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Abstract
Theories on the bosonic nature of dark matter are a promising alternative to the cold dark matter
model. Here we consider a dark matter halo in the state of a Bose–Einstein condensate (BEC),
subject to the gravitation of a black hole. In the low energy limit, we bring together the general
relativity in the Schwarzschild metric and the quantum description of the BEC. The model is
solvable in the Fermi normal coordinates with the so called highly nonlocal approximation and
describes tidal deformations in the condensate wave function. The black hole deforms the localized
condensate until the attraction of the compact object overcomes the self-gravitation and
destabilizes the solitonic dark matter. Moreover, the model can be implemented as a gravitational
analog in the laboratory; the time-dependent potential generated by the galactic black hole can be
mimicked by an optical trap acting on a conventional condensate. The results open the way to new
laboratory simulators for quantum gravitational effects.

1. Introduction

One of the main unsolved questions about the Universe is the nature of dark matter (DM). Many
astrophysical observations have revealed the presence of a new kind of matter, which gravitationally interacts
with the visible matter but does not emit light [1]. Among the proposed theories, one of the most promising
is the cold dark matter model (CDM), based on collisionless particles. Despite CDM explains anomalous
galaxy rotation curves, new discrepancies, such as the cuspy problem regarding the flat density distribution
in the galactic core, remain not yet understood [1]. Authors proposed the introduction of particle
self-interaction to solve the inconsistencies in the CDM [2]. Inspired by early Universe theories, bosonic DM
with ultrasmall masses∼10−24–10−20 eV [3] allows the formation of galactic Bose–Einstein condensates
(BECs) [4–8]. One key aspect of BEC DM halos is the role of spacetime curvature first considered in [4].
In [9], the curved spacetime appears as a perturbative potential inducing an instability dependent on the
condensate mass. However, the effect of an external gravitational field on the dynamics of the galactic
condensate is unexplored.

In this manuscript, we study a DM condensate subject to a spherically symmetric gravitational field
described by the Schwarzschild metric. The Bose-condensed DM experiences the gravitational field of a black
hole (BH) that can be treated as an effective potential as far as the falling object has a non-relativistic speed.
By a simple closed-form theory, we show how the interaction induces the excitation of high-energy states.
These states are required to fit the galaxy rotation curves in [3]. Also, we predict the existence of a breaking
time for the destabilization of the BEC, which may explain the absence of DM in specific galaxies.

Moreover, we consider the feasibility of BEC DM simulations in a laboratory [10]. We detail an
experimental setup to address the gravitational instability in an optically trapped Bose gas. Indeed, in the
context of analog gravity [11], physical systems such as in polaritonics, atomic gases, and nonlinear optics are
used to mimic the cosmological models.

The manuscript is organized as follows. In section 2, we introduce the model: (i) the Fermi normal
coordinates used to make the expansion of the d’Alembert operator and (ii) the multiple scale expansion of
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the solution of the Klein–Gordon equation in the non-relativistic limit. In the expansion of the d’Alembert
operator the flat metric is taken as ηµν = diag(−1,1,1,1).

Section 3 is about the effective potential in the Schwarzschild metric, simplified by the highly-nonlocal
approximation in section 4.

In section 5, we analyze the asymptotic model and predict the existence of a critical time for the
instability dependent on the masses of the DM and of the BH.

In section 6, we specifically address the significant timescales and other parameters in the interaction with
BHs; in section 7, we described an experiment for the laboratory analog. Conclusions are drawn in section 8.

2. Model andmethods

The hypothesis of BEC DM halos opens the question about the effects of the spacetime curvature. We analyze
the scenario in which a BEC DM is freely falling in a curved metric. We take into account two aspects: (a) the
BEC with its quantum description and (b) the relativistic spacetime.

Concerning point (a) we know that the BEC is described by the Gross–Pitaevskii equation (GPE), with a
local nonlinear potential describing the 2 particle collisions, reference [12]. Here, we consider a
self-gravitating BEC, whose nonlinear interaction has a gravitational nature. Its dynamics is described by the
well-known Schroedinger–Newton equations [13–15] where the gravitational potential is solution of the
nonlocal Poisson equation

ih̄∂tψ (t, r⃗) =− h̄2

2m
∇2ψ (t, r⃗)+mΦ(t, r⃗)ψ (t, r⃗) ; (1)

∇2Φ (t, r⃗)−K2Φ (t, r⃗) = 4πGm|ψ (t, r⃗) |2; (2)

wherem is the single particle mass and ψ the collective wavefunction normalized to the total number of
particles comprising the BEC, K is inversely proportional to the interaction length of the nonlocal potential
Φ and G is the universal gravitational constant. Φ(t, r⃗) is a nonlinear long-range gravitational potential
solution of the Poisson equation with the mass density distributionm|ψ(t, r⃗)|2. The BEC description is
non-relativistic since the Poisson equation concerns Newtonian gravitational field. However, equation (2) is
obtained from Einstein’s equations in the weak field limit [15, 16].

Concerning point (b), the BEC experiences an external gravitational field described by a metric gµν .
However, the GPE is valid in a non-relativistic regime, while the curved metric requires a four-dimensional
formalism.

To unify the two descriptions, we take the Klein–Gordon equation (KG) which reduces to the
Schroedinger equation in the limit of non-relativistic speed, and expand the d’Alembert operator exploiting
the Fermi normal coordinates that are suitable to describe a freely falling object [17]. We also use a multiple
scale expansion and treat the nonlinearity as a mass-dependent potential within the highly nonlocal
approximation (HNA).

In this paragraph we will use the general relativistic formalism, referring to the flat metric as
ηµν = diag(−1,1,1,1).

2.1. Curvedmetric in Fermi normal coordinates
According to the Equivalence Principle, a freely falling object is locally described by the flat metric. The
Fermi normal coordinates enlarge this description to a world tube around the timelike trajectory [18]. The
Fermi normal coordinates satisfy the condition Γα

µν = 0 along the object trajectory. The basis vectors are

defined in the following way: the time coordinate τ is such that e0 =
∂
∂τ is tangent to the trajectory. From

every point of the trajectory, an orthogonal hypersurface Σ is defined, and 3 independent vectors are chosen
on Σ as the spatial vectors of the basis ej =

∂
∂xj

with j = 1,2,3. A (2+ 1)D simplified representation is

reported in figure 1. (cτ,x1,x2,x3) are the Fermi normal coordinates. They describe the spacetime around the
falling object as an expansion of the flat metric

gµν (cτ, x⃗) = ηµν + gµν,α (cτ,0)x
α +

1

2
gµν,αβ (cτ,0)x

αxβ + o
(
x2
)

where the comma stands for the partial derivative of the metric tensor with respect to the Fermi normal
coordinates.

The linear term vanishes due to Γα
µν = 0 on the timelike geodesic, and the first corrections are quadratic.

According to [18], we found the following expressions for the metric elements

2
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Figure 1. The timelike geodesic G (black line) is surrounded by a world tube in which Fermi normal coordinates are defined,
and special relativity laws are valid. The green line represents a spacelike geodesic S on an orthogonal hypersurfaceΣ. The
time component is tangent to the geodesic G: e0 = u, while the space components lie on the surfaceΣ: t = tjej, j = 1,2,3. In
the world tube, the metric is flat up to quadratic corrections.

g00 =−1−R0l0mx
lxm + o

(
x2
)
;

g0k =−2

3
R0jkix

ixj + o
(
x2
)
;

glm = δlm − 1

3
Riljmx

ixj + o
(
x2
)
; (3)

where Rαβµν is the Riemann tensor. The quadratic terms are small in the neighborhood of the geodesic,

defining ε≪ 1: gµν = ηµν + ε2ĝ(1)µν . Thus, given the spacetime metric gµν , its expansion is defined by the
Riemann tensor in Fermi normal coordinates.

We use this metric expansion to calculate the d’Alembert operator in the curved spacetime as a series
expansion defined in the neighbor of the geodesic.

The d’Alembertian in general coordinates is

□=
1
√
g
∂µ (

√
ggµν∂ν)

where g=−det(gµν), after (3)

g=−det(gµν) = 1+ ε2
2

3
R0l0m x

lxm + o
(
ε2
)

= 1+ ε2g(1) + o
(
ε2
)
. (4)

The inverse matrix for the metric can be found from gµνgνξ = δµξ

gµν = ηµν + ε2g(1)µν ;

gνξ = ηνξ + ε2ĝ(1)νξ .

We have

g(1)00 =−ĝ(1)00 = R0l0m x
lxm;

g(1)0i = ĝ(1)0i =−2

3
R0lim x

lxm;

g(1)ij =−ĝ(1)ij =
1

3
Riljm x

lxm (5)

and

□=

(
1− ε2

2
g(1)
)
∂µ

[(
1+

ε2

2
g(1)
)(

ηµν + ε2g(1)µν
)
∂ν

]
=−∂20 +∇2 + ε2∂µ

(
g(1)µν∂ν

)
+
ε2

2
ηµν∂µ

(
g(1)
)
∂ν + o

(
ε2
)
. (6)

This expansion in the Fermi normal coordinates needs a specific choice of the metric describing the falling
object.

3
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2.2. Multiple scale expansion
We start with the Klein–Gordon equation (

□−m2
)
ϕ = 0, (7)

which reduces to the Schroedinger equation in the limit of non-relativistic speed, and use equation (6)

□=□flat + ε2∂µ

(
g(1)µν∂ν

)
+
ε2

2
ηµν

(
∂µg

(1)
)
∂ν + o

(
ε2
)

where we adopted units with c= 1 and h̄= 1.
Since the effect of the curvature appears as a second-order perturbation of the flat d’Alembertian, we

introduce the nonlinear potential of the DM condensate as a term of the same order(
□−m2

)
ϕ+ ε2Φ[ϕ]ϕ = 0. (8)

finding the relativistic counter-part of equation (2) [13, 15].
We define a multiple scale expansion by the slow variables xµ1 = εxµ and xµ2 = ε2xµ

ϕ(xµ,xµ1 ,x
µ
2 ) = ϕ0 (x

µ,xµ1 ,x
µ
2 )+ εϕ1 (x

µ,xµ1 ,x
µ
2 )+ ε2ϕ2 (x

µ,xµ1 ,x
µ
2 )+ o

(
ε2
)
. (9)

Due to the presence of the slow variables, the flat d’Alembertian is

□flat =□0 + 2ε□01 + ε2□1 + 2ε2□02 + o
(
ε2
)

= ηµν
∂2

∂xµ∂xν
+ 2εηµν

∂2

∂xµ∂xν1
+ ε2ηµν

∂2

∂xµ1 ∂x
ν
1

+ 2ε2ηµν
∂2

∂xµ∂xν2
+ o
(
ε2
)
.

For the self-gravitating potential we have

Φ[ϕ] =

ˆ
U (⃗r− r⃗ ′) |ϕ (⃗r ′) |2d3r ′

=

ˆ
U (⃗r− r⃗ ′)

[
|ϕ0 (⃗r ′) |2 + ε2ϕ0 (⃗r

′)ϕ1 (⃗r
′)+ ε2|ϕ1 (⃗r ′) |2 + ε22ϕ0 (⃗r

′)ϕ2 (⃗r
′)

+ ε32ϕ1 (⃗r
′)ϕ2 (⃗r

′)+ ε4|ϕ2 (⃗r ′) |2
]
d3r ′. (10)

Equation (8) is[
□0 + 2ε□01 + ε2□1 + 2ε2□02 + ε2∂µ

(
g(1)µν∂ν

)
+ ε2

ηµν

2

(
∂µg

(1)
)
∂ν

](
ϕ0 + εϕ1 + ε2ϕ2

)
−m2

(
ϕ0 + εϕ1 + ε2ϕ2

)
+ ε2Φ

[
|ϕ0|2

](
ϕ0 + εϕ1 + ε2ϕ2

)
= 0. (11)

At order O(1) we have (
□0 −m2

)
ϕ0 = 0 (12)

which is the KG equation in the flat spacetime. The solution is a free particle wave function modulated by an
amplitude depending on the slow variables

ϕ0 (x
µ,xµ1 ,x

µ
2 ) = eikµx

µ

ψ (xµ1 ,x
µ
2 )+ e−ikµx

µ

ψ∗ (xµ1 ,x
µ
2 ) .

At the order O(ε) in equation (11) we have(
□0 −m2

)
ϕ1 + 2□01ϕ0 = 0 (13)

that is (
□0 −m2

)
ϕ1 =−2□01ϕ0

=−2ηµν
∂2ϕ0
∂xµ∂xν1

=−2iωe−iωτ+i k⃗·⃗x

(
− ∂ψ

∂τ1
+

kj

ω

∂ψ

∂xj1

)
+ c.c. (14)

4
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We notice that the forcing term is resonant with the solution of the homogeneous equation: it has to be null
to avoid secular terms (

− ∂ψ

∂τ1
+

kj

ω

∂ψ

∂xj1

)
= 0. (15)

As a consequence, equation (14) reduces to the KG equation, and we choose ϕ1 = 0.
After equation (15) we have

ψ (xµ1 ,x
µ
2 ) = ψ

(
ξ
j
1,x

µ
2

)
;

ξ
j
1 = kj

(
xj1 +

kj

ω
τ1

)
j = 1,2,3; (16)

with kj arbitrary functions. The upper index j identifies the component of a 3-dimensional vector.
At the order O(ε2) in equation (11) we find[

□1 + 2□02 + ∂µ

(
g(1)µν∂ν

)
+
ηµν

2

(
∂µg

(1)
)
∂ν

]
ϕ0 +mΦ[ϕ0]ϕ0 +

(
□0 −m2

)
ϕ2 = 0. (17)

The gravitational potential is a function of ϕ0, thus

Φ[ϕ0] =

ˆ
G (⃗r− r⃗ ′)

[
2|ψ (⃗r ′) |2 + 2ℜ

(
e2ikµx

µ

ψ2 (⃗r ′)
)]

d3r ′ (18)

this means that, solving the equation (17) with respect to ϕ2, it needs the resonant term to vanish, obtaining
the following[

□1 + 2□02 + ∂µ

(
g(1)µν∂ν

)
+
ηµν

2

(
∂µg

(1)
)
∂ν + 2m

ˆ
d3r ′G (⃗r− r⃗ ′) |ψ (⃗r ′) |2

]
ϕ0 (x

µ,xµ1 ,x
µ
2 ) ; (19)

and

(
□0 −m2

)
ϕ2 + 2mϕ0

ˆ
d3r ′G (⃗r− r⃗ ′) ℜ

(
e2ikµx

µ

ψ2
)
= 0. (20)

We consider the limit of non-relativistic speed in the leading equation (19) by assuming a low energy regime
with ω2 =m2 + k2 ≃m2

ϕ0 (x
µ,xµ1 ,x

µ
2 ) = e−imτψ

(
ξ
j
1,x

µ
2

)
+ c.c.;

|⃗k · x⃗| ≪ 1, ω2 ∼m2. (21)

As a consequence, the third and fourth terms of equation (19) contain only time derivatives

∂µ

(
g(1)µν∂νϕ0

)
=
(
∂0g

(1)00
)
∂0ϕ0 + g(1)00∂20ϕ0

=
[
−im

(
∂0g

(1)00
)
−m2g(1)00

]
e−imτψ;

and

ηµν

2

(
∂µg

(1)
)
∂νϕ0 =−1

2

(
∂0g

(1)
)
∂0ϕ0 +

1

2
δkj
(
∂kg

(1)
)
∂jϕ0

=
im

2

(
∂0g

(1)
)
e−imτψ.

From equation (5), g(1) and g(1)00 depend on time τ only through the Riemann tensor, which is a function of
the coordinate system centered on the BH. Noting that the time variation of the distance between the BEC
and the BH is much smaller than the distance itself, namely ∂0g(1)00 ≪ g(1)00 and ∂0g(1) ≪ g(1)00 we neglect
the corresponding terms (as detailed for Schwarzschild metric in section 3).

5
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The first two terms of the equation (19) are

(□1 + 2□02)ϕ0 =

(
ηµν

∂2

∂xµ1 ∂x
ν
1

+ 2ηµν
∂2

∂xµ∂xν2

)
e−imτψ

=−e−imτ ∂
2ψ

∂τ 21
+ e−imτ∇2

1ψ+ 2ime−imτ ∂ψ

∂τ2
.

Due to the constraint imposed on the slow time derivative, equation (15), we have

∂2ψ

∂τ 21
=

∂

∂τ1

(
kj

ω

∂ψ

∂xj1

)

=
∂

∂τ1

k2

ω

∂ψ

∂ξ1

and we can neglect this term due to the approximation ω2 ≃m2 and |k|2 ∼ 0.
Concluding the expansion by posing ε= 1 and reinserting all the natural constants, the final equation

results to be

ih̄
∂ψ

∂τ
=− h̄2

2m
∇2ψ+

mc2

2
g(1)00ψ+mΦ

[
|ψ|2

]
ψ. (22)

We highlight that, so far, the only assumption on the nonlinear potential is its quadratic form in the field,
thus the result is completely general with respect to any kind of quadratic nonlinearity.

To conclude we underline that |k| ∼ 0 is a reasonable assumption for a spherically symmetric halo at rest
at the beginning of the evolution. The physical hypotheses made below to describe the phenomenon follow
this assumption. Even if the non-relativistic speed hypothesis fails due to the interaction with the BH, the
model predicts that when the BEC is close to the BH the BEC wavefunction is no longer defined and the
failing of the hypotheses is not relevant.

3. Schwarzschild metric

In the Schwarzschild metric generated by a non-rotating massive object like a static BH

ds2 =−XdT2 +X−1 dR2 +R2 dΘ2 +R2 sin2Θdφ2

where T, R,Θ and φ are Schwarzschild coordinates and X= (1− 2GM
c2R ) = (1− Rs

R ), with G universal
gravitational constant, c light speed,M the BH mass and Rs =

2GM
c2 Schwarzschild radius.

The scenario is sketched in figure 2: the self-gravitating BEC is radially falling toward the BH. We are
considering a small DM halo with respect to the BH, thus the spacetime curvature will be the one generated
by the BH. The hypothesis of small DM halo is supported by recent studies about space extension of DM
halos [19].

Equation (22) describes the BEC time evolution, where the effective potential is evaluated using the
Schwarzschild metric and its expansion in Fermi normal coordinates. By the metric element expansion in (5)
and the Riemann tensor in the Schwarzschild metric, we find the effective potential

Veff =
mc2

2
g(1)00 =

mc2

2
R0l0m x

lxm

=
mc2

2

(
R0101 x

2 +R0202 y
2 +R0303 z

2
)

=
mc2Rs

4R3 (τ)

(
−2x2 + y2 + z2

)
. (23)

We notice that V eff is time-dependent through R(τ), which is the radial distance between the BEC and the
BH, expressed as a function of the BEC proper time τ . R(τ) is the free falling geodesic solution of

Ṙ(τ) =−c
√
E2 −V(R) (24)

where E is a constant and V(R) =
(
1+ l2

R2

)(
Rs

R(τ)

)
. We verify for this particular choice the validity of the

approximation Ṙ(τ)≪ R(τ).
Moreover the potential (23) is quadratic, being attractive in the directions y and z and repulsive along x.

This difference in sign expresses the presence of tidal forces exerted by the BH on the DM halo.
Having found the explicit form of the effective potential generated by the Schwarzschild metric, let us

now consider the self-gravitating potential describing the DM halo.

6
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Figure 2. Schematic illustration of the studied phenomenon. A DM halo in the form of a self-gravitating Bose–Einstein condensate
(BEC) is radially falling toward a Schwarzschild black hole. (a) At the beginning of the evolution, the BEC is localized due to
self-gravitational interaction. (b) At the end of the evolution, the BEC is deformed and, at a critical proper time, destabilizes.

Figure 3. Comparison between the spatial density distribution of the BEC |ψ(r)|2 and the intensity of the self-gravitational
potential |Φ(r)|. We highlight the nonlocality of the interaction, which spreads beyond the BEC mass distribution.

4. The HNA

The nonlocality of the self-gravitating potential Φ[|ψ|2] is the key property we exploit. We assume the
self-gravitating BEC is self-localized and described by a Gaussian mass distribution, following the spatial
symmetry already used in the previous expansion. As shown in figure 3, the nonlocal effect of the potential is
much wider than the mass distribution. We note that the nonlocal nature of the gravitational self-interaction
guarantees the stability of the localized mass distribution as proved in [20]. Under these conditions, we can
apply the HNA [21]. The HNA replaces the nonlocal nonlinear potential generated by a Gaussian mass
distribution with a parabolic potential. The starting point of the HNA exposed in [21] is the same of our
work, equations (1) and (2). Thus, we can directly apply their results. The potential Φ[|ψ|2] is given by the
convolution of the mass density with the Green function

Φ (⃗r) =

ˆ
G (⃗r− r⃗ ′) |ψ (t, r⃗ ′) |2d3r ′;

G (⃗r) =−Gm

|⃗r|
e−K|⃗r|.

The HNA reduces the nonlinear long-range potential to a parabolic one

Φ≃ ΦM +Φ̃r2 =ΦM +
Ω2

2
r2, (25)

where ΦM is a constant term, the minimum value of the parabolic potential, we will ignore the constant term
in our equation.

7
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Following the variational method presented in [21], we transpose their results to our model, using the
characteristic constants of our physical system. Thus, the frequency of the harmonic approximation
results to be

Ω2 =
(4G)4(

3π1/2
)4
h̄6
m10N4. (26)

We underline that the potential Φ depends on the BEC total number of particles N.
Going back to equation (22) now we write the nonlinear potential as the parabolic one obtained by

means of the HNA and the effective potential as equation (23). Equation (22) becomes

i h̄∂τψ (τ, r⃗) =− h̄2

2m
∇2ψ (τ, r⃗)+

mΩ2

2
r2ψ (τ, r⃗)+

mc2Rs

4R3 (τ)

(
−2x2 + y2 + z2

)
ψ (τ, r⃗) . (27)

Equation (27) is characterized by opposite sign parabolic terms of potential energy causing the deformation
of the BEC DM halo.

5. Time evolution of the DM condensate

A critical element of the effective potential is its time dependence. In our simplified model, it is due to the
variation of the radial distance R(τ), given by the solution of the geodesic equation

Ṙ(τ) =−c
√
E2 −V(R)

=−c

√
γ2 − 1+

Rs

R(τ)
, (28)

where E is a constant equal to γ = 1/
√
1− (v/c)2, and assuming the BEC has constant initial velocity v, with

Ṙ(0) =−γv for R(0)→∞. We also have V(R) =
(
1+ l2

R2

)(
Rs

R(τ)

)
= 1− Rs

R(τ) since the fall occurs only

along the radius, without any rotation of the falling object.
Moreover, if we take zero initial velocity v= 0, the solution of the geodesic equation is (γ= 1)

R(τ) =

(
−3

2

√
Rscτ +R3/2 (0)

)2/3

. (29)

From equation (29), we derive 3 different time scales: (I) the time when the BEC reaches the position
R(τ0) = 0

τ0 =
2R0

3c

√
R0

Rs
; (30)

(II) the time when the BEC crosses the event horizon R(τs) = Rs, i.e. the Schwarzschild time

τs = τ0

[
1−

(
Rs

R0

)3/2
]
; (31)

and (III) the time at which the effective potential dominates over the self-gravitation, i.e. the breaking time

τB = τ0 −
2

3Ω
. (32)

When τ = τB the effective potential along x becomes equal in strength to the self-gravitating one

1

2
mΩ2x2 − mRsc2

2R3 (τB)
x2 = 0. (33)

As a consequence, the sign of the total potential along x changes, and the BEC experiences a repulsion in the
x-direction.

To analytically study the evolution, we consider the dimensionless version of our model equation (27)

i∂ζu(ζ;ξ,η,θ) =−∇2u(ζ;ξ,η,θ)+
1

2

[
ν2 −Vξ (ζ) ξ

2 +Vη (ζ) η
2 +Vθ (ζ) θ

2

]
u(ζ;ξ,η,θ) , (34)

8
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where we introduce the dimensionless wave function u= ψ
√
x3p and variables

ζ =
τ

τp
; ξ =

x

xp
; η =

y

xp
; θ =

z

xp
; (35)

with ν2 = ξ2 + η2 + θ2, defined by the constants

x2p =
h̄√
2mΩ

; τp =

√
2

Ω
. (36)

The dimensionless effective potential terms are

Vξ =−2

9

1

(ζ − ζ0)
2 ;

Vη,θ =
1

9

1

(ζ − ζ0)
2 .

As the BEC Hamiltonian is the sum of spatially independent terms, a generic solution is written as the
product of three wave functions

u(ζ,ξ,η,θ) = uξ(ζ,ξ)uη(ζ,η)uθ(ζ,θ).

The motion equation splits into three different equations

i∂ζuξ =−∂2ξ uξ +
1

2
ξ2

[
1− 2

9(ζ − ζ0)
2

]
uξ;

i∂ζuη =−∂2ηuη +
1

2
η2

[
1+

1

9(ζ − ζ0)
2

]
uη;

i∂ζuθ =−∂2θuθ +
1

2
θ2

[
1+

1

9(ζ − ζ0)
2

]
uθ. (37)

Equations (37) have a Gaussian solution

uj (ζ, j) =
1

π1/4
√
qj (ζ)

exp

[
i

4

q̇j (ζ)

qj (ζ)
j2 + iPj (ζ)

]
j = ξ,η,θ

where qj(ζ) and Pj(ζ) are complex functions: q̇(ζ)
q(ζ) =

1
R(ζ) +

2i
W2(ζ) , where R(ζ) is the curvature radius and

W(ζ) is the width of the wave function. The functions qj(ζ) are given by the equations

q̈j (ζ)+ω2
j (ζ)qj (ζ) ; (38)

with different frequencies in the spatial directions

ω2
ξ (ζ) = 2

[
1− 2

9(ζ − ζ0)
2

]
;

ω2
θ (ζ) = 2

[
1+

1

9(ζ − ζ0)
2

]
;

ω2
η (ζ) = 2

[
1+

1

9(ζ − ζ0)
2

]
. (39)

Thus, the width in each direction evolves oscillating with a ζ-dependent frequency. In the unperturbed
case, the frequency is constant and the equations have oscillating solutions and a stationary one for the initial
waistW2

0 =
√
2.

Considering specifically the ξ-direction, the frequency becomes imaginary, as ω2
ξ < 0 when ζ > ζB, with

ζB =
τB
τp

= ζ0 −
√
2

3
. (40)

9
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Figure 4. (a) BEC wave function width along the ξ direction during the evolution. Before the breaking time, the mass density
distribution has a constant width or an oscillating one according to its initial value. The total potential is attractive and the BEC is
in a bound state. After the breaking time, the width follows an exponential trend independently from the previous history. Since
the potential is repulsive, the BEC delocalizes. (b) Detail of the unstable evolution.

Figure 5. Breaking time versus the BEC mass and Schwarzschild time (green line).

Correspondingly, the solution of the width equation qξ(ζ) from oscillating becomes exponential. As a
consequence, the wave function uξ ceases to be a Gaussian, the BEC is no longer localized and a phase
transition occurs.

We show in figure 4 the width of the ξ-dependent solution during the evolution, including the critical
case when the initial waist corresponds to the stationary solution of the unperturbed equation (38).W
diverges for times greater than the breaking time τB.

We consider specifically the dependence of the breaking time τB on the BEC mass (figure 5). Given the
BHmass, which fixes the Schwarzschild time τ s, the breaking time increases with the BEC mass. Below a BEC
critical mass, the breaking time is smaller than the Schwarzschild time, thus the DM halo becomes unstable
before crossing the event horizon giving rise to an observable instability. we remark that at a time
comparable with the breaking time, the perturbative approach is expected not to provide an accurate
description of the condensate, and also the mean field approximation is expected to fail while opening the
road to novel and unexplored quantum-gravitational effects.

6. The astrophysical scenario

In the astrophysical context, the relevant parameters are the masses: the single particlem, the DM haloM,
and the BHMBH, chosen as follows

BEC: m∼ 10−22eV; M∼ 106M⊙;

BH: MBH ∼ 109M⊙;

whereM⊙ is the solar mass.

10
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The ultralight single particle provides the formation of galactic BECs, in accordance with previous
works [3, 6]. The supermassive BH suits the description of galactic core phenomena.

We have the characteristic frequency of the self-gravitational potential, Ω

Ω=
16G2m5N2

9π h̄3
∼ 10−11 rad s−1,

and the width of the BEC wave function

w0 =

√
h̄

mΩ
∼ 1.2 × 107 m,

extending over galactic distances.
From the BH mass, we find the Schwarzschild radius

Rs =
2GMBH

c2
∼ 1012m.

Assuming a starting distance between the center of the BEC and the BH of order R0 ∼ 105Rs ∼ 1017m, we
determine the relevant time scales

τ0 =
2R0

3c

√
R0

Rs
∼ 2× 1011 s∼ 6600y;

τs = τ0

(
1− R3/2

s

R3/2
0

)
∼ 2× 1011 s∼ 6600y;

τB = τ0 −
2

3Ω
∼ 1.7× 1011 s∼ 5000y.

DM instability occurs when the breaking time is shorter than the Schwarzschild time, in a way dependent on
the BEC mass and the interacting massive objects. The onset of instability may explain some astrophysical
observations, including the DM absence in galaxies of different sizes.

7. The laboratory analog

The laboratory realization of an analog system for our model equation (22) is based on the production of a
BEC from a gas of bosons like Sodium atoms. The condensation is achieved by cooling and confining a Bose
gas with tools like a magneto-optic trap [22, 23].

By using the explicit form for the radius R(τ) in (29), we find that the total potential equation (23) is

mΩ2

2
r⃗2 +

m

9(τ − τ0)
2

(
−2x2 + y2 + z2

)
. (41)

This potential can be realized by an optical trap with a monochromatic beam of frequency ω and intensity
I(⃗r) that generates a spatial dependent potential of the form

V (⃗r) =
3π c2Γ

2ω3
0∆

I (⃗r) (42)

where ω0 is the characteristic resonant frequency of the trapped gas,∆= ω−ω0 is the laser detuning, and Γ
is the damping rate due to the radiative energy loss.

The constant term of the potential (41) is obtained by a 3-dimensional optical trap, where 3 orthogonal
laser beams have constant intensity and negative detuning (∆< 0), namely red-detuned with respect to the
condensate characteristic frequency. For the time-dependent term of the potential, we need time-varying
intensity beams and a repulsive trap along the x-direction. With optical traps, a repulsive potential is
obtained by a blue-detuned (∆> 0) laser beam [22]. The whole potential is a composite optical trap
(figure 6). The red-detuned laser beams at λ= 700nm comprise the constant parabolic term analog to the
self-gravitation, while the red laser at λ= 760nm and the green one at λ= 540nm are the analogs of the
time-dependent potential generated by the BH and felt by the BEC during its radial fall. The laser beam
intensities vary in time as reported in figure 7.
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Figure 6. Sketch of the optical trap to mimic the gravitational interactions in the astrophysical DM BEC. (a) An optical trap with
lasers of constant intensity realizes the self-gravitational potential; (b) two additional time-dependent laser beams generate the
time-varying potential of the BH on the approaching BEC. The detuning between the lasers and the BEC atoms induces
deforming tidal forces. The red laser realizes an attractive potential, while the green one is repulsive.

Figure 7. Laser power of the optical trap of Sodium atoms to mimic the total potential exerted by a Schwarzschild black hole on a
galactic BEC. The red-detuned laser beams at λ= 700nm generate the constant term of the potential, while the time-varying
beams mimic the potential felt by the halo during the radial fall. The beam at λ= 760nm produces an attractive potential while
the green laser at λ= 540nm induces a repulsive potential.

For a BEC of Sodium atoms

Atomic mass: mA ∼ 23u.m.a.∼ 10−26 kg;

Resonant frequency: ω0 ∼ 3× 1015 rads−1.

Red-detuned laser beams with constant power generate the potential well mimicking the BEC DM
self-gravitational potential

Laser wavelength: λ∼ 700nm;

Laser beam waist: wL ∼ 1mm;

Laser power: P∼ 20mW;

Detuning: ∆∼−3× 1014 rads−1.

In the laboratory simulation, the final value τ 0 corresponds to the duration of the experiment.
A reasonable value for according to BEC lifetime is τ0 ∼ 1s. To be consistent with our model we assume the

12
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DM particle to have massm∼ 10−22 eV. With these parameters we can mimic the following astrophysical
scenario:

BEC DM waist: w0 ∼ 109m;

BEC total mass: MBEC ∼ 104M⊙;

BH mass: MBH ∼ 107M⊙;

Schwarzschild radius: Rs ∼ 1010m;

Breaking time: τB ∼ 109 s.

The corresponding breaking time in the laboratory is τL ∼ 0.2s. At this temporal scale, the BEC becomes
unstable, and one observes the wave breaking caused by the interaction with the BH.

8. Conclusions

Following the hypothesis of the solitonic bosonic nature of interacting DM, we investigated the evolution of a
BEC in curved spacetime. We considered a self-gravitating DM halo condensate in the Fermi normal
coordinates, which express the d’Alembert operator as the flat Laplacian with parabolic terms generated by
the curvature. By a multiple scale expansion, we studied the gravitational interaction with a black hole within
HNA. The resulting effective potential in the GPE is parabolic with a time-dependent frequency.

As observed in the literature [3], the collective bosonic wave function explains many of the DM
anomalous observations only if the BEC is in its excited states. In our model, the tidal forces in the effective
potential induce exponential deformations and instability in the DM halo, which excite higher-order internal
modes. The BEC, initially in the ground state of the attractive self-gravitating potential, undergoes a
perturbation due to the curved spacetime and evolves into a superposition of excited states.

In the direction of the repulsive effective potential, the BEC undergoes a transition from the stable
harmonic oscillator to an unstable inverted oscillator [24]. The instability is reached at a breaking time,
which grows with the DM and decreases with the BH mass. This may be used to explain the presence, or the
absence, of DM halos in galaxies of different sizes.

Our model is not only a simple closed-form analysis of the interaction of DM with BH but suggests
simulating the physics of DM interaction with a curved spacetime in the laboratory by time-varying traps.
This may open the way to study first and second quantized DM dynamics [25, 26] in simulated gravity with
atoms, polaritons, and optical systems [27–29].
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