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Abstract. The declarative specification of business processes is based
upon the elicitation of behavioural rules that constrain the legal execu-
tions of the process. The carry-out of the process is up to the actors,
who can vary the execution dynamics as long as they do not violate the
constraints imposed by the declarative model. The constraints specify
the conditions that require, permit or forbid the execution of activities,
possibly depending on the occurrence (or absence) of other ones. In this
chapter, we review the main techniques for process mining using declar-
ative process specifications, which we call declarative process mining.
In particular, we focus on three fundamental tasks of (1) reasoning on
declarative process specifications, which is in turn instrumental to their
(2) discovery from event logs and their (3) monitoring against running
process executions to promptly detect violations. We ground our review
on Declare, one of the most widely studied declarative process specifica-
tion languages. Thanks to the fact that Declare can be formalized using
temporal logics over finite traces, we exploit the automata-theoretic char-
acterization of such logics as the core, unified algorithmic basis to tackle
reasoning, discovery, and monitoring. We conclude the chapter with a
discussion on recent advancements in declarative process mining, consid-
ering in particular multi-perspective extensions of the original approach.

1 Introduction

Finding a suitable balance between flexibility and control is a long-standing prob-
lem in the management of work processes [83]. Among the different approaches
striving to achieve this balance, flexibility by design suggests to infuse flexibility
in the process modeling language at hand. Declarative process modeling lan-
guages take this to the extreme: they support the specification of what are the
relevant constraints on the temporal evolution of the process, without explicitly
indicating how process instances should be routed to satisfy such constraints.
In comparison with imperative approaches that produce “closed” representations
(i.e., only those process executions explicitly foreseen in the model are allowed),
declarative approaches yield “open” representations (i.e., every process execu-
tion is implicitly allowed, as long as it does not incur in the violation of some
constraint).
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(a) A process (b) Imperative model (c) Declarative specification

Fig. 1. Intuitive representation of the difference between imperative process models
and declarative process specifications in the space of all execution traces. Diagram (a)
represents a real process, which isolates the allowed (green, solid fill) behaviors from the
forbidden (red, dotted fill) ones. Diagram (b) shows an imperative process model that
stays within the boundaries of the process, but misses many allowed behaviors. Diagram
(c) shows a declarative process specification that well approximates the boundaries of
the process: it accepts only traces that are allowed by the process, and includes all the
traces accepted by the imperative model in (b). (Color figure online)

Figure 1 depicts an intuitive representation of the difference between classi-
cal imperative process models and declarative process specifications, considering
execution traces that are forbidden by the real process, allowed by the real pro-
cess, and captured by the designed process specification. Imperative models (such
as those based on Petri nets and related formalisms) are suited to explicitly cap-
ture control-flow patterns like sequences, choices, concurrent sections, and loops.
Those patterns, in turn, lend themselves to characterize a subset of the allowed
traces, but struggle in covering the whole space of execution paths in the case
of loosely structured, flexible processes. In other words, they favor control over
flexibility. Contrariwise, declarative specifications strive to balance flexibility and
control by attempting to characterize constraints that well-separate the allowed
behaviors from the forbidden ones. In other words, declarative process specifi-
cations allow us to capture not only what is expected to occur, but also what
should not happen. This helps in better approximating the boundaries of the
real process, containing (and extending) those captured via imperative process
models.

The idea of adopting a constraint-based, declarative approach to regulate
dynamic systems has been originally brought forward in different communities:
in data management, to express cascaded transactional updates [26]; in multia-
gent systems, to regulate agent interaction protocols [88]; and in business process
management, to capture subprocesses that foresee loosely-coupled control-flow
conditions on their activities [85]. This idea was further developed within BPM
in consequent years, leading to a series of declarative, constraint-based process
modeling languages, with two prominent exponents: Declare [76] and Dynamic
Condition-Response Graphs [49]. Common to all such approaches is the usage of
linear temporal/dynamic logics (i.e., temporal/dynamic logics for sequences of
events) to formally describe specifications, and the exploitation of correspond-
ing reasoning mechanisms to tackle a variety of concrete tasks along the entire
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process lifecycle, from design and model analysis to runtime execution and data
analysis.

In this chapter, we focus on declarative process mining, that is, process mining
where the input or output models are specified using declarative, constraint-
based languages. Concretely, we employ the Declare language, but all the
presented ideas seamlessly apply any language that can be formalized using
logics over finite traces [30], which are indeed at the core of Declare. Focusing
on finite traces reflects the intuition that every process instance is expected
to complete in a finite number of steps. This aspect has a significant impact
on the corresponding operational techniques, as these logics admit an automata-
theoretic characterization that is based on standard finite-state automata [27,30],
instead of automata on infinite structures, which are needed when such logics
are interpreted over infinite traces.

Leveraging automata-based techniques paired with suitable measures relat-
ing traces, events and constraints, we review three interconnected fundamental
declarative process mining tasks:

Reasoning – to uncover relationships among different constraints, and check
key properties of Declare specifications;

Discovery – to extract a Declare specification that suitably characterizes the
traces contain in an event log;

Monitoring – to provide operational decision support [63] by checking at run-
time whether a running process execution satisfies a Declare specification,
promptly detecting and reporting violations.

All the presented techniques are integrated in the MINERful process discovery
technique1 [40] and the RuM toolkit2 [4].

The chapter is organized as follows. Section 2 introduces the declarative pro-
cess specification language Declare alongside a running example to which we
will refer throughout the remainder of the chapter. Section 3 provides the funda-
mental notions upon which the core techniques for reasoning, discovery and mon-
itoring on declarative specifications are based. We define the formal semantics
of Declare and discuss the core reasoning tasks for declarative specifications
in Sect. 4. Section 5 explains the core notions of declarative process discovery
and monitoring. Section 6 discusses the latest advances in the field of declarative
process specification mining. Finally, Sect. 7 concludes this chapter with final
remarks and a summary of the core concepts illustrated herein.

1 https://github.com/cdc08x/MINERful.
2 https://rulemining.org.

https://github.com/cdc08x/MINERful
https://rulemining.org
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Table 1. A set of Declare constraints among those that are typically used for process
mining, with their textual description, graphical notation, and examples fulfilling or
violating them.

Constraint Explanation Examples Notation

Existence constraints

Init(a) a is the first to
occur

�〈a, c, c〉 �〈a, b, a, c〉 ×〈c, c〉 ×〈b, a, c〉
a

Init

AtLeastOne(a) a occurs at least
once

�〈b, c, a, c〉 �〈b, c, a, a, c〉 ×〈b, c, c〉 ×〈c〉
a

1..∗

AtMostOne(a) a occurs at most
once

�〈b, c, c〉 �〈b, c, a, c〉 ×〈b, c, a, a, c〉 ×〈b, c, a, c, a, a〉
a

0..1

End(a) a is the last to occur �〈b, c, a〉 �〈b, a, c, a〉 ×〈b, c〉 ×〈b, a, c〉
a

End

Relation constraints

RespondedExistence(a, b) If a occurs in the
trace, then b occurs
as well

�〈b, c, a, a, c〉 �〈b, c, c〉 ×〈c, a, a, c〉 ×〈a, c, c〉 a b

Response(a, b) If a occurs, then b
occurs after a

�〈c, a, a, c, b〉 �〈b, c, c〉 ×〈c, a, a, c〉 ×〈b, a, c, c〉 a b

AlternateResponse(a, b) Each time a occurs,
then b occurs after-
wards, and no other
a recurs in between

�〈c, a, c, b〉 �〈a, b, c, a, c, b〉 ×〈c, a, a, c, b〉 ×〈b, a, c, a, c, b〉 a b

ChainResponse(a, b) Each time a occurs,
then b occurs imme-
diately afterwards

�〈c, a, b, b〉 �〈a, b, c, a, b〉 ×〈c, a, c, b〉 ×〈b, c, a〉 a b

Precedence(a, b) b occurs only if pre-
ceded by a

�〈c, a, c, b, b〉 �〈a, c, c〉 ×〈c, c, b, b〉 ×〈b, a, c, c〉 a b

AlternatePrecedence(a, b) Each time b occurs,
it is preceded by a
and no other b can
recur in between

�〈c, a, c, b, a〉 �〈a, b, c, a, a, c, b〉 ×〈c, a, c, b, b, a〉 ×〈a, b, b, a, b, c, b〉 a b

ChainPrecedence(a, b) Each time b occurs,
then a occurs imme-
diately beforehand

�〈a, b, c, a〉 �〈a, b, a, a, b, c〉 ×〈b, c, a〉 ×〈b, a, a, c, b〉 a b

Mutual relation constraints

CoExistence(a, b) If b occurs, then
a occurs, and vice
versa

�〈c, a, c, b, b〉 �〈b, c, c, a〉 ×〈c, a, c〉 ×〈b, c, c〉 a b

Succession(a, b) a occurs if and only
if it is followed by b

�〈c, a, c, b, b〉 �〈a, c, c, b〉 ×〈b, a, c〉 ×〈b, c, c, a〉 a b

AlternateSuccession(a, b) a and b if and
only if the latter
follows the former,
and they alternate
each other in the
trace

�〈c, a, c, b, a, b〉 �〈a, b, c, a, b, c〉 ×〈c, a, a, c, b, b〉 ×〈b, a, c〉 a b

ChainSuccession(a, b) a and b occur if and
only if the latter
immediately follows
the former

�〈c, a, b, a, b〉 �〈c, c, c〉 ×〈c, a, c, b〉 ×〈c, b, a, c〉 a b

Negative relation constraints

NotCoExistence(a, b) a and b never occur
together

�〈c, c, c, b, b, b〉 �〈c, c, a, c〉 ×〈a, c, c, b, b〉 ×〈b, c, a, c〉 a b

NotSuccession(a, b) b cannot occur after
a

�〈b, b, c, a, a〉 �〈c, b, b, c, a〉 ×〈a, a, c, b, b〉 ×〈a, b, b〉 a b

NotChainSuccession(a, b) a and b cannot
occur contiguously

�〈a, c, b, a, c, b〉 �〈b, b, a, a〉 ×〈a, b, c, a, b〉 ×〈c, a, b, c〉 a b
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2 DECLARE: A Gentle Introduction

Declare is a language and graphical notation providing an extendible repertoire
of templates to formulate constraints. The origin of the approach traces back to
the PhD work by Pesic [75], and the parallel and consequent study in the PhD
work by Montali [67]. Notably, Declare actually stems from three initial lines
of research, respectively focused on the declarative specification of business pro-
cesses (cf. the ConDec language [78]), service choreographies (cf. the DecSerFlow
language [70,94]), and clinical guidelines (cf. the CigDec language [72]). These
lines were then unified into a single research thread. The term Declare was
used for the first time in [76].

Table 1 shows a set of Declare constraints we use throughout this chapter.
The whole, core set of Declare templates has been inspired by a catalogue of
temporal logic patterns used in model checking for a variety of dynamic systems
from different application domains [41].

Formally, we define a declarative process specification as follows.

Definition 1 (Declarative process specification). A declarative process
specification is a tuple DS = (Rep,Act,K) where

• Rep is a finite non-empty set of templates, where each template is a predicate
k(x1, . . . , xm) ∈ Rep on variables x1, . . . , xm (with m ∈ N the arity of k),

• Act is a finite non-empty set of activities,
• K is a finite set of constraints, namely pairs (k(x1, . . . , xm), κ) where
k(x1, . . . , xm) is a template from Rep, and κ is a mapping that, for every
i ∈ {1, . . . , m} assigns variable xi with an activity κ(xi) = ai ∈ Act; we
compactly denote such a constraint with k(a1, . . . , am). �

Example 1 (A Declare process specification). Figure 2 portrays an exam-
ple of declarative specification for the admission process of an international
Bachelor’s program. This example considers the Declare repertoire of tem-
plates. The process begins with the creation of an account in the university
portal (henceforth, c). To specify that c is the initial task, we write Init(c),
graphically depicted with the Init label in the tag on top of the activity box.
Init is a unary template and Init(c) assigns its variable with activity c. Unary
templates in Declare are also known as existence templates. We indicate that
not more than one account can be created per process run with AtMostOne(c).
In the diagram, it is indicated with the 0..1 label in the tag.

To register for a selection round (r), an account must have been created before
(Precedence(c, r)). Precedence is a binary template and Precedence(c, r),
graphically depicted as c r , assigns c and r to its first and second
variable, respectively. Binary templates in Declare are commonly named as
relation templates.

Every registration to a selection round (r) gives access to a uniquely corre-
sponding evaluation phase (v). After r, v eventually follows and no other reg-
istrations are allowed until v completes. We write AlternateResponse(r, v),
graphically depicted as r v . The evaluation requires r to
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Create
candidate account

(c)

0..1
Init

Register for
selection round

(r)

Upload
admission test score

(t)

Enter
evaluation phase

(v)

Receive
rejection notification

(n)

Receive
admission notification

(y)

Pay
subscription fee

($)

Pre-enrol
in the program

(p)

0..1

Upload
certificates

(u)

Enrol
in the program

(e)

0..1

Fig. 2. The Declare map of the admission process at a university.

be completed before and v will not recur unless a new registration is
issued: AlternatePrecedence(r, v), r v . Typically, if both
AlternateResponse(r, v) and AlternatePrecedence(r, v) hold true, we
compactly represent them jointly with the mutual relation constraint
AlternateSuccession(r, v) r v . An admission test score has to
be uploaded in the platform to access the evaluation phase: Precedence(t, v).
Evaluation phases are necessary for the committee to return rejections (n)
and notifications of admission (y), thus AlternatePrecedence(v, y) and
AlternatePrecedence(v, n) hold.

After the admission has been notified, the candidate will not receive a rejec-
tion any longer – NotResponse(y, n), drawn in Fig. 2 as y n .
NotResponse(y, n) falls under the category of the negative relation constraints,
as the occurrence of y disables n in the remainder of the process execution.

Only if candidates receive a notification of admission, they will be enti-
tled to pre-enrol in the program (Precedence(y, p)). The candidates are
considered as pre-enrolled immediately after they pay the subscription fee
(ChainResponse($, p), shown as follows in the diagram: $ p ).
Also, candidates cannot be considered as pre-enrolled if they have not paid the
subscription fee: Precedence($, p). Not more than one pre-enrolment is allowed
per candidate: AtMostOne(p). To enrol in the program (e), the candidate must
have pre-enrolled – Precedence(p, e) – and uploaded the necessary school and
language certificates – Precedence(u, e).

So far, we have been attaching an informal semantics to Declare and its
templates. In the next section, we provide a more systematic and formal char-
acterization.

3 Formal Background

Considering that Declare templates have been originally defined starting from
a catalogue of Linear Temporal Logic (LTL) patterns [41], it is not surprising
that temporal logics have been used to characterize the semantics of Declare
since the very beginning. However, the fact that Declare specifications are
interpreted over finite-length executions calls for the use of Linear Temporal
Logic on Finite Traces (LTLf ) [30]. This indeed leads to a setting that is radically
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different, both semantically and algorithmically, from the traditional one where
formulae are interpreted using LTL over infinite, recurring behaviors [29].

A complete formalization of Declare templates, also including an alterna-
tive formalization using a logic programming-based approach, can be found in
[68]. It was later refined in [29]. In his PhD thesis, Di Ciccio was the first to
provide a semantics based on regular expressions [36]. These two themes were
later unified in [28], leading to a richer framework that is able to declaratively
capture constraints and metaconstraints, that is, constraints predicating over
the possible/certain satisfaction and violation of other constraints.

In this section, we provide some necessary background on LTLf and its exten-
sion with past-tense temporal operators, as well as on the automata-theoretic
characterization for this logic. We then use this framework to formalize Declare
and reason automatically on Declare specifications. Thereupon, we reflect
upon the most recent advances of research in attempting at capturing not only
the formal semantics of constraints, but also how they pragmatically interact
with relevant events.

3.1 Linear Temporal Logic on Finite Traces

LTLf has the same syntax of LTL [80], but is interpreted on finite traces. In this
chapter, in particular, we consider the LTL dialect including past modalities [56]
for declarative process specifications as in [18].

From now on, we fix a finite set Σ representing an alphabet of propositional
symbols describing (names of) activities available in the domain under study.
A (finite) trace t = 〈a1, . . . , an〉 ∈ Σ of length |t| = n is a finite sequence of
activities, where the presence of activity ai at instant i of the trace represents
an event that witnesses the occurrence of ai at instant i – which we also write
t(i) = ai. Notice that at each instant we assume that one and only one activity
occurs. Using standard notation from regular expressions, the set Σ∗ denotes
the overall set of traces whose constitutive events refer to activities in Σ.

Definition 2 (Syntax of LTLf ). Well-formed formulae are built from Σ, the
unary temporal operators © (next) and � (yesterday), and the binary temporal
operators U (until) and S (since) as follows:

ϕ ::= a | (¬ϕ) | (ϕ1 ∧ ϕ2) | (© ϕ) | (ϕ1 U ϕ2) | (� ϕ) | (ϕ1 S ϕ2)

where a ∈ Σ. �

Definition 3 (Semantics of LTLf , satisfaction, validity, entailment).
An LTLf formula ϕ is inductively satisfied in some instant i (1 ≤ i ≤ n) of a
trace t of length n ∈ N, written t, i � ϕ, if the following holds:

• t, i � a iff t(i) is assigned with a;
• t, i � ¬ϕ iff t, i � ϕ;
• t, i � ϕ1 ∧ ϕ2 iff t, i � ϕ1 and t, i � ϕ2;
• t, i � © ϕ iff i < n and t, i + 1 � ϕ;
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• t, i � � ϕ iff i > 1 and t, i − 1 � ϕ;
• t, i � ϕ1 U ϕ2 iff t, j � ϕ2 with i ≤ j ≤ n, and t, k � ϕ1 for all k s.t.

i ≤ k < j;
• t, i � ϕ1 S ϕ2 iff t, j � ϕ2 with 1 ≤ j ≤ i, and t, k � ϕ1 for all k s.t.

j < k ≤ i.

A formula ϕ is satisfied by a trace t (equivalently, t satisfies ϕ), written t � ϕ, iff
t, 1 � ϕ. A formula ϕ is: (i) satisfiable if it has a satisfying trace from Σ∗; (ii)
valid if every trace in Σ∗ satisfies it. A formula ϕ1 entails formula ϕ2, written
ϕ1 |= ϕ2, if, for every trace t of length n ∈ N and every i s.t. 1 ≤ i ≤ n, if
t, i |= ϕ then t, i |= ψ. �

Since LTLf is closed under negation, it is easy to see that a formula ϕ is valid
if and only if ¬ϕ is unsatisfiable.

It is worth noting that, in LTLf , the next operator is interpreted as the so-
called strong next: © ϕ requires that the next instant exists within the trace, and
that at such next instant ϕ holds. This has an important consequence: differently
from LTL, in LTLf formula ¬© ϕ is not equivalent to © ¬ϕ. This is because
¬© ϕ is true in an instant of a finite trace either when that instant has no
successor, or the next instant exists and in such a next instant ϕ does not hold.
More on this can be found in [29].

From the basic operators above, the following can be derived:

• Classical boolean abbreviations true, false,∨,→;
• Constant end ≡ ¬© true, denoting the last instant of a trace;
• Constant start ≡ ¬� true, denoting the first instant of a trace;
• ♦ϕ ≡ true U ϕ indicating that ϕ eventually holds true in the trace (hence,

before or at end);
• ϕ1 W ϕ2 ≡ (ϕ1 U ϕ2)∨�ϕ1, which relaxes U as ϕ2 may never hold true;
• ♦ ϕ ≡ true S ϕ indicating that ϕ holds true at some instant before the

current one (i.e., after start in the trace);
• �ϕ ≡ ¬♦ ¬ϕ indicating that ϕ holds true from the current instant till end;
• �ϕ ≡ ¬ ♦ ¬ϕ indicating that ϕ holds true from start to the current instant.

Example 2. Let t = 〈a, b, b, c, d, e〉 be a trace and ϕ1, ϕ2 and ϕ3 three LTLf

formulae defined as follows: ϕ1
.= d; ϕ2

.= ♦ b; ϕ3
.= �(b → ♦ d). We have that

t, 1 � ϕ1 whereas t, 5 � ϕ1; t, 1 � ϕ2 whereas t, 5 � ϕ2; t, 1 � ϕ3 and t, 5 � ϕ3 (in
fact, t, i � ϕ3 for any instant 1 ≤ i ≤ n). �

3.2 Finite-State Automata

One of the central features of LTLf is that a finite state automaton (FSA)
[22] A (ϕ) can be computed such that for every trace t we have that t � ϕ
iff t is in the language recognized by A (ϕ), as illustrated in [18,28,30,38]. We
include the main notions next, recalling that focusing on deterministic FSAs is
without loss of generality, as over finite traces every non-deterministic FSAs can
be determinized [50].
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σ ∈ Σ \{σ1}
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σ ∈ Σ

σ1

σ ∈ Σ \{σ1}
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Fig. 3. Examples of constraint FSAs.

Definition 4 (Finite state automaton (FSA)). A (deterministic) finite
state automaton (FSA) is a tuple A = (Σ,S, δ, s0, SF), where:

• Σ is a finite set of symbols;
• S is a finite non-empty set of states;
• δ : S × Σ → S is the transition function, i.e., a partial function that, given a

starting state and a (labeled) transition, returns the target state;
• s0 is the initial state;
• SF ⊆ S is the set of final (accepting) states sF ∈ SF

�
In the remainder of the chapter, we assume that δ is left-total and surjective on
S \ {s0}, that is, the transition function is defined for every state and symbol,
and every state is on a path from the initial one – with the possible exception
of the initial state itself. An FSAs that is left-total is called untrimmed. Notice
that these two requirements are without loss of generality: every FSA can be
converted into an equivalent FSA that is left-total and surjective. In particular,
to make an FSAs untrimmed, it is sufficient to: (i) introduce a non-final trap state
s⊥; (ii) for every state s and symbol a′ such that δ(s, a′) is not defined, enforce
δ(s, a′) = s⊥; (iii) connect s⊥ to itself for every symbol, setting δ(s⊥, a) = s⊥
for every a ∈ Σ.

Example 3. Figure 3 depicts four FSAs. States are represented as circles and
transitions as arrows. Accepting states are decorated with a double line. The
initial state is indicated with a single, unlabeled incoming arc. For instance,
Fig. 3(a) is such that Σ ⊇ {σ1, σ2}, S = {s0, s1, s2}, SF = {s0}, δ(s0, σ1) = s1
and δ(s1, σ1) = s2. �

Definition 5 (Runs and traces of an FSA). Let A = (Σ,S, δ, s0, SF) be an
FSA as per Definition 4. A computation π of A is a finite sequence alternating
states and activities s0

σ0−→ . . .
σn−1−−−→ sn that starts from the initial state s0 is

such that for every 0 ≤ i < n, we have δ(si, σi) = si+1. If π terminates in a
final state, that is, sn ∈ SF, then it is a run, and induces a corresponding trace
σ0, . . . , σn−1 over Σ∗ obtained from π by only keeping the symbols that label the
transitions. �
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Example 4. In Fig. 3(a), π1 = s0
σ1−→ s1, π2 = s0

σ2−→ s0
σ1−→ s1

σ1−→ s2, and
π3 = s0

σ1−→ s1
σ2−→ s2

σ1−→ s0 are three examples of computations. However,
only π3 is a run because s0 ∈ SF whereas s1, s2 /∈ SF. Notice that, in Fig. 3, we
additionally highlight with a grey background colour those states that cannot
be in a step of a run – that is, from which accepting states cannot be reached
(e.g., s2 in Fig. 3(a)). �

Definition 6 (Accepted trace, language of an FSA). A trace t ∈ Σ∗ is
accepted by FSA A = (Σ,S, δ, s0, sF) if there is a run of A inducing t. The
language L (A) of A is the set of traces accepted by A. �

Example 5. For the FSA in Fig. 3(a), the language contains the trace t1 =
〈σ1, σ2, σ1〉, since a run exists over this sequence of labels (i.e., π3 above), whereas
t2 = 〈σ2, σ1〉 is not part of the language. �

Automata Product. FSAs are closed under the (synchronous) product operation
× [81]. The (cross-)product A × A′ of two FSAs A and A′ is an FSA that
accepts the intersection of languages (sets of accepted traces) of each operand:
L (A × A′) = L (A)

⋂
L (A′). It is defined as follows.

Definition 7 (Automata product). The product FSA of two FSAs A =
(Σ,S, δ, s0, SF) and A′ = (Σ,S′, δ′, s′

0, S
′
F) over the same alphabet Σ is the FSA

A×A′ = (Σ,S×, δ×, s×
0 , S×

F ), where the set S× ⊆ S×S′ of states (obtained from
the cartesian product of the states in A and A′), its initial state s×

0 , its final
states S×

F , and the transition function δ×, are defined by simultaneous induction
as follows:
• s×

0 = 〈s0, s′
0〉 ∈ S×;

• For every state 〈s1, s′
1〉 ∈ S×, state s2 ∈ S, state s′

2 ∈ S′, and label 
 ∈ Σ, if
δ(s1, 
) = s2 and δ′(s′

1, 
) = s′
2 then: (i) 〈s2, s′

2〉 ∈ S×, (ii) δ×(〈s1, s′
1〉, 
) =

〈s2, s′
2〉, (iii) if s2 ∈ SF and s′

2 ∈ S′
F, then 〈s2, s′

2〉 ∈ S×
F .

• Nothing else is in S×
F , S×, and δ×.

�
Notice that the FSA constructed with Definition 7 can be manipulated using
language-preserving automata operations, such as in particular minimiza-
tion [50].

The product operation × is commutative and associative. The identity
element for × over alphabet Σ is AI = (Σ, {s0}, s0, {s0} × Σ × {s0}, {s0}) –
depicted in Fig. 4(a). It accepts all traces over Σ: L

(
AI

)
= P (Σ∗) as any

sequence of transitions labeled by symbols in Σ corresponds to a run for AI. The
absorbing element is A∅ = (Σ, {s0}, s0, {s0} × Σ × {s0}, ∅) and is illustrated in
Fig. 4(b). It does not accept any trace at all: L

(
A∅) = ∅ as any sequence of

transitions labeled by symbols in Σ corresponds to a computation ending in a
non-accepting state.

4 Reasoning

Equipped with the notions acquired thus far, we can now discuss the core reason-
ing tasks that are associated to declarative process specifications. To this end,
we begin this section by describing the semantics of Declare in detail.
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s0

σ ∈ Σ

(a) Identity element

s0

σ ∈ Σ

(b) Absorbing element

Fig. 4. Finite state automata acting as identity element and absorbing element for the
automata cross-product operation.

4.1 Semantics of DECLARE

The semantics of a Declare template k(x1, . . . , xm) is given as an LTLf for-
mula ϕk(x1,...,xm) defined over variables x1, . . . , xm instead of activities. Given
the free variables x and y, e.g., Response(x, y) corresponds to �(x → ♦ y),
witnessing that whenever x occurs, then y is expected to occur at some later
instant. Table 2 shows the LTLf formulae of some templates of the Declare
repertoire. The formalization of a constraint is then obtained by grounding the
LTLf formula of its template.

Definition 8 (Constraint formula, satisfying trace). The formula of con-
straint k(a1, . . . , am), written ϕk(a1,...,am), is the LTLf formula obtained from
ϕk(x1,...,xm) by replacing xi with ai for each 1 ≤ i ≤ m. A trace t satis-
fies k(a1, . . . , am) if t |= ϕk(a1,...,am); otherwise, we say that t violates k(a1,
. . . , am). �

Example 6. Considering Table 2, we have ϕResponse(a,b) = �(a → ♦ b), and
ϕResponse(b,c) = �(b → ♦ c). Traces 〈b〉 and 〈a, b, a, a, c, b〉 satisfy Response(a, b),
while 〈a〉 and 〈a, b, a, a, c〉 do not. �

A Declare specification is then formalized by conjoining all its constraint for-
mulae, thus obtaining a direct, declarative notion of model trace, that is, a trace
that is accepted by the specification.

Definition 9 (Specification formula, model trace). The formula of
Declare specification DS = (Rep,Act,K), written ϕDS, is the LTLf formula∧

k∈K ϕk. A trace t ∈ Act∗ is a model trace of DS if t |= ϕDS; in this case, we
say that t is accepted by DS, otherwise that t is rejected by DS. �

Constructing constraint and specification formulae is, however, not enough.
When one reads �(a → ♦ b) following the textual description given above, the
formula gets intepreted as “whenever a occurs, then b is expected to occur at some
later instant”. This formulation intuitively hints at the fact that the occurrence of
a activates the Response(a, b) constraint, requiring the target b to occur. In turn,
we get that a trace not containing any occurrence of a is less interesting than a
trace containing occurrences of a, each followed by one or more occurrences of b:
even though both traces satisfy Response(a, b), the first trace never “interacts”
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Table 2. Semantics of some Declare constraints.

Template LTLfexpression [18,30] Activation Target

Existence constraints

AtLeastOne(x) � (start → ♦ x) start ♦ x

AtMostOne(x) �(x → ¬ © ♦ x) x ¬ © ♦ x

Init(x) � (start → x) start x

End(x) � (end → x) end x

Relation constraints

RespondedExistence(x, y) � (x → ♦ y ∨ ♦ y) x ♦ y ∨ ♦ y

Response(x, y) � (x → ♦ y) x ♦ y

AlternateResponse(x, y) � (x → ©(¬x U y)) x ©(¬x U y)

ChainResponse(x, y) � (x → © y) x © y

Precedence(x, y) � (y → ♦ x) y ♦ x

AlternatePrecedence(x, y) � (y → 
(¬y S x)) y 
(¬y S x)

ChainPrecedence(x, y) � (y → 
 x) y 
 x

Negative relation constraints

NotRespondedExistence(x, y) �(x → (� ¬y ∧ � ¬y)) x � ¬y ∧ � ¬y

NotResponse(x, y) �(x → � ¬y) x � ¬y

NotChainResponse(x, y) �(x → ¬ © y) x ¬ © y

NotPrecedence(x, y) �(y → � ¬x) y � ¬x

NotChainPrecedence(y, x) �(y → ¬ 
 x) y ¬ 
 x

with Response(a, b), while the second does. This relates to the notion of vacuous
satisfaction in LTL [51] and that of interestingness of satisfaction in LTLf [39].

The point is, all such considerations are not captured by the formula �(a →
♦ b), but are related to pragmatic interpretation of how it relates to traces. To see
this aspect, let us consider that we can equivalently express the formula above
as � ¬a∨♦(b∧� ¬a), which now reads as follows: “Either a never happens at all,
or there is some occurrence of b after which a never happens”. This equivalent
reformulation does not put into evidence the activation or the target.

This problem can be tackled in two possible ways. One option is to attempt
at an automated approach where activation, target, and interesting satisfaction
are semantically, implicitly characterized once and for all at the logical level;
this is the route followed in [39]. The main drawback of this approach is that
the user cannot intervene at all in deciding how to fine-tune the activation and
target conditions. An alternative possibility is instead to ask the user to explicitly
indicate, together with the LTLf formula ϕ of the template, also two related
LTLf formulae expressing activation and target conditions for ϕ. This latter
approach, implicitly adopted in [69] and then explicitly formalized in [18], gives
more control to the user on how to pragmatically interpret constraints. We follow
this latter approach.

Intuitively, the activation of a constraint is a triggering condition that, once
made true, expects that the target condition is satisfied by the process execution.
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Contrariwise, if the constraint is not activated, the satisfaction of the target is
not enforced. All in all, to properly constitute an activation-target pair for an
LTLf formula ϕ, we need them to satisfy the condition that whenever the current
instant is such that the activation is satisfied, ϕ must behave equivalently to the
target (thus requiring its satisfaction). This is formally captured as follows.

Definition 10 (Activation and target of a constraint). The activation
and target of a constraint k over activities Act are two LTLf formulae k and
k such that for every trace t ∈ Act∗ we have that:

t � ϕk iff t � � ( k → (k ))

Table 2 shows activations and targets for each constraint, inspired by the
work of Cecconi et al. [18]. In the next example, we explain the rationale behind
some of the constraint formulations in the table.

Example 7. Consider ChainResponse($, p), dictating that whenever $ occurs,
then p is the activity occurring next. We have ϕChainResponse($,p) = �($ →
© p). Then, by Definition 10, we can directly fix ChainResponse($, p) = $,
and ChainResponse($, p) = © p, respectively witnessing that every occur-
rence of $ triggers the constraint, with a target requiring the consequent
execution of p in the next instant. Similarly, for Precedence($, p) we have
ϕPrecedence($,p) = � (p → ♦ $), and in turn, by Definition 10, ϕPrecedence($,p) =
p and ϕPrecedence($,p) = ♦ $. The case of AtMostOne(p) is also similar.
In this case, ϕAtMostOne(p) formalizes that p cannot occur twice, which in
LTLf can be directly captured by ¬♦(p ∧ ©♦ p). This is logically equiv-
alent to �(p → ¬© ♦ p), which directly yields AtMostOne(p) = p and
AtMostOne(p) = ¬© ♦ p.

A quite different situation holds instead for the other existence constraints.
Take, for example, AtLeastOne(a), requiring that a occurs at least once in the
execution. This can be directly encoded in LTLf as ♦ a. This formulation, how-
ever, does not help to individuate the activation and target of the constraint.
Intuitively, we may disambiguate this by capturing that since the constraint
requires the presence of a from the very beginning of the execution, the con-
straint is indeed activated at the beginning, i.e., when start holds, imposing the
satisfaction of the target ♦ a. This intuition is backed up by Definition 10, using
the semantics of start and noticing the following logical equivalences:

♦ a = start → ♦ a = � (start → ♦ a)

This explains why the latter formulation is employed in Table 2. �

Declarative Constraints as FSAs. Crucial for our techniques is that every LTLf

formula ϕ can be encoded into a corresponding FSA (in the sense of Defini-
tion 4) Aϕ that recognizes all and only those traces that satisfy the formula.
This can be done through different algorithmic techniques. A direct approach
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Fig. 5. Example FSAs of Declare constraints.

that transforms an input formula into a non-deterministic FSAs is presented in
[28,29]; notice that the so-obtained FSAs can then be determinized and mini-
mized using standard techniques [50,99]. A fortiori, given a Declare specifica-
tion DS = (Rep,Act,K), we proceed as follows:

• We pair each constraint k ∈ K to a corresponding, so-called local automaton
Ak. This automaton is the FSA Aϕk of the constraint formula ϕk, and is used
to characterize all and only those traces that satisfy k;

• We pair the whole specification to a so-called global automaton ADS, that is,
the FSA AϕDS of the constraint formula ϕDS. It thus recognizes all and only
the model traces of DS. Recall that, as introduced in Definition 9, ϕDS is the
conjunction of the formulae of the constraints in K, and thus the language
L (ADS) corresponds to

⋂
k∈K L (Ak). By definition of automata product,

this means that L (ADS) can be obtained by computing the product of the
local automata of the constraints in K.

Figure 5 shows four local automata for constraints taken from our running exam-
ple: AlternateResponse(r, v), ChainResponse($, p), Precedence(u, e) and
AtMostOne(p). Examples of global automata are instead given in Fig. 6.

In the remainder of this chapter, we will extensively use local and global
automata for reasoning, discovery, and monitoring. Though out of scope for
this chapter, it is also worth mentioning that the automata-based approach has
also been used for simulation of Declare models and thereby the production
of event logs from declarative specifications [37], and also to define enactment
engines for Declare specifications [76,97].

4.2 Reasoning on DECLARE Specifications

Reasoning on a Declare specification is necessary to understand which model
traces are supported and, in turn, to ascertain its correctness. Reasoning is
also key to unveil how constraints interact with each other, and check whether
activations and targets are properly defined. As we will see, this is instrumental
not only to analyze specifications, but it is also an integral part of declarative
process mining.

In general, reasoning on declarative specifications is of particular importance:
while they enjoy flexibility, they typically do not explicitly indicate how execu-



122 C. Di Ciccio and M. Montali

s0

s1

s2 s3

s4

σ ∈ Σ̄ ∪ {p, v} $
p

r

v

σ ∈ Σ̄ ∪ {p}

$

p

σ ∈ Σ \ {p}

r σ ∈ Σ \ {p}

σ ∈ Σ

(a) Alt.Resp.(r, v) and
Chn.Resp.($, p), where Σ̄ is
Σ \ {r, v, $, p}

s0

s1

s2s3 s4

s5 s6

s7 s8

to s8 to s8

σ ∈ Σ̄ ∪ {p, v} r

e

v u

$
σ ∈ Σ̄ ∪ {p}

e, r

p

σ ∈ Σ \ {p}

u

σ ∈ Σ̄ ∪ {u, v, e, p}

$

r

v

$

σ ∈ Σ̄ ∪ {u, e, p}

r

p

σ ∈ Σ \ {p}

$ p

σ ∈ Σ \ {p}
p

σ ∈ Σ \ {p}

σ ∈ Σ

(b) Alt.Resp.(r, v), Chn.Resp.($, p) and
Prec.(u, e), where Σ̄ is Σ \ {r, v, $, p, u, e}

s0

s2

s5

s6

s7 s8

s4

s9

s10

s11s3

s1

to s12

to s12

to s12

to s12
to s12

to s12

s12

σ∈Σ̄ ∪ {v}

$

r

e

u

p

σ∈Σ\{p} p

v

σ∈Σ̄

$

u

p

r, e

ppσ∈Σ\{p}
σ∈Σ̄ ∪ {v}

u

r

e, p, $

σ∈Σ̄ ∪ {e, u, v}

r

$

p

σ∈Σ̄ ∪ {e, u}

v

r $

p

p
σ∈Σ \{p}

σ∈Σ̄ ∪ {e, u, v}

r

p, $

p

σ∈Σ\{p}

v

σ∈Σ̄ ∪ {e, u}

p, r, $

v

u

σ∈Σ̄

e, p, r, $

(c) Alt.Resp.(r, v), Chn.Resp.($, p), Prec.(u, e) and AtMostOne(p), where Σ̄ is
Σ \ {r, v, $, p, u, e} (for the sake of readability, a few transitions to s12 are omitted)-

Fig. 6. Global automata for the interplay of Declare constraints.

tion has to be controlled. We have seen how this phenomenon concretely man-
ifests itself in the context of Declare: traces conforming to the specification
(that is, model traces) are only implicitly described as those that satisfy all
the given constraints. Constraints, in turn, may be quite diverse from each other
(e.g., indicating what is expected to occur, but also what should not happen) and,
even more importantly, may affect each other in subtle, difficult to detect ways.
This phenomenon is known, in the literature that studies the cognitive impact
of languages and notations, under the name of hidden dependencies [47]. Hid-
den dependencies in Declare have been studied in [32,70], and their impact on
understandability and interpretability of declarative process models has spawned
a dedicated line of research, started in [48].

We detail next key reasoning tasks in the context of Declare, substantiating
how hidden dependencies enter into the picture. We show that all such reasoning
tasks can be homogeneously tackled by a single check on the global automaton
of the specification under study.
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Fig. 7. Examples of incorrect Declare specifications.

Specification Consistency. This is the most fundamental task, defined as follows.

Definition 11 (Consistent specification). A Declare specification DS is
consistent if there exists at least one model trace for DS. �

Example 8. Consider the Declare specification in Fig. 7(a). The specifica-
tion is inconsistent. This is not due to conflicting constraints insisting on
the same activity, but due to hidden dependencies arising from the inter-
play of multiple constraints. To see why the specification is inconsistent, we
can try to construct a trace that satisfies some of the constraints in the
model, until we reach a contradiction (i.e., the “trace pattern” constructed so
far violates a constraint of the specification). This is graphically shown next:

a b c dd

AtLeastOne(a)

Precedence(d, a) Response(a, b)
Response(b, c)

Response(c, d)

AtMostOne(d)

The picture clearly depicts that AtLeastOne(a) triggers:

• on the one hand Precedence(d, a), calling for a preceding occurrence of d;
• on the other hand, in cascade, Response(a, b), Response(b, c), and

Response(c, d), calling for a later occurrence of d.

Considering the interplay of the involved constraints, d is required to occur in
different instants, hence twice, in turn violating AtMostOne(d). �

By definition of model trace, it is immediate to see that DS is consistent if
and only if the LTLf specification formula ϕDS is satisfiable. This, in turn, can
be algorithmically verified by first constructing the global automaton ADS, and
then checking whether such an automaton is empty (i.e., it does not recognize
any trace). Specifically, ϕDS is satisfiable if and only if ADS is non-empty.
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Detection of Dead Activities. This task amounts to check whether a Declare
specification is over-constrained, in the sense that it contains an activity that
can never be executed (in that case, such an activity is called dead).

Definition 12 (Dead activity). Let DS = (Rep,Act,K) be a Declare
specification. An activity a ∈ Act is dead in DS if there is no model trace of DS
where a occurs. �

Example 9. Consider the Declare specification in Fig. 7(b). The specification
is consistent; as an example, trace 〈c, d〉 is a model trace. However, none of its
model traces can foresee the execution of b. This can be seen if one tries to
construct a trace containing an occurrence of b. The result is the following:

b c da

Assumption

Precedence(a, b) Response(b, c)
Response(c, d)

NotResponse(a, d)

It is apparent that the presence of b requires a previous occurrence of a and,
indirectly, a future occurrence of d, violating NotResponse(a, d). This shows
that b is a dead activity.

Consider now the specification in Fig. 7(c). The situation here is trickier.
The specification is consistent, as it accepts the empty trace (where no activ-
ity is executed, and hence none of the two response constraints present in the
specification gets activated). However, none of the two activities a and b present
therein can occur. As soon as this happens, the combination of the two response
constraints cannot be finitely satisfied. In fact, an occurrence of a requires a later
occurrence of b, which in turn requires a later occurrence of a, and so on and so
forth, indefinitely. In other words, in every instant, one between Response(a, b)
and Response(b, a) must be active and waiting for a later occurrence of its tar-
get, in a future instant. Since every instant must have a next instant, it is not
possible to construct a satisfying (finite) trace. �

Dead activity detection can be directly reduced to (in)consistency of a spec-
ification. Specifically, activity a is dead in a Declare specification DS =
(Rep,Act,K) if and only if the specification (Rep,Act,K∪{AtLeastOne(a)}),
obtained from DS by forcing the existence of a is inconsistent (i.e., its specifica-
tion formula is not satisfiable).

Valid Activation and Target. To ensure that a Declare constraint k comes
with a valid activation k and target k for its formula ϕk, we can directly apply
Definition 10 and check whether the LTLf formula ϕk ↔ �( k → k ) is valid,
that is, whether its negation is not satisfiable.
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Checking Relations Between Constraints/Specifications. We establish two key
relations between constraints/specifications. The first is that of subsumption
between templates, leveraging the entailment relation between LTLf formulae
to constraints. We formally define it as follows.

Definition 13 (Subsumption). Let k(x1, . . . , xm),k′(x1, . . . , xm) ∈ Rep two
templates. k(x1, . . . , xm) subsumes k′(x1, . . . , xm) (in symbols, k(x1, . . . , xm) �
k′(x1, . . . , xm)) if, given any mapping κ assigning x1, . . . , xm with activities
a1, . . . , am ∈ Act, ϕk(a1,...,am) |= ϕk′(a1,...,am). �

This relation can be checked by verifying that ϕk(a1,...,am) → ϕk′(a1,...,am) is valid,
that is, the negated formula ϕk(a1,...,am) ∧¬ϕk′(a1,...,am) is not satisfiable for any
a1, . . . , am ∈ Act. For example, Alt.Prec.(x, y) � Precedence(x, y) as the
former requires that y can occur only if preceded by x (just as the latter) and y
does not recur in between. Therefore, every event that satisfies the former must
satisfy the latter too. In the following, we shall lift this notion to constraints too
(e.g., we say that AlternatePrecedence(y, p) subsumes Precedence(y, p)).

By Definition 8 and Definition 9, since both Declare constraints and spec-
ifications correspond to LTLf formulae, we can use subsumption for a twofold
purpose:

• Consider two candidate constraints k1 and k2. If k1 � k2, then we know that
adding k1 to a Declare specification will make the addition of k2 irrelevant,
and that adding k1 or k2 will determine whether the specification is more or
less constraining.

• Consider a candidate constraint k and a target specification DS. If the former
logically entails the latter, ϕDS |= ϕk, then k is redundant in DS, and it makes
no sense to include it in DS.

The second relation characterizes constraints that are the negated version of
each other. Let k1 and k2 be two Declare constraints, coming with activation
formulae k1 and k2 and target formulae k1 and k2 , respectively. We say
that k1 and k2 are the negated versions of one another if their activations are
logically equivalent, that is k1 ↔ k2, and their targets are incompatible, that
is, k1 ∧ k2 is false. An example is that of Response vs NotResponse.

Consider now the situation where a decision must be taken concerning which
of two candidate constraints k1 and k2 can be added to a Declare specification.
Knowing that k1 and k2 are the negated versions of one another indicates that
they should not both be added to the specification, as including them both would
make the specification inconsistent as soon as the two constraints are activated.

As we will see in the next section, these notions become key when dealing with
declarative process mining, and in particular the discovery of Declare speci-
fications from event logs. Figure 8 graphically depicts how the main Declare
constraint templates relate to each other in terms of subsumption and negated
versions.
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Fig. 8. The subsumption map of Declare templates. Templates are indicated with
solid boxes. The subsumption relation is depicted as a line starting from the subsumed
template and ending in the subsuming one, with an empty triangular arrow recalling
the UML IS-A graphical notation. The negative templates are graphically linked to the
corresponding relation templates by means of wavy grey arcs.

5 Declarative Process Mining

Declarative process constraints depict the interplay of every activity in the pro-
cess with the rest of the activities. As a consequence, the behavioural relation-
ships that hold among activities can be analysed with a local focus on each
one [9], as a projection of the whole process behaviour on a single element thereof.
The constraints pertaining to a single activity thus be seen as its footprint in
the global behaviour of the process. We shall interchangeably interpret Declare
constraints as (i) behavioural relations between activities in a process specifica-
tion or (ii) rules exerted on the occurrence of events in traces. Notice that the
latter is a different approach than the former, typically used for process mod-
elling as originally conceived by the seminal work of Pesic et al. [77]. The former
is instead the basis for declarative process mining. In the following, we describe
how process specifications can be discovered and monitored.

5.1 Declarative Process Discovery

Declarative process discovery refers to the inference of those constraints that
significantly rule the behaviour of a process, based upon an input event log. The
problem can be framed in two distinct ways:

• A discriminative discovery problem, reminiscent of a classification task. This
requires to split the input event log in two partitions, one containing “pos-
itive” examples and the second containing “negative” examples. Discovery
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Algorithm 1: Overview of the discovery algorithm
Input: L ∈ B(U∗

act ), the event log to be analyzed;
Rep, a finite set of Declare templates to be considered to express the discovered specification;
Act ⊆ Uact , a finite set of activities to be included in the discovered specification;
confmin

t , suppmin
t , confmin

e , suppmin
e , the minimum thresholds for trace-based confidence and

support, and event-based confidence and support, respectively (default for all four parameters: 0.0);
Output: DS, a declarative process specification

1 K ←
{
k(a1, . . . , am) : k ∈ Rep, a1; . . . , am ∈ Act, ai �= aj with 1 ≤ i, j ≤ m

}

/* candidate constraints: templates assigned with any pair of distinct activities */

2 foreach k ∈ K /* compute measures */
3 do

4 ct ← conft(k, L); se ← suppt(k, L); ce ← confe(k, L); se ← suppe(k, L)

5 if ct ≤ confmin
t or st ≤ suppmin

t or ce ≤ confmin
e or se ≤ suppmin

e then

6 K ← K \ {k} /* remove constraints with a measure below the threshold */

7 foreach k ∈ K /* remove constraints as per subsumption hierarchy and negated v. */
8 do

9 foreach k′ ∈ K s.t. k′ 	 k /* for every k′ that subsumes k in K */
10 do

11 if allm
(
k′, L

)
≤ allm(k, L) /* if the measures of k′ are ≤ those of k */

12 then

13 K ← K \ {k}
14 else K ← K \ {k′}
15 foreach k′ ∈ DS s.t. k′ is the negated version of k do

16 if allm
(
k′, L

)
< allm(k, L) then K ← K \ {k}

17 else K ← K \ {k′}

18 return DS = (Rep,Act, K)

amounts to find a suitable Declare specification that correctly reconstructs
the classification, that is, accepts all positive examples and reject all negative
ones.

• A standard discovery problem – also known as specification mining in the
software engineering literature [53]. This calls for the individuation of which
Declare constraints best describe the traces in the log, considering all of
them as “positive” examples.

The first discovery algorithm for Declare treated discovery as a discriminative
problem, exploiting inductive logic programming to tackle it [20,52]. In parallel,
Goedertier et al. [46] brought forward techniques to generate negative examples
from positive ones. Interestingly, this line of investigation recently received again
the attention of the community [19,89].

Declarative process discovery framed as a standard discovery problem finds
its two main exponents in Declare Miner [58] and MINERful [40], which have
been then extended with an arsenal of techniques to improve the quality and
correctness of the discovered specifications. We follow the second thread, sum-
marizing the main ideas exploited therein, though reshaping the core concepts
in an attempt to embrace the wider plethora of declarative process discovery
techniques and the advancements they brought [8,18,59].

Process discovery in a declarative setting typically consists of the following
phases:

1) The initial setup, i.e., the selection of (i) the templates to be sought for, (ii)
the activities to be considered for the candidate constraints instantiating those
templates, and (iii) the minimum thresholds for constraint interestingness
measures to retain a candidate constraint;
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2) The computation of interestingness measures for all the constraints that
instantiate the given templates;

3) The simplification of the returned specification, through (i) the removal of
constraints whose measures do not reach the user-specified thresholds, (ii)
the pruning of the redundant constraints from the set, and (iii) the removal
of one constraint for every pair of constraints that are the negated version of
one another.

Algorithm 1 gives a bird-eye view of the approach in pseudocode. As we
can observe, interestingness measures are crucial to determine the degree to
which constraints are satisfied in the log. They have been introduced to indicate
the level of reliability and relevance of constraints discovered from event logs,
originally devised in the field of association rule mining [3] and adapted to the
declarative process discovery context [17,65]. Among them, we recall support and
confidence. Intuitively, support is a normalized measure quantifying how often
the constraint is satisfied in the event log. Confidence considers the number of
satisfactions with respect to the occurrences of the activations. We define them
formally as follows.

Definition 14 (Trace-based measures). Let L be a non-empty simplified
event log with at least a non-empty trace, and k a declarative constraint as
per Definition 1. We define the trace-based support suppt and the trace-based
confidence conft as follows:

suppt(k, L) =

∑

t∈L:t |=♦( k)∧k
L(t)

∑

t∈L

L(t)
; (1)

conft(k, L) =

∑

t∈L:t |=♦( k)∧k
L(t)

max

{

1,
∑

t∈L:t |=♦( k)
L(t)

} . (2)

�

We remark that the condition at the numerator that the trace has to satisfy
not only the constraint k but also eventually its activation, i.e., t |= ♦( k) ∧
k, serves the purpose of avoiding to count “vacuous satisfactions” discussed in
Sect. 4.1. For example, while trace 〈b, c〉 satisfies ChainResponse(a, b), it does
so vacuously, in the sense that it never activates the constraint. This intuitively
means that ChainResponse(a, b), albeit satisfied, it cannot be interestingly
used to describe the behaviour encoded in the trace. We recall that with L(t)
denotes the multiplicity of occurrences of t in the log L (see [1], Sect 3.1). The
max term at the denominator of the formulation of confidence serves the purpose
of avoiding a division by zero in case no trace satisfies ♦( k).

Declare Miner first introduced the trace-based measures to discover specifi-
cations from logs, counting traces that (non-vacuously) satisfy constraints as a
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whole. MINERful, instead, advocated also the adoption of measures that lie at
the level of granularity of events. The similarities and differences between the two
measuring schemes and the role of explicit activations and targets to tackle vacu-
ity has been later systematized in [18]. The motivation behind the use of event-
based measures is the ability to give a differently weight to traces violating the
constraints in more than one instant: with trace-based measures, e.g., both traces
〈a, b, c, a, b, c, c, a, b, a, b, a, b, a, b, c, a, b, c, a, b, a, b, a, c〉 and 〈b, a, c, a, c, a, a, a, a, a, a, c〉
would count as single violations for ChainResponse(a, b). However, only the
last occurrence of a out of ten leads to violation in the first trace, whereas all
eight occurrences of a lead to violation in the second trace. Next, we formally
capture the notion of event-based measures.

Definition 15 (Event-based measures). Let L be a non-empty simplified
event log with at least a non-empty trace, and k a declarative constraint as per
Definition 1. We define the event-based support suppe and the event-based con-
fidence confe as follows:

suppe(k, L) =

∑

t∈L

|{ai ∈ t : a, i |= ( k ∧ k )}| × L(t)
∑

t∈L

|t| × L(t)
; (3)

confe(k, L) =

∑

t∈L

|{ai ∈ t : a, i |= ( k ∧ k )}| × L(t)

max
{

1,
∑

t∈L

|{ai ∈ t : a, i |= k}| × L(t)
} . (4)

�

Again, the condition at the numerator that events satisfy both activation and
target of the constraint is intended to avoid including vacuous satisfactions in
the sum. The max term at the denominator of confidence is intended to avoid
a division by zero in case no event satisfies k.

For the sake of readability, we shall denote with allm(k, L) the tuple contain-
ing all computed measures for a constraint k on the event log L: allm(k, L) =
(suppt(k, L) , conft(k, L) , suppe(k, L) , confe(k, L)). Given two constraints k1

and k2, we write allm(k1, L) ≤ allm(k2, L) if suppt(k1, L) ≤ suppt(k2, L),
conft(k1, L) ≤ conft(k2, L), suppe(k1, L) ≤ conft(k2, L), and confe(k1, L) ≤
conft(k2, L). We write allm(k1, L) ≤ allm(k2, L) if allm(k1, L) ≤ allm(k2, L)
and allm(k2, L) ≤ allm(k1, L).

Example 10 (An event log for the specification in Example 1). Let
Uact

.= {c, r, v, t, n, y, $, p, e, u} ∪ {@} be an alphabet of activities. We inter-
pret @ as an email exchange, which can occur at any stage during the pro-
cess. The other activities in Uact are those that were considered in the pro-
cess specification in Example 1. Let the following event log be built on Uact :
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Table 3. Measures computed for the relation constraints of Example 1 from the event
log of Example 10.

Constraint Event-based Trace-based
Confidence Support Confidence Support

Precedence(c, r) 1 0.129 1 1
AlternatePrecedence(r, v) 1 0.129 1 1
AlternateResponse(r, v) 0.997 0.129 0.996 0.996
Precedence(t, v) 0.997 0.129 0.996 0.996
AlternatePrecedence(v, n) 1 0.059 1 0.461
AlternatePrecedence(v, y) 1 0.084 1 0.856
NotResponse(y, n) 1 0.084 1 0.856
Precedence(y, p) 1 0.07 1 0.715
Precedence($, p) 1 0.07 1 0.715
ChainResponse($, p) 1 0.07 1 0.715
AtMostOne(p) 1 1 1 1
Precedence(p, e) 1 0.07 1 0.715
AtMostOne(e) 1 1 1 1
Precedence(u, e) 0.985 0.069 0.985 0.704

L = [t2001 , t1002 , t1003 , t804 , t805 , t46, t
2
7, t

2
8] where

t1 = 〈c, t, r, v, y, $, p, u, e〉 t2 = 〈c, t, t, r, v, n, t, r, v, y, $, p, u, e〉
t3 = 〈c, t, r, t, v, y, u, $, p, e〉 t4 = 〈c, t,@, t, r, v, n,@, r, v, n〉
t5 = 〈c, r, t, t, v, n, y,@〉 t6 = 〈c, t, r, t, v,@,@, y, $, p,@, e〉
t7 = 〈c,@, r, v, y, $, p,@, e〉 t8 = 〈c, t, r, r, v,@, n〉

We observe that the log above does not fully comply with the specifica-
tion. Indeed, (i) trace t8 violates AlternateResponse(r, v), as the candidate
managed to register twice before evaluation (notice the occurrence of two consec-
utive r’s before v); (ii) t7 violates Precedence(t, v) and Precedence(u, e), as
the candidate must have sent the admission test score and the necessary enrol-
ment documents via email rather than via the system (see the occurrence of @
in place of t in the second instant and in place of u later in the trace); finally,
(iii) trace t6 violates Precedence(u, e), as the candidate must have submitted
the enrolment documents via email in that case too (notice the absence of task
u and the presence of @ in its stance). �

Example 11. With the example above, we have that both the trace-based
support and trace-based confidence of Alt.Prec.(r, v), e.g., equate to 1.0:
suppt(Precedence(c, r), L) = conft(Precedence(c, r), L) = 1.0. This is
because in all traces the activator (i.e., r) occurs and the constraint is not vio-
lated in any trace. Instead, suppt(Alt.Prec.(v, n), L) = 100+80+80+2

568 � 0.461
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and conft(Alt.Prec.(v, n), L) = 1.0. The trace-based support is lower than
the trace-based confidence because the activator (n) occurs in 262 traces out
of 568 (i.e., in the 100 instances of t2, the 80 instances of t4, the 80 instances
of t5, and the 2 instances of t8). Similarly, confe(Precedence(c, r), L) = 1.0
and confe(Alt.Prec.(v, n), L) = 1.0. The measures do not change for event-
based and trace-based confidence because every activation of the two con-
straints above leads to a satisfaction. In contrast, suppe(Precedence(c, r), L) =

1×200+2×100+1×100+2×80+1×80+1×4+1×2+2×2
9×200+14×100+10×100+11×80+8×80+12×4+9×2+7×2 = 750

5800 � 0.129. �

It is worth noting that discovery approaches such as Declare Miner [58] and
Janus [18] adopt (variations of) local constraint automata to count the satis-
factions of constraints. MINERful [40] and DisCoveR [8] resort to occurrence
statistics of activities gathered from the event log, more closely to the procedu-
ral discovery algorithms discussed in [2].

By definition of confidence and support (trace- or event-based), and as exem-
plified above, we observe that trace-based confidence is an upper bound for
trace-based support and event-based confidence is an upper bound for event-
based support. Next, we illustrate how the discovery algorithm operates with
our running example.

Example 12. Table 3 shows the event-based and trace-based measures com-
puted on the basis of our running example for every constraint in the
original specification – phase (2) of the discovery procedure described
above. They belong to the output of the discovery algorithm running
on the event log of Example 10 set at phase (1) to seek for (i) all
templates from the Declare repertoire in Table 2 (ii) over activities
{c, r, v, t, n, y, $, p, e, u}, with (iii) minimum event-based confidence of 0.95.
We remark that also AlternatePrecedence(y, p), ChainPrecedence($, p),
AlternatePrecedence(p, e) and AlternatePrecedence(c, p),
NotChainPrecedence(y, p) and NotChainResponse(y, p), among others,
fulfil those criteria and thus are part of the returned set. �

To increase the information brought by a discovered model, not only we prune
the constraints whose measures lie below the given threshold values. Also, we
take into account the subsumption hierarchy illustrated in Fig. 8. In addition,
we retain in the constraint set only one among pairs that are a negated version
of one another. If we kept both, the model would turn the activation in common
into a dead activity (see Sect. 4.2).

Example 13. Figure 9 illustrates the result of the pruning phase (3) based
on subsumption and choice of constraints that are the negated version
of one another, based on the event log of Example 10. We observe that
AlternatePrecedence(y, p) has the same measures as Precedence(y, p), and
we know that Precedence(y, p) is subsumed by AlternatePrecedence(y, p)
(see Sect. 4.2); as we are interested in more restrictive constraints that reduce
the space of possible process runs to more closely define its behaviour, we retain
the former and discard the latter. Keeping both would introduce a redundancy,



132 C. Di Ciccio and M. Montali

Relation templates Negative relation templates Relation templates Negative relation templates

RespondedExistence(y, p)
(0.715, 0.835, 0.07, 0.835)

RespondedExistence(p, y)
(0.715, 1, 0.07, 1)

NotRespondedExistence(p, y)
(0, 0, 0, 0)

NotRespondedExistence(y, p)
(0.141, 0.165, 0.014, 0.165)

Response(y, p)
(0.715, 0.835, 0.07, 0.835)

AlternateResponse(y, p)
(0.715, 0.835, 0.07, 0.835)

ChainResponse(y, p)
(0, 0, 0, 0)

Precedence(y, p)
(0.715, 1, 0.07, 1)

AlternatePrecedence(y, p)
(0.715, 1, 0.07, 1)

ChainPrecedence(y, p)
(0, 0, 0, 0)

NotPrecedence(y, p)
(0, 0, 0, 0)

NotChainPrecedence(y, p)
(0.715, 1, 0.07, 1)

NotResponse(y, p)
(0.141, 0.165, 0.014, 0.165)

NotChainResponse(y, p)
(0.856, 1, 0.084, 1)

negates negates

Fig. 9. The subsumption map of relation Declare constraints in a discovery context.
The graphical notation follows Fig. 8. Gray boxes denote constraints that have mea-
sures below the minimum thresholds. Light-gray boxes indicate constraints that are
subsumed by others with equivalent measures.

and retaining only the latter would omit detailed information as not only p
must be preceded by y, but also p cannot recur unless y occurs again. By the
same line of reasoning, we prefer retaining Init(c) to AtMostOne(c) in the
result specification. The same concepts apply with ChainPrecedence($, p),
to be preferred over Precedence($, p) and AlternatePrecedence(p, e) in
place of Precedence(p, e), among others. Notice that Precedence(y, p),
Precedence($, p) and Precedence(p, e) were in the given specification of our
running example but, we conclude, are not the most restrictive constraints that
could be used in the specification, as the discovery algorithm evidences. �

To conclude, we remark that not all redundancies can be found with
the sole subsumption-hierarchy based pruning. The subsumption hierarchy,
indeed, checks constraints that are exerted on the same activities – e.g.,
AlternatePrecedence(y, p) and Precedence(y, p). Therefore, we need a
more powerful redundancy checking mechanism, seeking for constraints that are
entailed by the remainder of the specification’s constraint set (see Sect. 4.2).

Example 14. The confidence of AlternatePrecedence(v, p) is 1.0 in the
event log of our running example. Yet, it does not add information to the discov-
ered specification as it is redundant, logically entailed by the other constraints
– in particular, AlternatePrecedence(r, v), AlternatePrecedence(v, y),
Precedence(y, p) and AtMostOne(p). �

To verify this, we can resort to language inclusion via automata product
as in [38]: the language of the product of the four constraint automata is not
smaller than the language accepted by the intersection of the second, third and
fourth constraint automata. Here, we do not enter the details of the algorithms
that detect redundancies at such a deeper level but provide an example of its
rationale. The interested reader can find further details in [24,38].
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Fig. 10. Example FSAs adapted for the monitoring of constraints. Non-final states
indicating current violation (c⊥) are dashed and filled in orange; non-final states indi-
cating permanent violation (p⊥) are dotted and filled in red; final states indicating
current satisfaction (c�) are thin-solid and filled in blue; final states indicating perma-
nent satisfaction (p�) are thick-solid and filled in green. (Color figure online)

5.2 Declarative Process Monitoring

(Compliance) process monitoring aims at tracking running process executions
to check their conformance to a reference process model, with the purpose of
detecting and reporting deviations as soon as possible [57]. It constitutes one of
the main tasks of operational decision support [92, Ch. 10], which characterizes
process mining applied at runtime to running process executions.

Declarative process monitoring employs a declarative specification (in our
case, described using Declare) as reference model for monitoring. The central
fact in monitoring that process instances are running, that is, their generated
traces evolve over time, calls for a finer-grained understanding of the state of
constraints and of the whole specification. We illustrate this intuitively in the
next example.

Example 15. Consider the excerpt in Fig. 11 of our admission process running
example, and an evolving trace that, once completed, corresponds to the follow-
ing sequence: 〈$, p, u, $, p〉. Let us replay the trace from the beginning.

1. At the beginning, all constraints are satisfied, but they are so for sure
only currently, as events may occur making them violated. For exam-
ple, a registration without a consequent evaluation would lead to violating
AlternateResponse(r, v), whereas an enrolment without a prior upload of
certificates would lead to a violation of Precedence(u, e).

2. Upon the occurrence of $, constraint ChainResponse($, p) becomes pending
or, to be more precise, currently violated, as paying demands a pre-enrolment
occurring immediately after.

3. The execution of p brings ChainResponse($, p) back to currently satisfied,
as it does not require the occurrence of further events, but may do so in the
future in case of another payment.

4. Upon the occurrence of u, constraint Precedence(u, e) becomes permanently
satisfied, as enrolment is now enabled, and there is no way to continue the
execution leading to a violation of the constraint.
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Register for
selection round

(r)

Enter
evaluation phase

(v)

Pay
subscription fee

($)

Pre-enrol
in the program

(p)

0..1

Upload
certificates

(u)

Enrol
in the program

(e)

Fig. 11. Excerpt of the Declare specification in Fig. 2.

5. This is indeed what happens with the next occurrence of $, which makes
ChainResponse($, p) currently violated.

6. The second pre-enrolment has the effect of bringing ChainResponse($, p)
once again back to currently satisfied. However, it has also the effect of per-
manently violating AtMostOne(p), as the number of occurrences of p has
exceeded the upper bound allowed by AtMostOne(p), and there is no way
of fixing the violation.

�

As witnessed by the example, the state of each constraint can be described in
a fine-grained way by considering on the one hand the trace accumulated so far
(i.e., the prefix of the whole, still unknown, execution), and by pondering on the
other hand about the possible, future continuations. To do so in a formal way, we
appeal to the literature on runtime-verification for linear temporal logics, and in
particular to the RV-LTL semantics, originally introduced in [11] over infinite
traces. This semantics was adopted for the first time in the context of LTLf over
finite traces in [64,66], in order to define an operational technique for Declare
monitoring. This led to deeper investigations on the usage of RV-LTLto char-
acterize the relevance of a trace to a declarative specification [39], and to finally
obtain a formally grounded, comprehensive framework for monitoring [27,28].

We now define the RV-LTL semantics for LTLf . In the definition, we denote
the concatenation of trace t1 with t2 as t1 · t2.

Definition 16 (RV-LTL states). Consider an LTLf formula ϕ over Σ, and
a trace t over Σ∗. We say that ϕ is in (RV-LTL) state s after t, written [t |=
ϕ]RV = v, if:

(Permanent satisfaction) (i) v = p�, (ii) the current trace satisfies ϕ (t |= ϕ),
and (iii) every possible suffix keeps ϕ satisfied (for every trace t′ ∈ Σ∗, we
have t · t′ |= ϕ).

(Permanent violation) (i) v = p⊥, (ii) the current trace violates ϕ (t �|= ϕ),
and (iii) every possible suffix keeps ϕ violated (for every trace t′ ∈ Σ∗, we
have t · t′ �|= ϕ).

(Current satisfaction) (i) v = c�, (ii) the current trace satisfies ϕ (t |= ϕ),
and (iii) there exists a suffix that leads to violate ϕ (for some trace t′ ∈ Σ∗,
we have t · t′ �|= ϕ).
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(Current violation) (i) v = c⊥, (ii) the current trace violates ϕ (t �|= ϕ), and
(iii) there exists a suffix that leads to satisfy ϕ (for some trace t′ ∈ Σ∗, we
have t · t′ |= ϕ).

We also say that t conforms to ϕ if [t |= ϕ]RV = p� or [t |= ϕ]RV = c� (i.e.,
stopping the execution in t satisfies the formula). �

By inspecting the definition, we can directly see that monitoring is at least
as hard as LTLf satisfiability/validity checking. To see this, consider what hap-
pens at the beginning of an execution, where the current trace is empty. By
applying Definition 16 to this special case, and by recalling the notion of satis-
fiability/validity of an LTLf formula, we in fact get that an LTLf formula ϕ
is:

• permanently satisfied if ϕ is valid;
• permanently violated if ϕ is unsatisfiable;
• currently satisfied if the two formulae ϕ ∧ end and ¬ϕ are both satisfiable;
• currently violated if the two formulae ¬ϕ ∧ end and ϕ are both satisfiable.

To perform monitoring according to the RV-LTL states from Definition 16,
we can once again exploit the automata-theoretic characterization of LTLf . In
particular, given an LTLf formula ϕ, we construct its FSA Aϕ, and color the
automaton states according to the RV-LTL semantics. As introduced in [64]
and then formally verified in [28], this can be simply done as follows. Consider
a state s in of Aϕ. We label it by:

• p�, if s is final and all the states reachable from s in Aϕ are final as well; if
Aϕ is minimized, this means that s only reaches itself.

• p⊥, if s is non-final and all the states reachable from s in Aϕ are non-final as
well; if Aϕ is minimized, this means that s only reaches itself.

• c�, if s is final and can reach a non-final state in Aϕ.
• c⊥, if s is non-final and can reach a final state in Aϕ.

Figure 10 shows some examples of colored constraint automata, obtained by
considering the constraint formulae of some Declare constraints from our run-
ning example. To monitor the state evolution of a constraint, one has simply to
dynamically play the evolving trace on its colored local automaton, returning
the updated RV-LTL label as soon as a new event is processed. Doing so on
the local automata in Fig. 10 for trace 〈$, p, u, $, p〉 formally reconstructs what
discussed in Example 15.

However, this is not enough to promptly detect violations as soon as they
manifest in the traces. This has been extensively discussed in [28,66], and is at
the very core of the power of temporal logic-based techniques for monitoring.
We use again Example 15 to illustrate the problem.

Example 16. Consider Example 15 and the following question: is step 6 the
earliest at which a violation can be detected? Clearly, if we focus on each con-
straint in isolation, the answer is affirmative. To see this formally, we play trace
〈$, p, u, $, p〉 on the four colored local automata of Fig. 10, obtaining the following
runs:
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• For AlternateResponse(r, v), we have s0
$−→ s0

p−→ s0
u−→ s0

$−→ s0
p−→ s0; no

violation is encountered.
• For ChainResponse($, p), we have s0

$−→ s1
p−→ s0

u−→ s0
$−→ s1

p−→ s0; no
violation is encountered.

• For Precedence(u, e), we have s0
$−→ s0

p−→ s0
u−→ s1

$−→ s1
p−→ s1; no violation

is encountered.
• For AtMostOne(p), we have s0

$−→ s0
p−→ s1

u−→ s1
$−→ s1

p−→ s2; a violation is
encountered in the last reached state.

The answer changes if we consider the whole Declare specification that con-
tains all such constraints at once. In fact, by taking into account the interplay
of constraints, we can detect a violation already at step 5, i.e., after the sec-
ond occurrence of payment. This is because, after that step, the two constraints
ChainResponse($, p) and AtMostOne(p) enter into a conflict, that is, no con-
tinuation of the current trace can lead to satisfy them both. In fact, after trace
〈$, p, u, $〉, constraintChainResponse($, p) is currently violated,waiting for a con-
sequent occurrence of p; however, constraint AtMostOne(p), which is currently
satisfied, becomes permanently violated upon a further occurrence of p. �

As we have seen, the early detection of violations cannot always be caught by
considering the colored local automata of constraints in isolation. However, it can
be systematically detected by taking into account the colored global automaton
of the whole specification.

Example 17. Figure 12 shows the colored global automaton of the Declare
specification in Fig. 11. By playing the trace 〈$, p, u, $, p〉 therein, we obtain the

following run: s0
$−→ s1

p−→ s4
u−→ s8

$−→ s12
p−→ s12. Clearly, the violation state s12

is already reached in step 5, i.e., just after the second payment. �

All in all, we can then monitor an evolving trace against a Declare speci-
fication as follows:

• Each constraint is encoded into the corresponding colored local automaton,
used to track the state evolution of the constraint itself.

• The whole specification is encoded into the corresponding colored global
automaon, used to track the evolution of the whole specification, and in par-
ticular to early-detect violations.

• At runtime, every new event occurrence is delivered in parallel to all the
automata, updating each of them by executing the corresponding transition
and entering into the next state, at the same time returning the associated
RV-LTL label.

Figure 13 shows the result of applying this technique to our running example.
An alternative approach, which is exploited in [64], is to compute, as done

before, the global automaton as the cross-product of local automata, remember-
ing, in each global state, the RV-LTL labels of all local states from which such
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Fig. 12. The colored global automaton automaton obtained as the (colored) cross-
product of constraints in Fig. 10 as shown in Fig. 6(c), the states of which are decorated
with the four RV-LTL truth values.

a global state has been produced. In addition, no minimization step is applied
on the resulting automaton. Once colored, this non-minimized, global colored
automaton combines in a single device the contribution of all local monitors and
that of the global monitor.

5.3 A Note on Conformance Checking

In this section, we have focused on monitoring evolving traces against Declare
specifications. This can be seen as a form of online conformance checking, aim-
ing at detecting deviations at execution time. This technique can be seamlessly
lifted to handle the standard conformance checking task, where conformance
is evaluated on an event log containing full traces of already completed pro-
cess executions (cf. [16]). In this setting, the global automaton is not needed
anymore, as a-posteriori it is not relevant to compute the earliest moment of a
violation, but only to properly detect it at the trace level. The usage of local
automata, one per constraint, is enough, and also has the advantage of producing
an informative feedback that indicates, trace by trace, how many (and which)
constraints are satisfied or violated. Finer-grained feedbacks like those based on
the computation of trace alignments have been extensively applied for procedu-
ral models (cf. [16]), and can be also recasted in the declarative setting, aligning
the log traces with the (closest) model traces accepted by the global automaton
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Fig. 13. Monitoring with local and global colored automata, showing a case where the
global automaton detects a violation before it actually manifests on a single constraint.

of the Declare specification of interest. This is an active line of research, which
started from the seminal approach in [31].

6 Recent Advances and Outlook

We close this chapter by reporting about the most recent advances in the field
of declarative process mining revolving around Declare, describing the current
frontier of research, and highlighting open challenges.

6.1 Beyond DECLARE Patterns

As we have seen in Sect. 3, a Declare specification consists of a repertoire
of constraint templates grounded on specific activities. At the same time, such
templates come with a logic-based semantics given in terms of LTLf . A natural
question is then: can the techniques described in this chapter be used for the
entire LTLf logic? This means, more precisely, considering the situation where
each constraint corresponds to an arbitrary LTLf formula while, as usual, the
specification formula is constructed by putting in conjunction the LTLf formulae
of all its constituting constraints.

To answer this question, one has to separate the logical and pragmatic aspects
involved in the different tasks we have been introducing. We do so focusing on
reasoning, discovery, and monitoring.

Reasoning. As discussed in Sect. 4.2, all the reasoning tasks we have considered
in this chapter can be lifted to the whole LTLf logic. Indeed, they are reduced to
LTLf satisfiability/validity checking, which in turn can be tackled by checking
(non-)emptiness of FSAs. The situation may change if one wants to provide more
advanced debugging or diagnosis functionalities – for example, to return the most
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relevant conflicting set(s) of constraints that are causing inconsistencies or dead
activities. While these types of problem can also be attacked at the level of the
entire logic [25,79], focusing only on pre-defined patterns becomes necessary if
one wants to involve humans in the loop or define preferences over constraints
in the case where multiple explanations exist [25]. Considering specific patterns
is also relevant when studying the computational complexity of reasoning on
pattern combinations [44,45,91], or the scalability and effectiveness of reasoning
tools [44,45,71,97].

Discovery. As pointed out in Sect. 5.1, two distinct process discovery problems
are typically tackled in a declarative setting: discriminative discovery and spec-
ification mining.

The case of discriminative discovery is tightly related to classification and
machine learning, allowing one to rely on general learning algorithms for declar-
ative process mining. Such algorithms tackle general logical frameworks, such
as Horn clauses in inductive logic programming or full temporal logics in model
learning, and can thus go far beyond a pre-defined set of templates, either tar-
geting full LTLf [15,82] or enriching the discoverable Declare templates with
further key dimensions, such as metric temporal constraints, event attributes,
and data conditions [21,23].

As shown in Sect. 5.1, standard discovery stands as a radically different prob-
lem, since the input event log provides a uniform set of (positive) examples, while
no negative example is given. This calls for suitable metrics to measure how well
a set of constraints characterizes the behaviour contained in the log. In the app-
roach described in this chapter, such metrics are defined starting from the notions
of constraint activation and target, which are template-specific. Attempts have
been conducted to lift some of these notions (in particular that of activation and
“relevant” satisfaction [39]) to full LTLf , but further research is needed to tar-
get the discovery of arbitrary LTLf formulae from event logs. Notice that while
full LTLf discovery would enrich the expressiveness of the discovered specifica-
tions, it would on the other hand pose the issue of understandability : end users
may struggle when confronted with arbitrary temporal formulae, while they are
facilitated when pre-defined templates are used.

Monitoring. As we have discussed in Sect. 5.2, Declare monitoring is tackled
using automata, and consequently seamlessly work for arbitrary LTLf formu-
lae. As for advanced debugging techniques, the same considerations done for
reasoning also hold for monitoring. For example, the detection of minimal con-
flicting sets of constraints in the case of early detection of violations caused by
the interplay of multiple constraints can be tamed at the level of the full logic
[66], but would require to focus on patterns if one wants to formulate preferences
or incorporate human feedback [25].

Remarkably, working with FSAs allows us to define monitors for temporal
formulae that go even beyond LTLf . In fact, LTLf is as expressive as star-free
regular expressions, while automata are able to capture full regular expressions
and, in turn, finite-trace temporal logics incorporating in a single formalism
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LTLf and regular expressions, such as Linear Dynamic Logic over finite traces
(LDLf ) [30]. Working with LDLf in our setting has the specific advantage that
we can express and monitor metaconstraints, that is, constraints that predicate
on the RV-LTL truth values of other constraints [27,28].

6.2 Dealing with Uncertainty

In the conventional definition of a Declare specification, constraints are inter-
preted as being certain: every model trace is expected to satisfy all constraints
contained in the specification. Such an interpretation is too restrictive in scenar-
ios where the specification should accommodate:

• constraints describing common behaviours, expected to hold in the majority,
but not all cases;

• constraints describing exceptional, outlier behaviours that rarely occurs but
should be not judged as violating the specification.

To deal with this form of uncertainty, Declare has been recently extended
with probabilistic constraints [62]. In this framework, every probabilistic con-
straint comes with:

• a constraint formula ϕ (specified, as in the standard case, using LTLf );
• a comparison operator � ∈ {=, �=, <,≤, >,≥};
• a number p ∈ [0, 1].

The interpretation of this constraint is that ϕ holds in a random trace generated
by the process with a probability that is �p. In frequentist terms, this can be
in turn interpreted as follows: given a log of the process, the ratio of traces
satisfying ϕ must be �p.

Since a Declare specification contains multiple constraints, one has to con-
sider how different probabilistic constraints interact with each other. In par-
ticular, n probabilistic constraints yield up to 2n possible so-called scenarios,
each highlighting which probabilistic constraints hold and which are violated.
Reasoning over such scenarios has to be conducted by suitably mixing their
temporal and probabilistic dimensions. The former handles which combinations
of constraints and their violations (i.e., which scenarios) are consistent, while the
latter lifts the probability conditions attached of single constraints to discrete
probability distributions over the possible scenarios.

To carry out this form of combined reasoning, probabilistic constraints are
formalized in a well-behaved fragment of the logic introduced in [61]. As it turns
out, logical and probabilistic reasoning are loosely coupled in this fragment, and
can be carried out resorting to standard finite-state automata and systems of
linear inequalities. This approach has been used as the basis for defining a new
family of probabilistic declarative process mining techniques [6].
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6.3 Mixed-Paradigm Models

In Fig. 1, we have intuitively contrasted declarative specifications and impera-
tive models. The distinction of these two approaches is in reality not so crisp.
In fact, a single process may contain parts that are more suitably captured
using imperative languages, and parts that can be better described as declara-
tive specifications. Take, for instance, a clinical guideline mixing administrative
and therapeutic subprocesses [73].

To capture such hybrid processes, one needs a multi-paradigm approach that
can combine imperative and declarative constructs in a single process model.
One of the first proposals doing so is [85], where an imperative process can con-
tain activities that are internally structured using so-called pockets of flexibility
specified using declarative temporal constraints over a given set of tasks.

This layered approach has been further developed in [90], which brings for-
ward a hierarchical model where each sub-process can be specified either as an
imperative or declarative component. Discovery of hierarchical hybrid process
models has been subsequently tackled in [87].

Multi-paradigm approaches providing a tighter integration between impera-
tive and declarative components have also been studied. In [33], process models
combining Petri nets and Declare constraints at the same modelling level are
introduced and studied, singling out methodologies and techniques to handle
the intertwined state space emerging from their interaction. Conformance check-
ing for these mixed-paradigm models is extensively assessed in [95]. A different
approach is brought forward in [5], where a Declare specification is used to
express global constraints that “glue together” multiple imperative processes con-
currently executed over the same instances. Automata-based techniques extend-
ing those illustrated in Sect. 5.2 are introduced to provide integrated monitoring
functionalities dealing at once with the local processes and the global constraints.

At the current stage, further research is needed along the illustrated lines
towards a solid theory and corresponding algorithmic techniques for hybrid,
mixed-paradigm process mining.

6.4 Multi-perspective DECLARE Specifications

Throughout the chapter, we have considered pure control-flow specifications,
where a process is captured solely in terms of its constitutive activities and
of behavioural constraints separating legal from undesired executions. While
the control-flow provides the main process backbone, other equally important
perspectives should also be taken into account as suggested already in [1]:

• The resource perspective deals with the actors that are responsible for exe-
cuting tasks within the process.

• The time perspective focusses on quantitative temporal conditions on when
tasks can/must be scheduled and executed, and on their expected durations.

• The data perspective captures how data objects and their attributes influence
and are manipulated during the process execution.
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Several works have investigated the extension of Declare with additional
perspectives. From the formal point of view, this requires to extend the logic-
based formalization of Declare with features that can capture resources, metric
time, data, and conditions thereof, in turn resorting to variants of metric and/or
first-order formalisms over finite traces [10,14,69,74]. It is important to stress
that such features may be blurred, considering that data support (if equipped
with suitable datatypes and conditions) may be used to predicate over resources
and time as well.

Such multi-perspective features have been extensively embedded into
Declare or related approaches (see, for example, [13,69,98] for constraints
with metric time and [42] for constraints with metric time and resources). Next,
we focus in more detail on the data dimension.

When it comes to data, two main lines of research can be identified. The
first one deals with standard “case-centric” processes extended with event and
case data. The second one focuses instead on “multi-case” processes, wherein
constraints are expressed over multiple objects and their mutual relations. We
briefly discuss each line separately.

Declarative Process Specifications with Event/Case Data. Within a process,
activities may be equipped with data attributes that, at execution time, are
grounded to actual data values by the involved resources. This means that
events witnessing the occurrence of task instances come with a data payload.
In addition, each process instance may evolve its own case data in response to
the execution of activities.3 Such case data may be stored in different ways,
e.g., as key-value pairs or a full-fledged relational database. In this setting, it
becomes crucial to extend Declare with so-called data-aware constraints, that
is, constraints enriched with data-aware conditions over activities. The simple
but illustrative example described next motivates why this is needed.

Example 18. We focus on a process where payments are issued by customers
through a pay activity, which comes with an attribute indicating the paid amount,
in Euros. Two consequent activities check and emit are executed to respectively
inspect a payment and emit a receipt.

Let a log for this process contain multiple repetitions of the following traces:

t1 = 〈pay(amount=50), emit〉 t2 = 〈pay(amount=300), check, emit〉
t3 = 〈pay(amount=20)〉 t4 = 〈pay(amount=100), emit, check〉
t5 = 〈pay(amount=90), emit〉 t6 = 〈pay(amount=800), check〉

One may wonder whether Response(pay, check) is a suitable constraint to explain
(part of) the behaviour contained in the log. If considered unrestrictedly, this

3 For conciseness of presentation, we will not distinguish between event and case data
in our discussion, but technically they pose different, albeit tightly related, require-
ments.
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Fig. 14. Comparison of conventional vs object-centric Declare.

is not the case, as there are many traces where payment is not followed by any
inspection. The situation changes completely if one restricts the scope of the
constraint activation only to those payments that involve an amount of 100 or
more. �

A number of works has brought forward combined techniques to discover
Declare constraints equipped with various forms of data conditions [54,60,86],
to check conformance for data-aware constraints [12,13], and to handle their
monitoring [5,69]. This passage has to be carried out with extreme care, as
combining event data and time quickly leads to undecidability of reasoning [14,
34,35]. Therefore, such techniques have to operate in a limited fashion or suitably
controlling the expressiveness of data conditions and the way they interact with
time.

Object-Centric Declarative Process Specifications. So far, we have discussed the
extension of Declare with event or case data. In a more general setting, data
may refer to more complex networks of objects and their mutual relations, simul-
taneously co-evolved by one or multiple processes. In this type of processes,
known under the umbrella term of object-centric processes, there is no single,
pre-defined notion of case, and process executions cannot consequently be rep-
resented as flat traces, but call for richer representations (cf. [43]). The following
example illustrates why Declare, in its conventional version, cannot be used
to capture object-centric processes.

Example 19. Consider the fragment of an order-to-cash process, containing
three activities: sign (indicating the signature of a GDPR form by the customer),
open (the opening of an order), and close (the closing of an order). Two constraints
apply to close, defining under which conditions it becomes executable:

• An order can be closed only if that order has been opened before.
• An order can be closed only if its owner has signed the consent before.



144 C. Di Ciccio and M. Montali

Figure 14(a) shows how these two constraints can be captured in conventional
Declare. This specification is satisfactory only in the case where each trace
refers to a single customer and a single order by that customer. For example,
consider the following two traces, respectively referring to an order o1 by Anne,
and an order o2 by Bob:

t1 = 〈sign, open, close〉 t2 = 〈open, close, sign〉

Clearly, t1 is a model trace, while t2 is not, as the latter violates
Precedence(sign, close).

However, one may need to consider multiple orders owned by the same or
distinct customers, in the common situation where distinct orders may be later
bundled together to handle their shipment. In our example, assuming that o1
and o2 are later bundled together in a shipment, this would require to combine
t1 and t2 in a single object-centric trace, suitably extending each event with a
reference to the object(s) it operates on. Suppose this would result into:

t =
〈

sign(customer=Anne), open(order=o2), open(order=o1),
close(order=o1), close(order=o2), sign(customer=Bob)

〉

The Declare specification of Fig. 14(a) becomes now inadequate. In fact, it
cannot distinguish which events actually co-refer to one another and which do
not, so it cannot identify that the first signature by Anne refers to the first
occurrence of close, but not to the second one. Hence, it wrongly uses the first
occurrence of sign to satisfy Precedence(sign, close) for both orders. �

Fixing the issue described in Example 19 requires the explicitly extension
of Declare with the ability of expressing how events relate to objects, how
objects relate to each other, and in turn to scope the application of constraints,
expressing that they must be enforced over events that suitably co-refer to each
other – either because they operate on the same object, or because they operate
on related objects. In our running example, this would call for the following
actions:

• introduce the classes of Order and Customer;
• capture that there is a many-to-one owned by association linking orders to

customers;
• indicate that sign refers to a customer, and that open and close refer to an order;
• scope Precedence(open, close) by enforcing that the two involved activities

must co-refer to the same order (i.e., that an event of activity close for order
o can only occur if an event of activity open has previously occurred for the
same order);

• scope Precedence(sign, close) by enforcing that the two involved activities
must respectively operate with a customer and an order that co-refer through
the owned by association (i.e., that an event of activity close for order o can
only occur if an event of activity sign has previously occurred for the customer
who owns o).
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Object-centric behavioral constraints (OCBC) [93] have been brought forward
to handle this type of scoping through the integration of Declare specifications
and UML class diagrams. Figure 14(b) shows the OCBC specification correctly
capturing the constraints of Example 19. The approach is still at its infancy:
some first seminal works have been conducted to handle discovery of OCBC
specifications from object-centric event logs recording full database transactions
[55], and to formalize and reason upon OCBC specifications through temporal
description logics [7]. Further research is being carried out to improve the per-
formance of discovery and frame it in the context of object-centric event logs
of the form of [1], and to tackle conformance checking and monitoring. This is
particularly challenging, as integrating temporal constraints with data models
quickly leads to undecidability [7].

7 Conclusion

Throughout this chapter, we have thoroughly reviewed the declarative approach
to process specification and mining. The declarative approach aims at limiting
the process behavior by defining the boundaries within which its executions can
unfold, yet leaving process executors free to explore at runtime which specific
executions are generated. This is in contrast with the imperative approach, where
process models compactly depict all and only those traces that are admissible.
In fact, notice that different (imperative) process models can comply with the
same declarative specification, just like different dynamic systems can model
(|=) a set of temporal rules. In the chapter, we have grounded our discussion
on the Declare language, but the introduced concepts are broad enough to be
seamlessly applicable to other related approaches.

Specifically, we have first discussed how declarative process specifications
can be formalized using Linear Temporal Logic on Finite Traces (LTLf ), and in
turn operationally characterized in terms finite state automata (FSAs) for their
execution semantics. On this solid formal ground, we have examined the core rea-
soning tasks that relate to declarative specifications and then delved deeper into
the discovery and monitoring of processes according to the declarative paradigm.
Interestingly, we have observed that the reasoning tasks are pervasive in all stages
of declarative process mining, such as within discovery to avoid producing redun-
dant or inconsistent outputs, and within monitoring to speculatively consider the
possible future continuations of the monitored execution. In the last part of the
chapter, we have provided a summary of the most recent advances in declara-
tive process mining, focusing in particular on: (i) the applicability of declarative
process mining techniques and concepts to full temporal logics, going beyond pre-
defined patterns; (ii) the incorporation of uncertainty within constraints; (iii)
the analysis of hybrid models integrating imperative and declarative fragments;
(iv) multi-perspective constraints incorporating additional dimensions beyond
the control-flow, and supporting the declarative specification of object-centric
(multi-case) processes. This bird-eye view provides a fair account of the open
research challenges in declarative process mining.
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