outside-
in algorithm is used. This reconstruction starts from the TRT
measurements, adding sequentially the ID hits.

Some acceptance cuts are applied to reconstructed tracks to be
used in physics analyses. The tracks are required to be within the
ID acceptance (|η| < 2.5), have a pT > 0.5 GeV , and pass additional
quality criteria such as the number of silicon detector hits and the
association with the primary vertex.

In the process of reconstructing vertices from many tracks, the
focus is on identifying the primary vertex (PV) — essentially, the point
where the most significant proton-proton (pp) collision within each
bunch crossing occurs. This identification is accomplished through an
iterative process of vertex finding and fitting. The most important
quantities entering this process are the two impact parameters (IP):
the longitudinal IP d0 and the transverse IP z0. The procedure begins
with an initial guess of a vertex, known as a vertex seed. Tracks are
evaluated to determine if they are likely to have originated from this
proposed vertex location. This assessment relies heavily on how well
the impact parameters of the measured tracks are compatible with the
vertex’s position. A track that matches well is considered compatible
and is added to the vertex, with its influence on the vertex’s proposed
location being adjusted accordingly — essentially, more compatible
tracks have a greater impact on determining the vertex’s position.
Once a track is added to a vertex, all the tracks associated with that
vertex are analyzed together under the assumption they all originated
from the same point. This collective assessment allows for a more
precise determination of the vertex’s location. However, not all tracks
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will be compatible with the initially proposed vertex. Those that
don’t fit are used to start the process again, serving as seeds for the
identification of additional vertices. This cycle of evaluation, fitting,
and refitting continues until no more vertices can be identified from
the available tracks. For a collection of tracks to be considered a valid
primary vertex candidate, it must consist of at least two tracks, each
with pT > 0.5GeV . Among the identified valid candidates, the primary
vertex is usually distinguished as the one with the largest sum of the
squared transverse momenta of its associated tracks, but other custom
methods can be implemented depending on the interested physics
case. This criterion helps ensure that the selected primary vertex
corresponds to the hardest collision event within the bunch crossing,
given that higher momentum tracks are more likely to originate from
a primary collision event.

2.3.2 Particle Flow algorithm in ATLAS
The Particle Flow algorithm [44, 45, 46, 47] is implemented in ATLAS
and is designed to optimally reconstruct the energy of neutral particles
[46]. The algorithm achieves this by removing the calorimeter energy
deposits attributed to charged hadrons, utilizing measurements of
their momenta from the Inner Detector. Ultimately, Particle Flow
objects consist of the remaining calorimeter energy and tracks that
are matched to the hard interaction.

The ATLAS design specifies a calorimeter energy resolution for sin-
gle charged pions at the center of the detector and an inverse transverse
momentum resolution for the tracker, respectively, as follows:

σ(E)
E

= 50%
E

⊕ 3.4% ⊕ 1%√
E
σ(1/pT ) · pT = 0.036% · pT ⊕ 1.3%

(2.19)

where energies and momenta are in GeV . Consequently, ATLAS
benefits from integrating tracking and calorimetric information into a
single hadronic reconstruction step. For low-energy charged particles,
the momentum resolution of the tracker is significantly better than
the energy resolution of the calorimeter. Moreover, the detector’s
acceptance is extended to softer particles, as tracks for charged parti-
cles with a minimum transverse momentum of pT > 400 MeV often
do not surpass the noise thresholds required for Particle Flow topo-
clusters, which will be explained later. The angular resolution of a
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single charged particle, reconstructed using the tracker, is much better
than that of the calorimeter. Low-pT charged particles originating
within a hadronic jet are swept out of the jet cone by the magnetic
field by the time they reach the calorimeter. Hence, using the track’s
azimuthal coordinate, these particles are clustered into the jet.

At high energies, however, the calorimeter resolution surpasses
that of the tracker, and a combination of information from both is
used for event reconstruction. In the forward direction, outside of the
tracker’s acceptance, only calorimeter information is utilized.

Figure 2.14. The granularity in ∆η × ∆ϕ of all the different ATLAS
calorimeter layers relevant to the tracking coverage of the inner detector.

As outlined in the previous section, the ID is surrounded by a
2 T magnetic field, providing track reconstruction up to |η| = 2.5.
In contrast, the calorimeter provides coverage up to |η| = 4.9. Each
calorimeter is segmented in the longitudinal direction into multiple
layers. In the region |η| < 1.8, a pre-sampler detector is used to
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correct for the energy lost by electrons and photons upstream of the
calorimeter. The detailed granularity, expressed as ∆η × ∆ϕ, of all
the layers is shown in Figure 2.14.

The segmentation of the calorimeter allows for a three-dimensional
reconstruction of particle showers, implemented through the topologi-
cal clustering algorithm. Topo-cluster (TC) cells are grouped together
based on their energy deposit and their topological position. TC cells
are seeded by cells whose energy measurements Ec exceed four times
the noise standard deviation σc: Ec > 4σc. TCs are then formed
by adding adjacent cells whose energy exceeds two times the noise
standard deviation: Ec > 2σc. TCs are completed by incorporating
all adjacent cells to these last mentioned.

The TC algorithm is not primarily used for particle identification
but rather for the separation of shower types—i.e., electromagnetic and
hadronic—and for noise suppression. Moreover, the noise thresholds
vary across the calorimeter layers.

In the end, the PFlow algorithm corresponds to an energy subtrac-
tion method, removing the overlap between the momentum and the
calorimeter energy deposit. It can be summarized as shown in Figure
2.15.

Figure 2.15. A flow chart of how the particle flow algorithm proceeds,
starting with track selection and continuing until the energy associated
with the selected tracks has been removed from the calorimeter. At the
end, charged particles, topo-clusters which have not been modified by
the algorithm, and remnants of TC which have had part of their energy
removed remain.

First, well-measured tracks are selected. The algorithm then
attempts to match each track to a single TC. The expected energy
in the calorimeter is parametrized based on the TC position and the
track momentum. The algorithm evaluates the probability that the
particle energy was deposited in more than one TC and decides if it
is necessary to add additional TCs for the subtraction. Finally, if the
remaining energy in the TCs is consistent with the expected shower
fluctuations of a single particle’s signal, the TC remnants are removed.
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This procedure is applied to tracks sorted in descending pT order, first
to cases where only a single TC is matched to the track, and then to
the other selected tracks. This methodology is illustrated in Figure
2.16.

Figure 2.16. Idealised examples of how the algorithm is designed to
deal with several different cases. The red cells are those which have
energy from the π+, the green cells energy from the photons from the
π0 decay, the dotted lines represent the original TC boundaries with
those outlined in blue having been matched by the algorithm to the π+,
while those in black are yet to be selected. The different layers in the
electromagnetic calorimeter (Presampler, EMB1, EMB2, EMB3) are
indicated. In this sketch only the first two layers of the Tile calorimeter
are shown (TileBar0 and TileBar1).

The samples used for the algorithm’s validation include single-
pion and dijet Monte Carlo (MC) samples. Charged pions dominate
the charged component of the jet, which on average constitutes two-
thirds of the visible jet energy. Another quarter of the jet energy is
contributed by photons from neutral hadron decays, and the remainder
is carried by neutral hadrons that reach the calorimeter. Because the
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majority of tracks are generated by charged pions, particularly at low
pT , the pion mass hypothesis is assumed for all tracks used by the
particle flow algorithm to reconstruct jets.

For a given TC i, the fraction of the particle’s true energy contained
in the i-th TC Eπ

i , relative to the total true energy deposited by the
particle in all clustered cells, is defined as:

εi = Eπ
i∑

i E
π
i

(2.20)

The TC with the maximum value of εi is designated as the leading
TC: εlead = maxi εi. The minimum number of TCs needed to capture
at least 90% of the particle’s true energy is denoted by n90 and defined
by:

n90∑
i=0

εi > 90 (2.21)

Moreover, TCs can be contaminated by several particles, hence the
purity of TC i can be denoted as ρi and is defined by:

ρi = Eπ
i

Eall
i

(2.22)

A strict selection criterion is imposed on tracks, requiring at least
9 hits in the silicon detector. Additionally, tracks must be within
|η| < 2.5 and have pT > 0.5 GeV .

The algorithm attempts to match each selected track to a sin-
gle topological cluster (TC) by computing the angular distance ∆R
between the extrapolated track at the second electromagnetic (EM)
layer and the TC barycenter. A preliminary selection of TCs is made,
requiring that for the selected i-th TC, the ratio Eπ

i /pT exceeds 10%.
For TCs containing at least 90% of the true energy, the distribution of
Eπ

i /pT is displayed in Figure 2.17 across different pT and η ranges.
For TC j, which is not the nearest to the track, the distribution

is peaked at less than 10%. In contrast, for the well-associated TC,
the peak is at more than 50%, with the difference increasing as pT

increases.
To initiate the energy subtraction, it is necessary to have a parametriza-

tion of the average deposited energy:

⟨Edep⟩ = pT

〈Eref
i

pref
T

〉
(2.23)
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Figure 2.17. The distributions of Ei/pT for the TC i with >90 % of the
true energy of the particle and the closest other TC in ∆R. The data are
taken from a dijet sample without pile-up with 20 < pT < 500 GeV and
the statistical uncertainties on the number of MC simulated events are
shown as a hatched band. A track is only used for energy subtraction if
a TC is found inside a cone of ∆R = 1.64 for which Ei/pT > 10 %, as
indicated by the vertical dashed line.

where "ref" indicates that the parametrization uses a single-particle
sample. The expression

〈
Eref

i

pref
T

〉
is a function of pT , η, and the Layer

of High Energy Density (LHED), which will be described later. The
spread of expected energy deposition is derived from the standard
deviation of the Eref

i /pref
T distribution as σ(Edep) = pT σ(Eref

i /pref
T ).

The dense electromagnetic (EM) shower has an ellipsoidal shape in
the η × ϕ plane. It is appropriate to longitudinally collocate this
core to begin the energy subtraction. The LHED is defined as the
layer that exhibits the greatest variation in energy density relative
to the variation in the number of interaction lengths in the layers.
The procedure used to determine the Layer of High Energy Density
(LHED) is as follows:

• First, compute the energy density per layer (l) per cell (c),
expressing the volume of the cells (V l

c ) in terms of radiation
lengths (X0) as:

ρl
c = El

c

V l
c

[
MeV

X3
0

]
(2.24)
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Only cells in the TC matched with the track are considered.

• Cells are then weighted with a Gaussian centered at the extrap-
olated track position, with a spread of ∆R = 0.035, similar to
the Molière radius in an LAr calorimeter (wl

c).

• A weighted energy density per layer is then computed as:

⟨ρ⟩l =
∑

c

wl
cρ

l
c (2.25)

• Finally, assuming dl is the depth in radiation lengths of the layer
l:

∆ρl = ⟨ρ⟩l − ⟨ρ⟩l−1

dl − dl−1 (2.26)

where d0 = 0 λI and ⟨ρ⟩0 = 0 MeV/X3
0 , and the first layer of

the calorimeter has index 1.

• The Layer of High Energy Density is then determined by:

LHED = max
l
∆ρl (2.27)

Particles do not always deposit all their energy within a single TC. The
discriminant used to handle these cases is defined as the significance
of the difference between the expected energy (⟨Edep⟩) and the energy
of the matched TC (Ei):

S(Ei) = Ei − ⟨Edep⟩
σ(Edep) (2.28)

The distribution of S(Edep) is shown in Figure 2.18 for two cate-
gories of matched TC: those with εi > 90% and those with εi < 70%.

From the dashed line, it is clear that more than 90% of TCs with
ε > 90% have S(Edep) > −1. Based on this observation, a split
recovery is applied when S(Edep) < −1 for TCs within a ∆R = 0.2
from the track’s extrapolated position. In this way, the split recovery
primarily addresses cases where εi < 70%. Finally, the subtraction
procedure can be described as follows:

Once a set of TCs is selected, the subtraction begins. If the
energy in the selected TCs, denoted as ET C , is less than the expected
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Figure 2.18. The significance of the difference between the energy of the
matched TC and the expected deposited energy ⟨Edep⟩ and that of the
matched topo-cluster, for π± when < 70 % and > 90 % of the true
deposited energy in TC is contained in the matched TC for different
pT and |η| ranges. The vertical line indicates the value below which
additional TC are matched to the track for cell subtraction. Subfigures
(a)–(f) indicate that a single cluster is considered (93, 95, 95, 94, 95, 91) %
of the time when ε > 90 %; while matched additional TC are considered
(49, 39, 46, 56, 52, 60) % of the time when ε < 70 %. The data are
matched taken from a dijet sample without pile-up with 20 < pT <
500 GeV and the statistical uncertainties on the number of MC simulated
events are shown as a hatched band.

energy ⟨Edep⟩, then all the energy is removed. Otherwise, a cell-by-
cell subtraction must be performed. Starting from the extrapolated
track position in the LHED, a parametrized shower model is used
to extrapolate the most likely energy density profile in each layer.
This profile is determined from a pure π± sample and depends on
pT , η, and LHED. Then, equally spaced rings in η − ϕ space are
created around the extrapolated track, ensuring that at least one cell
is contained in each ring. Subsequently, the average energy density of
each ring is computed, and the rings are ranked in descending order
of energy density.

The subtraction begins from the ring of high energy density within
the LHED. If the energy in the ring is less than the energy needed
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to reach ⟨Edep⟩, then each cell in the ring is scaled down, and the
process is halted. An example of this subtraction procedure is shown
in Figure 2.19.

Figure 2.19. An idealised example of how the cell-by-cell subtraction
works. Cells in two adjacent calorimeter layers (EMB2 and EMB3) are
shown in grey if they are not in clusters, red if they belong to a π+

cluster and in green if contributed by a π0 meson. Rings are placed
around the extrapolated track (represented by a star) and then the
cells in these are removed ring by ring starting with the centre of the
shower, (a), where the expected energy density is highest and moving
outwards, and between layers. This sequence of ring subtraction is
shown in subfigures (a) through (g). The final ring contains more energy
than the expected energy, hence this is only partially subtracted (g),
indicated by a lighter shading.

If the remaining energy in the TC is less than 1.5σ(Edep), it is
assumed that the TC was created by a single particle, and the residual
energy is considered as a shower fluctuation. Figure 2.20 illustrates
how this criterion effectively separates multiple-particle from single-
particle TCs. After the final step, the set of selected tracks and
residual TCs should ideally represent the reconstructed event with no
double counting of charged and neutral particles, respectively.
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Figure 2.20. The significance of the difference between the energy of the
matched TC and the expected deposited energy ⟨Edep⟩ for π± with
either < 70 % or > 90 % of the total true energy in the matched TC
originating from the π± for different pT and |η| ranges. The vertical
line indicates the value below which the remnant TC is removed, as
it is assumed that in this case no other particles contribute to the
TC. Subfigures (a)–(f) indicate that when ρ > 90 % the remnant is
successfully removed (91, 89, 94, 89, 91, 88) % matched of the time; while
when ρ < 70 % the remnant is retained (81, 80, 76, 84, 83, 91) % of the
time. The data are matched taken from a dijet sample without pile-up
with 20 < pT < 500 GeV and the statistical uncertainties on the number
of MC simulated events are shown as a hatched band.

2.3.3 Electrons

Electron reconstruction is a critical process in ATLAS. This process
involves identifying and characterizing electrons produced in particle
collisions. Given the fundamental role electrons play in a wide range
of physical phenomena, accurate electron reconstruction is crucial.

The reconstruction of electrons begins with the detection of signals
in the electromagnetic calorimeter. When an electron (or a positron)
enters the calorimeter, it initiates a shower of secondary particles.
This shower produces a characteristic spatial and energy distribution
pattern within the calorimeter, which can be used to identify the
incoming particle as an electron and to measure its energy.

However, electron reconstruction is not limited to calorimeter data
alone. It also involves the tracking system in the central region with
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|η| < 2.47. The combination of tracking and calorimeter data provides
a comprehensive picture of each electron’s properties by estimating
the energy from the calorimeter and the directional information from
the tracker.

A visual sketch of the electron is shown in Figure 2.21.

Figure 2.21. Sketch of an electron crossing the ATLAS sub-systems. The
electron path is drown with a solid red line, whereas the dashed red line
corresponds to a Bremsstrahlung photon. Figure taken from Ref. [48]

A crucial aspect of electron reconstruction is distinguishing genuine
electron signals from those of other particles and from various forms
of background noise. For instance, photons can create similar signals
in the calorimeter but do not leave tracks in the tracking detector.
Sophisticated algorithms and pattern recognition techniques are em-
ployed to differentiate electrons from photons and other background
signals. These algorithms consider factors such as the shape of the
energy deposit in the calorimeter, the presence or absence of a cor-
responding track, and the consistency of the track with the primary
collision vertex. In addition to identifying individual electrons, elec-
tron reconstruction algorithms must also address complications such
as bremsstrahlung radiation. As electrons pass through material, they
can emit bremsstrahlung photons, which may then convert back into
electron-positron pairs, complicating the reconstruction process. Ad-
vanced techniques are used to correct for these effects and to accurately
reconstruct the original electron’s properties.

The process of electron reconstruction relies on calibrated topo-
clusters. Tracks compatible with these topo-clusters are then fitted
using a Gaussian Sum Filter method [49], specifically designed to
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accommodate the nonlinear effects of bremsstrahlung radiation during
electron track fitting. The topo-clusters with associated tracks are
then used to construct a dynamically-sized super-cluster [50]. This
expansive super-cluster is designed to incorporate additional photon
clusters, which may emanate from the bremsstrahlung phenomenon
associated with the initiating electron.

In this context, several sources of background can be found, in-
cluding jets enriched with electromagnetic components, electrons from
photon conversions, and those originating from the semi-leptonic de-
cay of heavy-flavour hadrons. Despite being real electrons, those
arising from photon conversions and heavy-flavour hadron decays are
treated as background in the context of electrons generated during
the primary collision event. A sophisticated identification algorithm
is deployed to separate background electrons from the "interesting"
ones. This algorithm uses a likelihood discriminant where the pro-
cesses Z → ee and J/Ψ → ee are considered as signal and di-jet
events as background. Operational thresholds are established at three
levels—Loose, Medium, and Tight—to balance minimizing signal loss
against maximizing background rejection.

To enhance the selectivity of electron candidates, isolation criteria
can be applied based on nearby tracks or energy deposits. Various
isolation criteria are applied depending on a predefined distance and
the pT of the electron candidate.

The initial estimation of the electron’s energy is derived from
the super-cluster, and further refinements are applied from Monte
Carlo-derived corrections. All remaining differences are considered
via dedicated calibration on data, such as the Z boson decaying into
electrons. The overall efficiency, as the product of reconstruction,
identification, and isolation, is then determined using a tag-and-probe
method on Z → ee events. This approach applies Scale Factors (SF)
on the order of 1% as a function of ET and η to account for the
mentioned differences between data and MC in terms of electron
efficiency reconstruction.

2.3.4 Photons
Photon reconstruction primarily relies on the electromagnetic calorime-
ter, which is designed to detect particles that interact electromag-
netically, such as electrons and photons [50]. When a photon enters
the calorimeter, it triggers a cascade of interactions leading to an
electromagnetic shower. This shower, comprising numerous secondary
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particles, generates a distinctive pattern of energy deposits across
the calorimeter cells. These patterns are crucial for identifying the
incident particle as a photon and for accurately measuring its energy.

Unlike electrons, photons do not leave tracks in the inner detector
due to their lack of charge. Therefore, photon identification relies solely
on the analysis of calorimeter data, without the evidence provided by
the tracking system. The primary challenge in photon reconstruction
is distinguishing photons from electrons (or other electromagnetic
showers initiated by charged particles) and mitigating background
noise from other sources.

Analysis of Shower Shape: Algorithms dedicated to analyzing
the energy distribution within the calorimeter are key in separating
photons from electrons and other background signals. The shape of
the electromagnetic shower, particularly its compactness and sym-
metry, serves as a distinguishing factor. Photons typically exhibit
a tighter shower profile than electrons, which may show effects of
bremsstrahlung. [51]

Isolation Criteria: Isolation measures further refine photon
identification by evaluating extraneous energy deposits surrounding
the photon candidate. Photons emerging from high-energy particle
decays or directly from the hard scatter are likely to be more isolated
compared to those emanating from jet fragmentation. [52]

Photon Conversions: Identifying photons that convert to electron-
positron pairs before reaching the calorimeter enhances the photon
identification process. The ATLAS detector is equipped to track these
conversions, providing additional evidence of the photon’s presence
and aiding in the precise measurement of its energy.

Calibrations and Corrections to the Calorimeter: Initial
estimates of photon energy, based on calorimeter data, are adjusted
to the electromagnetic scale. These estimates are refined through
considerations of material effects and calibrations. Corrections are
also refined using Monte Carlo simulations and control data samples
(e.g., Z → eeγ events where an electron emits a photon) to fine-tune
the energy scale and resolution. [53]

A multi-variable analysis, often incorporating machine learning,
is utilized to optimize the separation between signal photons and
background. Operational thresholds (Loose, Medium, Tight) are
designed to balance selection efficiency with purity.
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2.3.5 Muons

Muon reconstruction is another essential component of the ATLAS
experiment [54], and a dedicated Muon Spectrometer (MS) has been
built to measure it. Muons, the heavier cousins of electrons, penetrate
much further through matter, making their detection and reconstruc-
tion a unique challenge. At LHC energies, muons behave like minimum
ionizing particles in the calorimeter and can be measured via their
track signature in the Inner Detector (ID) and MS.

In the ATLAS experiment, muons are reconstructed through vari-
ous methods, each depending on the signature they leave in the various
sub-detectors. The five primary types of reconstructed muons are:

• Stand-Alone Muons (SA): These muons are identified solely
based on information from the muon spectrometer, without any
input from the inner tracking system. Stand-alone muons are
particularly useful for identifying high-momentum muons that
may not leave significant tracks in the inner detector due to
their penetrating nature.

• Combined Muons (CB): Combined muons are reconstructed by
integrating tracks from both the muon spectrometer and the
inner tracking system. This method provides the most precise
measurement of the muon’s momentum, as it utilizes the full
trajectory information across the detector. The combination
process involves fitting tracks from both systems to form a single,
optimized trajectory.

• Segment Tagged Muons (ST): These muons are primarily identi-
fied through the inner tracking system but are tagged as muons
by matching a track segment in the muon spectrometer to the
extrapolated track from the inner detector. Segment tagged
muons allow for the identification of muons that only leave
partial information in the muon spectrometer.

• Calorimeter Tagged Muons (CT): Calorimeter tagged muons
are identified when a track in the inner detector is associated
with an energy deposit in the calorimeter that is consistent with
a muon’s interaction. This type is useful for identifying low-
momentum muons that may not penetrate through to the muon
spectrometer.
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• Extrapolated Muons (ME): Extrapolated muons are identified
when muon candidates in the inner tracking system are extrap-
olated to the muon spectrometer, but without a requirement
for specific matched hits in the spectrometer. This method can
help in identifying muons in regions of the spectrometer with
reduced coverage or efficiency.

Each of these reconstruction methods plays a crucial role in ATLAS’s
ability to accurately identify muons, allowing for a wide range of muon
momenta and interaction types to be analyzed.

Distinguishing genuine muon signals from background sources is
a critical aspect of muon reconstruction. Backgrounds can include
hadronic punch-through or decays in flight of other particles mim-
icking muon signals. Advanced algorithms and pattern recognition
techniques are employed to differentiate true muons from these back-
grounds. These algorithms assess factors such as the consistency of
the track across different detector layers, the energy deposit profile,
and alignment with the primary collision vertex.

As with electrons, isolation criteria also play a crucial role in muon
selection, helping to distinguish prompt muons originating from the
primary interaction from those produced in secondary decays. By
evaluating the absence of significant energy deposits or other particle
tracks in the vicinity of a muon candidate, muons involved in clean
signatures of new physics phenomena can be effectively isolated.

The initial momentum measurement of muons is derived from
the curvature of their path in the magnetic field, with subsequent
adjustments based on detailed simulation models and calibration
against known processes, such as the decay of Z bosons to muon
pairs. The overall efficiency of muon reconstruction, identification,
and isolation is quantitatively assessed using data-driven methods,
notably the tag-and-probe technique applied to Z → µµ events. Scale
factors are determined to correct for discrepancies between simulation
and real data in terms of muon reconstruction efficiency, typically on
the order of a few percent, depending on pT and η.

2.3.6 Jets
In Section 1.3, jets and their formation through parton showering and
hadronization processes were discussed. As mentioned, Monte Carlo
(MC) simulations are necessary to estimate background and Standard
Model predictions to observe discrepancies with theory. At the LHC,
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the effort required is much greater because jets are collimated sprays of
particles produced abundantly in high-energy particle collisions. Jets
have played a central role in the discovery and property measurements
of many fundamental particles, such as the gluon (g) and the top
quark (t-quark). As highlighted in the previous section, they were
also indispensable in studying Higgs boson couplings to the bottom
quarks (b-quarks). When studying the dynamics of quark and gluon
scattering, it became necessary to perform quantitative analyses and
calculations that go beyond event shapes. For these analyses to be
possible, a deterministic set of rules on how particles are combined into
jets from an experimental viewpoint had to be defined. An intuitive
definition of a jet algorithm involves summing the momenta of all
particles within a fixed-size cone. However, naive cone algorithms
are not infrared and collinear (IRC) safe — meaning they must be
insensitive to arbitrarily low-energy particles and collinear splittings.
IRC safety is a useful theoretical requirement for making calculations
in perturbative QCD and serves as a convenient language for describing
experimental robustness against noise and detector granularity.

The standard jet reconstruction algorithm used in ATLAS is the
anti-kt algorithm, which is IRC safe. The hadrons produced in the jet
can be measured in the Inner Detector (ID) and the calorimeter. The
anti-kt algorithm [55] is favored over the kt [56] and Cambridge/Aachen
[57] algorithms for jet identification. It introduces distances dij be-
tween entities (particles or pseudo-jets) i and j, and diB between
entity i and the beam (B). The clustering process is inclusive and
proceeds by identifying the smallest of these distances, dmin

ij :

• If dmin
ij < diB , then entities i and j are merged.

• If dmin
ij > diB, then i is classified as a jet and is removed from

the list of entities.

This process is iterated until the list of entities is empty. The main
distinction of the anti-kt algorithm from the kt algorithm lies in the
definition of the distances:

dij = min(k2p
ti
, k2p

tj
)
∆2

ij

R2

diB = k2p
ti

(2.29)

where ∆2
ij = (yi −yj)2 +(ϕi −ϕj)2, and kti

, yi, and ϕi are, respectively,
the transverse momentum, rapidity, and azimuth of particle i. In
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addition to the usual radius parameter R, an extra parameter p is
added to govern the relative power of the energy scale versus the
geometrical scale (∆ij).

Figure 2.22. A sample parton-level event, clustered with four different jets
algorithms, illustrating the “active” catchment areas of the resulting
hard jets. top left kt algorithm with R = 1 parameter. top right
Cambridge/Aachen algorithm with R = 1 parameter. bottom right
anti-kt algorithm with R = 1 parameter.

This parameter determines the algorithm used. In particular, for
p = 1, one recovers the kt algorithm. It can generally be shown
that for p > 0, the behavior of the jet algorithm with respect to soft
radiation is similar to that observed for the kt algorithm, because the
ordering between particles matters, and for finite ∆, this is maintained
for all positive values of p. Negative values of p might initially seem
pathological, but they are not. The behavior with respect to soft
radiation will be similar for all p < 0, so here only p = −1 is considered,
referring to it as the anti-kt jet-clustering algorithm. Finally, for p = 0,
one recovers the inclusive Cambridge/Aachen algorithm, which weights
the distances without taking into account the momentum of the entities.
The behavior of different algorithms is shown in Figure 2.22.

Consider an event with a few hard particles (high kt) and many
soft particles (low kt); the distance d1i between a hard particle 1 and
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Figure 2.23. Stages of jet energy scale calibrations. Each one is applied
to the four-momentum of the jet. From [58]

a soft particle i is determined exclusively by kt1 and ∆1i. Generally,
the distance between two soft particles dij will be much greater. If
a hard particle has no hard neighbors within a distance 2R, then it
will simply accumulate all the soft particles within a circle of radius
R, resulting in a perfectly conical jet.

If another hard particle 2 is present such that R < ∆12 < 2R, then
there will be two hard jets. It is not possible for both to be perfectly
conical. If kt1 ≫ kt2 , then jet 1 will be conical, and jet 2 will be
partly conical. However, if kt1 = kt2 , neither jet will be conical, and
the overlapping part will simply be divided by a straight line equally
between the two. Similarly, one can determine what happens when
∆12 < R. Here, particles 1 and 2 will cluster to form a single jet,
but the jet shape will strongly depend on the relation between their
momenta. If kt1 ≫ kt2 , then it will be a perfect cone around jet 1. If
kt1 ≃ kt2 , the shape will instead be more complex, being the union of
cones (radius < R) around each hard particle plus a cone (of radius
R) centered on the final jet.

In this thesis, 3 types of jets are considered: small-R jets (SR),
large-R jets (LR), and Variable Radius jets (VR).

Small-R Jets

In this thesis I refer to Small-R jets for those jets built with Particle
Flow objects described in section 2.3.2 and using anti-kT with R=0.4.
The calibration scheme used is described in [58] and summarized in
Figure 2.23. The calibration process involves initial simulation-based
corrections, followed by in situ techniques to adjust for data and
simulation differences and to measure jet resolution.

The calibration aim is to measure and correct the jet energy scale
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(JES) and resolution (JER).

• Smulation-based Jet Calibrations: Jets are initially calibrated
using simulation-based corrections. This involves pile-up correc-
tions to remove the excess energy contributions from additional
proton-proton interactions and absolute jet energy scale (JES)
and pseudorapidity (η) calibrations. These corrections account
for non-compensating calorimeter responses, energy losses in
inactive material, out-of-cone effects, and biases in the jet η
reconstruction.

• Global Sequential Calibration (GSC): After the initial corrections,
the GSC applies a series of multiplicative corrections based on
global jet observables (such as the longitudinal structure of
energy depositions within the calorimeters, tracking information,
and activity in the muon chambers) to reduce the effects of
fluctuations in the jet energy measurement and improve the jet
resolution. This step aims to minimize the dependence of the
reconstructed jet response on the jet’s internal structure and
the fluctuating nature of its formation, thereby improving the
precision of jet energy measurements.

• In Situ Calibrations: The final step involves in situ techniques
that correct for differences between data and simulation and
measure the jet resolution. These techniques use well-calibrated
reference objects (like photons and Z bosons) and systems of
jets to calibrate the jet energy scale directly from data, ensuring
that the jet energy measurements in the ATLAS experiment
accurately reflect the true jet energies. This step is crucial
for correcting any residual discrepancies between the simulated
calibrations and the actual data observed in the experiment.

After the JES calibration the Jet Energy Resolution is measured
in di-jet events relying on scalar balance between the two jets in the
events. The ratio of the Jet Response between data and the nominal
Monte Carlo as a function of pT is shown in Figure 2.24(a) while the
Jet Energy Resolution as a function of pT is shown in Figure 2.24(b).

Since the JER is better on Monte Carlo than on data a residual
Jet energy smearing is applied to simulations.

Finally a Jet Vertex Tagger (JVT) [59] is applied to Jets with
pT < 120GeV and |η| < 2.5 assigning a score to the jet of being
associated to the Hard Scatter event or to a Pile-Up event.
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(a) (b)

Figure 2.24. (a) Ratio of the PFlow+JES jet response in data to that
in the nominal MC event generators as a function of jet pT for Z+jet,
γ+jet, and multijet in situ calibrations. (b) The relative jet energy
resolution as a function of pT for fully calibrated PFlow+JES jets.

Large-R Jets

In this thesis I refer to Large-R jets for those jets built with Particle
Flow objects using anti-kT with R = 1.0. These objects are commonly
used to reconstruct hadronically decaying massive particles such as
Z/W, Higgs bosons or Top quark at high transverse momentum where
the final state particles are collimated and can be reconstructed in a
single large radius jet. The Large-R jet constituents are Topological
Calorimeter-Cell Clusters that are calibrated with a Local Cell Weight-
ing (LCW) described in [60]. This calibration aims at calibrating the
calorimeter signals cluster-by-cluster to compensate signal losses due
to clustering. All the jet object constituents are forced to point at the
Hard Scatter vertex and they are assumed to be massless.

These jets are then groomed to minimise the contamination due to
Pile-Up which can be significant due to the large radius used. Then
a trimming [61] and the implementation for this thesis follows ad
described in [62] and in Figure 2.25 :

• First the initial constituents of the already formed Large-R jet
are re-clustered into smaller sub-jets using a kt algorithm with
R = 0.2.

• If such a sub-jet carries less than 5% of the Large-R jet it gets
removed.

• The remaining constituents after this trimming procedure will
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form the groomed Large-R jet.

Figure 2.25. Diagram depicting the jet trimming procedure from [63].

An summary overview of the reconstruction and calibration is then
described in [64] and shown in Figure 2.26.

Figure 2.26. Overview of the Large-R jet reconstruction and calibration
procedure described in this paper. The calorimeter energy clusters from
which jets are reconstructed have already been adjusted to point at the
event’s primary hard-scatter vertex. [64]

The calibration procedure is important to reconstruct precisely
the mass of the resonance that is studied with the Large-R jet. First
the JES is corrected to particle-level using truth matched jet with
same trimming procedure applied. Then a pseudorapidity correction
is applied. Since the jet mass is sensitive to wide-anglesd soft radia-
tion the Jet Mass Scale (JMS) is calibrated separately using di-jets
events similarly to JES calibration. Then similarly to Small-R jets
a residual in-situ calibration is applied to JES and JMS using the
balance methods for JES and the Rtrk procedure [64] as well as a
Forward Folding Method [65] for JMS.

The mass of the Large-R Jet is then given by the combined jet mass
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[66] combining track and calorimeter based measurements linearly as:

mcomb = wcalo ×mcalo + wtrack ×mtrk × pcalo
T

ptrk
T

(2.30)

The combined Jet Mass resolution is shown in Figure 2.27 with
wcalo and wtrk choosed to sum up to 1 and to minimize the mcomb

variance.

Figure 2.27. Fractional large-R jet mass resolution for the calorimeter, the
track- assisted and the combined jet mass as a function of the simulated
jet pT. [66]

Variable Radius Jets

Variable Radius (VR) Jets [67] are reconstructed using anti-kt algo-
rithm with a radius parameter that depends 2.28 recursively on the
pT of the jet itself as:

R = 30GeV
pT

; Rmin = 0.02; Rmax = 0.4 (2.31)

VR Jets constituents are tracks and these jets are used in this
thesis for Flavour Tagging purposes in boosted environment. These
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Figure 2.28. anti-kt radius of VR track-jets as a function of the jet pT

values are optimized for the H → bb̄ at high transverse momentum
where the two b-quarks hadronize collimated to each other.

As the tracks entering the jet algorithm have the momentum
already calibrated, no further calibration is applied to track jets. The
energy scale of such jets is about 30% less than the calorimeter jets
because of the missing neutral component.

2.3.7 Tau Leptons
In the ATLAS experiment at the Large Hadron Collider (LHC), the
reconstruction and identification of tau leptons are crucial for a wide
range of physics analyses. Tau leptons are particularly interesting
because they are the heaviest of the three generations of leptons, and
they can decay into lighter leptons (electrons or muons) or into hadrons
(primarily pions). This decay versatility makes their identification
complex. Taus are primarily identified in two decay modes:

• Leptonic decays, where a tau decays into an electron or a muon
and neutrinos. These decays leverage the established electron
and muon identification and reconstruction techniques within
ATLAS but require additional discrimination to separate them
from direct electron or muon production processes.

• Hadronic decays, where a tau decays into hadrons (most com-
monly pions) and a neutrino [68]. The reconstruction of hadron-
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ically decaying taus (often denoted as τhadτhad) is more chal-
lenging due to the need to distinguish them from the large
background of quark and gluon jets. ATLAS uses sophisticated
algorithms based on Recurrent Neural Networks (RNN) [69]
that combine tracking information from the inner detector with
calorimeter energy deposits to identify the characteristic signa-
tures of tau decays, such as the number of charged tracks (one
or three, corresponding to the number of charged pions) and the
specific energy deposition patterns in the calorimeter.

2.3.8 Missing Energy
The last fundamental aspect of the ATLAS physics object reconstruc-
tion is the transverse missing energy (Emiss

T ) [70]. This observable is
crucial to probe events with particles that can not be detected directly
such as neutrinos or unknown particles that do not interact with the
detector materials.

The conservation of momentum in transverse plane implies that
the vector sum of the transverse momenta (pT ) of all particles pro-
duced in a proton-proton collision should be zero. However, some
particles, like neutrinos, escape detection, leading to an imbalance
in the measured transverse momentum. This imbalance is quantified
as Emiss

T , representing the magnitude and direction of the missing
transverse momentum.

The ATLAS detector is designed to measure the momenta of
charged particles, the energy of electromagnetic and hadronic showers,
and to identify muons with high precision. However, particles that do
not interact with the detector components, or interact only weakly,
contribute to Emiss

T . The computation of Emiss
T therefore involves

combining the momenta and energy measurements of all the already-
calibrated final state objects adding a track-based soft term quantifying
the energy not associated to any object.

E⃗miss
T = −

∑
i∈obj

E⃗i
T − E⃗soft

T (2.32)

A dedicated Overlap Removal is then applied to avoid double counting.
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3 | Flavour Tagging

Flavour Tagging (FTag) is a crucial method used to identify the
flavour of the parton from which a jet originates. It is indispensable
in the analysis of jets originating from heavy-flavour quarks and is
important for both Standard Model measurements and searches for
physics Beyond the Standard Model (BSM). This method focuses
on tagging jets from the hadronization of b-quarks (b-tagging) and
c-quarks (c-tagging). The essential role of b-tagging is highlighted in
this thesis through its application in the V H → bb̄ analysis, which
forms the core of this thesis. Additionally, it is significant in Di-Higgs
analyses, where one of the main channels, HH → bb̄γγ, is depicted
later. Furthermore, the significance of b-tagging extends to top-quark
physics, since the top quark decays almost exclusively to t → Wb.

In this chapter, sophisticated algorithms employed for FTag in
ATLAS are depicted, with a particular focus on the evolution of these
techniques through the different runs of the LHC. Initially, the chapter
reviews the DL1r algorithm, which has been instrumental during Run2.
Then the next-generation algorithms are described, GN1 and GN2,
which are based on graph neural networks, developed for Run 3, they
can also be used for a reprocessing of Run 2 data.

In an alternative approach to calibration, this thesis also describes
a different method for calibrating b-tagging efficiency. This method
was applied to VR track jets using tt̄ semi-leptonic events and was
subsequently combined statistically with the mainstream calibration.

Throughout the thesis, jets are classified based on the flavour of
the originating particle, labeled as b-, c-, light- (comprising u, d, s
quarks, or gluons) or tau-jets. This truth labelling is derived from
Monte Carlo simulations, where the presence of b-hadron, c-hadron,
or tau leptons within a cone of ∆R = 0.3 around the jet axis and
with a pT > 5GeV is used for truth-level labelling of the jet. Once
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the corresponding particle is detected, the jet is labeled accordingly;
otherwise, it is designated as a light-flavour jet. Moreover, any jet,
whether from simulated or actual data, that meets the criteria of
a tagging algorithm’s operating point is tagged correspondingly as
b-tagged, c-tagged, or untagged.

This chapter aims to provide a comprehensive understanding of the
current and future state of flavour tagging algorithms and calibrations,
setting the stage for the detailed analyses and measurements that
follow and that employ these methods.

3.1 Algorithms
Heavy flavour quarks that hadronize into the detector have specific
properties that can be exploited by "ad hoc" algorithms to effectively
discriminate between b-jets, c-jets, and light-flavour jets. These prop-
erties include the presence of a heavy-flavour (HF) hadron within the
jet that has longer lifetimes, higher mass, and specific decay signatures
compared to lighter quarks and gluons. Consequently, heavy-flavour
hadrons can travel measurable distances from the primary interac-
tion point before decaying, leading to secondary vertices and tracks
with significant impact parameters. At the core of flavour tagging,
especially for b-jets and c-jets, are algorithms that integrate these
characteristics to effectively separate them from light-flavour jets. This
section explores the innovative computational approaches and machine
learning techniques that have enhanced the accuracy and efficiency of
flavour tagging, focusing particularly on the advancements through
the various LHC runs.

As seen in 1.3, a quark hadronizes into a hadron due to confinement.
The energy scale of this process occurs at large αs, where perturbation
theory does not hold. For this reason, fragmentation functions are
used to describe the probability of a given hadron being created from
the emitted quark. These fragmentation functions depend on the
flavour of the quark and on the pT of the generated hadron [71].

The average lifetime of B-hadrons and D-hadrons is O(1ps). This
means that depending on the transverse momentum, the hadrons
can travel a few millimeters in the transverse plane before decaying,
providing a clear signature of a secondary vertex. Moreover, heavy
flavour hadrons have a large mass, of the order of a few GeV, and can
decay into multiple charged particles, as seen in Figure 3.1, carrying
the largest fraction of the jet momentum.
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To further distinguish b-quarks from c-quarks it is possible to
exploit the peculiarity of b-jets. Since the |Vcb| >> |Vub| most of
b-hadrons will decay into c-hadrons exhibiting a tertiary vertex in the
decay chain within the jet.

(a) (b)

Figure 3.1. Multiplicity of charged decay products from a B0 decay (a)
and from a D0 decay (b) as predicted from different MC generators
from Ref. {ATL-PHYS-PUB-2014-008

A schematic example of Heavy Flavour jets and light-flavour jets
is shown in Figure 3.2.

Figure 3.2. Schematic description of a Heavy-Flavour jet with tracks from
the Heavy-Flavour hadron decay compared to light flavour jets.

With the advancement of machine learning techniques, the evolu-
tion of the Flavour Tagging algorithm has been extraordinary. Mul-
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tidimensional correlation of track parameters is a suitable task for
advanced machine learning approaches that can best identify the
flavour of jets originating from heavy-flavour quarks.

In the following, the metric used to assess the discrimination power
of an algorithm will be the efficiency or accuracy in identifying a
given flavour jet compared to the mistag efficiency or inaccuracy in
identifying a different flavour jet. In particular, the inverse of the
mistag will be defined as the rejection power. For this reason, a
common figure of metric will be the light/c-jet rejection as a function
of the b-jet efficiency for b-tagging or light/b-jet rejection as a function
of the c-jet efficiency for c-tagging. In Figure 3.3, the b-tagging
evolution over time of different FTag algorithms is shown. It is clear
that with the same efficiency (ϵ = 70%), the rejection power on light-
and c-jets is about 4 times larger with the state-of-the-art algorithm
(GN2) compared to early Run2 algorithms.
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Figure 3.3. ATLAS FTag algorithm progression with time in terms of
performance from Ref. [72].

Before the advent of Graph Neural Network-based single-stage
approaches such as GN1 and GN2, the FTag algorithms were based
on a two-stage approach where low-level taggers were combined into
high-level taggers, returning a score prediction of the jet label. A
schematic view of such algorithms (DL1, DL1r, and DL1d, ordered by
time and performance) is shown in Figure 3.4.

Before describing the various algorithms, it’s important to mention
that all these algorithms are evaluated on Monte Carlo simulations and,
for this reason, a dedicated calibration to data is necessary. Moreover,
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Figure 3.4. Schematic view of DL1, DL1r, DL1d algorithms based on
two-stage approaches

since different Monte Carlo generators can lead to different results,
it is also possible to provide MC-to-MC Scale Factors as a source of
uncertainty to account for such differences.

Monte Carlo Samples. For the training and evaluation of
the ATLAS Run2 FTag algorithms [73], a hybrid sample is created
composed by SM tt̄ events and high-mass Z ′ → qq̄ events.

The tt̄ sample Matrix Element calculation is performed using
Powheg Box v2 [74, 75] interfaced with Pythia 8.2 [76] for the
parton showering simulation. Moreover, tt̄ events with at least one
leptonically decaying W-boson are considered. The Z ′ sample is
generated entirely with Pythia 8.2, modifying the cross-section of
the Hard-Scattering process to obtain a very broad width of the
resonance and the branching fraction was set to one-third for each bb̄ ,
cc̄ , and light quark pairs.

Finally, as the pT and η of the jets are inputs to the FTag algorithms
for both the DL1 series and the GNN based algorithms, a resampling
procedure is applied to ensure that the jet kinematics are equally
distributed among each flavour category for pT and η.

The pT resampled distribution of the hybrid sample is shown in
Figure 3.5.

Object Selection. FTag relies mainly on charge-particle tracks,
vertices and hadronic jets. Only tracks with pT > 500 MeV within
the acceptance of the ATLAS ID (|η| < 2.5) are used in jet flavour
tagging. These tracks have to further satisfy "Loose" selection criteria
to assess a good quality and reject fake and poorly measured tracks.

Computing the Primary Vertex (PV) is also particularly important
for Flavour Tagging since it defines the reference point from which
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Figure 3.5. Resampled pT distribution of the hybrid sample formed by tt̄
and Z′ events.

displacements of secondary vertices and tracks are computed. The
resolution on the reconstructed PV is about O(10µm) in the longitu-
dinal direction and O(1µm) transversal one [77]. The PV is chosen
with the standard method of the highest sum of squared transverse
momenta of contributing tracks: maxvtx

∑
trk∈vtx(ptrk

T )2

All the reconstructed jets considered are built with Particle Flow
Objects usign anti-kt algorithm with radius parameter R = 0.4. Jets
are required to be within the ID acceptance (|η| < 2.5) and with a
pT > 20 GeV. To reduce the contamination from Pile-Up jets the Jet
Vertex Tagging (JVT) algorithm is applied to jets with pT < 60 GeV
and |η| < 2.4.

3.1.1 The DL1 Series
As shown in Figure 3.4 DL1 series of taggers are based on a two-
stage approach. First low-level taggers are applied to reconstruct the
characteristic features of b-jets.

The first kind of low-level tagger is based on the large impact
parameter (IP) of the tracks originated from heavy flavour hadron
decays. The IP based taggers are IPxD [78], manually optimized,
RNNIP [79], a Recurrent neural network used for DL1r tagger and
DIPS, based on Deep Sets Neural Networks [80].

The second type of low-level tagger is based on the Secondary
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Vertex finding. The algorithm used are SV1 [81], attempting to
reconstruct an inclusive secondary vertex and JetFitter [82] aiming
at fully reconstructing the full PV-to-b-to-c decay chain.

IP based algorithms

As already mentioned, the IP-based algorithms leverage the significant
impact parameters (IPs) that tracks from the decay of heavy flavour
hadrons (both c and b-hadrons) often exhibit due to their substantial
lifetimes. This results in b-/c-hadrons that travel measurable distances
from the primary collision point before decaying. The primary metrics
utilized by these algorithms include the IP itself and its significance,
which compares the IP to its uncertainty.

Sd0 = d0

σd0

; Sz0 = z0

σz0

(3.1)

We will commonly refer to the signed impact parameter where the
sign is essentially given by the scalar product of the IP vector with
the jet axis direction. The significance enhances the discrimination
power between jets containing heavy flavour hadrons and the others.
In Figure 3.6 this track level discrimination is shown comparing the
transverse and longitudinal impact parameters for different jet flavours.

(a) (b)

Figure 3.6. The (a) transverse and (b) longitudinal signed impact param-
eter significance of tracks for b-jets, c-jets and light-flavour jets in tt̄
events from Ref. [73].
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IPxD The IPxD algorithms represent a class of IP-based taggers
that utilize detailed histograms of IP significance to assign likelihood
scores to each track within a jet (ptrk

b , ptrk
c , ptrk

l ). IP3D embeds IP2D
since it exploits the correlation between transversal and longitudinal
impact parameter while the latter is based only on transversal di-
mension. The methodology behind IPxD involves segmenting the IP
significance into bins (this is performed in both d0 and z0 for IP3D),
each corresponding to a particular likelihood for the track to belong
to a given type of jet. From this it is possible to compute a jet-level
Log Likelihood Ratio discriminant as the sum of the logarithms of the
per-track probability ratios for each jet-flavour hypothesis:

LLRb−l =
∑
trk

log
ptrk

b (Sd0/z0)
ptrk

l (Sd0/z0)
(3.2)

This can be computed for each combination of two of the three hy-
pothesis: b vs. l, b vs. c, c vs. l.

RNNIP RNNIP enhances traditional IP-based tagging algorithms
by integrating a recurrent neural network (RNN) architecture, specif-
ically designed to handle sequential data with inherent correlations.
Unlike static models that treat input features independently, RNNIP
capitalizes on the sequential nature of tracks within a jet, recognizing
patterns and dependencies that unfold over the sequence of tracks.

The core component of RNNIP is its use of Long Short-Term
Memory (LSTM) cells, a type of RNN architecture optimized to avoid
the vanishing gradient problem, allowing it to learn long-range depen-
dencies. Each LSTM cell processes individual track data sequentially,
updating its internal state based on the IP significance, track kinemat-
ics, and possibly other relevant track attributes such as the number
of hits, the track’s angular relation to the jet axis ∆R or the track
relative momentum with respect to the jet, defined as pfrac

T . This pro-
cess not only assesses individual track features but also their dynamic
interaction with the features of preceding tracks within the jet. Tracks
are sorted by descending Sd0 since RNNs do require a specific order.
A schematic drawing of the RNNIP architecture is shown in Figure
3.7. Each track is originally described as a vector of features that is
then converted thorough the RNN block into a 50-dimension vector
input to a fully connected Neural Network that in the end provides
the RNNIP tagging scores. These continuous scores represent the
probability that the input jet originates from by a b-/c- or light-flavour
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quark and for this reason a Soft Max node is used to ensure that:
pb + pc + pl = 1.

Figure 3.7. Schematic drawing of the RNNIP neural network architec-
ture. The signed transverse and longitudinal impact parameters input
variables correspond to the lifetime-correlated signed transverse and
longitudinal impact parameter significances, while pfrac

T and ∆R repre-
sent the fraction of transverse momentum carried by the track relative
to the jet and the angular distance between the track and the jet axis,
respectively.

The probabilities can then be combined together to create a b-/c-
tagging discriminant function. This approach will be generalised later
to all the algorithms outputting separate jet-flavour probabilities.

D
b/c
RNNIP = ln

(
pb/c

fc/bpc/b + (1 − fc/b)pl

)
(3.3)

In general fb/c represents the prior b-vs-c jet flavour composition of
the sample and can be tuned to change the relative importance of
b-/c- vs light-flavour jet rejection. The b-tagging score evaluated on tt̄
events with pT ∈ [20, 250] GeV is shown in Figure 3.8.

DIPS The DIPS algorithm represents a further advancement by
applying the Deep Sets theory [83], which is inherently permutation
invariant and thus does not require sorting or sequential processing of
tracks. This approach aligns more closely with the physical nature of
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Figure 3.8. Distributions of the RNNIP b-btagging discriminant Db
RNNIP

of the RNNIP b-tagging algorithm for b-jets, c-jets and light-flavour jets
in the baseline tt̄ simulated events from Ref. [73]

jets, where the order of tracks is not intrinsically meaningful. DIPS
processes all tracks simultaneously through a shared neural network,
shown in Figure 3.9, aggregating their information before making a
final classification. This method is particularly effective at handling
the varied decay patterns and lifetimes of both b- and c-hadrons.

Secondary Vertexing based algorithms

Vertexing algorithms tackle the problem from a different point of view.
These algorithms exploit the properties of decay vertices built out of
multiple tracks that are displaced from the primary proton-proton
collision point due to the relatively long lifetimes of Heavy Flavour
hadrons, rather than the single displaced tracks.

SV1 SV1 is an algorithm that constructs a secondary vertex by
fitting tracks that are significantly displaced from the primary ver-
tex. This displacement is indicative of the decay of a Heavy-Flavour
hadron. The algorithm uses a combination of vertex decay properties
to determine the likelihood of the jet containing such a hadron. It
assigns a weight based on the significance of the displacement, the
mass of the reconstructed vertex, the number of tracks contributing
to the vertex, and the ratio of the energy at the secondary vertex to
the total jet energy.
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Figure 3.9. Architecture for the DIPS algorithm. The number of hidden
units in the different neural network layers correspond to the final
optimized architecture from Ref. [80]

SV1 runs iteratively computing the track-to-vertex association
score with a χ2 test at each iteration. The track with largest χ2

contribution is removed and the vertex is fitted again. This process
continues until the χ2 is acceptable for a vertex and the invariant
mass of the vertex is less than 6 GeV.

To evaluate the SV1 performance a simple feed forward network is
used with SV1 outputs and pT and η of the jet.

JetFitter Jet Fitter extends the secondary vertex approach by
attempting to reconstruct the entire decay chain, not just one inclusive
decay vertex. This algorithm integrates multiple vertices in a jet into
a common decay topology, making it effective in identifying jets with
complex decay structures.

High-level taggers

To maximise the flavour-tagging performance for Run 2, the output
quantities of the low-level algorithms are combined using deep-learning
classifiers, based on fully connected multi-layer feed-forward neural
networks (NN), forming the DL1 series.
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Figure 3.10. Invariant mass of secondary vertices reconstructed by the
SV1 algorithm for b-jets, c-jets and light-flavour jets in the baseline tt̄
simulated events from Ref. [73].

The hybrid sample used contains 70% of the jets from the tt̄ sample
and the remaining 30% from the Z ′ sample. As shown in Figure 3.4,
DL1 exploits all the low-level tagger (IP2D, IP3D, SV1, JetFitter)
outputs as input. The improvements from DL1r and DL1d is the extra
input of RNNIP and DIPS score respectively. The architecture is
shown in Figure 3.11.

Figure 3.11. Schematic drawing of the DL1r neural network architecture.
A similar architecture is used for DL1d from Ref. [73].

Such algorithms exploit the correlation among the low-level taggers
to improve the discrimination between different flavour jets. Each
algorithm returns a jet level probability for each flavour kind: pb, pc

and pl.
Similarly to what it has been shown for RNNIP it is possible to

build a b-/c-tagging score:
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Db/c = ln
(

pb/c

fc/bpc/b + (1 − fc/b)pl

)
(3.4)

As already mentioned fc/b are tunable to adjust the relative re-
jection of the two backgrounds jets. In particular, fc is tuned for
b-tagging to adjust the relative background rejection between c-jets
and light-jets. For DL1r the optimized values chosen are fc = 0.018
and fb = 0.2.

The b-/c-tagging discriminant scores are shown in Figure 3.12 for
DL1r

(a) (b)

Figure 3.12. Distributions of the outputs of the DL1r algorithm (a) b-
tagging (b) c-tagging score for b-jets, c-jets and light-flavour jets from
Ref. [73].

Performances

Flavour tagging performances are evaluated with efficiencies of cor-
rectly identify the correct flavour and the probability of mistakenly
identifying a background jet (mis-tag rate). In particular the inverse
of the mis-tag rate is defined as the rejection: rej = 1/ϵ

Starting from the Db/c distributions it is possible to build Receiver
Operating Characteristics (ROC) curves expressed as backgrounds
rejection as a function of the tagging efficiency. These curves can be
computed by scanning the Db/c distribution. In case of b-tagging for
each Db value it is possible to compute the tagging efficiency and the
background rejection as:

ϵb = Nb−jet(Db > D∗)
Nb−jet

ϵc/l−jet =
Nc/l−jet(Db > D∗)

Nc/l−jet
(3.5)
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The same reasoning is applicable to c-tagging just by swapping b
with c. It is clear from this formula how to map the Db/c discriminants
into the mentioned ROC curves.

In Figure 3.13(a) the performance in Run2 of the b-tagging DL1 and
DL1r algorithms is shown compared to the Run1 baseline algorithm
based on a Boosted Decision Tree (MV2) [78]. It can be seen that
the DL1 series outperforms the MV2 series improving the light-jet
rejection up to a factor of 2 and the c-jet rejection up to 80%. From
Figure 3.13(b) with a Run3 tt̄ sample, it can be seen that DL1d further
improves over DL1r up to a further 30% on both c-/light-jet rejections.
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Figure 3.13. (a) The light-flavour and c-jet rejections as a function of
b-tagging efficiency for different high-level taggers including MV2, DL1
and DL1r, The lower two panels show the ratio of the light-flavour
jet rejection and the c-jet rejection of the algorithms to MV2c10. The
statistical uncertainties on the rejection are calculated using binomial
uncertainties and are indicated as coloured bands. Run2 tt̄ samples from
Ref. [73]. (b) The light-flavour jet (solid line) and c-jet (dashed line)
rejection for the latest DL1r and DL1d algorithms. Run3 tt̄ samples
from Ref. [84].

Many ATLAS analyses of the Run2 LHC use the so called "fixed-
cut operating points" defined by the inclusive efficiency obtained by
a fixed cut on the Db/c score. For this reason it is also interesting
to evaluate the performances for a given working point (WP). In
particular it is interesting to observe the efficiency as a function of
the transverse momentum of the jet, as shown in Figure 3.14 for the
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inclusive b-tagging efficiency of 77% (77% WP).

Figure 3.14. b-jet efficiency as a function of the pT of the jet for the 77%
WP from Ref. [73].

All the algorithms exhibit a consistent pattern, indicating an inher-
ent decline at low transverse momentum. This trend at low at low pT

is mostly caused by a drop in resolution due to Multiple Scattering in
the tracker and a lower pion reconstruction efficiency due to hadronic
interactions. Additionally, the tracks produced at low pT are less en-
ergetic (pT < 400 GeV), which may lead to incomplete reconstruction
in the Inner Detector. This relationship will be important for later
discussions in this dissertation, particularly regarding the limitations
imposed by inefficiencies at low pT in the analyses.

It is also interesting to show the performances on c-tagging as
displayed in 3.15

3.1.2 GNN Revolution
With the advent of Graph Neural Networks (GNN) it was clear that
they would be the natural evolution of Flavour Tagging algorithms.
GNNs are suitable to perform the tagging in one go. The state-of-the-
art tagger for ATLAS is GN2, the evolution of GN1 [85]. The GN2
tagger is based on Transformer architecture [86]. Because of their
permutation invariance GN1 and GN2 are perfect to deal with tracks
associated to a jet to probe the structure of the jet and its flavour.
The GNN networks have been refined with time and also parallel tasks
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Figure 3.15. The light-flavour and b-jet rejections as a function of c-jet
efficiency for DL1 and DL1r. The lower two panels show the ratio of the
light-flavour jet rejection and the b-jet rejection of DL1r to DL1. The
statistical uncertainties on the rejection are calculated using binomial
uncertainties and are indicated as coloured bands from Ref. [73].

are included to drive the network towards better performances guided
by the physics knowledge.

In Figure 3.16 the difference between the old-fashioned algorithms
and the GNN based approach is shown. Tracks associated to the jets
are the nodes of the graph and the GNN is trained in a supervised
way to extract the jet flavour prediction, the origin label of the track
and a simplified vertexing.

The GN1 and GN2 architecture

Given a jet a graph is built out of the tracks associated to it. Each
track is a node with a vectorial representation of its track information.
GN1 input is thus composed by 2 variables for the jet (pT and η after
the resampling) and the set of 21 variables associated to each track
listed in Table 3.1. The maximum amount of tracks (nodes) allowed
is 40. In those few cases with more than 40 tracks associated to the
jet, the tracks with the lowest transverse impact parameter (S(d0))
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Figure 3.16. Comparison of the existing flavour tagging scheme (left)
and GN1 (right). The existing approach utilises low-level algorithms
(shown in blue), the outputs of which are fed into a high-level algorithm
(DL1r). Instead of being used to guide the design of the manually
optimised algorithms, additional truth information from the simulation
is now being used as auxiliary training targets for GN1. The solid lines
represent reconstructed information, whereas the dashed lines represent
truth information from Ref. [85].

are discarded. The main inputs to the network are the signed Impact
Parameter significances, the remaining track parameters with their
uncertainty and the angular distance with respect to the jet axis.

In parallel to the jet flavour classification, two auxiliary tasks are
defined for the network driven from physics reasons. The presence of
auxiliary tasks improves the performances. The first auxiliary task is
a node classification aiming at predict the label or origin of each track.
Each track is labelled in exclusive categories as listed in Table 3.2. The
second auxiliary task is needed to find non-primary vertices. It is an
edge prediction that aims to find track-pair vertex compatibility. This
task removes the need for a dedicated secondary vertexing algorithm.

The GN1 architecture is shown in Figure 3.17. Tracks are first
concatenated with jet inputs and then they are fed into the GNN.
Each node will have 21 track features associated and 2 jet features
associated and can be represented as a vector of 23 dimension: ti.
Each node is first mapped into a 64 dimension vector with a per-track
initialization network composed by 3 hidden layers similar to a Deep
Set model [83].

The graph is then built from the output of the per-track initializa-
tion. It is a fully connected graph where each node is connected to
the other nodes. At each iteration, the node representation is updated
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Jet Input Description
pT , η jet kinematic

Track Input Description
(q/p, d0, z0sinθ) track parameters

∆η, ∆ϕ angles relative to jet
(σq/p, σθ, σϕ) uncertainty on track parameters
S(d0), S(z0) signed Impact Parameter significances

Pix, SCT, IBL Number of hits, shared hits, holes
leptonID label for electron or muon (only GN1Lep)

Table 3.1. Input features to the GN1 model. Basic jet kinematics,
along with information about the reconstructed track parameters and
constituent hits are used. The track leptonID is an additional input to
the GN1 Lep model.

Truth Label Description
Pile-Up Not from the primary interaction

Fake Created from the hits of multiple particles
Primary Does not originate from any secondary decay

FromB, FromBC From the decay of a b-hadron
FromC From the decay of a c-hadron

OtherSecondary From other secondary interactions and decays
Table 3.2. Truth origins which are used to categorise the physics process

that led to the production of a track.

aggregating the features of the neighbouring nodes. Each node is first
fed into a fully connected layer W to update the representation of
each node. The updated nodes are then used to compute the edge
score for each node pair: v(ti, tj).

v(ti, tj) = a⊥θ [Wti ⊕ Wtj ] (3.6)

In this expression ⊕ means that the two vectors are concatenated
into a 128 dimension vector, θ is a scalar activation function and a a
fully connected layer. These scores can be used to compute attention
weights:

aij = softmax[v(ti, tj)] (3.7)

Afterwards, the node representation is computed as the weighted
sum over each updated node and then passed via an activation function
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Figure 3.17. The network architecture of GN1. Inputs are fed into a
per-track initialisation network, which outputs an initial latent represen-
tation of each track. These representations are then used to populate
the node features of a fully connected graph network. After the graph
network, the resulting node representations are used to predict the jet
flavour, the track origins, and the track-pair vertex compatibility from
Ref. [85]

σ:

t
′

i = σ

∑
j

aijWtj

 (3.8)

There are Nhead = 2 heads mechanism executed in parallel that are
averaged together for the GN1 case.

t
′

i = 1
Nheads

∑
k

t
′,k
i (3.9)

This sequence of mathematical operations defines a graph network
layer. Three of such layers are sequentially stacked together. The
output of these graph network layers is used to build a global repre-
sentation of the jet. In particular a weighted sum is computed among
all the nodes using the attention weights learned during the training.
Three separated fully connected network are then used for the separate
network tasks as shown in Table 3.3. The global classification is used
to predict the flavour of the jet and it has three outputs: pb, pc and
pl.

The training is performed minimizing the total Loss function
defined as a weighted sum of the three tasks Losses:

Ltot = Ljet + αLvtx + βLtrk (3.10)

where α = 1.5 and β = 0.5.
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Network Hidden layers Output size
Node classification 128, 64, 32 7
Edge classification 128, 64, 32 1

Global classification 128, 64, 32, 16 3
Table 3.3. A summary of GN1’s different classification networks used for

the different training objectives. The hidden layers column contains a
list specifying the number of neurons in each layer.

GN2 architecture is similar to GN1 with a different attention
mechanism similar to transformers and few minor differences. After the
per-track initialization the initialized graph is composed by Nhead = 8
multi-head attention blocks. The edge representation uses the scalar
dot products.

v(ti, tj) = Wti · Wtj√
s

(3.11)

where s indicates the dimension of the vector W. Then similarly to
GN1 aij is computed and t

′

i is updated. GN2 differently from GN1
has 8 attention blocks instead of 2 and the number of graph layers
is 6 instead of 3. Moreover stochastic dropout layers are included to
reduce the overfitting. Finally another important difference in GN2
from its predecessor GN1 is that it is trained with O(200M) jets,
about 5 times the size of the sample used for GN1.

The performances can be shown in terms of ROC curves comparing
GN2 to the best performing two-stages algorithm DL1d [72]. From the
jet flavour prediction a Db/c score can be built as for the DL1 series to
plot the ROC curve. from Ref. 3.18, it is clear that GN2 improvements
are significant. In particular on tt̄ events for the b-tagging it is possible
to improve up to a factor of 2 in light-jet rejection and a factor of 4
in c-jet rejection as compared to DL1d. For the c-tagging instead the
improvement is up to 30% in light-jet rejection and up to a factor of
3 in b-jet rejection.

3.2 Calibration
All the Flavour Tagging algorithms are trained and evaluated on
Monte Carlo samples. The efficiencies and mistagging rates of these
algorithms need to be measured on real data to correct the source
of errors on Monte Carlos due to mis-modelling. We refer to these
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(a) (b)

Figure 3.18. (a) The c-jet and light-jet rejections as a function of the b-jet
tagging efficiency. (b) The b-jet and light-jet rejections as a function of
the c-jet tagging efficiency. Jet from a tt̄ sample with 20 < pT < 250 GeV.
The ratio with respect to the performance of the DL1d algorithm is
shown in the bottom panels. A value of fc = 0.018 is used in the
calculation of the tagging discriminant for DL1d, fc = 0.05 is used for
GN1, and fc = 0.1 is used for GN2. Binomial error bands are denoted
by the shaded regions. All taggers are evaluated using the ATLAS
software stackfrom Ref. [72]

measurements as calibrations since these measurements are used a
posteriori to correct the Monte Carlo simulations.

Calibrations are performed for each jet collection used in the
analysis, PFlow- and VR Track-jets for Run2, and for each fixed-cut
Working Point (60%, 70%, 77% and 85% are the standard WP for
b-tagging in Run2). The calibration is performed for the b-tagging
efficiency and each flavour mis-tagging efficiency. The result of the
calibration is expressed in terms of data/MC Scale Factors (SF) as a
function of some jet kinematic variable such as pT .

SFb = ϵdata
b

ϵMC
b

(3.12)

The calibration is usually performed selecting a phase space en-
riched in b-/c- or light-jets depending on the calibration. The standard
method for the b-jet efficiency calibration uses di-leptonically decay-
ing tt̄ events [87, 88, 89] since top quark is know to decay almost
exclusively to a W vector boson and a b-quark: t → bW .
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In this section I will show an alternative calibration of b-tagging
efficiency in semi-leptonically decaying tt̄ events of VR Track-jets
for DL1r algorithm and Run2 dataset, which was carried out in the
context of this thesis work. The methodology is similar to what has
been done for PFlow-jets in [90].

3.2.1 Semi-leptonic calibration of b-efficiency
In this section I present the measurement of the b-tagging efficiency
in semi-leptonically decaying tt̄ events. A schematic diagram of the
process is represented in figure 3.19 where one top-quark decays lep-
tonically via t → bW (→ lν) while the second top decays hadronically
as t → bW (qq′). This measurement allows to measure, and thus
calibrate, the b-tagging efficiency up to an higher pT range because
of the higher Branching Ratio of the hadronic decay of the W with
respect to the leptonic channel:

BR(W → e/µ+ νe/µ) = 21.3% BR(W → qq
′
) = 67.4% (3.13)

Figure 3.19. Schematic diagram of a semi-leptonic tt̄ event at leading
order.

The methodology used differs from the standard one [87] used in
di-leptonic tt̄ events as here a Tag and Probe strategy is applied. In
particular a jet is tagged associated to the hadronic top (thad) and
the efficiency is then measured on the b-jet associated to the leptonic
top (tlep).

This measurement is performed using the entire Run2 (2015-2018)
dataset at

√
s = 13 TeV collected by ATLAS corresponding to an

integrated luminosity of L = 139 fb−1.
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The events selected in the analysis are mostly from tt̄ production.
A smaller contribution is given by W boson production in association
with jets, W+jets, or a top-quark production (Wt single-top). Other
minor backgrounds are tt̄ associated with a vector boson, single-top
production in the s- or t-channels and diboson events (WW , WZ,
ZZ). The nominal tt̄ sample is generated at matrix element level with
PowhegBox v2 and the parton showering is processed with Pythia
8.2. Two main samples are used as source for Monte Carlo modelling
uncertainty: one sample uses MadGraph5 aMC@NLO v2.6 as
alternative Matrix Element generation and same Parton Showering
as the nominal sample, while the second alternative sample has the
Parton Shower processed with Herwig 7.04 and same Matrix Element
as the nominal sample.

Event reconstruction

A single electron or muon trigger is used to target the charged lepton in
the event. Electron candidates are required to pass tight-ID criteria and
to satisfy pe

T > 28 GeV. Muons are instead reconstructed requiring
to pass the medium-ID criteria and to have a pµ

T > 28 GeV. An
additional track-based isolation criterion is applied to leptons to reduce
the background from non-prompt leptons:

IR = 1
p

(e(µ))
T

∑
∆R(trk,e(µ))<∆Re(µ)

ptrk
T < 0.06 (3.14)

∆Re(µ) = min
(

0.2(0.3), 10 GeV
p

e(µ)
T

)
(3.15)

For the electron an extra isolation is imposed at calorimeter level
requiring that the transverse energy of the topo-cluster in ∆R < 0.2
sums up to less than 6% of the electron transverse energy.

The leptons are also required to be matched to the primary vertex
with |z0sinθ| < 0.5 mm and S(d0) < 5 for electrons and S(d0) < 3
for muons.

Variable Radius Track-jets are then constructed using anti-kt algo-
rithm. The VR Track-jets are calibrated and corrected for Pile-Up
effects. JVT is also applied to jets with pT < 60 GeV to reduce the
jets non arising from primary pp collisions. The track-jets are required
to have pT > 5 GeV, since they are lacking the reconstruction of the
neutral component from the calorimeter information.



100 3. Flavour Tagging

Large-R jets are reconstructed from topo-clusters with LCW scheme
using anti-kt algorithm with Radius parameter R = 1.0. Large-R jets
with pT > 100 GeV and |η| < 2.0 are considered.

An overlap removal procedure is finally applied to avoid double
countings in the objects. Electron candidates within ∆R = 0.01 from
a muon candidate are removed. Afterwards the closest jet within
∆R = 0.2 from an electron is discarded. If then the electron is within
∆R = 0.4 of the axis of any other jet, the jet is kept and the electron
is removed. Muons satisfying ∆R(µ, jet) < 0.04 + 10 GeV/pµ

T are
removed if the jet has at least three tracks from the primary vertex
otherwise the jet is removed and the muon is kept.

Event Selection

Once the reconstruction is applied a dedicated event selection is applied
to build a region of the phase space with high purity in b-jets where
we can ensure a good measurement of the b-tagging efficiency.

In order to enhance the purity of the semi-leptonic tt̄ sample,
each event must contain one lepton with pl

T > 70 GeV. The missing
transverse momentum must satisfy Emiss

T > 70 GeV, which helps
in identifying events where significant momentum is carried by the
neutrino from the leptonic W. At least one Large-R jet with pT >
300 GeV with a mass m > 100 GeV must be present. If more than
one such jet exists, the one with the highest pT is chosen as the thad

candidate. Additionally, the event should contain at least two VR
Track jets with pT > 5 GeV. At least one of these jets must satisfy
a b-tagging selection with a Working Point of ϵb = 77% using DL1r
algorithm. This b-tagged jet must match geometrically the Large-R
jet candidate with ∆R(b − jet, thad) < 1.0. In the following this jet
will be considered as the Tag jet in the Tag and Probe method.

To select the probe jet the closest to the lepton is chosen and
the efficiency will be measured later on this jet. This probe jet is
required to be separate on the transverse plane from the thad with
|∆ϕ(jet, thad)| > 1.0 ensuring a spatial separation between the two
top-quarks in the transverse plane.

Calibration strategy

Simulated Monte Carlo samples are separated into signal and back-
grounds after the event selection is applied. The signal events are tt̄
events with the probe jet that is truth b-labelled. The parameter of
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interest of this analysis is the ϵb, which is the probability to tag as a
b-jet a truth b-labelled jet. The backgrounds are either non-tt̄ events
or tt̄ events with the probe-jet which is not b-labelled. This analysis is
performed as a function of the transverse momentum of the probe-jet:
pprobe

T .
The inclusive distribution of the probe-jet is shown in Figure 3.20.

The standard di-leptonic calibration of VR Track-jets is commonly
performed in the range 10 < pT < 250 GeV. This calibration allows
to extend the calibration up to pT = 500 GeV. In this region the
standard calibration lacks information and simulation-based extrap-
olation methods are normally used to estimate the calibration Scale
Factors in this high transverse momentum phase space, at the cost
of significant increase of the uncertainty. This calibration instead
allows to have a better and precise estimate of the efficiency at high
transverse momentum.

Figure 3.20. Inclusive distribution of the transverse momentum of the
probe-jet used to measure the b-tagging efficiency. The ratio panels show
the signal over background ratio and the data to Monte Carlo ratio
before the fit is performed.

The semi-leptonic calibration presented is performed in the range
60 < pT < 500 GeV. The bin chosen are arbitrarily selected to
be compatible with the di-leptonic calibration for later combination
adding an extra bin at high transverse momentum and allowing a finer
binning in 100 < pT < 250 GeV. A schematic view of the binning of
the two calibration is shown in Figure 3.21.

Relevant variables used in the analysis are shown in Figure 3.22.
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Figure 3.21. Schematic pT binning of the di-leptonic and semi-leptonic tt̄
calibrations of VR Track-jets.

In particular in Figure 3.22(a) the invariant mass of the lepton and the
probe-jet (mlj) is plotted. This variable, that describes the tlep allows
to discriminate the resonant top from the non-resonant backgrounds.
The bulk of this distribution mainly contains signal tt̄ events while
the tail at large mlj is dominated by non-signal tt̄ events an W+jets
events. Monte Carlo simulations describe reasonably well the data.
An expected overall offset is observed due to a known tt̄ mis-modelling
at high transverse momentum of the top-quark.

As already mentioned the b-tagging efficiency ϵb is measured in
bins of pT . For each pT bin signal and control regions are built. A
signal-enriched region is defined requiring 20 < mlj < 130 GeV to
extract ϵb. This signal region is further splitted based on the b-tagging
result on the probe-jet. If the jet is tagged we denote the region as
SRpass otherwise SRfail.

SRpass SRfail CR+ CR−

Selection 20 < mlj < 130 GeV mlj > 130 GeV
Lepton charge inclusive + -
Probe-jet b-tagged? yes no inclusive
Variable mlj mlj mthad

mthad

Table 3.4. Scheme of the event categorization.

A background enriched region is defined by mlj > 130 GeV. This
region is further splitted depending on the charge of the lepton qlep

(CR+, CR−) to control the W+jets background exploiting the charge
asymmetry as shown in Figure 3.22(c).

In the signal-enriched regions the variable fitted is mlj while in
the control-enriched regions the variable fitted is mthad

. A schematic
view of the regions is shown in Table 3.4. For each pT bin a different
binning is used for the fitted variables

For each pT bin a likelihood L(ϵb, µ⃗; pT ) is constructed as a product
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(a) (b)

(c)

Figure 3.22. (a) Invariant mass of the lepton and probe-jet system (mlj).
The red vertical line defines the separation between signal and control
regions. (b) Mass of the thad reconstructed from the Large-R jet. (c)
Charge distribution of the lepton. This charge asymmetry in pp collisions
is exploited to control the W +jets background where this effect is caused
by the charge asymmetry in proton valence quark composition.

of Poisson over all the analysis bins. In this extent, ϵb is the efficiency
on data and it is the Parameter of Interest (POI) left floating in the
fit. µ⃗ = (NFtt̄, NFW +j) are the set of two floating normalization
factors of the main backgrounds. The systematic treatment will be
described later. The efficiency on Monte Carlo is estimated as the
ratio of number of signal tt̄ events in SRpass over the total number of
signal tt̄ events in both SRpass and SRfail.

ϵMC
b =

NSRpass

tt̄(b)

NSR
tt̄(b)

(3.16)

The Monte Carlo efficiency is then used to scale the two signal
regions as:

SRpass → ϵb
SRpass

ϵMC
b

SRfail → (1 − ϵb) SR
fail

1 − ϵMC
b

(3.17)
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In the end the Likelihood can be written as follows:

L(ϵb, µ⃗) =
∏

i∈[SR,CR]

e−λR
i (λR

i )n

n!

λSRpass

i = NFtt̄[ϵbstt̄(b) + stt̄(!b)] +NFW +jbW +j + bothers

λSRfail = NFtt̄[(1 − ϵb)stt̄(b) + stt̄(!b)] +NFW +jbW +j + bothers

λCR+/− = NFtt̄stt̄ +NFW +jbW +j + bothers (3.18)

It worth to mention that ϵb will impact only tt̄(b) since we are not
evaluating also the mis-tag rate of non b-tagged jets. Finally the fit
is performed maximising the Likelihood separately for each pT and
for the four standard Fixed Cut b-tagging Working Points (60%, 70%,
77% and 85%).

An example of post-fit distributions for the 77% WP and for the
75 < pT < 100 GeV bin is shown in Figure3.23.

Systematic Uncertainties The uncertainties are classified into
two primary categories: modelling uncertainties and detector-related
uncertainties.

Process modelling uncertainties account for variations in simulation
settings and are assessed by comparing nominal event samples with
alternative samples. This category includes the impacts of different
parton shower and hadronization models. These systematic uncertain-
ties affect the b-tagging efficiency by approximately 1 − 2.3%. The
uncertainties related to ISR and FSR range from about 0.1% to 0.8%.
The uncertainty related to the single-top modelling is dominated by
two main sources. The first refers to the diagram-subtraction scheme
(DS) compared with the nominal diagram-removal scheme (DR) re-
sulting in an uncertainty of 1.3 − 2.4%. A second uncertainty takes
into account a normalization effect varying the nominal normalization
of ±20% resulting in an uncertainty of less than 0.5%. For the other
processes the modelling impact is found to be negligible.

Detector related uncertainties are associated to the physics object
reconstruction. Lepton uncertainties results in an effect of less than
0.3%. The VR Track-jet are considered to be negligible and thus
are not considered. The uncertainties associated to the Large-R jet
reconstruction are less than 0.7%. All the other uncertainties are
found to be negligible.

The effect of each systematic uncertainty is evaluated performing a
Likelihood fit for each systematic variation and considering the relative
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difference with respect to the nominal fit:

δsyst.ϵb/ϵb = ϵsyst.
b − ϵnom.

b

ϵnom.
b

(3.19)

The breakdown of the uncertainties associated to the ϵb is shown
in Table 3.5 for the 77% b-tagging Working Point.

pT [GeV] 60-75 75-100 100-150 150-200 200-250 250-500
Total unc. 3.7% 2.9% 2.2% 2.6% 4.2% 5.0%
Stat unc. 1.1% 0.9% 0.9% 1.4% 2.6% 3.8%
Syst. unc. 3.5% 2.8% 2.0% 2.2% 3.3% 3.2%
tt̄ modelling 3.2% 2.2% 1.2% 1.1% 2.8% 2.0%
tt̄ ME (Powheg vs aMC@NLO) 2.5% 1.3% 0.8% 0.9% 1.7% 1.4%
tt̄ PS (Pythia8 vs Herwig7) 1.7% 1.5% 0.9% 0.2% 2.1% 0.6%
tt̄ ISR var. 0.4% 0.4% <0.1% 0.5% 0.4% 0.8%
tt̄ FSR var. 0.8% 0.4% 0.2% 0.1% 0.3% 0.7%
tt̄ scale var. 0.8% 0.4% <0.1% 0.3% 0.4% 0.7%
single-top modelling 1.4% 1.7% 1.5% 1.9% 1.7% 2.5%
Wt DR vs DS 1.3% 1.6% 1.5% 1.8% 1.6% 2.4%
Normalization 0.3% 0.4% 0.4% 0.4% 0.3% 0.5%
V+jets scale variations 0.2% 0.2% 0.2% 0.2% 0.4% 0.4%
Large-R jet uncertainties 0.3% 0.2% 0.1% 0.2% 0.7% 0.2%
Large-R JMS/JMR 0.2% 0.1% <0.1% 0.2% 0.7% 0.2%
Large-R JES (Modelling) <0.1% <0.1% <0.1% <0.1% 0.1% <0.1%
Large-R JES (Statistics) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
Large-R JES (Mistag) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
Large-R JES (Detector) <0.1% - - <0.1% <0.1% <0.1%
Flavour tagging uncertainties <0.1% <0.1% <0.1% <0.1% 0.1% <0.1%
light-mistag <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
c-mistag <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
FTag extrapolations - - <0.1% <0.1% <0.1% -
Lepton uncertainties 0.1% <0.1% <0.1% <0.1% 0.2% 0.3%
pµ

T calibration <0.1% <0.1% <0.1% <0.1% <0.1% 0.1%
ϵel corrections <0.1% <0.1% <0.1% <0.1% <0.1% 0.1%
ϵµ corrections 0.1% <0.1% <0.1% <0.1% 0.1% 0.3%
Eel calibration <0.1% - <0.1% <0.1% <0.1% <0.1%
Others 0.1% <0.1% 0.1% 0.1% 0.2% 0.3%
pileup <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
JVT <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
flavour comp./resp. <0.1% <0.1% <0.1% <0.1% 0.1% <0.1%
η inter-calibration <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
High pT - - - - - -

Table 3.5. Summary of uncertainties contribution impacting the measure-
ment of the b-tagging efficiency ϵb for each pT bin. The results are for
the 77% WP. Each category is the result of the sum in quadrature of
the individual sub-components.

The results are then shown for each b-tagging working point in
Figure 3.24 and 3.25 where the measured b-tagging efficiency ϵb and
the Scale Factors (ϵb/ϵMC

b ) as a function are respectively shown. This



106 3. Flavour Tagging

analysis leads to a precision on VR Track-jets b-tagging efficiency up
to 5% in a transverse momentum phase space (250 < pT < 500 GeV)
where the standard extrapolation methods usually have an uncertainty
of more than 13%, improving thus the calibration at high pT of almost
a factor of 3.

3.2.2 Statistical combination of
different calibrations

In this brief section the statistical combination of different and or-
thogonal b-tagging calibration is shown. In particular the standard
di-leptonic tt̄ calibration can be combined with the semi-leptonic cal-
ibration described in the previous section allowing to have the best
measurement of the b-tagging efficiency on the widest range as pos-
sible. In the following I will describe the general approach for the
combination and its application to two different kind of jets: PFlow
jets and VR Track-jets.

To perform the combination a Likelihood fit is performed. Some
assumptions are made in this methods. Firstly, each b-tagging mea-
surement is considered with a Gaussian Likelihood. Each systematic
is associated with a Gaussian prior and is considered to contribute
linearly to the combined value, thus second order or higher contribu-
tions are neglected. Finally each systematic is considered as 100%
correlated in pT and if it contributes to more than one measurement it
is also considered as 100% correlated between the measurements. It is
thus possible to write the Likelihood function as the product in each
pT bin and each b-tagging calibration of the Gaussians centered at
the measured Scale Factor (ŜF ) with a width given by the statistical
uncertainty on the measurement δSF stat.. The likelihood is then sum-
marised in the Equation 3.20 where each systematic is contributing to
the mean linearly with a fitted with parameter θsyst. with a Gaussian
prior centered in 0 and sigma 1.

L =
bins∏
pT

calib∏
i=1L,2L

G [SF (pT )|µ, σ]
syst∏

s

G[θis|0, 1]

µ = ˆSFi(pT )
(

1 +
syst∑

s

δSFis

ˆSFi

(pT )θis

)
σ = δSF stat

i (pT ) (3.20)
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The result of the combination is shown in Figure 3.27 and 3.28 for
the PFlow jets and VR Track-jets respectively. The pT binning used
for the PFlow combination is shown in Figure 3.26 while for the VR
Track-jets it is shown in Figure 3.21.

From Figures 3.27 3.28 it is possible to observe how the combination
not only allows to calibrate jets to a higher transverse momentum but
it also improves the uncertainty in those pT bins where the calibration
is performed by both methods.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.23. Post-fit distributions of the analysis regions for the 77%
b-tagging WP in the bin 100 < pT < 150 GeV. (a) Signal Region passing
the b-tagging : SRpass. (b) Signal Region failing the b-tagging : SRfail.
(c) Control Region with positive lepton charge: CR+ (d) Control Region
with negative lepton charge: CR− (e) Inclusive bin distribution for each
region. The pre-fit distribution is shown with a dashed red line. (f)
Floating parameters in the fit: Normalization factors for the signal (tt̄ )
and the main background (W +jets) and the b-tagging efficiency ϵb.
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(a) (b)

(c) (d)

Figure 3.24. Measurement of the b-tagging efficiency as a function of the
pT of the probe-jet for the four standard Working Points (a) 60%, (b)
70%, (c) 77% and (d) 85%. The dark-green error band is associated
to the overall systematic uncertainty while the light-green shows the
systematic uncertainty summed in quadrature with the statistical error
displayed by the black error band. The red reference line describes the
reference Monte Carlo b-tagging efficiency ϵb.
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(a) (b)

(c) (d)

Figure 3.25. Measurement of the b-tagging Scale Factors as a function of
the pT of the probe-jet for the four standard Working Points (a) 60%,
(b) 70%, (c) 77% and (d) 85%. The dark-green error band is associated
to the overall systematic uncertainty while the light-green shows the
systematic uncertainty summed in quadrature with the statistical error
displayed by the black error band.

Figure 3.26. Schematic pT binning of the di-leptonic and semi-leptonic tt̄
calibrations of PFlow jets.
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(a) (b)

(c) (d)

Figure 3.27. Combination of b-tagging Scale Factors as a function of pT

of the jet. The combination is performed on the PFlow jets and the
calibration considered are the di-leptonic and semi-leptonic calibration
on tt̄ events. The Combination is performed separately for each b-tagging
Working Point: (a) 60%, (b) 70%, (c) 77% and (d) 85%.
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(a) (b)

(c) (d)

Figure 3.28. Combination of b-tagging Scale Factors as a function of
pT of the jet. The combination is performed on the VR Track-jets
and the calibration considered are the di-leptonic and semi-leptonic
calibration on tt̄ events. The Combination is performed separately for
each b-tagging Working Point: (a) 60%, (b) 70%, (c) 77% and (d) 85%.
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4 | The Higgs-strahlung:
A Legacy Analysis

In Section 1.2, the electroweak spontaneous symmetry breaking mecha-
nism, which generates the masses of the Standard Model particles, was
described. This mechanism introduces a new scalar massive particle:
the Higgs boson. It is well known that in 2012, the Higgs boson was
discovered with a mass of approximately 125 GeV by the ATLAS Ref.
[91] and CMS Ref. [92] collaborations, a value that was not predicted
beforehand.

This chapter begins with a description of Higgs physics from an
experimental point of view (Section 4.1), highlighting the main results
of the ATLAS collaboration. Following this, the physics analysis of
the Higgs production in association with a leptonically decaying vector
boson, with the Higgs decaying into b- or c-quarks, is briefly discussed
(Section 4.2): V H(bb|cc), where V represents either W or Z.

The primary focus of this chapter, and the dissertation as a whole,
is the Run 2 Legacy analysis performed to simultaneously extract the
Higgs coupling to b- and c-quarks (Section 4.3). This measurement
leverages advanced techniques to improve upon previous results, re-
sulting in the most precise measurement of the Yukawa coupling to
the b-quark to date. It also places the most stringent upper limits
on the signal strength of the Yukawa coupling to the c-quark. Ad-
ditionally, this measurement aims to provide the first observation of
the WH(bb) Higgs process and the V Z(cc) diboson process by the
ATLAS collaboration.
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4.1 The Higgs Boson

The presence of a Higgs boson in a physics event proceeds through
two different steps: the production processes and the decay modes.

The cross sections for the production of a Standard Model Higgs
boson as a function of

√
s, for pp collisions, are summarized in Figure

4.1 (left) with relative theoretical uncertainties Ref. [93, 94].
The production of the Higgs boson at the LHC can occur through

several channels. The main channels, in terms of cross-section, are
gluon fusion (ggF ), weak-boson fusion (V BF ), Higgs-strahlung (V H),
and associated production with a pair of quarks (mostly tt̄). In Figure
4.2, the main Feynman diagrams contributing to these processes
are shown. After the measurement of the Higgs mass, it has been
possible to infer its production and decay rates. They were found to
be compatible with the SM predictions. The Higgs couples to the
mass of the particles through the Vacuum Expectation Value (VEV,
v ≈ 246 GeV).

Figure 4.1. (left) The SM Higgs boson production cross sections as
a function of the center of mass energy,

√
s, for pp collisions. The

VBF process is indicated here as qqH. The theoretical uncertainties are
indicated as bands. (right) The branching ratios for the main decays
of the SM Higgs boson near mH = 125 GeV. From Ref. [93]

In particular, the SM Higgs boson couplings to vector bosons (V )
and fermions (f), as well as the Higgs boson self-coupling (this will
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be discussed in detail in Section 5), at tree level are:

gHV V = 2m2
V

v
δV gHHV V = 2m2

V

v2 δV δZ = 1
2; δW = 1

gHff̄ =
√

2mf

v
gHHH = m2

H

2v gHHHH = m2
H

2v2

(4.1)

Figure 4.2. Main Leading Order Feynman diagrams contributing to the
Higgs production in (a) gluon fusion, (b) Vector-boson fusion, (c) Higgs-
strahlung (or associated production with a gauge boson), (d) associated
production with a pair of top (or bottom) quarks, (e-f) production in
association with a single top quark. with top quarks. From Ref. [93]

At high-energy hadron colliders, the Higgs boson production mech-
anism with the largest cross section is the gluon-fusion process (ggF)
mediated by the exchange of a virtual, heavy top quark. The SM
Higgs production mode with the second-largest cross section at the
LHC is vector boson fusion (VBF). The scattered quarks give rise to
two hard jets in the forward and backward regions of the detector.
The peculiar characteristics of VBF processes can be exploited to
distinguish them from overwhelming QCD backgrounds. After the
application of specific selection cuts, the VBF channel provides a clean
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environment, not only for Higgs searches but also for the determination
of Higgs boson couplings at the LHC.

After ggF and VBF, the most important Higgs production mecha-
nism at the LHC, and relevant for this dissertation, is the associated
production with W or Z vector bosons (Higgs-strahlung). As neither
the Higgs boson nor the vector bosons are stable particles, their de-
cays also have to be taken into account. The leptonic decay of the
associated vector boson provides a clear signature in the event at the
LHC, drastically reducing the QCD background and allowing probing
of the Higgs decays despite the lower cross-section.

Because of the high mass of the top-quark (mt ≃ 173 GeV) and
the couplings shown in Eq. 4.1, the Higgs cannot decay into a tt̄ pair.
Consequently, the most probable decay is into the heaviest accessible
quark, the b-quark with a mass of mb ≃ 4.2 GeV: H → bb̄. All
the branching ratios are shown in Figure 4.1 (right), in particular,
BR(H → bb̄) = 58.4%, assuming a SM Higgs boson with a mass of
125 GeV.

(a) (b)

Figure 4.3. Observed and predicted Higgs boson production cross-sections
and branching fractions. (a) Cross sections for different Higgs boson
production processes are measured assuming SM values for the decay
branching fractions. (b) Branching fractions for different Higgs boson
decay modes are measured assuming SM values for the production cross
sections. The lower panels show the ratios of the measured values to
their SM predictions. The vertical bar on each point denotes the 68%
confidence interval. The p-value for compatibility of the measurement
and the SM prediction is 65% for (a) and 56% for (b). [95]
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A summary of the measurements by the ATLAS collaboration of
the Higgs boson production and decays with the Run 2 dataset is
shown in Figure 4.3 and reported in Ref. [95], published ten years
after the discovery of the Higgs boson. All measurement results are
compatible with the Standard Model (SM) predictions.

The Higgs boson production rates are probed by the likelihood fit
to observed signal yields described earlier. As the production cross
section σi and the branching fraction Bf for a specific production
process i and decay mode f cannot be measured separately without
further assumptions, the observed signal yield for a given process is
expressed in terms of a single signal-strength modifier:

µi,f = σiBf

σSM
i BSM

f

(4.2)

where the superscript ‘SM’ denotes the corresponding SM prediction.
To determine the value of a particular Higgs boson coupling

strength, a simultaneous fit of many individual production times
branching fraction measurements is required. The coupling fit pre-
sented in Ref. [95] is performed within the k-framework Ref. [96] with
a set of parameters k that affect the Higgs boson coupling strengths
without altering any kinematic distributions of a given process.

Within this framework, the cross section times the branching
fraction for an individual measurement is parameterized in terms of
the multiplicative coupling strength modifiers k. A coupling strength
modifier kp for a production or decay process via the coupling to a given
particle p is defined as k2

p = σp/σ
SM
p or k2

p = Γp/Γ
SM
p , respectively,

where Γ is the partial decay width into a pair of particles p. The
parameterization takes into account that the total decay width depends
on all decay modes included in the present measurements, as well as
currently undetected or invisible, direct or indirect decays predicted
by the SM (such as those to gluons, light quarks, or neutrinos) and
hypothetical decays into non-SM particles.

Let’s consider a class of models where the coupling strength mod-
ifiers for W , Z, t, b, τ , µ, and c are treated independently. All
modifiers are assumed to be positive. It is assumed that only SM
particles contribute to the loop-induced processes, and modifications
of the fermion and vector-boson couplings are propagated through
the loop calculations. Invisible or undetected non-SM Higgs boson
decays are not considered. These models allow us to test the predicted
scaling of the couplings of the Higgs boson to the SM particles as a
function of their mass using the reduced coupling strength modifiers.
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Figure 4.4 shows the results for two scenarios: one with the cou-
pling to c-quarks constrained by kc = kt in order to cope with the
low sensitivity to this coupling, and the other with kc left as a free
parameter in the fit. All measured coupling strength modifiers are
found to be compatible with their SM prediction.

Figure 4.4. Reduced Higgs boson coupling strength modifiers and their
uncertainties. They are defined as kF mF /v for fermions (F = t, b, τ , µ)
and

√
kV mV /v for vector bosons as a function of their masses mF and

mV . Two fit scenarios with kc = kt (coloured circle markers), or kc left
free-floating in the fit (grey cross markers) are shown. Loop-induced
processes are assumed to have the SM structure, and Higgs boson decays
to non-SM particles are not allowed. The vertical bar on each point
denotes the 68% confidence interval. The p-values for compatibility of
the combined measurement and the SM prediction are 56% and 65%
for the respective scenarios. The lower panel shows the values of the
coupling strength modifiers. The grey arrow points in the direction of
the best-fit value and the corresponding grey uncertainty bar extends
beyond the lower panel range. Ref. [95]

It is relevant to observe that there is no experimental evidence
of the Higgs boson coupling to the first generation of fermions or
the second generation of quarks. Before the LHC was built, it was
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thought to be impossible to measure the Higgs coupling to c-quarks at
the LHC due to the branching fraction being about 20 times smaller
than that for b-quarks (Bc(H → cc̄) = 2.89% in Ref. [97]). However,
recent studies have shown that with the improvement obtained by
novel techniques, this may no longer be the case, and evidence could
potentially be obtained by the end of the LHC’s operation.

For this reason, measuring and analyzing the coupling of the Higgs
to heavy flavor quarks plays a pivotal role in our understanding of the
Standard Model.

4.2 The Run2 VH Analyses
As mentioned, the Higgs decay to c-quarks shares a similar topology
with the decay to b-quarks. The crucial differences that make measur-
ing the coupling to the second generation of quarks challenging are
the approximately 20 times lower branching ratio and the complexity
of Flavor Tagging, described in Chapter 3, for tagging c-quarks. The
benchmark analyses for the H → bb̄ Ref. [98] and H → cc̄ Ref. [99]
used the full Run 2 dataset. These analyses will be briefly described
here, to provide a benchmark for the "legacy" analysis that is the main
topic of this thesis work.

As already mentioned, the H → bb̄ and H → cc̄ decays are chal-
lenging to measure in the ggF and VBF production modes due to the
large background from multi-jet events. Therefore, the most sensitive
production channel is the associated production of a Higgs boson with
a Vector boson W or Z, briefly referred to as V H. The leptonic decay
of the Vector bosons significantly suppresses the multi-jet background.

The H → bb̄ decay mode was first observed by ATLAS and CMS
Ref. [100, 101], and since then, the focus has shifted towards precision
measurements. ATLAS has published three additional results using
the full Run 2 dataset of 139 fb−1. The first [102], similar to the ob-
servation analysis, focuses on Higgs bosons produced at low transverse
momentum with the two b-quarks resolved into two distinct jets. The
second [103] targets the Higgs boson when it is highly boosted and
reconstructed with a single large-radius jet. The third [98], described
in Section 4.2, combines the two approaches with a careful study of
the overlap region.

The H → cc̄ decay mode is much harder to measure, and direct
searches have set upper limits on the cross-section times the branching
fraction of the process [99]. In Section 4.2, the latest measurement
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of this process is shown, setting an upper limit of 26 times the signal
strength predicted by the Standard Model for the V H(cc) process.
The CMS collaboration measured an expected (observed) upper limit
of 7.6 (14.4) times the Standard Model prediction Ref. [104].

The H → bb̄ Analysis

The H → bb̄ analysis Ref. [98] has been performed with the full Run 2
dataset, as a function of the vector boson transverse momentum, pV

T ,
which is related to the transverse momentum of the Higgs boson, in
kinematic fiducial volumes as defined within the Simplified Template
Cross-Section (STXS) framework [105].

Two orthogonal regimes are defined based on pV
T . At low pV

T , the
two b-quarks will generate a pair of jets that can be reconstructed
separately. In this region, the Higgs candidate is reconstructed with
two distinct b-tagged jets using the anti-kt algorithm with a radius
parameter of 0.4. This regime will be referred to as resolved in the
following discussion.

At higher pV
T , the b-quarks are more collimated due to the Higgs

boost:
∆R(b1, b2) ≃ 2mH

pH
T

(4.3)

Thus, the Higgs candidate is reconstructed with a single large-radius
jet (R = 1.0) with substructure containing two VR Track-jets. This
regime will be referred to as boosted in the following discussion. The
switch between the two regimes occurs at pV

T = 400 GeV, ensuring
consistency with the STXS scheme. In the end, the signal is extracted
in STXS pV,t

T , the truth transverse momentum of the vector boson,
categories as shown in Figure 4.5.

It is possible to extract the signal strength for the WH and ZH
processes (µbb

W H , µbb
ZH), validating the analysis on the diboson process

V Z (µbb
V Z).

The combination yields an inclusive signal strength for the V H(bb)
signal of:

µbb
V H = 1.00+0.12

−0.11(stat.)+0.14
−0.13(syst.)

corresponding to an expected (observed) significance of 6.3 (6.4) stan-
dard deviations over the background-only hypothesis.

µbb
W H = 1.03+0.19

−0.19(stat.)+0.21
−0.19(syst.) (4.4)

µbb
ZH = 0.97+0.17

−0.17(stat.)+0.18
−0.15(syst.) (4.5)
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Figure 4.5. Sketch of the ZH and W H STXS pV
T , t categories for which

cross-sections are extracted in the combination and the corresponding
categories of reconstructed pV

T from Ref. [105].

resulting in 3.9 (4.1) and 5.0 (4.6) expected (observed) standard
deviations from the background-only hypothesis for the WH and ZH
production modes, respectively.

Figure 4.6. Measured V H cross-sections times the H → bb̄ branching
fraction in the STXS scheme Ref. [98].

The H → cc̄ Analysis

Given the similar topology, the H → cc̄ analysis Ref. [99] has been
performed with a similar strategy to the H → bb̄ analysis. Due to
the low branching fraction of the H → cc̄ process, about 2.89%, the
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coupling to the second generation of quarks has yet to be observed
at the LHC. This analysis uses the resolved scheme for the entire pV

T

spectrum, and a binned profiled likelihood fit to the mcc, the invariant
mass of the two c-tagged jets, distribution is performed. The fitted
signal strength is:

µcc
V H = −9 ± 10(stat.) ± 12(syst.)

For the µcc
V H signal strength, an upper limit of 31(26)+12

−8 is expected
(observed) at the 95% Confidence Level. The limits for each lepton
channel and the combinations are summarized in Figure 4.7.

Figure 4.7. The observed and expected 95% CL upper limits on the cross-
section times the branching fraction normalized to its SM prediction in
each lepton channel and for the combined fit. The single-channel limits
are obtained using a 5-POI fit, in which each channel has separated
V H(cc) parameters of interest from Ref. [99].

This analysis is also validated by studying the diboson production
V Z(cc̄) and VW (cq), with expected (observed) significances of 2.2
(2.6) and 4.6 (3.8), respectively.

4.3 VH(bb|cc) Legacy Analysis
Since Ref. [98, 99], many improvements in terms of techniques have
been achieved by the ATLAS collaboration. For this reason, a re-
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analysis of the Run 2 data has been performed. The goal is to
extract the best sensitivity to the H → bb̄ and H → cc̄ decays
through a combined analysis using an improved version of the b-
tagging algorithm, implementing a Multi-Variate Analysis (MVA) in
all the signal-enhanced regions of the analysis, and correlating the
systematic uncertainties among the regions to maximize the power of
the data to extract the Parameters Of Interest (POI).

Due to the similar topology of the H → bb̄ and H → cc̄ decays,
there is a significant benefit in performing the analysis simultaneously.
Additionally, the backgrounds of the two analyses can be treated
coherently.

The analysis strategy is schematized in Figure 4.8 across the three
different analysis regimes: H → bb̄ resolved, H → bb̄ boosted, and
H → cc̄ .

Figure 4.8. Illustration of the analysis regimes considered in the V H(bb̄|cc̄)
analysis. The H → bb̄ and H → cc̄ regimes are separated through the
requirement of b- and c-tags, and the boosted and resolved regimes are
separated with a cut at pV

T = 400 GeV requirements are not fulfilled.
Note that jets are considered for c-tagging only if b-tagging requirements
are not fulfilled.

The analysis targets V H(cc̄) and V H(bb̄) as signal processes. Addi-
tionally, a cross-check analysis is considered with the Standard Model
diboson processes V Z(cc̄) and V Z(bb̄) as signal processes.

The main backgrounds in both H → bb̄ and H → cc̄ cases come
from V+jets and Top quark processes (mainly tt̄). The V+jets back-
ground is split into three different components: V+hf (bb, cc), V+mf
(bc, bl, cl), and V+lf. The top quark background is also split by di-jet
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flavor, with Top(bb)1 treated separately as the main background for
the H → bb̄ case. Minor backgrounds include single-top processes,
multi-jet, and non-signal diboson processes such as WW .

This analysis strongly relies on Flavor Tagging to target theH → bb̄
and H → cc̄ final states. The DL1r algorithm, described in Section
3.1.1, is used for this purpose. A Pseudo-Continuous Flavor Tagging
scheme is implemented to achieve an exclusive categorization in terms
of Flavor Tagging for each jet. A two-dimensional plane of b-tagging
vs c-tagging scores divides the plane into five orthogonal regions (two
b-tagging , one c-tagging tight, one c-tagging loose, and a non-tagged
region), as shown in Figure 4.9.

Figure 4.9. DL1r Pseudo Continuous Flavour Tagging algorithm.

The analysis is split into three channels depending on the leptonic
decay of the vector boson: 0-lepton for Z → νν̄, 1-lepton for W → lνl,
and 2-lepton for Z → l+l−. Each channel is further divided into
different regions that enter the statistical analysis, as shown in the
scheme in Figure 4.10. Three event displays are shown in Figure 4.12
for each lepton channel.

In the H → bb̄ resolved regime, exactly two b-tagged jets are re-
quired, and the regions are defined in bins of pV

T : low-pV
T [75, 150] GeV

(1-/2-lepton only), medium-pV
T [150, 250] GeV, and high-pV

T [250, 400] GeV.
Events are further separated into 2 and 3 jets categories; in the 0-lepton
channel, an exactly 4-jets category is added, while in the 2-lepton
channel, 4 or more jets are also included. A control region based on the
angular distance (∆R(b1, b2)) of the two Higgs candidate jets is cre-
ated. The control region with large ∆R(b1, b2) is denoted as CRHigh.

1We refer here and the future to Top as tt̄ +W t
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For the 1-lepton channel, a control region with low ∆R(b1, b2) is added,
denoted as CRLow.

Figure 4.10. Illustration of the analysis regions considered in the analysis.
In regions marked in indicated in italicized font, only the total yields
are used in the fit. In all other regions either the BDT or di-jet mass
distribution is considered.
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For the H → cc̄ regime, a similar categorization is used with
the following pV

T regions: low-pV
T [75, 150] GeV (1-/2-lepton only),

medium-pV
T [150, 250] GeV, and high-pV

T [250,∞] GeV. Signal regions
are required to have at least one tightly c-tagged jet. Similar to
H → bb̄ , each region has a CRHigh. An additional region is created
to control the V+lf background, requiring a loosely c-tagged jet and a
non-tagged jet. Top-enriched regions are shared between H → bb̄ and
H → cc̄ , requiring a b-tagged and a c-tagged jet for the 0-/1-lepton
channels. In the 2-lepton channel, the top control region is built using
different flavor requirements for the leptons.

The regions separating H → bb̄ and H → cc̄ cases in the re-
solved regimes based on the tagging requirements passed by the jets
composing the Higgs candidate are shown in Figure 4.11.

In the boosted H → bb̄ regime, events are divided into two pV
T

regions: [400, 600] GeV and [600,∞] GeV. The signal region requires
that the two leading sub-jets of the large-radius jet be b-tagged. In
the 0-/1-lepton channels, events with a b-tagged jet not matched with
the large-radius jet will form a dedicated tt̄ control region. In this
boosted regime has a small contamination from H → cc̄ because no
boosted regime is built for the latter.

Figure 4.11. Tagging regions separating H → bb̄ and H → cc̄ in the
resolved regime based on the tag requirement passed by the jets used
for the Higgs candidate.

Compared with Ref. [98], a Multi-Variate Analysis (MVA) is
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performed to enhance the sensitivity of the measurement in both the
boosted H → bb̄ and H → cc̄ regimes by training a Boosted Decision
Tree (BDT) in each region of the analysis.

Different kinds of systematic uncertainties are considered in this
analysis. Firstly, experimental uncertainties are considered for all
the physics objects used in the analysis. Dedicated calibrations are
then performed to provide the Flavour Tagging-related uncertainties.
Secondly, modelling uncertainties are derived as two-point systematics
by comparing the nominal Monte Carlo samples with alternative ones,
QCD scale variations, and Parton Distribution Function variations.

Generally, three different kinds of uncertainties can be defined:

• Normalization uncertainties: Normalizations that can be
extracted from data in pure regions or set to Monte Carlo
predictions with an overall uncertainty derived from different
generator comparisons.

• Acceptance ratios: Uncertainties on acceptance effects be-
tween different regions in the analysis with the same normal-
ization factor. These uncertainties are derived by computing
the double ratio of yields in two regions between two generators.
The sum in quadrature of all the variations is considered.

• Shape uncertainties: Uncertainties on the BDT shape are
derived using a multivariate approach (namely CARL), which
trains a Neural Network to differentiate between the nominal
and the alternative sample.

4.3.1 Samples

The dataset used for this analysis is the full Run 2 collected by the
ATLAS detector between 2015 and 2018, corresponding to 140 fb−1

at
√
s = 13 TeV.

All the signal and background processes are simulated using Monte
Carlo generators, except for the multi-jet background in the 1-lepton
channel and the tt̄ background in the 2-lepton channel, which are
estimated using data-driven methods. The estimate of the multi-jet
background is described in detail in Section 4.3.7.

The summary of the Monte Carlo samples used for the backgrounds
is shown in Table 4.1.
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Figure 4.12. Event displays for 0-/1-/2-lepton channels respectively.
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Process Matrix Element PDF Set (ME) Parton Shower σ order

qq → V H
PowHeg-Box v2 [75, 106]

NNPDF3.0NLO [107] Pythia-8.245 [108] NNLO(QCD)+ NLO(EW)
+ GoSam [109] + MiNLO [110, 111]

gg → ZH PowHeg-Box v2 NNPDF3.0NLO Pythia-8.245 NNLO(QCD)+ NLL(EW)

Z+ jets Sherpa 2.2.11 NNPDF3.0NLO Sherpa 2.2.11 NNLO

tt̄ Powheg-Box v2 NNPDF3.0NLO Pythia-8.230 NNLO+NNLL

single-top (s/t) Powheg-Box v2 NNPDF3.0NLO Pythia-8.230 NLO

single-top (Wt) Powheg-Box v2 NNPDF3.0NLO Pythia-8.230 Approx. NNLO

qq → V V Sherpa 2.2.11 NNPDF3.0NLO Sherpa 2.2.11 NLO

gg → V V Sherpa 2.2.2 NNPDF3.0NLO Sherpa 2.2.2 NLO

Table 4.1. Nominal Monte Carlo samples used in V H(bb̄|cc̄) analysis. The
PDF sets in the table are the ones used for the matrix element.

4.3.2 Object and Event Selection
In this section, the object reconstruction and event selection procedures
are described.

Object Reconstruction

Leptons used in this analysis are reconstructed as described in Sections
2.3.3 and 2.3.5. The selection criteria are detailed in Table 4.2 for
electrons and Table 4.3 for muons. Unlike electrons and muons, τ -
leptons are reconstructed hadronically and identified with Machine
Learning techniques based on Recurrent Neural Networks, as described
in Section 2.3.7. The selection criteria for τ -leptons are detailed in
Table 4.4.

Electron Selection pT η ID dsig
0 w.r.t. BL |∆z0 sin θ| Isolation

VH-Loose > 7 GeV |η| < 2.47 LH Loose < 5 < 0.5 mm Loose_VarRad

ZH-Signal > 27 GeV Same as VH-Loose

WH-Signal Same as ZH-Signal LH Tight Same as ZH-Signal HighPtCaloOnly

Table 4.2. Electron selection requirements

Muon Selection pT η ID dsig
0 w.r.t. BL |∆z0 sin θ| Isolation

VH-Loose > 7 GeV |η| < 2.7 Loose quality < 3 < 0.5 mm Loose_VarRad
ZH-Signal > 27 GeV |η| < 2.5 Same as VH-Loose

WH-Signal > 25 GeV when pV
T > 150 GeV |η| < 2.5 Medium quality < 3 < 0.5 mm HighPtTrackOnly

> 27 GeV when pV
T < 150 GeV

Table 4.3. Muon selection requirements

Three different anti-kt jet collections have been used in this analysis
for the various regimes:
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Lepton pT η ntrk ID
tau > 20 GeV |η| < 2.5 1 or 3 tracks Loose

Table 4.4. Hadronic tau selection requirements

• Small-R Jets: As described in Section 2.3.6, these jets are
built with a radius parameter of R = 0.4 using calorimeter
information.

• Large-R Jets: As described in Section 2.3.6, these jets are
built with a radius parameter of R = 1.0 using calorimeter
information.

• Variable-R Track-Jets: As described in Section 2.3.6, these
jets are built with a variable radius parameter between 0.02 <
R < 0.4 using track information.

The jet selection criteria are summarized in Table 4.5.

Jet Category Tight Jet Cleaning pT η JVT/fJVT

Signal Jet true > 20 GeV < 2.5 JVT > 0.5
for |η| < 2.4, pT < 60 GeV jets

Forward Jet true
> 30 GeV 2.5 < |η| < 4.5 fJVT < 0.5

for pT < 120 GeV jets
Large-R jets - pT > 250 GeV |η| < 2.0 -
Track jets - pT > 10 GeV |η| < 2.5 -

Table 4.5. Jet selection requirements

Finally, the missing transverse momentum (MET or Emiss
T ) is used

as a sign of neutrinos for the 0-/1-lepton channels with the standard
ATLAS procedure described in Section 2.3.8.

Event Selection

All the events use lepton triggers to efficiently select the leptonically
decaying vector boson. The 0-lepton channel uses MET triggers with
online thresholds of 70 GeV for the data collected during 2015, 90
and 110 GeV for data in 2016, and 110 GeV for the 2017/18 data.
In the 1-lepton channel, muonic events are triggered with the same
triggers as for the 0-lepton for pV

T above 150 GeV, while for low-pV
T

single-muon triggers are used. In the leptonic case, single-electron
triggers are required. In the 2-lepton channel, triggers are similar to
the 1-lepton channel, changing the threshold for the muon case to
250 GeV.
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Building the V and H Candidates

The Vector Boson In the 0-lepton channel, the pV
T is the missing

energy, requiring MET > 150 GeV where the trigger efficiency is
above 90%. The scalar sum of the jets (ST ) is required to be larger
than 120(150) GeV for the 2(3)-jet events, removing mis-modelling in
the simulation of the jet activity.

A special case is considered when a τhad is reconstructed in the
0-lepton channel from the W decay. These events require a further
selection on the transverse mass of the W boson (mW

T
2). Imposing

mW
T > 10 GeV reduces fake τ contamination. These events are

considered as in the 1-lepton channel, and in this case, the pV
T is built

as the vector sum of the MET and the transverse momentum of the
τ : p⃗W

T = E⃗miss
T + p⃗τ

T .
As for the τ case, in the 1-lepton channel the pV

T is the vector sum
of the MET and the lepton transverse momentum: p⃗W

T = E⃗miss
T + p⃗l

T .
A pW

T > 75 GeV is required.
For the 2-lepton channel, the two leptons are required to have the

same flavor. In the case of the muon sub-channel, the two leptons
are also required to have opposite charge. The invariant mass of
the di-leptonic system is required to be compatible with the Z boson
resonance: 81 < m(ll) < 101 GeV in H → bb̄ resolved or H → cc̄ ,
and 66 < m(ll) < 116 GeV in H → bb̄ boosted. The pV

T in this case is
the vector sum of the two lepton systems: p⃗Z

T = p⃗l1
T + p⃗l2

T .

The Higgs Boson In the H → bb̄ resolved or H → cc̄ regime, the
Higgs candidate is built by exploiting the PCFT for each jet in the
event. In these regimes, only Small-R jets are considered. To avoid
overlaps, only events without any b-tagged jet and with at least one
c-tagged jet (both loose or tight) are considered for the H → cc̄ regime.
For the H → bb̄ resolved regime, exactly 2 b-tagged jets are required
with a further veto on tight c-tagged jets for the 0-/1-lepton channels.
In the 0-/1-lepton channels, events containing both b- and tight c-
tagged jets are considered for the Top(bc) Control Regions. With
these selections, the Higgs candidate is built using the two b-tagged
jets in the H → bb̄ resolved regime. For the H → cc̄ case, jets are
sorted as tight > loose > no c-tag. If two jets have the same c-tagging
information, the one with the highest pT is prioritized. The first two
jets with this sorting are considered as the Higgs candidate. For the

2mW
T =

√
2pl

T Emiss
T (1 − cos ∆ϕ(l, Emiss

T ))
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events entering the Top(bc) Control Regions, the Higgs candidate is
built using the b-tagged and tight c-tagged jets, both selected with
the highest pT within their tagging category. In the 2-lepton channel,
no tight c-tagging veto is applied in the Signal Regions, so these kinds
of events will enter the Signal Regions.

After building the Higgs candidate, the two jets are sorted by pT :
the leading jet is denoted as j1 while the sub-leading jet is j2. The
leading jet candidate is required to have pj1

T > 45 GeV while the sub-
leading jets must have pj2

T > 20 GeV. Due to a known mis-modelling
of soft collinear gluon splitting in V+jets, the invariant mass of the
Higgs candidate is required to be m(j1, j2) > 50 GeV.

For the H → bb̄ boosted regime, track-jets are required to pass
the 85% Working Point. The Higgs candidate is considered from the
highest pT Large-R jet. The Higgs candidate is required to have at
least two track-jets associated with the Large-R jet. Three track-
jets are considered for the tagging requirement. The signal region
is required to have exactly two b-tagged sub-jets. The mass of the
Large-R jet is required to be more than 50 GeV.

Further selection requirements are applied to suppress multi-jet
and other backgrounds. A summary of all the criteria is reported in
Table 4.6 for the H → bb̄ resolved and H → cc̄ regimes and in Table
4.7 for the H → bb̄ boosted regime.

4.3.3 Event Categorization

As shown in Figure 4.8, events are categorized into pV
T bins and number

of jet categories.
Signal regions are defined from the Flavour Tagging categorization

as shown in Figure 4.11 by the solid black line. In the H → bb̄ resolved
regime, the signal region is built with exactly two b-tagged jets. In
the H → cc̄ regime, the signal regions are built with at least one
tight c-tagged jet: TT with exactly two tight c-tagged jets, TL with
a tight and a loose c-tagged jet, and TN with a tight c-tagged and a
non-tagged jet.

To better constrain the various backgrounds of the analysis, several
Control Regions have been built.

A High ∆R(j1, j2) Control Region (CRHigh) is built with a con-
tinuous cut on ∆R as a function of the pV

T to constrain V+jets and tt̄
normalization and shape. An example for the 2-jet category and the
2-lepton channel is shown in Figure 4.13 for the signal distribution.
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Analysis regime H → bb̄ resolved H → cc̄

Common Selections
Jets ≥ 2 signal jets

Candidate jets tagging 2 b-tags ≥ 1 c-tag a

Leading Higgs candidate jet pT > 45 GeV
Sub-leading Higgs candidate jet pT > 20 GeV

mbb or mcc > 50 GeV (before correction)
∆R(jet1, jet2) Upper cut ∆R < π

0 Lepton
Trigger Emiss

T triggers
Jets ≤ 4 jets ≤ 3 jets

Additional jets tagging no c-tag no b-tag
Leptons 0 VH-loose lepton
Emiss

T > 150 GeV
ST > 120 (2 jets), > 150 GeV (3p jets)
mW

T > 10 GeV (for events with at least one hadronic τ)
| min∆ϕ(Emiss

T , jet)| > 20◦ (2 jets), > 30◦ (3 jets)
|∆ϕ(Emiss

T , H)| > 120◦

|∆ϕ(jet1, jet2)| < 140◦

1 Lepton

Trigger
e channel: single electron trigger

µ channel: single muon trigger (pV
T < 150 GeV)

Emiss
T triggers (above)

Jets ≤ 3 jets
Additional jets tagging no c-tag no b-tag

hadronic τ no hadronic τ

Leptons
1 WH-signal lepton

> 1 VH-loose lepton veto
Emiss

T > 30 GeV (e channel)
ST > 120 (2 jets), > 150 GeV (3 jets)
mW

T > 20 GeV (75 < pV
T < 150 GeV only)

2 Lepton

Trigger
e channel: single electron trigger

µ channel: single muon trigger (pV
T < 250 GeV)

Emiss
T triggers (above)

Additional jets tagging - no b-tag

Leptons
2 VH-loose leptons

(≥ 1 ZH-signal lepton)
Same flavour, opposite-charge for µµ

mll 81 < mll < 101 GeV
Table 4.6. Summary of the event selection in the 0-, 1- and 2-lepton

analyses.
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Selection 0 lepton channel 1 lepton channel 2 lepton channel
e sub-channel µ sub-channel e sub-channel µ sub-channel

Trigger Emiss
T Single electron Emiss

T Single electron Emiss
T

Leptons
0 VH-loose lepton 1 WH-signal lepton ≥ 1 ZH-signal lepton

no second VH-loose lepton 2 VH-loose leptons
no hadronic τ

Emiss
T > 250 GeV > 50 GeV - -
pV

T > 400 GeV

Large-R jet at least one large-R jet
pT > 250 GeV, |η| < 2

Track-Jets
at least two track-jets
pT > 10 GeV, |η| < 2.5

matched to the leading large-R jet

b-jets exactly two of the leading three track-jets
matched to the leading large-R must be b-tagged

mJ > 50 GeV
min∆ϕ(Emiss

T , jets) > 30◦ - -
∆ϕ(Emiss

T , Hcand) > 120◦ - -
mll - - 66 GeV < mll < 116 GeV

Lepton flavor - - two lepton same flavour
Lepton charge - - opposite sign muons

Table 4.7. Event Selection for the three channels of the boosted H → bb̄
analysis.

This function is built to contain 95% (85%) of the signal below the ∆R
cut for the 2(3)-jet category. The TT and LT Signal Regions are then
merged together into a named XT region while the respective CRHigh
are kept separate. In the 1-lepton channel, a Low ∆R(j1, j2) Control
Region (CRLow) is also built to constrain the W+hf background.
This region is defined to keep 90% of the diboson signal in the Signal
Region.

The already defined Top(bc) Control Region with a b-tag and a
tight c-tag jet is used to better constrain the Top backgrounds in the
0-lepton and 1-lepton channels. In the 2-lepton channel, a high-purity
tt̄ control region is built with different flavour leptons.

Finally, a V+lf region is also created in the 1-lepton and 2-lepton
channels using a LN tag region with a loose c-tag jet and a non-tag
jet.

A summary of the event categorization for all the control regions
is reported in Figure 4.14.

For the H → bb̄ boosted regime, the Signal Region is defined by a
Large-R jet composed of exactly two b-tagged track-jets matched to
the Large-R jet. A top control region is built with additional b-tagged
track jets outside the Higgs candidate. In the 0-lepton and 1-lepton
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Figure 4.13. Signal distribution of ∆R vs pV
T in the 1-lepton channel and

the 2 jet category. The pink lines shows the function delimiting the
High/Low ∆R control region. In yellow the reference line used in the
previous iteration of the analysis.

channels, the region can be further split into High Purity (HP) and
Low Purity (LP) based on the number of calo Small-R jets outside
the Large-R jets. This information, which was used in the previous
boosted-only analysis to create two separate Control Regions, is now
used in the BDT training but keeps HP and LP merged in the analysis.

4.3.4 Jet Corrections
A series of jet corrections is applied to improve the Higgs candidate
momentum resolution.

• Muon In-Jet Correction: This correction aims to correct
the momentum of the b-/c-tag jet with the muonic decay of the
heavy flavour hadron that is not captured by the calorime-
ter. If a muon is found in a tagged jet with ∆R(µ, j) <
min (0.4, 0.04 + 10GeV/pµ

T ), the muon 4-momentum is then added
to the jet after subtracting the calorimeter energy deposit.

• Final State Radiation Recovery: Applied to the 2-lepton
channel to events with 3 or more jets. This correction aims to
improve the m(j1, j2) resolution and peak. Continuous cuts are
applied on the sum of ∆R between the third or fourth jets with
the two Higgs candidate jets. The closest jet below the cut is
considered as an FSR-recovered jet.
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Figure 4.14. Scheme of the event categorization with the variable used in
the fit in each control region.

• PtReco Correction: This correction aims to correct the miss-
ing energy in semi-leptonic decays of heavy hadrons and out-of-
cone effects of b-jets. It is applied only to the H → bb̄ resolved
regime. It is derived from the simulation as the ratio of pT

between the jets after the Muon In-Jet correction and the truth
jet pT on b-tag jets.

• Kinematic Fit: This correction is applied only in the 2-lepton
channel where the event is expected to be reconstructed entirely.
A kinematic fit is performed to improve the m(j1, j2) resolution
following the methods used in Run 1 Ref. [112, 113].

A summary of the jet corrections is shown on signal samples in Figure
4.15 for the 2-lepton channel. Overall, the mass resolution can be
improved by up to 40%.

4.3.5 Truth Tagging strategy
The default Flavour Tagging method Ref. [114] is defined as Direct
Tagging, where a jet passes or fails the tag requirement based on the
score of DL1r. The efficiencies and mis-tag rates for various flavour
jets are shown in Table 4.8.
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(a) (b)

(c)

Figure 4.15. Tagged energy correction performance in different analysis
schemes in the 2-lepton channels. Events in different nJet or pV

T cate-
gories are shown inclusively in different analysis schemes. The events
are taken from signal MC samples.

With tagging efficiency and rejection rate limits, only part of the
events satisfy the requested tagging conditions while many other events
are discarded from the analysis. For this reason, many regions in the
analysis lack Monte Carlo statistical sensitivity, leading to a large
Monte Carlo statistical uncertainty. An alternative approach, known
as truth tagging, uses all the events by weighting each event with the
efficiency of being selected. This event weight is essentially the product
of the tagging efficiencies of the tagged jets times the inefficiencies of
the non-tagged jets. A traditional way of implementing truth tagging
is via 2D efficiency maps in pT and η. Tagging efficiency can have
non-trivial dependencies on other variables, but a higher-dimensional
map would cause a lack of statistics in each tag bin. For this reason,
Graph Neural Networks have been used Ref. [115] to exploit this
multi-dimensional parametrization of the tagging efficiency. The input
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PCFT bin name b-jets c-jets light-jets τ-jets
Untagged 14.5% 47.4% 92.4% 60.3%
Loose c-tag 11.5% 20.5% 6.5% 18.5%
Tight c-tag 4.8% 24.2% 0.9% 19.5%
70% b-tag 11.2% 5.2% 0.1% 1.7%
60% b-tag 58% 2.6% 0.05% 0.5%

Table 4.8. Jet efficiencies for different PCFT bins.

to the network is composed of a graph where a node represents a jet.
The input features are the kinematics of the jets and their constituents.
A schematic view of the GNN-based Truth Tagging methods is shown
in Figure 4.16.

Figure 4.16. GNN based Truth Tagging scheme. Ref. [115]

GNN-based Truth Tagging methods can provide smoother distri-
butions of the tagging efficiency compared to the standard Direct
Tagging while maintaining a reasonable closure with the Direct Tag-
ging distribution. Since the efficiency on b-jets is quite high (ca. 70%),
the impact of Truth Tagging should be quite limited. For this reason,
this method is applied to H → bb̄ resolved, only to non-b-jets: Hybrid
Tagging.

The final strategy is thus decided as follows:

• H → bb̄ resolved: GNN-based Hybrid Tagging applied to V+jets
and single-top s-/t-channels. All the other samples use Direct
Tagging.

• H → bb̄ boosted: GNN-based Truth Tagging applied to all
samples and jet flavors except for signal and diboson.

• H → cc̄ : GNN-based Hybrid Tagging applied to a randomized
8% of the V+jets and single-top s-/t-channel samples in the TT
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tagging category. The remaining 92% uses Direct Tagging and is
categorized in the remaining TL, TN, LN, BT categories. The
other samples use Direct Tagging.

4.3.6 A Multi-Variate Analysis

H → bb̄ resolved H → bb̄ boosted

H → cc̄

Variable Name 0-lepton 1-lepton 2-lepton 0-lepton 1-lepton 2-lepton

m(j1, j2) mBB / mJ × × × × × ×

m(j1, j2, j3) mBBJ × × ×

pj1
T or ptrk

T pTB1 / pTBTrkJ1 × × × × × ×

pj2
T pTB2 / pTBTrkJ2 × × × × × ×

pj3
T pTBTrkJ3 × × ×∑

i>2 p
i
T sumPtAddJets × × ×

∆R(j1, j2) dRBB / deltaRTrkJbTrkJ × × × × × ×

|∆η(j1, j2)| dEtaBB ×

binDL(j1) bin_btagB1 / bin_bTagBTrkJ1 × × × × × ×

binDL(j2) bin_btagB2 / bin_bTagBTrkJ2 × × × × × ×

PV
T pTV × × × × × ×

Emiss
T MET × × × ×

Emiss
T /

√
ST METSig ×

|∆y(V⃗ ,Hcand)| dYVBB / deltaYVJ × × × ×

|∆ϕ(V⃗ ,Hcand)| dPhiVBB / absdeltaPhiVJ × × × × × ×

min[∆ϕ(ℓ⃗, j1 or j2)] dPhiLbmin ×

meff MEff ×

mW
T mTW ×

mtop Mtop ×

mll mLL ×

cos θ(ℓ⃗, Z⃗) cosThetaLep × ×(
pℓ

T − Emiss
T

)
/pW

T lepPtBalance ×

pℓ
T pTL ×

NtrackjetsinJ NAdditionalCaloJets × × ×

N(add.smallR − jets) NMatchedTrackJetLeadFatJet × × ×

Colour Colour × × ×

min(∆R(b, j)) minDRBJets × ×

Table 4.9. MVA variables used for the 0-, 1- and 2-lepton channels in
the resolved and boosted topologies for the VH(→ bb̄) and VH(→ cc̄)
analyses. The VH(→ cc̄) analysis only probes the resolved topology.
The Higgs candidate system, composed of the 2 small-R jets (bb̄ or cc̄)
for the resolved regime or of the leading large-R jet (J) of the event for
the boosted regime, is sometimes denoted Hcand.

One of the other main changes with the previous analysis is the
use of Multi-Variate Analysis discriminant in all the Signal Regions of
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the analysis. In the previous H → bb̄ boosted and H → cc̄ analyses,
the sensitivity was extracted by fitting the invariant mass of the Higgs
candidate. In this case, Boosted Decision Trees (BDT) have been
used to discriminate signal from backgrounds in all regions. For each
region, two separate sets of training have been performed: one for the
V H signal and one for the V Z diboson cross-check.

In the H → bb̄ resolved and H → cc̄ analyses, the training is
performed separately in the XT, NT, and BB regions. In the 0-lepton
channel, the training is performed inclusively for pV

T > 150 GeV and
then a training is performed for each jet category (2, 3, or 4 jets). In
the 1-lepton channel, the training is instead split at pV

T = 150 GeV
and between 2 and 3 jet categories. Similarly, for the 2-lepton channel,
with the only difference that the split in jet categories is between 2
and ≥3 jets.

In the H → bb̄ boosted regime, a training is performed in each
lepton channel.

The summary of the input variables to the BDT is shown in Table
4.9. A few variables used as input to the BDT are shown in Figure
4.17 for the 1-lepton channel and 2 jet category.

The performance and over-training are checked by comparing the
evaluation of the performance on the training and evaluation samples.
In Figure 4.18(a), the ROC curve with its Area Under the Curve
(AUC) is shown for the 1-lepton channel 2 jet category, while the
over-training check is shown in Figure 4.18(b).

A similar BDT is trained in the CRLow of the 1-lepton channel
in the H → bb̄ resolved regime. This network aims to separate the
W + bb component from the Top in this low ∆R Control Region to
better control the W + bb background.

Output transformation Since the output of the BDT is designed
to maximize the separation of the signal and background populations,
the optimal sensitivity of the MVA is not necessarily achieved with
the default binning, which is equidistant and very fine. To achieve
optimal binning, the following factors should be taken into account:
low BDT output scores are populated by background events and
almost entirely depleted of signal events, high BDT output scores have
a good signal-to-background ratio, and the statistical uncertainty of
each bin.

Therefore, a transformation of the BDT output distribution, de-
signed to optimize the final sensitivity and reduce the number of bins,
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(a) (b)

(c) (d)

Figure 4.17. Few input distribution to the BDT for the 1-lepton channel
case and 2 jet category.

is implemented. This transformation is called Transformation D, and
the formula used is as follows:

Z = zs
ns

Ns
+ zb

nb

Nb
(4.6)

In this equation, Ns and Nb are the total number of signal and
background events, respectively, while ns and nb are the number of
events in a given bin. The default 500 bins are then merged from high
to lower BDT scores, requiring ns and nb to satisfy Z > 1. In this
sense, zs and zb are tunable parameters optimized in each analysis
region. The total number of bins varies between 4 to 15 in all the
regions. An example of the BDT score distribution before and after
transformation can be seen in Figure 4.19.
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(a) (b)

Figure 4.18. Overtraining checks for the 2-jet category and in the pV
T ∈

[75, 150] GeV region for BDT trainings performed with BDT output
distributions for signal and background obtained for the training (line)
and test (dots) samples. The bottom panel shows the ratio of the test
over training BDT output distributions for signal and background.

Figure 4.19. Example of comparison between before and after the trans-
formation of the BDT output score.

4.3.7 Multijet estimation
In the 1-lepton channel, the contribution of the multijet background
is small but still significant compared to the other backgrounds, par-
ticularly at low values of pV

T . To minimize the effect of multijet con-
tamination, isolation criteria are employed separately for the electron
and muon sub-channels. For the electron sub-channel, the isolation
is based on calorimeter contamination using a variable denoted as
TopoEtCone20, while for the muon sub-channel, isolation is based on
a track base using a variable denoted as PtCone20.

The multijet background contribution varies across different pV
T

regions. In the low-pV
T region, it is more significant compared to the two
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other regions (medium-/high-pV
T ). However, in the boosted regime,

the multijet contribution is found to be negligible when compared
to other Monte Carlo backgrounds. The multijet background is thus
estimated separately in the low-pV

T and inclusively in the medium-
/high-pV

T regions. In the low-pV
T region, a cut on the transverse

mass of the W-candidate, mW
T > 20 GeV, is applied to reduce the

multijet background. Additionally, in the electron sub-channel, a cut in
Emiss

T > 30 GeV is used to further reduce the multijet contamination
in all the pV

T regions.
The remaining multijet background cannot be accurately estimated

through simulation due to practical limitations in generating sufficient
events for the analysis phase space, as well as the inherent challenge
in modeling fake leptons. Therefore, a data-driven approach has
been employed to estimate the impact of this background, utilizing a
template method.

Template Method

Figure 4.20. low-pV
T region templates
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Figure 4.21. medium+high-pV
T region templates

Under the assumption that the QCD background is small compared
with the other MC samples, the template method is used to extract
the shape of the multijet background in the Signal Region from an
orthogonal Control Region enriched with multijet events ("mjCR").
The "mjCR" must be as similar as possible to the "SR" in terms of
multijet composition in order to extrapolate it from one region to
the other. The multijet contribution is then obtained by fitting some
distribution in the "SR" where the fit involves a multijet template
extracted from the "mjCR" and the other MC templates in the "SR".
In the end, the fit will return the Normalization Factor (NF) for the
multijet and for each component left floating in the fit. In order to
be efficient, the shape of the multijet template must be different from
the other MC shapes.

Because different isolation criteria are used for electrons and muons,
and also because the sources of fake electrons and fake muons are
different, independent template fits are performed in each of the
electron and muon sub-channels separately. Independent template fits
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are also performed in the low-pV
T and the medium+high-pV

T regions.
Finally, independent template fits are performed in the 2-jet and 3-jet
categories. Overall, there are 8 independent regions where the fit is
performed: electron/muon, low-/medium+high-pV

T , 2-/3-jet.
In addition to this categorization, the analysis splits events into

three exclusive regions: CRLow, SR, and CRHigh. The same cate-
gorization holds for the multijet estimation, where the two Control
Regions (CR) are treated as a single bin to avoid shape effects from
them.

For each signal region, a multijet-enriched control region, "mjCR",
is obtained by requiring the inversion of the tight isolation cut required
on the lepton, as shown in Table 4.10. In the SR, the tight isolation
cut for the electron requires TopoEtCone20 < max(1.5%pel

T , 3.5) GeV,
while the tight muon isolation requires PtCone20 < 1.25 GeV. How-
ever, for the muon isolation, a soft track isolation is maintained also
in the "mjCR" with PtCone20< 4 GeV. The statistics are still limited
in "mjCR" when 2 b-tags are required. In order to reduce the impact
of statistical fluctuations in the multijet template, events with a single
b-tag jet are used.

Isolation, 2 b-tags Inverted Isolation, 1 b-tag

Electron TopoEtCone20 < max(1.5%pel
T , 3.5) GeV TopoEtCone20 > max(1.5%pel

T , 3.5) GeV

Muon PtCone20 < 1.25 GeV 1.25 < PtCone20 < 4 GeV

Table 4.10. Summary of differences in lepton isolation in "SR" (Isolation
2 b-tag) and in "mjCR" (Inverted isolation 1 b-tag)

A multijet template can be constructed for any variable from
the data in the "mjCR" as the difference between data and the non-
multijet background obtained from simulation. The already mentioned
transverse mass of the W-candidate, mW

T , is found to be the variable
offering the best discrimination between multijet and non-multijet
backgrounds, and therefore it will be chosen for the nominal template
to be fitted. In this analysis, the main backgrounds for the 1-lepton
channel arise from pair and single production of top quarks, and from
W+jets production. Smaller backgrounds are Z+jets and diboson
production. For the multijet estimation purpose, all these non-multijet
backgrounds are denoted as electroweak backgrounds in the following.

The plots in Figures 4.20 and 4.21 show the mW
T distribution for

data and electroweak backgrounds in the "mjCR" for the low-/medium-
pV

T regions, respectively, where the multijet template is extracted. In
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each region, the distribution for 2-/3-jets categories and El/Mu sub-
channels is shown.

In each of the eight "SR," a fit to the mW
T distribution is performed

to simultaneously extract the normalization factor (NF) for the multijet
and the electroweak backgrounds. As already mentioned, the CRHigh
and CRLow are included in the fit as single bin distributions.

Practical Implementation

The tt̄ and the W+jets processes are dominant in the "SR" where the
fit is performed, and their normalization can have a large impact on
the multijet estimate. Being smaller than the other backgrounds, the
diboson and the Z+jets samples are kept at their nominal value. The
single-top is merged with the tt̄ background, with the result collectively
called the Top background.

Figure 4.22. low-pV
T post fit in "SR"

The events with a single leptonic W decay exhibit a characteristic
peak in terms of mW

T , while this is not the case for the multijet
background, thus explaining the reason for the choice of this variable.
The discrimination between Top and W+jets is driven by the different
composition in CRHigh and CRLow for these backgrounds.
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Figure 4.23. medium+high-pV
T post fit in "SR"

Technically, the multijet fit is implemented as a template fit to data
in each of the eight regions, with the CRLow and CRHigh included as
two bins at the end of the mW

T distribution in SR. The binning of the
mW

T distribution is optimized to have roughly constant MC statistical
uncertainty. The multijet, Top, and W+jets have their templates and
a floating normalization factor in the fit.

Electrons Muons

NF Top (tt̄+s-top) W+jets Top (tt̄+s-top) W+jets

low-pV
T 2-jet 0.991 ± 0.011 1.83 ± 0.10 1.000 ± 0.010 1.57 ± 0.08

low-pV
T 3-jet 0.988 ± 0.007 2.02 ± 0.12 0.969 ± 0.006 1.84 ± 0.09

med+high-pV
T 2-jet 0.994 ± 0.02 1.12 ± 0.07 0.976 ± 0.02 1.14 ± 0.05

med+high-pV
T 3-jet 0.947 ± 0.01 1.25 ± 0.08 0.929 ± 0.001 1.31 ± 0.01

Table 4.11. Normalization factors obtained for Top and W+jets MC in
the SR fit of mW

T .

The normalization factors for Top and W+jets are presented in
Table 4.11 and are affected by anti-correlation. Postfit plots are
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shown in Figures 4.22 and 4.23 for the low-/medium+high-pV
T regions,

respectively. Additionally, in Figure 4.24, the post-fit plots for other
variables such as mbb and ∆ϕ(l,MET) are shown for the 2-jet category
for Electron and Muon sub-channels, respectively.

(a) mbb Electron (b) mbb Muon

(c) ∆ϕ(l, MET ) Electron (d) ∆ϕ(l, MET ) Muon

Figure 4.24. mbb and ∆ϕ post-fit distribution for 2-jet Electrons and
Muons in "SR".

Systematic uncertainty

In both Electron and Muon sub-channels, a set of systematic uncertain-
ties are considered. Two sources of uncertainty are taken into account,
affecting the shape and the normalization of the MVA distribution of
the multijet used for the main analysis. The systematic uncertainties
that impact the shape are described first; they are also considered for
the normalization.

The following sources of shape uncertainty are considered:

• An evaluation of the uncertainty introduced by the extrapola-
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tion of the multijet template from the full inverted isolation
region to the signal region is considered. Instead, a reduced
inverted-isolation region is defined, with additional isolation cuts
applied to the inverted isolation region defined in Table 4.10.
In the Electron sub-channel, this is done by additionally requir-
ing TopoEtCone20 < 12 GeV, and in the Muon sub-channel
PtCone20 < 2.9 GeV.

• For the nominal multijet template shape, the subtraction of
electroweak MC from data in the "mjCR" is evaluated without
applying any normalization factor (data − MC); The impact
of using the normalization factors is thus evaluated with this
systematic uncertainty. Therefore, the template shape is re-
evaluated with the application of the nominal normalization
factors before the subtraction (data − MC*NF).

In both of the cases above, the difference between the nominal
and alternative shapes is taken as a systematic uncertainty. The
shape systematic uncertainty is then passed to the final fit while the
relative normalization uncertainty is cumulated independently with
the following normalization uncertainties.

low-pV
T mj (%) medium+high-pV

T mj (%)

2jet El 2.6+0.3
−0.7 1.5+1.4

−1.4

3jet El 0.2+0.7
−0.2 0.6+0.3

−0.6

2jet Mu 2.3+0.3
−0.8 0.5+1.2

−0.5

3jet Mu 1.2+0.2
−0.4 0.0+0.0

−0.0

Table 4.12. multijet fractions relative to the total simulation, along with
their associated uncertainty in the 2-jet and 3-jet and for low-/medium-
pV

T regions.

The impact of a systematic variation on the multijet normalization
is indirectly driven by changes to the mW

T template distributions
and the relative yields in the "SR." The individual contributions to
the normalization uncertainty are added in quadrature to give the
overall normalization uncertainty for each "SR." In addition to the
sources considered for the shape uncertainties, the following ones are
considered exclusively for the normalization uncertainty:

• In the low-pV
T region only, including the mW

T < 20 GeV events
in the template fit enhances the multijet yields.
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• In the medium+high-pV
T region and Electron sub-channel only,

including the MET < 30 GeV events in the template fit.

• Fitting using an alternative variable for the fit rather than
mW

T . In particular, the variable selected is ∆ϕ(l,MET), which
is correlated with mW

T and shows good discrimination between
the multijet and the electroweak template shapes.

The combination of all the 5 normalization uncertainties (2 coming
from the shape systematics) gives rise to the fraction of multijet com-
pared to all the samples, presented in Table 4.12 for low-/medium-pV

T

regions respectively.

b-tagging Score of Multijet Events

(a) 2 jet Electron (b) 3 jet Electron

(c) 2 jet Muon (d) 3 jet Muon

Figure 4.25. PCBT scores in ”pcbtCR” low-pV
T

The MVA used to perform the fit in the main analysis takes as
input the Pseudo Continuous B-Tagging score (PCBT) of the two b-
tagged jets. Since the multijet events are estimated as the subtraction
of electroweak from the data in the "mjCR," which is in the 1-tag
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region with the inverted isolation requirement on the lepton, a solution
had to be found to assign the PCBT scores to the multijet events.

For this purpose, an emulation of the PCBT scores distribution of
the 2 b-tagged jets for multijet from an orthogonal region to the "SR"
and the "mjCR" is needed. This region, called "pcbtCR," is built by
requiring 2 b-tags and also the inversion of the isolation criteria on the
leptons. From this region, 2-by-2 maps of leading vs subleading jet
PCBT scores have been created. These distributions are 2x2 because
each tagged jet has efficiency lower than 70% and can thus lie in the
tight PCBT bin (ϵb ∈ [0, 60]) or loose PCBT bin (ϵb ∈ [60, 70]).

In this region, for each bin in the 2-by-2 maps, the same elec-
troweak Monte Carlo to data subtraction is applied, obtaining, after
the normalization, the multijet PCBT scores template maps shown in
Figures 4.25 and 4.26.

(a) 2 jet Electron (b) 3 jet Electron

(c) 2 jet Muon (d) 3 jet Muon

Figure 4.26. PCBT scores in ”pcbtCR” medium+high-pV
T

These 2-by-2 normalized distributions provide the joint probabili-
ties for leading and subleading jets of 2 b-tag multijet events to have
PCBT scores above or below the 60% efficiency threshold. They are
used to assign PCBT scores to both the leading and subleading jets in
each data or electroweak background event from the "mjCR" according
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to the above probabilities obtained from "pcbtCR".
In Figure 4.27, a summary sketch of the multijet estimation is

described with all the regions involved.

Figure 4.27. Schematic view of the multijet estimation procedure.

A similar procedure is applied to H → bb̄ boosted. In H → bb̄
boosted, we found that the multijet contamination is negligible. The
same procedure is applied as for the resolved regime. The multijet
shape is extracted from an orthogonal region separately for the elec-
tron and muon sub-channels, requiring exactly 0-btag VR track jets
inside the larger jet candidate and the standard isolation inversion
on the lepton as for the resolved regime. Then the shape is fitted
in the standard isolated 2-btag signal region, including a single bin
distribution for the Control Region.

With this configuration, the fitted multijet yields are observed to
be less than 2 × 10−5 events for both Electron and Muon sub-channels.

4.3.8 Signal and Background modelling
As already mentioned, the modeling uncertainties are divided into three
macro categories: normalization, acceptance, and shape uncertainties.

Since many uncertainties are derived from alternative samples or
variations as two-point systematics, the list of the alternative samples
is shown in Table 4.13.

Signal

The V H signal is divided into three different final states depending
on the leptonic decay of the vector boson: Z → νν̄, W → lνl, and
Z → l+l−. Here the modeling scheme for the various categories is
discussed.
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Sample Nominal Generator Alternative Generators Systematic Effects

VH Powheg + Pythia 8 Powheg + Herwig 7 µR, µF , ISR/FSR, PDF

Diboson Sherpa 2.2.11
Powheg + Pythia 8, µR, µF , PDF,

Sherpa 2.2.1 electroweak corrections

tt̄ and single top Powheg + Pythia 8
Powheg + Herwig 7, Additional ISR/FSR,

MadGraph 5_aMC@NLO + Pythia 8 DS/DR (single-top Wt)

V+jets Sherpa 2.2.11
MadGraph FxFx µR and µF , PDF,

Sherpa 2.2.11 electroweak corrections

Table 4.13. Summary of samples in the analysis, their nominal and
alternative generators and systematic effects used to assess signal and
background modelling uncertainties.

One of the main results of this analysis is the fiducial measurements
in STXS bins as shown in the scheme in Figure 4.28. It provides 8
POI for the ZH, splitted in number of additional Jets, and 5 POI for
WH processes, both divided in pV,t

T bins.

Figure 4.28. STXS scheme used in this analysis.

The most important uncertainties are the QCD scale variations
coming from the factorization and renormalization scale variation (µF

and µR). Then a set of uncertainties related to the PDF+αs are also
considered. Electroweak corrections are also taken into account from
NNLO not considered contributions. Uncertainty on the Branching
Ratio is considered with about 1.61% on the H → bb̄ and +5.53%

−1.99% on
the H → cc̄ .

Background

In the following, a set of modeling uncertainties is described for each
background process.



154 4. The Higgs-strahlung: A Legacy Analysis

W+jets This background is one of the main backgrounds in the 1-
lepton channel. As already mentioned, this background can be divided
depending on the flavor composition of the jets. W+hf defines events
with heavy-flavored jets, either W+bb or W+cc. W+mf defines events
with mixed-flavored jets (W+bc, W+bl, W+cl, W+bτ , and W+cτ).
W+lf defines all the other processes with light-flavor jets or τ .

For the H → bb̄ resolved and H → cc̄ cases, W+hf, W+mf, and
W+lf normalization factors are directly estimated in the fit via the
Control Regions with floating parameters. These parameters are
decorrelated in pV

T and the number of jets.
A set of acceptance uncertainties is considered. These kinds of

uncertainties are estimated as a double ratio between different Monte
Carlo samples and different regions. In particular, these are used
to extrapolate the uncertainty from a high-purity phase space to a
low-purity phase space. These are mostly applied in the 0-lepton and
1-lepton channels where the W+jets background is mostly present.
Lepton channel extrapolations from 1-lepton to 0-lepton range from
3% to 30% among the various W+jets flavor compositions. Given
the complexity of the flavor composition, acceptance uncertainties
are applied to W+cc from W+bb (Wcc/Wbb ratio) ranging from
4% to 20% in the H → bb̄ depending on the pV

T and the number
of jet categories and an overall 25% on the H → cc̄ . Other flavor
ratios acceptance uncertainties are applied: W+bc for the Wbc/Wcl
ratio ranging from 14% to 24%; W+bl for the Wbl/Wcl ratio ranging
from 12% to 29%. W+c(b)τ for Wc(b)tau/Wcl ratio of about 20%.
W+l(τ)τ for Wl(tau)tau/Wl ratio of 9%.

Then a set of extrapolation uncertainties is considered between
SR and CR. These uncertainties range from 3% to 65%.

Finally, an extra acceptance uncertainty is applied in the 4-jet
category in the 0-lepton channel ranging from 12% to 20%.

Also, four kinds of shape uncertainties are considered:

• CARL: Firstly, shape uncertainties are estimated with a Cali-
brated Likelihood Ratio Estimator (CARL) algorithm that is a
reweighting technique based on a Neural Network that is trained
to distinguish between the nominal and alternative Monte Carlo
generators. For W+jets, CARL evaluates the differences between
Sherpa 2.2.11 and MadGraph FxFx samples.

• Sherpa 2.2.1: The nominal sample seems to disagree with data
in the pV

T shape more than the Sherpa 2.2.1. Sherpa 2.2.1
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uncertainties are derived to reweight Sherpa 2.2.11 to Sherpa
2.2.1 pV

T distribution.

• QCD Scale Variations: Similarly to signal samples, µF and µR

variations are considered as shape uncertainties.

• Electroweak variations: This is a minor shape uncertainty. It’s
a multiplicative correction added as a shape uncertainty.

For the H → bb̄ boosted regime, only W+hf is floated while W+mf
and W+lf have 36% and 38% uncertainties, respectively.

A series of acceptance uncertainties are applied on flavor com-
position, ranging from 9% to 15%, on lepton channel uncertainty,
about 20%, on pV

T extrapolation, around 3%, and SR-CR acceptances,
ranging from 16% to 27%.

The same shape uncertainties are considered as for the H → bb̄
resolved case.

Z+jets The Z+jets background mainly contributes to the 0-lepton
and 2-lepton channels. This background, similarly to the W+jets,
is divided into different flavor compositions. Z+hf is defined for the
heavy-flavored jets for Z+bb and Z+cc. Z+mf is for mixed-flavor jets
composed of Z+bc, Z+bl, and Z+cl. All the remaining will compose
the Z+lf.

Similarly to W+jets in H → bb̄ resolved and H → cc̄ , a normal-
ization factor is defined for Z+hf, Z+mf, and Z+lf for each pV

T bin
and number of jet categories.

In the Z+jets case, the lepton acceptance uncertainty is extrapo-
lated from 2-lepton to 0-lepton with an uncertainty ranging from 2%
to 10%.

Flavour composition uncertainties are then estimated for Zbb/Zcc
ratio, Zbc/Zcl ratio, and Zbl/Zcl ratio with uncertainties ranging from
4% to 12%.

Extrapolation between SR and CR is also considered, ranging from
5% to 30%.

The same shape uncertainties as for the W+jets are used for the
Z+jets.

For the H → bb̄ boosted regime, Z+hf is left floating while Z+mf
and Z+lf have 35% uncertainty.

Similarly to the W+jets case, flavor acceptance uncertainties are
applied ranging from 6% to 9%. A 3% lepton channel uncertainty
is also considered. The pV

T extrapolation is considered with 15%
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uncertainty and the SR-CR acceptance uncertainty ranges from 15%
to 25% for different flavor components.

The shape uncertainties considered are the same as in the H → bb̄
resolved case.

Top The main backgrounds related to top quark production in this
analysis are tt̄ and single-top production. Single-top production can
be further divided into three samples: single-top s-channel, t-channel,
and Wt. This background is mainly estimated for the 0-lepton and 1-
lepton channels, while for the 2-lepton channel, a data-driven method
is used. In the 2-lepton channel, an extrapolation of 0.8% in the
H → bb̄ resolved case is applied. For the H → cc̄ regime and the
H → bb̄ boosted regime, the Top background is a minor component,
hence normalization uncertainties are applied, ranging from 4.4% to
25%.

In the rest of the paragraph, the Top background uncertainties are
associated with the 0-lepton and 1-lepton channels. tt̄ and single-top
Wt are treated as correlated into a Top process for H → bb̄ resolved
and H → cc̄ regimes to minimize the sensitivity to their interference.

Two separate normalizations are considered, one for Top(bb) and
Top(bq/qq) derived respectively in CRHigh and Top(bc) Control
Region. These normalization factors are divided into pV

T bins and the
number of jet categories.

Top background samples can be divided into 3 components based on
flavor: Top(bb), Top(bq) for Top(bc), and Top(bl); Top(qq) merging
Top(cc), Top(cl), and Top(ll). Acceptance ratios are applied between
bl and bc components and between qq and bc with uncertainties of
5% and 10%, respectively. Acceptance uncertainties are applied also
between tt̄ and single-top Wt processes, ranging from 12% to 48%.

Lepton channel acceptance uncertainties are also applied from
1-lepton to 0-lepton with uncertainties ranging from 2% to 8%.

A series of acceptance uncertainties between SR and CR are applied,
ranging from 2% to 10%.

Similar acceptance uncertainties are applied to s-/t-channels, which
are minor Top backgrounds.

For Top processes, the following shape uncertainties are considered:

• CARL: It is used to consider the two-point systematic between
the nominal Powheg + Pythia 8 with the two alternative
samples, one for the Matrix Element variation (MadGraph5
aMC@NLO) and one for the Parton Showering (Herwig 7). For
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the single-top Wt sample, the only shape uncertainties estimated
with CARL are for the Diagram Removal sample.

• single-top Wt DR-DS: To estimate the interference between
single-top Wt and tt̄ , an additional uncertainty is applied be-
tween Diagram Removal (nominal) and the alternative Diagram
Subtraction. This uncertainty is considered as both shape and
normalization.

• ISR and FSR: Additional shape uncertainties are considered for
Initial/Final State Radiations using alternative samples.

In the H → bb̄ boosted regime, a normalization for tt̄ is considered,
and channel and SR-CR acceptance ratios are considered, ranging
from 6% to 20%.

For the single-top processes, a 25% normalization uncertainty is
considered for the Wt channel, while 10% and 4.6% normalization
uncertainties are considered for the s-/t-channels, respectively.

Lepton channels, SR-CR, and pV
T acceptance ratios are also taken

into account, ranging from 20% to 40%.
The same considerations hold for the shape uncertainties as for

the H → bb̄ resolved scenario.

Diboson This resonant background has a final state similar to the
signal one, with the Higgs boson substituted with a Z boson. Diboson
backgrounds consist of WW, WZ, and ZZ samples.

Main acceptance uncertainties are computed from generator differ-
ences, QCD scale variations, electroweak corrections, αs variations,
and PDF variations.

Normalization uncertainties ranging from 16% to 30% are applied
to diboson samples in the H → bb̄ resolved and H → cc̄ regimes, while
ranging from 17% to 27% in the H → bb̄ boosted regime.

Similarly to the V+jets background samples, lepton, pV
T , number

of jets, and SR-CR acceptances are considered, ranging from 3% to
40%.

The same kinds of uncertainties are considered for the diboson
background as for the V+jets: CARL to reweight Sherpa 2.2.11 to
Sherpa 2.2.1, QCD scale variations, PDF shape uncertainties, and
electroweak corrections.

A summary of the modeling uncertainties for each sample and
regime can be displayed in Table 4.14.
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Uncertainties H → bb̄ resolved, H → cc̄ H → bb̄ boosted
VH
VH normalisation/acceptance
H → bb̄ BR 1.61%
H → cc̄ BR +5.53%

−1.99%
Diboson
WW/ZZ/WZ normalisation 16%/17%/19% 16%/17%/27%
ggVV normalisation 30% 30%
Lepton channel acceptance 2-23% 7%
Njet acceptance 10%-30% -
pTV acceptance 3%-16% 8%-40%
SR/CR acceptance 6%-16% -
STXS like binning acceptance
Z+jets
Z + hf normalisation Floating Floating
Z + mf normalisation Floating 35%
Z + lf normalisation Floating 35%
Z + hf flavour composition ratio 8%-12% 6%-9%
Z + mf flavour composition ratios 4%-10% 6%-9%
Z + lf flavour composition ratios 5%-30% -
topCR-SR extrapolation ratio 2%-10% 15%-25%
2- to 0-lepton acceptance ratio 2%-10% 3%
pTV extrapolation - 15%
W+jets
W + hf normalisation Floating Floating
W + mf normalisation Floating 36%
W + lf normalisation Floating 38%
W + hf flavour composition ratios 4%-25% 11%
W + mf flavour composition ratios 14%-29% 9%-15%
W + lf flavour composition ratios 9% -
High/Low-AR CR-SR extrapolation ratios 2%-63% -
topCR-SR extrapolation ratio - 16%-27%
1- to 0-lepton acceptance ratio 3%-30% 20%
pTV extrapolation - 3%
Njet extrapolation 12%-20% -
Top (0- and 1-lepton resolved)
Top(bb) normalisation Floating -
Top(bq/qq) normalisation Floating -
Flavour acceptance ratios 5%-10% -
1- to 0-lepton acceptance ratio 2%-8% -
High/Low-AR CR-SR extrapolation ratios 2%-10% -
Wt / tt ratio 12%-48% -
Top (2-lepton resolved)
Normalisation Floating (H → cc̄ ), 0.08% (H → bb̄ ) -
Single-top s/t-channel (0- and 1-lepton resolved)
Normalisation 4-10% -
High/Low-AR CR-SR extrapolation ratios 3%-17% -
pTV extrapolation ratios 7%-15% -
Njet acceptance 15% -
1- to 0-lepton acceptance ratio 6% -
tt and single-top (boosted)
tt normalisation - Floating
single-top normalisation - 4.6%-25%
1- to 0-lepton acceptance ratio - 40%
topCR-SR acceptance ratio - 20%
single-top pTV extrapolation - 20%
Multi-jet (1-lepton)
Normalisation 20%-100% -

Table 4.14. Summary of uncertainties in the resolved and boosted H → bb̄
and H → cc̄ analyses.
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4.3.9 Data/MC SR Pre-fit comparison
In this section, few example of shape and normalization comparison
between Data and Monte Carlo Post-fit. In Figure 4.29 Pre-fits for
the SR in the medium-pV

T bin and 2-jet category for the BB and XT
tag regions.
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Figure 4.29. SR Pre-fit distribution in the medium-pV
T (150 < pV

T < 250
GeV) for the 2-jet category and BB region (left) and XT region (right).
(a-b) 0-lepton channel. (c-d) 1-lepton channel. (e-f) 2-lepton channel.
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4.3.10 Statistical framework

The fit is performed over all analysis regions, comprising 168 regions
in total: 59 Signal Regions and 109 Control Regions. The primary
objective of the fit is to determine whether the collected data reveals
a significant Higgs signal.

This involves testing two hypotheses: the Null hypothesis (H0),
which assumes only background events are present, and the alternative
hypothesis (H1), which assumes both background and signal events
are present. By conducting this test, we can either reject H0 or find
evidence supporting H1. The test employs an estimator called the
p-value, which quantifies the probability that the observed data is
compatible with the Null hypothesis. A smaller p-value indicates a
greater deviation from H0.

In particle physics, a "5σ" threshold is used to claim a discovery
or observation. This means that the observed p-value is more than 5σ
away from the center of the Gaussian p-value distribution representing
the Null hypothesis. Consequently, the probability that the observed
data are compatible with H0 is less than 2.7 × 10−7, effectively ruling
out the Null hypothesis. When the signal is too small, as in the
H → cc̄ case, the Null hypothesis assumes the presence of the signal,
and the test is performed to set upper limits on the production rate of
the signal, with a threshold set to achieve a 95% Confidence Interval.

The fit is performed by maximizing the likelihood function, de-
fined as follows. Since this is a counting experiment, the Poissonian
distribution is suitable for expressing the probability of observing a
certain number of events. Thus, a Poissonian term is included in the
likelihood:

L(µ) =
∏

i∈bins
Pois(Ni|µsi + bi) (4.7)

Here, Ni is the number of measured data events in the i-th bin,
while si and bi are the expected signal and background events in the
same bin according to the simulation. µ is the signal strength and the
Parameter Of Interest (POI) that defines the ratio with the Standard
Model of the σ ×BR.

Systematic uncertainties are incorporated into the fit via Nuisance
Parameters (NP) θ⃗, which affect the signal or the backgrounds: si, bi →
si(θ⃗), bi(θ⃗). These enter the likelihood fit, normalized to 1 and centered
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to 0, as Gaussian penalty terms:

L(θ⃗) =
∏
θ∈θ⃗

1√
2π

exp
(

−θ2

2

)
(4.8)

These represent auxiliary measurements. Deviation of the best fit
values from 0 is defined as pull, while a decrease in variance is defined
as constraint. Generally, a constraint on a NP means that there is
sufficient sensitivity from the data to measure that auxiliary NP.

It is possible to have NP without any prior knowledge (τ⃗); these NP
are referred to as free-floating NP and are usually the Normalization
Factors of the main backgrounds. The pre-fit values of such NP are
set to 1.

Uncertainties related to the Monte Carlo statistics are defined via
γ parameters. These parameters affect the background samples as
bi(θ⃗) → γibi(θ⃗). These terms enter the fit as:

L(γ⃗) =
∏

i∈bins
Gaus(βi|γiβi,

√
γiβi) (4.9)

Where βi = 1/σ2
rel. Overall, the likelihood function is defined

as L(µ⃗, θ⃗, γ⃗, τ⃗). The best fit value is obtained by maximizing the
likelihood or minimizing − ln L. This procedure is implemented via
Minuit [116] implemented via RooFit framework [117] and RooStats
toolkit [118].

The likelihood is then used to test the background-only hypothesis
(µ = 0 for both H → bb̄ and H → cc̄ ) using the profile likelihood
ratio:

λ(µ = 0) = L(µ = 0)
L(ˆ⃗µ)

(4.10)

Values of the likelihood ratio close to 1 indicate good agreement
with the background-only hypothesis, while values close to 0 indicate
deviations from the background-only hypothesis.

A statistical test qµ can be built as the negative log of the likelihood
ratio to avoid numerical instabilities from multiplying small numbers:

q0 = −2 lnλ(0); µ̂ ≥ 0 qµ = 0; µ̂ < 0 (4.11)

It is useful to build a p-value to quantify the compatibility of the
result with the background-only hypothesis:

pµ =
∫ ∞

qµ,obs

f(q0|0)dq0 (4.12)



4.3 VH(bb|cc) Legacy Analysis 163

where qµ,obs is the observed value in data. From the p-value, the
significance Z can be computed as the inverse Gaussian cumulative
distribution (Φ−1) of the p-value:

Z = Φ−1(1 − p) (4.13)

In the H → cc̄ case, an upper limit Confidence Level (CL) of 95%
is computed on the signal strength. For the upper limit, a modified
frequentist CLs method is used Ref. [119, 120].

Given the likelihood ratio between µ = 1 (signal+background
hypothesis) and µ = 0 (background-only hypothesis), a 95% CL can
be inferred by the value of the signal strength µ returning a p-value
of 0.05.

To evaluate the expected sensitivity of the analysis, an Asimov fit
is performed, where the Asimov dataset is built as the sum of all the
simulated signal and background samples.

4.3.11 Data/MC SR Post-fit comparison
In this section, few example of shape and normalization comparison
between Data and Monte Carlo Post-fit. In Figure 4.30 and Figure
4.31 Post-fits for the SR in the 2-jet category for the BB and XT tag
regions respectively.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.30. The BDTVH post-fit distributions in the 75 GeV< pV
T <150

GeV (left), 150 GeV< pV
T <250 GeV (middle) and 250 GeV< pV

T <400
GeV (right) signal regions of the Hbb category in the 0-lepton (top),
1-lepton (middle) and 2-lepton (bottom) channel for events with 2
jets. The background contributions after the VH fit are shown as
filled histograms. The Higgs boson signal VH,H→bb is shown as a filled
histogram on top of the fitted backgrounds normalised to the signal yield
extracted from data (µ = 0.91), and unstacked as an unfilled histogram,
scaled by a value reported in the legend for better visualisation.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.31. The BDTVH post-fit distributions in the 75 GeV< pV
T <150

GeV (left), 150 GeV< pV
T <250 GeV (middle) and pV

T >600 GeV (right)
signal regions of the Hcc XT category in the 0-lepton (top), 1-lepton
(middle) and 2-lepton (bottom) channel for events with 2 jets. The
background contributions after the VH fit are shown as filled histograms.
The VH,H→ canti-c signal and the contribution from VH,H→bb are
shown unstacked as unfilled histograms, scaled by the factor indicated
in the legend.
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4.3.12 Results
VH Results

For a Higgs boson of mass 125 GeV, when all the channels and regions
are combined, the fitted values for the V H signal strength are:

µ̂bb
V H = 0.91+0.16

−0.14 = 0.91+0.10
−0.10(stat.)+0.12

−0.11(syst.) (4.14)
µ̂cc

V H = 1.0+5.4
−5.2 = 1.0+4.0

−3.9(stat.)+3.6
−3.5(syst.). (4.15)

Both values show good agreement with the SM and their correlation
is 5%. The background only hypothesis for the H → bb̄ case is
rejected with 8.0(7.40)σ. This result shows the large improvement
with respect to the previous result of expected 6.3σ with the new
techniques implemented in this Legacy analysis.

For the H → cc̄ case, the resulting observed upper limit on the
signal strength with 95% CL is 11.3 with an expectation of 10.4.
This results, which is compatible with respect to the 7.6(14.4) ex-
pected(observed) by the CMS collaboration, also shows the great
improvement with the latest result from the ATLAS collaboration of
31(26).

Figure 4.32. 95% CL expected and observed limits on the H → cc̄ signal
strength for each lepton channel and for the combination.

For the H → cc̄ the signal strength measured, µcc
V H(Leg. Run2) =
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1 ± 4(stat.), is compatible, within 1.1σ, with the previous Run 2 result
of µcc

V H(Run2) = −9 ± 10(stat.), under the conservative assumption
of full statistical correlation. If the systematic uncertainties are also
considered the compatibility increases depending on the degree of
correlation between the uncertainties in the two analyses. Assuming
only statistical correlation between the two analysis, the two measures
are compatible within 0.65σ.

It is also possible to show the results when measuring the signal
strengths separately for each lepton channel. Table 4.15 shows the
best estimation of the H → bb̄ signal strength in each leptonic channel.
Figure 4.32 shows instead the expected and observed limits on the
H → cc̄ signal strength when fitting a POI for each lepton channel.
This result shows how all the lepton channels have similar sensitivities.

ˆµbb
V H σ Exp. σ Obs. ˆµcc

V H

0-lepton 0.84 ± 0.24 5.71 3.96 −5.68 ± 8.59
1-lepton 0.95 ± 0.20 5.57 5.35 3.79 ± 8.8
2-lepton 0.92 ± 0.28 4.50 4.13 4.34 ± 8.89

Combination 0.91 ± 0.15 8.0 7.4 0.98 ± 5.30
Table 4.15. Best estimate of the signal strength µbb

V H for each lepton
channel and relative Expected and Observed standard deviation from
the background only hypothesis and of the signal strength for ˆµcc

V H for
each lepton channel.

It is also possible to show the results of the combined fit when
measuring the signal strength separately for the WH and ZH pro-
duction processes. The fitted values for the H → bb̄ signal strengths
are:

µ̂bb
W H = 0.95+0.21

−0.19 (4.16)
µ̂bb

ZH = 0.87+0.23
−0.20 (4.17)

In the WH and ZH production modes the background only
hypotheses are rejected with an expected(observed) significance of
5.46(5.26) and 5.67(4.95) respectively. This result provides the first
observation of WH,H → bb̄ process.

The main result of this analysis is the STXS measurement with
the 13 Parameters Of Interest for the H → bb̄ process described in
Figure 4.28. In Figure 4.33 the best estimate of the signal strength
for each POI in the fit.
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Figure 4.33. Best estimate of the signal strength for each of the 13 POI.
It provides the signal strength in each of STXS stage 1.2 bin.

VZ Cross-check Results
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Figure 4.34. (a) Signal Strength for the Diboson V Z process splitted
between H → bb̄ and H → cc̄ decay channels. (b) Signal Strength for
the Diboson V Z, H → cc̄ process splitted between W Z and ZZ.

It is possible to validate the analysis on diboson production. The
signal strength of the processes are:

µ̂bb
V Z = 0.91+0.13

−0.11 (4.18)
µ̂cc

V Z = 0.97+0.25
−0.22 (4.19)
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This result is in perfect agreement with the standard model pre-
diction. The background only (i.e. when the diboson is considered as
signal) hypothesis is rejected for both the H → bb̄ and H → cc̄ with
an expected(observed) significance of 15.0(13.8) and 5.3(5.2) standard
deviation for the two cases respectively. This results in the first obser-
vation of the V Z,Z → cc̄ process by the ATLAS detector. It is also
possible to decorrelate between the WZ and ZZ processes and the
following signal strengths are found:

µ̂bb
W Z = 1.00 ± 0.22 (4.20)
µ̂bb

ZZ = 0.81 ± 0.15 (4.21)
µ̂cc

W Z = 1.46 ± 0.45 (4.22)
µ̂cc

ZZ = 0.71 ± 0.26 (4.23)

For the H → bb̄ analysis the background only hypothesis is rejected
with an expected(observed) significance of 6.47(6.41) and 11.86(9.93)
standard deviations for the WZ and ZZ respectively, while for the
H → cc̄ case the background hypothesis is rejected with 2.7(3.9) and
4.2(3.1) standard deviations respectively. These results are shown
in Figure 4.34 reporting the first evidence of both WZ,Z → cc̄ and
ZZ,Z → cc̄.

Results validation

The effects of the uncertainties on the V H, WH and ZH for H → bb̄
and V H for H → cc̄ are displayed in Figure 4.16.

The contribution of each uncertainty is estimated as the difference
in quadrature of uncertainty on the signal strength on the nominal fit
(σµ) and the same uncertainty estimated with all but the interested
NP are fixed at their nominal value during an alternative fit (σµ,i)
obtaining:

σi =
√
σ2

µ − σ2
µ,i (4.24)

For both H → bb̄ and H → cc̄ statistical and systematic contribu-
tions are similar. The main source of systematic uncertainty is given
by the modelling of the Monte Carlo.

The ranking of the impact of the most impacting 20 Nuisance
Parameters is shown in Figure 4.35. Each impact is evaluated by the
variation of the signal strength as a function of ±1σ variation on the
relative NP.
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(a) (b)

Figure 4.35. Importance ranking of the impact of individual NP on the
signal strengths for the H → bb̄ (a) and H → cc̄ (b) processes.

It is possible to show the pull of the Nuisance Parameters to
show the auxiliary measurements performed by this analysis. The
Normalization Factors are shown in Figure 4.36 where it is possible to
observe the clear mis-modelling of the V+jets Sherpa 2.2.11 Monte
Carlo as a function of pV

T . In Figure 4.37 the pull plot relative
to CARL systematic uncertainties for the background modelling is
reported for the three main backgrounds: Top, W+jets and Z+jets.



4.3 VH(bb|cc) Legacy Analysis 171

POI µ̂bb
V H µ̂bb

W H µ̂bb
ZH µ̂cc

V H

Best estimate 0.91+0.16
−0.14 0.95+0.21

−0.19 0.87+0.23
−0.20 1.0+5.4

−5.2

Impact on error
Total 0.151 0.200 0.220 5.29
Statistical 0.097 0.139 0.151 3.94
Systematic 0.116 0.160 0.160 3.53
Statistical uncertainties
Data statistical 0.089 0.129 0.137 3.70
tt̄ eµ control region 0.009 0.002 0.020 0.06
Background floating normalisations 0.034 0.053 0.040 1.23
Other VH floating normalisation 0.007 0.013 0.007 0.24
Simulation samples size 0.023 0.034 0.030 1.61
Experimental uncertainties
Jets 0.028 0.039 0.025 1.00
Emiss

T 0.009 0.005 0.018 0.24
Leptons 0.004 0.003 0.008 0.23
b-tagging: b-jets 0.020 0.016 0.023 0.30
b-tagging: c-jets 0.013 0.020 0.010 0.73
b-tagging: light-flavour jets 0.006 0.010 0.004 0.67
Pile-up 0.009 0.017 0.003 0.24
Luminosity 0.006 0.007 0.006 0.08
Theoretical and modelling uncertainties
Signal 0.073 0.066 0.112 0.56
Z + jets 0.039 0.018 0.079 1.76
W + jets 0.055 0.087 0.027 1.41
tt̄ and Wt 0.018 0.033 0.018 1.03
Single top quark (s-, t-ch.) 0.010 0.019 0.003 0.15
Diboson 0.032 0.040 0.048 0.51
Multi-jet 0.006 0.011 0.005 0.57

Table 4.16. Breakdown of the statistical and systematic contribution to
the signal strength of the V H processes.
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Figure 4.36. Post-Fit Normalization Factors for all the backgrounds.
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Figure 4.37. Post-Fit Modelling systematic uncertainties derived with
CARL for the three main backgrounds Top (a), W+jets (b) and Z+jets
(c).
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5 | A Di-Higgs Analysis

The Spontaneous Symmetry Breaking described in Section 1.2 rep-
resents the simplest model and mechanism to provide mass to the
particles in the Standard Model. Studying the Higgs self-coupling
is fundamental for understanding the Standard Model and exploring
Beyond the Standard Model physics. It offers insights into the stability
of the Electroweak vacuum and helps determine if the Higgs is the
scalar particle predicted by the minimal dynamical symmetry breaking
of the Standard Model.

Section 5.1 provides a brief introduction to the Higgs self-coupling
and its significance within the Standard Model. Section 5.2 summarizes
the state-of-the-art Di-Higgs analysis conducted using the Run 2 data
from ATLAS, focusing on events with two b-quarks and two photons
in the final state which have been conducted in the past by the
Collaboration. This channel is one of the most sensitive to the Higgs
self-coupling.

Finally, Section 5.3 presents the work which was performed as
part of this thesis on the ongoing analysis combining data from Run 2
and partial data from Run 3. This section introduces new ideas and
improvements aimed at enhancing the sensitivity of obtained by the
Run 2 analysis by enhanced statistics and improved techniques.
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5.1 The Higgs Self Coupling
As described in Section 1.2, the Higgs potential is included in the
Standard Model Lagrangian as:

V (ϕ) = −µ2|ϕ|2 + λ|ϕ|4 (5.1)

When expanding around the vacuum expectation value (VEV v), the
potential becomes:

V (ϕ(x)) ϕ→v+H(x)−→ 1
2m

2
HH(x)2 + λvH(x)3 + 1

4λH(x)4 (5.2)

At tree level, the measurement of the VEV and the Higgs mass gives
us the value of the self-coupling λ = m2

H

2v2 = 0.129.
Measuring the Higgs self-coupling has significant implications for

our understanding of the Higgs potential shape. In particular, the
stability of the Electroweak vacuum is ensured by the positivity of λ
up to the Planck energy scale (ΛPlanck = 1019 GeV).

(a) (b)

Figure 5.1. (a) Re-normalization Group evolution of λ for different Higgs
and Top masses. (b) Two dimensional diagram of the Electroweak
stability as a function of the experimental values of the Higgs and Top
masses.

Solving the Re-normalization Group Equations (RGE) it is possible
to infer the running of the self-coupling, namely the self-coupling as a
function of the energy scale. This value is determined essentially by
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the Higgs mass and the running of the Yukawa coupling of the Top
quark, which is related to the Top quark mass. From the measured
values of the Higgs and Top masses it is possible to establish, solving
the coupled RGE, that we live in a meta-stable universe [121, 122].

It means that the lambda coupling is positive at the Electroweak
scale but after running to the Plank scale, it becomes close to zero
as it is shown in Figure 5.1(a). This is shown in Figure 5.1(b) where
the near-criticality region is shown as a function of the Higgs and Top
masses. This means that if we assume that only the SM exists up to
the Plank scale these experimental values prove that the universe has
a phase transition with a time scale of at least O(1065) yr [123].

(a) Box Diagram (b) Triangle Diagram

Figure 5.2. Leading Order ggF diagrams for the Di-Higgs production.

If the SM only is assumed up to the Plank scale, the Higgs and Top
quark masses are enough to establish the stability of the Electroweak
vacuum. For this reason, a direct measure of the λ can provide insights
on the presence of physics Beyond the SM. Moreover the value of
λ controls the dynamic of a potential Electroweak phase transition
and a measure of it may explain the Baryogenesis. In particular it is
notably that the presence of a Baryon asymmetry could be explained
by a first-order transition [124].

For this reason, it is crucial to have a measurement of the Higgs
self-coupling λ. The best way for a direct measurement is the Higgs
boson pair production (Di-Higgs or HH). Figure 5.2 shows the two
Leading Order Feynman diagrams for the gluon-gluon fusion (ggF HH)
production. Figure 5.2(a) , with the box diagram, is proportional to
the Yukawa coupling of the top quark, while Figure 5.2(b) , containing
the triangular diagram, is proportional to the Higgs self-interaction.

In the context of the κ-framework, the vertices are highlighted
with κt and κλ = λ/λSM . In the Standard Model case, κt = κλ = 1,
and significant deviations from these values indicate that Beyond
Standard Model physics may be involved. The two diagrams interfere
destructively, as shown in Figure 5.3, leading to an overall cross-section
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at NNLO of σSM
ggF (mH = 125GeV) = 31.05+6%−23%(scale + mt) ±

3%(PDF + αs) fb.
In Figure 5.4 it is shown how different values of κλ impact the

Di-Higgs signal mHH distribution. From the right plot is evident
how higher κλ values would have a larger impact at low mHH for the
ggF HH production. A similar behavior is observed for the VBF HH
production.

Figure 5.3. Distribution of the Di-Higgs invariant mass system for the
two diagrams and their interference. [125]

The contribution of the two diagrams can be described as a function
of the Di-Higgs system invariant mass (mHH). At low values of mHH

the triangle diagram is dominant and if λ is larger than its SM value
the soft mHH spectrum may be enhanced.

At mHH > 350 GeV, when the two top quarks can be produced
on-shell, the box diagram becomes more relevant. In this phase space,
it is easier to test and probe the signal strength of the Standard
Model Di-Higgs process (µHH). In particular, it is possible to test the
Di-Higgs against the background-only hypothesis.

In the analysis considered in this dissertation, the second most
relevant Di-Higgs production process is also considered: the Vector
Boson Fusion production, which has a cross-section computed atN3LO
of σSM

V BF (mH = 125GeV) = 1.726+0.03%
−0.04%(scale+mt)±2.1%(PDF+αs)

fb. This production channel is sensitive, apart from the self-coupling,
to the V V HH and V V H interactions, which are described in the
context of the κ-framework with κ2V and κV .

Several final states can be produced with the production of two
Higgs bosons. Since the main decay channel of a single Higgs boson is
to b-quarks with about 60% of the branching ratio, requiring at least
two b-quarks in the final state enhances the overall branching ratio
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(a) (b)

Figure 5.4. (a) Cross-section as a function of the κλ for the different
production channels of Di-Higgs processes.[126] (b) ggF Di-Higgs pro-
duction mHH distribution for different values of κλ.

of the process. Figure 5.5 shows a summary of all the main decay
channels with all the combinations of the two Higgs bosons.

Figure 5.5. Di-Higgs Branching Ratios.

It is possible to parameterize the ggF signal as a function of κλ

and κt and the two diagrams (T: Triangular, B: Box):

σ(pp →HH) = |A(κt, κλ)|2 = |κ2
tB + κtκλT |2 = (5.3)

=κ4
t

[
|B|2 + κλ

κt
(B ∗ T +BT∗) + κ2

λ

κ2
t

T 2
]

(5.4)
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From this expression and with some calculations, it is possible to
obtain an analytic formula for the cross-section as a function of κλ

[127].

5.2 Legacy Run2 H(bb)H(γγ)
In this section, one of the main Di-Higgs analyses performed with the
Run 2 dataset using the ATLAS experiment is described [128]. In
particular this analysis targets the HH → bb̄γγ decay channel. This
final state benefits from the large H → bb̄ branching ratio (about 60%),
and the low H → γγ branching ratio (around 0.23%) is compensated
by the high efficiency in trigger and reconstruction for photons as well
as their excellent energy resolution.

This analysis requires two photons and two b-jets in the final states
as candidates for the two produced Higgs bosons. The analysis relies
on di-photon triggers with nominal pT thresholds of 35 GeV and 25
GeV for the leading and sub-leading photon candidates, respectively.
The two-photon system is required to have a mass (mγγ) between 105
and 160 GeV and transverse momenta above 35% and 25% of mγγ .

Jets are required to be reconstructed from PFlow objects using
the anti-kt algorithm with R = 0.4. Jets are required to have pT > 25
GeV, and for those jets with pT < 60 GeV and |η| < 2.4, the standard
Jet Vertex Tagger (JVT) algorithm is applied to match them with the
primary vertex. To identify the Higgs candidate decaying as H → bb̄,
events are required to have exactly two b-tagged jets using the DL1r
algorithm with a nominal efficiency of 77%. Non-tagged jets are ranked
based on the Pseudo Continuous BTagging (PCBT) score and then
by pT . Events with leptons in the final state or with more than five
central jets with pT > 10 GeV are discarded to suppress tt̄ production
and tt̄H(→ γγ).

With these requirements, the signal efficiency of this pre-selection
is around 13(9)% for SM ggF(VBF) HH production.

Events are further classified based on the modified mHH :

m∗
bbγγ = mbbγγ − (mbb − 125 GeV) − (mγγ − 125 GeV) (5.5)

This variable improves the four-object mass resolution, particularly
for resonant signal particles decaying into a pair of Higgs bosons, due
to detector resolution effects canceling out. The effect is shown in
Figure 5.6.
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Figure 5.6. Reconstructed four-body mass for the SM HH and single H
production processes and for the γγ+jets background. Dashed lines
represent the distribution of mbbγγ while solid lines represent the dis-
tribution of m∗

bbγγ . Distributions are normalized to unit area from Ref.
[129].

At low values of mHH (m∗
bbγγ < 350 GeV), the analysis is sensitive

to large variations in κλ, while for high values of mHH (m∗
bbγγ > 350

GeV), the analysis is sensitive to the SM HH production.
In each of the two categories, indicated as low mass and high mass,

a Boosted Decision Tree (BDT) is trained to distinguish the signals
from the various backgrounds of the analysis.

The backgrounds of this analysis can be divided into two categories:
the continuous background and the single Higgs resonant backgrounds.
Resonant backgrounds include single Higgs bosons decaying to two
photons produced by ggF, VBF, in association with a W or Z, with
a tt̄ or bb̄ pair, or single top. For the continuous background, events
are denominated as γγ+jets or tt̄γγ. All the signal and background
samples are produced using Monte Carlo events.

In the high mass region, the signal target samples used are both
SM HH events and κλ variations for VBF production, while in the
low mass region, the signal target samples correspond to non-SM HH
production with κλ = 10, 5.6, and the VBF κλ variations.

The BDT distribution is agnostic to the mγγ distribution, which
is the final variable used to fit the final parameter of interest (POI).
The BDT score distribution is shown in Figure 5.7.

After training, three categories in the high mass region and four
categories in the low mass region are defined based on the BDT
discriminants. These values are chosen to optimize the overall final
significance. The optimization is performed by requiring at least 9
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events in the sidebands (mγγ /∈ [120, 130] GeV) in order to have enough
statistics to constrain the continuous background from data.

(a) (b)

Figure 5.7. BDT score distribution for simulated signal and background
samples for (a) low mass and (b) high mass regions from Ref. [128].

The signal is extracted with an unbinned fit to the di-photon
mass (mγγ) distribution in each category. The signal and background
functions are modeled independently with analytical functions.

The signal and resonant background events are modeled by a
double-sided Crystal Ball function [130], where the shape parameters
are obtained by fitting the simulated SM samples and then fixed in the
final fit. The continuous backgrounds are modeled with exponential
functions, whose normalization and shape are inferred from data. Each
exponential function has two degrees of freedom.

Moreover, the spurious signal [131] is defined as the maximum
absolute value of the bias on the fitted signal yield in multiple sig-
nal+background fits to the background-only template, performed by
varying the mass between 123 and 127 GeV in 0.5 GeV intervals. In
each fit, the impact of the spurious signal is smaller than 20% of the
statistical uncertainty plus twice the statistical uncertainty of the
spurious signal itself.

This analysis is statistically dominated, with systematic uncertainty
impacting less than 5% on the final result. More details on systematic
uncertainties can be found in [128].

The results are derived using a simpler and similar procedure to
the one described for the analysis in Chapter 4. A likelihood function
is constructed as a function of the parameter of interest (POI, α) and
the auxiliary measurements (θ). The likelihood is the product of the
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Figure 5.8. Fit on the mγγ distribution in the Highest BDT bin for the
high mass region. from Ref. [128].

seven independent likelihoods in each BDT category bin and mHH

region. Then, a profile-likelihood-ratio test is used to extract the 68%
and 95% confidence level (CL) intervals for κλ. Upper limits on the
Di-Higgs signal strength (µHH) are also derived. The fit result of a
background-only fit is shown in Figure 5.8. No significant excess has
been observed, setting a 95% CL upper limit to 4.0 on µHH . This
result must be compared with the expected values of 5.0(6.4) under
the background-only hypothesis (µHH = 0(1)).

(a) (b)

Figure 5.9. (a) Observed and expected value of the negarive log-likelihood
ratio as a function of κλ when the other coupling modifiers are fixed
to the SM predictions. (b) Likelihood contours at 68% and 95% in
the (κλ, κ2V ) plane when all the other modifiers are set to their SM
predictions. [128]
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From the negative logarithm of the likelihood as a function of the
κ values, it is possible to set limits on the κλ and κ2V modifiers. For
the self-coupling, the expected (observed) limits are −1.4 < κλ < 6.9
(−2.8 < κλ < 7.8) and −0.5 < κ2V < 2.7 (−1.1 < κ2V < 3.3) at
95% confidence level (CL). The likelihood scan for κλ and the two-
dimensional constraint in the (κλ, κ2V ) plane are shown in Figure
5.9.

5.3 Run2 + partial Run3 Analysis and
new techniques

In this Section, preliminary studies for the combination of the Run 2
with a partial Run 3 dataset are shown. The Run 3 is ongoing and
this analysis targets to develop new techniques and methods in view
of the full Run 2 + Run 3 combination.

One of the main innovations for this analysis will be the improve-
ment coming from the jet Flavour Tagger. This analysis as many
of the analyses involving b-quark jets is now starting to use the new
advanced GNN based Tagger: GN2, described in Section 3.1.2.

As shown in Figure 3.3 GN2 can improve about a factor of 4
with respect to DL1r in light-jet rejection keeping the same b-tagging
efficiency. This reflects automatically in the analysis into a better
rejection of the continuous background composed by γγ+jets where
the jets are mis-tagged by the algorithm while keeping a similar
nominal b-tagging efficiency. The FTag improvement can be used
with a different approach. It is possible to use a looser Working
Point with the new tagger that improves the b-tagging efficiency while
keeping a similar light-jet rejection compared to DL1r. This would
guarantee an increased signal efficiency at the cost of an increased
γγ+bb continuous background.

In the legacy analysis where DL1r with a 77% nominal Working
Point has been used the signal efficiency of requiring exactly two
b-jets was around 39% which is less compared to the nominal expected
77%2 ≃ 59%. This effect is due to the fact that even if the average
nominal efficiency is 77%, this efficiency is not flat as a function of the
pT of the jet as it can be seen from Figure 3.14. This effect convoluted
with the signal pT distributions of the jets, shown in Figure 5.10,
which peaking at lower values leads to a lower efficiency.

A similar behaviour in pT is expected from GN2. To understand
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Figure 5.10. Distribution of the pT of the leading and sub-leading Higgs
candidate jets in the ggF HH sample. The distributions peak at pT

values where the b-tagging efficiency is lower than the nominal 77%.

the impact of b-tagging on the signal efficiency two different cases have
been studied, keeping in mind that the same study must be performed
on the backgrounds to assess the overall impact on the analysis.

A first tested approach is to use a looser Working Point with GN2
that has the similar light-jet rejection as DL1r: 82% Working Point.
This approach would enhance the signal efficiency but it would also
increase the γγ + bb continuous background while keeping the γγ + jj
approximately unchanged. The second approach would be to use a
custom b-tagging Working Point flat in pT . This can be obtained by a
pT dependent cut on the b-tagging score Db discussed in the Equation
3.5. To emulate and simplify such a Working Point a Pseudo-Flat
approach has been used. A pT dependent Working Point has been
applied. For pT > 90 GeV the b-tagging at 77% Working Point is used
while the looser 82% Working Point is applied for jets with pT < 90
GeV.

The results on the signal efficiency for GN2 are shown in Table
5.1.

As mentioned, one of the resonant background for the Di-Higgs
analysis is the single Higgs ZH production with the Z boson decaying
to b-quarks. This process (Z(bb)H(γγ)) has not been observed and
with new techniques and the Run 3 dataset it could be extracted in a
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HH
GN2 Signal Efficiency Variation w.r.t. nominal
Default 77% WP 14.0% –
Pseudo-Flat 15.1% 8%
82% WP 15.8% 13%

Table 5.1. Signal Efficiency and variation with respect to nominal for
HH → bb̄γγ process.

Figure 5.11. Distribution of the pT of the leading and sub-leading Higgs
candidate jets in the ZH sample. The distributions peak at pT values
where the b-tagging efficiency is lower than the nominal 77%.

similar phase-space as the Di-Higgs one. As shown in Figure 5.11 the
Z has a softer spectrum. For this reason it is possible to apply similar
b-tagging studies to the ZH case. The results are shown in Table
5.2 where a larger improvement is obtained by raising the b-tagging
efficiency with Fixed-Cut Working Point or with the Pseudo-Flat
Working Point.

At the time of this dissertation, the analysis is still under devel-
opment. Nevertheless, some preliminary results can be provided. It
is important to highlight that many samples are yet to be produced,
especially for the Run 3 dataset. Currently, the available continuous
background lacks sufficient statistics, so a data-driven approach is
used to extract the significance.

As previously mentioned, it is well known that the high-mass region
is the most sensitive to Standard Model Di-Higgs production. For
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ZH
GN2 Signal Efficiency variation w.r.t. nominal
Default 77% WP 33.3% –
Pseudo-Flat 38.4% 15%
82% WP 38.0% 14%

Table 5.2. Signal Efficiency and variation with respect to nominal for
ZH → bb̄γγ process.

(a) (b)

Figure 5.12. mγγ distribution in the high-mass and high BDT score
(pBDT > 0.545) for the Di-Higgs, Single-Higgs and ZH Monte Carlo
samples stacked on top of the ad-hoc continuous background extracted
from a fit to the Data sidebands. Comparison between (a) legacy
distribution and (b) Run 2 reprocessing with GN2 tagger.

this study, the new Run 2 samples are evaluated using the same BDT
as in the legacy Run 2 analysis. It is then possible to build a Signal
Region by applying cuts on these two variables, requiring m∗

bbγγ > 350
GeV and pBDT > 0.545. Since the continuous background has no
Monte Carlo sample available with enough statistics, it is possible
to exploit the mγγ data side-bands: mγγ /∈ [120, 130] GeV. A two-
parameter exponential is fitted in the mγγ ∈ [105, 120] ∪ [130, 160]
GeV region. This function is then used to sample the one-dimensional
mγγ continuous distribution with sufficient statistics to ensure that
statistical fluctuations do not impact the final result.

From this, the binned significance of the signal compared to the
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background-only hypothesis can be extracted as:

Si =
√

−2((si + bi) ln (1 + si/bi) − si) (5.6)

This formula is derived from a likelihood ratio Asimov test, assum-
ing that the number of observed events equals the expected number.
In the expression, i represents the i-th mγγ bin, while si and bi are
the numbers of signal and background events in that bin, respectively.

Using this expression, the overall statistical-only significance ob-
tained in the high mass and high BDT score regions is S = 0.367.
Considering all the applied approximations, this can be compared to
the significance obtained with the legacy Run 2 samples using the
same selection criteria, which resulted in a significance of S = 0.358.
This improvement of 2.5% is driven by the reduction of fake b-jets in
the lower BDT score bins. Since the b-tagging efficiency of GN2 is the
same as the legacy value of DL1r, no improvement is expected in the
high BDT bins (pBDT > 0.905), where the background is negligible
and the signal is not increased. Therefore, it is necessary to use a
b-tagging Working Point with a larger efficiency to enhance the signal
efficiency while keeping the background at the same level as the DL1r
tagger.

Considering the enhanced luminosity (LRun3 = 58.6 fb−1) col-
lected with the partial Run 3 dataset, it is possible to approximately
extrapolate the significance to the combined Run 2 and partial Run
3 data by scaling it by a factor of

√
1 + LRun3/LRun2 ≃ 1.19, lead-

ing to an overall improvement of 20% in addition to any potential
improvement obtained with the GN2 tagger.
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6 | Four Dimensional Track-
ing for High-Lumi LHC

In this chapter a first investigation of the usage of precise timing
information in the new generation silicon trackers is presented. The
ATLAS full-silicon Inner Tracker (ITk) detector will be installed for
the HL-LHC Run4, the main focus of this Chapter is on a potential
upgrade of the ITk beyond Run4. The current Inner Tracking system
will be upgraded during the Long Shutdown 3 (2026-2029) to cope
with the extreme conditions of the High-Luminosity phase of the LHC.
ATLAS will also be installing a High-Granularity Timing Detector in
the forward region to mitigate the Pile-Up effect. Due to the hard
radiation in the proximity of the Interaction Point the innermost layers
of the ITk are designed to be replaced after about 2000 fb−1 collected
data. This represents a unique opportunity to bring in technological
innovation and expand the physics potential of HL-LHC by including
fast-timing through 4-dimensional (4D) tracking in the ATLAS barrel
region.

While HGTD will provide unique handles to improve the recon-
struction of physics objects in the forward region, its capability is
limited by its reduced η acceptance. There are also compelling physics
reasons to consider fast-timing in the central region. In particular,
barrel timing information can significantly improve the identification
of b-jets, enhancing the prospects to observe Di-Higgs.

The presented work has been recently published as an ATLAS
Pub-Note [1].
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6.1 Impact of 4D Tracking
in ATLAS Beyond Run 4

Picosecond timing information is a ground-breaking new feature to
mitigate the impact of Pile-Up and enhance the reconstruction of
events at high luminosity hadron colliders. Timing, being uncorrelated
with spatial information, allows to disentangle Pile-Up interactions
that are very close in space but well-separated in time. This is relevant
for the High-Luminosity phase of the LHC (HL-LHC), in which Pile-Up
scenarios of about 200 simultaneous interactions are expected [132] and
it becomes even more important for future hadron collider concepts,
such as the Future Circular Collider (FCC-hh), where the Pile-Up
is foreseen to be almost one order of magnitude larger compared to
HL-LHC. Both the ATLAS and CMS experiments will incorporate
dedicated precision timing detector layers for the HL-LHC upgrade.
ATLAS will install a High Granularity Timing Detector (HGTD) in
the forward region [133] while CMS will install a MIP Timing detector
surrounding hermetically its tracker [134]. The next generation of
silicon detectors for charged-particle tracking in such environments is
expected to feature 4-dimensional (4D) trackers capable of measuring
simultaneously spatial and temporal coordinates [135].

Figure 6.1. The schematic depiction of the ITk Layout 23-00-03 [136]
Only one quadrant and only active detector elements are shown. The
active elements of the Strip detector are shown in blue, and those of the
Pixel detector are shown in red.

The ATLAS Inner Detector for the HL-LHC Run 4 will be upgraded
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to a full-silicon Inner Tracker (ITk) [137, 138] which has excellent
spatial resolution but does not have fast-timing capabilities. The ITk
layout for Run4 is displayed in Figure 6.1.

A High-Granularity Timing Detector (HGTD) [139, 133] will be
installed in the forward pseudo-rapidity region, providing track timing
information at the 30 − 50 ps level.

Figure 6.2. Position of the HGTD within the ATLAS Detector. The
HGTD acceptance is defined as the surface covered by the HGTD
between a radius of 120 mm and 640 mm at a position of z = ±3.5m
along the beam-line, on both sides of the detector. [139]

While HGTD will help to mitigate the effects of Pile-Up and will
lead to gains in specific physics benchmarks such as Vector Boson
Fusion (VBF) processes, its coverage is restricted to the forward
region, limiting its overall impact to the ATLAS physics programme.
In contrast to CMS, whose MIP Timing Detector [134] will provide
hermetic timing coverage up to |η| < 3.0, HGTD only covers the region
2.4 < |η| < 4.0. This limited η acceptance has a non-trivial effect
even in the reconstruction of forward jets, typical of VBF signatures.
The reason is that the times of forward tracks within jets need to
be compared with the time of the hard-scatter primary vertex (tHS)
reference time for placing timing selection cuts. The identification of
tHS becomes challenging when only forward tracks are available. This
means that the ability of HGTD to tag Pile-Up forward jets depends
on how many forward tracks originate in the hard-scatter process. A
recent study, which can be found in [133], shows that the forward
Pile-Up jet rejection with HGTD can improve by more than a factor
of 2 with the knowledge of the precise time of the Hard-Scatter as it
is shown in Figure 6.3.
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Figure 6.3. The rejection of Pile-Up jets as a function of the efficiency for
hard-scatter jets with 30 < pT < 50 GeV (left) and 50 < pT < 70GeV
(right) using the RpT (top) and JVF discriminants (bottom) in VBF
H → inv. events with an average of 200 Pile-Up collisions per bunch
crossing. The solid lines are obtained without using the time information.
Black dashed (red fine-dashed) lines are obtained using time information
and the reconstructed (true) tHS of the event. The error-bands reflect
the statistical uncertainty of the samples. Target working points use
85% of efficiency for Hard Scatter jets from Ref. [133].

The two innermost pixel layers of the ITk are anticipated to be
replaced after a certain number of years of data taking beyond Run 4
due to the high radiation dose received, offering the opportunity to
extend fast-timing information to the ATLAS central pseudo-rapidity
region, for hermetic timing coverage.

There are three key opportunities that hermetic 4D tracking could
enable:

• improved vertex tHS for forward Pile-Up jet suppression com-
plementing and extending HGTD performance, and for the iden-
tification of long-lived particle (LLP) decays with large lifetime
cτ .
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• improved reconstruction of physics objects in the central region,
particularly b-tagging , long-lived particle decays with small cτ ,
and missing transverse energy.

• improved track and vertex reconstruction (resolution, purity,
efficiency, and CPU consumption).

The studies presented in this dissertation aims at quantifying
the impact of hermetic 4D tracking coverage in ATLAS for the first
time, with emphasis on vertex reconstruction, flavour tagging and sub-
sequential impact on the physics analyses. Low-level investigations on
how to improve track reconstruction, resolution, purity, and efficiency,
and to reduce CPU consumption by filtering out-of-time hits, are
not considered in the following and will be taken into account in
longer-term studies.

The ITk detector shown in Figure 6.1 is an all-silicon tracking
detector made of two sub-systems: a Pixel Detector [138] surrounded
by a Strip Detector [137]. The Strip Detector has four strip double-
module layers in the barrel region and six end-cap disks, covering the
pseudo-rapidity range up to |η| < 2.7. The Pixel Detector consists
of five flat barrel layers and multiple inclined or vertical ring-shaped
end-cap disks, extending the coverage up to |η| < 4.0. During the last
years, the layout of the ITk has undergone several updates compared
to the one reported in [138]. The details of the latest version can be
found in [140].

The replaceable layers of the Pixel Detector are the innermost ones,
located at 34.0 mm and 99.0 mm in the barrel and 33.2 mm, 58.7 mm
and 80.0 mm in the end-caps. In terms of radiation tolerance, the
innermost part the ITk is designed to collect up to 2000 fb−1 of data
before being replaced. This corresponds (with a safety factor of 1.5) to
a radiation dose of about 10 MGy [138], one order of magniture more
than the current ATLAS Inner Detector. In turn, this requirement
implies that a key feature for any new 4D tracking technology used
for replacing the pixel modules will be radiation hardness [141].

All the following studies are based on Monte Carlo simulations
estimated for the HL-LHC. The generation of simulated samples
includes in-time Pile-Up pp interactions happening in the same bunch
crossing as well as the effect on the detector response due to interactions
from bunch crossings before or after the one containing the hard
interaction.

The sample used is a tt̄ sample produced at the center of mass
energy of

√
s = 14 TeV to evaluate the performance of vertex recon-
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struction and b-tagging at an average Pile-Up ⟨µ⟩ = 200. This sample
was generated using PowhegBox interfaced with Pythia for the
Parton Showering. The EvtGen 1.2.0 program [142] was used for
the simulation of the b- and c-hadron decays.

6.1.1 The Pile-Up Challenge
The increasing level of Pile-Up through the subsequent runs of the LHC,
leading to an average Pile-Up of 200 during HL-LHC, constitutes one of
the biggest computational and performance challenges of LHC physics.
From a computational standpoint, the large number of simultaneous
collisions makes the information to process for each event much larger
and complex. For example, the space-point (or hit) combinatorics to
reconstruct the trajectory of charged-particles increases enormously.
To set the scale, for each event, O(104) charged-particles will be
produced during HL-LHC within the detector acceptance, leading to
O(105) hits. With the combinatorics scaling roughly as the square
of the number of charged-particle tracks, any improvements in the
association of hits to the correct track and, in turn, of the tracks to
the correct vertex or jet can have a large and broad impact in the
LHC programme.

Figure 6.4. Longitudinal view of a simulated tt̄ event with ⟨µ⟩ = 200
with (left) no track-timing, (center) with track timing in the HGTD
pseudorapidity coverage 2.4 < |η| < 4.0 and (right) full hermetic track-
timing information coverage.

From a performance point of view, Pile-Up contaminates recon-
structed physics objects, such as vertices or jets arising from the
hard-scatter interaction, reducing the sensitivity of all physics analy-
ses. While the computational aspects are left for future studies, this
work discusses the impact of timing information on ATLAS perfor-
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mance and physics, focusing on the availability of track timing in the
central pseudorapidity region.

Assuming the time as a colour associated to for each track it is
possible to visualise an event in the three cases where there is no
timing detector, with HGTD only and with a full hermetic coverage.
This aspect is qualitatively shown in Figure 6.4 where it clarifies why
HGTD only is not enough to determine the tHS .
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Figure 6.5. Longitudinal view of a simulated tt̄ event with ⟨µ⟩ = 200
with (1(a)) no track-timing compared to (1(b),1(c),1(d)) with track-
timing information. The truth hard-scatter is indicated with a green
star, while the truth Pile-Up vertices are displayed as solid circles. The
reconstructed tracks displayed associated with the truth vertices are
displayed. [1]

The association of tracks to vertices becomes challenging in two
main situations. The first situation is when the typical separation
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between Pile-Up vertices becomes comparable or smaller than the
longitudinal impact parameter resolution. This is the case for tracks
beyond |η| > 2.4 and this fact motivated the addition of the HGTD
to the ATLAS Experiment.

The second situation is the identification of displaced tracks from
heavy flavour decays in the central pseudo-rapidity region. In this case,
while the longitudinal impact parameter resolution of prompt tracks,
z0 , is significantly smaller than in the forward 0 region, tracks from
b-hadron decays can have large impact parameters that are comparable
or larger than the separation between Pile-Up vertices. Beyond these
two main cases, even the association of tracks to primary vertices can
be challenging in the presence of close-by Pile-Up vertices.

As an example, Figure 6.5(a) shows the longitudinal view of a
simulated tt̄ event with in the ATLAS Inner Detector in absence of
timing information. When track-timing information is available, as
depicted in Figure 6.5(b) with the usage of different colours to displays
tracks belonging to different interactions, the association of tracks
to vertices becomes more unambiguous. The concept can be better
visualised in Figure 6.5(c) where a zoom on the z axis is performed.
In Figure 6.5(d) track-timing information is explicitly used to apply a
compatibility time cut between the tracks and the hard-scatter vertex
|ttrk − tHS | < 30 ps in order to clean up the environment, which shows
very promising potential in the improvement of the track association
to the hard-scatter vertex.

6.1.2 Track-time assignment procedure

Figure 6.6. Flow chart of the track-time assignment.

The very first step in the evaluation of the impact of 4D tracking
on higher level objects is the assignment of time to tracks. As a
preliminary procedure, the track-time is assigned from truth level
information. Starting from a reconstructed track, the time of the
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corresponding truth-level information primary vertex is retrieved and
the time of that vertex, which is relative to the simulated bunch
crossing, is assigned to the track after applying a Gaussian smearing.
Several widths are investigated for the Gaussian smearing, to emulate
the detector response in terms of time resolution, namely 30 ps, 60 ps
and 90 ps. For the small fraction of tracks, of the order of a few
percents, which do not have truth information due to simulation
and reconstruction effects, a random time is assigned based on the
beam-spot time profile. This procedure is schematized in Figure 6.6.

6.1.3 Impact on Object Reconstruction
The addition of precision timing information in the central tracker can
have a broad impact on the ability of the ATLAS detector to reduce
Pile-Up contamination and improve the reconstruction of physics
objects. This section focuses only on two key areas as examples of the
potential for improvements: the precise determination of the tHS for
all events and the identification of b-jets.

The knowledge of the tHS is a crucial element for the full exploita-
tion of HGTD in the forward region. The limited acceptance of the
HGTD makes this determination challenging in events with relatively
low forward jet activity. One example are VBF events containing only
one jet within the HGTD acceptance. In this case, HGTD can assign a
time to the jet, but still needs a reference hard-scatter vertex time from
the more central jet in order to be able to either reject or accept this
jet. While improvements on HGTD-based algorithms to reconstruct
tHS are expected, the availability of the time information for every
track in there event will significantly boost the HGTD potential by
providing precise tHS containing a single forward jet.

The reconstruction of tHS , in conjunction with the time-stamp of
every track, can also provide means to reduce Pile-Up contamination
in the reconstruction of the hard-scatter vertex itself. One known
limitation of the current vertex reconstruction algorithms under HL-
LHC conditions is vertex merging due to primary vertices occurring
very close in space. This effect leads to a region of between 0.5 mm
and 1 mm where it is not possible to find reliably near-by vertices.
Recent proposals for improved vertex reconstruction using machine
learning, such as [143] promise to improve this challenge, but are still
far from solving it. Track and vertex time information is a very clear
way to address this challenge.

Another application of tHS is to improve the calorimeter time
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resolution, which is limited by the knowledge of the hard-scatter
vertex time. This improvement can be exploited to expand the reach
to search for long lived particles decaying to displaced photons or jets.

The availability of time information for tracks in the barrel region
will have a major impact in the identification of jet flavours, i.e. flavour
tagging. The long lifetime of B- and D-hadrons requires the selection
of tracks with large impact parameters for the identification of heavy-
flavour-quark-intiated jets. The need for large selection windows
around the longitudinal impact parameters implies more Pile-Up
contamination that can create fake secondary vertices. Therefore, while
the HGTD physics case was made on the basis of impact parameter
detector resolution being comparable or larger than the expected
average distance between primary vertices, the case for barrel track
time relies on the physics of B- and D-hadrons decays leading to
similarly large impact parameters relative to the vertex separation.

In a second stage a description of the impact of 4D tracking on
the ability to identify b-jets is studied.

While this Chapter focuses on these two important applications
with broad physics impact, the potential of a 4D tracker extends well
beyond. For example, pixel hit time information can provide new
ways to improve track seeding and reconstruction. Even if only one
tracker layer is instrumented with pico-second timing, it might be
possible to reject track seeds that are incompatible to each other in
time and drastically reduce CPU time. One particularly interesting
direction this could enable is the possibility to lower the minimum
track transverse momentum threshold of 0.9 GeV in the central region.
These investigations are left for future studies.

Determination of tHS

Primary vertex reconstruction in ATLAS is performed using the Adap-
tive Multi Vertex Finder (AMVF) [77], based solely on spatial infor-
mation. The AMVF algorithm assigns tracks to multiple vertices,
incorporating a weight, wtrk, which represents the likelihood of a
track belonging to a specific vertex. For this study, only reconstructed
vertices which are not purely made up of Pile-Up tracks are considered.
The Pile-Up only Hard Scatter vertices are about O(1%). The tHS is
then computed as the weighted average of the track times:

treco
HS =

∑
trk wtrkttrk∑

trk wtrk
(6.1)
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In the following three cases in the calculation of tHS are considered:

• All Tracks, i.e. all the tracks contributing to the vertex;

• HS only, i.e. only the tracks that have been produced from the
HS vertex;

• Clustering, i.e. implementing a time based clustering algorithm.

The HS only case makes use of truth matching and is meant to
quantify the ideal performance assuming a perfect track-to-vertex
association. The clustering algorithm utilized in this task is the
Density-based spatial clustering of applications with noise (DBSCAN)
[144]. DBSCAN is specifically designed to identify clustered points
amidst noise, making it highly suitable for the current application.
In this context, it serves as a simplified version of 4D vertexing,
where a 1D temporal clustering is applied in addition to the spatially
reconstructed vertex obtained from AMVF.

The calculation of tHS is repeated for each of the track resolution
scenarios (30 ps, 60 ps, 90 ps).
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Figure 6.7. Distribution of the track time in the 30 ps track resolution
scenario for a single event, for the tracks that belong to a reconstructed
vertex. Three cases are shown: All Tracks, i.e. all the tracks contributing
to the vertex, HS only, i.e. only the tracks that have been produced from
the HS vertex and Clustering, i.e. tracks that belong to a re-clustered
vertex. [1]
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Figure 6.7 shows an example of a distribution of track time for a
reconstructed vertex in the three cases described above, when the track
time resolution is emulated to be 30 ps. In the All tracks case, one can
notice spurious track clusters compared to the HS only case. These
tracks will affect the time resolution of the vertex if they are included
in the computation. The clustering procedure instead removes those
spurious contributions, allowing to determine the tHS with a resolution
close to that of the HS only case.

After determining the tHS , it is possible to estimate its resolution
on the HS vertex time with the RMS of the distribution ∆t = ttruth

HS −
treco
HS . This is a rough estimation because of the non Gaussian tails

where the Pile-Up contributes the most.
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Figure 6.8. Distribution of the tHS resolution defined as the width of a
Gaussian distribution fitted on the difference between the truth and the
reconstructed vertex time. The 30 ps track resolution scenario is used
here. The resolution obtained when using all tracks is compared with
that obtained with an a posteriori clustering technique as well as with
that obtained by using only HS tracks. [1]

Figure 6.8 shows the improvement of the tHS resolution when
introducing the clustering algorithm. When the resolution on the
track-time is 30 ps, the tHS resolution would be 28 ps if all tracks
were used while it improves to about 7.2 ps when re-clustering the
tracks. This is very close to the 5.6 ps obtained when considering
only the tracks from the hard scatter, demonstrating that while there
is still space for improvement which might arise from the usage of
a simultaneous treatment of the space and time coordinates in the
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vertex finding and fitting procedures, a very good resolution is already
achieved.

To better understand the Pile-Up impact on the determination of
the tHS resolution, the resolution is studied as a function of the fraction
of Pile-Up tracks in the vertex (PU fraction = #PU trk∈vtx/#trk∈vtx),
as shown in Figure 6.9
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(a) 30 ps resolution
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(b) 60 ps resolution
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(c) 90 ps resolution

Figure 6.9. Resolution of the tHS in three track resolution scenarios (30 ps,
60 ps and 90 ps respectively for Figure 6.9(a), Figure 6.9(b) and Figure
6.9(c)) shown as a function of the PU fraction per vertex. The resolution
obtained when using all tracks is compared with that obtained with an
a posteriori clustering technique as well as with that obtained by using
only HS tracks. The distribution of the PU fraction is also overlaid. [1]

The PU fraction has a smoothly falling distribution and it is binned
to obtain almost constant statistics per bin. In each bin, the difference
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between the truth and the reconstructed vertex time distribution
follows exactly a Gaussian function, whose width is used to estimate
the resolution.

While the majority of the vertices have low Pile-Up contamination
arising from the good performance of the tracking system, a non
negligible number of vertices has a sizeable Pile-Up contamination.
The ability of removing the Pile-Up contamination depends strongly
on the track-time resolution. At 30 ps shown in Figure 6.9(a), the
clustering algorithm leads to almost the ideal resolution across the
entire PU fraction spectrum. When increasing the track resolution,
the improvement in the tHS resolution decreases as shown in Figure
6.9(b) for the 60 ps case and 6.9(c) for the 90 ps case.
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Figure 6.10. Comparison of the tHS resolution obtained with an a
posteriori temporal 1D clustering technique in three track resolution
scenarios 30 ps, 60 ps and 90 ps shown as a function of the PU fraction
per vertex. [1]

Figure 6.10 is a comparison of the tHS resolution obtained with the
clustering algorithm for the three track resolution cases, as a function
of the PU fraction.

Along with the PU fraction, it is possible to study the tHS reso-
lution as a function of two additional variables: the well-established
average spatial Pile-Up density ⟨ρz⟩ and the newly introduced average
temporal Pile-Up density ⟨ρt⟩. In the following formulas σz and σt

are the spatial and temporal standard deviation of the beam-spot.
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The average spatial Pile-Up density is defined as:

⟨ρ⟩(zHS) = ⟨µ⟩√
2πσz

exp
(

−z2
HS

2σ2
z

)
(6.2)

The average temporal Pile-Up density is defined as:

⟨ρ⟩(tHS) = ⟨µ⟩√
2πσt

exp
(

− t2HS
2σ2

t

)
(6.3)

While these variables provide only averaged information and are not
sensitive to the local Pile-Up contamination, they are complementary
to the PU fraction defined earlier as they do not depend on the
performance of the reconstruction algorithms and, as such, will remain
stable should the tracking and vertexing algorithms change.
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(a) tHS resolution vs ⟨ρ⟩(zHS)
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(b) tHS resolution vs ⟨ρ⟩(tHS)

Figure 6.11. Resolution of the tHS in the 30 ps track resolution scenario
as a function of two different variables: Figure 6.11(a) as a function
of the average spatial Pile-Up density ⟨ρ⟩(zHS) and Figure 6.11(b)
as a function of the average temporal Pile-Up ⟨ρ⟩(tHS) density. The
resolution obtained when using all tracks is compared with that obtained
with an a posteriori clustering technique as well as with that obtained by
using only HS tracks. The distribution of spatial and temporal Pile-Up
density is also overlaid in the corresponding figures. [1]

The tHS resolution as a function of spatial and temporal ⟨ρ⟩ is
shown in Figure 6.11 for the 30 ps track-time resolution scenario. The
distribution of spatial and temporal average Pile-Up density is also
overlaid in the corresponding figures. On average, in the HL-LHC
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scenario there will be about one vertex every 0.7 mm or every 2.3 ps.
In both distributions, there is a flattening of the resolution when the
Pile-Up tracks are removed by means of the clustering algorithm. The
difference between the two is in the trend of the resolution achieved
when all tracks are used. The resolution is worse at high average
spatial Pile-Up densities due to the large presence of vertices nearby
in the z-coordinate and the increasing amount of mis-associated tracks
as a function of ⟨ρ⟩(zHS). Instead, the tHS resolution appears to be
worse at small average temporal Pile-Up densities. This is because the
vertexing algorithm uses only spatial information, making tracks from
vertices close in space but very far in time still compatible with the
same vertex. The number of mis-associated tracks is roughly flat as a
function of ⟨ρ⟩(tHS), as expected since time is unused in the current
vertexing algorithms. Tracks that belong to vertices that are far in
time populate the low ⟨ρ⟩(tHS) bins. The contamination from such
spurious tracks will have a larger impact on the average vertex time
compared to what happens at high ⟨ρ⟩(tHS) where the tracks belong
to vertices close by in time, therefore not impacting the average vertex
time as much as they do in the low ⟨ρ⟩(tHS) regime.

Flavour Tagging

As widely discussed in the previous chapters, Flavour Tagging is a
crucial technique employed in particle physics experiments to identify
the flavour of the initial state parton from which a jet originates. As
described in Section 3.1, through innovative experimental techniques
and sophisticated algorithms, we are able to successfully tag these
particles with high efficiency and accuracy. The state-of-the-art flavour
tagging algorithm in ATLAS used in this section is GN1 [85] described
in Section 3.1.2 that in the meantime has been superseded by GN2. In
this work it is demonstrated that, beside the already high performances
that this architecture can reach with the new ITk detector [145],
timing information allows to improve the performances considerably.
As mentioned in Section 3.18, GN1 uses a one stage Graph Neural
Network that takes as input jet and track level information. The
output of the algorithm is a set of scores for each jet, which represents
the probability that the jet be tagged as a b−, c− or l−quark-initiated
jet. The focus of this study is on light-jets vs b-jets discrimination,
but the conclusions are expected to extend also to c-jets similarly.

One of the key features utilised in b-tagging algorithms is the
large life time of a B-hadron in the jet, τB ∼ 1.5 ps. This results
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Figure 6.12. Track 6.12(a) transverse and 6.12(b) longitudinal impact
parameter significance with and without PU for b-jet and light-jets. [1]

in the b-jet having the peculiar signature of a displaced vertex with
respect to the beam-line. The tracks arising from this displaced vertex
have larger signed longitudinal (z0 ) and transverse (d0 ) impact
parameters, defined with respect to the primary vertex, compared
to tracks originating from light-quark-initiated jets. The observables
used to capture such features are the impact parameter significances,
i.e. the ratio between the impact parameter and their estimated error
σ:

• S(d0) = d0 /σd0 for the transverse impact parameter significance;

• S(z0) = z0 /σz0 for the longitudinal impact parameter signifi-
cance.

Being GN1 a track-based algorithm, maximizing the discrimina-
tion power of such variables is crucial to better identify light- and
b-jets. In the high Pile-Up environment foreseen during HL-LHC,
flavour tagging becomes more challenging because pile up tracks mis-
associated to hard-scatter jets worsen the discrimination power in
the tails of such distributions. Figure 6.12 shows the track impact
parameter significance with and without PU for b-jet and light-jets.
It becomes evident that eliminating PU contamination can enhance
the differentiation among flavours.

Additionally, it is anticipated that the primary influence will be
on the longitudinal impact parameter due to the expected minimal
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displacement of PU vertices in the transverse plane.
To evaluate the impact of track timing on GN1, a temporal track-

level variable that will be used as an additional input to GN1 is defined.
This new variable is called track-time significance S(ttrk) and it is
defined as follows:

S(ttrk) = |ttrk − tHS |
σt

(6.4)

In this equation, σt is the track time resolution injected by smearing
the truth level information, as explained in Section 6.1.2. The tHS is
derived from truth level information with a Gaussian smearing applied
based on the vertex studies presented earlier.

Figure 6.13 shows that the distribution of this variable comprises
two main components: the tracks originating from the hard scatter,
indicated as HS, which will populate the core of the distribution, and
the track originating from Pile-Up, indicated as PU, which will have
a higher significance.
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Figure 6.13. Distribution of the track-time significance for tracks that
have been truth-matched to the hard-scatter (HS) or to a Pile-Up (PU)
vertex. [1]

From now on, the enhanced architecture of GN1 which uses S(ttrk)
is defined as GNT, GN1 with Time information. The other input
variables are identical to those defined in [145].

The statistics of the tt̄ sample used in this analysis is divided into
three parts: a training (28 × 105 jets), a validation (7 × 105 jets) and a
test (26 × 105 jets) set. The total statistics of the sample used in this
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study is equivalent to that used in previous ITk publications [145], but
it is limited compared to the results presented in the Run 3 studies,
therefore changes in efficiency and rejection can be expected in the
future if larger data-sets will be used.
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Figure 6.14. Distribution of the b-tagging score Db for light- and b-jets
in a comparison between GN1 vs GNT. [1]

The outputs of the networks, i.e. the three scores (pb, pc, pl)
introduced earlier and representing the probabilities for the jet to
be tagged with a certain flavour, can be combined to create a global
discriminant Db indicating the probability that a jet is a b-jet defined
as follows:

Db = log pb

fc · pc + (1 − fc) · pl
(6.5)

In this formula fc is a parameter related to the fraction of c-jets,
that can be tuned. For GN1, it is set to fc = 0.05. For GNT, this
parameter can be optimized as well. Since the c-jets performances are
not the focus of this study, fc is tuned to have an almost constant
c-jets rejection at a given b-jet efficiency working point, ϵb = 77%. A
working point is defined by the b-tagging efficiency obtained as the
integral of the Db distribution above a certain cut on the b-jet curve.
For each b-tagging efficiency, the corresponding rate of light-jets that
are mis-tagged as b-jets can be calculated as the integral of the light-jet
curve above the same cut.

Figure 6.14 shows the Db discriminant for light- and b-jets in a
comparison between GN1 vs GNT with no smearing on track time
(GNT ideal). It can be noticed that in general Db takes large values for
b-jets and smaller values for light-jets, as expected from its definition,
but it is apparent that the discrimination between the two flavours
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improves when introducing timing information.
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Figure 6.15. (a) Background rejection as a function of the b-tagging
efficiency for different setups of the GNN algorithm: with perfect timing
(GNT), with timing information in the 30 ps track resolution scenario
(GNT30) and without timing (GN1 std). (b) The light-jet mistag rate
as a function of the PU fraction for a fixed ϵb = 70% b-tagging working
point. Different setups of the GNN algorithm are shown: with perfect
timing (GNT), with timing information in the 30 ps track resolution
scenario (GNT30) and without timing (GN1 std). The distribution of
the PU fraction is also overlaid. [1]

A more quantitative assessment of the performance is obtained
by studying the light-jet rejection as a function of the b-tagging
efficiency. Figure 6.15(a) shows a comparison between three setups
of the b-tagging algorithm: with track time and without smearing
(GNT ideal), with track time information in the 30 ps track resolution
scenario (GNT 30ps) and without timing (GN1). A large improvement
arises from the usage of S(ttrk). For example, for a 77% b-tagging
working point, the light-jet rejection improves by a factor of about 3.5
in the ideal case scenario and by a factor of more than 2 in the 30 ps
track resolution scenario.

This improvement is analyzed through several figures of merit.
For example, Figure 6.15(b), shows the light-jet mistag rate for a
fixed ϵb = 70% b-tagging working point, as a function of the jet PU
fraction (jet PU fraction = #PU trk∈jet/#trk∈jet) defined similarly
as in Sect. 6.1.3, but this time by considering the fraction of PU tracks
in a jet rather than in a vertex. Different setups of the GNN algorithm
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are shown: with perfect timing (GNT), with timing information in
the 30 ps track resolution scenario (GNT30) and without timing (GN1
std). It can be observed that the light-jet mistag rate as a function of
the PU fraction in the jet gets flattened in GNT, with improvements
of almost one order of magnitude in the highest PU fraction bins.
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(a) PU track classification
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Figure 6.16. Performance of the track classification task in GN1 and GNT.
In 6.16(a) rejection of non-PU tracks as a function of the efficiency of
identifying PU tracks and in 6.16(b) rejection of non-PU or non-FromB
or non-FromBC tracks as a function of the efficiency of categorising
correctly the tracks within the corresponding category. [1]

One of the auxiliary tasks of the GNN algorithm is the prediction
of the origin of each track within the jet. The track is labelled with
one of the exclusive categories defined in Ref. [85], after analyzing the
particle interaction that led to its formation. These categories include
tracks from Pile-Up, indicated as PU tracks, as well as tracks from
the decay of a B-hadron, indicated as FromB tracks, and tracks from
the decay of a C-hadron which itself is from the decay of a B-hadron,
indicated as FromBC tracks. By examining the differences in the
labels that tracks are assigned when using GN1 or GNT, as shown in
Figure 6.16, we can gain insights into the source of the observed effects.
Figure 6.16(a) illustrates that, as expected, track timing information
helps mostly in discriminating PU tracks from non-PU tracks. The
rejection of non-PU tracks could be improved up to a factor of 10 in
the ideal case with no smearing emulating the time resolution, and
up to a factor of 4 in the case of 30ps track-time smearing. The
classification task in Figure 6.16(b) shows also that while the main
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improvement arises from a much accurate classification PU tracks,
the classification of tracks from heavy flavour hadrons (FromB or
FromBC) is mainly unchanged when using track-timing information.

To further understand the requirement on a future 4D tracker, the
impact of several track time resolution scenarios on b-tagging efficiency
and light-jet rejection is also studied. The results are reported in Figure
6.17. Even in the pessimistic 90 ps track resolution case, for a 77%
b-tagging working point, the light-jet rejection improves by a factor
of about 1.5.
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Figure 6.17. Background rejection as a function of the b-tagging efficiency
for different track resolution scenarios: 30 (GNT 30ps), 60 (GNT 60ps)
and 90 (GNT 90ps), in a comparison with the default algorithm without
track timing (GN1). [1]

Two additional effects which are expected to impact the perfor-
mance of 4D tracking have also been emulated in the case of 30ps
track time resolution, i.e. the impact of missing or mis-associated
hits-on-track. To study missing hits-on-track, it is assumed that the
timing information in the ITk will come from the second innermost
pixel layer. If the track analysed has no hits in the second innermost
layer, ttrk is extracted to emulate the HS profile but its error σt is
assumed to be 180 ps, i.e. as large as the temporal spread of the beam-
spot. This corresponds to saying that no clear discrimination between
HS and PU tracks can be made on the basis of timing information.
The impact is shown in Figure 6.18. For example, for a 77% b-tagging
efficiency working point, a small degradation of about 5% is present
in the light-jet rejection when comparing the results with the default
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Figure 6.18. Background rejection as a function of the b-tagging efficiency
for different setups of the GNT algorithm in the 30 ps track-time
resolution scenario: with no assumption on mis-associated or missing
hits (GNT 30 ps), emulating tracks which have received a timestamp
from mis-associated hits (GNT 30 ps mistag hits), and emulating tracks
with missing hits in the second ITk pixel layer (GNT 30 ps missing hits).
[1]

performance of GNT at 30 ps. Assessing the impact of mis-associated
hits-on-track requires a more complex procedure. While studying
these effects in detail is beyond the scope of this proof-of-concept
and will require access to fully simulated hits, a simple emulation is
carried out in this note to understand at which scale the performance
might be influenced. The so-called Truth Match Probability value, or
Pmatch, is used. The formula for Pmatch is given below:

Pmatch = 2Npix
common +Nstrip

common

2Npix
track +Nstrip

track

(6.6)

where the denominator contains the number of pixel and strip
detector hits attributed to the track, while the numerator contains
the number of pixel and strip hits common to both the track and the
truth particle. Each track is assigned a Pmatch between 0 and 1. A
score of 1 indicates that each hit composing a track was attributed
correctly. While Pmatch is not perfect for this study because it includes
information from the strip detectors which are not replaceable in HL-
LHC, it still provides a good proxy for the number of mis-associated
hits and their correlation with other track parameters. By using
Pmatch in these studies it is assumed that mis-associated hits are
mis-associated in both time and space. The excellent performance of
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the ITk is confirmed by the large amount of tracks that have a Pmatch

score of 1 or very close to 1. In fact, only about 1% of the tracks have
a Pmatch < 0.8. It is used this cut value and assign a wrong (i.e. taken
randomly from a PU vertex) time stamp to the tracks which have
Pmatch < 0.8. The effect of this emulated mis-tagged hits is presented
in Figure 6.18. The degradation in performance is comparable with
that of the missing hits-on-track case.

Several studies were performed to characterise the flavour tagging
results obtained when using track-time information.
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Figure 6.19. (a) Light-jet rejection as a function of the b-tagging efficiency
for two setups of the GNT algorithm: with a track-time resolution of 30
ps and either 6 ps or 11 ps tHS resolution, representing the two extreme
values of tHS resolution obtained as a function of the vertex PU fraction
shown in Figure 6.10. (b) Scan for the determination of fc, where GN1
is shown along with GNT ideal and GNT 30ps. [1]

For example, the tHS resolution has a slight remaining dependence
on the vertex PU fraction after we apply the a posteriori clustering
procedure. Figure 6.19(a) shows the impact of different resolutions on
the tHS for a given track-time resolution. In particular, in the 30 ps
track-time resolution case, the two extreme values of tHS resolution
obtained as a function of the vertex PU fraction are either 6 ps or 11 ps
(see Figure 6.10). The impact on b-tagging performance is negligible.

One of the parameters that can be tuned in the GNN b-tagging
algorithm is fc, a tunable parameter to adjust the relative importance
of pc, pl in the discriminant. Figure 6.19(b) shows a scan for the
determination of fc, where GN1 is shown along with GNT (the ideal
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case when perfect time resolution is assumed on both tracks and HS
vertex) and GNT 30ps (the case with 30ps resolution on track-time
and 6ps resolution on tHS). These resolution values are justified from
Figure 6.8.
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Figure 6.20. (a) The light-jet mistag rate as a function of the jet PU
fraction for a fixed ϵb = 70% b-tagging working point. Different setups of
the GNN algorithm are shown: without timing (GN1) and with timing
information in the 30 ps, 60 ps and 90 ps track-time resolution scenario
(GNT 30ps, GNT 60ps, GNT 90ps). The distribution of the jet PU
fraction is also overlaid. (b) Performance of the PU track classification
task in GN1 and GNT. The rejection of non-PU tracks as a function of
the efficiency of identifying PU tracks is shown for different setups of the
GNN algorithm: without timing (GN1) and with timing information in
the 30 ps, 60 ps and 90 ps track resolution scenario (GNT 30ps, GNT
60ps, GNT 90ps). [1]

Figure 6.20(a) shows the l-jet mistag rate as a function of the jet
PU fraction for a fixed ϵb = 70% b-tagging working point in different
track-time resolution scenarios, while Figure 6.20(b) shows the PU
track classification as a result of one of the auxiliary tasks of the
GNN b-tagging algorithm. As expected, the l-jet mistag rate and the
confusion between non-PU and PU tracks increases with the worsening
of the track-time resolution.

Figure 6.21 shows the classification of the tracks as predicted by
the GN1 and GNT 30ps algorithms. In particular, 6.21(a) for b-jets
in events in which the b-jets migrate from not being “loose” tagged at
ϵb = 85 % to being “tight” tagged at ϵb = 60 %; 6.21(b) for l-jets that
are tight tagged as b-jet at ϵb = 60 % without time. The matrices are
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more diagonal in the GNT 30ps case, indicating a superior accuracy
of the track classification in the time-assisted algorithm.
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Figure 6.21. Track classification in GN1 and GNT 30ps: 6.21(a) for b-jets
in events in which the b-jets migrate from not being “loose” tagged at
ϵb = 85 % to being “tight” tagged at ϵb = 60 %; 6.21(b) for l-jets that
are tight tagged as b-jet at ϵb = 60 % without time. [1]

6.1.4 Impact on Higgs boson pairs analysis
The impact of 4D tracking on object reconstruction will largely benefit
several areas of the HL-LHC Physics programme. In the following, an
example related the searches for Higgs boson pair (HH) production is
reported.
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As widely discussed in Chapter 5, measuring the Higgs boson self-
coupling λ is one of the key point of the LHC and its High Luminosity
phase.

Several searches for Higgs pair production have been performed
by the ATLAS [146, 147, 148] and CMS Collaboration [149, 150, 151,
152] with the existing data-sets. The current results obtained by
combining the three leading final states HH → bb̄bb̄, HH → bb̄ττ and
HH → γγbb̄ [153, 154] show that to observe a HH signal with the
Run 2 data, it would have to be about 3 times as large as what the
SM predicts. These results have been extrapolated to the HL-LHC
data-set by both ATLAS and CMS [155, 156, 157, 158, 154] and show
that an evidence for SM-like HH production is feasible by combining
the same three final states mentioned above. Additional improvements
may arise from including other final states.

Nevertheless, more data or better algorithms are needed to increase
the precision with which we will extract λ and draw more quantitative
conclusions about the Higgs potential. As HH is a very rare process,
most of the analyses look for a signal in a final state in which at least
one of the two Higgs bosons decays into its most abundant mode, i.e.
in a pair of b-quarks. Therefore improving b-tagging is one of the
most powerful ways to improve HH searches.
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Figure 6.22. The discovery significance extrapolated from the Run 2
analysis to HL-LHC for the HH → bb̄bb̄ process in 6.22(a) evaluated for
a range of b-tagging efficiency values from 65% to 85% assuming the
light-jet rejection rate as the 77% working point used in Run 2 and in
6.22(b) evaluated at various integrated luminosity values ranging from
1000 fb−1 to 3000 fb−1. The yellow line overlaps the cyan one in the
plots. Details can be found in Ref. [158].
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The ATLAS HH → bb̄bb̄ Run 4 extrapolation study [158] consid-
ered the impact of potential improvements in b-tagging efficiency in
the analysis sensitivity. Figure 6.22 shows the HH → bb̄bb̄ discovery
significance. In particular, Figure 6.22(a) shows the discovery signifi-
cance as a function of b-tagging efficiency values ranging from 65% to
85%, assuming as light-jet rejection rate that of the 77% working point
used in the corresponding Run 2 analysis. In the scenario of statistical
only errors (No syst. unc.), a 5% increase in b-tagging efficiency
(from 77% to 82%) corresponds to an increase in the HH → bb̄bb̄
discovery significance of about 0.3 σ. As shown in Figure 6.22(b), this
corresponds to the sensitivity enhancement of more than 500 fb−1 of
data. Figure 6.15(a) and 6.17 show that this improvement in b-tagging
efficiency could be within reach with 4D tracking.

Depending on the point in time at which the innermost pixel layers
of the ITk could be replaced with a 4D tracking system, the improve-
ment might decrease (i.e. less time to exploit the new technology), but
it must be noted that similar level of improvements will be brought in
each one of the HH searches with at least one H → bb̄ decay, making
4D tracking a very powerful way to enhance the reach of HH searches.

The Di-Higgs application is one of the main physics cases where the
timing could improve and push the cutting-edge physics. Nevertheless,
many other physics analyses would benefit from the timing information
in the tracking system. Some examples are reported in [1], focusing on
Long Lived Particle searches or VBF Higgs production with H → inv.
decay mode.

6.1.5 Future perspectives
This timing detector investigation with the ATLAS detector is a
preliminary study of the feasibility of such a detector.

Track timing information can play a pivotal role not only at the
LHC but also in future collider experiments where new challenges
will arise from different physical and technological conditions. For
this reason perspectives studies are being conducting with detector-
agnostic simulations. The A Common Tracking Software (ACTS)
[159] tool interfaced with the Open Data Detector (ODD) [160] is
used to simulate events.

Within this context, two main projects are being conducted. Al-
though a detailed description is beyond the scope of this dissertation,
a brief overview of the two primary studies using the ACTS toolkit is
provided here.
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The first project involves a comprehensive implementation of 4-
Dimensional vertexing, encompassing both finding and fitting tech-
niques. These methods are generally outlined in Section 2.3.1.

The second project investigates the performance of Flavour Tagging
on a general detector using the DIPS algorithm, described in Section
3.1.1
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7 | ML applications to
Global Particle Flow

Artificial Intelligence (AI) emerged in the 1950s with the goal of
emulating human learning using machines. In Machine Learning
(ML), human-provided input data and predicted answers are used to
train algorithms to learn rules. Ideally, an ML algorithm identifies a
transformation that converts data into a more useful representation
for a given task. Over the years, advancements in computing power
have enabled the development of more complex ML structures, known
as Neural Networks [161, 162]. ML algorithms are particularly well-
suited for tasks in High Energy Physics experiments, where they can
efficiently exploit multidimensional correlations between various input
variables. This has been demonstrated in analyses where Boosted
Decision Trees are used to distinguish between signal and background
processes.

In this chapter, we explore another application of ML: detector re-
construction. These algorithms can be used to process low-level detec-
tor data, such as calorimeter cells or inner detector tracks, to generate
higher-level particle information. We present a Graph Neural Net-
work (GNN)-based algorithm for simultaneous particle reconstruction
(Global Particle Flow) in dense environments. Section 7.1 introduces
a Configurable Calorimeter simulation to generate the events used
in subsequent sections for Global Particle Flow. In Section 7.2, we
compare a Hyperedge GNN architecture to other GNN architectures,
highlighting the potential impact of these new algorithms. These
studies are broadly applicable and demonstrate a strong use case for
current and future collider experiments.
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7.1 COCOA: A COnfigurable
CalOrimeter simulation for AI

In this Section A configurable calorimeter simulation for AI (CoCoA)
applications is presented [3], based on the Geant4 toolkit and inter-
faced with the Pythia event generator. This open-source project is
aimed to support the development of machine learning algorithms in
high energy physics that rely on realistic particle shower descriptions,
such as reconstruction, fast simulation, and low-level analysis. Speci-
fications such as the granularity and material of its nearly hermetic
geometry are user-configurable. The tool is supplemented with simple
event processing including topological clustering, jet algorithms, and
a nearest-neighbors graph construction. Formatting is also provided
to visualise events using the Phoenix event display software.

Algorithms incorporating machine learning (ML) methods are a
new paradigm in reconstruction, calibration, identification, simulation
and analysis of High Energy Physics (HEP) experimental data. In
recent years, various ML architectures have been deployed to opti-
mize low-level tasks such as clustering, reconstruction, fast simulation,
pileup suppression and object identification [163, 164]. For example,
ML-based fast calorimeter simulation relies on accurate target data
to train a fast conditional generative model p(D|T ), where T denotes
the true set of stable final state particles produced in the collision
and D is the set of resulting detector hits. In particle reconstruc-
tion, on the other hand, the inverse process D → T is modelled by
predicting a set of particles R(D) to approximate T as accurately
as possible. The development of such algorithms requires a realistic,
highly-granular simulation of particle detector response going beyond
parameterized detector models frequently used in studies of parti-
cle physics phenomenology such as DELPHES [165]. In particular
due to the complexity of particle showers in calorimeters, a detailed,
microscopic simulation of interactions between particles and detec-
tor material is needed in order to develop low-level ML algorithms
exploiting such features.

Recent research efforts to study calorimeter shower properties using
ML [166, 167, 2] made use of the Geant4 [168] simulation toolkit
for simple detector geometries. However, an open source detector
simulation with a realistic cylindrical geometry and hermetic coverage
is yet to be adopted by the HEP community for ML studies and
beyond.
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Aiming to bridge this gap, the COnfigurable Calorimeter simula-
tiOn for Ai (CoCoA) was developed [169], which uses Geant4 [168] to
implement detailed shower simulation for particles in a full-coverage,
highly-segmented sensitive volume comparable to that of multipur-
pose detectors at the LHC. CoCoA offers research teams a common,
curated benchmark tool for the benefits of straightforward detector
configuration and comparability of research results. The program
source code [170] is linked together with a technical documentation
on the project website1.

The emphasis of this software package is on realistic calorimeter
simulation. No realistic digitization and electronic readouts are im-
plemented and energy loss due to these processes are neglected in
this package. For the same reason, simplified tracking is included in
CoCoA to model particle deflection in a magnetic field and energy
depositions upstream of the calorimeter. A sophisticated open source
toolkit suitable for tracking studies based on silicon hits is provided
by [171].

Figure 7.1. Visualization of a photon (dashed line) with energy 50 GeV
converting to two electrons (green lines) producing three distinct clusters
in the CoCoA central electromagnetic calorimeter. The cluster shown
in red contains an additional cell in the first layer of the hadronic
calorimeter due to a noise fluctuation. Cells are shown with an opacity
proportional to energy over noise ratio divided by 4.6, the threshold for
topoclustering seeds.

Usability for ML-based studies is a core motivation in the design of
the CoCoA code. Datasets generated by CoCoA have featured in two
recent applications of ML to particle reconstruction and fast simulation
[172, 4]. To this end, the main parameters of the calorimeters are
largely configurable, including their material, granularity, depth and
the amount of readout noise. Similarly the inclusion of material
interactions in the tracking region is optional.

1https://cocoa-hep.readthedocs.io/en/latest/index.html

https://cocoa-hep.readthedocs.io/en/latest/index.html
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For comparisons with benchmark reconstruction approaches, out-
put data from CoCoA are conveniently interfaced to standard topo-
logical clustering and jet clustering algorithms. The output includes
a record of energy contributions to each cell by truth particles for
supervising cell-level predictions and edge lists for connecting cells and
tracks in a graph to support geometric deep learning models. Finally,
the default geometry has been formatted for rendering in the Phoenix
event display software [173], along with a script to export event output
files for visualization. An example is shown in Figure 7.1.

The sophisticated CoCoA calorimeter simulation and its data post-
processing provides users easy access to datasets suitable to train
models for current collider experiments or for more general algorithms
development and benchmarking. In addition, the open-source nature
of the package and its visualization support have the potential for use
cases in education and science communication in HEP.

7.1.1 Detector Design
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Figure 7.2. Positive quadrant scheme of CoCoA. Right-handed orthogonal
coordinate system x-y-z, where z-axis is the principal axis of the detector
and a constant z refers to a circular cross-section of the detector. (a) yz-
projection showing the CoCoA ITS, subsequent iron layers, calorimeter
system in the barrel and end-cap region, overlaid on lines marking
constant pseudorapidity η. (b) xy-projection shows the barrel region of
the same subsystems at z = 0.

The major components of CoCoA are an inner tracking system
(ITS) surrounded by an electromagnetic calorimeter (ECAL) and
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Figure 7.3. (left) Cumulative amounts of material, in units of radiation
length X0 and as a function of η, in front of and within the electromag-
netic calorimeter system. (right) Cumulative amounts of material, in
units of interaction length λint and as a function of η, in front of and
within the hadronic calorimeter system.

finally a hadronic calorimeter (HCAL). These subsystems are arranged
concentrically and are symmetric in azimuthal angle −π < ϕ ≤ π as
shown in Figure 7.2. No muon spectrometer is considered in this design
and muons are reconstructed as tracks with the ITS. The goal of this
design is to accurately model the relevant outputs of a multipurpose
detector at the LHC while being simplified by the exclusion of detailed
components like readout electronics, cabling, and support structures.
The detector design is largely configurable, with its default parameter
values chosen to achieve response characteristics comparable to that
of the current ATLAS detector. Following is a detailed description of
each subsystem.

The ITS consists of hollow cylinders in the central detector part
and disks at both of its ends, each of which are centered around the
beamline. Each of these components consists of a silicon layer of
150 µm thickness in case of the disks and the five innermost cylinders
and 320 µm in case of the 4 outermost cylinders. Each silicon layer is
accompanied by an iron layer of 350 µm thickness in order to provide
a simulation for support material. The ITS only serves the purpose
of simulating the interaction of particles with matter upstream of
the calorimeter. The resulting detector hits are not used for tracking
purposes. The default value of the magnetic flux density present in
the ITS amounts to 3.8 T. Finally, two layers of iron totalling 4.4 cm
in depth are added to represent support or cryostat material in front
of the calorimeter.
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The inner surface of the calorimeter system is a cylinder with a
radius of 150 cm and a length of 6387.8 mm immediately enclosing the
iron layers and the ITS. The calorimeters are separated into a central
barrel region covering the pseudorapidity range |η| < 1.5 and two
end-cap regions extending the coverage up to η = 3 by default. Both
the ECAL and the HCAL are divided into 3 concentric layers, with
each layer being further segmented into cells with edges of constant η
and ϕ.

Layer Depth Segmentation
(η × ϕ)

Std. dev. noise per cell
per event [MeV]

ECAL 1 4X0 256 × 256 13
ECAL 2 16X0 256 × 256 34
ECAL 3 2X0 128 × 128 41
HCAL 1 1.5λint 64 × 64 75
HCAL 2 4.1λint 64 × 64 50
HCAL 3 1.8λint 32 × 32 25

Table 7.1. Calorimeter default design values regarding layer depths in
terms of radiation lengths X0 (ECAL) and hadronic interaction lengths
λint (HCAL), granularity and energy noise levels.

The cell granularity for each layer is configurable by setting the
number of equal divisions in η and (separately) ϕ. The depth of the
cells in every layer is designed to be nearly constant in η to ensure
that the fraction of a particle’s energy deposited in each layer does
not depend on the incident angle. This design, leading to layer shapes
of the form 1 / cosh η, provides a uniform calorimeter thickness as a
function of pseudo-rapidity. CoCoA will thus have a more uniform
response than a pure circular cylindrical shape.

The CoCoA calorimeter material is a compound using an equivalent
molecule approximation, mixing an absorber and an active material
with a constant proportion. Both the materials and their proportion
can be configured for the ECAL and the HCAL individually. By
default, the ECAL is made of a mixture of lead and liquid argon,
corresponding to the ATLAS ECAL materials. The volume proportion
amounts to 1 : 3.83, resulting in a radiation length of X0 = 2.5
cm. The ECAL and HCAL are separated by an iron layer with a
default thickness of 80 mm. The HCAL is made of a mixture of iron
and polyvinyl toluene plastic material with a volume proportion of
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1.1 : 1.0, resulting in a nuclear interaction length of λint = 26.6 cm.
The integrated radiation and interaction length measured from the
interaction point (IP) at the center to the end of the HCAL is shown
as a function of the pseudorapidity in Fig 7.3.

While this calorimeter design represents a homogeneous detector,
a spread in the resolution of reconstructed energies in accordance with
a sampling calorimeter design is emulated by means of configurable
sampling fraction parameters for the ECAL and the HCAL individually.
In lieu of a complete simulation of active and passive material, the
sampling is emulated by accounting only for a fraction of the Geant4
energy deposition steps for all particles in the calorimeter showers.
The steps to be removed are chosen randomly. The sum of the total
deposited energy by those steps is computed and the total energy
released is estimated by inverse scaling of the total deposited energy
by the corresponding fraction.

Noise, as for example from electronics, is simulated by the addi-
tion of random amounts of energy following a Gaussian distribution
centered around zero. The noise is independently added to each
cell. Negative energies are allowed as is typically the case as a result
from the subtraction of pedestals. If such downward fluctuations are
significant in size, those negative energy cells can be clustered into
topoclusters. The implementation of pile-up collision events from ad-
ditional proton interactions is left for future development. The default
choices of materials and smearing parameters provided in Tab. 7.1
are chosen in order to approximate single-particle responses of the
ATLAS calorimeter system [174, 175].

7.1.2 Data Processing
Every event is processed according to the workflow presented in Fig-
ure 7.4. First, primary particles are generated at the IP by means
of the Pythia8 Monte Carlo event generator [176]. A broad range
of primary physics processes is available to the user, ranging from
the generation of single particles as well as single jets up to more
complicated final states with large multiplicities of jets and leptons in
the final state.

The set of final state, stable particles is stored in the output file
and passed on to the detector simulation described in the previous
Section, where the propagation of these particles and their interactions
with the detector material is simulated in Geant4 [168]. The model
of hadronic interactions is chosen in accordance with the ATLAS and
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Figure 7.4. CoCoA workflow. Primary particles generated with the Pythia
library are introduced to CoCoA. Their interactions with the detector
material is simulated by means of the Geant4 toolkit. Calorimeter
cells identified by a topological clustering algorithm are stored in the
output ROOT file together with true particles, emulated tracks, and
particle trajectories extrapolated from the IP through the calorimeter
according to the equations of motion. A nearest-neighbors-based graph
is constructed and stored via edge lists connecting source and destination
nodes amongst the output cells and tracks. Jets made of true particles
as well as topoclusters are stored in the output file as well. Events in
the output file can be parsed for visualization in Phoenix.

CMS detector simulations. The sum of the energies deposited in each
calorimeter cell is stored. Electronic noise is simulated by the addition
of random energy offsets to each cell for which Tab. 7.1 provides the
default values of standard deviation for each layer.

For the purpose of particle reconstruction, the origin of energy
deposits in each cell is stored via a list of parent particle indices which
contributed energy into the cell and a list of weights recording their
relative contribution to the total cell energy. Cells which received their
dominant contribution from electronic noise are assigned an index of
-1.

In order to limit the number of calorimeter cells stored in the
output file to a reasonable level, low-energy cells dominated by noise
contributions are suppressed using a topological clustering algorithm
[60]. Only cells contained in the resulting “topoclusters” are stored
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Figure 7.5. Number (a) and average energy (b) of reconstructed clusters
in CoCoA for events with a single charged pion, electron, or photon shot
at η = 0. Results are also shown for clusters reconstructed in empty
events due to electronic noise. The default topological calorimeter cell
clustering settings are used.

in the output file. Topoclusters are seeded by single cells which are
required to contain a deposited energy well above the noise level, where
the threshold of this signal-to-noise ratio (SNR) is 4.6 for CoCoA by
default, while a value of 4.0 is used for the ATLAS experiment. This
difference is chosen in order to achieve a better agreement between
ATLAS and CoCoA in terms of the topocluster multiplicity distribu-
tion for single charged and neutral pions as well as pure noise events
(Figure 7.5). Starting with the seeding cells, all neighbouring cells are
added to the cluster if their SNR is above another threshold, where
the default value is set to 2. Finally, all further neighbouring cells
above a third threshold are added, which by default is set to 0. Cells
with negative energy can be included, based on their absolute value,
or excluded entirely (default configuration). Topocluster candidates
containing multiple local maxima in ECAL cell energy each surpassing
400 MeV are split into separate topoclusters.

In order to support particle reconstruction studies which include
high energy primary photons, electron-positron pairs from photon
conversions taking place in the ITS upstream its two outermost iron
layers are stored in the CoCoA output file as well. Tracks emanating
from photon conversions and also primary electron tracks are used to
construct groups of topoclusters denoted as superclusters associated
with electron and photon showers. The superclustering procedure in
CoCoA follows the criteria described in [177], designed to improve
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electron energy reconstruction by incorporating nearby energy deposits
from bremsstrahlung. It also includes criteria for grouping multiple
clusters that are related by a pair of nearby tracks to a photon
conversion vertex, thus improving reconstructed photon energy. In
the photon conversion shown in Figure 7.1, for example, the CoCoA
output contains a supercluster which combines the three topoclusters
shown. Due to the simplified tracking, the criteria on number of
track hits are not applied. The CoCoA implementation does not focus
on electron and photon identification; rather, superclusters are only
formed using tracks linked to primary or conversion electrons.

ECAL layer HCAL layer
1 2 3 1 2 3

k (c-c) inter-layer 1 2 2 2 2 1
k (c-c) same layer 8 8 8 6 6 6

k (t-c) 4 4 4 3 3 3
∆Rmax (c-c) 0.05 0.07 0.14 0.30 0.30 0.60
∆Rmax (t-c) 0.15 0.15 0.40 1.10 1.10 2.00

Table 7.2. Default k (number of nearest-neighbors) and maximum ∆R
separation used to define edges in the fixed graph creation. Edges
between cells are denoted “c-c” while edges between tracks and cells are
denoted “t-c”.

While the event simulation based on the Geant4 [168] toolkit
determines particle trajectories according to their equations of motion
and their interactions with detector material, CoCoA implements a
particle tracking based only on the equations of motion for the benefit
of downstream tasks. These tracks are extrapolated to the entry
surface as well as each layer of the calorimeter and the resulting η and
ϕ coordinates are stored in the output file.

For user convenience, an interface to the FastJet [178] library is pro-
vided that clusters primary particles as well as topological calorimeter
cell clusters into jets. The user can choose the specific jet clustering
algorithm accordingly, with the anti-kT algorithm set as default.

For each event in the output data a fixed heterogeneous graph
containing cells and tracks is provided by means of two lists storing
the indices of source and destination nodes for each edge. The edges
are created based on k nearest neighbors in angular distance with k
being user-configurable per calorimeter layer and edge type. Three
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edge types are defined: track-to-cell, cell-to-cell inter-layer, and cell-
to-cell across neighboring calorimeter layers (tracks are not directly
connected). The user can configure for each of these types both how
many edges to construct in a ∆R-ordered neighborhood and also with
a maximum ∆R (where ∆R2 = ∆η2 +∆ϕ2). The default values are
given in Tab. 7.2.

The final output file produced by CoCoA stores an array of features
for each event which are associated with the following sets: cells that
participated in topoclusters, tracks, topoclusters, truth particles and
decay record, graph edges, and jets. The output file format is ROOT
but can be converted to hdf5 format using a script provided in the
repository.
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Figure 7.6. Energy deposited by electrons, photons and charged pions for
each calorimeter layer. The electron and photon showers are limited to
the electromagnetic calorimeter (layers 1 to 3) while the charged pion
showers reach deep into the hadronic calorimeter (layers 4 to 6)

.

7.1.3 Detector Performance
In the following, the performance of CoCoA is investigated by means
of single particles which are generated at the IP. For each particle type
and momentum under investigation, the event generation is repeated
in order to gather a statistically significant amount of events.

The correct reconstruction of particle energies is demonstrated in
Figure 7.5, which compares the distributions of multiplicities (Fig-
ure 7.5(a)) and energy sums (Figure 7.5(b)) of topoclusters for charged
pions, photons, electrons and events containing only noise contribu-
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tions, denoted as empty events. In most of the empty events, the cell
energies do not pass the noise threshold of the clustering algorithm.
For those events in which this threshold is passed, the average clus-
ter energy sum amounts to 36 MeV in line with the low noise levels
provided in Tab. 7.1. The photons and electrons mostly result in one
cluster, while their energy is reconstructed with only a small variation.
In comparison, the charged pion events result in larger variations of
the cluster multiplicity and energy sum distributions due to the higher
degree of variations in deposited energies for the hadronic showers.
The average cluster energy sum is below the initial charged pion energy
due to the involved nuclear interactions of the shower particles with
the detector material, which are not counted as detectable energy. A
hadronic calibration procedure is not performed within CoCoA but
left for downstream tasks.
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Figure 7.7. Reconstruction energies for central electrons (a), photons
(b) and charged pions (c). The average reconstructed energies follow
the initial particle energies while the energy resolution improves as the
initial particle energy increases.

Patterns of energy depositions across the calorimeter are demon-
strated in Figure 7.6 in terms of fractions of deposited energy per
calorimeter layer for electrons, photons and charged pions. As a con-
sequence of the material budget presented above in Figure 7.3, the
electrons and photons deposit most of their energy in the electromag-
netic calorimeter, in particular in the second calorimeter layer, while
the charged pions reach the hadronic calorimeter layers where they
deposit most of their energy, in line with energy deposition patterns
at collider-detector experiments.

Figure 7.7 shows distributions of the reconstructed energies for
central electrons, photons and charged pions with different initial
energies. The energy resolution provided by the calorimeter response
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improves as the initial particle energy increases. It is larger for charged
pions compared to electrons and photons, as expected because of the
existence of large sampling fluctuations for hadronic showers compared
to electromagnetic showers.
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Figure 7.8. Reconstructed energies of electrons with an energy of 30 GeV
for different directions η. As the initial electron momentum is directed
closer to the beamline, the difference between the reconstructed energy
and the intial particle energy increases due to the iron traversed by the
electron upstream the calorimeter (dead material).

Figure 7.8 shows the reconstructed energies of a single electron
emitted at different initial η. The average reconstructed energy is
always lower than the initial particle energies, with the difference
growing with the particle η. This is due to the energy depositions in
the iron contained in the ITS upstream the calorimeter, in accordance
with the material map presented in Figure 7.3.

Figure 7.9 quantifies the energy resolution as a function of true
particle energy, comparing electrons with charged pions. For each
particle type, the relative energy resolution depending on the particle
energy is fitted using least-squares to the following common form of
the resolution function:

σ(Ereco)
Etruth

= a√
Etruth

⊕ b

Etruth
⊕ c (7.1)

where the best-fit parameters are provided within the figure. Here a,
b and c refers to the stochastic, electronic noise and constant terms,
respectively. The larger fitted coefficient of the sampling term for
hadronic shower compared to electromagnetic is related to the larger
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Figure 7.9. The relative energy resolution σ(Ereco)/Etruth is plotted as
a function of Etruth for eight different truth energy values and fitted
with the relative-resolution function, for photon and pion, respectively.
The average sampling fraction f for ECAL and HCAL are shown in the
legend.

value of sampling fraction f configured for the ECAL and HCAL
separately (0.07 and 0.025, respectively).

The values of the parameters, appearing in Equation 7.1, are
individually evaluated for photon as a = ( 0.16±0.01 ) GeV, b = ( 0.30±
0.02 )

√
GeV and c = 0.006 ± 0.003. The same numbers for charged

pions are found to be a = ( 0.50 ± 0.12 ) GeV, b = ( 0.32 ± 0.06 )
√

GeV
and c = 0.086 ± 0.002. The noise term is compatible with the input
noise values, the sampling term is as expected from the sampling
emulation.

The performance of the simulated detector has been so far probed
using single particles. To illustrate the detector performance in a
more realistic event environment, proton proton collision produc-
ing an on-shell W boson, decaying to an electron and neutrino, i.e.
pp → W → e+ ν were simulated. The electron is reconstructed using
the superclustering algorithm described in Sec. 7.1.2, and its energy
is calibrated in order to compensate for the loss due to scattering in
the ITS and iron layers upstream the ECAL. The missing transverse
momentum (MET) is calculated from the rescaled clusters, as the
opposite the vector sum over visible transverse momenta in the whole
event. Finally the transverse W mass, mW

T , is computed from the re-
constructed W four-momentum and compared with the corresponding
truth level distribution in Figure 7.10.
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Figure 7.10. The transverse W mass mW
T distribution is plotted for

leptonically decaying W events. The black curve shows the truth
distribution whereas the red curve is obtained from the vector sum
of reconstructed lepton momentum and the MET in the event. The
peak location of the two distributions are well aligned, demonstrating
that the event-level reconstructed MET is trustworthy within the CoCoA
framework.

7.1.4 Event Display

Visualization of detector geometry and examples of hits for individual
events is important for communicating results, and interpreting down-
stream tasks such as reconstruction and event selection. The default
geometry of the CoCoA detector was ported into the open-source
framework Phoenix, chosen for its versatility and user support. An
example event display is shown in Figure 7.11. The growing interest
in ML approaches to low-level analysis tasks such as event or jet
reconstruction in a realistic detector underscores the importance of
leveraging the rich feature space of calorimeter showers for improving
these tasks. Providing an open, configurable, and realistic calorimeter
simulation, CoCoA will facilitate the development of such algorithms
and ultimately expand the physics reach of current and next-generation
collider experiments. The thorough treatment of particle interactions
in Geant4 and the full-coverage, highly-granular design of CoCoA
calorimeter system enable an accurate representation of the complex
data environment present in the ATLAS and CMS experiments at
the LHC. To quantify this resemblance, an investigation of the single-
particle response characteristics, in terms of topological clustering
performance and energy resolution for electromagnetic and hadronic
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(a)

(b)

Figure 7.11. Phoenix event displays configured using the CoCoA detector
geometry, showing the charged particle tracks and calorimeter hits
generated by (a) pp → tt and (b) pp → W → eν events simulated with
Pythia8. In (a), a cutaway of the CoCoA calorimeter volumes is shown
along with the clustered cells, while in (b) only the cells are shown. The
electron from the W decay in (b) is indicated by a green line. Both
displays are shown in perspective view, such that nearer objects appear
larger. Different shades of green and blue represent the different layers
of ECAL and HCAL, respectively, while cell opacity is determined by
cell signal-to-noise ratio.
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showers, has been carried out. Finally, additional aides including data
post-processing, event visualization, and documentation for CoCoA
has been provided to further encourage use.

In future, it is foreseen the inclusion of pileup, direct interface to
MadGraph [179] output file and include python binding for CoCoA.

7.2 Global Particle Flow with GNNs
The task of reconstructing particles from low-level detector response
data to predict the set of final state particles in collision events repre-
sents a set-to-set prediction task requiring the use of multiple features
and their correlations in the input data. Three separate set-to-set neu-
ral network architectures are presented aiming to reconstruct particles
in events containing a single jet in a fully-simulated calorimeter [4].
Performance is evaluated in terms of particle reconstruction quality,
properties regression, and jet-level metrics. The results demonstrate
that such a high-dimensional end-to-end approach succeeds in surpass-
ing basic parametric approaches in disentangling individual neutral
particles inside of jets and optimizing the use of complementary de-
tector information.

Testing theories in high energy physics rely on the ability to
reconstruct high energy particle collision events using information
recorded by particle detectors. General-purpose detectors enable
this primarily through two sources of information: charged particle
trajectories (tracks) measured in an inner tracking region and energy
deposited by particle showers in a surrounding array of calorimeter
cells.

Currently, experiments at the CERN Large Hadron Collider (LHC)
employ parameterized particle-flow algorithms, which combine track
and calorimeter information in a complementary way while avoiding
double counting.

The performance of particle-flow algorithms is limited to an extent
by detector design specifications, such as the precision and size of
the inner tracking system, the magnetic field strength in the tracking
volume, the granularity of the calorimeters, and their energy resolution.
However, a number of intrinsic factors complicate the task of particle
reconstruction in the LHC environment: the busy and often collimated
signatures resulting from proton collisions, the presence of multiple
simultaneous scattering events (pileup), and finally, the extensive
and irregular array of sensitive elements required for granularity and
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angular coverage.

Figure 7.12. A depiction of a single-jet event from the test dataset in
both the COCOA calorimeter layers (left) and as an input graph in
η − ϕ space (right). On the left, the actual geometry of the calorimeter
cells is shown, while on the right, they are represented by spheres with
sizes proportional to their energy divided by noise threshold (up to a
maximum value). Lines represent tracks and their projected locations
in η and ϕ in each calorimeter layer. Connections between calorimeter
cells are the edges formed during graph construction (inter-layer edges
and track-cell edges are not shown). The markers at the bottom right
indicate the η − ϕ coordinates of the truth particles.

There are two main approaches to particle-flow algorithms. The
approach used by the ATLAS collaboration [180], described in Section
2.3.2, involves subtracting the expected shower profile for each track in
an event from the calorimeter deposits to infer the energy contributed
by nearby neutral particles. The CMS collaboration, on the other hand,
employs a global particle-flow algorithm where final state particles of
different types are reconstructed simultaneously [181]. Global particle-
flow algorithms allow a high physics analysis flexibility and eliminate
the need for overlap-removal algorithms while better exploiting the
strengths of each sub-detector system.

Here a different approach the global particle-flow paradigm is
shown using machine learning (ML) models operating on graph data.
As in other applications to particle physics, ML brings the advantage
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of replacing parameterized cuts (for example, in energy subtraction
schemes) with fully differentiable decision boundaries in the full space
of relevant features in data. The expressiveness of ML models also
opens new possibilities, such as reconstructing individual neutral
particles inside of jets. Similarly, the choice to represent input data
as graphs is motivated by several advantages: graphs more naturally
capture the spatial correlations encoded in irregular detector geometry
and also are well-suited for the sparsity and variable cardinality of the
input set. Graph neural networks (GNN) have therefore emerged as
an architecture of choice in recent particle reconstruction models, as
they have in other particle physics tasks [182].

In a collision event, the true set of particles T upstream to the
detector sensitive volume gives rise to a set of detector-level hits D. So
the input set comprising the detector record is sampled from p(D|T ).
Then global particle-flow reconstruction is the set-to-set task where
the input set of detector-level hits D is transformed into a typically
much smaller output set R comprising NR predicted particles. The
predictions of a successful reconstruction algorithm R(D) will correctly
model the cardinality NT of T and the properties (class, momentum,
and angular coordinates) of its members. Several ML approaches have
been proposed in the literature to predict R(D).

In [183] the object condensation (OC) approach was proposed,
which clusters nodes or pixels in latent space to form candidate ob-
jects, in this case, particles. Recently, OC has been used to predict
clusters in CMS data [184, 185], where the authors focused on re-
construction efficiency and energy regression of showers from single
particles embedded in pileup. Here an OC with modifications is pre-
sented as explained in Section 7.2.2 for the purpose of establishing a
performance baseline for an ML-based particle reconstruction.

The reduction in size from input to output set is handled in the
MLPF [186] approach by assigning input nodes to particle classes in
the output set or else to a dedicated neglect class. This approach was
also recently successfully tested using CMS data [187, 188], where the
model predictions were trained to match the output candidates from a
standard particle-flow algorithm. For predicting true particles, MLPF
is limited to cases where one or more clusters can be associated to
each particle. It would therefore be required to define a fractional
target definition in order to efficiently reconstruct particles that do
not contribute a dominant fraction of energy in any single cluster (for
example, a significant percentage of low-pT photons).

Two new GNN-based algorithms are here proposed comparing their
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performance alongside a modified OC implementation as a baseline
and a parameterized particle flow algorithm. Rather than full proton-
proton collision events, the focus is on events comprising a single
jet, which represent the typical domain over which inter-particle
correlations are expected to play a significant role in reconstruction.
The dataset incorporates full Geant4 [189] treatment of particle
showers in a nearly-hermetic calorimeter simulation [3]. An example of
a simulated single jet event is shown in Figure 7.12. In the true particle-
flow paradigm, this approach is built around the idea of combining
low-level features from calorimeter showers with the complementary
information provided by tracks.

It is found that a novel application of recurrent hypergraph learn-
ing leads to the most accurate results and preserves a high degree
of interpretability. This is achieved thanks to a physics-inspired ap-
proach which allows the network to exploit the relationships between
properties of the target particles and their energy deposits in the
detector.

7.2.1 Dataset

Detector simulation

Unlike the full detector models used to simulate experiments at the
LHC, publicly-available codes such as Delphes [190] do not model
particle interactions with sufficient complexity to enable training a
network with the full calorimeter signature available at real detectors.
This motivated the development of the Configurable Calorimeter
simulatiOn for AI (COCOA) package [3], described in Section 7.1,
which is used to generate the datasets in this work.

The geometry used is the default described for the COCOA
calorimeter detector. The geometric coverage of the COCOA calorime-
ter is split into a barrel (0.0 < |η| < 1.5) and two identical endcaps
(1.5 < |η| < 3.0) regions. The endcap region is situated in a hermetic
way such that there is no void in the transition region. In depth,
the calorimeter has a total of six concentric layers: the first three
layers comprising an electromagnetic calorimeter (ECAL) and the
next three a hadronic calorimeter (HCAL). The calorimeters have
uniform segmentation in η and ϕ enabling high spatial resolution, as
listed in Tab. 7.1. The geometric depth of the cells is modulated as
1 / cosh η in order to achieve a constant effective interaction depth
with increasing η.
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The inner region of COCOA is immersed in a uniform axial mag-
netic field of 3.8T that extends until a radius of 150 cm, where four 1.1
cm layers of iron immediately precede the ECAL. The ECAL is mod-
eled as a homogeneous calorimeter by mixing lead and liquid argon,
corresponding to ATLAS calorimeter materials, in volume proportion
1.2 : 4.6 leading to a radiation length of X0 = 2.5 cm. For the HCAL,
iron is used as the absorber material, and polyvinyl toluene plastic
material as the scintillating active material. These are mixed with
a volume proportion 1.1 : 1.0, yielding a nuclear interaction length
of λint = 26.6 cm. The simulated energy deposits in each layer are
smeared to reproduce the expected sampling energy resolution. For
the used dataset, the hadronic sampling term is 10%. The effect of
pileup and electronic noise is mimicked using normal distributions
centered at zero with widths varying according to the layer. The
choice of material and smearing parameters is tuned to reproduce the
ATLAS calorimeter system’s single-particle response.

The effect of tracking is emulated by smearing truth charged
particles with a resolution σ(p)

p = a × p with a = 10−5/GeV. The
smearing of the track direction is neglected as it is expected to have a
subdominant effect in the problem of interest.

Charged particles produced from hadrons decaying-in-flight above
a transverse radius R > 75 mm (250 mm) in the barrel (endcap) have
no tracks associated to them. To focus on the reconstruction of parti-
cles as they appear at the calorimeter, the dataset simulates photon
conversions only at the stage of the iron layer prior to the calorimeters,
while material interactions within the tracker are emulated solely by
the track q/p smearing.

Dataset generation

Event generation, followed by parton shower and hadronization is
performed with Pythia8 [176] with a single initial state quark or
gluon particle. The parton initial energy is sampled in the range 10
GeV − 200 GeV, and angular coordinates are distributed uniformly
in the range η ∈ [−2.5, 2.5], ϕ ∈ [−π, π]. Final state particles are
interfaced with Geant4 to simulate their interaction with material,
both showering in the calorimeter and scattering and e.g. photon
conversions in the iron layer preceding it. Additional pileup collisions
were not simulated. The targets of the machine learning algorithms
are final state stable particles with transverse momentum above 1
GeV, which reach the calorimeter.
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In each event, a standard clustering algorithm is used to group
calorimeter cells into “topoclusters” based on their proximity and
deposited energy, following the algorithm described in Ref. [191] with
minor modifications. First, an energy over noise ratio of (E

σ ) > 4.6
is used to identify cluster seeds. For each seed, a two-stage search
is performed in its vicinity to group neighboring cells with nonzero
energy. The first search collects neighboring cells with an energy-to-
noise threshold ratio above 2, and the second search further extends
the clusters with cells that have energy above 0. Finally, the algorithm
applies a set of rules to merge topoclusters sharing seed cells and split
topoclusters formed by particles in close proximity.

A record is kept of contributing particles and their energy contri-
bution to each cell. Electronic noise is simulated in the calorimeter
cells at realistic levels and dominates a fraction of the clustered cell. A
small fraction of topoclusters, therefore, consist purely of cells where
noise was the dominant contributor. One or more such topoclusters
are present in 23% of the training events.

In summary, the data used for ML comprise the following object
collections: cells which belong to a topocluster, all tracks that reached
the calorimeter, and the set of particles which entered the calorimeter.
An identical configuration is used to generate the dataset of 50000
events for training and the independent dataset of 30000 events for
testing. In addition, a “gluon jet” dataset containing 30000 events
is generated by replacing the single incident quark by a gluon with
the same initial energy and angular distributions. The quark and
gluon jet datasets are provided in the link2. The results obtained
with this gluon jet sample are discussed in Section 7.2.3. Figure 7.13
summarizes the number of various entities stored in both the single
jet and gluon jet test datasets.

Fiducial particle definitions for reconstruction targets

In a collision event, not all particles produced can be reconstructed
in the detector. When defining target truth particles it is important
to account only for those that can be detected, i.e. those that are
within the detector acceptance and have sufficiently high transverse
momentum to be reconstructed. Beyond these simple criteria, par-
ticles produced in the collision can later decay or interact with the
detector and convert, radiate or interact and produce other particles.

2Training and test datasets: https://doi.org/10.5281/zenodo.7699681

https://doi.org/10.5281/zenodo.7699681
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Figure 7.13. Composition of the quark and gluon test samples in terms of
the cardinality of different sets of entities contained. The mean value in
each case is written in parentheses while the range and quartiles of the
distributions over events are shown in the box plot.

The specific definition of the particles that are targets for the recon-
struction algorithm, referred to as fiducial particles, is important to
remove ambiguities during training and in assessing the performance
of reconstruction. To qualify as fiducial particles, truth stable particles
must have the following properties:

• pT > 1 GeV

• be produced before the first calorimeter layer

• release a nonzero amount of energy in the calorimeter

Additional consideration would be needed to achieve a more re-
alistic environment where bremsstrahlung, pair production, and the
presence of soft particles in general might result in highly collimated
topologies, above the spatial reconstruction capabilities of the detector.
In this work, the absence of pileup and the absence of material in
the inner tracking region justify the use of the three fiducial criteria
described above.

Input graph

A fixed heterogeneous graph is built out of each event by connect-
ing calorimeter cells and tracks based on their proximity. Each cell
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Figure 7.14. Comparison of the different ways in which the three ML
reconstruction algorithms map the input set of nodes in the form of a
graph to the output set of predicted particles, to be compared with the
set of truth particles. Colors indicate distinct particles and the nodes
for which they are the dominant contributor.

is connected to the k nearest cells in the same calorimeter layer,
where k = 8 in the ECAL and k = 6 in the HCAL. Additionally,
each cell is connected to the single nearest cell in its immediately
adjacent layer(s). A cell in layer l can only receive incoming edges
from other cells if they are separated in ∆R by less than {dc−c

max}l =
{0.05, 0.07, 0.14, 0.30, 0.30, 0.60} for the six calorimeter layers. A set of
indices and weights is assigned per cell listing the true particles which
contributed and their relative contribution to the total cell energy. An
index of -1 is given to energy contributions from noise.

Tracks are likewise connected to cells based on closest separation
in ∆R between the cell and the projected η − ϕ coordinate of the
track in the corresponding calorimeter layer. A track is connected to
a maximum number of k = 4 cells in each ECAL layer and k = 3 cells
in each HCAL layer. For track-cell edges, a larger maximum ∆R is
allowed: {dt−c

max}l = {0.15, 0.15, 0.40, 1.10, 1.10, 2.00}. A depiction of
the graph connectivity for tracks and cells is shown in Fig. 7.12.

Topoclusters are represented in the input graph by a separate set
of nodes with edges connecting each to the set of cells belonging to
the topocluster. The angular coordinates of a topocluster are taken
at its energy barycenter.
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7.2.2 Particle reconstruction algorithms

Parameterized particle-flow algorithm

To compare the performance of the ML algorithms, a traditional
parameterised particle-flow (PPflow) algorithm [180] is implemented,
following the prescription in Section 2.3.2. The algorithm aims at
subtracting the energy deposited in the calorimeter from charged
particles associated to tracks. To this end, shower templates are
derived from single π+ samples and parameterized as a function of the
track pT and the layer where the first nuclear interaction takes place.
The energy subtraction is performed in concentric rings of radius equal
to a single cell pitch built from the extrapolated track position in
each calorimeter layer. The ring’s energy is progressively subtracted
from the topoclusters until the expected total energy determined
in the single π+ template is reached. The remaining energy in the
topoclusters after this subtraction is considered as originating from
neutral particles. The PPflow algorithm does not aim at reconstructing
the single particles composing the jets, but rather it is designed to
estimate the overall neutral energy component for each topocluster.

Figure 7.15. The encoding model used to derive a learned node represen-
tation.

Common description for the ML algorithms

Three ML-based particle reconstruction models for the set-to-set pre-
diction R(D) are described: object condensation (OC) as an existing
ML baseline, transformer set prediction network with slot attention
(TSPN-SA), and a hypergraph architecture (HGPflow). Descriptions
of each algorithm is given in Section 7.2.2. Section 7.2.3 compares their
relative particle-level performance and a comparison to the PPflow
baseline for jet reconstruction.
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There are commonalities to all three algorithms. Predicted parti-
cles in each case are inferred from the node features (skip connections)
concatenated with a node representation vector from a common en-
coder network. Tracks are treated similarly in each case: the charged
particle cardinality in an event is set by the number of tracks, and
the charged particles’ η and ϕ are determined directly from the tracks
without regression. While the OC algorithm takes calorimeter cells
as input nodes, the other two algorithms use topoclusters instead,
to reduce the dimensionality of the input. Fig. 7.14 illustrates the
core differences between the ways each algorithm maps the set of
detector-level nodes D to the set of predicted particles R.

The choice to use calorimeter cells compared to using the coarser
topoclusters can be compared in terms of an injective condition: the
degree to which the energy deposit in a node can be mapped back to a
single parent particle. In the case of cells, although contributions from
more than one parent particle are present in general, the injective
condition is more valid than in the case of topoclusters. Since the
injective condition is an assumption of the OC algorithm (i.e. in the
definition of the entries of Iki in Eq. 7.2), this motivates the choice of
cells as input nodes.

Having contributions to a node from more than one parent parti-
cle can be learned in the TSPN-SA architecture in an unsupervised
way via node-particle attention. The HGPflow architecture, on the
other hand, is fully equipped to disentangle multiple-particle con-
tributions to a node thanks to supervised learning of the incidence
matrix. In both cases, computing gradients for predictions on edges
becomes significantly more expensive for cell-level inputs compared to
topocluster-level inputs, which was the main motivation for choosing
the latter.

The loss associated with predicted particle properties is computed
similarly in each algorithm. Particle class is trained using a categorical
cross-entropy term between the predicted and the target class. A mean
squared error loss term is used to regress continuous properties ηi and
pT,i. The ϕ prediction is trained using 1 − cos

(
ϕpred − ϕtarg).

The total number of trainable parameters in the neural network
blocks of the OC, TSPN-SA, and HGPflow algorithms is compared in
Tab. 7.3 including the node encoding network in each. An estimate
of their computational performance is also shown. For each of the
three algorithms, hyperparameter optimization scans have not been
performed, except on the threshold cuts used during inference for OC
and HGPflow. The code for the algorithms is provided in the github
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Algorithm # Parameters Speed* Memory
Total (Node enc.) [ms/event] [MiB/event]

OC 1.8M (0.2M) 249 1480
TSPN-SA 1.5M (0.2M) 465 1448
HGPflow 1.8M (0.2M) 257 1394

*algorithms not optimized for execution time.

Table 7.3. Comparison of the three particle reconstruction algorithms
in terms of model size and computational resources. The number of
trainable parameters belonging to the node encoding model is shown
alongside the total. The time per event is averaged over 100 single
jet events evaluated sequentially, and the memory is estimated as the
peak memory over the same. Results are obtained on the same GPU
(NVIDIA TITAN RTX).

page3.

Graph nodes encoding

Each event is represented as a heterogeneous graph comprising track,
cell, and topocluster nodes connected by edges as defined in Section
7.2.1. The embedding model described in the following is shared among
the different network architectures. Fig. 7.15 illustrates the network
components of the encoding model: input feature vectors associated
with track and cell nodes are passed through separate networks to
embed them in a common representation space of dimension 100. The
cell features input to the embedding are (energy, position, ϕ, η, layer).
Similarly, the track input features are the track parameters (q/p, θ,
ϕ, d0, z0)4 and the extrapolated η-ϕ coordinates of the track at each
calorimeter layer. The latter are important features because a charged
particle after exiting the magnetic field travels in a straight line which
no longer points back to the origin (assuming no material interactions).
In addition to their hidden representation, these nodes are also given
an additional binary feature which flags whether they originate from
cells or tracks.

3Code for algorithms: https://github.com/nilotpal09/hg-tspn-pflow
4The track impact parameters d0 and z0 measure the distance of closest ap-

proach of the track to the beam line in the transverse and longitudinal directions,
respectively.

https://github.com/nilotpal09/hg-tspn-pflow
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The node encodings are then updated to incorporate the graph
relational structure via 4 successive blocks of message passing along
edges. In each block, a dedicated network is used with the follow-
ing three inputs concatenated: current node representation, sum of
representations from neighboring nodes, and a graph-level global repre-
sentation (the mean of all current node representations). Following the
message passing blocks, topocluster representations are computed by
the energy-weighted mean of the cell representation vectors belonging
to the topocluster.

Figure 7.16. The TSPN-SA architecture. The cardinality of the set
of output particles is predicted from the global representation, while
their properties are predicted from representation vectors resulting from
successive slot attention blocks.

Modified object condensation (OC)

The OC algorithm was proposed in [183] for tasks of segmenting a
set of input nodes into a set of target objects and prediction of their
properties, which it does simultaneously. In the particle reconstruction
case, the input set comprises tracks and calorimeter cells and the
output set of objects are the progenitor particles (“parents”) with
their classes and properties. The set-to-set procedure for OC is shown
in the top row of Fig. 7.14. The implementation follows the original
OC approach with some modifications which are stated in the following
description.

The OC algorithm is based on clustering nodes according to their
parents in a learned few-dimensional space x. The clustering is su-
pervised by adding to the loss potentials defined on this space: a
repulsive potential V̂ (x) ∝ max(2 −∆x, 0) between nodes that belong
to different parent particles, and an attractive one V̆ (x) ∝ ∆x2 for
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nodes having a common parent. The goal is that after training the
resulting clusters of nodes will correspond to the set of parent particles.

However, calculating the sum of N2 pairwise potential terms during
training becomes expensive for problems of even moderate N . This is
addressed by designating a single representative node for each parent
particle, called a condensation point, to impose the potentials on all
other nodes during training. A separate network is trained to predict
a score, β ∈ [0, 1], with a target value of 1 for condensation points and
0 otherwise. An increasing function q(β) = arctanh2β + qmin (with
qmin a hyperparameter) is used in analogy to charge in the loss term
responsible for the clustering potentials:

LV = 1
N

N∑
i=1

q(βi)
K∑

k=1

[
IkiV̆c,k(xi) + (1 − Iki)V̂c,k(xi)

]
(7.2)

where Iki is an N ×K matrix determining whether particle k is the
parent of node i.

For each node i, which is a cell, the properties loss is of the
same form as discussed earlier, where target class is either photon,
neutral hadron or charged particle. Similar to LV above, the particle
property loss is also weighted by q(β) such that nodes with the highest
β receive the most supervision during training. These nodes are
ultimately selected for the output set during inference by requiring
their predicted β > tβ and that they be separated in the clustering
space by ∆x > td, where tβ and td are two threshold hyperparameters.

Compared to the original OC model, this implementation has two
modifications connected to the condensation score β. The condensation
points defined during training do not have a physical meaning and
are learned in an unsupervised way. In this approach, the following
physics-oriented definition is used:

CP T
k =

{
track ∈ k, if k is charged particle

argmaxz(cells ∈ k), if k is neutral particle
(7.3)

where z is the energy over noise threshold ratio for each cell. This
definition removes the need to identify a representative node for
charged particles, assuming a 1-1 mapping to tracks in the event. For
neutral particles, on the other hand, the β prediction is fully supervised
and can be interpreted as the likelihood that a cell has maximal z
in a given shower. Since this cell also serves as an approximate
location of the shower center, the η and ϕ for neutral particles are
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regressed via a learned offset to the cell η-ϕ coordinates. During
inference, condensation points passing the tb and td thresholds are
further required to be classified as either photon or neutral hadron,
whereas cells classified as charged particles are discarded (since this
role is fulfilled by tracks).

A second modification compared to the original OC approach is that
instead of a ∼ (1 − β) regression-type loss computed on condensation
points only, the β prediction is trained using a binary cross-entropy
loss evaluated for all nodes. The reasoning behind a classification-type
loss is to directly penalize the network for predicting large β for nodes
which are not condensation points, i.e. false positives. In an ablation
study, each modification was seen to bring substantial improvement
at essentially no additional model complexity.

Besides the two modifications above, the OC implementation differs
from that of [185] in a few regards. Firstly, they propose an upgrade
to the original OC algorithm where particles are represented in the
clustering space not only by a singular condensation point but by
the β-weighted average over a learned distance scale. Finally, the
proposed model has significantly more parameters (Tab. 7.3), with
GravNet blocks [192] replaced by the node encoding model. The
choice of network block sizes has not been optimized for computational
efficiency and allocates a large proportion of its parameters to the
node prediction networks compared to the message-passing networks.

Transformer Set Prediction Network with Slot Attention

The Transformer Set Prediction Network (TSPN) was initially devel-
oped for the permutation-invariant encoding and decoding of variable-
size sets of feature vectors [193]. The utility of this for set-to-set
problems in particle physics is clear: a model is needed that predicts
an output set of entities (i.e. particles) based on an input set of
different entities (i.e. calorimeter clusters, tracks), where both sets
typically have different cardinality. The model is divided into two
networks: the first for predicting neutral particles and the second for
predicting charged particles (discussed later).

As shown in the top part of Fig. 7.16, the first architecture starts
with a set encoder network whose output is used to predict the number
of neutral particles, Npred This prediction is trained using a categorical
cross-entropy loss over 25 classes, which is an upper bound on the num-
ber of neutral particles per event. The cardinality prediction is used
during test time. During training, the truth cardinality is enumerated
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to form a set of numbers that are passed through embedding layers to
instantiate the initial set of random vectors. These vectors combined
with the global representation vector function as queries for a series
of 3 slot-attention (SA) blocks [194]. The SA blocks are not part of
the original TSPN proposal but were found to be fundamental for
performance in this application (abbreviated TSPN-SA). Each block
contains 3 iterations where the particle hidden representation is up-
dated using the attention-weighted representations of the topoclusters
and tracks in the event. Finally, the updated hidden representations
are inputs to two dedicated neural network blocks aimed at predicting
the kinematics (pT,η,ϕ) and the class of the particle candidates.

The neutral particle properties loss function for the TSPN-SA
algorithm is defined as the sum of a categorical cross-entropy term
for class ti and a mean-squared error (MSE) term for the continuous
properties pi = {ηi, ϕi, pT,i} computed for each particle candidate.
The target particles are defined by matching to the set of predicted
particles using the Hungarian assignment algorithm [195], with the
loss itself being the distance metric.

Figure 7.17. The two stages of learning in the HGPflow algorithm.
The objective of the first stage is to predict the fractional entries in
the energy-weighted incidence matrix, where columns correspond to
hyperedges (i.e. particles). This is done by accumulating the loss over
a sequence of recursive updates. In the second stage, the incidence
matrix is frozen and the network minimizes losses for particle property
predictions, defined relative to proxy quantities.

The second part of the TSPN-SA algorithm, for predicting charged
particles, makes explicit use of the prior knowledge originating from
track-particle objects. Each track is promoted to a particle, such
that the cardinality of the output set is fixed by the number of
tracks. Similar to the neutral architecture, SA blocks are used to
update the hidden representation of the charged particle candidates.
Unlike the model for neutral particles, the only predicted quantity for



250 7. ML applications to Global Particle Flow

charged particles is their transverse momentum in order to improve
over the track resolution. For charged particles, the track index is
used to match with the corresponding target particle. As in the OC
algorithm, the η and ϕ of the charged particles are taken directly from
their representative tracks. Finally, the total loss for the TSPN-SA
algorithm is the sum of neutral particle cardinality loss, the neutral
particle properties loss, and the charged particle pT MSE loss. These
loss terms are minimized simultaneously during training.

HGPflow: particles as hyperedges

A hypergraph is a generalization of a graph where hyperedges can each
connect one, two, or multiple nodes (Fig. 7.17). While connectivity
in a graph of N nodes is described by an N × N adjacency matrix,
a hypergraph containing K hyperedges is described by an incidence
matrix I(N×K). In the context of particle reconstruction, calorimeter
deposits and tracks can be represented as nodes in a hypergraph, while
each particle is represented by a hyperedge connecting the set of nodes
to which it contributed. Here the HGPflow is described: an algorithm
that treats particle reconstruction as a task of learning hyperedges and
their properties. There are two objectives in the training of HGPflow:

1. predict the incidence matrix defining the hyperedges

2. predict the hyperedge (i.e. particle) properties

The first objective is similar to the task of separating overlapping
charged and neutral showers which was the focus of [196]. In this first
stage, the HGPflow network predicts (N + 1) ×K entries comprising a
zero-padded incidence matrix and an additional row of binary values
that indicates whether the particle corresponding to a given column
exists or not. Since the number of particles per event varies, the
number of columns K is set to an upper bound on the number of
particles estimated from the training set (in this case K = 30). To
express a non-injective map from particles to nodes, a target incidence
matrix is defined having fractional rather than binary-valued entries.
The entry relating node i to particle a is the following:

[I]ia = Eia∑
particles b

Eib
= Eia

Ei
(7.4)

where Eia is the amount of energy that particle a contributes to the
total energy Ei of node i. For nodes which are tracks, incidence entries
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are simply 1, whereas for topoclusters they compute the fraction of
the topocluster’s energy that came from a given particle. An example
of target and predicted incidence matrix entries are shown in Fig. 7.18
for one event.

Predicted rows in the incidence matrix are normalized using Soft-
max (i.e. sum over all hyperedges for a given node is 1) before being
compared to the target via Kullback–Leibler divergence loss.

Linc =
∑

a

KLi

(
Itarg

ia ,Softmaxi(Ipred
ia )

)
(7.5)

The predicted entries of the indicator row are passed through a sigmoid
function and compared to the (binary) target entries using a binary
cross entropy loss function. Predicted columns are rearranged using
the Hungarian algorithm to minimize the loss.

The incidence matrix prediction network is trained using the re-
current strategy proposed by [197], described briefly hereafter. The
loss in Eq. 7.5 is calculated for a sequence of 16 refinement blocks
each comprising an updated prediction of the incidence matrix fol-
lowed by an update of node representation vectors V , and hyperedge
representation vectors E. The iteration t → t+ 1 is performed with
the following three successive steps:

It+1
ia = ϕI

(
vt

i , e
t
a, I

t
ia

)
(7.6)

V t+1 = ϕV

({
vt

i , ρE→V (i, t), v0∣∣i = 1 . . . n
})

(7.7)
Et+1 = ϕE

({
et

a, ρV →E(a, t)
∣∣a = 1 . . . k

})
(7.8)

where ρE→V (i, t) =
∑

a I
t+1
ia et

a and ρV →E(a, t) =
∑

i I
t+1
ia vt

i are
aggregations of node (v) and hyperedge (e) representation vectors
weighted by the updated incidence matrix. The updates are performed
at each step using the same networks ϕI , ϕV , and ϕE , where the latter
two networks are DeepSets models [198].

To reduce computational cost, not every iteration of the backward
pass is included in the gradient step. Two sequences of 4 adjacent
iterations are randomly selected out of the 16 for which the incidence
loss is computed and added to the loss from the prediction at the end
of the sequence.

The second training objective of the HGPflow network (Fig. 7.17c)
is to predict particle properties for each hyperedge. The corresponding
loss function contains classification and regression terms evaluated by
matching predicted and target particles using the Hungarian algorithm.
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Particles corresponding to hyperedges where the predicted indicator
was below the threshold are matched to dummy targets and weighted
by zero in the loss. Classification between photons and neutral hadrons
is performed for hyperedges which do not contain a track and are
thus identified as neutral particles. The regression task benefits
from a unique advantage enabled by learning the incidence matrix
(Eq. 7.4): particle kinematics can be approximated as weighted sums
and averages over the input features of the topoclusters contained in
the hyperedge. Proxy quantities (denotedˆ) for energy and angular
coordinates can be computed as:

Êa =
∑

nodes i

EiIia , {η̂a, ϕ̂a} =
∑

nodes i

{ηi, ϕi}Ĩia (7.9)

where a dual incidence matrix Ĩ, normalized over node instead of
particle indices, can be defined:

Ĩia = Eia∑
nodes j

Eja
= Eia

Ea
= Ei · Iia∑

nodes j

(Ej · Ija) (7.10)

The property prediction networks in HGPflow are therefore given the
simpler objective of learning corrections to the approximate values
from Eq. 7.9. The loss terms used for the property predictions follow
the earlier description.

Therefore, neutral particle kinematics (pT, η, ϕ) are regressed by
predicting an offset to the proxy values in Eq. 7.9. For charged
particles, an offset is likewise predicted for the pT measured from
the associated track. The properties loss is computed by matching
predicted and target particles using the Hungarian algorithm [195].

7.2.3 Performance of particle reconstruction in jets
One of the most challenging tasks of global particle flow algorithms
is the reconstruction of particles in dense environments, in particular
jets. In this Section, the performance of the ML reconstruction
algorithms will be assessed by quantifying the similarity between the
set of predicted and set of target particles. The following four types
of metrics are meant to evaluate the cardinality, class, and properties
predictions:

• Efficiency and fake rate
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Figure 7.18. Schematic representation of the truth and predicted incidence
matrix in HGPflow for one event. The left part of the diagram shows
the three truth particles in the event. One of them has a track (Tr)
associated to it. The three particles deposit their energy into four
topoclusters (TC). The links represent the fractional energy originated
by a given particle in a given topocluster or track. The right part of
the diagram shows the predicted values of the incidence matrix for each
reconstructed particle.

• Classification purity

• Particle angular and momentum resolution

• Jet-level quantities

The efficiency and fake rate are defined as follows:

ϵ ≡ N(matched pred)
N(targ) , f ≡ N(unmatched pred)

N(pred) (7.11)

The quality of the regression tasks is evaluated from distributions
of their residuals, defined as (ytarg − ypred)/ytarg for particle property
y ∈ {pT, η, ϕ}.

Particle matching

Predicted and target particles are matched using the Hungarian algo-
rithm to find the pairings which minimize the distance between their
properties, defined by the following metric:

dmatch =
√
cpT

(∆pT/ptruth
T )2 + c∆R∆R2 (7.12)

where∆ denotes the difference between a predicted and target property,
and ∆R2 = ∆η2 +∆ϕ2. Matching is performed separately for neutral
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particles and charged particles since the latter are distinguished by
the presence of a track. The coefficients cpT and c∆R are set to
1 and 5 for neutral particles while for charged, matching is based
only on ∆R (i.e. cpT = 0). Prioritizing spatial matching helps
decouple reconstruction efficiency from classification accuracy, which
in particular will dominate at low-pT because of the similarity of
photon and neutral hadron signatures.

In each event, when the cardinality of the predicted set of particles
is larger than that of the target, the non-matched predictions are
labeled as “fake” particles. Conversely, inefficiency arises when not
enough neutral or charged particles were predicted in order to match
every target.

Charged particle performance

Figure 7.19. Resolution of charged particle-flow candidates and tracks as
a function of the associated particle transverse momentum. At high pT
the particle-flow candidates show improved resolutions over the tracks.

Charged particles include electrons, muons, and charged hadrons.
In jets charged pions produced during hadronization account for
around 90% of all charged particles. Leptons such as electrons and
muons are present in less than 3% of the jets. Electrons are produced
from photon conversions and hadrons decaying in flight while muons
are mostly produced by the latter mechanism. Given the large class
imbalance and the fact that no dedicated studies have been performed
to improve the classification of electrons inside jets, the three classes
are grouped together and characterized as a single class of charged
particles.



7.2 Global Particle Flow with GNNs 255

Tracking efficiency presents an upper bound on the efficiency of
charged particle reconstruction (see Section 7.2.1). Since fake tracks
are not emulated in the data, charged particle fake rates are neglected
in this study. In any case, the rate of fake tracks at 1 GeV is typically
at the percent level for the ATLAS and CMS experiments, which is
expected to have a small impact.

In cases where the track belonging to a charged particle is not
reconstructed, the target particle is relabelled to avoid confusing
the network during training. Charged hadrons without a track are
relabelled as neutral hadrons, and electrons without a track as photons.
Photon pairs from neutral pion decays prior to the calorimeter are
treated as two distinct target particles.

A key characteristic of charged particle reconstruction is the resolu-
tion of pT with respect to the true value. It is well known that at low
transverse momentum tracks provide the best momentum estimate
over the calorimeter resolutions. An opposite trend appears at high
energies where the calorimeter systems provide the most accurate en-
ergy measurement. Fig. 7.19 shows the resolutions of charged particles
reconstructed with the three ML approaches and compared to the
track resolutions for charged particles with pT > 15 GeV. Below this
value, the particle pT regression is replaced with simply the track pT
since an improvement is not expected. An increasing improvement
at high pT is observed for all the ML algorithms demonstrating that
indeed the complementarity between the calorimeter and tracking
measurements has been learned during training.

Photon and neutral hadron performance

The presence of photons inside jets is mainly due to decays of neutral
pions and to a lesser extent from bremsstrahlung processes. Long-lived
neutral hadrons on the other hand trace back to the shower of the initial
partons. Disentangling these two components is not a trivial task and
is detector-dependent – for COCOA it is observed that 70% of neutral
hadrons below 5 GeV release all their energy in the ECAL layers,
making it difficult to distinguish them from photons. This fraction
steeply decreases with the energy of the initial hadrons to approach
percent levels at around 20 GeV. Neutral particle reconstruction is
further complicated inside the collimated environment because of the
frequent overlaps between neutral showers. For this reason, efficiency
and fake rate plots are computed by considering photon and neutral
hadron predictions inclusively, without requiring a match between
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(a) (b)

(c) (d)

(e) (f)

Figure 7.20. Top: efficiency of matching predicted neutral particles to
truth photons (a) and neutral hadrons (b) in a jet as a function of
the associated truth particle pT. Middle: fake rate, i.e. probability
that predicted photons (c) and neutral hadrons (d) are not matched to
any truth neutral particle, as a function of the predicted particle pT.
Bottom: the probability that the predicted neutral particles which are
matched to truth photons (e) and neutral hadrons (f) are assigned the
correct class. For each curve, the misclassification probability is simply
the difference of the curve from 1.
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predicted and target class.
Efficiencies, fake rates, and class prediction accuracy for photons

and neutral hadrons are shown in Fig. 7.20. The efficiency of recon-
structing photons with pT > 2 GeV is above 90% for HGPflow, rising
to 98% for photons above pT > 30 GeV. For TSPN-SA and OC, the
efficiency for photons reaches 95% and 90%, respectively. Neutral
hadrons above 5 GeV are reconstructed with efficiencies ranging from
76% to 86% for the three algorithms. Fig. 7.20(c) shows that the rate
of producing unmatched photon predictions drops from 16% (30%) at
a predicted pT of 2 GeV to 1.4% (11%) above 30 GeV for HGPflow
(TSPN-SA). For neutral hadrons, the fake rate (Fig. 7.20(d)) is a
factor of 2-4 times larger across the full pT range for HGPflow, and
1.6-2.8 times larger for TSPN-SA.

For the TSPN-SA and HGPflow algorithms, reconstructing neutral
particles at low-pT is challenging because a large fraction of the
target particles does not contribute a leading amount of energy to any
topocluster in the event (33% of photons and 25% of neutral hadrons).
In HGPflow, this is compensated in a supervised manner by learning
subdominant contributions to topoclusters as fractional entries in the
predicted incidence matrix. This limitation could be further overcome
by using cell-level input nodes such as for the OC algorithm.

Efficiency and fake rate plots are complemented by studying the
probability of misclassification between photons and neutral hadrons.
In Fig. 7.20(e) and Fig. 7.20(f), both HGPflow and TSPN-SA algo-
rithms exhibit high accuracy of classification for predictions matched
to photons, and for neutral hadrons an accuracy that rises with pT:
from 51% to 76% for HGPflow and from 16% to 63% for TSPN-SA.
A lower accuracy is expected when considering that due to the class
imbalance between photons and neutral hadrons of 5.8 : 1 (inclusive),
a random classifier would have an accuracy of roughly 15% for neutral
hadrons. Moreover, the class imbalance is pT-dependent, with the
proportion of photons dropping off faster than neutral hadrons.

The OC algorithm behaves similarly to the others for reconstruction
efficiency of neutral particles, albeit with lower performance in most
bins. For the fake rate, and in particular, for photons, OC exhibits
an increase with pT. The classification accuracy for OC is also lower
for photons and shows a different trend in pT for neutral hadrons
compared to HGPflow and TSPN-SA. These differences are related
to the fact that in OC neutral particle predictions correspond to
a subset of calorimeter cells passing the selection defined by the tb
and td threshold cuts. This introduces a sensitivity of the neutral
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particle cardinality to the number of cells per particle, which grows
as a function of particle pT. The trend in fake rate appears to reflect
this. Furthermore, towards high pT a growing majority of cells belong
to showers of charged particles, which makes the classification task
more challenging in the OC approach (which involves 3 classes, unlike
HGPflow and TSPN-SA). Introducing pT-dependent weights on the β
and x prediction tasks could help counter this effect.

(a) (b)

(c)

Figure 7.21. Distributions of relative residuals between predicted and
true pT (a), η (b), and ϕ (c) of reconstructed neutral particles.

Finally, relative residuals are used to quantify the ability to cor-
rectly predict the pT, η, and ϕ of the reconstructed neutral particles,
shown in Figs. 7.21(a), 7.21(b), and 7.21(c), respectively. The
HGPflow algorithm shows the best performance at estimating accu-
rately both angular variables and momentum. It is interesting to
note that the TSPN-SA algorithm has the worst performance for
the angular variables. This is related to the usage of topoclusters
in a less supervised way compared to HGPflow, where it is known
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which topoclusters contributed to the formation of a particle. The
OC algorithm instead uses the more granular calorimeter cells directly
showing similar performance to the HGPflow algorithm for angular
regression.

The models also perform differently for neutral particle pT re-
gression, shown in Fig. 7.21(a). The OC model has a tendency to
overestimate the neutral particle pT. A similar trend is less pronounced
in the TSPN-SA regression, while the distributions of predictions from
HGPflow exhibit the least skew, in addition to the smallest mean and
variance of the three.

Jet-level performance

The ability to efficiently reconstruct jets and correctly predict their
properties is a priority for experiments at the LHC. Jet performance
depends on the overall efficiency, fake-rates and kinematic regression
of the constituent particles, therefore being an important test for the
ML reconstruction algorithms.

Following evaluation of the networks, jets are built using the anti-kt

algorithm [55] with a radius parameter of 0.4 and a minimum number
of 2 constituents. Three sets of jets with differing input constituents
are defined:

• Truth jets: jets built using the set of target particles

• ML jets: jets built using the sets of particles predicted by the
OC, TSPN-SA, and HGPflow algorithms

• PPflow jets: jets built using tracks and topoclusters with
the charged energy subtraction procedure of a parameterized
particle-flow algorithm (see Section 7.2.2)

The number of constituents is shown in Fig. 7.22(c) for each
algorithm and compared to that of the true jet. The ML algorithms,
by accounting for neutral particles in the jet, are able to model
this reasonably well. On the other hand, the PPflow distribution
overestimates the truth distribution as expected, since its constituents
are tracks and topoclusters rather than particles.

In order to further optimize the jet-pT and provide a more quanti-
tative figure of the jet resolutions, a simplistic calibration is applied.
First jet pT residual distributions are computed in different pT bins.
For each, a dedicated scale factor is computed. A functional fit is per-
formed and the corresponding scale factor is applied to reconstructed
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(a) (b)

(c) (d)

Figure 7.22. Jet-level performance metrics shown for the three algorithms
and the PPflow reference in comparison to true jets. Angular residuals
between reconstructed and true jets (a and b), the number of jet-
constituents in (c), and the calibrated pT relative residuals in (d).

jets based on their pT. This procedure is applied separately to each
reconstruction algorithm. Relative residuals are shown in Fig. 7.22. As
observed for neutral particles, HGPflow shows the best performance
at the jet-level. In terms of jet angular observables, HGPflow is com-
parable to the traditional PPflow approach while for jet pT resolution
it shows a 24% improvement relative to PPflow. The TSPN-SA jet
pT resolution is better than OC, while for angular observables OC
performs slightly better.

To help visualize the jet reconstruction task, Fig. 7.23 displays
an event from the test dataset showing predictions from the trained
HGPflow algorithm. In this example, each of the four neutral particles
at truth level can be matched to a predicted particle with the correct
class and an η-ϕ prediction consistent within the cell granularity. The
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Figure 7.23. Event display of a single jet event from the test dataset.
In the top left panel, the η − ϕ coordinates of truth particles with
momentum above 1 GeV are shown as circles along with the set of
predicted particles from the HGPflow algorithm shown as crosses. The
set of particles and their pT at truth level are as follows: two photons
in blue (1.8, 3.0 GeV), a pair of neutral K0

L mesons in grey (12.3, 22.3
GeV), and two charged pions in red (2.2, 6.5 GeV). The circles of R = 0.4
represent anti-kt jets built from the truth (solid) and predicted (dashed)
particle sets that nearly overlap in η-ϕ and have pT agreement within
35%. In the top right panels, the truth and predicted particles are
shown overlaid on a zoomed region of the ECAL2 and HCAL2 layers.
In the bottom panels, the detector-level information serving as input to
the reconstruction algorithms is shown for each of the first two layers
of both ECAL and HCAL in the same η − ϕ plane. Cells that have
the same border color belong to the same topocluster. Green and blue
fill is used to indicate the energy of cells in the ECAL and HCAL
layers, respectively. The arrows describe the tracks for charged particles
from the interaction point with the arrowheads indicating the angular
coordinate extrapolated at the given layer.

calorimeter panels illustrate the tight arrangement of topoclusters
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used as input nodes for the HGPflow prediction

Performance on gluon jets

(a) (b)

Figure 7.24. Distributions of the number of constituents per jet (a), and
distributions of relative residuals between predicted and true pT (b)
for the three ML particle reconstruction algorithms evaluated on the
sample of gluon jets.

To study the ability of the particle reconstruction algorithms to
generalize beyond the training data to a new physics process, the
trained models is evaluated on the dataset of single gluon jet events
described in Section 7.2.1. The difference arising at the parton shower
for gluon-initiated jets reflects itself in the dataset feature distributions,
for example, the larger multiplicity of cells, tracks, and particles shown
in Fig. 7.13. Since the appropriate upper bound on the number of
particles was determined based on the training dataset, a single gluon
jet found to contain > 30 particles was excluded from the dataset in
order to evaluate HGPflow. The results for the three ML algorithms
are shown along with the PPflow comparison in Fig. 7.24. Overall,
the algorithms demonstrate an ability to generalize: the number of
predicted constituents is shifted slightly lower with respect to truth
compared to the quark jet case (Fig. 7.22(c)), while the jet relative pT
residual distributions are comparable to Fig. 7.22(d). The rank of the
algorithms in terms of performance remains the same as before, with
HGPflow again boasting narrower jet pT resolution than the PPflow
comparison.



7.2 Global Particle Flow with GNNs 263

7.2.4 Perspectives

Compared to the OC and TSPN-SA algorithms and the PPflow bench-
mark, HGPflow shows the best performance in terms of jet momentum
resolution, which was not directly a training objective. This traces
back to superior modeling of neutral particle momentum shown in
Fig. 7.21(a). Unlike the other ML models, which must learn implicitly
that a given energy deposit in the calorimeter cannot be associated
with more than one parent particle, HGPflow benefits from being
structured around the concept of energy conservation. Successfully
predicting an incidence matrix defined via Eq. 7.4 and the hyper-
edge indicator row entails knowing the energy contributions a given
topocluster received from all particles (Fig. 7.18). Furthermore, the
normalization ensures that energy attributed to a given particle candi-
date is not counted again in assignments to other particles. Since both
the hyperedge representation and the proxy for neutral particle energy
(Eq. 7.9) are weighted by entries of the incidence matrix, the property
predictions which stem from these inputs inherit a bias towards energy
conservation.

The hypergraph approach allows common elements of both the OC
and TSPN-SA approaches to be handled in a more clear formalism.
In the OC potential loss (Eq. 7.2), a binary-valued incidence matrix
Iik functions as a lookup table determining whether a node is repelled
or attracted to the representation of a particle (i.e. condensation
point). The clustering of nodes according to parent particle can
thus be thought of as an indirect way of learning Iik, limited by the
extent to which the injective condition applies. Likewise, the TSPN-
SA algorithm is built around an attention matrix between particle
candidates k and nodes i from the input set which resembles an
incidence matrix, although it is normalized along columns rather than
rows. The attention weights also have a latent rather than physical
meaning and are learned in an unsupervised way. On the other hand,
HGPflow not only explicitly predicts the incidence matrix, which is the
key to unraveling overlapping particle showers, but expresses it in the
physical basis of energy contributions with the advantage mentioned
previously.

It can be anticipated that the structure of HGPflow can be extended
in at least three ways. First, the input set granularity has been set
without tuning to that of topoclusters from a standard ATLAS-like
algorithm. This granularity can be increased to further enable the
segmentation of overlapping energy deposits from nearby particles.
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Second, in the trainings, the two objectives of incidence and properties
prediction have been carried out nearly independently. However, a
more powerful representation learning scheme could lead to a model
which learns these two objectives in a synergistic way, allowing the
incidence prediction to be informed by the properties prediction and
vice versa. Finally, while Tab. 7.3 indicates an acceptable inference
time of HGPflow, more optimization is needed to reduce its training
duration. This could be achieved by hyperparameter optimization in
the recurrent training configuration and by exploring alternatives to
the Hungarian matching, which the authors of [197] identified as a
computational bottleneck.

Similarly, besides the modifications proposed in [184], it is reason-
able to suspect that the OC algorithm can be substantially improved
in future work. While the TSPN-SA and HGPflow algorithms both
have neural network layers for information exchange following the node
encoding (i.e. successive attention and incidence weighted-updates),
the node predictions of the modified OC algorithm are likely limited
by a comparatively narrow receptive field. One way to increase the
receptive field in OC is to add additional message passing blocks in
the node encoder model, although a limited study of this option did
not lead to conclusive improvement. Another possibility is introducing
an attention mechanism. The distance between nodes i and j in the
latent clustering space entails a term aij = xi · xj with the form of at-
tention, e.g. in the attractive potential, V̆ ∝ ∆x2 ∋ −2aij . Therefore
the clustering mechanism in OC seems a natural point to introduce
transformer blocks for enhanced information exchange, at the cost of
computing additional gradients for the set of edges.

Several opportunities emerge for future investigation on new datasets.
The performance reported in this work for R = 0.4 quark and gluon
jets suggests the application to substructure reconstruction in large-
R jets from boosted boson decays. The goal of studying particle
reconstruction on a single jet dataset was to focus on the local sys-
tem of overlapping particle showers which represents the kernel of
the problem at the full-event level. For this reason, it is reasonable
that reconstructing full events could proceed by mapping the same
trained model onto spatial partitions of the detector hits D defined
by topological and jet clustering algorithms, for instance. Given an
effective scheme to deal with potential overlap, each partition could
be treated as an approximately isolated set of input nodes, graph
edges, and attention or incidence matrix weights. In this case the
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resource requirements reported in Tab. 7.3 would scale linearly with
the number of partitions. Ignoring overlap, an upper bound on the
number of R = 0.4 partitions of a full event could be estimated as
2π · 6/0.4 ≃ 102.

Studying the robustness of the models in the presence of pileup will
also be an important follow-up task (see [185] for existing work in this
direction). Likewise, the impact of interactions with material upstream
of the calorimeter needs to be thoroughly addressed in a future dataset.
In this case, electron pair production from early conversions and
photons from bremsstrahlung will require a thoughtful definition of
target particles to ensure that they can be feasibly distinguished
during training. For example, photon conversions could be treated as
a separate class, and electrons could be defined as targets depending
on the quality of their associated track (if present at all).

For charged particles, the algorithms learned to exploit the com-
plementary information provided by calorimeter activity to improve
on the measured track momentum. The efficiency of reconstructing
photons and neutral hadrons reached 90% and 80%, respectively, for
pT > 10 GeV. The neutral particle fake rates were more variable for
each algorithm, with the best performance being 10% and lower for
pT > 10 GeV.

Jets formed from the predicted particles were compared to those
from the true particles and also a parameterized particle flow baseline.
HGPflow showed the best performance and surpassed the baseline in
terms of both angular and momentum resolution of the jet. This can
be explained from the fact that the hypergraph formalism is structured
around energy conservation, which also makes its predictions more
interpretable from a physics point of view. The suitability of the
hypergraph formalism for the set-to-set task of particle reconstruction
is yet to be fully leveraged. By demonstrating the potential of ML
algorithms to disentangle the jet dense environment, these findings
motivate the application to full collision events in future work.
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8 | Conclusions

The Standard Model stands as the most precise theory available for
understanding the origin and mechanics of the universe. Despite its
successes, it leaves several intriguing questions unanswered, making it
essential to push the boundaries of High Energy Physics experiments.

One of the most compelling questions is about the nature of the
Higgs boson. Since its discovery in 2012, it has been crucial to
determine whether the observed particle conforms to the predictions
of the Standard Model or exhibits any deviations. So far, no significant
discrepancies have been detected, but many production and decay
channels remain unexplored.

To probe and study the Higgs boson, significant technological and
scientific efforts have been undertaken. The Large Hadron Collider
(LHC) was constructed, featuring two multi-purpose experiments,
ATLAS and CMS, dedicated to this and many other aspects.

This dissertation discusses the Higgs boson production in associ-
ation with a leptonically decaying Vector boson using the ATLAS
Detector at the LHC. The Higgs boson is studied in its decays to
heavy flavor quarks (b or c). The leptonic decay of the Vector boson
is leveraged to enhance the signature’s clarity, making this production
channel more suitable compared to the gluon-gluon fusion process,
which is obscured by QCD background. Given that the branching
ratios for the two decay channels are approximately 60% and 3% re-
spectively, one of the major challenges is entrusted to Flavor Tagging
algorithms, which discriminate between the different quark flavors
produced in the Higgs decay.

This analysis was conducted using the complete Run 2 dataset,
implementing new Flavor Tagging algorithms and Multivariate Analy-
sis techniques to simultaneously extract the Higgs coupling to b and c
quarks.



268 8. Conclusions

The primary results of this analysis include the first observation
of the single process WH,H → bb̄, the first observation of the pro-
cess V Z,Z → cc̄ and setting the best ATLAS limits on the process
V H,H → cc̄.

This measurement is fundamentally important as it was previously
thought impossible to observe the Yukawa coupling of the c quark dur-
ing the LHC era. However, recent studies and advanced technologies
have shown that this might be achievable.

Related to Higgs physics and its implications on the Standard
Model, this dissertation also describes one of the expected milestones
for the HL-LHC: the measurement of the Higgs self-coupling. This
parameter is directly probed through Di-Higgs analyses. One of the
best channels, and the focus of this dissertation, is that with two Higgs
bosons decay into 2 b-quarks and 2 photons respectively. Despite the
low branching fraction of this process, the purity in the photon system
allows for high sensitivity. This dissertation outlines the potential
impact of new studies on the sensitivity of this process, particularly
how innovative b-tagging techniques could significantly enhance this
measurement.

The ability to achieve these significant milestones is closely linked
to the experiment’s performance. Specifically, the described analyses
heavily rely on Flavor Tagging algorithms aimed at identifying the
parton flavor produced by the Higgs boson. Improving these algo-
rithms’ performance translates to greater sensitivity in the involved
measurements.

This dissertation demonstrates, for the first time, the potential
impact of a 4-Dimensional tracker in ATLAS for the HL-LHC, high-
lighting improvements in vertexing and b-tagging performance. Addi-
tionally, it shows how these performance enhancements lead to better
physics analysis outcomes. The 4D trackers are likely to be installed
in next-generation collider experiments, making these studies relevant
not only for the LHC but also on a broader scale.

This dissertation illustrates also how innovative machine learning
approaches based on Graph Neural Networks (GNN) can improve
collider physics reconstruction by exploiting multidimensional correla-
tions among low-level event variables. A detector-agnostic simulation
for machine learning studies was developed, followed by a Hypergraph
GNN-based approach to Global Particle Flow, demonstrating improve-
ments over classical algorithms. These techniques could significantly
maximize the reach of the LHC experiments and future colliders.
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High energy physics represents the frontier of human knowledge,
pushing the limits of the imaginable in every aspect. This work
showcases how human collaboration enables achieving great results,
both individually and collectively.
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