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Abstract: This paper examines a homogeneous-good Bertrand–Edgeworth oligopoly model to explore
the role of firm size and number in pricing. We consider the price impact of merger, break up,
investment, divestment, entry and exit. A merger leads to higher prices only when it increases the
size of the largest seller and industry capacity is neither too big nor too small post-merger. Similarly,
breaking up a firm only leads to lower prices when it concerns the biggest producer and aggregate
capacity is within an intermediate range. Investment and entry (weakly) reduce prices, whereas
divestment and exit yield (weakly) higher prices. Taken together, these findings suggest that size
matters more than number in the determination of oligopoly prices.
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1. Introduction

There are many reasons why market competition may not result in a competitive
outcome, i.e., a situation where firms price at marginal cost. One of these reasons was
provided by the Irish scholar Francis Y. Edgeworth (1925) [1], namely the presence of ca-
pacity constraints.1 Indeed, when demand is sufficiently large in comparison to production
capacity, firms may well be capable of selling all of their supplies at supracompetitive
prices, that is, at prices above marginal cost.

For a given level of demand, however, there are at least two distinct factors that affect
available capacity, the number of firms and their size. For instance, capacity constraints
tighten both when an incumbent divests part of its business and when it redeploys its
assets to leave the industry all together. In case of exit, there is a reduction in the number
of competitors, whereas this need not be true in case of divestment. Though one would
expect both events to induce an upward pressure on prices, after all there is less production
capacity available; the precise impact on prices is a priori unclear. In particular, one may
wonder whether firm size and number have a comparable effect on oligopoly pricing and,
if not, what drives the difference.

The purpose of this paper is to shed light on the role of firm size and number in capacity-
constrained oligopoly pricing. Toward that end, we analyze an n-firm homogeneous-good
Bertrand–Edgeworth oligopoly. 2 As is well known, this model captures three different types
of market situation, each of which can be characterized by the ratio of industry capacity to
market demand.

When production capacity is ‘small’ relative to market demand, there is a symmetric
pure-strategy Nash equilibrium which equates aggregate capacity and demand. When
capacity is ‘large’ relative to market demand, there also is a pure-strategy solution, which
has firms pricing at marginal cost. In what follows, we refer to the first as the monopolistic
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zone and the second as the competitive zone. Finally, if industry capacity is ‘intermediate’,
then there is no pure-strategy equilibrium. As pointed out by Edgeworth (1925) [1], prices
are indeterminate in this case and oscillate indefinitely between some lower and upper
bound. We refer to this as the Edgeworth zone.

To examine the role of firm size and number in pricing in a capacity-constrained
oligopoly model, we consider the impact of changes in (the allocation of) production
capacity. Specifically, we explore the price effects of six different capacity-altering events:
merger, break up, investment, divestment, entry and exit. In case of merger or break up,
there is a change in the number of sellers, but aggregate capacity is not affected. With
investment and divestment, the number of firms remains constant, but capacity changes.
Finally, with entry and exit, both capacity and the number of firms change.

These events can have two distinct types of effect, both of which may affect pricing. On
the one hand, they can have an impact on the span of each of the three zones. This implies
that the events can cause the industry to switch zones. For instance, when capacities are
large and the market is in the competitive zone, divestment or exit might reduce production
capacity to such an extent that the industry moves into the Edgeworth zone. On the other
hand, given that the industry is in the Edgeworth zone, the events may also affect the
degree of price dispersion. We refer to this as the price fluctuation range, i.e., the range of
prices that are set with positive probability.

We find that a merger either has no effect on price or elevates price. There are two
necessary conditions for prices to rise as a result of merger: (i) the merger increases the size
of the largest seller (including the possibility of a merger between smaller producers that
becomes the new leading firm post-merger) and (ii) the industry is in the Edgeworth zone
or the merger brings the industry into the Edgeworth zone. Mergers that have no effect
on the market position or size of the biggest industry player do not affect price. Moreover,
if the industry is in the monopolistic or the competitive zone, then a merger only affects
prices when it causes the industry to move into the Edgeworth zone. As with mergers,
breaking up a firm in smaller, separate entities has an impact on price only when it concerns
the biggest seller. Moreover, it is only effective, in the sense of leading to lower prices,
when the industry is in the Edgeworth zone. In all other cases, splitting up suppliers in
smaller, independent units does not affect price.

Investment and entry increase production capacity and overall have a comparable
price reducing effect. If the industry is in the monopolistic zone, then both these events
may bring the industry into the Edgeworth zone and, ultimately, into the competitive zone.
Roughly speaking, the opposite occurs with divestment and exit, both of which reduce
available production capacity. Starting in the competitive zone, these events may lead
the industry into the Edgeworth zone and, eventually, into the monopolistic zone. The
fact that entry and investment as well as divestment and exit work in the same direction,
indicates that production capacity is a more important price determinant than the number
of competitors in these types of industry.

As to price dispersion, we find that a merger (break up) may yield a wider (narrower)
price fluctuation range, but only when it affects the size of the industry leader. Invest-
ment by the largest industry player also leads to more price dispersion. Taken together,
our findings thus suggest that size matters more than number in the determination of
oligopoly prices.

The next section introduces the model and provides a detailed specification of the
price fluctuation range. Section 3 explores the price effects of merger, break up, investment,
divestment, entry and exit. Section 4 offers a brief discussion of our findings and Section 5
presents the conclusion. All proofs are relegated to the Appendix A.

2. Methods
2.1. Oligopoly Model

We examine a Bertrand–Edgeworth oligopoly comprising a given set of profit-maximizing
firms: N = {1, 2, . . . , n}. Each firm i ∈ N has a production capacity ki > 0 and produces a
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homogeneous good on demand at a common marginal cost c ≥ 0. Without loss of generality,
it is assumed that k1 ≥ k2 ≥ . . . ≥ kn. Total industry capacity is denoted by K = ∑n

i=1 ki and
K−i is the combined production capacity of all firms other than i.

The market demand function is D : R+ 7→ R+. It is assumed that D(c) > 0 and that
D(p) is twice continuously differentiable, with D′(·) < 0 and D′′(·) ≤ 0 at any market
price p ≥ 0. Sellers select prices simultaneously from [0, ∞) so that [0, ∞)n is the set of all
possible price profiles. As products are perfect substitutes, consumers prefer to purchase
from a lowest-priced seller. Since these suppliers may be capacity-constrained, however, it
is possible that only part of them is served in which case higher-priced sellers might still
face demand.

To specify individual (residual) demand, let Ω(pi) = {j ∈ N|pj = pi} and ∆(pi) =

{j ∈ N|pj < pi} denote the set of firms that price at and below pi, respectively.3 Further-
more, let p−i = (p1, ., pi−1, pi+1, ., pn) indicate the prices of all firms other than i. Demand
for firm i’s product is then given by Di(pi, p−i) = D(pi) when all its competitors charge
a strictly higher price. If there is at least one other seller setting the same price, then its
demand is:

Di(pi, p−i) = max

 ki

∑j∈Ω(pi)
ki

D(pi)− ∑
j∈∆(pi)

k j

, 0

.

Finally, if firm i sets the strictly highest price in the industry, then its demand is:

Di(pi, p−i) = max{D(pi)− K−i, 0}.

Thus, (i) customers first visit the cheapest seller(s) at the set prices, (ii) at equal prices,
demand is allocated in proportion to production capacity and (iii) rationing is efficient.4

A firm’s profit is then given by:

πi(pi, p−i) = (pi − c) ·min{ki, Di(pi, p−i)}, ∀i ∈ N.

Hence, if firm i sets the strictly highest price in the industry, then its profits are given by
πi(pi, p−i) = (pi − c) ·max{D(pi, p−i)− K−i, 0}. To facilitate our analysis, we write:

p∗i = arg max
pi

(pi − c) ·max{D(pi, p−i)− K−i, 0}

to indicate the corresponding residual profit-maximizing price. Note that, by concavity of
the residual profit-function, there is a unique p∗i provided that there is a pi for which
D(pi, p−i) > K−i.

The next two results establish some properties that will prove useful in the ensuing
analysis. The first states that the residual profit-maximizing price increases with firm size.
This is so because a firm’s residual demand, ceteris paribus, depends positively on its
production capacity. The second sheds light on the relation between a firm’s production
capacity and market demand at the residual profit-maximizing price.

Lemma 1. Fix K and suppose that D(c) > K−n. For all i, j ∈ N and i 6= j, if ki > k j, then
p∗i > p∗j .

Lemma 2. For all i, j ∈ N and i 6= j, D
(

p∗i
)

does not depend on ki. Moreover,

0 <
∂D
(

p∗i
(
k j
))

∂k j
< 1.

Finally, let p be the price for which total industry capacity equals market demand, i.e.,

K = D
(

p
)

. We refer to p as the market-clearing price.
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As is well known, the existence of a pure-strategy Nash equilibrium in the above game
critically depends on the relation between demand and available production capacity.5

Specifically, there is a pure-strategy solution when total industry capacity is sufficiently
small (i.e., K ≤ D

(
p∗1
)
) and when it is sufficiently large (i.e., K ≥ D(c) + k1). In the

following, we refer to the first case as the monopolistic zone and to the second as the
competitive zone. In the monopolistic zone, there is a symmetric pure-strategy equilibrium
in which all firms set the market-clearing price p > 0. In the competitive zone, there too is

a symmetric pure-strategy solution which has all firms price at marginal cost.6

If joint industry capacity is intermediate (i.e., D
(

p∗1
)
< K < D(c) + k1), then there

is no pure-strategy equilibrium. As envisaged by Edgeworth (1925) [1], price stability is
unlikely in this case and prices are expected to oscillate indefinitely between some lower
and upper bound. We refer to this as the Edgeworth zone.

2.2. Price Fluctuation Range

Before examining the price effect of changes in firm size and number, it is useful to
distinguish two types of impact. First, a change in capacity allocation may affect the size of
the Edgeworth zone D

(
p∗1
)
< K < D(c) + k1 (and therefore the size of the monopolistic

and competitive zones). Second, given that joint capacity K is such that the industry is in
the Edgeworth zone, it may impact what we refer to as the price fluctuation range, i.e., the
difference between the maximum and minimum prices that are set with positive probability.

In order to characterize the price fluctuation range, define:

p̂i =

(
p∗i − c

)
·
(

D
(

p∗i , p−i
)
− K−i

)
ki

+ c,

as firm i’s iso-profit price. That is, p̂i is the price below p∗i at which firm i sells at capacity and
obtains the same profit as when it is the single highest-priced firm pricing at p∗i . Figure 1
graphically illustrates the concept for the industry leader (i.e., firm 1) with marginal cost
normalized to zero.

Figure 1. Firm 1’s residual profit maximizing and iso-profit price for c = 0.
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The next result relates the iso-profit price to production capacity. It shows that the
iso-profit price positively depends on firm size when industry capacity is given. Roughly
speaking, larger firms have a higher residual profit per unit of capacity. Since unit costs
are the same, this implies that a firm’s iso-profit price is increasing in its capacity, all else
unchanged.

Proposition 1. Suppose that D
(

p∗1
)
< K < D(c) + k1 and fix K. For all i, j ∈ N and i 6= j, if

ki > k j, then p̂i > p̂j.

This finding implicitly defines the lower bound of the price fluctuation range to be given
by p̂1. To see this, first note that none of the firms has an incentive to put mass on prices in
excess of their residual profit-maximizing price. Moreover, one can easily construct cases
where charging the residual profit-maximizing price is a best response. Taken together and
following Lemma 1 above, this implies that p∗1 constitutes the upper bound of the price
fluctuation range.

Suppose then that firm 1 sets p∗1 . Since this is optimal only when firm 1 has residual
demand at that price, it holds that D

(
p∗1 , p−1

)
> K−1. That is, all its rivals set a lower

price and are capacity-constrained. Yet, in that case, each of its rivals can raise their price
arbitrarily close to p∗1 and still sell at capacity. If that happens, then it is a best response of
the largest seller to undercut the price of its competitors by the smallest possible amount.
This holds true, since it goes from producing below capacity to producing at capacity while
selling at (approximately) the same price. In turn, this induces its rivals to cut their prices
slightly. This hypothetical downward spiral stops when a firm prefers hiking its price to
cutting it further. By Proposition 1, this is the largest seller.

Yet, if the largest seller does not put mass on prices below p̂1, then neither will any
of its rivals. Because firm 1 has no incentive to cut price further, there is nothing to gain
by pricing below p̂1. In fact, following the above logic, they have an incentive to follow
the price hike by firm 1, which then induces a new Edgeworth price cycle. Combining the
above then leads to the following conclusion.

Corollary 1. Suppose that D
(

p∗1
)
< K < D(c) + k1. The price fluctuation range is given by:

P =
[
p̂1, p∗1

]
.

3. Results

We now proceed by studying three scenarios that may alter the size distribution of
firms: (i) merger and break up, (ii) investment and divestment and (iii) entry and exit.
For all these cases, we examine the impact on the Edgeworth zone and price fluctuation
range, respectively.

3.1. Merger and Break Up

The first possibility that we consider is a change in the size distribution of firms that
results from merger or break up. In the first case, the number of firms is reduced, whereas
it increases in the second case. Importantly, in both cases it is assumed that total industry
capacity K remains constant.

3.1.1. Edgeworth Zone

As pointed out above, the Edgeworth zone is characterized by the following condition:
D
(

p∗1
)
< K < D(c) + k1. This condition captures the range of industry capacity for which

prices may be expected to be unstable. Notice that both the lower bound D
(

p∗1
)

and the
upper bound D(c) + k1 critically depend on the size of the largest seller. In fact, these
boundaries are affected only when there is a change in the production capacity of the
industry leader. This implies that the Edgeworth zone remains unaltered as long as k1 is
largest and unaffected by merger or break up.
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Suppose then that there is a merger that becomes the new industry leader in terms
of production capacity. Since k1 has increased post-merger, the upper bound D(c) + k1
increases. Moreover, since K is constant, the (new) largest firm faces more residual demand.
Following Lemma 1, this implies that p∗1 increases, so that the lower bound D

(
p∗1
)

decreases.
Taken together, this implies an expansion of the Edgeworth zone when a merger leads to
an increase in the largest supplier’s size. It is worth highlighting that a merger will never
induce a shift from the Edgeworth zone to the monopolistic or competitive zone, whereas
the opposite can occur.7 That is, if the industry is in the monopolistic or competitive zone,
then a merger may bring the industry into the Edgeworth zone, thereby leading to more
price dispersion.

This conclusion is reversed in case of a break up of firms in smaller, separate, entities.
As with merger, both the lower bound D

(
p∗1
)

and the upper bound D(c) + k1 remain
unaffected when the split up does not involve the largest seller. If the break up concerns the
biggest industry player, however, then the upper bound decreases. The decline in capacity
moreover means that the residual profit-maximizing price of the biggest firm decreases,
which implies an increase in the lower bound D

(
p∗1
)
. Therefore, the Edgeworth zone

contracts if and only if, the leading firm is split up in separate units. Notice that, in that
case, there may be a shift from the Edgeworth zone into the monopolistic or competitive
zones. In other words, if the industry is in the Edgeworth zone, then break up of the biggest
industry player might lead to lower prices and potentially to more price stability.

3.1.2. Price Fluctuation Range

Let us now examine the effect of a merger or break up on the price fluctuation range.
Starting with a merger, the next result shows that when the merger is the industry leader
in terms of production capacity, the price fluctuation range shifts upward. In stating this
result, let the merger be indicated with the subscript ‘s’.

Proposition 2. Suppose that D
(

p∗1
)
< K < D(c) + k1 and that there is a subset S ⊂ N of firms

that merge. If this merger is the biggest firm post-merger, then p∗s > p∗1 and p̂s > p̂1. That is, the
price fluctuation range shifts upward.

The intuition behind this result is as follows. Since industry capacity remains unaltered,
the (new) largest firm faces more residual demand, which means it has a higher residual
profit-maximizing price (Lemma 1). Since the industry leader’s residual profits are higher
post-merger, this implies an increase in the highest iso-profit price (Proposition 1). Such a
merger, therefore, leads to an upward shift in the price fluctuation range.

Since both the upper bound and the lower bound increase when the merger is the
biggest seller, it is a priori unclear whether the fluctuation range expands or contracts.
Assuming linear demand, the next example shows that it may expand:

Example 1. Assume that market demand is given by D(p) = a− bp and that a− bc > 0. Assume
further that D

(
p∗1
)
< K < D(c) + k1 ⇐⇒ a− bp∗1 < K < a− bc + k1. Now suppose that firm i

is the highest priced seller facing residual demand:

D∗i (p∗i , p−i)− K−i = a− K−i − bpi,

with a > K−i and b > 0. Its residual profit-maximizing price p∗i is then given by:

p∗i =
a + bc− K + ki

2b
,

with corresponding residual demand and profits:

D∗i (p∗i , p−i)− K−i =
a− bc− K + ki

2
and π∗i (p∗i , p−i) =

(a− bc− K + ki)
2

4b
.
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Firm i’s iso-profit price is given by:

p̂i =

(
p∗i − c

)
·
(

D
(

p∗i , p−i
)
− K−i

)
ki

+ c =
(a− bc− K + ki)

2

4bki
.

Now consider the fluctuation range:

p∗1 − p̂1 =
a + bc− K + k1

2b
− (a− bc− K + k1)

2

4bk1
=

(a− K + k1)(K + k1 − a)
4bk1

=
2k1 · (a + bc− K + k1)− (a− bc− K + k1)

2

4bk1

=
k1(k1 + 4bc)− (a− K)2 + bc(2(a− K)− bc)

4bk1
.

Taking the derivative with respect to k1 gives:

d
(

p∗1 − p̂1
)

dk1
=

4bk1 · (2k1 + 4bc)− 4b
(

k1(k1 + 4bc)− (a− K)2 + bc(2(a− K)− bc)
)

(4bk1)
2

=
k2

1 + (K− a + bc)2

4bk2
1

> 0.

We conclude that the fluctuation range is expanding with firm 1’s capacity.

If the merger is not the biggest firm post-merger, then the residual profit-maximizing
price p∗1 remains unaffected (since K−1 does not change). As firm 1’s residual profits are
unaffected by the merger, the iso-profit ( p̂1 − c) · k1 should also stay the same. Since k1
does not change in this case, this implies that p̂1 does not change either. Hence, the price
fluctuation range is not affected by a merger when the merger is not the biggest firm in
the industry.

Finally, as to the impact of a break up, suppose that firm 1 is split up into smaller,
separate entities. This implies that there is a new industry leader that is smaller than before
the break up. That firm faces less residual demand when setting the highest price so that
the upper bound of the price fluctuation range decreases. By Proposition 1, the same holds
for the iso-profit price. Hence, a break up of the largest seller leads to a downward shift in
the price fluctuation range. Moreover, the price fluctuation range remains unaffected when
the break up concerns a smaller supplier.

3.2. Investment and Divestment

In the preceding subsection, we studied changes in the size distribution of suppliers
under the assumption that aggregate capacity K is fixed. However, the size allocation
may also change when there are modifications in industry capacity. In this subsection,
we consider production capacity investments and divestments by incumbents. That is,
we examine the impact of changes in K assuming that the number of producers remains
constant. The question of what happens when the number of firms changes too is taken up
in the next subsection.

3.2.1. Edgeworth Zone

Recall that the Edgeworth zone is defined by D
(

p∗1
)
< K < D(c) + k1. Starting with

the upper bound (i.e., D(c) + k1), it is clear that it increases when the biggest industry
player invests in additional production capacity and decreases when this firm divests. The
upper bound may also increase when there is a smaller supplier that invests to such a
degree that it becomes the new industry leader in terms of capacity.
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Since investments and divestments directly affect total industry capacity K, there may
be a shift from the Edgeworth zone to the competitive zone. This can occur when a smaller
seller invests, for example. The reverse cannot happen, because divestment by the biggest
seller (or any other firm) reduces total industry capacity by the same amount. That is to say,
the inequality K < D(c) + k1 is immune to divestments.

As to the lower bound (i.e., D
(

p∗1
)
), it is affected only when the residual profit-

maximizing price of the largest producer changes. This price is effectively determined by
the combined capacity of this firm’s rivals (i.e., K−1). Notice that K−1 is unaffected by firm
1’s investments or divestments as long as it maintains its leading position. The lower bound
does change in response to investment or divestment by a smaller supplier, however, since
this directly affects K−1. For instance, divestment by a smaller producer yields a reduction
in K−1. This implies an increase in p∗1 and, therefore, a decrease in the lower bound D

(
p∗1
)
.

Similarly, investment by a smaller supplier leads to an increase in K−1. This induces a
lower p∗1 and, consequently, an increase in the lower bound D

(
p∗1
)
.

Since total industry capacity is affected, it is then possible that the industry shifts
from the monopolistic zone to the Edgeworth zone (e.g., when the leading industry player
invests) and vice versa (e.g., when the leading industry player divests).

3.2.2. Price Fluctuation Range

Let us now direct our attention to the potential impact of investment or divestment on
the price fluctuation range. The following result considers the case where the largest seller
invests in extra capacity.

Proposition 3. Suppose that D
(

p∗1
)
< K < D(c) + k1. The price fluctuation range p∗1 − p̂1

increase in the size of the largest industry player k1.

As an increase in k1 does not affect K−1, the residual profit-maximizing price p∗1 remains
unaffected. Since residual demand also stays the same, residual profits do not change either.
By the very definition of the iso-profit price, this implies that ( p̂1 − c) · k1 should also stay
the same. However, since k1 increases, this requires a reduction in the iso-profit price p̂1.
Taken together, this means that the price fluctuation range p∗1 − p̂1 expands downward
when the industry leader invests in additional production capacity, all else equal.

The reverse holds when the largest supplier divests as long as it remains the industry
leader. As with investment, the residual profit-maximizing price p∗1 does not change. Yet,
to keep ( p̂1 − c) · k1 constant, the iso-profit price rises to compensate for the decline in k1.
In cases in which divestment is so severe that firm 1 loses its leading position, the new
leader (firm 2) faces more residual demand than firm 1 when setting the highest price. This
induces an increase in the price fluctuation range upper bound. Since firm 2’s capacity
remains unaltered, this implies that its iso-profit price increases too. Hence, in this case, the
fluctuation range shifts upward.

Let us now consider the impact of growth by a firm that is not the industry leader.
When a smaller firm invests without taking over the leading role, it reduces firm 1’s
residual demand and residual profit-maximizing price p∗1 . This implies a reduction in
firm 1’s residual profits. Since k1 does not change, it follows that the iso-profit price p̂1
decreases too. Notice that the effect is similar when a smaller firm invests to such a degree
that it becomes the new industry leader. We conclude that the price fluctuation range shifts
downward whenever a smaller supplier invests.

As to divestment by a smaller producer, this has a direct negative effect on K−1. Since
this increases firm 1’s residual demand, the residual profit-maximizing price p∗1 rises. The
resulting rise in residual profits implies that the iso-profit ( p̂1 − c) · k1 should increase as
well. Since k1 has not changed in this case, the iso-profit price p̂1 increases too. Hence,
divestment by a smaller supplier leads to an upward shift in the price fluctuation range.
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3.3. Entry and Exit

Finally, let us consider the possibility of a simultaneous change in aggregate capacity
and the number of firms. This may happen in cases of entry or exit. As before, we first
discuss the impact on the Edgeworth zone and then examine how the price fluctuation
range is affected.

3.3.1. Edgeworth Zone

Suppose that industry capacity expands as a result of entry. If the newcomer is the
largest firm in the industry, then the upper bound of the Edgeworth zone (i.e., D(c) + k1)
increases. This is so since there is a new ‘number one’ post-entry, which implies an increase
in k1. At the same time, however, the lower bound (i.e., D

(
p∗1
)
) increases too. Indeed, the

new industry leader faces less residual demand than its predecessor so that p∗1 is lower and
D
(

p∗1
)

is higher post-entry.
If the newcomer is smaller than the largest firm in the industry, then this has no effect

on the upper bound of the Edgeworth zone since k1 does not change. Yet, also in this
case, entry leads to a reduction in residual demand for the biggest firm and, consequently,
to a reduction in p∗1 . Hence, entry always leads to an increase in the lower bound of the
Edgeworth zone D

(
p∗1
)
.

Exit by the industry leader reduces the upper bound D(c) + k1. It also implies that
the new industry leader (i.e., firm 2 pre-exit) faces more residual demand when setting its
residual profit-maximizing price, which therefore increases. As a result, D

(
p∗1
)

decreases
so that the Edgeworth zone shifts leftward. That is, the monopolistic zone becomes smaller,
whereas the competitive zone expands. If the exiting firm is not the industry leader, then
the upper bound remains unaltered. Yet, the leading firm faces more residual demand
post-exit so that p∗1 increases and, therefore, D

(
p∗1
)

decreases. Consequently, the Edgeworth
zone expands in this case.

3.3.2. Price Fluctuation Range

Entry and exit also affect the price fluctuation range. The next two results show that
entry leads to a downward shift in the price fluctuation range, whereas exit induces an
upward shift. In stating these results, let the prime indicate the situation post-entry.

Proposition 4. Suppose that D
(

p∗1
)
< K < D(c) + k1. If a new firm enters the industry, then

p∗′1 < p∗1 and p̂′1 < p̂1. That is, the price fluctuation range shifts downward.

Proposition 5. Suppose that D
(

p∗1
)
< K < D(c) + k1. If an incumbent exits the industry, then

p∗′1 > p∗1 and p̂′1 > p̂1. That is, the price fluctuation range shifts upward.

The logic behind these results is as follows. If a newcomer enters the industry that is
smaller than the market leader, then this causes a drop in residual demand for the largest
firm. Consequently, the residual profit-maximizing price p∗1 is lower post-entry. Since the
largest seller’s production capacity remains unaltered, this implies a drop in the iso-profit
price p̂1. The same holds when the entrant is the new industry leader. First, its residual
demand is lower than the residual demand of the preceding leader. This has the implication
that the upper bound of the price fluctuation range (p∗1) decreases. Since residual profits are
lower and the industry leader’s capacity is larger, the corresponding iso-profit price (p̂1) is
lower post-entry. As a result, entry induces a downward shift in the price fluctuation range.

Exit mirrors the situation with entry. If a firm leaves the industry, then there is more
residual demand for the (new) industry leader, i.e., p∗1 increases. Since residual profits are
higher and the largest firm is weakly smaller post-exit, the iso-profit price (p̂1) increases
too. Consequently, exit creates an upward shift in the price fluctuation range.
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3.4. Recapitulation

The preceding analysis presents many different situations in which there may or may
not be a price effect. In the following, we present three tables (one for each zone) Tables 1–3
that provide an overview of the impact of the six events on pricing. In these tables, the ‘↑’
and ‘↓’ mean that prices go up or go down, respectively. The ‘-’ sign means that there is
no impact on price and the ‘x’ indicates that the situation cannot occur. Each of the three
tables distinguishes between ‘same zone’ and ‘switch zone’. ‘Same zone’ means that the
industry remains in the respective zone after the event, whereas ‘switch zone’ means that
the event causes a shift to an adjacent zone. Lastly, ‘regular’ means that the industry leader
(in terms of production capacity) is not involved, whereas ‘leader’ means that the largest
firm takes part in the event.

Starting in the monopolistic zone (Table 1), a merger has a price effect only when
it induces a switch to the Edgeworth zone. In that case, there is a ‘jump’ from a single
market clearing price to a higher range of prices. This requires an increase in the production
capacity of the largest player. If the biggest firm increases in size, then a merger may result
in higher prices and create price dispersion. Break up has no effect and cannot lead to
a shift in zones. The same holds for divestment and exit, i.e., these events cannot move
the industry from the monopolistic zone to the Edgeworth zone. Yet, since they lead to a
reduction in total industry capacity, they positively affect price levels. The opposite holds
for investment and entry, which increase industry capacity and lead to a reduction in prices.
This holds true independent of whether these events trigger a switch to the Edgeworth
zone.8

Table 1. Price Effects in the Monopolistic Zone.

Small Capacity
Same Zone Switch Zone

Regular Leader Regular Leader
Merger - - ↑ ↑
Break Up - - x x
Investment ↓ ↓ ↓ ↓
Divestment ↑ ↑ x x
Entry ↓ ↓ ↓ ↓
Exit ↑ ↑ x x

Turning to the competitive zone (Table 2), the effect of a merger is comparable to when
the industry is in the monopolistic zone. It affects price only when it results in a switch in
zones, which requires an increase in size of the industry leader. When this happens, prices
rise. Break up cannot induce a shift in zones and neither can capacity expanding events
like investment or entry. Divestment and exit may bring the industry into the Edgeworth
zone and, therefore, induce a price increase. Taken together, there may be a price increasing
effect, but only when (1) there is a reduction in the number of firms or production capacity
and (2) the industry leaves the competitive zone.

Table 2. Price Effects in the Competitive Zone.

Large Capacity
Same Zone Switch Zone

Regular Leader Regular Leader
Merger - - ↑ ↑
Break Up - - x x
Investment - - x x
Divestment - - ↑ ↑
Entry - - x x
Exit - - ↑ ↑
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Table 3. Price Effects in the Edgeworth Zone.

Intermediate Capacity
Same Zone Switch Zone

Regular Leader Regular Leader
Merger -/↑ ↑ - -
Break Up - ↓ - ↓
Investment ↓ ↓ ↓ x
Divestment ↑ ↑ ↑ ↑
Entry ↓ ↓ ↓ ↓
Exit ↑ ↑ ↑ ↑

Finally, let us summarize the potential price effects when the industry is in the Edge-
worth zone. Starting with the events that affect available industry capacity, divestment
and exit always drive prices upward independent of whether there is a switch in zones.
The reverse holds for investment and entry. Breaking up firms that are not the industry
leader has no effect on price, whereas breaking up the largest firm leads to lower prices.
A merger does not induce a shift to the competitive or monopolistic zone, but can have a
price increasing effect when the largest industry player has grown post-merger.

4. Discussion

Recent years have seen a renewed interest in oligopoly pricing under capacity con-
straints (see, e.g., Bos and Vermeulen (2021) [17], Montez and Schutz (2021) [18] and
Edwards and Routledge (2022) [14]) and, in particular, in providing rationales for Edge-
worth price cycles in markets with perfect and less than perfect substitutes (see, e.g., Myatt
and Ronayne (2019) [19] and Gabszewicz, Marini and Zanaj (2022) [20]).

Such a revamped interest comes from several sources, perhaps the most important
one being the existing empirical evidence. Price dispersion is shown to be persistent
in both physical and online shops (see, e.g., Aas, Wulfsberg and Moen (2018) [21] and
Gorodnichenko, Sheremirov and Talavera (2018) [22]). Edgeworth price cycles are also
well documented. For example, Eckert (2003) [23] and Noel (2007a, 2007b) [24,25] provide
evidence of sawtooth pricing paths in the Canadian retail gasoline market. Wang (2008) [26]
explores empirically the existence of collusive price cycles in the Australian retail gasoline
market. Similarly, Foros and Steen (2013) [27] and Linder (2018) [28] describe Edgeworth-
like price cycles in European retail gasoline markets. Furthermore, such pricing dynamics
has also been documented for pharmaceutical markets and search-engine advertising (see,
e.g., Hauschultz and Munk-Nielsen (2020) [29] and Zhang and Feng (2011) [30]). Finally, it
is noteworthy that similar pricing patterns have been observed in controlled laboratory
experiments (see, e.g., Kruse, Rassenti, Reynolds and Smith (1994) [31] and Fonseca and
Normann (2013) [32]).

With few exceptions, these and similar studies take the size distribution of firms as
given. Our analysis highlights the price impact of changes in firm size and number. In
particular, we have shown how changes in market structure may affect the degree of price
dispersion by making an industry more or less competitive. With an eye on the potential
welfare implications, this warrants more (empirical) research into oligopoly pricing under
capacity constraints.
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5. Conclusions

We analyzed an n-firm homogeneous-good Bertrand–Edgeworth model to examine
the impact of firm size and number on oligopoly pricing. We considered six different events
that have an effect on the number of firms (merger and break up), available production
capacity (investment and divestment) or both (entry and exit). We showed that a merger
leads to higher prices only when it increases the size of the largest seller and industry
capacity is neither too big nor too small post-merger. Similarly, breaking up a firm only
leads to lower prices when it concerns the biggest producer and aggregate capacity is within
an intermediate range. Investment and entry (weakly) reduce prices, whereas divestment
and exit yield (weakly) higher prices. The overall takeaway from our explorations is,
therefore, that size matters more than number in the determination of oligopoly prices.

We see several avenues for future research. One is to conduct a similar study assuming
that products are less than perfect substitutes. Another is to consider cost (in)efficiencies
that may result from merger. This may well create an (additional) downward or upward
pressure on prices. As to the latter, we exclusively considered unilateral effects and ignored
potential coordinated effects. Clearly, the upward price effect of a merger may well be
stronger in case it facilitates a ‘mutual meeting of the minds’.
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Appendix A. Proofs

Proof of Lemma 1. Consider some firm i ∈ N. Its residual profit-maximizing price, p∗i , is
the price that solves:

D(pi)− K−i + (pi − c)
∂Di(pi, p−i)

∂pi
= 0⇐⇒ D(pi) + (pi − c)

∂Di(pi, p−i)

∂pi
= K− ki.

Notice that, for a given industry capacity K, the LHS is decreasing in pi and the RHS is
decreasing in ki. Hence, ∀i, j ∈ N and i 6= j, if ki > k j, then p∗i > p∗j .

Proof of Lemma 2. Following the proof of Lemma 1, the residual profit-maximizing price
of firm i is implicitly defined by:

D(p∗i )− K−i + (p∗i − c)
∂D
(

p∗i , p−i
)

∂p∗i
= 0.

Rearranging gives:

D(p∗i ) = K−i − (p∗i − c)
∂D
(

p∗i , p−i
)

∂p∗i
.

Observe that the RHS does not depend on ki.
Next, note that:

∂D
(

p∗i
(
k j
))

∂k j
= 1−

∂p∗i
∂k j
·
(

D′(p∗i ) + (p∗i − c)D′′(p∗i )
)
,
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where:
∂p∗i
∂k j
·
(

D′(p∗i ) + (p∗i − c)D′′(p∗i )
)
> 0,

since ∂p∗i
∂kj

< 0, D′
(

p∗i
)
< 0 and D′′

(
p∗i
)
≤ 0. This implies

∂D(p∗i (kj))
∂kj

< 1. Moreover,
∂D(p∗i (kj))

∂kj
> 0, because ∂p∗i

∂kj
< 0 and D′

(
p∗i
)
< 0.

Proof of Proposition 1. Consider some firm i ∈ N. Its iso-profit price is given by:

p̂i =

(
p∗i − c

)(
D
(

p∗i , p−i
)
− K−i

)
ki

+ c.

Holding total industry capacity K fixed, we now show that p̂i increases with ki. Taking the
first-derivative with respect to ki:

dp̂i
dki

=

ki ·
[

dp∗i
dki

(
D
(

p∗i , p−i
)
− K + ki

)
+
(

p∗i − c
)( ∂D(p∗i ,p−i)

∂p∗i

dp∗i
dki

+ 1
)]
−
(

p∗i − c
)(

D
(

p∗i , p−i
)
− K−i

)
k2

i
.

Rearranging gives:

dp̂i
dki

=

dp∗i
dki
· ki ·

[(
D
(

p∗i , p−i
)
− K + ki

)
+
(

p∗i − c
) ∂D(p∗i ,p−i)

∂p∗i

]
−
(

p∗i − c
)(

D
(

p∗i , p−i
)
− K

)
k2

i
. (A1)

Notice that, by the definition of the residual profit-maximizing price p∗i , it holds that:

(D(p∗i , p−i)− K + ki) + (p∗i − c)
∂D
(

p∗i , p−i
)

∂p∗i
= 0.

Hence, the derivative (A1) reduces to:

dp̂i
dki

=
−
(

p∗i − c
)(

D
(

p∗i , p−i
)
− K

)
k2

i
,

which is positive since K = D
(

p
)

and p∗i > p. We conclude that if ki > k j, then p̂i > p̂j, for
all i, j ∈ N and i 6= j.

Proof of Proposition 2. Consider a merger S ⊂ N that involves firm 1. The claims that
p∗s > p∗1 and p̂s > p̂1 follow directly from Lemma 1 and Proposition 3.

This leaves the case where a subset of smaller suppliers merge and becomes the biggest
firm in the industry. In that case, this new industry leader faces more residual demand
when setting the highest price so that the upper bound of the fluctuation range increases
(i.e., p∗s > p∗1). Moreover, by Proposition 3, the iso-profit price is increasing with capacity
when total industry capacity is constant. Since ks > k1, this implies that also in this case it
holds that p̂s > p̂1 post-merger.

Proof of Proposition 3. Consider the price fluctuation range
[
p̂1, p∗1

]
for a given industry

capacity K:

p∗1 − p̂1 = p∗1 −
(

p∗1 − c
)(

D
(

p∗1 , p−1
)
− K−1

)
k1

− c =
(

p∗1 − c
)
· k1 −

(
p∗1 − c

)(
D
(

p∗1 , p−1
)
− K + k1

)
k1

=

(
p∗1 − c

)(
K− D(p∗1 , p−1)

)
k1

.
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Now suppose there is an increase in k1. To assess the impact on the fluctuation range,
notice that:

d
(

p∗1 − p̂1
)

dk1
=

d

((
p∗1 − c

)(
K− D(p∗1 , p−1)

)
k1

)
dk1

=
k1 ·

[
dp∗1
dk1

(
K− D(p∗1 , p−1)

)
+
(

p∗1 − c
)(

1− ∂D(p∗1 ,p−1)
∂p∗1

dp∗1
dk1

)]
−
(

p∗1 − c
)(

K− D(p∗1 , p−1)
)

k2
1

.

In this case, it holds that dp∗1
dk1

= 0 since K−1 remains unaltered with an expansion of k1.
Hence, the preceding equality simplifies to:(

p∗1 − c
)(

D(p∗1 , p−1)− K−1
)

k2
1

,

which is positive. We conclude that the price fluctuation range is increasing in the size of
the largest industry player.

Proof of Proposition 4. Suppose there is an entrant with capacity k′ > k1, then this new-
comer faces less residual demand than its predecessor (firm 1) when it is the highest-priced
firm in the industry: D(·)− K−1 > D(·)− K. It follows that p∗′1 < p∗1 . This implies that
residual profits of the industry leader are smaller post-entry. By definition of the iso-profit
price, this means that

(
p̂′1 − c

)
· k′1 must decrease too. Yet, k′ > k1, which implies that

p̂′1 < p̂1 to ensure that
(

p̂′1 − c
)
k′ < ( p̂1 − c)k1.

Now suppose there is an entrant with capacity k′ < k1, then firm 1 faces less residual
demand when it is the highest-priced firm in the industry: D(·)− K−1 > D(·)− K−1 − k′.
It follows that p∗′1 < p∗1 . This implies that residual profits of the industry leader are
smaller post-entry. By definition of the iso-profit price, this means that

(
p̂′1 > p̂1 − c

)
k′1

must decrease too. Yet, k′1 = k1, which implies that p̂′1 < p̂1 to ensure that
(

p̂′1 − c
)
k′1 <

( p̂1 − c)k1.

Proof of Proposition 5. Suppose that the largest seller (firm 1) leaves the industry. This
means that firm 2 is the new industry leader that now has a higher residual profit-
maximizing price, because K−1 > K−1 − k2. Hence, its residual demand is higher. Con-
sequently, firm 2’s residual profit exceeds firm 1’s residual profit post-exit. This implies
that firm 2’s residual profit post-exit exceeds ( p̂1 − c) · k1 and, therefore, also ( p̂1 − c) · k2,
because k2 ≤ k1. By the definition of the iso-profit price this means that p̂′1 > p̂1 to ensure
that the iso-profit post-exit equals the new leader’s residual profit.

Now suppose that a smaller supplier leaves the industry. This directly reduces K−1,
which increases the residual demand for firm 1. Consequently, p∗′1 > p∗1 . Since firm 1’s
residual demand and price go up, its residual profits will also increase. In turn, this implies
that its iso-profit ( p̂1 − c)k1 must increase too. Yet, k1 does not change so that its iso-profit
price p̂1 increases. We conclude that p̂′1 > p̂1.

Notes
1 For a general discussion, see Tirole (1988) [2] and Vives (1999) [3].
2 Price competition under capacity constraints has been studied by Beckmann (1965) [4] Levitan and Shubik (1972) [5], Kreps

and Scheinkman (1983) [6], Osborne and Pitchik (1986) [7], Vives (1986) [8], Allen and Hellwig (1986) [9], Maskin and Tirole
(1988) [10], Deneckere and Kovenock (1992) [11], Tasnádi (1999) [12], amongst many others.

3 Formally, it is Ω(pi, p−i) and ∆(pi, p−i), where p−i is the vector of prices of all firms other than i. We use this shorthand notation
to emphasize on which value of pi these sets are based. In the ensuing analysis, the effect of the complete price vector on demand
will be clear from the context.

4 Such a surplus maximizing scheme is also used by Levitan and Shubik (1972) [5], Kreps and Scheinkman (1983) [6], Osborne and
Pitchik (1986) [7], Bos, Marini and Saulle (2022) [13], Edwards and Routledge (2022) [14], amongst many others.
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5 For a general discussion, see, e.g., Tasnádi (2004) [15].
6 There are also many asymmetric equilibria with a subset of sellers pricing above costs.
7 A comparable finding in a three-firm Bertrand–Edgeworth model can be found in Chen and Li (2018) [16].
8 It is worth noting that there is a boundary case where K = D

(
p
)

= D
(

p∗1
)

prior to investment or entry. In this situation,
an increase in the leader’s production capacity induces a shift from the monopolistic to the Edgeworth zone, but its residual
profit-maximizing price p∗1 does not change. Notice, however, that there is still a price decrease in the sense that the price
fluctuation range [ p̂1, p∗1 ] expands downward (i.e., p̂1 decreases when moving into the Edgeworth zone).

References
1. Edgeworth, F.Y. The Pure Theory of Monopoly. Pap. Relat. Political Econ. 1925, 1, 111–142.
2. Tirole, J. The Theory of Industrial Organization; MIT Press: Cambridge, MA, USA, 1988.
3. Vives, X. Oligopoly Pricing: Old Ideas and New Tools; The MIT Press: Cambridge, MA, USA, 1999.
4. Beckmann, M. Edgeworth-Bertrand Duopoly Revisited. In Operations Research-Verfahren; Rudolf, H., Ed.; Sonderdruck, Verlag

Anton Hain: Meisenheim, Germany, 1965; Volume III, pp. 55–68.
5. Levitan, R.; Shubik, M. Price Duopoly and Capacity Constraints. Int. Econ. 1972, 13, 111–122. [CrossRef]
6. Kreps, D.; Scheinkman, J. Quantity Precommitment and Bertrand competition yields Cournot outcomes. Bell J. Econ. 1983, 14,

326–337. [CrossRef]
7. Osborne, M.J.; Pitchik, C. Price Competition in a Capacity-Constrained Duopoly. J. Econ. Theory 1986, 38, 238–260. [CrossRef]
8. Vives, X. Rationing rules and Bertrand–Edgeworth Equilibria in Large Markets. Econ. Lett. 1986, 21, 113–116. [CrossRef]
9. Allen, B.; Hellwig, M. Bertrand–Edgeworth Oligopoly in Large Markets. Rev. Econ. Stud. 1986, 53, 175–204. [CrossRef]
10. Maskin, E.; Tirole, J. A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand Curves and Edgeworth Cycles.

Econometrica 1988, 56, 571599. [CrossRef]
11. Deneckere, R.J.; Kovenock, D. Price Leadership. Rev. Econ. Stud. 1992, 59, 143–162. [CrossRef]
12. Tasnádi, A. Existence of pure strategy Nash equilibrium in Bertrand–Edgeworth oligopolies. Econ. Lett. 1999, 63, 201–206.

[CrossRef]
13. Bos, I.; Marini, M.A.; Saulle, R.D. Myopic Oligopoly Pricing; Working Paper; Nota di Lavoro 32.2021; Fondazione Eni Enrico Mattei:

Milano, Italy, 2021.
14. Edwards, R.A.; Routledge, R.R. Information, Bertrand–Edgeworth Competition and the Law of One Price. J. Math. Econ. 2022,

101, 1–7. [CrossRef]
15. Tasnádi, A. Production in Advance versus Production to Order. J. Econ. Organ. 2004, 54, 191–204. [CrossRef]
16. Chen, Z.; Li, G. Horizontal Mergers in the Presence of Capacity Constraints. Econ. Inq. 2018, 56, 1346–1356. [CrossRef]
17. Bos, I.; Vermeulen, D. On Pure-Strategy Nash Equilibria in Price-Quantity Games. J. Math. Econ. 2021, 96, 1–13. [CrossRef]
18. Montez, J.; Schutz, N. All-Pay Oligopolies: Price Competition with Unobservable Inventory Choices. Rev. Econ. Stud. 2021, 88,

2407–2438. [CrossRef]
19. Myatt, D.P.; Ronayne, D. A Theory of Stable Price Dispersion; Working Paper, Economics Series Working Papers 873; University of

Oxford, Department of Economics: Oxford, UK, 2019.
20. Gabszewicz, J.; Marini, M.A.; Zanaj, S. Random Encounters and Information Diffusion about Product Quality. J. Econ. Manag.

2022, forthcoming. [CrossRef]
21. Aas, Ø.N.; Wulfsberg, F.; Moen, E.R. Price Dispersion and the Role of Stores; Working Paper; BI Norwegian Business School, Oslo

Business School and Université Libre de Bruxelles: Bruxelles, Belgium, 2018.
22. Gorodnichenko, Y.; Sheremirov, V.; Talavera, O. Price Setting in Online Markets: Does IT click? J. Eur. Econ. 2018, 16, 1764–1811.

[CrossRef]
23. Eckert, A. Retail Price Cycles and the Presence of Small Firms. Int. J. Industrial Organ. 2003, 21, 151–170. [CrossRef]
24. Noel, M.D. Edgeworth Price Cycles: Evidence from the Toronto Retail Gasoline Market. J. Ind. Econ. 2007, 55, 69–92. [CrossRef]
25. Noel, M.D. Edgeworth Price Cycles, Cost-based Pricing and Sticky Pricing in Retail Gasoline Markets. Rev. Econ. Stat. 2007, 89,

324–334. [CrossRef]
26. Wang, Z. Collusive Communication and Pricing Coordination in a Retail Gasoline Market. Rev. Ind. Organ. 2008, 32, 35–52.

[CrossRef]
27. Foros, Ø.; Steen, F. Vertical Control and Price Cycles in Gasoline Retailing. Scand. J. Econ. 2013, 115, 640–661. [CrossRef]
28. Linder, M. Price Cycles in the German Retail Gasoline Market Competition or Collusion? Econ. Bull. 2018, 38, 593–602.
29. Hauschultz, F.P.; Munk-Nielsen, A. The Role of Demand in Price Cycles: Evidence from Danish Pharmaceutical Markets; Working Paper;

University of Copenhagen: Copenhagen, Denmark, 2020.
30. Zhang, X.; Feng, J. Cyclical Bid Adjustments in Search-Engine Advertising. Manag. Sci. 2011, 57, 1703–1719. [CrossRef]

http://doi.org/10.2307/2525908
http://dx.doi.org/10.2307/3003636
http://dx.doi.org/10.1016/0022-0531(86)90117-1
http://dx.doi.org/10.1016/0165-1765(86)90047-9
http://dx.doi.org/10.2307/2297646
http://dx.doi.org/10.2307/1911701
http://dx.doi.org/10.2307/2297930
http://dx.doi.org/10.1016/S0165-1765(99)00029-4
http://dx.doi.org/10.1016/j.jmateco.2022.102658
http://dx.doi.org/10.1016/j.jebo.2003.04.005
http://dx.doi.org/10.1111/ecin.12557
http://dx.doi.org/10.1016/j.jmateco.2021.102501
http://dx.doi.org/10.1093/restud/rdaa085
http://dx.doi.org/10.1111/jems.12503
http://dx.doi.org/10.1093/jeea/jvx050
http://dx.doi.org/10.1016/S0167-7187(02)00038-3
http://dx.doi.org/10.1111/j.1467-6451.2007.00303.x
http://dx.doi.org/10.1162/rest.89.2.324
http://dx.doi.org/10.1007/s11151-008-9163-2
http://dx.doi.org/10.1111/sjoe.12024
http://dx.doi.org/10.1287/mnsc.1110.1408


Games 2023, 14, 3 16 of 16

31. Kruse, J.B.; Rassenti, S.; Reynolds, S.S.; Smith, V.L. Bertrand–Edgeworth Competition in Experimental Markets. Econometrica 1994,
62, 343–372. [CrossRef]

32. Fonseca, M.A.; Normann, H.-T. Excess Capacity and Pricing in Bertrand–Edgeworth Markets: Experimental Evidence. J. Inst.
Theor. Econ. 2013, 169, 199–228. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2307/2951616
http://dx.doi.org/10.1628/093245613X666306

	Introduction
	Methods
	Oligopoly Model
	Price Fluctuation Range

	Results
	Merger and Break Up
	Edgeworth Zone
	Price Fluctuation Range

	Investment and Divestment
	Edgeworth Zone
	Price Fluctuation Range

	Entry and Exit
	Edgeworth Zone
	Price Fluctuation Range

	Recapitulation

	Discussion
	Conclusions
	Proofs
	References

