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Abstract 

 

 

The interplay between the built environment and energy use has profound 
implications for global energy consumption, emissions, and the transition 
towards sustainable systems. Recent analyses reveal that buildings are 
responsible for consuming approximately 40% of global energy, contributing to 
over 70% of electricity consumption and nearly a third of all carbon emissions.  

As the energy paradigm shifts, so does the dynamic between infrastructure and 
energy sources. Distributed Energy Resources (DERs), including microgrids, 
nanogrids, and behind-the-meter energy storage, offer both challenges and 
opportunities. Additionally, innovations such as grid-interactive efficient 
buildings and Electric Vehicle (EV) integration pathways (like EV-to-grid and 
EV-to-home) are broadening the horizons of demand response, heralding an age 
marked by heightened demand flexibility. 

The past decade's advancements on the Internet of Things (IoT) have opened 
an era of interconnected sensors and devices. This transition from limited to 
expansive data repositories facilitates advanced anomaly detection, predictive 
maintenance, and smart features based on Machine Learning (ML) and other 
Artificial Intelligence (AI)-powered methods. In this scenario, the emergence of 
the Digital Twin paradigm (DT) is redefining how we model the contexts in 
which these innovations operate, even though this concept remains under-
explored in the energy and smart grid sectors. 

 

This research was conducted with the cooperation of ENEA (Italian National 
Agency for New Technologies, Energy and Sustainable Economic Development) 
and delves into the challenges and potential of integrating AI with Digital Twins 
to support and enhance energy management and optimization in built 
environments. Using a testbed at the Faculty of Architecture of Sapienza 
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University of Rome known as the SmartLAB—a building provided with an IoT 
network, a photovoltaic system, and an EV charging station—the microgrid is 
monitored and regulated via an AI-driven energy management system (EMS). 
Through the deployment of IoT devices, vast data streams are generated 
enabling insights for an Intelligent Digital Twin (IDT) framework built on open-
source methods, integrating Building Information Modeling (BIM), IoT, and AI 
within a Proof of Concept (PoC) Ecosystem. The research's core aims are to 
craft an autonomous system capable of discerning energy loads using Naïve 
Bayes Classifier with Association Rule Mining ensuring efficient energy 
consumption management and optimized distribution among distinct 
loads/users. Moreover, it seeks to enhance the well-being of SmartLAB 
occupants by overseeing CO2 levels, lowering volatile organic compound (VOC) 
concentrations through IoT-guided, data-informed procedures. This approach 
demonstrates adaptability across multiple contexts, from grid interactions to 
smart ecosystems, improving real-time control and providing data-driven energy 
optimization strategies. 

Moreover, the proposed approach embraces scalable and cross-disciplinary 
strategies, paving the way for further integrations, such as space management 
systems and predictive maintenance. The findings highlight the advantages of 
embracing DT technologies within the built sector, while ongoing advancements 
are also discussed towards DT-based Smart Cities and Energy Communities for 
a more sustainable built environment. 
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Chapter 1 

 

Introduction 

 

1.1 Background  

The responsibilities of cities in energy consumption and CO2 emissions are well 
understood, and it's expected that their impact on climate change will further 
increase (Marco Casini, 2022). Urban areas are continuously growing, both in 
terms of inhabitants and occupied space, at a rate of 10,000 square meters added 
every minute (every year, equivalent to the total size of Japan). By 2021, cities 
will cover 3% of the Earth's surface, but they will account for two-thirds of 
global energy demand and 70% of CO2 emissions (European Commission. Joint 
Research Centre. Institute for Energy and Transport., 2015). 

To address climate change and related environmental risks, coupled with the 
recent threat of the energy crisis, the European Union has set a series of goals 
for its member states. The Green Deal outlines the long-term goal to achieve 
zero CO2 emissions by 2050, preceded by an intermediate phase of a 55% 
reduction by 2030 (European Commission. Directorate General for Research and 
Innovation., 2020). The European Commission entrusts cities with a key role 
towards climate neutrality. As such, they have been propelled and accelerated 
through the EU's mission "100 climate-neutral cities by 2030—by and for the 
citizens" (abbreviated as "Cities Mission"), part of the Mission Climate-Neutral 
and Smart Cities (European Commission. Directorate General for Research and 
Innovation, 2021), introduced by the Horizon Europe program. On April 28, 



 

 
 

2022, the Commission announced the 100 chosen cities that will receive the 
Commission's support to achieve the goal of being climate-neutral and smart by 
2030, aiming to make them innovation hubs and benchmarks for the rest of 
European cities. 

Recognizing the massive carbon footprint of cities and the targets set to reduce 
it, there's a need to support cities in speeding up their green and digital 
transformation since climate mitigation heavily relies on urban actions. So, while 
climate objectives are set at national and supranational levels, urban-level 
governments and decision-makers are directly involved in their realization. The 
city community, being the end recipient of local policy strategies and measures, 
must adapt to the changes they bring about. Cities must grapple with this 
responsibility, but also with unique opportunities provided by various funding 
programs, with potential benefits not only for energy/climate matters but also 
for livability, overall urban efficiency, health, and citizens' quality of life (Vivi et 
al., 2019). Cities can be pioneers in reducing emissions and air pollutants by 
leveraging synergies across different sectors of the urban energy system and 
harnessing new technologies supporting the energy transition available today. 

New methods and inventories for assessing CO2 emissions at the city level have 
been developed to help decision-makers define actions and strategies to achieve 
decarbonization goals (Fuller et al., 2020). However, focusing solely on the 
energy sector isn't enough to ensure a carbon-neutral transition: connecting and 
combining the sectors of transportation, heating, cooling, water management, 
and waste is vital. This results in a large number of factors and variables at play 
and a high level of complexity. 

Over the past hundred years, the energy sector has played an indispensable role 
in fueling both the manufacturing and service sectors of worldwide economy. Its 
influence has been paramount in driving economic and societal progress, 
consequently uplifting the living standards, despite the unpredictability of the 
global market. Therefore, refining the efficiency and sustainability of our energy 
systems has always been at the forefront of global attention. Highlighting this 
commitment, the sustainable development goals (SDGs) laid down a roadmap 
with seventeen specific objectives to enhance human development. Among these, 
the seventh goal prioritizes the creation of energy systems that are not only 
sustainable and innovative but also affordable and reliable (Imbulana Arachchi 
& Managi, 2021) 

However, the past two decades have seen the looming shadow of climate change, 
primarily driven by the emissions of carbon dioxide (CO2) from fossil fuel 
utilization, including coal, oil, and natural gas. This has presented a monumental 
challenge to the world's energy strategies (B. Chen et al., 2019). Despite the 
global community's earnest efforts to pivot towards sustainable energy solutions, 
a significant portion of the world still relies heavily on carbon-intensive and 
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polluting energy infrastructures. An undeniable correlation exists between rising 
energy consumption, economic growth, and surges in CO2 emissions. While there 
has been a notable reduction in CO2 emissions with the increased adoption of 
renewable energy (RE) sources, the complete replacement of fossil fuel-based 
energy seems distant (Renewables REN21. Global status report., 2018). 

This urgency to tackle climate change and the associated CO2 emissions has 
necessitated a global shift in energy policies, focusing on mapping out feasible 
routes to a sustainable energy transition. Indeed, we are witnessing these shifts 
globally. Historical reviews over the past decade have highlighted the evolution 
of energy transitions, especially in regions like Europe and the United States 
(Gales et al., 2007). With these transitions comes the need for innovative energy 
modeling, which bridges the gap between novel energy infrastructure, policy 
formation, ecological impact, and energy supply security. The overarching goal 
remains managing the balance of costs, advantages, and challenges during this 
transition to ensure sustainability. In response, several governments are 
fortifying their commitment to this cause. For instance, the European Union 
(EU) has pledged to achieve a net-zero greenhouse gas (GHG) emission economy 
by 2050. Similarly, post the Paris Agreement, China has marked 2030 as its 
milestone year for peak emissions (Deloitte, 2020). 

One focal point of this global shift is "decarbonization," a term emphasizing the 
continuous reduction of carbon intensity in energy over a period. The consensus 
among experts is clear: transitioning to renewable energy sources is pivotal for 
effective decarbonization. Numerous countries are taking leaps in this direction, 
with nations like Paraguay, Norway, and Costa Rica already garnering 
significant portions of their energy from renewable sources (Kroposki et al., 
2017). While 2015's COP211 in Paris was a landmark event setting global 
decarbonization objectives, it was the subsequent COP22 in Marrakech, hailed 
as “the COP of action”, that paved the path for their practical implementation. 
Among the multiple objectives set during COP21, two were directly tied to 
energy decarbonization: Goal 7, ensuring universal access to sustainable energy, 
and Goal 9, focusing on sustainable industrialization and innovation (Di 
Silvestre et al., 2018). 

Parallel to these energy discussions, the dawn of the digital age ushered in the 
fourth industrial revolution. "Digitalization," as defined by Gartner, embodies 

 
1 21st Conference of the Parties to the United Nations Framework Convention on Climate 
Change (UNFCCC). It took place in Paris, France, from November 30 to December 12, 
2015. The conference is most notably recognized for the resulting "Paris Agreement," a 
global pact where participating countries agreed to undertake efforts to combat climate 
change, primarily by aiming to limit global warming to well below 2 degrees Celsius above 
pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 degrees 
Celsius. The Paris Agreement represents a significant international commitment to 
address the challenges posed by climate change. 



 

 
 

the transition to a digital-centric business paradigm, leveraging digital tools for 
new revenue streams and value creation. This digital shift in the energy domain 
is accelerating, exemplified by the adoption of innovative digital tools like smart 
meters, state-of-the-art control systems, artificial intelligence, and the 
revolutionary "Digital Twin" concept (Gonzalez et al., 2023). 

 

1.2 Green and Digital Challenges  

The built environment, which comprises the sum total of human-made 
structures in our landscapes—from residential and commercial edifices to 
infrastructure systems—plays a pivotal role in determining the environmental 
and climatic well-being of our planet. Historically, the construction and 
operation of these structures have been among the leading contributors to global 
carbon emissions. With buildings alone accounting for nearly 40% of annual 
global greenhouse gas emissions when considering their entire lifecycle, it 
becomes evident that the built environment remains at the heart of the climate 
crisis conversation (International Energy Agency, 2022). 

This significant carbon footprint is the result of multiple factors (Figure 1) 
energy-intensive construction processes; the extraction, processing, and 
transportation of building materials; and the ongoing energy consumption 
during a building's operational phase. Traditional construction methods, often 
reliant on non-renewable resources, coupled with inefficient operational systems 
in older buildings, have exacerbated energy consumption patterns. As a result, 
we find a scenario where the growth in urban landscapes, essential for socio-
economic reasons, seemingly works counterintuitively to global sustainability 
goals. 

 

 

Figure 1. Building Construction Industry and Other Construction 
Industry represent emissions from concrete, steel and aluminium for 

buildings and infrastructure respectively. Architecture 2030. All Rights 
Reserved. Data Source: IEA (2022), Buildings, IEA 
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However, as concerns about the climate crisis intensify, there's been a concerted 
push towards reimagining the built environment. Central to this transformation 
is the idea of sustainable construction and operations. The overarching objective 
is to minimize the environmental footprint at every stage of a building's lifecycle. 
This approach calls for a harmonious amalgamation of advanced technologies, 
innovative practices, and an acute awareness of environmental needs. 

As stated by the C40 network, a network of mayors from almost 100 leading 
global cities collaborating to undertake necessary actions to address the climate 
crisis, one of the main accelerators of the transformation path of cities towards 
greater resilience and better adaptive and mitigation capacities is "clean 
construction"2. This refers to the evolution of the global construction industry 
towards sustainability, efficiency, quality, and equity (Marco Casini, 2022). In 
fact, construction is one of the sectors most responsible for the global climate 
crisis, as it contributes to over 20% of global greenhouse gas emissions Figure  
2. Construction materials and the building sector are also responsible for over 
30% of global resource consumption. The impact of the construction industry is 
set to increase with the rising need for new buildings and infrastructures: by 
2025 we will need to build 1 billion new homes. Globally, about 60% of buildings 
that will exist by 2050 have yet to be built. This means building a city the size 
of Stockholm or Milan (1.5 million people) every week until 2050 or a city the 
size of Singapore or New York every month until 2050 (C40 Cities, 2023). 

 

Figure  2. Total GHG emissions by sector (MtCO2e) (rounded data). Data source: EFA 
(GHG trends, GHG estimates, UNFCCC reporting) 

The construction sector is also a key component of economic and employment 
growth in Europe, contributing significantly to the GDP and employing over 11 
million people (European Commission. Joint Research Centre. Institute for 
Energy and Transport., 2015). In Europe, the challenge is focused on the 
rehabilitation and management of the existing building heritage, rather than on 

 
2 The "clean construction" principle aims to prioritize the renovation of existing buildings 
and ensure that new buildings and infrastructures incorporate the principles of the 
circular economy, starting from the design phase, moving through the choice of materials, 
the construction phase, and up to disposal/reuse. Moreover, it promotes social equity, 
the reduction of air pollution, the creation of jobs by investing in sustainable local 
businesses and educating and retraining workers. Source: https://www.c40.org/. 



 

 
 

the construction of new buildings and infrastructure. Buildings are long-term 
assets expected to remain useful for 50 or more years, and it is estimated that 
75-90% of today's existing buildings will remain in use until 2050. With a low 
demolition rate (0.1% per year), a low renovation rate (1.2% per year), and a 
shift to new, highly energy-efficient constructions (1% additions per year), 
Europe's challenge mainly concerns energy-efficient renovations and investments 
in the existing building stock (Buildings Performance Institute Europe, 2016) 

The European Industrial Strategy3 highlights the need for a greener, more 
digital, and resilient building ecosystem. Several other European initiatives 
underline the role of construction in achieving goals such as sectoral renewal, 
process and economic circularity, adaptation to climate change and mitigation 
of its effects, employment. Among these are the Renovation Wave, EU Climate 
Adaptation Strategy, Zero Pollution Action Plan, Bioeconomy Strategy, 
European Skills Agenda for sustainable competitiveness, social fairness, and 
resilience. 

The digitization of the construction sector is identified as a key element to enable 
development that contributes to the aspects listed above. According to the 
Industry 5.0 approach, digital technologies provide a new paradigm for 
production in general, and construction in particular (European Commission. 
Directorate General for Research and Innovation., 2020). It is based on four 
fundamental components: People, Collaboration, Sustainability, and Technology. 
This approach offers a vision of the industry that goes beyond efficiency and 
productivity as the only objectives and reinforces the role and contribution of 
the industry to society (European Commission. Directorate General for Research 
and Innovation, 2021). In this context, the potential and transformative 
implications of digitization for the construction ecosystem are significant: 

 Digitization bridges the different scales of the built environment: starting 
from data on individual components, moving to the building scale, 
information can then be transmitted and incorporated into building 
production processes up to urban planning; 

 Digitization bridges different professionals, as well as between workers and 
users: design work and construction sites can become more collaborative, 
while the management of a building, asset, neighborhood, or city can be 
optimized; 

 Digitization can help create trust and transparency and improve decision-
making in building construction processes and urban planning. 

The deployment of these potentials will be facilitated by the full diffusion of 
Building Information Modeling (BIM) and tools for collaborative data-driven 

 
3https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-
digital-age/european-industrial-strategy_en. European Industrial Strategy. 
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design, and, in the longer term, by Digital Twins (DTs), automation and 
robotics, and, more generally, by data-driven tools and services that exploit the 
latest advances in the Internet of Things (IoT) and sensors, cloud computing, 
massive Big Data processing, and Artificial Intelligence (AI). 

In recent years, European and national initiatives have been launched, reference 
frameworks drafted, and roadmaps drawn up to support the digitization of the 
construction ecosystem. In addition, existing financing instruments have been 
strengthened and new ones created. However, construction remains one of the 
least digitized sectors in the EU, and the application of digital technologies 
follows a traditional value chain. 

The analysis conducted by the Joint Research Centre of the European 
Commission confirms that architectural and engineering design activities for 
buildings and infrastructure increasingly use digital tools, while their adoption 
is still very limited in the construction and maintenance phase (European 
Commission, 2019). 

Low digitalization rates are also found in the public sector, especially in 
administrative processes related to construction and medium and long-term 
strategic planning. For these, it is essential to rely on up-to-date databases, 
predictions, simulations, monitoring, and interactions with citizens and 
stakeholders based on transparency and clarity of communication. Therefore, in 
the context of the general need to digitize content, materials, and processes, DTs 
also represent a strategic technological innovation for cities (Federico 
Cinquepalmi, 2019). 

Within the age of digitization and enabling technologies, which have now 
emerged as invaluable allies in the fight against carbon emissions in the built 
environment, digital tools and platforms, combined with innovative construction 
methodologies, offer the potential to drastically reduce energy consumption and 
resource wastage. 

Building Information Modeling (BIM) stands out as a game-changing technology 
in this domain. BIM allows architects, engineers, and construction professionals 
to collaboratively design, visualize, and simulate a structure's performance in 
the digital realm long before its physical construction (Khan et al., 2021). 
Through such early-stage virtual analyses, inefficiencies can be identified, 
optimized designs can be conceptualized, and sustainability can be integrated 
as a core principle rather than an afterthought. Moreover, BIM's ability to 
integrate energy simulations ensures that energy performance is central to design 
considerations, leading to inherently more efficient structures (Murtagh et al., 
2020). 

Additionally, the deployment of sensors and Internet of Things (IoT) devices in 
modern structures ensures continuous monitoring of energy consumption, waste 



 

 
 

generation, and resource utilization (X. Li et al., 2022). This real-time data, 
when fed into advanced analytics platforms, can provide insights into areas of 
inefficiency, allowing for prompt remedial actions. It facilitates a feedback-driven 
approach to building operations, ensuring ongoing optimization and reducing 
the carbon footprint in the operational phase (S. Tang et al., 2019a). 

The rise of Smart Buildings, empowered by Artificial Intelligence (AI) and 
Machine Learning (ML), heralds a future where structures are not just passive 
entities but are actively engaged in reducing their environmental impact (J. 
Zhang et al., 2015). They autonomously adjust heating, cooling, and lighting 
systems based on occupancy patterns and external environmental conditions, 
leading to considerable energy savings. Moreover, these buildings integrate 
renewable energy sources, like solar panels and wind turbines, into their energy 
matrices. Advanced algorithms ensure optimal utilization of renewables, 
reducing reliance on grid energy that often has a significant carbon footprint. 

However, the digitization wave doesn't stop at individual structures. On a 
broader scale, the concepts of Smart Cities look to transform entire urban 
landscapes into hubs of sustainability (Deng et al., 2021). In this scenario, 
Digital Twins (DT) which are digital replicas of physical entities, are being 
created for entire cities (J. Zhang et al., 2015). These digital counterparts allow 
urban planners and policymakers to simulate various scenarios, analyzing 
potential strategies for reducing carbon emissions on a city-wide scale. It's an 
approach that integrates micro-level efficiencies of individual structures into a 
macro-level strategy for urban sustainability. 

Beyond technological advancements, the shift towards sustainable built 
environments requires a change in mindset. Green certifications and 
sustainability benchmarks are driving this change, with numerous structures 
now aiming for certifications like LEED (Leadership in Energy and 
Environmental Design) or the BREEAM (Building Research Establishment 
Environmental Assessment Method) (Gauthier & Wooldridge, 2012). Such 
certifications provide tangible goals for builders, designers, and owners, ensuring 
that sustainability is ingrained in modern structures. 

 

1.2.1 Key enablers and benefits of digital transformation  

The ongoing digital revolution, frequently named the Fourth Industrial 
Revolution (Industry 4.0), is being propelled by the rapid growth of computing 
capacities and the influx of data (Reischauer, 2018). Digital technology 
integration into various sectors has been a topic of discussion in numerous 
industry studies for a while. Yet, the Mckinsey Global Institute recently 
highlighted an intensified acceleration in digitization, driven in part by the 
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global pandemic4. This acceleration has seen revenues double from prior 
projections made before COVID-19. Mobile and cloud technologies have seen a 
massive upswing in their adoption, a trend that is projected to continue as 
economies go towards recovery. In this scenario, cyber-physical systems offer a 
promising avenue, with their potential to save time and costs, paving the way 
for a more resilient economic built environment (Sepasgozar, 2020). 

However, the integration of Industry 4.0, amplified remote work capabilities, 
enhanced supply chain integration, and increased transparency in business 
processes and might be the catalysts that push resilient companies to thrive in 
a post-pandemic environment (Rani et al., 2022). Pioneering business paradigms 
are centering on digitalization, which spans across products, processes, and 
resources. Taking the construction sector as a case in point: there is a growing 
inclination towards the Digital Twin (DT), seen as a refined progression from 
Building Information Modeling (BIM), serving as a catalyst for industry 
metamorphosis. This shift towards digital solutions is projected to bolster the 
architecture, engineering, and construction (AEC) market's valuation from 
$7.188 million in 2020 to an impressive $15.842 million by 2028, with an annual 
growth rate of 10.7% from 2021 to 2028 (Allied Market Research., 2021). 

The profound shift towards digital innovations provides a glimmer of optimism 
for industries like construction, suggesting that weathering the COVID-19 storm 
might result in amplified productivity in forthcoming years. For industries across 
the board, digital mechanisms are vital, from health monitoring and contact 
tracking to ensuring on-site safety. Concurrently, cloud technologies and mobile 
platforms foster remote collaborations among designers and builders and allow 
for swift recalibrations in supply chains. 

Among the new technologies, Digital Twins (DT) are emerging as strategic tools 
to guide and inform data-driven decision-making processes. They enable the 
utilization of the vast amount of machine-readable data produced by the 
physical city, monitoring trends and consumption, detecting dynamics, and 
simulating future scenarios. At the heart of recent debates and scientific 
research, the concept of DT has been discussed in literature rapidly increasing 
in both the number of contributions and the breadth of related topics. Saeed et 
al. summarize the potential of DTs "in enabling a new perspective for 
understanding, interacting with, and responding to our living system. This opens 
novel dimensions in multidisciplinary research areas that can redefine the way 
we perceive and interact with the city. These new methods of planning, 
management, and operation have the potential to enhance the living experience, 

 
4 McKinsey & Company. How COVID 19 Has Pushed Companies over the Technology 
Tipping Point Final.pdf. 2020. Available online: https://www.mckinsey.com 



 

 
 

efficiency, and performance of the city, its urban realm, and the built 
environment in general"(Saeed et al., 2022a). 

Recently, pilot projects, proofs-of-concept, and applications of DT in various 
areas have proliferated, and several research groups are working to highlight, 
categorize, and group the various use cases (White et al., 2021). Thanks to these 
studies and prototypes, the maturity level of DT is gradually evolving, 
demonstrating its potential and helping to gain the consensus of key 
stakeholders and decision-makers in the field of urban policies, planning, and 
the construction sector. Simultaneously, scientific research and practical 
experiments are also highlighting limits, risks, and open issues related to the 
enabling technologies of DT and the production/management of the data needed 
to power such technologies.  

Traditionally, sectors such as consumer goods manufacturing have pioneered the 
path to digitization, often outpacing the construction industry. Now, leading 
digital advancements, namely Building Information Modeling (BIM) and Digital 
Twins (DT), are steering the construction domain towards a new era of data 
interoperability. While BIM serves as the cornerstone, encapsulating both 
geometric data and non-geometric attributes vital to construction processes 
(Sacks et al., 2018), DT extends this capability by integrating BIM's static 
blueprints with dynamic real-time data, offering a multifaceted view of the built 
environment, allowing simulations and insights (Schleich et al., 2017). BIM's 
pivotal influence in the construction realm is underscored by its adaptability, 
with applications spanning the entire building lifecycle — from the nascent 
design phase to the more mature operations and maintenance stages. 

Building Information Modeling (BIM) serves as an innovative and cohesive 
platform that archives comprehensive building data. This documentation is 
pivotal in bolstering the planning, construction, and subsequent maintenance 
spanning a facility's lifespan (Volk et al., 2014). Intricately designed, BIM goes 
beyond the traditional confines of 3D computer-aided design (CAD) by 
assimilating supplementary data encompassing building specifications, 
chronological scheduling, financial approximations, and maintenance oversight, 
often referred to as 4D, 5D, and 6D dimensions respectively (Wong & Fan, 2013). 
The foundational objective behind is to mitigate unnecessary expenditures by 
precluding discrepancies and miscalculations during the design and construction 
phases. 

Presently, the utility of BIM spans across diverse sectors, prominently in 
architecture, construction, engineering, and facility management (AEC/FM). It 
plays a crucial role in tasks such as design visualization, ensuring design 
coherency, detecting inconsistencies or clashes, adhering to lean construction 
principles, accurate cost and time prognostications, and in fostering heightened 
collaboration and transparency amongst stakeholders (Volk et al., 2014). 
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Contemporary endeavors are channeling efforts to augment BIM's capabilities 
by integrating real-time data streams from sensors and other IoT devices (S. 
Tang et al., 2019b).  

Moreover, the rapid proliferation of the Internet of Things (IoT) has been 
significantly influenced by Moore's law, which postulated that the number of 
transistors on semiconductor chips would double approximately every two years, 
leading to enhanced computational capabilities at diminished costs (Chui et al., 
2010)This evolution of IoT stands poised to reshape multifarious facets of the 
global economy. This transformation is evident in myriad developments ranging 
from connected and self-driven vehicles (E.-K. Lee et al., 2016), aerial drones or 
'flying robots' (Hossein Motlagh et al., 2016), to smart home ecosystems (M. 
Wang et al., 2013). Fueling this transition is a symbiotic partnership between 
prominent appliance manufacturers and tech giants like Amazon, Google, and 
Microsoft.  

Wireless Sensor Networks (WSN) and data analytics converge to form the 
foundational pillars of the digital twin creation (Tao, Cheng, et al., 2018). When 
envisioning a building’s digital twin, one might either extrapolate a 3D CAD 
model from the existing BIM or fabricate a distinct 3D representation of the 
structure in question. By weaving together an array of sensor networks, the 
digital twin offers a vivid, real-time portrayal of the asset. This dynamic 
perspective paves the way for instantaneous analytics, insightful decision-
making, and the enhancement of building efficiency and occupant comfort. 

Traditional BIM architectures do not inherently accommodate real-time data 
and predominantly serve design, construction, and maintenance operations, 
areas which do not generally demand real-time insights (Bruno et al., 2018). On 
the other hand, the digital twin embodies the real-time essence of a tangible 
asset. Its modus operandi centers around real-time data, predominantly fed by 
sensor systems. This data serves to chronicle and monitoring the instantaneous 
structural and environmental of an asset. Such a mechanism is pivotal for 
rendering accurate digital twin simulations and insightful data analytics (Qi & 
Tao, 2018a) 

Over the years, the Digital Twin (DT) paradigm has been embraced across 
various industries as a strategy to mitigate asset risks, enhance traceability, and 
optimize maintenance, ultimately extending the asset's lifecycle (Hlady et al., 
2018). DTs can be pivotal in numerous asset-related areas, from singular asset 
performance to intricate systems like manufacturing processes, wherein multiple 
components interact uniquely (Shubenkova et al., 2018).  

For instance, a survey, as illustrated in Figure 3, highlights that the 
manufacturing sector is at the forefront in DT research and implementation. 

 



 

 
 

 

Figure 3. Digital Twins in industries 

Following closely are sectors related to gas and oil extraction, wind turbine 
management, typically associated with offshore infrastructures. The 
construction and aeronautical industries are also significant adopters of DT. It's 
noteworthy that within this context, diverse case studies, be it buildings or 
bridges, are all categorized under construction. These industries often have a 
robust R&D investment tradition, possibly driven by stringent safety mandates, 
which necessitate considerable expenditure on maintenance activities. 

This paradigm shift in embracing the digital era holds transformative 
implications for the Built Environment (BE). As we move forward, a vision of 
BE surrounded by digital technologies and propelled by data is not just an 
aspiration but a real objective. This transformation is underpinned not only by 
a drive to elevate the digital and physical scaffolds of BE but also by the need 
to contain the ecological footprint. 

Taking the UK as a case in point, the nation's strategic blueprint is veering 
towards rejuvenating pivotal sectors by tapping into the untapped reservoirs of 
digital innovation and the surging streams of big data. This seismic shift isn't 
just a superficial overlay; it aims to enrich the very core, augmenting the value 
extracted from myriad services ingrained within BE.  

In this scenario, schools and hospitals, not just brick-and-mortar establishments, 
are interconnected entities, responsive to real-time needs and adaptable to 
changing scenarios, as well as transportation networks, not merely routes 
connecting points A to B, but also dynamic systems, optimizing flows based on 
real-time data, ensuring efficiency and sustainability. Energy systems are not 
rigid frameworks but flexible matrices, responsive to fluctuating demands and 
adapting seamlessly to offer optimal output. This is the promise the digital era 
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holds for the BE, where innovation doesn't just streamline processes but 
fundamentally reshapes the very way we conceive and interact with our 
environment.  

The digital transformation of the built environment (BE), when synergized with 
a unified management strategy for the cyber and physical realms, promises to 
offer several benefits to society. According to demographers' predictions, the 
world's population is set to rise to about 9.8 billion by mid-century (European 
Commission. Competence Centre on Foresigh, 2022). Nearly 70 percent of this 
population increase is expected to be concentrated in urban centers. This change 
will bring complex challenges, including increasing energy consumption and 
intensifying vehicular traffic jams (United Nations. Department of Economic 
and Social Affairs, 2018). 

However, the contrast between the size of the construction industry and its 
digital competence reveals a paradox. Despite its colossal scale, the sector's 
digital advances appear nascent, especially when compared with those of other 
industries. This digital chasm is not only emblematic of the heterogeneous 
technological terrains that characterize regions like Europe. It underscores the 
innate complexities and resistance to transformation inherent in the 
construction ecosystem. 

The fusion of academic research and real-world observations reveals a growing 
awareness of the indispensability of digital integration and a comprehensive 
elevation that strengthens operational efficiency, supports environmental 
protection, and reinforces safety protocols. This vision recognizes the profound 
ripple effects that seemingly minor changes in industrial practices can propagate 
in global economic landscapes and environmental paradigms. 

 

Table 1. Digital technologies and related construction activities. Source: Digitalising 
the Construction Sector. Jan 2019 Committe for European Construction Equipment 

Task Enabling technology Result 

Intelligent 
design and 
planning 

BIM, Significant Data Reduction in design errors and 
enhancement in the quality of 
the design and engineering 
processes through virtual and 
digital simulation (i.e. digital 
twin). 

Fleet 
management 

Internet of Things, Big Data Remote monitoring through 
the use of sensors and 
analytics of status and 
location of construction 
equipment (i.e. work vehicles) 
so as to reduce costs, improve 



 

 
 

energy efficiency and limit idle 
time of machines. 

Predictive 
maintenance 

Internet of Things, Big Data, 
AI 

Monitoring of the condition of 
machines through the use of 
sensors and analytics with the 
aim of conducting preventive 
maintenance and to reduce 
potential failures. 

Innovative 
fabrication 
methods 

Internet of Things, Big Data, 
AI, BIM, Drones 

Rethinking construction 
processes and operations in a 
“smart perspective” 
leveraging the information 
gathered through data 
collection and analytics to 
speed up processes, reduce 
costs, improve energy 
efficiency and operators’ 
safety. 

Monitoring and 
Evaluation 
of Resilience 

BIM, Internet of Things, Big 
Data, AI, Drones 

Better “real-time” surveying 
in all of the phases of the 
project such as providing 
adequate support to on-site 
operators as well as 
monitoring resilience of 
infrastructure following the 
end of the project. 

Autonomous 
equipment 
and driverless 
vehicles 

Internet of Things, Big Data, 
Robotics 

Introduction of driver-
assistance systems and 
autonomous driving to 
improve construction 
processes and reduce physical 
workload on the construction 
site. 

 

Despite its cutting-edge nature, the Digital Twin (DT) model has its limitations. 
While it offers insights from extensive data, human intervention is still crucial 
in final decisions. There are challenges, like software issues that disrupt data 
transfer or problems syncing real-time data. The ultimate goal for DT is to 
perfectly blend the digital with the physical, creating a space where virtual and 
real worlds inform each other. 

Efforts are underway to integrate DT into the future plans of cities. The 
development of DT-focused cities showcases this progress. Though they might 
not solve all urban problems, the benefits they offer across various sectors are 
undeniable. These benefits stem from combining Virtual Reality (VR), the 
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Internet of Things (IoT), and detailed 3D modeling, all enhancing the 
effectiveness of smart cities. 

Digital Twins are now a growing feature in city planning worldwide. By 2020, 
an impressive 118 cities had incorporated DT into their urban plans, leading to 
initiatives like reducing carbon footprints and better traffic management. The 
potential of DT for cities is immense, and everyone eagerly awaits their broader 
impact (Lehtola et al., 2022). 

Yet, developing a smart city is complex. Balancing people's changing 
expectations, the appeal of new technologies for better governance, and the need 
for proactive solutions is challenging. That's where DT shines as they're great 
at spotting potential issues and preventing them. Comparing this foresight with 
actual results turns data into valuable, actionable insights. 

 

1.2.2 The journey from green production to advanced distribution 

In Italy the National Recovery and Resilience Plan (NRRP)5 encouraged 
esteemed research entities, chiefly ENEA, the Italian National Agency for New 
Technologies, Energy, and Sustainable Economic Development, the primary 
institution for research, technological innovation, and advanced services in the 
fields of energy, environment, and sustainable economic growth in taking the 
lead in championing advancements in the realm of renewable energy. Their 
efforts span across the spectrum of thermal solar to energy-efficient technologies 
like photovoltaic, bioenergy, and bio-refineries tailored for energy generation. 
There’s also an emphasis on constructing smart cities, ensuring judicious energy 
consumption, pioneering smart grid systems, propelling sustainable transit 
mechanisms, and formulating cutting-edge thermal cycles and fuel cells 
(Ministry of Economic Development, 2019). The overarching theme remains the 
integration of robotics, ICT, and pivotal digital innovations. 

Central to the NRRP is the emphasis on pioneering computational 
infrastructure and advanced data transmission frameworks. Such strides will 
supercharge research hubs, propelling them to lead in realms like cloud-based 
computing, model-driven solutions, and applications tethered to the vast 

 
5 The PNRR, Piano Nazionale di Ripresa e Resilienza, translates to the National Recovery and 
Resilience Plan in English (NRRP). Introduced in response to the economic and social challenges 
posed by the COVID-19 pandemic, this strategic initiative aligns with the broader European 
Recovery and Resilience Facility. The primary objective of the Plan is to stimulate Italy's economic 
recovery, focusing on several pivotal areas: digitalization, innovation, competitiveness, cohesion, 
education, and health. 
The plan aims to modernize Italy's infrastructure, promote green initiatives, and ensure a more 
resilient economy against future shocks. It presents an opportunity not only to repair the damages 
caused by the pandemic but to reshape Italy’s economy in a sustainable, inclusive, and forward-
looking manner. 



 

 
 

universe of Big Data and the Internet of Things (IoT). These are seen as essential 
tools in addressing multifaceted energy challenges. 

Aligned with EU directives and Italy's long-term blueprint for curbing 
greenhouse emissions, the aspiration is to drastically slash greenhouse gas 
emissions, anywhere between 80% to 100% by mid-century using 1990 as the 
baseline. This audacious goal leans heavily on an energy composition dominated 
by renewables, a sharp curtailing of energy appetite, wide-scale electrification, 
and a significant boost in hydrogen production. The plan also underscores the 
criticality of digital tech, energy storage matrices, intelligent grids, and energy 
conservation across varied sectors. 

A transformative wave is being observed in power generation facilities, largely 
driven by an amalgamation of sensor technology and pioneering software 
applications. These tools are groundbreaking in their ability to detect anomalies 
and flag potential threats, setting the stage for predictive interventions. The 
very essence of constant surveillance, enabled by these sensors, ensures real-time 
detection of performance gaps, leading to enhanced operational efficiency. 

Machine learning and artificial intelligence (AI) algorithms are integrated with 
voluminous data harvested not just from isolated power plants but from the 
entirety of a manufacturer's portfolio. Over time, this layer of automation 
empowers plants to autonomously oversee and refine their operational metrics. 

This digital metamorphosis isn’t confined to just electricity creation; it also 
reshapes distribution and commercial paradigms. It paves the way for consumers 
to demystify their consumption economics and equips entities like ESCOs and 
aggregators to curate bespoke offerings by leveraging data platforms. 

The surging digital integration in metering and home automation equips 
enterprises to harness data for granular customer insights. Yet, it's a double-
edged sword. While companies can tap into vast data pools for intricate 
customer profiling, consumers, armed with granular consumption insights, can 
engage more proactively in the marketplace. 

However, the digital footprint of energy ecosystems isn't without its challenges. 
Cybersecurity looms large as a significant concern, with the potential to 
compromise individual privacy. Notably, the International Energy Agency (IEA) 
has embarked on a mission to digitalize energy infrastructure, with the dual 
objectives of fortifying resilience and championing decarbonization 
(International Energy Agency, 2022). 

Companies are harnessing digital levers to optimize operations and cultivate a 
more interconnected energy ecosystem. A testament to this is the skyrocketing 
investment in digital tech within the electric sector, clocking in at an astounding 
$47 billion in 2016. By 2040, the anticipated annual savings for stakeholders are 
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projected to be $20 billion. Ultimately, the goal is to harmoniously integrate 
renewable sources, ensuring networks can seamlessly calibrate their energy 
offerings to fluctuating demands. 

The energy paradigm shift is not just about green energy production. It's a 
holistic transformation anchored in digitalization that encompasses all 
stakeholders, from energy magnates to the end consumer. The European 
Commission, in its proactive stance, has wrapped up a public consultation 
phase, laying the groundwork for a strategic digitalization action plan for the 
energy domain. This blueprint is geared towards ensuring that digital 
advancements play a pivotal role in the Green Deal and fostering a unified 
energy marketplace. 

However, a collective strategy is needed. The digital energy marketplace must 
be transparent and competitive, while steadfastly adhering to core tenets: 

 Ethical governance 
 Robust data protection 
 Unwavering commitment to privacy and cybersecurity 

 

Intricacies unique to the energy domain cannot be overlooked. The European 
Commission, in its initial phases, had circulated a roadmap delineating the 
challenges and outlining the objectives. 

The European Union's emphasis is clear in the digital energy action plan. As 
the EU Executive articulates, a reassessment is pivotal to ascertain if current 
mechanisms empower citizens to navigate a digitalized energy marketplace 
efficiently. 

The surge in digitalization has, unfortunately, left the energy ecosystem 
vulnerable to cyber threats, jeopardizing supply security. The entire spectrum 
of the energy supply chain, right from power plant management to consumer-
centric services and intelligent grid systems, is undergoing a digital overhaul. 

In essence, the energy renaissance pivots on three cardinal pillars: 

 Greening the electricity generation matrix, 
 Innovating novel storage modalities, such as hydrogen, 
 Infusing digital elements to revolutionize energy production, distribution, 

and consumption paradigms. 

Digitalization of energy in power plants has been made possible through the 
integration of sensors and cutting-edge software. This combination aids in 
detecting anomalies and pinpointing potential risks. As a result, proactive 
measures can be taken before any damage transpires. This strategy is known as 
predictive maintenance and is most effective when implemented at times that 



 

 
 

don't disrupt regular production activities. Furthermore, the continuous 
monitoring enabled by these sensors can promptly highlight inefficiencies, thus 
enhancing the plants' overall performance and efficiency. 

The most noticeable impact of digitalization is on the networks responsible for 
transporting and distributing generated electricity. In this realm, electronic 
meters, often termed "smart meters," serve as the cornerstone. These meters 
facilitate the creation of smart grids, which in turn ensure efficient management 
and equilibrium of the electrical system. 

Such an approach becomes crucial when dealing with intermittent renewable 
energy sources like wind and solar. They can be seamlessly integrated into the 
network using this system. Historically, the energy distribution model was 
predominantly top-down, where energy moved in one direction: from the 
producer straight to the consumer. However, recent trends indicate a paradigm 
shift toward distributed generation. This trend allows a growing contingent of 
minor producers and consumers to contribute electricity back into the network. 

Data from ENEL (Italian National Board for Electric Energy) suggests that 
approximately 17% of future investments in networks will prioritize innovations 
in transmission (i.e., by the Transmission System Operator or TSO) and, more 
crucially, the distribution (by the Distribution System Operator or DSO) of 
renewable energy sources. 

As such, ICT tools employed for these endeavors embrace a data-centric 
methodology. They harness machine learning and artificial intelligence (AI), 
amalgamated with extensive data sets derived not just from one unit but from 
every facility under the umbrella of a given producer. Over time, such automated 
learning systems will empower plants to autonomously monitor their 
performance metrics and make necessary adjustments. 

 

1.2.3 Digital Distributed Energy Resources (DER) Management 

As the shift towards sustainable energy intensifies, distributed energy resources 
(DER) are expanding in scale, variety, and intricacy across the globe. Today's 
DER-oriented power infrastructure represents a state-of-the-art entity, 
encompassing a range of equipment with modifiable consumption, localized 
generation units, and energy storage mechanisms. While DER boasts numerous 
advantages, they also pose challenges concerning system consistency, 
dependability, adherence, cybersecurity, among others. For instance, variable 
outputs from renewable sources, triggered by meteorological shifts, can result in 
intermittent voltage spikes in the distribution grid and disruptions in relay 
protection mechanisms; additionally, wind energy units might instigate 
persistent fluctuations in the electrical grid (Ren et al., 2023). The automation 
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of DER management necessitates the extensive incorporation of Internet of 
Things (IoT) instruments, whose inbuilt software is particularly vulnerable to 
cyber intrusions (Sharma et al., 2020). 

The intricacy of adequately delineating a power system, particularly in the 
context of DER, is underscored by the necessity of a great array of heterogeneous 
models, potentially imposing hefty costs. The pivotal challenge lies in enabling 
the Digital Twin (DT) to swiftly and accurately mirror intricate, prolonged 
power distribution processes, which are dispersed over vast regions and 
influenced by an intricate web of latent technological, socio-cultural, and 
economic parameters. The models that structure a DT manifest variation both 
on a horizontal spectrum, referring to the specific components they characterize, 
and vertically, relating to the particular concerns or perspectives they epitomize. 

To address this diversity, systems engineering offers an approach via viewpoint-
centric DT construction, a technique deeply rooted in the guidelines of the 
ISO/IEC/IEEE 42010 standard (Gharaei et al., 2020). This fosters a 
synchronized, clear understanding of the system. Moreover, to reinforce the base 
semantics and sidestep potential variances in the theoretical comprehension 
within the DT, incorporating a sturdy semantic structure is crucial, as 
exemplified by the distributed energy ontology framework (Andryushkevich et 
al., 2019) 

Delving into the sphere of standardization and aiming for automated model 
integration, cutting-edge mathematical methodologies based on category theory 
emerge as an apt solution. Within this analytical paradigm, research efforts are 
directed towards carving a trajectory for the development of a DT-focused DER 
control platform that resonates coherently with the previously mentioned 
benchmarks. 

 

1.3 Research framework 

Over the past few years, Digital Twins (DT) have firmly established themselves 
as pivotal tools across a wide spectrum of industries. In the automotive sector, 
they provide intricate simulations of vehicular operations, allowing for advanced 
diagnostics and performance enhancements. Manufacturing industries utilize 
DTs to replicate factory processes, optimizing production lines and predicting 
maintenance needs, ultimately leading to decreased downtimes and increased 
output. The aerospace domain leverages DT for simulating flight conditions, 
ensuring design robustness, and forecasting maintenance, a critical component 
for safety and efficiency. Moreover, in the healthcare sector, DTs have been 
transformative. They've enabled the creation of patient-specific digital replicas 
which aid in tailoring personalized treatments and ensuring the precision of 
diagnostics. Through these applications, it's evident that the integration of DT 



 

 
 

has resulted in enhanced operational efficiency, risk mitigation, and improved 
decision-making across varied sectors. 

However, the integration of DT in the AECO domain holds vast potential for 
the energy sector, enhancing operations through precise data modeling and real-
time monitoring. 

The potential of Digital Twins expands even further when introduced to the 
built environment, particularly in the realm of energy management. Within the 
AECO sector, DT can model and predict how energy is consumed, stored, and 
distributed in real-time. This data-driven approach not only assists in optimizing 
existing infrastructures but also provides invaluable insights during the design 
phase of buildings, ensuring energy-efficient architectures. As buildings and 
structures become more complex, integrating renewable energy sources and 
adaptive systems, the role of DT becomes even more pronounced. By modeling 
how different energy systems interact within the built environment, stakeholders 
can make informed decisions, ensuring sustainability and efficiency while 
reducing operational costs. 

At various scales of the energy ecosystem (Figure  4): 

 Bulk Generation sees the harnessing of large-scale energy sources, where 
DT can model and predict optimal output levels and maintenance 
schedules. 

 Transmission Utility Operations can benefit from DT's ability to 
forecast transmission bottlenecks and optimize grid flow. 

 Distribution Utility Operations leverage DT for efficient power 
distribution, demand forecasting, and grid stability. 

 Behind the Meter involves the end user's side, focusing on consumption 
optimization. This encompasses technologies such as: 

 PV (Photovoltaic) Systems which can be modeled for peak 
solar capture times. 

 Wind Turbines where DT can simulate optimal blade 
configurations. 

 EV (Electric Vehicle) Charging Stations, predicting and 
managing peak charging times. 

 Batteries for optimizing charge and discharge cycles. 
 Heat Pumps and Smart Thermostats for ensuring optimal 

heating or cooling with minimal energy wastage. 
 Microgrids which aggregate and manage these diverse energy 

sources. 
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Figure  4. Digital Twins enabling Electric Grid Reliability, Resiliency and Affordability 

Microgrids, with their inherent ability to operate autonomously from the main 
grid, stand out as a quintessential application for DT, especially in the "Behind 
the Meter" context. This term essentially refers to all energy systems and 
processes that end-users have direct control over, from energy generation, 
storage, and consumption. Digital Twins can replicate these intricate microgrid 
systems, providing real-time data on energy usage patterns, storage capacities, 
and potential grid disruptions. Such a granular level of detail allows for advanced 
forecasting, ensuring that during peak consumption times or grid disturbances, 
energy can be efficiently managed, and outages are minimized. Furthermore, DT 
can simulate different scenarios, aiding in strategic planning and ensuring 
optimal energy distribution based on varied inputs like weather forecasts, peak 
usage times, or even unexpected outages. 

It is at the microgrid scale that the present research particularly sharpens its 
focus. The beauty of microgrids lies in their ability to operate autonomously, 
interfacing seamlessly with the main grid or functioning in isolation during 
disturbances.  

Distributed Energy Resources (DER) Management is at the heart of modern 
energy systems, especially in the context of microgrids. With an array of energy 
sources, from photovoltaic systems and wind turbines to batteries and heat 
pumps, the orchestration of these resources is paramount. Digital Twins offer a 
holistic view of these diverse energy sources, providing a platform where each 
can be managed in synchrony with the others. This encompasses facilitating 
effective Demand Response, where energy consumption can be adapted in real-
time based on market conditions, and Battery Dispatch Optimization, ensuring 
that energy storage systems are used efficiently. Beyond these, DTs aid in a 



 

 
 

comprehensive approach to Energy Management, balancing energy 
consumption, storage, and generation, and ensuring that the microgrid operates 
at peak efficiency. The integration of DT in DER Management represents the 
future of energy, where data-driven insights guide actions, leading to a 
sustainable and efficient energy landscape. 

Through this research framework, the aim is to unearth the vast potentials of 
Digital Twins in transforming how energy is managed and optimized in the built 
environment. 

This thesis is structured as follows: 

Chapter 2 – Background and Literature review: this chapter delves deep into 
existing literature, offering a comprehensive review of previous research and 
studies related to the Digital Twin (DT) paradigm and its applications across 
various industries and particularly in the Built Environment frameworks. By 
examining established definitions, theories, practices, and findings, the chapter 
aims to provide a solid foundation for the subsequent sections. 

Chapter 3 – Methodology and Use Case Scenario (PoC): in this chapter, the 
research methods employed for the thesis are detailed. It outlines the research 
design, data collection techniques, and analysis methods. The chapter also 
presents the architectural design of the framework being proposed for DT-based 
Microgrid Management System. The proposed system is capable of recognize 
and manage the main loads (HVAC for air quality control (IAQ), electrical 
systems, automotive, etc.) in real-time, balancing them with production systems 
from renewable sources and energy from the national electrical grid. 

The Use Case Scenario specifically focuses on how the Digital Twin (DT) 
paradigm can be integrated into a Distributed Energy Resource (DER) 
Management System including Indoor Air Quality (IAQ) control system as a 
Proof of Concept (PoC). The chapter elucidates the challenges encountered, the 
solutions employed, and the results derived from the application of DT in the 
Intelligent Energy Management space. 

Chapter 4 - Discussions: the final chapter synthesizes and reviews the main 
insights derived from the literature, the efficacy of the methodology and 
framework proposed, and the implications of the use case scenario towards smart 
district and energy communities. Additionally, it provides final remarks and 
recommendations for future research, potential applications in Vehicle-to-Grid 
(V2G) scenarios, and improvements in the field. 
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Chapter 2 

 

Background and Literature Review 

 

 

 

 

2.1 Digital Twin paradigm 

The digital twin (DT) concept is defined differently depending on the domain 
context such as manufacturing, automotive, aerospace etc. and it has been 
recently explored and introduced in the built environment sector (McKinsey 
Global Institute, 2022) As the DT concept rapidly gained attention and 
widespread interest, it became a research area for the AECO sector and 
contributions in literature increased over time after 2016 towards an effective 
conceptualization. In this regard, in the UK the National Infrastructure 
Commission (NIC) issued the Data for the Public Good report in 2017, and the 
Centre for Digital Built Britain (CDBB) introduced The Gemini Principles 
report in 2018, in order to define policy standards and frameworks for the 
implementation of digital technologies as an interconnection between society and 
the built environment (Batty, 2018).  

Moreover, the DT concept is also closely related to the domain of smart cities 
and buildings as it enables predictive insights into a city management approach 
based on digitalization (Mohammadi & Taylor, 2017), providing big data 
management capabilities in urban spaces (Oliver, 2018). 
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2.1.1 Definitions and key enablers  

Back in 2002, the concept of the Digital Twin model emerged in the world of 
Product Lifecycle Management (PLM) without an official name (M. W. Grieves, 
2005). Shortly after, it received a name, but it went through some changes. 
Initially, it was called the "Mirrored Spaces Model" (MSM) in 2005 (M. W. 
Grieves, 2005). However, the name evolved into the "Information Mirroring 
Model" in 2006 (M. Grieves, 2006). Finally, in 2011, it became known as the 
"Digital Twin," a term coined by John Vickers of NASA (Grieves M, 2011). 
Throughout this evolution of names (Figure  5), it's important to note that 
the core concept and model remained consistent and unchanged. 

 

 

Figure  5. Evolution of Digital Twin Concept 

Later in 2012 it was further evolved in the aerospace industry related to 
modelling and simulation as it was defined by Glaessgen and Stargel as “an 
integrated multiphysics, multiscale, probabilistic simulation of a vehicle or 
system that uses the best available physical models, sensor updates and fleet 
history, among others, to mirror the life of its flying twin. The digital twin is 
ultrarealistic and may consider one or more important and interdependent 
vehicle systems” ((Shafto M. et al., 2010); (Tuegel et al., 2011a)). 

Examining the essence of a Digital Twin (DT) is a valuable endeavor. The 
Digital Twin Model, as depicted in Figure 6 comprises three fundamental 
components: 

 The "Physical Twin" on the left side represents an existing or intended 
physical entity in the real world. 

 The "Digital Twin" on the right side is its virtual or digital counterpart 
residing in the digital realm. 
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 Facilitating the seamless exchange of data and information between 
these two counterparts is the "Digital Thread". 

 

The concept of the Digital Twin came into being roughly twenty years ago and 
has since been a recurring theme in the literature. It's important to note that 
there's not universally accepted and standardized definition at present. The 
definition tends to vary based on factors such as the specific application area of 
the Digital Twin, the discipline involved, the scale of the physical element being 
replicated, and other contextual variables. 

Regarding this conceptual ambiguity, several interdisciplinary and 
multidisciplinary investigations have recently commenced taxonomic analyses 
tracing the gradual development of the Digital Twin concept. Some of these 
studies are referenced to trace the historical trajectory of the concept.  

DTs are widely used by NASA for spacecraft, as well as the U.S. Air Force uses 
it for jet fighters (Tuegel et al., 2011a). It's also being considered for aircraft 
health in general. In addition, it's being explored for use in IoT deployment and 
factory production. 
Even the oil industry is looking at using Digital Twins for ocean-based 
production platforms. And in the field of medicine, there's talk of using Digital 
Twins of humans to improve patient health. 
 
Moreover, many software providers that deal with product development and 
product lifecycles are adopting the Digital Twin terminology. Big players like 
Dassault Systems, PTC, Siemens, and General Electric have all embraced the 
concept and are actively using it in various ways (Ghenai et al., 2022). 
In Grieves' own words, he affirms that despite the evolving terminology, the 
fundamental concept of the Digital Twin model has remained remarkably 
consistent since its inception in 2002. The core idea revolves around the creation 

Figure 6. Digital Twin concept's fundamental components 
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of a digital information structure representing a physical system as an 
independent entity. This digital information serves as a 'twin' of the data 
inherent to the physical system, remaining linked with the physical system 
throughout its entire lifecycle (M. Grieves, 2016). 

Many DT definitions are wide spreading over time and several research studies 
introduced the concept of cyber-physical connection (Haag & Anderl, 2018) 
(Tomko & Winter, 2019)) and real-world mirroring at different levels from 
products, assets, buildings (Buckman et al., 2014), districts to national 
ecosystems (Bolton et al., 2018). 

While looking at specific definitions of the concept related to process 
management in the AECO sector, many conceptualizations from different points 
of view can be observed. Control and monitoring capabilities combined with 
intelligence skills are some of the main goals for digital twins in the built 
environment throughout its lifecycle. 

The Digital Twin Consortium defines it as “a virtual representation of real-world 
entities and processes, synchronized at a specified frequency and fidelity” 
introducing the synchronization concept as a fundamental element. 

The Gemini Principles report provided by the Centre for Digital Built Britain 
defines the DT as a dynamic model of the physical asset, controlled and operated 
through real-time sensor data measuring performance. As a recently born 
concept, DT is often resulting in confusion about its intended uses, performances 
and outcomes, so identifying the main levels of DT in the built environment 
could be valuable in obtaining clearer definitions. 

Digital twinning is generally conceived as virtually simulating the relevant 
behaviour of physical objects in real-world environments (Hochhalter J.D. et al., 
2014) as the main components of a typical digital twin are the physical entities 
in the physical world, the digital models in the virtual world and the data that 
tie the two worlds together (Michael Grieves, 2014).  

Moreover, many definitions emphasize the concept of synchronisation between 
the digital and virtual world, such as (Garetti et al., 2012) define DTs as “the 
virtual representation of a production system that is able to run on different 
simulation disciplines that is characterized by the synchronisation between the 
virtual and real system”. 

Hereafter, a selection of 31 definitions from research literature are included in 
the following Table 2 and grouped according to six different key layers which 
specifically identify the main key points according to the field of interest. 
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Table 2. Digital Twin definitions and key layers 

Key layers Definition Field Ref. 
Integration 
[K.1] 

[D.1] Integrated multiphysics, 
multiscale, probabilistic simulation 
composed of physical product, 
virtual product, data, services and 
connections between them. 

Aerospace (Glaessgen 
& Stargel, 
2012) 

[D.2] Ultrarealistic integrated 
multiphysics, multiscale, 
probabilistic simulation of a 
system. 

Complex 
equipment 

(Tao F, 
2017) 

[D.3] Comprehensive physical and 
functional description of a 
component, product or system, 
together with all available 
operation data  

Product 
lifecycle  

(Boschert & 
Rosen, 
2016a) 

[D.4] A means to link digital 
models and simulations with real-
world data, creates new 
possibilities for improved 
creativity, competitive advantage 
and human-centred design. 

Built 
environment 

(Arup, 2019) 

[D.5] Big collection of digital 
artefacts that has a structure, all 
elements are connected; there 
exists metainformation as well as 
semantics. 

Manufacturing (Rosen et 
al., 2015) 

Connection 
[K.2] 

[D.6] New mechanisms to manage 
IoT devices and IoT systems-of-
systems.  

Industrial IoT (Canedo, 
2016) 

[D.7] One where the virtual object 
exchanges data flows with the 
physical one in both directions. 

Manufacturing (Menegon 
& Isatto, 
2023) 

Information 
[K.3] 

[D.8] The notion where the data of 
each stage of a product lifecycle is 
transformed into information. 

Product 
lifecycle  

(Abramovici 
et al., 2017) 

[D.9] Comprehensive physical and 
functional description of a 
component, product or systems. 

Smart 
manufacturing 

(Shao et al., 
2019a) 

[D.10] Digital information 
construct about a physical system. 

Aerospace (Tuegel et 
al., 2011b) 

Simulation 
model [K.4] 

[D.11] Simulation based on expert 
knowledge and real data collected 
from existing systems. 

Machine 
engineering 

(Gabor et 
al., 2016) 
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[D.12] Reengineering 
computational model of structural 
life prediction and management.  

Product 
lifecycle 

(M. Grieves 
& Vickers, 
2017) 

[D.13] Virtual models for physical 
objects to simulate their 
behaviours. 

Smart 
manufacturing 

(Qi & Tao, 
2018b) 

Virtual 
replica [K.5] 

[D.14] Computerized clones of 
physical assets. 

Industrial 
production 

(Banerjee et 
al., 2017) 

[D.15] Virtual and computerized 
counterpart of a physical system. 

Production 
systems 

(Negri et al., 
2017) 

[D.16] Functional system formed 
by the cooperation of physical 
production lines with a digital 
copy. 

Industrial 
production 

(Vachalek 
et al., 2017) 

[D.17] Cyber copy of a physical 
system. 

System of 
systems 

(Alam & El 
Saddik, 
2017) 

[D.18] Digital model that 
dynamically reflects the status of 
an artefact  

Healthcare (Bruynseels 
et al., 2018) 

[D.19] Digital replica of physical 
entity with two-way dynamic 
mapping  

Manufacturing (El Saddik, 
2018) 

[D.20] Virtual representation of 
production system that is able to 
run on different simulation 
disciplines. 

Product 
lifecycle 

(Garetti et 
al., 2012) 

[D.21] Digital mirror of physical 
world. 

Smart 
manufacturing 

(Guo et al., 
2019) 

[D.22] Virtual model of physical 
object. 

Smart 
manufacturing 

(Mabkhot 
et al., 2018) 

[D.23] Dynamic digital 
representation of a physical system. 

System 
engineering 

(Madni et 
al., 2019) 

[D.24] Virtual representations of 
physical manufacturing elements, 
such as personnel, products, assets 
and process definitions. 

Manufacturing (Shao et al., 
2019b) 

[D.25] Virtual representation of 
real product. 

Industrial 
component 

(Schroeder 
et al., 2016) 

[D.26] Virtual model of physical 
asset. 

Manufacturing (Talkhestan
i et al., 
2018) 
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[D.27] Digital copy of a physical 
system. 

Industrial 
production 

(Wärmefjor
d et al., 
2017) 

[D.28] A realistic digital 
representation of assets, processes 
or systems in the built or natural 
environment. 

Built 
environment 

(Bolton et 
al., 2018) 

[D.29] Dynamic digital replica of 
physical assets, processes and 
systems, involving internet of 
things (IoT) devices and 
information feedback from citizens. 

Built 
environment 

(Q. Lu et al., 
2020) 

Capabilities 
[K.6] 

[D.30] Dynamic virtual 
representation of a physical object 
or system across its lifecycle, using 
real-time data to enable 
understanding, learning and 
reasoning. 

Built 
environment 

(National 
Infrastructur
e 
Commission 
(UK). 
United 
Kingdom, 
2017) 

[D.31] Systematic approach 
consisting of sensing, storage, 
synchronisation, synthesis and 
service. 

Manufacturing (J. Lee et 
al., 2013) 

 

Moreover, it can be noted that over the past decade, the concept of Digital Twin 
(DT) has undergone a transformation driven by several factors such as the 
“explosion of data” in terms of the exponential surge in data generation from 
diverse sources such as IoT devices, sensors, mobile phones, social media, and 
network infrastructure: 

 Advanced sensing technologies: significant advancements in the 
capability to detect and digitally replicate physical "objects" on a large 
scale. This is made possible through technologies like Light Detection 
and Ranging (LIDAR), photogrammetry applications, and Unmanned 
Aerial Vehicles (UAVs). 

 Software advancements: the continuous development of software tools 
and platforms that facilitate the creation and management of Digital 
Twins. 

 High-Performance computing (HPC): the availability of high-
performance computing resources, enabling complex simulations and 
real-time data processing. 
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 Machine Learning and AI: the maturation of Machine Learning (ML) 
and Artificial Intelligence (AI) algorithms, which enhance the analytical 
capabilities of Digital Twins. 

In this scenario, the Digital Twin Consortium took a significant step towards 
establishing a unified foundation for future advancements by releasing the 
following definitions: 

A digital twin is a virtual representation of real-world entities and processes, 
synchronized at a specified frequency and fidelity. 

Digital twin systems revolutionize businesses by expediting comprehensive 
comprehension, optimal decision-making, and effective action. 

Digital twins harness real-time and historical data to encapsulate the digital 
twin past and present while simulating potential future scenarios. 

Digital twins are driven by desired outcomes, tailored to specific use cases, 
fortified through seamless integration, constructed upon a foundation of data, 
guided by domain expertise, and implemented within the realm of IT/OT 
systems (Digital Twin Consortium, 2020). 

Such definitions provide a clear and encompassing understanding of what a 
Digital Twin entails, highlighting its transformative potential and its reliance on 
data, expertise, and integration for effective application across various domains. 

In 2021, (Deren et al., 2021) traced the origins and evolution of the Digital Twin 
(DT) concept, starting from its inception in industrial design and 
manufacturing. They also explored how the concept expanded in scale and 
intersected with the notion of smart cities, thanks to advancements in related 
technologies. 

Several systematic literature reviews have delved into the DT paradigm. 
(Semeraro et al., 2021), (Trauer et al., 2020), and (Barricelli et al., 2019) have 
contributed to understanding the multifaceted nature of DT. 

Caprari et al. in 2022, emphasized the multidisciplinary nature of the DT 
concept, showcasing its intersections with various disciplines and its application 
in diverse sectors. In his comprehensive overview, Caprari presented a collection 
of transdisciplinary studies (Caprari et al., 2022), offering a taxonomic analysis 
of the historical development of the DT concept and its connections to various 
fields of development and application (Valk, 2020). 

Lastly, Shahzad et al. (Saeed et al., 2022b) explored the characteristics, 
challenges, and applications of Digital Twins in the built environment. They 
compiled a selection of the most notable and widely cited definitions of "digital 
twin" in the literature (Brilakis et al., 2019), (David et al., 2018), (Madni et al., 
2019), (B. N. Silva et al., 2020), (Shahat et al., 2021), (Centre for Digital Built 
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Britain, 2019), (Glaessgen & Stargel, 2012), (Y. Chen, 2017), (Arup, 2019), 
(Boschert & Rosen, 2016b)], providing a synthesis of each to enhance our 
understanding of this concept's diverse interpretations and applications. 

 

2.1.2 Primary objectives 

The primary goal of the Digital Twin (DT) is to facilitate remote and real-time 
monitoring and control of physical assets. The data integrated into the digital 
representation of the asset serves several critical functions: 
 

 Anomaly detection: it helps in identifying irregularities or deviations 
from normal operation. 

 Simulation: the data enables the running of simulations to predict how 
the asset will behave under various conditions. 

 Failure prediction: it assists in forecasting potential failures or issues 
before they occur, enabling proactive maintenance. 

 
This wealth of information is then harnessed to optimize the operations of the 
asset. It's worth noting that while the initial focus of DT was primarily on real-
time monitoring, it has since expanded in scope. Now, DT is also recognized as 
a valuable tool for building and testing products in virtual environments and 
supporting design and manufacturing processes. 
 
As illustrated by Dr. Grieves, the concept of Digital Twins encompasses different 
types, each tailored to specific phases in the system's lifecycle (M. Grieves & 
Vickers, 2017). Here are the key types (Figure  7): 
 

 Digital Twin Prototype (DTP): the DTP serves as the design version 
and includes all its variations. DTPs are crucial for complex 
manufactured products. 

 Digital Twin Instance (DTI): the DTI represents the Digital Twin of 
each individual produced artifact. DTIs are created for products where 
it's essential to maintain comprehensive information about the product 
throughout its lifespan. Examples include airplanes, rockets, 
manufacturing floor equipment, and automobiles. 

 Digital Twin Aggregates (DTAs): DTAs are composite representations 
that combine multiple DTIs. They provide both longitudinal and 
latitudinal insights into behavior. Longitudinally, they correlate past 
state changes with subsequent behavioral outcomes. For instance, this 
can help predict component failures when specific sensor data patterns 
emerge. Latitudinally, DTAs enable a learning process, where a small 
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group of DTIs can acquire knowledge from actions and share this 
learning with the broader set of DTIs. 

 

 
Figure  7. Key Digital Twin Concepts (M. Grieves & Vickers, 2017) 

The review of existing literature presented herein introduces the Digital Twins 
paradigm (Figure 8) focusing on conceptual and process models pertinent to 
various domains, each tailored to specific use-cases. Furthermore, this review 
delves into the integration of cyber-physical processes and Internet of Things 
(IoT)-based technologies, alongside artificial intelligence and machine learnins 
as essential structural components for the development of Intelligent Digital 
Twins (IDTs). 

 
Figure 8. Digital Twin paradigm’s main components from literature review 

 
2.1.3 Conceptual models 

The concept of the Digital Twin (DT) originally had specific applications, such 
as assessing structural integrity and aiding in monitoring and maintaining 
physical assets. However, the DT's broad potential, involving the creation of a 
precise digital replica of physical assets, has garnered interest across multiple 
sectors and applications. This has led to diverse definitions as researchers explore 
various possibilities. 

Authors have expanded their definitions to include additional elements, such as 
specific hardware or software components, expected behaviors, and the context 
of DT operation. Some have integrated the DT into specific application 
frameworks, encompassing potential use-cases and sophistication levels. 
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Several adaptations of the initial DT conceptual model have emerged, better 
aligning with diverse use-case needs. This review of existing literature suggests 
the introduction of four primary structural model categories: representative, 
framework-oriented, interaction-centric and function-driven. 

 Representative: these models serve as exemplary representations, 
offering a clear and fundamental understanding of the Digital Twin's 
structure and functionality. 

 Framework-oriented: these models are centered around a structured 
framework, emphasizing the systematic arrangement of components and 
their relationships within the Digital Twin. 

 Interaction-centric: these models prioritize the portrayal of interactions 
and interfaces within the Digital Twin, highlighting how various 
elements communicate and operate together. 

 Function-driven: these models revolve around the functionalities and 
services provided by the Digital Twin, emphasizing its practical utility 
and application in specific contexts. 

Within the Representative category, numerous conceptual models closely 
resemble the original one outlined in the literature (M. W. Grieves, 2019), 
characterized by minor formal adjustments, additions of components, and more 
detailed specifications.  

For instance, one conceptual model, proposed by (Madni et al., 2019) expands 
beyond the traditional framework. In this model, the physical asset not only 
conveys performance, health, and maintenance data but also includes event 
occurrences and actions. 

In another approach, (Liu et al., 2021) introduced a conceptual model featuring 
separate representations for an information model and a decision-making model 
within the digital asset. 

Furthermore, communication between the physical asset and the digital asset 
should encompass data related to geometry, performance, and context. (P. Wang 
& Luo, 2021) present a representative DT conceptual model that considers the 
asset's life cycle and use-case descriptions. In this context, the physical asset 
compiles raw and processed data, process descriptions, and use-case descriptions, 
while the digital asset incorporates a variety of data models, algorithms, and 
digital processes. 

Other examples in this category underscore remote control capabilities and the 
interaction of users with the DT, where DT capabilities are considered as 
services. For instance, (Y. Lu & Xu, 2019) propose a conceptual model 
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addressing on-demand manufacturing services, wherein the DT manages a series 
of physical controllers and interfaces with remote users through cloud services. 

(Damjanovic-Behrendt & Behrendt, 2019) adopt an alternative approach by 
defining three interoperability "managers" responsible for data exchange and 
asset control, without specifying the exchanged data. These managers facilitate 
monitoring, decision-making, and simulations, respectively. 

Additionally, some conceptual models consider communication among diverse 
DTs and the ability to simulate these interactions. 

In summary, this category encompasses a range of conceptual models that build 
upon and refine the foundational Digital Twin concept to suit various 
applications and requirements within the built environment. In the context of 
Architecture, Engineering, Construction, and Operations (AECO), it 
contemplates integration with Building Management Systems (BMS), identifies 
various users interfacing with the DT (operators, owners, authorities, and end-
users), and underscores the relevance of contextual visualizations due to the 
asset's location in the built environment. 

Framework-oriented conceptual models fall into a category that elucidates 
the structure of Digital Twins (DT) by portraying them as an assembly of 
diverse models operating within a communication framework. Their focus lies in 
delineating the assortment of models essential for crafting a precise digital 
counterpart of a physical asset, which the original DT conceptual model does 
not explicitly articulate. 

For instance, (Z. Zhang et al., 2020) present a comprehensive DT comprising 
models for product definition, geometric shape, manufacturing attribution, 
behavior rules, and data fusion. Similarly, (Vrabič et al., 2018) propose distinct 
models encompassing geometry, environment, dynamics, control, sensors, and 
machine learning. 

In a broader context, (Tao et al., 2019) introduce a four-model conceptual 
framework, embracing geometry, physics, behavior, and rule models. This 
framework also integrates user services and access to domain knowledge. 

(Zheng & Sivabalan, 2020a) present a DT concept model featuring three core 
components: a digital model integrating assets and environment, a 
computational model for simulations, and a graph-based model organizing 
interactions among datasets. Notably, this model distinguishes between digital 
replicas of physical assets and the real environment. 

(Stark et al., 2019) adopt an approach that explicitly segregates hardware and 
software components, considering various model types, data, processes, and 
inter-component communication. 
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In all these models, the effective interaction among diverse models is pivotal for 
accurately mirroring changes in the physical asset's condition. (Terkaj et al., 
2019) introduce a network-configured DT model with nodes for configurator, 
ontologies, simulation, and visualization. This configuration, enhanced with 
elements from other models, holds promise for applications in the built 
environment. 

For AECO sectors, determining the relevance of models for specific use cases is 
crucial. The configurator can then select the pertinent models and offer 
requested services via the visualization node, offering flexibility and adaptability. 
This modular conceptual model facilitates integration with existing capabilities 
in AECO, encompassing ontologies, simulations, and contextual visualizations. 

Interaction-centric DTs are presented as an intermediary that bridges the 
"physical space" and "digital space," uniting digital and physical entities. Unlike 
the previous models that emphasize DT as a digital replica of physical assets, 
interaction-centric models focus on its role in enhancing processes rather than 
assets. 

For instance, (Zheng & Sivabalan, 2020b) propose a model where the DT acts 
as an interface linking manufacturers, service providers, users in the physical 
space, and cloud-based services in the digital realm. Similarly, (Y. Wang et al., 
2020) describe a DT that facilitates connections between manufacturing, cloud 
processing, and physical product inspections during operations. 

In these models, the specific linkage between physical and digital assets remains 
implicit. The DT serves solely as a conduit for digital processes to augment 
physical ones. Unlike the previous models, which prioritize assets, these 
conceptual models concentrate on processes. This difference poses limitations 
for AECO sectors, where physical assets hold paramount importance. In 
contrast, in manufacturing, the focus is often on the manufacturing processes 
rather than the products themselves. 

In summary, the higher level of abstraction and the absence of a clear physical-
digital correspondence among assets in interface-oriented models may restrict 
their suitability for AECO use cases. Nevertheless, these models excel in 
accommodating digital components and services that lack a direct physical 
counterpart. 

According to the function-driven conceptual model the user is placed at the 
core of their structural framework. These models prioritize complex workflows 
by considering the interactions among processes and people. Services are 
explicitly modeled, with DTs serving as wrappers for these services. The primary 
goal is to automate intricate workflows through task orchestration, 
distinguishing between automation (for single tasks) and orchestration (for 
multi-step processes across various systems). 
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For instance, (Aheleroff et al., 2021) used a service-based DT conceptual model 
to orchestrate diverse processes, leveraging various technologies for wetland 
maintenance scheduling. This involved real-time monitoring, control, and 
prioritization of maintenance activities. In this model, a supervisor sets goals for 
an orchestrator, a machine-learning-enabled entity managing multiple DTs. 
These DTs can represent physical assets or human operators who interface with 
the orchestrator through their service capabilities. The orchestrator utilizes 
historical data, synthesizes supervisor-defined goals, proposes solutions, and 
executes the selected solution. 

This conceptual model deviates significantly from the traditional DT paradigm, 
positioning the DT as a component within a larger system where orchestrators 
and supervisors play crucial roles. It focuses on managing multiple DTs in 
complex workflows, expanding the DT's use-case beyond its original intent. In 
the context of Architecture, Engineering, Construction, and Operations 
(AECO), this model could be applied to manage intricate construction or 
maintenance operations. 

Process models provide high-level descriptions of sequential and parallel 
activities, rules, guidelines, and behavior patterns that lead to desired outcomes. 

In summary, service-based conceptual models prioritize user-centric, complex 
workflows with explicit modeling of services. They extend the traditional DT 
paradigm to accommodate intricate task orchestration. Additionally, process 
models encompass a variety of activities in DT creation, synchronization, and 
operationalization, with resource-centric approaches aligning closely with AECO 
practices. 

 

2.1.4 Process models 

The DT paradigm encompasses various process models that serve different 
purposes within the domains of manufacturing and the built environment. These 
models can be grouped into several categories, including creation, 
synchronization, asset monitoring, prognosis and simulations, optimal 
operations, and optimized design. 

The creation of process models involve the automated generation of DT 
instances as a DT model is initially defined, and specific DT instances are 
created for each product to be manufactured. For instance, (K. T. Park et al., 
2019) proposed a four-step process for DT creation, involving combining digital 
components, incorporating manufacturing equipment, importing functional 
definitions, and visualizing the DT instance in a 3D environment. While these 
processes are common in manufacturing, they differ significantly from creating 
Building Information Models (BIM) or geometrical DT models for built assets. 
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DT creation processes focus on functional attributes and relationships among 
components, which are not typically captured in BIM models. Additionally, the 
small variations between built assets and the relatively low number of instances 
make direct translation of manufacturing approaches to the built environment 
challenging. However, these approaches can support BIM model federation for 
interdisciplinary assessments in AECO. 

Synchronization is a fundamental requirement in the DT paradigm, involving 
two-way data exchange between physical assets and their digital counterparts. 
Event-based synchronization, proposed by (K. T. Park et al., 2019), aligns 
different data types with specific events and timestamps, enabling diverse 
synchronization processes for tracking historical performance, real-time 
monitoring, and future schedules. In the AECO sectors, such synchronization 
processes could correspond to obtaining data related to construction progress, 
current tasks, and future construction plans. The rate of synchronization, known 
as the "twinning rate," is crucial, with real-time synchronization being vital for 
Industry 4.0 manufacturing. However, the specific use-case should determine 
latency requirements, which may not be as stringent in AECO compared to 
manufacturing. 

Asset monitoring in the DT paradigm often focuses on performance monitoring 
to detect faults promptly and facilitate maintenance.  

In AECO, Structural Health Monitoring (SHM) and building services 
monitoring are predominant. For example, (Davila Delgado & Hofmeyer, 2013) 
demonstrated the integration of physical and digital infrastructure assets for 
structural condition data and long-term asset management. In building services, 
DT process models, such as the one by (Q. Lu et al., 2020), are used for anomaly 
detection in heating and ventilation systems. These models can be adapted for 
gradual and abrupt fault detection in various infrastructure and built assets. 

Prognosis and simulations are essential aspects of the DT paradigm, enabling 
predictive maintenance and condition-based assessments. Prognostic simulations 
predict future trends or state changes based on current asset states, while 
reactive simulations predict future states due to unexpected disturbances. In the 
AECO context, prognosis and simulations are often carried out at the design 
stage, focusing on future behaviors rather than current operations. However, 
DT-based approaches aim to simulate asset operations based on current 
performance data. Validation of simulations is crucial, though relatively 
unexplored in the DT context. 

Optimal operations leverage DTs to optimize complex processes by adjusting 
parameters within limits to minimize costs or maximize efficiency. There are two 
main types of process models: those focused on optimizing manufacturing 
processes and those targeting equipment operation. (Schluse et al., 2017) 
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presented a DT process model for simulation-based optimal operations of 
complex equipment tasks, which integrates real-world and digital interactions 
and simulates user interactions. In the AECO context, this approach can 
optimize the operation of various plant equipment or coordinate large-scale 
construction activities efficiently. 

Optimized design using DTs involves two primary approaches. One uses DTs to 
simulate the performance of physical assets and refine designs based on 
simulation results. The other leverages historical performance and condition 
data from physical assets to improve future designs. In AECO, these approaches 
can be applied to optimize designs based on real-world data and enhance 
simulations to better align with actual asset performance. The use of 
evolutionary processes and benchmarking further supports the optimization of 
designs in the built environment. 

In summary, the DT paradigm offers a versatile set of process models applicable 
to various industries, including manufacturing and AECO, with the potential to 
enhance asset management, performance optimization, and design processes. 
These models bridge the gap between physical assets and their digital 
counterparts, offering opportunities for improved efficiency and decision-making. 

 

2.1.5 Cyber-physical processes 

Cyber-physical security also stands out as a paramount concern as its 
significance arises from the fact that if the information flowing between the 
Digital Twin and its Physical Twin is not adequately safeguarded or if the 
system remains vulnerable to unauthorized access, the Digital Twin becomes a 
potential source of harm. Even in scenarios where the Digital Twin is primarily 
responsible for monitoring, the incapacity of the system to shield its data from 
external breaches poses not only problems but also endangers the well-being of 
the system's owner or user. 

To delve deeper into this matter, cyber-physical security entails the protection 
of interconnected digital and physical systems. In the context of Digital Twins, 
this involves securing the data exchange and communication between the virtual 
representation (Digital Twin) and its real-world counterpart (Physical Twin). 

Ensuring the security of a Digital Twin ecosystem encompasses several crucial 
aspects: 

 Data Encryption: employing advanced encryption techniques to 
scramble data during transmission, making it incomprehensible to 
unauthorized parties. 
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 Access Control: implementing strict access controls and authentication 
mechanisms to ensure that only authorized personnel can interact with 
the Digital Twin. 

 Intrusion Detection: employing intrusion detection systems to swiftly 
identify and respond to any suspicious activities or attempts to breach 
the system. 

 Regular Updates: keeping the Digital Twin's software and security 
protocols up-to-date to patch any vulnerabilities that may emerge over 
time. 

 Redundancy: establishing backup systems and data storage to prevent 
data loss or system failure in case of a cyberattack. 

In essence, cyber-physical security is akin to safeguarding the Digital Twin's 
system, ensuring its integrity and reliability. It's a critical concern not only for 
protecting valuable data but also for maintaining the safety and functionality of 
the systems that rely on Digital Twins, be it smart cities, industrial facilities, or 
healthcare systems. Therefore, addressing cyber-physical security 
comprehensively is critical to harness the full potential of Digital Twins while 
mitigating risks to individuals and society as a whole. 

The concept of Digital Twins (DT) and Cyber-Physical Systems (CPS) share 
many similarities, as both describe the integration of digital entities with 
physical entities. While these terms emerged around the same time, DT in 2005 
and CPS in 2006, there is still no universally accepted definition for either. 
Multiple definitions exist, reflecting the evolving nature of these concepts. 

For instance, CPS can be defined as systems "with integrated computational 
and physical capabilities that can interact with humans through many new 
modalities" (Baheti, 2011). Alur describes CPS as "a collection of computing 
devices communicating with one another and interacting with the physical world 
via sensors and actuators in a feedback loop." Meanwhile, (Tao, Zhang, et al., 
2018) provide a broader definition of CPS as "multidimensional and complex 
systems that integrate the cyber world and the dynamic physical world," 
emphasizing the integration of computation, communication, and control of 
physical processes. 

The relationship between DT and CPS is still a subject of debate, with three 
major trends emerging: 

 DT as an aggregation of CPS concepts: some argue that DT is 
essentially a repackaging of existing CPS concepts, specifically 
developed for aerospace and later applied to manufacturing. 
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 DT as a subset of CPS: others view CPS as the overarching term, with 
DT serving as a subsidiary concept used for specific use cases, such as 
asset monitoring and maintenance. 

 DT and CPS as slightly different aspects of the same paradigm: this 
perspective suggests that CPS focuses more on fundamental scientific 
aspects, while DT concentrates on practical implementations.  

DTs emphasize digital models, while CPS emphasizes computation, 
communication, and control. Additionally, CPS research emphasizes sensors, 
actuators, and control, while DT research centers on models and data. 

To further clarify the comparison between CPS and DT, it's essential to consider 
their attributes, functions, main use cases, and key differences. Notably, one 
fundamental distinction is that DT refers to an information construct describing 
a digital replica of a physical asset and its data connections, whereas CPS refers 
to a system integrating digital and physical components. This nuanced difference 
has significant implications. 

In a DT solution, a physical asset has a corresponding digital replica, allowing 
for behavior simulation, condition monitoring, and predictive analysis. In 
contrast, a CPS solution primarily focuses on enhancing control and 
optimization of physical processes through the integration of digital components 
without the need for a direct correspondence between the digital and physical 
elements. 

Making a comprehensive comparison between Cyber-Physical Systems (CPS) 
and Digital Twins (DT) in terms of their defining attributes, functions, primary 
use cases, and key distinctions, CPS can be classified as a scientific category, 
revolving around integrating physical processes with computer systems, 
emphasizing communication, computation, and control of sensors and actuators 
in physical systems. It operates on a one-to-many correspondence basis, allowing 
one digital system to correspond to multiple physical assets, and it plays a 
pivotal role in enhancing physical processes through real-time monitoring and 
control. In contrast, Digital Twins are categorized as engineering tools, focusing 
on data and digital models, and operate on a one-to-one correspondence basis, 
where one physical asset corresponds to one digital asset. Digital Twins serve as 
near-real-time digital replicas of physical products or processes, encapsulating 
all relevant information throughout their lifecycle phases. 

The proliferation of Internet of Things (IoT) technology has ushered in a 
significant surge in interconnected smart devices (L. Da Xu et al., 2014), 
(Stankovic, 2014) To ensure the meaningful utilization of these devices, they 
must possess the capability to capture data relevant to their intended functions. 
In the context of the built environment, these smart devices may collect a wide 
array of information, including but not limited to traffic patterns, temperature, 
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humidity, and energy consumption. Depending on their specific design, smart 
devices can capture essential attributes of objects, enabling the realization of 
enhanced efficiency and intelligence within cyber-physical systems (CPS). These 
CPS encompass critical infrastructure systems such as energy, transportation, 
manufacturing, agriculture, and healthcare (G. Xu et al., 2016), (Mahmud et 
al., 2017), (Bartolini et al., 2020). Given the vast volume of data generated 
within these CPS, it becomes imperative to embrace advanced networking, data 
analysis techniques (e.g., deep learning), and cloud/edge computing technologies 
within smart systems (Hatcher & Yu, 2018), (D. Wu et al., 2019a), (W. Shi et 
al., 2016). This strategic approach facilitates the efficient collection, 
transmission, analysis, and sharing of pertinent data, thereby empowering 
physical systems with the intelligence required for improved monitoring and 
control capabilities (Cai et al., 2021). 

The concept of a Digital Twin (DT) encompasses a data-driven combination of 
software and hardware that intricately portrays a real physical system, 
encompassing all of its functionalities, use cases, statuses, and information across 
various life-cycle phases (Z. Cai et al., 2021b). While integrating DT into Cyber-
Physical Systems (CPS) offers evident advantages, it introduces a host of 
challenges in the domains of modeling, computation, networking, and data 
analysis. Moreover, CPS imposes exceptional requirements related to latency, 
reliability, safety, scalability, security, and privacy, among others. While 
advanced networking, computing, and data analysis technologies can contribute 
to realizing DT, several critical issues need attention. These include defining the 
theoretical foundations and modeling techniques to ensure the accurate and 
dependable representation of real-world systems by DT, designing Machine 
Learning (ML) and Deep Learning (DL) models to enable real-time processing 
of vast datasets, and addressing the security and privacy concerns associated 
with DT and the collection and dissemination of privacy-sensitive information. 
To achieve a precise representation of physical systems, a multi-domain and 
multilevel design approach must be integrated into the lifecycle of these systems. 
Additionally, comprehensive investigations are required to extend DTs to IoT-
based smart systems driven by data science and engineering, given the 
widespread application of IoT across diverse physical systems.  

Existing surveys have examined DT frameworks in industrial systems 
(Kritzinger et al., 2018), (Danilczyk et al., 2019)and some studies have 
categorized DTs in the power grid (Tzanis et al., 2020a), (Tzanis et al., 2020b) 
However, given the extensive use of IoT in various physical systems, a 
comprehensive examination of extending DTs to IoT-based smart systems is 
imperative. 

As a DT system serves as a replicated version of a target physical system, 
utilizing a model to continuously emulate various functions of the physical 
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counterpart, the DT must establish a connection with the corresponding 
physical entity, allowing it to gather and update the state of physical 
components. Consequently, a DT model can not only simulate but also predict, 
control, optimize, and learn from the real-world entities it represents.  

 

2.1.6 Cybersecurity 

The integration of Information Technology (IT) and Operational Technology 
(OT) systems, in conjunction with the inherent data exchange involved in the 
creation and operation of digital twins, reveals a complex and evolving landscape 
of cybersecurity threats. The failure to adequately mitigate these risks poses 
significant threats to the integrity, availability, and confidentiality of both the 
digital twin and its associated data (Stouffer, 2023). This necessitates a 
comprehensive understanding of the various types of threats and the 
implementation of tailored cybersecurity strategies. 

Data Integrity Threats: the efficacy and reliability of a digital twin are 
fundamentally dependent on the accuracy and integrity of the data it receives 
from its physical counterpart. Any form of data manipulation or corruption can 
lead to erroneous modeling and analysis, potentially culminating in suboptimal 
or detrimental decisions. Cyber-attacks that specifically target data integrity, 
such as Man-in-the-Middle attacks or data tampering, pose a significant threat 
to the security of digital twins (Alcaraz & Zeadally, 2015). These threats 
underscore the necessity for robust data validation and verification mechanisms 
to ensure the fidelity of the digital twin's data. 

Unauthorized Access: Digital Twins, which often process and store sensitive 
and proprietary data, are prime targets for cybercriminals seeking unauthorized 
access. This unauthorized access could be aimed at data theft for industrial 
espionage purposes or gaining control over the physical systems mirrored by the 
digital twin (Roman et al., 2013). Implementing stringent access control 
measures and continuous monitoring for unauthorized access attempts is crucial 
in safeguarding these digital assets. 

Malware and Ransomware: as interconnected systems, digital twins are 
vulnerable to malware or ransomware attacks. Such an attack has the potential 
to disrupt the operation of the digital twin, or even result in a shutdown of the 
corresponding physical system (Collier et al., 2014). 

IT-related Threats: in the IT domain, vulnerabilities can arise from various 
sources, including network vulnerabilities, inadequate access controls, or the use 
of outdated systems. Given IT's critical role in transmitting and processing the 
data utilized by digital twins, any compromise in IT systems can have far-
reaching effects on the digital twin's functionality and reliability. Therefore, 
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maintaining up-to-date IT infrastructure and employing comprehensive network 
security strategies is imperative. 

OT-related Threats: Operational Technology (OT) encompasses the 
hardware and software responsible for monitoring and controlling physical 
devices, processes, and infrastructure, particularly in industrial settings (Boyes 

et al., 2018). The increasing convergence of OT with IT systems, especially with 
the adoption of IoT devices, has led to enhanced connectivity but also exposed 
OT systems to new cybersecurity threats. Compromising OT systems can have 
direct and severe impacts on the physical systems they control, potentially 
leading to physical damage and safety hazards. 

Privacy Concerns: The nature of data processed and stored by digital twins, 
especially in sensitive sectors like healthcare, raises significant privacy concerns. 
Ensuring compliance with data protection regulations and implementing robust 
encryption and anonymization techniques are critical in addressing these privacy 
issues. 

Given the diverse applications of digital twins across various sectors, a one-size-
fits-all approach to cybersecurity is not feasible. Customized cybersecurity 
strategies tailored to specific applications of digital twins are essential. However, 
certain general strategies, such as regular system updates, robust access controls, 
and advanced threat detection mechanisms, can provide a solid foundation for 
cybersecurity efforts across different implementations of digital twins. 

In the rapidly evolving digital landscape, the security of Information Technology 
(IT) and Operational Technology (OT) systems has become a critical concern, 
especially in the context of digital twins. Digital twins, as virtual replicas of 
physical systems, rely heavily on the seamless and secure exchange of data 
between the IT and OT domains. This introductory section delves into the 
various strategies and measures necessary to fortify the cybersecurity of both IT 
and OT technologies. exploring the implementation of network security 
measures, data security protocols, and regular updates in IT systems, while also 
addressing the unique challenges posed by OT systems, including legacy systems 
and network segmentation. Additionally, it is highlighted the importance of 
addressing privacy concerns introducing Italian Cybersecurity Framework, 
which provides a comprehensive approach to managing cybersecurity risks in 
the context of digital twins. This framework, developed by Sapienza University's 
Research Center of Cyber Intelligence and Information Security (CIS), offers a 
tailored solution for organizations, particularly small and medium enterprises, 
to navigate the complexities of cybersecurity in the digital twin environment. 

Network Security Measures: the integrity of IT networks is critical in 
managing the flow of data to and from digital twins. To protect these networks, 
the implementation of comprehensive security measures is essential. This 
includes deploying advanced firewalls, sophisticated intrusion detection systems, 
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and designing secure network architectures. These measures are pivotal in 
safeguarding against unauthorized access and potential data breaches. 
Furthermore, the utilization of encryption and secure communication protocols 
is imperative to maintain the confidentiality and integrity of data, both in 
storage and during transmission (Keoh et al., 2014). This dual approach ensures 
a fortified barrier against cyber threats. 

Data Security Measures: the protection of data associated with digital twins 
involves securing it during transit and while at rest. This security is achieved 
through the application of robust data encryption techniques, secure data 
storage solutions, and regular data backups. Additionally, stringent access 
control measures are crucial in preventing unauthorized data access (Z. Xiao & 

Xiao, 2013). These measures collectively form a comprehensive shield, 
safeguarding critical data against various cyber threats. 

Regular Updates and Patch Management: the landscape of cyber threats 
is continually evolving, making regular updates and patch management of IT 
systems a necessity. This proactive approach is vital in addressing emerging 
security vulnerabilities and reducing the risk of cyber-attacks. A structured 
patch management process ensures timely application of updates, thereby 
enhancing the resilience of the IT infrastructure (Othmane et al., 2019). 

Securing OT Technologies: OT systems, particularly legacy systems, were 
often not designed with modern cybersecurity considerations. Their integration 
with IT systems exposes them to new cyber threats. Developing secure solutions 
for OT systems, often from the ground up, is a complex yet critical task 
(Colombo et al., 2016). 

Network Segmentation: network segmentation is a proven strategy in 
network security and is particularly effective in securing OT systems. It involves 
isolating the OT network from other networks, including IT networks, to prevent 
cross-network breaches. This strategy not only limits the spread of malware but 
also provides enhanced control over network traffic (Colombo et al., 2016). 

Regular Security Assessments: conducting regular security assessments is 
crucial in identifying and addressing vulnerabilities in OT systems. These 
assessments should cover technical, operational, and procedural aspects, 
allowing for comprehensive risk management (Humayed et al., 2017). 

Addressing Privacy Concerns: In the realm of digital twins, privacy concerns 
are paramount, especially given the sensitivity of the data involved. A holistic 
approach that combines technical measures like data anonymization and 
encryption with adherence to data protection regulations is essential. Raising 
user awareness about privacy implications is also crucial in ensuring data 
privacy. 
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In 2015 Sapienza University (at the Research Center of Cyber Intelligence and 
Information Security – CIS) produced the “National Framework for cyber 
security” aimed at providing to organizations a homogeneous and volunteer 
approach to face up cyber security in order to reduce the risk linked to the cyber 
threat.  

The approach of this Framework is strinctly linked to a risk analysis and not to 
technology standards and therefore can be applied to digital twins. 

The Italian Cybersecurity Framework derives much from the Framework for 
Improving Critical Infrastructure Cybersecurity (NIST) but has been tailored 
according to the Italian production context with a specific focus on small and 
medium enterprises. The National Framework derives from the NIST Framework 
the basics of Framework Core, Profile and Implementation Tier, adding the 
priority and maturity levels to the 98 Subcategories of the Framework Core.  

The NIST Framework offers a highly flexible framework, which is mostly 
targeted at crucial facilities; at CIS they developed it according to the 
characteristics of the social and economic system of our country, reaching a 
cross-sector framework that can be contextualized in specific production sectors 
or in company types with specific characteristics, therefore realizing a suitable 
framework also for DT approaches. 

In the Cybersecurity Framework, three important concepts have been 
introduced: 

1. Priority Levels: These define the priority associated with each 
Subcategory of the Framework Core. It is important to note that 
organizations are at liberty to adapt their priority levels based on their 
type of business, size, and individual risk profile. 

2. Maturity Levels: These describe the various ways in which each 
Subcategory of the Framework Core can be implemented. Each 
enterprise must carefully evaluate the selected maturity level in 
accordance with its business size and risk profile. Generally, higher 
maturity levels necessitate more significant investment in terms of 
financial and management resources. It is also worth noting that for 
some Subcategories, establishing maturity levels may not be feasible. 

3. Framework Contextualization: This involves tailoring the Framework to 
a specific productive sector, business type, or individual business. This 
process entails selecting the Function, Category, and Subcategory from 
the relevant Framework Cores and specifying the priority and maturity 
levels that are most suitable for the specific implementation context. 
(Roberto Baldoni, 2016). 
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2.1.7 IoT and networking technologies 

The effectiveness of DT technology hinges on its capacity to ingest vast datasets 
and derive meaningful insights through advanced Machine Learning (ML) and 
Deep Learning (DL) techniques. This enables real-time forecasting and 
prediction. For instance, when DT is integrated into manufacturing processes, 
it can facilitate proactive planning for repair and maintenance activities, thereby 
mitigating potential failures during manufacturing. To ensure seamless 
integration between DT and physical systems, it is imperative for the DT to 
access real-time state information from the physical systems, a feat achieved 
through the utilization of Internet of Things (IoT) sensors and networking 
technologies. 

 

Figure 9. DT architecture for IoT (Qian et al., 2022) 

The proliferation of Internet of Things (IoT) devices across diverse real-world 
applications and physical environments has introduced a great challenge 
associated with the collection, aggregation, storage, and analysis of the data 
they generate. Figure 9 presents a generic architecture for IoT systems 
comprising four distinct layers: the object layer, communication layer, 
application layer, and end-user layer. 

The object layer encompasses all IoT sensors, serving as the source of data and 
information for various IoT-driven applications. This layer encompasses all the 
components that constitute the physical system. Meanwhile, the communication 
layer furnishes the necessary communication network infrastructure to connect 
IoT devices and gather data for DTs. 

For instance, multiple edge gateways can be strategically deployed to collect and 
consolidate data from sensors, subsequently transmitting this data to the 
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application layer. These IoT sensors and gateways employ distinct 
communication protocols for data collection and transmission. Upon acquisition 
of information at the gateway within the object layer, it is forwarded to the 
application layer, which encompasses the digital systems of the Digital Twins 
(DT). 

Within the application layer, the DT system first aligns all sensor and gateway 
information with the digital model. Simultaneously, an IoT naming service is 
employed to assign names to the mapped IoT sensors and local gateways. This 
naming convention enables the digital system to locate various resources 
(Hatcher et al., 2021). Subsequently, the digital system harnesses Machine 
Learning (ML) and Deep Learning (DL) models for predictive analysis. This 
allows the digital system to regulate actuators in the target layer based on the 
outcomes of these predictions. Additionally, the results of prediction and analysis 
can offer diverse services within the end-user layer. 

The end-user layer serves as a gateway for user services, allowing users to submit 
requests to the application layer. Subsequently, the digital system processes the 
received requests and provides responses accordingly. Within the architectural 
framework of the Digital Twin (DT) system, data representation and 
communication protocols assume critical roles in facilitating data sharing within 
the DT and delivering services to end users. 
 
Data representation is fundamental for enabling system components to 
comprehend data from diverse domains (Jaloudi, 2019a) (Al-Sarawi et al., 
2017a). In the realm of DT, several widely utilized data representation protocols 
include the DT Definition Language (DTDL) (GitHub, n.d.), FIWARE (Conde 
et al., 2022), OPC Unified Architecture (OPC UA) (Ala-Laurinaho et al., 2020), 
and the Feature-Based DT Framework (FDTF) (Autiosalo et al., 2020). Notably, 
DTDL, an open-standard platform introduced by Microsoft (GitHub, n.d.), 
plays a significant role in enabling data transmission within the system and 
between different systems. The communication protocol plays a crucial role in 
facilitating information exchange among IoT devices and IoT systems (Jaloudi, 
2019b), (Al-Sarawi et al., 2017b). In the realm of IoT, several prominent 
communication protocols are commonly employed, such as the Constrained 
Application Protocol (CoAP) (Kome et al., 2018), the OASIS Standard Message 
Passing Protocol (MQTT) (D. Silva et al., 2021a), the Modbus TCP/IP 
Protocol (Cagnano et al., 2020a), and Ultra Reliable Low Latency 
Communication (URLLC) (Tan et al., 2020). A summary of these 
communication protocols is provided in Table 3. 
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Table 3. IoT communication protocols  

Protocol Name Protocol Type Protocol Characteristics 

DTDL Data 
Representation 

As an open-standard platform, it defines six 
characteristics of IoT components and 
enables seamless data transmission between 
different DTs. 

FIWARE Data 
Representation 

It supports DT data transmission and the 
processing of contextual information received 
from various IoT components. 

OPC UA Data 
Representation 

As a modeling framework, it can retrieve 
information from raw data, support data 
manipulation, and provide monitoring 
capabilities. 

FDTF Data 
Representation 

As a DT structure, it enables the DT system 
to share information based on the data link 
between DT components. 

CoAP Communication As a specialized web communication protocol 
based on the User Datagram Protocol 
(UDP), it is tailored for resource restricted 
devices, supports the transmission of data 
via Hypertext Transfer Protocol (HTTP) 
and provides a publish and subscribe 
mechanism to simplify the process of 
obtaining continuous data from the sensor. 

MQTT Communication As a communication protocol based on 
Transmission Control Protocol (TCP), it 
enables lightweight way for IoT devices to 
communicate, provides reliable data transfer, 
and can establish a long-existing outgoing 
TCP protocol to enable transmission. 

Modbus 
TCP/IP 

Communication As a communication protocol based on 
Transmission Control Protocol (TCP), it 
realizes the connection between industrial 
devices, provides reliable data transfer, and 
contains built-in checksum protection. 

URLLC Communication As a communication protocol, it tends to 
achieve low latency and reliability in the 
transmission process between 
IoT devices. 

 

 

2.1.8 Towards Intelligent Digital Twins (IDT) 

The synergy between Artificial Intelligence (AI) and Digital Twins (DTs) 
represents a pivotal advancement in various industries, notably manufacturing. 
Researchers, like (Rathore et al., 2021), have underscored the transformative 
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potential of AI techniques when applied to DTs. By harnessing advanced AI 
capabilities, DTs can evolve into intelligent systems capable of not only 
replicating physical processes but also making critical decisions. These AI-
powered DTs can excel in tasks such as process optimization, resource allocation, 
safety and fault detection, predictive maintenance, and real-time decision-
making. However, to fulfill these roles effectively, DTs must exhibit qualities like 
accuracy, robustness, and autonomy. Real-world systems are dynamic, 
influenced by ever-changing operational and environmental factors. This 
dynamism necessitates that DT models remain in sync with the current state of 
physical systems. Challenges arise in maintaining this synchronization due to 
inherent limitations in modeling and data collection, leading to residual errors. 
Paradoxically, these errors present opportunities for further progress. 

The conventional view of DTs portrays them as passive repositories of product 
information, requiring user-initiated queries for accessing data and predictions. 
However, a fundamental shift is occurring towards Intelligent Digital Twins 
(IDTs), marked by their proactive and anticipatory nature. IDTs constantly 
monitor physical systems, learning from real-time sensor data and optimizing 
their behavior to align with evolving conditions. This proactive approach relies 
heavily on machine learning and AI techniques, as noted in (Jaensch et al., 2018) 
and (J. Wang et al., 2019) These methods empower IDTs to adapt to machinery 
process degradation, fine-tune parameters, and continuously improve their 
models. (Sapronov et al., 2018) even employ machine learning for refining DT 
parameters, while (Maschler et al., 2021) explore cross-phase transfer learning 
to reduce discrepancies when using real data. (Cronrath et al., 2019) delves into 
reinforcement learning to correct model and data errors. 

As described by Grieves, Artificial Intelligence (AI) and Modeling & Simulation 
(M&S) stand as two complementary facets of the digital realm, offering distinct 
capabilities that, when combined, yield a powerful intelligence for Digital Twins 
within a virtual realm.  

AI is the effort of computers emulating human intelligence, focusing on tasks 
traditionally associated with human thinking. Conversely, M&S pertains to 
computers replicating the dynamics of the physical universe, excluding human 
intelligence. These parallel tracks converge to furnish digital twins with a unique 
form of intelligence. The bedrock of both AI and M&S lies in the relentless 
evolution of computing power. Since the early 1970s, the exponential growth of 
computing performance, epitomized by Moore's Law, has been an instrumental 
driving force. This steady march forward, as depicted in the logarithmic graph 
(Figure 6), has witnessed computing performance doubling approximately every 
18 months, culminating in the awe-inspiring 54 billion transistor density in 2020. 
Extrapolating this trajectory, we anticipate a staggering six trillion transistors 
or equivalent capabilities by 2030. The implications of such computational 



 

51 
 

prowess are profound, ensuring that the concepts elucidated herein will remain 
unconstrained by computational limitations. 

Historically, the Digital Twin realm has been one of passivity—a reservoir of 
product information awaiting user inquiries. This conventional Digital Twin, 
described as an information repository, functions with users extracting data from 
it as needed. It serves as a resource for users seeking to minimize physical 
resource wastage by making informed decisions. The Intelligent Digital Twin 
(IDT) (M. Grieves, 2022), on the other hand, embodies a paradigm shift by 
embracing activity. The traditional Digital Twin has often been depicted as a 
static receptacle of product information, with users initiating requests for 
specific predictions when necessary. Contrarily, the IDT operates as a dynamic 
and engaged entity, actively participating in the decision-making process. The 
essence of this transformation lies in the establishment of bidirectional 
communication links between the Digital Twin and its virtual surroundings and 
the Physical Twin and its real-world environment. 

For the IDT to be active, it must remain in an online state, perpetually scanning 
the Physical Twin (PT). The IDT's activation pivots from the physical aspect 
of the digital twin model to its active counterpart. Depending on the lifecycle 
phase, the physical side encompasses the environment, the physical twin, and 
the human stakeholders involved. Consequently, the IDT metamorphoses from 
a passive repository into a proactive one, offering continuous agent assistance. 
Unlike the conventional digital twin, which primarily relies on human-driven 
goal seeking, the IDT shares this responsibility with its human users. 

A defining attribute of the IDT is its anticipation, mirroring a human trait. The 
Future-Running Simulation (FRS) (M. Grieves, 2022) is a concept defined by 
Grieves to explain this anticipation capability, constantly simulating complex 
products within the digital twin. Leveraging the exponential advancements in 
computing power, the IDT can orchestrate multiple scenarios, harnessing 
Bayesian probabilities to estimate the likelihood of adverse events. This 
empowers humans to assess and mitigate risks proactively, substantially 
enhancing decision-making. 

As we navigate this realm of AI-empowered DTs, the key challenge lies in 
ensuring the fidelity of the virtual model to the physical system it represents. 
Imperfections or discrepancies between the two realms can be problematic, 
necessitating continuous updates and validation before deployment. Assessing 
the virtual model's confidence and its alignment with real-time data is key. Since 
physical systems evolve and are influenced by various factors, DT models must 
mirror this dynamism and adapt to changing conditions. 

Beyond manufacturing, the combination of Digital Twins and AI holds immense 
promise in energy management. This synergy can optimize grid operations, 
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reduce human intervention, facilitate intelligent decision-making, and enable 
forecast-based management models, as shown by (Y. Li & Shen, 2022) Achieving 
power balance, efficient load management, and microgrid integration are primary 
goals in power grid optimization, enhancing overall resilience (Bazmohammadi 
et al., 2022a). 

Nevertheless, several challenges loom over the successful implementation of AI-
empowered DTs. These include the availability of historical data for training 
machine learning algorithms, data quality and resolution, communication 
latency, model interpretability and repeatability, and the adequacy of 
computational resources (J. Guan et al., 2021). 

In the context of the built environment, the application of Digital Twins has 
seen substantial interest, particularly in maintenance management and energy 
performance simulations. However, research in the realm of digital twins for 
building energy efficiency is relatively nascent, with a limited number of 
scientific articles and recent publication dates indicating its emerging nature.  

This nascent field reveals gaps in areas like data integration systems, complex 
autonomous decision-making, and data visualization—key aspects to facilitate 
understanding and interpretation by non-technical stakeholders (Bortolini et al., 
2022) 

Examining the Intelligent Digital Twin (IDT) across its lifecycle reveals two key 
phases: DT design and DT utilization. 

Design Phase: during this stage, models are created, and data is gathered and 
stored. 

Utilization Phase: this phase consists of three sub-stages: 

 Setup: parameters are adjusted based on system observations. 
 Run: the DT performs its functions (e.g., monitoring, decision support) 

once parameters are validated. 
 Maintenance: updates and maintenance are conducted to account for 

deviations. 

Focusing on the utilization phase, it can be highlighted how AI techniques 
enhance DT accuracy. 

In the setup phase, the critical task involves validating and refining the virtual 
model's parameters to ensure an accurate representation of the physical system. 
This meticulous process is initiated by human operators due to the initial 
uncertainty regarding the DT's parameters. The aim is to minimize any 
disparities between the physical and virtual twins, and to achieve this, artificial 
intelligence techniques, such as Reinforcement Learning, are employed.  
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In this context, Reinforcement Learning acts as a crucial tool, aligning the two 
twins by fine-tuning the DT's parameters. This alignment process plays a pivotal 
role in establishing the foundation for accurate real-time reflections of the 
physical system within the digital realm, ultimately enhancing the DT's overall 
efficacy. 

The Run phase is characterized by the dynamic nature of the DT model, which 
operates with predefined parameters. During this phase, the DT must 
continuously ensure that its behavior effectively mirrors the current state of the 
physical system. To achieve this, it engages in vigilant monitoring and compares 
the nominal behaviors calculated by the models with observations from the 
physical twin. Artificial intelligence techniques, particularly Supervised or 
Unsupervised Learning, are indispensable at this stage. These AI methods have 
the critical role of identifying unexpected patterns within the dataset.  

Algorithms like Isolation Forest, Local Outlier Factor, Principal Components, 
or DBSCAN are frequently employed to detect anomalies in the data 
distribution. It is worth noting that human expertise is not directly involved in 
this phase, but it may be called upon to analyze anomalies identified by the AI 
tools. 

When unsupervised learning algorithms detect deviations in the DT's behavior, 
it becomes crucial to assess the severity of these deviations. This assessment is 
the responsibility of the human operator, who, if necessary, triggers the 
maintenance phase. Here, the evaluation of DT parameters differs from the setup 
phase, as parameters have evolved, requiring updates to maintain accuracy. 
Despite this difference, the functionalities of this phase closely resemble those of 
the setup phase, with many of the same algorithms potentially being applicable. 
The primary goal remains to ensure the DT's ongoing precision and reliability 
as it continues to operate with the physical system. 

The true value of a Digital Twin perpetually hinges upon its application in real-
world contexts. The pivotal question remains: can the information derived from 
the Digital Twin replace wasteful expenditure of physical resources, such as time, 
energy, and materials? The answer lies in the cost-effectiveness of collecting, 
processing, storing, and retrieving this information in comparison to the expense 
of squandering tangible resources. As the cost of virtual bits continues its 
exponential decline, physical atoms concurrently become scarcer, even at the 
rate of inflation, underscoring the necessity and urgency of this paradigm shift. 

 

 



 

54 
 

2.2 Digital Twins in the Energy sector and Distributed 
Energy Resources (DER) 

The energy sector is currently undergoing a significant transformation towards 
digitalization, driven by the need of decarbonization and sustainable 
development (Kueppers et al., 2021), (Tsoutsanis & Meskin, 2019), (Farhana et 
al., 2021), (Huang et al., 2022). For organizations in this sector to thrive in the 
digital age, it's crucial for their leaders to anticipate market changes and 
implement flexible procedures while seamlessly integrating cutting-edge 
technologies.  

Digitalization plays a pivotal role in enhancing the security, efficiency, and 
sustainability of energy systems. By harnessing data collection and analysis 
technologies, digitization can significantly boost energy efficiency. These data 
are processed using technologies like artificial intelligence and then transmitted 
to devices capable of effecting physical changes to optimize energy utilization 
(Borowski, 2021). 

However, there is currently a limited body of research addressing the 
applications of digital twins within the energy industry. In this study, we aim to 
explore the main potential uses of digital twins in the energy sector exploring 
instances where digital twins are already being utilized in the energy industry 
in order to establish a framework of criteria for evaluating this technology.  

Identifying the diverse applications and use cases of digital twin technology 
within the energy sector is key (Figure  10) and will be further discussed in 
terms of (1) applications of digital twins in energy production, encompassing 
various forms of energy generation, from fossil fuels to renewables such as 
photovoltaics and wind turbines, and even nuclear; (2) the utilization of digital 
twins in the domain of energy consumption, spanning buildings, transportation, 
and industrial applications; and (3) the deployment of digital twins in the energy 
storage industry, covering mechanical, thermal, battery, and hydrogen storage 
devices. 
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Figure  10. Energy and the Built World 

As modern cities continue to evolve, they give rise to intricate energy layers like 
transportation systems, smart grids, and microgrids, each confronting a 
multitude of challenges in multi-dimensional energy management. Within power 
grids, challenges encompass remote data transfer within the grid and various 
analyses reliant on real data. These complexities can be effectively addressed 
through the implementation and analysis of a comprehensive digital twin 
framework within each segment. 

Emerging smart technologies bring additional capabilities, including advanced 
computing and communication, which are challenging to represent in the 
physical layer alone. These enhanced capacities elevate the sophistication of 
power systems, necessitating novel approaches to tackle these challenges by 
providing enhanced insights into the physical infrastructure.  

By establishing a robust DT power system, real-time and historical data can be 
effectively managed in a secure and efficient manner, contributing significantly 
to system operations by supporting maintenance, design, and operational 
management.  

Despite being a relatively new and complex concept, the exploration of DT-
based power systems is still in its preliminary stages. DTs hold promise for 
diverse applications within power systems, including fault detection, load 
prediction, operator behavior analysis, power system control and analysis, health 
condition assessment of power tools, and more. 

Given that real-time data on energy infrastructure is often not readily available, 
DT architectures can play a pivotal role in sustainable dispatching system 
operation and management. Consequently, DTs facilitate expedited decision-
making through comprehensive and optimal management, bridging the gap in 
energy infrastructure. 

The concept of the smart city's DT is rooted in its ability to analyze the 
dynamics resulting from the intricate interdependencies between infrastructures, 
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including energy systems and various technologies. To realize the smart city's 
DT, it becomes imperative to deploy DTs across all energy systems within the 
smart city framework (Figure  11). Indeed, energy systems are intricately 
woven into the fabric of the smart city, playing a relevant role in its functioning 
and sustainability. 

The smart grid, a vital energy infrastructure, utilizes information and 
communication technology (cyber systems) to facilitate two-way communication 
for both energy and information transfer. This enhances grid monitoring, 
control, and consumer engagement. The physical components of the power grid 
include power generation facilities responsible for electricity generation, 
transmission facilities for power delivery, and power distribution facilities 
supplying electricity to consumers. 

  

Figure  11. Electric grid assets and infrastructure 

The integration of cyber systems has given rise to the smart grid, the next-
generation power grid designed to offer more efficient energy services. It 
encompasses reliable and intelligent distribution management, renewable energy 
integration, energy storage, grid monitoring, control, and the incorporation of 
electric vehicles.  

The smart grid is essentially a highly distributed grid system, integrating 
information communication technologies like sensing, networking, data 
analytics, and machine learning. These technologies enhance grid reliability, 
efficiency, and security. 

The smart grid, being a large-scale distributed system, requires comprehensive 
knowledge of the physical objects' states, such as voltage and current. To achieve 
this, a multitude of sensors are deployed in the grid to measure critical object 
states, providing valuable insights. Static and dynamic state estimation 
methods, along with bad data detection algorithms, are employed to handle 
invalid or corrupted measurement data, which can result from measurement 
errors, sensor failures, or cyber threats. Notably, cyber threats can directly or 
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indirectly impact grid operations by injecting malicious measurement data or 
manipulating control information. 

Addressing cyber threats necessitates monitoring not only the physical objects 
but also the state of cyber components. Here, Digital Twins offer a promising 
solution by bridging the physical and cyber worlds and creating a linkage 
between them. 

 

2.2.1 Data-driven modeling strategies 

DT employs a data-driven approach to map the physical grid onto the digital 
grid, facilitating comprehensive monitoring and management. In the DT 
architecture discussed earlier, the smart grid system is divided into distinct 
layers: the object layer, communication layer, application layer, and end-user 
layer. 

In the object layer, grid components encompass power generation, transmission, 
and distribution facilities. The communication layer connects these objects, 
facilitating data exchange with the application layer and intra-object layer 
communication. For instance, the communication layer's gateway stores device 
information from the object layer. 

When data is required by the application layer, the gateway retrieves it from 
specific devices as needed. Moreover, the application layer can construct a digital 
model based on device distribution information from the gateway. 

The application layer comprises a digital representation of gateways from the 
physical system, incorporating device information from the object layer. It acts 
as an intermediary between the application and object layers, with AI models 
trained using data collected from the object layer and stored in data storage for 
future utilization. If there are changes in the physical object layer, the 
application layer can send commands to actuators to adjust grid operations 
based on real-time data and trained models. Additionally, the AI model can 
update itself to reflect any changes in the object layer. 

The end-user layer leverages information processed by the application layer to 
offer various services, including smart grid management systems, autonomous 
vehicle smart charging systems, and hybrid energy management systems. 

Numerous research initiatives have explored DT's application in the smart grid 
(Tzanis et al., 2020c), (Saad et al., 2020a), (Danilczyk et al., 2021a). For 
example, General Electric (GE) introduced two DT models for wind farms. In 
the object layer, a communication network enables wind turbines to 
communicate, with middleware involving cloud-based infrastructure and digital 
models to collect data and remotely control turbines. A graphical user interface 
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(GUI) in the application layer provides visualization and control capabilities for 
wind farm management. 

(Saad et al., 2020b) proposed a microgrid DT model employing IoT to counter 
cyber-attacks. It includes microgrids, local controllers, and area controllers, 
featuring real-time balancing algorithms to mitigate the impact of attacks. 

Similarly, (Tzanis et al., 2020d) applied DT to manage a large number of smart 
grid devices. They used spike neural networks (SNN) in smart meters to detect 
fault nodes and a transient state estimator (TSE) to monitor the grid's dynamic 
state. (Danilczyk et al., 2021b) employed deep learning algorithms to detect 
physical faults in the smart grid system by analyzing data from the supervisory 
control and data acquisition system (SCADA). 

(Baboli et al., 2020) proposed a DT framework with artificial neural networks 
(ANN) for distributed smart grids, ensuring real-time model generation, 
verification, and identification. 

 

2.2.2 Microgrid and complex systems 

A microgrid is a self-contained energy system comprised of distributed energy 
resources and interconnected loads. This versatile asset can operate in either 
island mode or grid-connected mode, offering flexibility and control (Liang et 
al., 2019). Microgrids are designed with the overarching goal of enhancing the 
overall performance of energy systems, focusing on sustainability, security, 
efficiency, economics, and effective energy management. Key attributes 
influencing microgrid performance include reliability, security, flexibility, self-
sufficiency, and optimality. 

While extensive research has been dedicated to improving microgrid 
performance, the exploration of Digital Twins in the analysis, design, control, 
and development of microgrids is a relatively novel research area. This section 
delves into the application of DT services in microgrid contexts and highlights 
recent studies in this emerging field. 

The smart grid, functioning as an energy-based Cyber-Physical System (CPS), 
represents a complex system characterized by significant uncertainties affecting 
both its cyber and physical components (Dileep, 2020), (Z. Guan et al., 2015), 
(H. Xu et al., 2020). These uncertainties can originate from various sources, 
including grid outages. In essence, the smart grid remains susceptible and 
vulnerable to random events such as power load imbalances, outages, and even 
external disruptions from its surroundings. It is paramount to acknowledge the 
critical significance and inherent fragility of the smart grid, given the 
unprecedented challenges it confronts. 
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The evolution of big data and the Internet of Things (IoT) opens up 
opportunities to address these challenges. The utilization of advanced big data 
analysis tools such as Machine Learning (ML), Deep Learning (DL), data 
mining, and statistics holds the potential to predict and anticipate potential 
risks within the smart grid (Ponnusamy et al., 2021). This predictive capability 
enables the implementation of proactive measures to mitigate accidents and 
disruptions effectively. 

Moreover, harnessing the power of big data enables the creation of a virtual 
smart grid environment. This virtual simulation environment can replicate real-
world accidents and disturbances, allowing for comprehensive investigation and 
the development of robust mitigation strategies. In essence, the synergy between 
big data analytics and the smart grid offers a path towards enhancing resilience 
and reliability in the face of dynamic and uncertain challenges. 

DTs play a pivotal role in microgrid environments, offering diverse capabilities 
for scheduling, optimization, and planning, especially in scenarios where 
conducting real-time experiments is impractical. Microgrids encompass 
renewable energy resources, demand components, and communication network 
segments, each of which can benefit from dedicated DTs. 

To establish a microgrid DT, individual DTs are constructed for each segment. 
Subsequently, an aggregate DT is formed, comprising DTs from all three 
segments. This holistic approach enables comprehensive monitoring and control 
of the entire microgrid. 

Notably, DTs are increasingly finding applications across a wide spectrum of 
industries, including discrete manufacturing, process manufacturing, energy 
(power), oil and gas, mining and metals, automotive, life sciences and medical, 
aerospace, infrastructure, and defense. In the energy sector, DTs offer solutions 
to various challenges, including: 

Predicting energy demand for individual consumers using machine learning 
(ML) approaches within planning and operational DTs. 

 Improving grid management and distribution by leveraging real-time 
data-driven simulation models for distributed energy sources. 

 Enhancing maintenance of solar arrays by identifying abnormal 
behavior for timely repairs. 

 Anticipating maintenance needs for wind farms to support service teams 
effectively. 

The integration of DTs into microgrid applications and broader energy systems 
underscores their potential to drive innovation, efficiency, and resilience in the 
evolving energy landscape. 
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The concept of Digital Twins (DT) offers practical and efficient possibilities in 
real-time data presentation and forecast analysis. Instead of relying solely on 
historical data, utilizing microgrid digital data outputs can lead to more 
accurate predictions for energy management and future system responses. 

Accurate load growth prediction is crucial for optimizing and making microgrid 
development programs more efficient, particularly as the development of 
microgrids depends on future load expansion. The integration of DT can 
significantly impact long-term microgrid development planning. 

Machine Learning (ML) algorithms have demonstrated their prowess in solving 
prediction and diagnosis problems. Load forecasting, which depends on factors 
that influence load consumption patterns, includes Short-term forecasting 
(STLF), Mid-term forecasting (MTLF), and Long-term forecasting (LTLF). 
Deep Learning (DL) methods have been applied in microgrids for load 
forecasting, enhancing prediction accuracy. 

Network studies encompass a wide array of analyses, including restoration, 
reliability, prediction, energy hub, uncertainty, and physical and cyber security. 
Implementing DT-based power grids can enhance network behavior under 
various conditions, reducing response times from minutes to seconds. Recent 
studies on power grids utilizing DT techniques are summarized in Table 3. 

DT's predictive capabilities are invaluable in planning maintenance processes, 
enabling simulations for optimal solutions and protection strategies, ultimately 
streamlining system maintenance. 

DT technology facilitates remote distance control and monitoring, enhancing 
reliability and reducing costs. Distance protection relays and fault location 
algorithms have been tested using DT, and DT-based distributed networks have 
been used for troubleshooting in transformer performance evaluation. 

Energy hubs, which convert different types of energy in urban systems, require 
efficient energy consumption management. DT's real-time data control, 
monitoring, and analysis capabilities make it a promising tool for improving the 
performance of energy hub systems. Integrating DTs from energy carriers such 
as water, electricity, and gas into the energy hub's DT aggregation can address 
energy management challenges effectively. 

Successful implementation of DT relies on robust IT infrastructure, as it requires 
interconnected and powerful systems. While cloud services like Amazon, 
Microsoft, and Google offer significant benefits, they also present security 
challenges in data analysis. Edge computing can mitigate data transmission 
delays, increase bandwidth, and play a pivotal role in preprocessing, storage, 
and analysis for DT applications. 
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2.2.3 Energy supply, consumption and storage 

Uncertainty is a significant factor in power systems due to unpredictable 
elements and their random behaviours. Addressing uncertainty is crucial for 
solving power system problems and achieving effective system control. Real-time 
monitoring and analysis are essential to manage the uncertain behaviour of 
random factors in any system. 

In power systems, the integration of random entities such as wind turbines and 
solar photovoltaics, coupled with the unpredictability of consumer consumption, 
contributes to the inherent uncertainty in power networks and energy systems. 
Numerous techniques have been proposed to model the random behaviour of 
uncertainty parameters (D. Silva et al., 2021b). However, accurate modelling 
and real-time analysis are essential to understand and control the system 
effectively. 

Digital Twins (DT) technology offers valuable support for understanding and 
managing the random behaviour of physical entities through real-time 
monitoring, control, and online analysis. With DT technology, the real-time 
physical behaviour of an agent can be observed continuously, effectively reducing 
uncertainty. It enables the thorough investigation of real-time physical entities, 
providing high fidelity and accuracy, which is a desired feature in DT technology 
to support the uncertainty of physical systems. 

The concept of an energy hub involves the simultaneous communication and 
exchange of energy carriers within a network (K. Yang et al., 2021). Energy hubs 
serve as converters for various types of energy in different urban system 
components. These hubs extend beyond the electricity sector, encompassing gas 
and urban water, and play a pivotal role in managing energy consumption across 
multiple sectors (Cagnano et al., 2020b). Integrating and efficiently managing 
energy consumption within these hubs requires systems and approaches that 
analyze behavioral changes and monitor energy consumption. Real-time access 
to accurate data is critical for this purpose. 

Digital Twins, with their capabilities in real-time data control, monitoring, and 
analysis, promise enhanced performance for energy hub systems. Integrating 
initial DTs from energy carriers such as water, electricity, and gas into the DT 
aggregation of energy hubs can effectively address the challenges of energy 
management, integration, and exchange.  
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Figure  12. An example of DT concept's Energy Hub 

Figure  12 provides an illustrative example of a DT concept applied to an 
energy hub, highlighting its potential in enhancing the performance and 
efficiency of energy systems in urban environments. 

 

2.2.4 Load prediction and forecasting  

Real-time data availability is a fundamental requirement for various forecast 
analyses in areas such as load forecasting and system response prediction. The 
accuracy of forecast outputs is directly linked to the accuracy and real-time 
nature of the input physical data. Extensive literature has established a direct 
correlation between prediction accuracy and the use of Digital Twins (DT) 
services (D. Wu et al., 2019b). 

The specificity of DT in presenting real-time data makes it a practical and 
efficient tool for forecast analysis. Instead of relying solely on historical data, 
microgrid digital data outputs can be utilized to achieve more precise predictions 
for energy management and future system responses. Accurate load growth 
predictions are particularly vital for optimizing microgrid development 
programs, as the expansion and growth of load in the future are key factors in 
microgrid planning and efficiency. 

Machine Learning (ML) algorithms have demonstrated their robust predictive 
and diagnostic capabilities. Load forecasting, which depends on various factors 
that can influence consumption patterns, includes Short-term forecasting 
(STLF), Mid-term forecasting (MTLF), and Long-term forecasting (LTLF). 
Deep Learning (DL) methods have been extensively applied in microgrid load 
forecasting, improving prediction accuracy. 
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For example, in STLF, Deep Neural Networks (DNN) have been employed (Din 
& Marnerides, 2017) Feed-forward DNN and Recurrent-DNN models have been 
compared Fare clic o toccare qui per immettere il testo.(He et al., 2017), and 
Deep Belief Networks (DBN) combined with parametric Copula models have 
been suggested for hourly load forecasting (Dedinec et al., 2016). Additionally, 
DBN composed of multiple layers of Restricted Boltzmann Machines (RBMs) 
has been used for STLF, fine-tuning parameters through supervised back-
propagation training (Wen et al., 2020). DRNN-GRU models have been 
presented for STLF and MTLF using consumption data (Estebsari & Rajabi, 
2020) and CNN has been used for residential load forecasting Fare clic o toccare 
qui per immettere il testo.(Tong et al., 2018). Stacked Denoising Auto-Encoders 
(SDAs) have been proposed for electricity load forecasting, with the output data 
from SDAs used as input for Support Vector Regression (SVR) models (Marino 
et al., 2016). LSTM methods have been introduced for load demand prediction 
at hourly and minute ahead levels (Khodayar et al., 2019), and DBN has been 
used for wind and PV power prediction (W. Wu et al., 2016). A DNN method, 
including Long Short-Term Memory (LSTM) and Convolutional Neural Network 
(CNN), has been proposed for deterministic short-term wind power forecasting 
(Francisco et al., 2020). 

Integrating these high-capability ML algorithms into a digital environment 
based on DT enhances the efficiency and accuracy of real-time forecasting and 
analysis. Adapting prediction models with real-time data ensures the 
development of accurate prediction models, enabling effective planning and 
operation of power systems.  

 

2.2.5 Plan and monitoring 

Effective energy management within a microgrid necessitates the presence of 
control systems in each system component. These control systems facilitate the 
collection and access of data to the central decision-making system, enabling 
optimal energy management. The installation of measurement systems at 
various points in the network is essential for data quantification. Control systems 
and energy management systems rely on measurement data for informed 
decision-making. However, challenges arise in achieving optimal decisions due to 
errors in data estimation from measurement devices. 

In (R. S. Srinivasan et al., 2020), a framework for energy management based on 
Digital Twins (DTs) is proposed, where smart meters are employed to collect 
entity data. This approach leverages DT technology to enable real-time 
monitoring of renewable energy resources, addressing real-time operational and 
monitoring challenges (Sivalingam et al., 2018). Similarly, (Ebrahimi, 2019) 
suggests a DT-based platform for energy demand management. 
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The utilization of DTs extends to optimizing the management of wind farms, as 
demonstrated in (Lamagna et al., 2021), where a DT for wind farms is employed 
for performance evaluation and health management. Additionally, (Steindl & 
Kastner, 2021) applies DT technology to display, process, and evaluate the 
performance of energy storage systems within a virtual environment. This 
technology plays a pivotal role in determining scheduling programs for the 
operation process. 

Ontologies and semantic web methods are also introduced as common techniques 
for DT modeling (Glatt et al., 2021)]. These methods enable the creation of 
layered structures for specific smart grid architectures and various energy 
systems. Ontologies can be used to model customer load profiles, power 
generation systems, and substructures of generation through organized 
constructions. Semantic web technologies offer a level of abstraction for energy 
system simulation and modeling, adaptable to different energy systems (Y. Xu 
et al., 2019). 

Edge-based DTs have emerged to create virtual simulation environments for 
performance assessment, enhancing the resilience of microgrids (H.-A. Park et 
al., 2020). These approaches collectively enhance the efficiency and effectiveness 
of energy management within microgrids, addressing the challenges posed by 
real-time data processing and decision-making. 

 

2.2.6 Real-time analysis and optimization 

To establish a Digital Twin (DT)-driven model, it's essential to consider three 
key components: physical space, virtual space, and the data interaction between 
these spaces. This comprehensive model requires the identification of nodes 
within a specific system, which are then meticulously modelled. The integrated 
model incorporates various data sources, including historical data and sensor 
data, to create an accurate representation of the system under diverse states (H. 
Yang et al., 2019). 

Evaluating the states of the DT model over a specified time period allows for 
the resolution and analysis of the model. This perspective provides a 
comprehensive understanding of the system's state, facilitating analysis and 
decision-making. As most models exhibit continuous changes over time, dynamic 
simulation of the model is imperative. Designing a DT involves various phases, 
including modeling physical systems, connecting real-time data, and evaluating 
and adapting the model. A virtual model can be constructed using historical 
data from different system states, integrated with information based on system 
dynamics. In this context, three main approaches are employed: physics-based 
modeling, data-driven modeling, and a combination of both. Physics-based 
models are constructed using mathematical and physical models, with machine 



 

65 
 

learning techniques such as AI used for parameter estimation when there is 
insufficient information (Ahmadian et al., 2018), (Danilczyk et al., 2021c). For 
instance, (Khaled N., 2020) employs an artificial neural network (ANN) to 
adjust inverter model parameters. 

Data-driven models are utilized when it's challenging to formulate mathematical 
representations of system elements. These models can incorporate extensive 
historical data, making them suitable for scenarios where a physics-based model 
may be inadequate. Data-driven models are continuously improved with real-
time data to enhance accuracy and alignment with the actual system. It is 
essential to note that secure and accurate data transmission is a fundamental 
capability of the DT. 

Managing large volumes of data from multiple sources is a challenging task, 
necessitating advanced data analysis approaches for preprocessing. Data is 
shared through secure and reliable communication systems, selected based on 
specific requirements, including quantitative and qualitative aspects. 
Communication options encompass wired, wireless, and hybrid systems. 

Preprocessing and standardizing the raw data are crucial steps to prepare it for 
specific purposes such as management and control. Big data analytics, often 
implemented in cloud-based environments, is instrumental in processing large 
datasets to extract meaningful insights. Cloud computing's significant storage 
and computational capabilities facilitate various applications, including data 
mining, dimension reduction, filtering, and processing. Big data analysis plays a 
pivotal role in DT modeling, particularly in the smart grid and smart city 
domains (Song, Cai, et al., 2020), (Song, Jiang, et al., 2020). Additionally, it 
helps integrate continuous and discrete information flows within microgrids. Fog 
and edge computing can also be deployed to reduce data transfer latency and 
integrate various services. A case study of artificial intelligence approaches to 
edge computing is discussed in (Reka & Dragicevic, 2018). 

Maintaining the consistency and accuracy of a DT model is a significant 
challenge, given the continuous shifts in operating states and environmental 
conditions of physical systems over time. Continuous model updates are 
necessary, as real-time data is collected through control and monitoring 
applications and processed using data analysis techniques throughout the 
system's lifecycle. Evaluating and adapting the model is a critical step in 
establishing a DT. Parameters can be adjusted, physical configurations 
optimized, and various stimulus procedures tracked for model adaptation. 
Changes in observed data over a specific time period can be used to update the 
model. Advanced machine learning algorithms, including deep learning and 
reinforcement learning, are effective strategies for these purposes. A survey of 
machine learning techniques is discussed in (Y. Zhang et al., 2018) 



 

66 
 

In practice, a real-time DT model can be developed using tools such as Simulink, 
Simscape, MATLAB, and Raspberry Pi hardware (Carvalho et al., 2020). The 
desired model is deployed on Raspberry Pi hardware, which acts as a real-world 
representation of the entity being modelled. Raspberry Pi hardware 
communicates the system's state and input/output data to cloud services like 
Amazon AWS, enabling the creation of a parallel DT model in the cloud. This 
cloud-based DT model, utilizing the same inputs as the physical model, conducts 
real-time, accurate, and efficient system diagnosis (Carvalho et al., 2020). The 
hardware's Wi-Fi capability facilitates seamless communication with the cloud 
to share the physical states of entities implemented in the hardware 
environment. This synchronized approach ensures that the DT model remains 
consistent and up-to-date with the physical system it represents. 
 
 
2.2.7 Diagnostic systems and fault detection 

Faults in the microgrid environment are inevitable and can pose significant 
challenges to the grid's operators and control systems. These faults, if left 
undetected or unaddressed, can lead to widespread issues within the entire 
system. Therefore, the timely detection of faults is crucial to prevent irreparable 
damage. A fault detection system must possess the capability to detect faults 
promptly, determine their time and location, and initiate fault interruption 
procedures promptly. To achieve this, access to real-time data is essential. Real-
time analysis plays a relevant role in addressing these challenges by enabling the 
detection of faults as they occur. Implementing a Digital Twin (DT) of the 
microgrid allows for real-time analysis of the entire network, contributing to the 
stability, reliability, and flexibility of the microgrid. 

In (Jain et al., 2020), researchers investigate the development of DTs to facilitate 
fault detection. A fault detection system for distributed energy resources, based 
on the DT concept, is developed in (Tzanis et al., 2020e). (Palensky et al., 2022) 
proposes a monitoring system that relies on DT technology to predict faults in 
a physical power converter, integrating it with a digital model controlled by a 
controller. Additionally, (Joseph et al., 2018) presents a digital model of a power 
system to track dynamic voltage faults and forecast post-fault dynamic 
behavior. 

The concept of DT is harnessed in (Bazmohammadi et al., 2022b) for controller 
design and distributed energy resources. In (Goia et al., 2022), DT technology 
is developed and deployed to evaluate the operation of microgrid controllers. 
These initiatives leverage DTs to enhance fault detection and overall grid 
performance, ensuring the microgrid's reliability and stability. 
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2.3  Digital Twins and Indoor Air Quality (IAQ) 

Enhancing the comprehension of indoor air quality (IAQ) and the factors that 
influence it can lead to improved management of indoor environmental quality 
(IEQ), resulting in decreased health hazards and enhanced well-being for 
occupants. The domains of energy, health, and economy are closely 
interconnected with the IAQ concept, particularly concerning aspects such as 
air ventilation, public health, and productivity. 

Based on extensive reports from scientific sources, the proportion of time during 
which individuals are exposed to indoor environments (such as residential 
buildings, workplaces, vehicles, public transportation, and public facilities like 
schools, hospitals, museums, theatres, and libraries) exceeds 80% in developed 
nations, over 87% in the United States, and around 85-90% in Europe. These 
estimates could be even higher due to the emerging COVID-19 pandemic and 
the resulting changes in lifestyle, such as lockdowns and remote work. 
Consequently, it is of utmost importance to thoroughly consider the implications 
of indoor air quality (IAQ) on human health and overall well-being. 

The study and characterization of IAQ, coupled with the growing attention and 
practical initiatives to establish healthy and comfortable indoor environments, 
have the potential to significantly enhance the quality of life and productivity 
for occupants. Notably, exposure to indoor air pollution can surpass outdoor air 
pollution exposure by more than twofold. Shockingly, it's estimated that a global 
population of approximately 3 billion individuals experiences inadequate IAQ 
levels on a daily basis. 

Addressing IAQ concerns is crucial for promoting public health and well-being 
Exposure to poor indoor air quality (IAQ) can lead to a range of health issues, 
including irritation, allergic symptoms, impaired cognitive abilities, reduced 
productivity, dizziness, headaches, restlessness, asphyxia, coma, cancer, and 
even death. Various scientific studies have linked inadequate IAQ to these 
adverse health outcomes (World Health Organization. Regional Office for 
Europe, 2010). 

 

2.3.1 IAQ and External Ventilation Flow Rate evaluation 

Indoor Air Quality (IAQ) refers to the quality of the air within buildings and 
structures, specifically how it affects the health and comfort of the occupants. 
External air flow rate, often referred to as ventilation, is a critical factor that 
directly influences IAQ.  

In summary, the connection between IAQ and external air flow rate is crucial. 
Proper ventilation and fresh air intake directly impact the quality of the air 
indoors by diluting pollutants, controlling CO2 levels, preventing moisture-
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related issues, removing odors, and enhancing overall comfort. To maintain a 
healthy indoor environment, it's essential to design and operate ventilation 
systems that provide an appropriate external air flow rate based on the specific 
requirements of the space and its occupants. 

The absence of explicit and detailed legal directives pertaining to Indoor Air 
Quality (IAQ) can largely be attributed to the inherent variability, diversity, 
and challenges associated with gathering consistent analytical data for all the 
factors and sources involved. IAQ is a complex concept that encompasses a wide 
range of factors rather than being confined to a single measurement element. 
Furthermore, there are numerous architectural and design variables that are 
interconnected with IAQ. Complicating matters further, the conflicting energy 
efficiency goals across various parameters, as discussed earlier, contribute to the 
intricate, intertwined, and adaptable nature of IAQ on both spatial and 
temporal scales. 

To address this complexity, the development of IAQ indexes becomes crucial. 
These indexes serve to explain, categorize, and enhance the quality of indoor air 
by providing user-friendly and comprehensive scores (rankings) of IAQ levels 
within indoor environments. Despite the global development of various IAQ 
indexes in recent years, their specific relevance to assessing IAQ levels hasn't 
been fully explored. Aiming for a comprehensive and expedient assessment of 
IAQ through an index can streamline the creation of effective measurement, 
qualification, and maintenance protocols for control purposes. However, choosing 
an appropriate evaluation measure for this purpose presents a significant 
challenge due to the indexes present in the scientific literature. Moreover, the 
distinction between health risk-based and comfort-based indexes remains 
unclear. 

 

2.3.2 IAQ measurement and protocols 

The primary objective of this review is to comprehensively identify and 
categorize the existing IAQ indexes on a global scale (World Health 
Organization. Regional Office for Europe, 2010) as a specific regard to buildings 
energy efficiency strategies. 

Contemporary comprehensive methodologies and standards, exemplified by 
Standard NBN EN 16798–1:2019, are being progressively implemented to 
integrate building energy efficiency with indoor environmental conditions 
(Olesen B. W., 2012). The growing trend of constructing tightly sealed dwellings 
has incentivized architects and building companies to enhance the performance 
of ventilation systems and bolster overall energy efficiency. However, the tension 
between achieving "energy efficiency improvements" and adhering to "IAQ 



 

69 
 

guidelines" necessitates the creation, advancement, and optimization of 
multifaceted strategies for indoor air purification. 

The pursuit of increased air exchange rates (AERs) to enhance indoor air quality 
leads to higher energy consumption by ventilation systems, thereby potentially 
diminishing building energy efficiency. This presents a challenge that requires 
innovative solutions for providing adequate ventilation while minimizing energy 
consumption. Several factors come into play, including IAQ standards, the type 
of ventilation systems, and occupants' activities. This duality of interest arises 
between policies aiming for high IAQ and those emphasizing reduced building 
energy use. The design of modern indoor environments must address these 
conflicting demands to effectively tackle emerging challenges and requirements 
(Šujanová et al., 2019) 

Notably, the European Union's policy-making body, through the revised Energy 
Performance of Buildings Directive (EPBD, 2018/844), has mandated that 
energy performance criteria set by EU member states' executive administrations 
should optimize health, indoor air quality, and comfort measures. To facilitate 
the transition towards an energy-efficient and decarbonized building stock by 
2050, EU governments must adopt a comprehensive approach encompassing 
these pivotal factors (Buildings Performance Institute Europe (BPIE), 2019): 
incorporating indoor environmental quality (IEQ) measures into long-term 
renovation strategies; integrating IEQ considerations with Energy Performance 
Certificates (EPCs); formulating strategies that are cost-optimal and evaluating 
the various factors influencing IEQ; ensuring certification, agreement, and 
quality control measures to actively support the provision of acceptable IEQ. 

Numerous indoor environments rely on mechanical ventilation systems that 
introduce a limited amount of outdoor air, which can lead to the accumulation 
of indoor pollutants. According to the ASHRAE standard (ANSI/ASHRAE 
Standard 62.1-2022, 2022), three distinct approaches—namely, Ventilation Rate, 
IAQ, and/or Natural Ventilation are employed to meet ventilation criteria. 

In the ventilation rate procedure with prescriptive method, ventilation rates are 
predetermined based on building usage, the number of occupants, and floor area. 
On the contrary the IAQ procedure in a performance-based approach defines 
outdoor air intake rates and other parameters considering pollution sources, 
Exposure Limit Values (ELVs), and the perceived acceptability of indoor air 
quality. A procedure involving natural ventilation is based on the inflow of 
outdoor air through openings into indoor spaces and can be used in conjunction 
with mechanical ventilation systems. However, contemporary energy-efficient 
designs, characterized by reduced air leakage and tightly sealed constructions, 
can substantially curtail natural ventilation. This shift towards high-sealed 
indoor environments can lead to the accumulation of indoor pollutants due to 
inadequate air exchange rates (Godish & Spengler, 1996) 
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It's important to note that the recommended minimum levels for indoor air 
quality indicators may not always correspond to optimal levels. For example, 
the (EN 16798-1:2018, 2018) standard specifies an absolute minimum ventilation 
value of 4 liters per second per person, while scientific research often proposes 
values of 6 to 7 liters per second per person or even higher when additional 
parameters such as productivity and learning are taken into account. 

As policymakers increasingly prioritize concepts like "energy transition," "carbon 
neutrality," and "net-zero emissions," regulations and policies addressing outdoor 
air pollution are being developed and implemented more rapidly than those 
focused on indoor environments. Additionally, changes in inhabitants' 
behaviours and lifestyles due to climate change can also influence indoor 
pollutant concentrations (Vardoulakis et al., 2015). Consequently, there is a 
growing recognition of the need to address the impact of indoor pollution sources 
on indoor air quality (IAQ). 

While controlling the emission sources to reduce indoor contaminants is a viable 
approach when sources are well-known, it's important to note that new 
substances are continuously being identified as harmful to health. Therefore, the 
prevention or reduction of indoor contaminant emissions often has limitations, 
may be technically challenging, and might not always be cost-effective (Kwok et 
al., 2022). In this context, the role of ventilation emerges as critical in effectively 
controlling and maintaining good IAQ. Ventilation plays a pivotal role in 
ensuring that indoor air remains free from pollutants and meets acceptable 
quality standards. 

The current standards and guidelines for Indoor Air Quality (IAQ) aim to 
establish recommended concentration levels, values for indoor climate 
parameters, and appropriate air ventilation requirements. These guidelines serve 
as the scientific foundation for legally enforceable standards. The recommended 
levels of pollutant concentrations are described using various terms, such as, 
Exposure Limit Values (ELV)6, Threshold Limit Value (TLV)7, Lowest 

 
6 Exposure Limit Values (ELV): These are the levels of pollutants considered acceptable over a 
specified period of time. ELVs also serve as benchmarks to assess whether IAQ is improving or 
deteriorating. 
7 Threshold Limit Value (TLV) the maximum average airborne concentration of a hazardous 
material to which healthy adult workers can be exposed during an 8-hour workday and 40-hour 
workweek. 
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Concentration of Interest (LCI)8, Toxicity Reference Value (TRV)9, and 
Occupational Exposure Limit (OEL)10.  

The definitions below provide a clear understanding of the terminology used to 
describe pollutant concentrations and their associated regulatory measures in 
the context of IAQ standards and guidelines (UK Department for Environment 
Food & Rural Affairs, 2010). 

The primary goal of this chapter is to provide a comprehensive overview of 
various IAQ indexes with different applications. This compilation and 
classification aim to be a valuable resource for professionals working in diverse 
fields, including Building Energy Management Systems (BEMS), HVAC design, 
architecture, indoor air monitoring device manufacturing, indoor air purifier 
production, healthcare, and various scientific and engineering disciplines. 

The literature presents several perspectives for classifying IAQ indexes. 
Although researchers agree that IAQ indexes can be categorized based on both 
subjective and objective principles, they can be further classified based on their 
intended application.  

A classification is focused on specific application: IAQ indexes can be categorized 
based on their intended application. This includes health-related indexes that 
focus on pollutants and factors affecting human health, comfort-related indexes 
that assess indoor conditions for occupant comfort, and energy-related indexes 
that consider the energy efficiency aspects of ventilation and air exchange. 

The main classification is Subjective vs. Objective. Subjective evaluation of 
indoor air quality involves assessing occupants' perceptions and experiences 
related to the quality of the air they breathe. This assessment is often gathered 
through surveys, questionnaires, and feedback from building occupants. The 
focus is on how individuals feel about the indoor environment, whether they are 
satisfied or dissatisfied, and whether they find the air comfortable to breathe. 
Subjective evaluation takes into consideration factors such as odours, stuffiness, 
humidity, and overall comfort. This approach provides valuable insights into 
occupants' experiences but may not provide quantitative data about pollutant 
concentrations. 

 
8 Lowest Concentration of Interest (LCI): The maximum acceptable pollutant levels that limit 
emissions from construction products before they are used by end-users. This is meant to control 
emissions from building materials and products. 
9 Toxicity Reference Value (TRV): A toxicological indicator used to assess or quantify the risk to 
human health posed by exposure to pollutants.  
10 Occupational Exposure Limits (OELs): Directing values for chemical substances present in 
workplace air. These values are designed to ensure the health and safety of workers with regard to 
their exposure. 
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Objective evaluation of indoor air quality is centred around quantifiable 
measurements of pollutants and parameters that directly influence air quality. 
This approach involves using scientific instruments and measurements to 
directly assess the concentration levels of various pollutants present in the indoor 
environment. These pollutants may include volatile organic compounds (VOCs), 
particulate matter (PM), carbon dioxide (CO2), formaldehyde, and more. The 
objective evaluation also involves comparing pollutant concentrations to 
established Exposure Limit Values (ELVs) or guidelines to determine if the 
indoor environment meets recommended safety standards. This approach 
provides concrete and measurable data about the actual state of indoor air 
quality. 

In summary, subjective evaluation focuses on occupants' feelings and 
experiences, while objective evaluation involves concrete measurements of 
pollutants and adherence to health-related standards. Both approaches 
contribute to a comprehensive understanding of indoor air quality and guide 
efforts to improve the indoor environment for the well-being and comfort of 
occupants. 

The IAQ indices highlighted in this analysis are those primarily reliant on 
measurements of concentrations of three parameters (airborne pollutants). The 
following two tables present, in chronological order, the literature referenced 
IAQ indexes related to residential and tertiary environments and industrial 
buildings, respectively. 

 

Table 4. Residential IAQ indexes 

Author, Year Index 
IAQ 

indicators* 
(parameters) 

(Fanger, 1988) 

The perceived air quality is measured in 
decipol (dp) One dp is the perceived air 
quality (PAQ) in a space with a sensory 
load of one olf (one standard person) 
ventilated by 10 L/s. Percentage of 
dissatisfied:  
PD 395 × exp(−3.25C0.25) for C ≤ 3.13 dp 
PD = 100% for C > 3.13dp 

VOCs, CO2 

(M. H., Shi & Tao, 
2000) 

Air Quality caused Percentage Dissatisfied 
index (QPD) = exp(5.98 – ). C=decipol 

CO (mgm-3), 
CO2 (%), 
Bacteria 

number (1m-3) 

(Jokl, 2000) 
Lodour(CO2) = 90 × log ( ), Δ𝜌𝐶𝑂2 = 

167350 (ln(PD) – 5.98)-4 
CO2, TVOC 
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Lodour(CO2) = 50 × log ( ), Δ𝜌𝑇𝑉𝑂𝐶 = 

46000 (ln(PD) – 5.98)-4 - 10 

(Ribéron, n.d.) 

Air stuffiness index (ICONE) = ( .

( )
) 

log(1+f1+f2)  
f1 =   f2 =   n0 between 0 

and 1700 ppm, n1 between 1000 and 1700 
ppm, n2 greater than 1700 ppm 

CO2 

(Balocco et al., 
2014) 

Air change efficiency (ACE) ACE = 
/  x 100, Vtv is the total volume of 

the room, Vvent is the mass flow rate of 
incoming ventilating air, tzj is the average 
value of mean age of air in different zones, 
Local Air Change Efficiency (LACE) = 

/  x 100, τ is the mean age of air,  

Ventilation Effectiveness (VE) =  
, 𝑐  

is the concentration of contaminants at the 
exhaust point, 𝐶𝑧  is the mean value of 
contaminant concentration within a 
specific zone, CS is the contaminant 
concentration at the air inlet 
Contaminant Removal Effectiveness (CRE) 
=   

CO2, PM 

(M. Wang et al., 
2013) 

Pi =  where Pi was the pollution index 

for the ith source location, Ci is the value 
of pollutant concentration for the ith 
source location, and S is the standard for 
indoor air quality. 

HCHO, PM2.5 

(Koufi et al., 2017) 

IAQ =   

  
 Average concentration in 

the interior (C), the concentration of 
extracted air (𝐶 ), the concentration 
“threshold” (𝐶 ). 

CO2 

(Gugliermetti & 
Astiaso Garcia, 
2018) 

Air Quality Index (AQI) = (1-

 × 

 x 100,  𝛼  
,  

Where 𝑐 , 𝑙𝑖𝑚𝑖𝑡 is the regulatory limit 
concentration for the ith substance, Cmax 
is the higher regulatory limit concentration 
among the analyzed gases,  𝛼  is the weight 
coefficient for the ith substance.  

H2S, CO 

 

Table 5. Tertiary and industrial buildings IAQ indexes 

Author, Year Index 
IAQ 

indicators* 
(parameters) 
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(Cariou et al., 2005) 

GAPI (Global Airborne Pollutant Indicator) 
= Σi Wi Ci (mean pollution) GAPIn = 

  𝑊  ; 𝑋 = , 𝑉  is the 

volume of molecule i 

VOCs 

(Sarbu & 
Sebarchievici, 2013) 

The olfactory pollution degree of a room: Ci 
= CP + 10  ; Ci  is the indoor air quality in 

decipol (dp), CP is the outdoor air quality in 
dp, G is the contaminant concentration of 
the room air in olf, Lp is the outside airflow 
rate, in l/s. S = kCβ 
S is odorant intensity (magnitude); C is the 
odorant concentration in ppm, β is the 
exponent (0.2 – 0.7) of psychophysical 
function, k is the constant characteristic of 
material. (Fanger)PPD = 395 exp (-
3.66Lp0.36) for Lp ≥ 0.332 l/s, PPD = 100, 
for Lp < 0.332 l/s. 
 

CO2, odor 

(Rojas, 2016) 

Integral evaluation method Ii = 
∫ ( ( ) )

    
 where 𝐶 (𝑡) is the 

concentration of pollutant i, ELVlower and 
ELVupper are the lower and upper exposure 
limit values, t is the time and T is the 
occupancy period 

CO2, TVOC 
and RH 

(Piasecki & 
Kostyrko, 2020) 

IAQindex = (100 – PDIAQ(CO2)); PDIAQ(CO2) 

=395. exp (-15.15 Cco2-0.25), PDIAQ(CO2) = 407. 
Exp (-15.05 (-15.15 Cco2-0.25)  
IAQ(OI)index= (100 – PDIAQ(OI)); PDIAQ(OI)= 

 
 ( .  . . )

, OI: Odour Intensity 

When the indoor environment is hot and 
humid (value of air enthalpy h>55 kJ/kg) 
and IEQ sub-component of IAQ(h) is 
introduced in addition to the sub-component 
IAQ(CO2)index 

IAQ(h)index = (100 – PDIAQ(h)), PDIAQ(h) = 

 ( . . ( ) . ( . . )
 where 

𝑡  is the air temperature within the tested 
range from 20 to 29°C and 𝑝  is the partial 
pressure of water vapour within the tested 
range from 1000 to 3000 Pa. 

Odour, RH, 
CO2 

(Y. Chen et al., 
2018) 

DALY index and the PWEp,y,h,f = 
,
 Σj 

(EXPj,f,h x Pp,y,j). Population-weighted annual 
mean exposure to PM2.5 (PWE): Where Pp,y,j 

is the size of subpopulation j in the province 
(or country), p and year y. 

PM2.5 
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EXPj,f,h = Σk (tj,k,h x Cf,k,h). EXPj,f,h is the daily 
exposure of subpopulation j using fuel f for 
heating or non-heating season, tj,k,h is the 
proportion of time a subpopulation j spent 
in microenvironment k in a heating or non-
heating season (h), cf,k,h is the area 
concentration of PM2.5 in microenvironment 
k in a heating or non-heating season h in a 
household using fuel type f. 

(T. Zhang et al., 
2019) 

Pi =  

Where Pi was the pollution index for the ith 
source location, Ci is the value of pollutant 
concentration for the ith source location, 
and S is the standard for indoor air quality 

HCHO, 
PM2.5 

 

2.3.3 Demanded Controlled Ventilation (DCV)  

Demanded Controlled Ventilation is an advanced system for mechanical 
controlled ventilation, which refers to a system in which airflow within a building 
is actively managed and controlled by mechanical equipment such as fans, 
blowers, and air handling units (AHU). This type of ventilation is distinct from 
natural ventilation, which relies on natural air movement driven by wind and 
temperature differences. 

In mechanical controlled ventilation, the introduction of fresh outdoor air and 
the removal of indoor air pollutants are regulated by mechanical systems. These 
systems are designed to ensure that a sufficient amount of outdoor air is brought 
into the building while simultaneously expelling indoor pollutants, excess 
humidity, and odours. Mechanical ventilation can be essential for maintaining 
good indoor air quality (IAQ) in spaces that are well-sealed, heavily insulated, 
or located in areas with adverse outdoor air conditions. 

Mechanical controlled ventilation systems can be designed with various levels of 
complexity, incorporating features like variable airflow rates, humidity control, 
and pollutant filtration. The goal of mechanical ventilation is to create a 
healthier and more comfortable indoor environment by ensuring a steady supply 
of fresh air and effective removal of indoor pollutants. 

There are various models of ventilation (Figure  13), including: 

 Supply Ventilation: fresh outdoor air is supplied to the indoor spaces 
through mechanical systems. This method helps ensure a constant 
supply of fresh air, but it may not effectively expel indoor pollutants. 

 Exhaust Ventilation: indoor air is expelled from the building using 
mechanical systems, creating negative pressure that draws in outdoor 
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air through natural leakage points or intentionally provided intake 
vents. 

 Balanced Ventilation: this approach combines both supply and exhaust 
systems to maintain a balance between indoor and outdoor air. it seeks 
to provide controlled and consistent ventilation without creating 
significant pressure imbalances. 

 Heat Recovery Ventilation (HRV) and Energy Recovery Ventilation 
(ERV): these systems capture the heat or energy from the exhausted 
indoor air and transfer it to the incoming outdoor air. This helps 
improve energy efficiency while maintaining ventilation. 
 

 

Figure  13. Types of ventilation 

The two foremost priorities for the future of the construction industry are 
undoubtedly ensuring the healthiness and comfort of indoor spaces while 
simultaneously contributing to sustainability. It is for this reason that the 
combination of ventilation and energy efficiency emerges as the central emphasis 
with which new constructions should be designed, as well as the renovation of 
pre-existing structures. 

Ventilation refers to the process by which indoor air is renewed within a building. 
Traditionally, ventilation was manual and achieved by opening doors or windows 
to allow outdoor air to enter. While this approach might be effective, it 
contradicts the goal of energy efficiency, as experience has shown that the 
periods of open windows can be lengthy, resulting in significant energy 
consumption. As energy conservation is no longer an option but a mandate 
embedded in European regulations concerning energy efficiency in the 
construction sector, the EU's objective is to achieve complete decarbonization 
of the building stock by 2050. 
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It is precisely in the need to ensure sustainability and health that controlled 
mechanical ventilation becomes crucial in buildings. This entails the installation 
of systems that regulate the inflow of external air without causing substantial 
thermal imbalances and without impacting energy consumption. In essence, 
energy efficiency is maintained without compromising air quality and thermal 
comfort. 

There are two ways to implement a mechanical ventilation system: dingle-flow 
where the fan is used to expel stale air, while fresh outdoor air enters naturally 
through grilles; dual-flow system which involves two fans, one for extracting stale 
air and another for introducing clean air. The dual-flow system allows for precise 
control of air flow and is therefore the most efficient in terms of energy efficiency. 

The reference parameter within which the architectural project operates is that 
of green buildings or passive constructions, so in this new ecological model of 
sustainable buildings, where airtightness is a priority, natural ventilation is no 
longer a viable option.  

The difficulty in controlling airflows in this type of solution, with the risk of 
high energy consumption and poor air quality, has led to the recognition that 
natural ventilation is no longer sufficient or suitable. 

Conversely, controlled mechanical ventilation systems provide a triple guarantee: 
proper air exchange, maintenance of thermal comfort, and energy efficiency. 
Without a doubt, the dual-flow system is the most comprehensive option, as it 
offers a significant enhancement: the possibility of incorporating a heat recovery 
unit, both in domestic environments and industrial buildings, as well as the 
filtration of outdoor air and improved sound insulation for the building. 

DCV management strategies are commonly founded on occupancy-related 
control markers. Nevertheless, approaches encompassing the regulation of 
pollutants not contingent upon occupancy are demanded and more viable with 
the emergence of economical sensors (ES). 

In the following, some techniques for the enhancement of demand-controlled 
ventilation (DCV) through the utilization of measurements of IAQ parameters 
using some correlation assessments are introduced. The objective is the study of 
the effectiveness of DCV in curtailment of yearly energy consumption and the 
proportion of instances when indoor air quality (IAQ) parameter concentrations 
exceeded specified limits (Justo Alonso et al., 2023). 

The pursuit of reducing uncontrolled air leakage has highlighted the necessity 
for ventilation systems employing demand control to efficiently ensure 
satisfactory indoor air quality (IAQ) (Mysen et al., 2005). Notably, in countries 
like China, Canada, and the USA, the recirculation of return air is a cutting-
edge practice. Here, the minimum outdoor air (OA) fraction is influenced by 
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both IAQ standards requirements and the aim to decrease heating, cooling, and 
dehumidification loads on air handling unit (AHU) coils. However, insufficient 
OA fractions in conjunction with tightly sealed buildings could potentially 
compromise IAQ (Nazaroff, 2013). Airborne pollutants that would otherwise be 
ventilated might be recirculated within the space (Figure  14), and 
environmental parameters such as temperature and humidity could escalate to 
undesirable levels. Simulations have indicated that well-regulated recirculation 
of a portion of return air can provide protection against outdoor pollutants and 
lead to reduced annual energy consumption (Justo Alonso, Dols, et al., 2022). 
This is primarily due to the relationship between indoor and outdoor pollutant 
concentrations, which is contingent on OA supply and filter efficiency (Ekberg, 
1994). 

 

 

Figure  14. Source of indoor air pollutans 

IAQ criteria in most countries are rooted in health impacts and perceptions of 
IAQ quality, (Scutaru & Witterseh, 2020). However, some pollutants like 
nitrogen oxides, sulphur oxides, ozone, particulate matter, and formaldehyde, 
are infrequently measured due to the expense of traditional measurement 
equipment. As a result, up until recently (Ma et al., 2021), the literature has 
predominantly referred to IAQ measurements as CO2 levels, temperature, and 
occasionally relative humidity (RH). Manufacturers have endeavoured to bridge 
this gap by enabling the measurement of health-related pollutants alongside 
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standard measurements through the integration of low-cost sensors (ES), defined 
in this context as sensors costing less than € 50,00. 

While these sensors provide cost-effective measurement options, their accuracy 
often falls below that of reference equipment. Standardized communication 
between ES and conventional ventilation control systems is not yet established. 
While this may currently contribute to more complex systems, future 
enhancements are anticipated (Chiesa et al., 2019). Additionally, ES could 
contribute to reducing embodied CO2 emissions, as many of these sensors can 
communicate wirelessly, facilitating emission reduction. 

CO2 serves as a reliable indicator for bio effluents (Morawska et al., 2021), 
making it commonly used alongside temperature to regulate ventilation through 
demand control (DCV). However, over 50% of pollutants in office settings are 
not emitted by occupants, and in residential spaces, NO2, CO, PM10, and 
PM2.5 may hold significant relevance. Furthermore, CO2 does not necessarily 
correlate with other prevalent IAQ pollutants (Gonzalo et al., 2022), leading to 
potential misrepresentation if used as a proxy. Ratios of indoor to outdoor 
pollutant concentrations (I/O ratios) are influenced by factors like the season, 
building tightness, installed filters, and the specific pollutants being considered 
(Majd et al., 2019). Several studies have concurrently measured elevated levels 
of "other" pollutants alongside low CO2 concentrations during occupancy (Choe 
et al., 2022). As a result, some researchers advocate using CO2 to indicate 
occupant-related pollutants (Maddalena et al., 2015) while others recommend 
monitoring additional parameters (Society’s Indoor Carbon Dioxide Position 
Document Committee, 2022). This is particularly important since CO2 and 
temperature might not adequately detect airborne pollutants with more 
significant health, comfort, and productivity implications. Thus, establishing a 
selection protocol for essential airborne pollutants becomes imperative due to 
limited knowledge regarding ventilation control based on multiple IAQ 
parameters. 

While demand control ventilation (DCV) and economizers have found common 
applications in office settings, literature concerning the utilization of 
economizers and heat recovery systems was notably absent. Similarly, limited 
research focused on the optimization of DCV or the recirculation of return air, 
considering broader perspectives encompassing energy consumption and IAQ 
beyond the scope of CO2 and temperature. HVAC control sequences specified in 
ASHRAE Guideline 36, primarily centered around occupancy, CO2, and 
temperature. The utilization of these sequences resulted in energy savings of 
31% (K. Zhang et al., 2022). However, these sequences are deterministic and 
overlook the impact of modulating outdoor air (OA) on airborne pollutants 
beyond the preselected parameters. Other studies have tackled different facets 
of control. For example, research has assessed real-world performance (Afroz et 
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al., 2020a), forecasted pollutants (Kallio et al., 2021), optimized ventilation 
control and evaluated simulation strategies (W. Wang et al., 2020). 

A recent position paper by ASHRAE (Society’s Indoor Carbon Dioxide Position 
Document Committee, 2022) urged the exploration of "Strategies for DCV using 
CO2 and other indicators of occupancy that overcome limitations of current 
approaches and control contaminants that are not linked to occupancy." 
Nevertheless, the paper did not provide guidance on the selection and utilization 
of these additional non-occupancy-related indicators in DCV sequences. 

To determine which measurable contaminants not tied to occupancy are 
essential for controlling ventilation, correlation analysis can be employed. 
Correlation analyses are pragmatic, as utilizing one of the correlated parameters 
in the control logic would be sufficient to represent the entire set of correlated 
parameters and regulate the supplied airflow rate (Justo Alonso, Wolf, et al., 
2022). In the literature, Pearson and Spearman correlation coefficients are 
commonly adopted for correlation analyses [H.W. Davies et al]. However, these 
analyses focus on concurrent correlations and do not delve into the cause-and-
effect relationship between variables over time. Cross-correlation functions 
(CCFs) offer a solution to this limitation [M. Justo et al], revealing correlations 
even when they exhibit temporal shifts. CCFs calculate Pearson correlations 
across simultaneous and time-shifted lags. 

The incorporation of new or additional parameters into ventilation control 
strategies can be intricate and challenging. Due to their distinct origins, these 
parameters exhibit diverse emission profiles and strengths, which might yield 
conflicting control feedback. Validated simulations can streamline the trial-and-
error process for ventilation controls. Numerous simulation programs are 
available for assessing DCV strategies, such as EnergyPlus, TRNSYS, 
CONTAM, and Modelica. However, most of these programs cannot concurrently 
simulate all aspects encompassing energy usage, airflow, IAQ, pollutant sources, 
and HVAC controls. Consequently, the existing simulation literature has largely 
focused on energy or IAQ in isolation, but none have comprehensively explored 
the simultaneous effects of extended IAQ (including CO2, temperature, and 
several other airborne pollutants) and energy usage when utilizing DCV and 
recirculating return air. This weakness can be addressed through co-simulation. 
Co-simulation between EnergyPlus and CONTAM or CONTAM and TRNSYS 
can be employed when evaluating all the parameters mentioned above. Such co-
simulation enables the evaluation of overall energy consumption, airflow, and 
IAQ in a building, and both tools are freely accessible. 

The research gap that this review addresses is the objective of refining 
ventilation control logic to curtail annual energy consumption and minimize the 
instances in which CO2, temperature, several other airborne pollutants, and RH 
exceed the thresholds defined in existing literature.  This work serves as a pivotal 
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step towards redefining ventilation control paradigms and accommodates the 
anticipated integration of various pollutant measurements facilitated by the 
proliferation of ES in the market. 

 

2.3.4 IoT sensors and connectivity 

In accordance with ASHRAE Standard 62.1–2019, satisfactory indoor air quality 
entails "air containing no recognized impurities at detrimental levels, as 
determined by knowledgeable authorities, and to which a substantial majority 
(80% or more) of exposed individuals react without discontent". Nevertheless, 
several real-world investigations have revealed that structures frequently fail to 
fulfil even the minimal standardized requisites.  
The European Respiratory Society (ERS) has pinpointed particulate matter 
(PM2.5 and PM10), volatile organic compounds (VOCs), and carbon dioxide 
(CO2) as pivotal air pollutants.  
To ensure adequate management oh HVAC systems, the monitoring of IAQ 
holds a crucial role, which can trigger a suitable sequence of actions through 
real-time feedback to encourage human interventions or by directly activating 
automated control systems. To address these challenges, forecasting the Air 
Quality Index (AQI) assumes a pivotal role in managing and curtailing air 
pollution levels. 
 
IoT represents a wireless network of intelligent sensors linked to the Internet, 
capable of gathering and transmitting data through embedded devices. 
Typically, IoT devices consist of five fundamental components: sensors, a 
processor, a memory module, a communication module, and a power source. 
The sensors are usually connected via a gateway, which establishes 
communication with the sensors while also providing storage and processing 
capabilities. This gateway may be hosted either in the cloud or on the edge.  

The generation of time-series data from IoT devices, including sensors, 
machinery, and robotics, is gaining popularity. These data are swiftly generated 
by real-world applications such as monitoring air pollution (Joshi, 2008) 
Subsequently, they are transmitted to a cloud or an edge processing center for 
further analysis.  
Traditionally, the monitoring of indoor air quality has been carried out by 
experts employing certified reference instruments [N. Castell et al]. However, 
the high initial cost and large size of such equipment make them unsuitable for 
widespread and continuous IAQ monitoring in buildings (Castell et al., 2017).  

Recent technological progress in metal oxide semiconductors (MOS) for gas 
detection light scattering for particles, and non-dispersive infrared (NDIR) 
spectroscopy for carbon dioxide measurement has facilitated the creation of 
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affordable sensors and monitors intended for consumer use. These monitors are 
typically designed to provide real-time data on air temperature, relative 
humidity, and various IAQ parameters, often including PM2.5, PM10, CO2, and 
total VOCs (TVOCs). 

Certain consumer-grade monitors are equipped with sensors for additional gases 
like carbon monoxide, nitrogen dioxide, ozone, or other metrics such as air 
pressure and noise level. The readily available consumer-grade monitors 
commonly store data on Internet of Things (IoT) servers, and the measurements 
can be accessed through web or mobile applications. The increased market 
availability of such consumer-grade monitors and single, affordable sensors 
(devices that measure individual IAQ parameters and transmit data to a logging 
system) has captured the interest of numerous researchers. 

Up until now, numerous studies have investigated the effectiveness of affordable 
sensors and monitors in detecting indoor and outdoor (Z. Wang et al., 2020) 
particulate matter (PM). (Singer & Delp, 2018) evaluated the capabilities of 
budget-friendly air quality monitors in identifying fine particles originating from 
residential sources. They identified a reasonable correlation within a twofold 
factor for most sources, except for particles with an optical diameter below 0.3 
μm, where there was minimal response. (Singer & Delp, 2018) recently 
reaffirmed these findings. Other research indicated that the accuracy of 
integrated PM sensors within consumer-grade monitors can be influenced by air 
temperature and relative humidity (Bai et al., 2020).  

Similarly, the precision of CO2 measurement using low-cost non-dispersive 
infrared (NDIR) sensors, commonly found in consumer-grade monitors, was 
shown to depend on air temperature and relative humidity (Marinov et al., 
2018).  

Besides direct measurements, certain devices estimate CO2 levels based on total 
volatile organic compound (TVOC) measurements, resulting in notable 
inaccuracies (Demanega et al., 2021a). The TVOC measurement itself, 
conducted with metal oxide semiconductor or photoionization detector (PID) 
sensors, is prone to cross-sensitivity with interfering compounds. The realm of 
volatile organic compounds encompasses a wide range of substances, from 
innocuous cooking scents to hazardous chemicals like aromatics (e.g., benzene, 
toluene, xylene) and aldehydes (e.g., formaldehyde and acetaldehyde), which 
renders detecting and monitoring VOCs challenging, along with quantifying 
exposure. 

Numerous studies have evaluated sensor performance not only concerning air 
quality but also encompassing other aspects of the indoor environment, such as 
thermal comfort. Moreno-Rangel et al. assessed five "Foobot" monitors in 
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measuring residential air temperature, relative humidity, PM2.5, CO2, and 
TVOC. The study found satisfactory accuracy for all sensors except CO2, which 
wasn't measured by a dedicated sensor but rather derived through an algorithm 
using TVOC data.  

Beyond this research, our understanding of the comprehensive performance of 
low-cost consumer-grade monitors and sensors remains limited.  
The findings obtained from (Demanega et al., 2021b) activities underscore the 
limitation of using optical light scattering technology in low-cost PM sensors, 
as it is unable to cover the entire range of particle sizes commonly emitted from 
indoor sources. (Singer & Delp, 2018) assessed 2 research-grade and 7 consumer-
grade monitors, concluding that consumer-grade monitors exhibit semi-
quantitative responses (50–200%) to most tested pollutants, while all devices 
exhibited minimal or no response to events involving particles with an optical 
threshold of 0.3 μm. (Z. Wang et al., 2020) study confirmed this, establishing 
the particle detection limit at around 0.25 μm. As per specifications, the 
majority of consumer-grade monitors are designed to detect particles with 
optical diameters ranging from 0.3 μm to 2.5 μm. Depending on the pollutant 
source and its associated particle size distribution, closer alignment with the 
reference was observed when the optical particle diameter ranged from 1 μm to 
2.5 μm, with most tested devices reporting around 50% of the reference 
concentration at worst. 
Agreement diminished when sources were dominated by submicron particles (<1 
μm) and during activities generating coarse particles (e.g., vacuuming). Studies 
also reveal that optical monitors (consumer, professional, and research-grade) 
might underestimate the mass concentration of larger particles produced by 
vacuuming, particularly if those particles have higher density.  

However, due to the polydisperse nature of indoor particle sources, the response 
of the majority of sensors exhibited temporal correlation. A robust correlation 
with reference data was also identified by (J. Li et al., 2020) for the evaluated 
consumer-grade monitors. This implies that these devices dynamically track 
concentration changes and can detect events even when quantitative agreement 
is poor. The analyzed data suggests no consistent bias for PM2.5 sensors. It's 
important for end-users to recognize that PM data from current low-cost sensors 
should be interpreted as an indication of a shift in state or a rough estimate, 
rather than an exact concentration indoor area. 

TVOCs comprise a wide range of volatile organic compounds, and each 
pollutant source generates different types of VOCs. A comprehensive study 
highlighted that TVOC sensors exhibit varying sensitivity to different VOC 
sources, depending on their working principles (Militello-Hourigan & Miller, 
2018). This variability is especially notable in PID sensors, which yield accurate 
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results in laboratory air sampling when measuring specific groups of compounds, 
they are calibrated for. This variability explains the different responses of 
monitors and the inconsistent seasonal replication in various experiments. While 
consumer-grade monitors managed to capture changes in TVOC concentrations 
over time and could be employed to detect events, users should be informed 
about the inaccuracies in absolute values. (Nirlo et al., 2015). 

In all the tested monitors and single sensors, air temperature and relative 
humidity were found to impact measurement performance. These factors should 
be considered when interpreting the data. Additionally, variations in particle 
density from different sources can influence the accuracy of mass concentration 
measurements. To address this, using source-dependent particle densities and 
understanding their effects on measurement accuracy is crucial. 
If sensor was positioned in close proximity to a microcontroller with a power 
converter within a housing accommodating multiple single acquisition set, the 
heat generated by the microcontroller likely interfered with the air temperature 
measurement, leading to overestimated temperature values. 
 
The literature analysis performed provides a comprehensive evaluation of the 
performance of low-cost consumer-grade monitors and single-parameter sensors 
in detecting five indoor environmental parameters: particulate matter, carbon 
dioxide, total volatile organic compounds, dry-bulb air temperature, and relative 
humidity. Eight experiments were conducted to simulate indoor air pollutant 
sources under two different climatic conditions: cool and dry, and warm and 
humid. 

Regarding PM measurements, even though some devices exhibited Mean 
Relative Errors (MRE) exceeding 100%, the dynamic responses were time-
correlated for most tested devices. This implies that low-cost units could 
effectively detect changes in particulate matter concentrations ranging from 0.3 
to 2.5 μm. On average, the best-performing monitor deviated by a factor of two 
from the reference.  
In terms of CO2 concentration detection, the majority of devices displayed errors 
within 25% from the reference for concentrations up to 3,500 ppm. Some of the 
best monitors achieved a deviation of just 3% from the reference. 
For total volatile organic compounds (TVOC), low-cost monitors showed strong 
correlations with professional-grade monitors, despite a lack of precise 
quantitative agreement. 

Comparing the two seasons, most consumer-grade monitors exhibited similar 
performance in both conditions, with some devices slightly closer to the reference 
in cool and dry conditions for PM and CO2, and in warm and humid conditions 
for TVOC. 
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The study suggests that recent technological advancements provide an 
opportunity for more effective indoor air quality control. The majority of tested 
low-cost consumer-grade monitors could potentially trigger appropriate actions 
to ensure satisfactory indoor environments. This could be achieved through a 
feedback loop to encourage human actions or integration into building 
management systems with automated controllers and devices. Continuous 
improvement of low-cost monitoring technology is vital to enhance indoor air 
quality management. 
 
As the field of environmental sensing technology continues to evolve, future 
research should prioritize several key areas. Firstly, there is a need to delve into 
the longitudinal performance of these low-cost monitoring units. This involves 
studying their consistency and accuracy over extended periods of time, which is 
essential for assessing their reliability in real-world scenarios. 
Additionally, the development of robust quality control algorithms is crucial. 
These algorithms should be designed to minimize measurement errors and 
eliminate biases that might arise from various sources, such as sensor drift, 
calibration discrepancies, or environmental fluctuations. Such algorithms would 
contribute to enhancing the accuracy and consistency of the collected data. 
Furthermore, the establishment of standards and guidelines for the testing of 
these low-cost monitoring devices is essential. A standardized framework would 
ensure that these devices undergo thorough and consistent evaluation processes, 
enabling direct comparisons between different models. This, in turn, would aid 
consumers, researchers, and decision-makers in making informed choices based 
on reliable data. 
In conclusion, the future direction of research in this field should focus on the 
long-term performance assessment of low-cost sensing units, the development of 
effective quality control algorithms, and the establishment of standardized 
testing protocols to ensure the accuracy and reliability of these devices for indoor 
environmental monitoring. 
 
2.3.5 DT-based IAQ management 

Digital twins can play a crucial role in addressing these challenges and ensuring 
the optimal indoor air quality (IAQ) in smart buildings. By creating a digital 
replica of a building's HVAC system, ventilation, and other environmental 
parameters, digital twins can offer real-time insights into IAQ performance. This 
empowers building managers to detect potential problems, such as insufficient 
ventilation or elevated pollutant levels, in advance of critical situations and 
optimize the performance of HVAC systems, including temperature and 
humidity control, to sustain a healthy indoor environment. 

The system is able to support in making informed decisions regarding 
maintenance, upgrades, and investments in IAQ enhancements simulating 
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various scenarios and assess their impact on IAQ, aiding in the identification of 
potential challenges and the development of strategies to address them. This 
ensures that air quality standards are upheld even in changing conditions. 

Digital Twins provide a potent solution for achieving and upholding indoor air 
quality standards in smart buildings, especially concerning SmartScore 
certification. By offering real-time insights into IAQ performance, digital twins 
empower building managers to proactively tackle issues, enhance system 
efficiency, and base decisions on data, ultimately benefiting the health and well-
being of occupants. As digital twin technology advances, we can anticipate 
further innovative applications for enhancing IAQ and overall building 
performance. 

Several key factors contribute to the complexity of managing indoor 
environments in the context of pathogen transmission and incorporate the choice 
towards a DT system capable of handling complex problems: 

 Heterogeneity: indoor environments are highly diverse, with various 
functionalities and characteristics that create distinct habitats for 
different pathogens. Microbiomes can significantly differ even within the 
same building, depending on the room's usage. This variability 
highlights the necessity for tailored, location-specific risk management 
practices. 

 Diverse Pathogen Habitats: pathogens can be found in various indoor 
habitats, such as surfaces, air, and water. These different locations offer 
unique transmission and exposure pathways. For instance, strategies 
effective at preventing surface transmission might not be as effective for 
airborne pathogens. 

 Occupant Behavior: building occupants play a pivotal role in the 
transmission and exposure pathways of pathogens, especially in 
environments with multiple users. Their behaviors, interactions, and 
movements can influence the risk of infection and pathogen spread. 

 Disruption vs. Functionality: traditional approaches like prolonged 
access control and extensive cleaning may reduce pathogen transmission 
but can also disrupt the standard operations and functionalities of 
indoor environments. 

Given the dynamic and interconnected nature of human behavior, pathogen 
transmission, and building operations in indoor environments, there's a growing 
need for adaptive and advanced systems. These systems should enable real-time 
monitoring and control responses to the ever-changing dynamics of the building-
human-pathogen system. Digital Twin emerges as a promising approach to 
address these challenges by providing a comprehensive and adaptable framework 
for managing indoor environments and mitigating pathogen risks. 
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According to (J. Cai et al., 2023), the DT of the indoor environment can be 
perceived as the interaction between the buildings’ indoor environment and its 
digital representation model to provide real-time monitoring, analytics, and 
control for the environments. Therefore, three literature research clusters that 
develop key technologies to enable the establishment of DT have been identified, 
i.e., BIM, IoT sensing, and smart building control through data analytics. 

Research in the field of Building Information Modeling (BIM) applications for 
promoting healthy indoor environments has been relatively limited. Typically, 
this area of study is considered a subset of design performance or facility 
management, with a focus on managing factors like indoor air quality, 
daylighting, and ventilation. However, the emergence of COVID-19 has led to 
increased attention on leveraging BIM to support healthier indoor environments. 

In a study by (Rice, 2020), 14 building health indicators were identified, 
including aspects like thermal comfort, volatile organic compounds (VOCs), and 
sound insulation. The potential of BIM models to measure and evaluate these 
indicators through surveys and assessments was discussed. Most participants in 
the study agreed that BIM models could be used to measure these indicators. 
However, there were debates regarding the complexity of measurement for 
different indicators. Three complexity levels were identified: direct measurement 
based on BIM models, the need for additional plug-ins, and the requirement for 
extra sensors and detectors. 

Some research has delved into specific indicators, such as indoor air quality 
(Utkucu & Sözer, 2020) and lighting (Montiel-Santiago et al., 2020), and 
explored how BIM can facilitate their assessment and monitoring. Beyond 
indicators perceptible to humans, other studies (Adams et al., 2014) (S. Li et 
al., 2021)) have taken a building microbiology perspective. They have extracted 
building information, such as layout, and correlated it with microbial 
communities identified through advanced sequencing techniques. 

Overall, while the application of BIM in promoting healthy indoor environments 
is gaining attention, it remains an evolving field with various complexities 
related to measuring and assessing different health indicators. 

The impact of design on microbial risks has been explored in research efforts. 
For example, (Adams et al., 2014) conducted a study that revealed variations in 
microbial communities between different types of rooms. Additionally, a pilot 
study conducted by (S. Li et al., 2021) achieved a groundbreaking integration 
of Building Information Modeling (BIM) with a microbial transmission model, 
allowing for the assessment of infection risks at the room level. This work has 
laid the foundation for the integration of BIM with microbial risk assessment as 
a means to promote health in indoor environments. 
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In essence, the current use of BIM for enhancing healthy indoor environments 
involves two primary processes. 

 Integration of BIM data: this process entails extracting information 
from BIM and combining it with other relevant data to assess health or 
health-related factors using simulation or data-driven methods. Various 
studies have employed this approach (e.g., (Sporr et al., 2019) (Kwok 
et al., 2020), (Gan et al., 2021). 

 Utilization of BIM Visualization: BIM's visualization capabilities are 
harnessed to represent and communicate health or health-related factors 
to users. Researchers and practitioners have employed BIM for this 
purpose (e.g., (Alavi et al., 2021); (Valinejadshoubi et al., 2021). 

These processes collectively contribute to leveraging BIM as a tool for enhancing 
indoor environmental health and microbial risk management. 

In the context of fostering a healthy indoor environment, Building Performance 
Simulation (BPS) models are commonly employed, often in conjunction with 
Computational Fluid Dynamics (CFD) techniques. These models serve the 
purpose of modeling, assessing, and controlling various aspects of indoor 
environments, including indoor air quality ((Y. Li et al., 2021) (Stephen Lopez 
et al., 2021), pathogen transmission (Peng et al., 2020) (Motamedi et al., 2022)), 
as well as thermal and visual comfort (Cheong et al., 2020). 

However, a notable limitation of BPS models lies in their representation of 
occupant behavior, which can significantly impact the accuracy and reliability 
of simulation results. To address this limitation, Agent-Based Simulation (ABS) 
has been employed to create more sophisticated models that better capture the 
dynamic interaction between occupants and indoor environments. ABS can be 
integrated with BPS models to explore how such interactions influence building 
performance metrics, including energy consumption and disease transmission 
(X. Zhou et al., 2020), (Islam et al., 2022). This integration allows for more 
informed decisions related to building operations and control. 

Furthermore, Building Information Modeling (BIM), which provides rich spatial 
and semantic information about building design and operation, has become an 
indispensable tool in data analytics. BIM is often combined with BPS to enhance 
the accuracy and reliability of simulation results concerning building 
performance (Y. Zhou et al., 2021). 

In the context of smart building control, Digital Twins (DTs) equipped with 
advanced dynamic modeling capabilities act as the intelligent core.  

They take inputs and outputs from digital building models and formulate 
building control as an optimization problem. Various optimization techniques, 
such as mixed-integer problems and nonlinear programming, can be effectively 
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employed to solve these problems. Model Predictive Control (MPC) techniques 
have been implemented in real buildings, demonstrating their ability to enhance 
building operational practices (Ruusu et al., 2019). 

The primary focus of DT-enabled smart building controls is to enhance indoor 
health and environmental comfort while ensuring energy efficiency in building 
operations. This involves improving various aspects of indoor occupant well-
being, including: 

 Indoor Air Quality (IAQ): DTs, through building modeling and 
indoor/outdoor air quality monitoring, enable optimal ventilation by 
switching ventilation modes and adjusting ventilation rates. This results 
in reduced indoor air pollutant concentrations and energy savings in 
ventilation operations (W. Kim et al., 2016), (Cho et al., 2015). 

 Controlled Indoor Air Pollutants: Various air pollutants like CO2, Total 
Volatile Organic Compounds (TVOCs), respiratory particles, and ozone 
are managed simultaneously (Ganesh et al., 2019), Afroz et al., 2020b), 
(Saini et al., 2020a) Effective deployment of indoor environmental 
sensors is essential for efficient indoor air pollutant management (Zeng 
et al., 2020) 

 Occupant Behavior Modeling: Occupant behaviors play a crucial role in 
effective indoor air pollutant management, especially in demand-
controlled ventilation strategies that rely on accurate occupancy 
information (W. Wang et al., 2018). 

Amid the COVID-19 pandemic, there has been increased attention on methods 
to control airborne infections. Smart ventilation strategies, encompassing both 
mechanical and natural ventilation, along with occupancy adjustments, have 
been proposed to mitigate virus transmission risks in building operations (Xu 
et al., 2021). 

Furthermore, in pursuit of energy efficiency, smart lighting control strategies 
have been developed to optimize lighting operation schedules based on 
environmental conditions and occupancy, ensuring satisfactory indoor 
illuminance levels without unnecessary energy consumption (Kandasamy et al., 
2018) 

In line with broader sustainability goals, building DTs are being leveraged to 
integrate renewable energy sources and support demand response initiatives. 
These DTs utilize system-sensing data to facilitate the harmonious integration 
of renewable energy, energy storage (e.g., thermal or battery storage), and 
building operations, considering both power generation and occupant 
requirements Biyik & Kahraman, 2019),(Kathirgamanathan et al., 2021) 

In summary, DT-enabled smart building controls are instrumental in optimizing 
building performance across various facets, from indoor air quality and occupant 
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comfort to energy efficiency and sustainability, thus fostering healthier and more 
efficient indoor environments. 

In essence, a DT for a healthy indoor environment serves as a comprehensive 
and dynamic platform that continuously monitors, models, assesses, and controls 
various factors to promote both environmental sustainability and occupant well-
being as shown in Figure  15. 

 

 

Figure  15. DT and IoT reference architecture for IAQ management 

The progression of IoT sensing is anticipated to furnish unparalleled real-time 
data encompassing all facets of the indoor environment. To attain this, it is 
imperative to develop novel, economical sensors for the direct identification of 
microbiome populations (e.g., pathogens). Furthermore, it is necessary to devise 
methodologies for the optimal setup of sensors to guarantee precision in 
measurements while also enhancing cost-effectiveness. Modern technologies, 
including edge devices and privacy-preserving sensors, ought to be harnessed in 
IoT sensing to safeguard both security and privacy. 

In the future, in the context of a healthy indoor environment, Building 
Information Modeling (BIM) should evolve into an integrated assessment and 
simulation platform. Its primary role would be to furnish actionable insights for 
building control systems by amalgamating information encompassing the 
environment, occupants, and microbiome. These insights would be derived from 
multi-disciplinary simulations covering domains such as energy usage, air 
quality, and pathogen transmission. A significant challenge in this context is 
ensuring data interoperability. The adoption of an Industry Foundation Classes 
(IFC)-based system development approach could potentially address this issue. 
Moving forward, it is crucial to identify information requirements and clarify 
the process of information exchange. 

Regarding real-time sensory data, future BIM systems are expected to undergo 
continuous updates to ensure that simulations remain calibrated. In addition to 
its role in assessment and simulation for smart building control, a closed-loop 
design framework is essential. This framework should enable the identification 
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of relationships between indoor environmental attributes and health indicators, 
ultimately guiding building design. 

The prevailing paradigm of smart building control, which primarily emphasizes 
energy efficiency and occupant comfort, needs to expand its scope. It should 
acquire the capacity to ensure environmental health and mitigate infection risks. 
To achieve this, it is imperative to quantify the relationship between building 
operations (e.g., ventilation and surface disinfection) and infection risk, thereby 
enabling bio-informed adaptive control. Moreover, occupants play a pivotal role 
as active components within the indoor environment. Their behavior 
significantly influences the transmission of infectious diseases. Consequently, 
building control strategies must take into account the interactions among 
occupants and between occupants and the environment. 

In this scenario, advanced data analytics is a fundamental component of digital 
twinning for a healthy indoor environment. It offers valuable insights that 
support the other three techniques mentioned. Novel methodologies that 
leverage rich, real-time sensor data, building design and operation data, and 
external contextual data are required. These methodologies should strategically 
integrate physics-based simulations and data-driven analyses for modeling the 
complex relationships among the environment, occupants, and pathogens. 
Furthermore, there is a need to establish quantifiable relationships between 
environmental factors and human health. 

 

2.3.6 Open challenges 

This section delves into the primary challenges associated with Digital Twins 
(DT) and discusses them in four distinct parts: 

 Data Analysis and Data Access: the existing IT infrastructure often 
falls short in supporting data analysis within a DT environment. DTs 
inherently require advanced infrastructures to enable efficient data 
analysis. In essence, the success of DT relies on a robust and 
interconnected IT foundation. High-performance GPUs can be 
employed for this purpose. Cloud service providers like Amazon, 
Microsoft, and Google offer substantial resources, but using cloud 
services for data analysis still presents significant security challenges. 
Edge computing emerges as a potential solution to mitigate data 
transmission delays, increase bandwidth, and enable rapid and accurate 
data exchange and analysis. 
 

 Connectivity within the DT Framework: the Internet of Things 
(IoT) technology facilitates connectivity within the DT framework. 
However, despite advancements such as the emergence of 5G technology, 
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connectivity-related challenges persist, including software errors and 
power outages during real-time monitoring. The presence of missing 
data can substantially impact algorithm performance, necessitating 
methods to recover lost data and establish complete connections. 
 

 Security: security and privacy pose notable challenges in the realm of 
advanced technologies. In the context of DT, the sheer volume of data 
and information exchange presents cybersecurity risks, including the 
potential for cyberattacks. Adherence to updates in privacy and security 
laws is imperative for DTs. Establishing a secure platform is paramount 
and results in a highly reliable digital environment. Blockchain 
technology, with its secure and decentralized structure, can effectively 
address security concerns by providing a secure framework for data and 
information exchange among agents. 
 

 Standardization: standardization is another significant challenge 
associated with DTs that can potentially hinder their development. The 
adoption of standardized formats is essential for defining, storing, and 
executing DT models, fostering interoperability and integration among 
different DTs. In complex systems like hub energy systems, where 
multiple infrastructures (e.g., electricity, water, gas) coexist, a unified 
platform is required to enable seamless interoperability between these 
systems. This challenge can be addressed through technologies such as 
Semantic Web or by employing a DT definition language to establish 
common standards and ensure effective communication and integration 
among DTs. 
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Chapter 3 

 

                  Methodology 

 

 

 

Historically, managing energy grids and monitoring indoor air quality relied on 
manual readings, rudimentary sensors, and often, human intuition. The 
limitations were evident – lack of real-time monitoring, reactive instead of 
proactive responses, and a heavy dependence on human intervention.  

Traditional approaches to energy microgrids and IAQ have had their share of 
inefficiencies, often reliant on manual readings, basic sensors, and human 
judgment. The pitfalls were evident – latency in real-time monitoring, reactive 
strategies, and intensive human oversight. Yet, with interconnected devices, the 
Internet of Things (IoT), and robust analytical platforms, the proposition of 
constructing an insightful digital representation of these systems has emerged. 

However, with the rise of interconnected devices, the Internet of Things (IoT), 
and powerful analytical platforms, the prospect of creating a real-time, self-
learning digital representation of these systems became plausible. This led to 
the exploration of integrating data platforms with machine learning to forge an 
intelligent Digital Twin. 
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As a Digital Twin, at its core, is a dynamic software representation of a physical 
entity or system the digital counterpart mirrors the real-world system in real-
time, capturing its every nuance. By harnessing the data generated by IoT 
devices and sensors, it provides a platform for analysis, understanding behaviors, 
and predicting future trends. 

In the context of energy microgrids and IAQ, envision a comprehensive digital 
representation that not only displays real-time data but also predicts potential 
failures, recommends optimization strategies, and continually learns from new 
data. 

Data is the core component of a Digital Twin. The more data it ingests, the 
clearer its representation becomes. By seamlessly integrating various data 
platforms, we ensure that every sensor, every meter, and every IoT device feeds 
into the Digital Twin. This integration, often cloud-based, guarantees scalability, 
redundancy, and real-time data acquisition. 

For instance, in monitoring a microgrid, data from solar panels, wind turbines, 
battery storage, and demand meters are continually funneled into the digital 
counterpart. Likewise, for IAQ, sensors capturing temperature, humidity, CO2 
levels, and volatile organic compounds stream data in real-time. 

In this scenario, the integration of machine learning offers a transformative edge 
to the Digital Twin. Instead of merely showcasing real-time data, the system 
begins to 'learn' patterns, recognize anomalies, and make predictions. 

In the microgrid context, the Digital Twin might predict a demand surge based 
on historical data and recommend energy storage strategies. For IAQ, it could 
forecast a decline in air quality and preemptively suggest ventilation strategies 
or adjustments to HVAC systems. This predictive capability not only ensures 
efficient operations but also prolongs the lifespan of physical assets by averting 
potential failures. 

The proposed approach integrating data platforms and machine learning 
presents several innovations. Unlike traditional systems that viewed microgrids 
and IAQ as separate entities, the Digital Twin provides an integrated, holistic 
view, capturing the intricate interplay between energy consumption and indoor 
air quality. 

As such, instead of reacting to failures or declines in IAQ, the system becomes 
proactive, offering solutions before issues manifest and as the Digital Twin 
ingests more data, its machine learning algorithms refine themselves, becoming 
more accurate in predictions and recommendations. 

The Digital Twin relies heavily on quantitative modeling, a bedrock of scientific 
research. By mathematically representing physical systems, predictions and 
analyses are based on rigorous, replicable methods. A critical aspect of scientific 
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methodology is the feedback loop – the ability to adjust hypotheses and 
predictions based on new data. Digital Twins inherently adopt this methodology, 
constantly refining their algorithms based on new data influx. 

The proposed approach introduces the integration of data platforms and 
machine learning in constructing a Digital Twin as a paradigm shift in how we 
perceive and manage microgrids and IAQ. This data-driven approach not only 
optimizes operations but also pioneers a future where our systems are self-aware, 
predictive, and continually evolving. 

 

2.4 Review of Machine Learning-based and Data-driven 
strategies 

The present section is aimed at discussing Machine Learning algorithms usable 
to assess one of the main objectives of the present research, which is the energy 
balance of a building, considering electrical loads, power production devices, 
HVAC systems and people needs and habits. Nowadays, Machine Learning has 
been widely adopted for improving building energy efficiency and flexibility 
thanks to the ever-increasing availability of massive building operational data. 
However, it is difficult for end-users to understand and trust Machine Learning 
tools because of their black-box nature. To this end, the interpretability of 
Machine Learning models is attracting ever more attention from the scientific 
and industrial community because it helps users in understanding the decisions 
made by these models. 

It is well known that building sector is one of the major contributors to global 
energy consumption and carbon emissions. It is accounted that about 36% of 
the global energy consumption and the 37% of CO2 emissions comes from this 
sector (OECD/IEA, 2019; Zarco-Periñán et al., 2022). Moreover, throughout the 
entire life cycle of a building, the operation phase accounts for 80% − 90% of 
total energy consumption (Ramesh et al., 2010). Considering these data is 
evident how much the building sector impact on global warming, the reduction 
of consumption is therefore crucial for global energy-saving and to reach carbon 
neutrality as advised by Sustainable Development Goals (Leal Filho et al., 2022; 
Parra-Domínguez et al., 2022) proposed by United Nation and for the 55% CO2 
reduction target by 2030 recommended in the New Green Deal (Kazak, 2022). 

In this framework, Building Automation Systems (BASs) could play an essential 
role in improving energy efficiency and flexibility. It is possible to implement 
inside a BASs various smart control strategies for building energy management, 
such as Heating, Ventilating, and Air Conditioning (HVAC) controls, energy 
storage and renewable energy monitoring systems, smart lighting and so on 
(Hurtado et al., 2018; H. Tang et al., 2021). Traditionally, the control approaches 
were developed using rule-based control strategies based on physical analyses 
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and experience. However, this sometimes results in great challenges due to the 
complicated interactions among building energy systems (Y. Chen, Chen, et al., 
2022). Nowadays, thanks to the wide diffusion of Internet of Things technology 
it is possible to get real-time data of the building environment with few efforts 
and expenses. Therefore, such data can be integrated inside big-data platforms 
to evaluate innovative control strategies using Data Science.  

Machine Learning models can bring new way of data interpretation discovering 
and learning directly from the environment the actual needs and requirements 
of the building, adapting in almost real time to the changes present in the 
building. This new approach is called “data-driven” and is considered as the 
paradigm of digitalization (Capozzoli et al., 2016; Marotta et al., 2021). With 
such data-driven models, building can be monitored to make decisions 
autonomously with and without human intervention (Sengupta & 
Chandrashekhar, 2021). At least, the possibility of integrating real-time data 
with geometrical information coming from the project phase (as from Building 
Information Modelling) brings great value to the Digital Twin technology, as the 
digital construct is able to replicate and simulate the behaviour of a building in 
real-time. Machine Learning is therefore a fundamental technology for the future 
of the buildings sector and shall be considered as a building component itself. 

Machine learning has effectively facilitated building energy management 
developed during the last years as evidenced by many studies and applications 
present in literature (Z. Chen et al., 2023). This includes, load and power 
prediction, Fault Detection and Diagnosis (FDD) and occupancy-related 
applications.  

 

2.4.1 Load and Power prediction 

Load prediction refers to the ability of a Machine Learning model to predict the 
cooling/heating/electricity demand in the future hours or days, while power 
prediction aims to predict the power generation of equipment such as 
photovoltaic (PV) panels, wind turbines or other power generation devices. The 
development of accurate prediction tool for power management is aimed at the 
optimization of the energy efficiency and flexibility inside the building (L. Zhang 
et al., 2021). As an example, with a demand-side model it is possible to improve 
the flexibility of the building energy system by balancing the supply and the 
demand in real-time using as much as possible renewable energy sources. 
Instead, with a model predictive control it is possible to operate power 
equipment (set-point, thermal comfort, lighting) basing on minimal cost of 
energy consumption logics. Therefore, the choice of the model depends on what 
is the model’s goal and from what it is installed in the building, if there are 
straight constraints on power system operations a demand-side model is 
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advisable, instead, if the goal is to reduce the global energy usage, a model 
predictive control is better suited (Y. Chen, Guo, et al., 2022).  

Such models require historicized data instead of a physical-based load model 
(energy equations, equipment information, etc). Therefore, its development is 
quicker, but it is necessary to have historical operative data available (Z. Chen, 
Chen, et al., 2022).  Between the different Machine Learning algorithms 
Artificial Neural Networks (ANN), tree-based methods, and Deep Neural 
Networks (DNN) autoregressive models are the most suitable, as evidenced by 
many literature studies (L. Zhang et al., 2021). ANN are very suitable to cope 
with complex real-world problems such as for solar radiation prediction (Bahani 
et al., 2020) or for heating/cooling efficiency (Le et al., 2019). Moreover, ANN 
are quite more flexible not depending on linear approximations and being 
independent from binary logics as for tree-based methods. DNN instead, seems 
to be very promising in load demand prediction, especially if coped with Long 
Short-Term Memory layers (LSMT) (G. Li et al., 2022). 

 

2.4.2 Fault Detection and Diagnosis 

Fault Detection and Diagnosis is another widely discussed topic because it is 
essential to maintain building efficiency, especially when energy-intensive loads 
are installed (such as chillers and heaters). Using Machine Learning it is possible 
to monitor device status and life cycle using self-learning energy signature 
models independently from the specific device. Some examples of applications 
employ Support Vector Machines (SVMs), Artificial Neural Networks, 
Convolutional Neural Network (CNN) models, Recurrent Neural Network 
(RNN), and Deep Generative Systems (Ciaburro, 2022). ANN and CNN are the 
most suitable ones due to their flexibility and capacity to self-learning from data. 

 

2.4.3 Occupancy-related applications 

At least, occupancy-related applications refer to the problems related to the 
presence of people inside an environment. As an example, occupant thermal 
comfort is occupancy-related applications directly connected to the HVAC 
system and the use of accurate Machine Learning models can improve indoor 
comfort yet reducing energy consumptions. Using Machine Learning based 
models instead of Predicted Means Vote (PVM) (Yau & Chew, 2014) it was 
demonstrated that it is possible to reduce energy consumption more than 58% 
and CO2 emissions up to 24% (Qavidel Fard et al., 2022). This is possible thanks 
to the occupancy level prediction and activity recognition that are two branches 
of Computer Vision models that uses Machine Learning and Artificial 
Intelligence models to determine the number of people in an environment and 
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their activity. HVAC consumption could be reduced up to 23% using Machine 
Learning for occupancy predictions and up to a more 20% using activity 
recognition (Dai et al., 2020; Javed et al., 2018). IoT plays a fundamental role 
in this field obtaining real-time and historicized data of a parameter which is 
difficult to be evaluated. 

 

2.4.4 Interpretability of Machine Learning models 

One of the main problems occurring when a Machine Learning model is used is 
the capability of interpreting what data affect the process, its performances and 
which features influences the predictions. Sometimes this can go over the human 
comprehension and the efforts to get understandable data could not worth the 
use of Machine Learning tools (Rudin et al., 2022). An example of 
interpretability issue is electrical equipment fault detection whereby the use of 
ANN. Although, the problem is well defined but the data that affects the process 
input and/output is not easy to define and can vary depending on the device. 
This can reduce a machine learning model application due to its lack of 
interpretability. ANN the structure of inputs is well clear by the developer but 
how the data is elaborated by the model is dark. Neural networks are made of 
a big number of hidden layers that are trained on the dataset and which output 
is usually not understandable. Moreover, as the number of layers increase (Deep 
Neural Networks) the model becomes deeper and darker. However, it is possible 
to employ simpler models such as Support Vector Machine (SVM), k-NN and 
regressors. The tradeoff is the accuracy of the output, that is usually less if 
compared to most complex models. The lack of interpretability is one of the 
main challenges for Machine Learning in real-world applications (Burkart & 
Huber, 2021). This issue is commonly connected to the lack of the physical 
knowledge of the process and the presence of incomplete or bad structured data 
(Yan et al., 2018). Figure  16 shows the correlation between the interpretability 
and accuracy of Machine Learning techniques for interpretable and black-box 
models. 
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Figure  16. Correlation between the interpretability and accuracy of a Machine 
Learning models for interpretable and black box models 

Therefore, decision-makers may find the ML untrustworthy if the models are 
not trained on real operational data. Moreover, the actual performance of models 
could be worse than on the training data. Another issue is due to the black-box 
nature of ML models because they produce output without any explanations. 
Decision-makers usually need insights into how and why models produce such 
predictions so that they can understand, control, and apply the models. This 
leads to skepticism in the building industry about the application of ML. 
Therefore, it is advisable to generate reasonable interpretations that explain the 
original ML model without oversimplifying essential details or sacrificing 
prediction performance. The issue is graphically explained in Figure  17. 

 

Figure  17. Interpretable Machine Learning model trust example for HVAC systems. 

Interpretability can be local or global depending on the scope of model output 
that needs to be interpreted. Global interpretation explains an ML model based 
on a full view of the model structures and parameters. In contrast, local 
interpretation explains each prediction individually. This means that global 
models provide a holistic understanding of the model itself by measuring the 
global effects of input parameters on the predictions. This is important for 
decision making because it gives a macro-level understanding of the prevision 
process, as example, explaining what features are most significant in predicting 
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energy consumption. Instead, local models provide a transparent understanding 
of the prediction for a specific input. These models focus on the effects of every 
single input on the result. Differently from global models, this is important for 
decision making to trust the output and to understand if it is current or wrong. 
As an example, local models can explain the effect on external air temperature 
on HVAC power consumption and efficiency. Figure  18 summarize what is 
intended as global and local interpretability level.  

 

Figure  18. Local and Global interpretation using as example k-means (a) and tree-
classifier (b) models. 

There are two types of Machine Learning families defined as Ante-Hoc and Post-
Hoc, the division is based on where the models are applied in the data 
elaboration process: 

 Ante-hoc Machine Learning models are applied during the training 
process,  

 Post-Hoc Machine Learning models are applied after the training 
process. 

Ante-hoc models are also called intrinsic or transparent models. For example, a 
linear regression is a simple ante-hoc model for predicting a continuous outcome 
variable based on one or more predictor variables (El Fiorenza Caroline et al., 
2019). The model is self-explanatory because it makes predictions using a linear 
combination of the input variables, which can be easily understood and 
explained (Kamath & Liu, 2021). Although linear regression is high 
interpretable, it is somehow too simple to address complicated problems in 
building energy management (Sha et al., 2021). Generalized Additive Models 
(GAMs) is a more suitable variant of linear regression with strong flexibility and 
interoperability for regression and classification roles (Zhuang et al., 2021).  

Instead, Post-hoc models are applied as a black box after their training. They 
are used to interpret and understand the dependency and significance of an 
input over the output without the need to understand the internal structures. 
They are aimed at generating interpretation by examining the interrelationship 
between input features and the predictions without knowing how the process is 
developed (Friston & Penny, 2011; Vilone & Longo, 2021).  
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The graphical representation of Figure  19 shows post-hoc and ante-hoc 
implementation in an example of Machine Learning working flow; On the left is 
visible the ante-hoc flow, where the flow skips the surrogate model fitting going 
directly to the evaluation step. Instead, in the right is represented the post-hoc 
schematic, where the flow is implemented in a black-box model that shall be 
evaluated somehow as a global result. It shall be noted that it is also possible 
to concatenate a black-box model with an interpretable model in a single logic 
flow where post and ante data elaboration steps are performed. However, the 
possibility of obtaining both the advantages of the two workflows is not 
guaranteed and depends on the specific surrogate model implemented. 

 

Figure  19. Ante-hoc (left) and Post-hoc (right) Machine Learning flows 
implementation 

Going forward, Machine Learning techniques can be agnostic depending on their 
structure. As example, a Machine Learning technique can be intended as a single 
component that can be used into any Machine Learning model independently 
from the model as showed in Figure  20. Others can only be used to interpret 
certain types of models and are thus called model-specific techniques. The first 
is called model agnostic technique, the second model specific technique. Model-
agnostic techniques can be applied to any ML model because they require only 
the input and output of the ML model without considering its inner structures. 
Usually, post-hoc models are also model-agnostic. An example of such technique 
is Local Interpretable Model-agnostic Explanations (LIME) a post-hoc model 
agnostic technique that can approximate any Machine Learning model locally. 
Instead, model-specific techniques are more specific on the architecture of the 
ML model, providing in-depth interpretability that may not be possible with 
model-agnostic methods. For example, the attention mechanism is usually 
employed in neural networks to improve interpretability as a model-specific 
technique. 



Methodology 

103 
 

 

Figure  20. Model agnostic and model specific Machine Learning techniques 

 

2.4.5 Evaluation of interpretability 

Between scientific community there is no consensus about what interpretability 
is and how to measure it (F. L. Fan et al., 2021). However, Robnik-Šikonja & 
Bohanec proposed an evaluation method based on three main levels as described 
(Figure  21) (Robnik-Šikonja & Bohanec, 2018): 

 

 

Figure  21. Interpretability levels as proposed by Robnik-Šikonja & Bohanec 

 

1. Application-level (real task): The explanation is made at the end of the 
process and its quality is tested by the end user. As an example, a 
Machine Learning crack detection software can locate and marks them 
in images. At the application level, the end-user can test the crack 
detection software directly to evaluate the model. This requires a good 
experimental setup and a good understanding of how to assess quality 
of the output. Therefore, the quality of the evaluation relay on how 
good the end user is at explaining the same decision. 

2. Human-level (simple task) is a simplified application-level evaluation. 
The difference is that these experiments are not carried out with the 
domain experts, but with anyone. This makes experiments cheaper 
(because it is not necessary to get and expert) and it is easier to find 
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more testers. In this case many explanations can be produced by the 
Machine Learning software and the uses chose the best one. However, 
this method somehow is limited by the user experience and its capacity 
to get the correct choice, therefore, it is not suitable for complex tasks 
where an expert is of mandatory importance for the output evaluation. 

3. Function-level (proxy task) does not require a user. This method works 
when the model has been already evaluated by someone else in a human-
level evaluation or in application-level evaluation. For example, it might 
be known that the end users understand decision trees. In this case, a 
proxy for explanation quality may be the depth of the tree. Shorter 
trees would get a better explain score.  

 

2.5 Models and techniques for energy assessment and 
optimization  

The actual panorama of ML models is quite wide, with many variants developed 
for specific tasks. However, they can be organized basing on the task they have 
to perform, the type of learning and the related input data (Sarker, 2021a). The 
classification is shown in Figure  22.  

 

Figure  22. Machine Learning models’ classification based on learning type and tasks 
to perform (Sarker, 2021b) 

Generally, it is possible to describe data types as following: 

 Structured: input data must be well-defined and structured, with 
information organized and described at detail level. For instance, device 
names, times, power, temperatures, locations, occupancy, etc. are 
examples of structured data. 

 Unstructured: if the data has no pre-defined format or organization, it 
is considered as unstructured. This makes the analysis of relevant 
information much more difficult to perform. For instance, textual input, 
word processing, audio files, videos, images, etc. can be considered as 
unstructured data. 
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 Semi-structured: data are not stored in an organized structure (such as 
a relation-al database), but it has some organizational properties. For 
instance, XML, JSON documents, NoSQL databases, etc., are examples 
of semi-structured data. 

Moreover, input data can be associated also with metadata information that can 
be considered either as structured, unstructured, or semi-structured. Before 
choosing a ML model it is important to understand the structure of input data. 
Moving to interpretability, the data structure is related to the knowledge of the 
process. Usually, it is recommendable to use structured or semi-structured data 
especially when using ante hoc models that are intrinsically interpretable. If 
data is well structured, it is possible to easily get a higher level of interpretability 
(level 2-3) because the process is repeatable with less issues related to the 
model’s accuracy, and it is necessary a lesser insight on the specific process 
analysed (Franchini et al., 2022). However, this rise the importance of having 
good interpretability for the other data structure (semi-structured and 
unstructured). Hereafter, the most used interpretable ML models for energy 
management in built environment are discussed with examples based on the 
scientific literature on the matter. 

 

2.5.1 Artificial Neural Networks 

Artificial Neural Networks are widely diffused across the scientific and industrial 
community because they are quite easy to use and to adapt on different contexts. 
ANN are developed to mimic the neural brain structure by using mathematical 
models made of nodes and connections. Although, they are ante-hoc models 
usually difficult to interpretate due to their black-box nature. However, during 
the last years due to their wide diffusion and interest have been developed 
modified ANN with an enhanced interpretability. As an example, adding element 
with a physical meaning to the models. (A. Li et al., 2021) developed an 
innovative ANN integrating a GRAvitation model (GRA) with a Gated 
Recurrent Units (GRU) model to predict building consumption. The weights of 
the ANN have been determined using the mutual information obtained by the 
two models. H. Wang et al. proposed a Direct eXplainable Neural Network 
(DXNN) using ridge function instead of sigmoid to weight the network nodes 
(H. Wang et al., 2020). Using such different kernel, it was possible to obtain the 
direct relationship between model’s input and output. They apply their model 
to calculate solar irradiance. Moving to occupancy detection, X. Zhang et al. 
combined a Takagi-Sugeno-Kang fuzzy classifier with a Deep Neural Network to 
generate fuzzy rules for occupancy (X. Zhang et al., 2020). Another approach 
to the problem has been developed by E. Kim that proposed an Interpretable 
Convolutional Neural Network (I-CNN) for indoor activity detection by adding 
temporal convolution and pooling layers into a CNN (E. Kim, 2020). Using an 
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Automatic Relevance Determination (ARD) network, L. Li et al. proposed a 
modified neural network can reveal the relationship between input features and 
model output (L. Li et al., 2019). As a result, they showed how the day hour 
was the most influential feature for hourly electricity prediction. 

Another way to increase the interpretability of ANN is using the physical domain 
knowledge to guide networks training process. Z. Chen, Xiao, et al., used this 
methodology to predict the performances of air-conditioning units (Z. Chen, 
Xiao, et al., 2022). Z. Yu et al. concluded that a knowledge-based search strategy 
could significantly reduce ANN training time (Z. Yu et al., 2020). Y. Chen & 
Zhang proposed a modified Long Short-Term Memory (LSTM) using thermal 
dynamics parameters for modelling building thermal performance, the developed 
network can learn interpretable dynamic models from measurement data (Y. 
Chen & Zhang, 2021). Following this approach, Di Natale et al. proposed a 
physically consistent neural network by incorporating domain knowledge into an 
ANN for building thermal modelling (Di Natale et al., 2022). The proposed 
approach was proved to be physically interpretable.  

 

2.5.2 Encoder-Decoder 

Encoder models take an input sequence and creates a contextual representation 
(which is also called context) of it, instead, decoder models take this contextual 
representation as input and generates output sequence. Therefore, Enecoder-
Decorer models uses textual or categorial input to generate categorical or textual 
output. A very famous example of Encoder-Decoder model is Google Translator 
that generates text decoding a textual input (Daza & Frank, 2019). Recently, 
the attention mechanist has been included inside Encoder-Decoder models to 
increase machine-machine translation performances and the human 
interpretability of the output  (Bahdanau et al., 2015). Attention mechanism is 
aimed at mimicking the cognitive attention. It can be made using "soft" weights 
for the Machine Learning models. Moreover, the weights can change during each 
runtime, in contrast to “hard” weights that are pre-trained and fine-tuned. This 
is made by stressing a part of input feature while weakening the others. Encoder-
decoder models can use time-series data therefore the attention mechanism 
should consider time-series data (C. Li et al., 2022). Many studies have used the 
attention mechanism to analyse temporal dependency in time-series data in both 
regression and classification tasks. A chiller fault diagnosis (FDD) model has 
been developed by D. Li et al. to analyse the temporal dependency of time-series 
data and removing redundant features, thus providing a local interpretation of 
the sensor data. (D. Li et al., 2019). Instead, Azam & Younis developed an 
encoder-decoder model for the prediction of energy consumption demonstrating 
the importance of historical feature inputs on model output (Azam & Younis, 
2021).  
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2.5.3 Clustering and feature extraction 

Clustering models are aimed at classifying input data into clusters that shares 
a common feature, instead, feature extraction is aimed at transforming raw data 
into numerical features that can be processed while preserving the information 
in the original dataset. As an example, measuring the dimension of leaves with 
a clustering model is possible to organize them by the plant species, using a 
feature extraction model is possible to analyse which feature is plant specific. 
Unlike ANN and encoder-decoder techniques, clustering and feature extraction 
can be integrated inside any black-box models without the need to modify their 
structure. As example, A. Grimaldo & Novak showed that it is possible to use 
k-Nearest Neighbors (kNN) algorithms obtaining the same performances of more 
sophisticated machine learning models such as Random Forest (RF) and 
Gradient Boosted Trees (GBT) to predict energy usage in buildings (A. 
Grimaldo & Novak, 2021). Due to their aim of organizing and reducing the data 
complexity dividing it into groups or extracting relevant information these 
models are highly interpretable (Vigneau, 2021). An innovative clustering 
technique that is aimed to simulating building thermal design data was 
developed by Bhatia et al. (Bhatia et al., 2019). Their approach is called axis-
aligned hyper-rectangles and can cluster information dividing data into hyper-
rectangle boundaries interpretable with specific rules. Using such techniques 
authors created rules for the range of window-to-wall ratio, to assist the design 
of building envelopes in different climate zones. The case study developed by 
Laurinec & Lucká was aimed at developing interpretable time-series for power 
load forecasting (Laurinec & Lucká, 2019). As a result they showed that it is 
possible to extract interpretable features from moving windows of time-series 
data improving demand forecast accuracy.  

Time-series data can be analysed by Highly Comparative Time-Series Analysis 
(HCTSA) toolkit to generate interpretable time-series features. The works of 
Miller and Xiao showed that it is possible to classify the space usage using 
building energy consumption data by clustering models (Miller, 2019; T. Xiao 
et al., 2022). Kasuya obtained the load prediction of the next day using a 
Gaussian mixture model and a distribution-based clustering algorithm on energy 
usage data (Kasuya et al., 2020). Z. Chen et al. generated mode labels as input 
features using a novel early classification approach to enhance the 
interpretability and performance of building load prediction (Z. Chen et al., 
2021). Data visualization is also a common tool used to improve Machine 
Learning interpretability for clustering and feature extraction models. A. I. 
Grimaldo & Novak developed a smart energy dashboard to visualize energy 
consumption on similar day to increase user understanding of energy 
consumptions (A. I. Grimaldo & Novak, 2019). The dashboard was fed by data 
obtained from kNN and Decision Trees (DT). They also developed a radar chart 
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dynamic figure to compare weather parameters during similar days (A. I. 
Grimaldo & Novak, 2019). 

 

2.5.4 Generalized Additive Models (GAMs) 

Generalized Additive Models (GAMs) was born as a variant of Linear Regression 
and Logistic Regression models. Differently from them, GAMs are more 
generalized but maintains a good degree of interpretability, they can model any 
non-linear additive effects on different features (Kamath & Liu, 2021).  
Moreover, GAMs can incorporate irregular and volatile effects to improve 
flexibility in handling high-resolution data (Khamma et al., 2020). As an 
example, Khamma et al. showed that it is possible to predict heat and power 
production using ambient air temperature, solar radiation, and hour of the day 
as input data (Khamma et al., 2020). The outdoor air temperature had a 
negative linear relation with heating load prediction, while solar radiation had 
a negative exponential relationship. In addition, GAMs were also applied to 
perform sensitivity analysis of input features in thermal comfort modelling 
(Charalampopoulos, 2019), thermal energy storage modelling (Voss et al., 2021),  
to identify operational patterns of gas using HVAC systems (Pathak et al., 
2018), distributed PV power prediction (Sundararajan & Ollis, 2021), and short-
term energy prediction in buildings (Khamma et al., 2020). The main drawback 
of GAMs is their simplicity that cannot be compared to more complex models 
but can only approximate the real behaviour of the system analysed. Therefore, 
GAMs are more suitable for continuous data that don’t have high variability in 
the dataset. 

 

2.5.5 Local Interpretable Model-Agnostic Explanations (LIME) 

In 2016, Ribeiro et al. introduced LIME as a model-agnostic method designed 
to provide localized interpretations for individual predictions (Ribeiro et al., 
2016). This approach involves training a local surrogate model to approximate 
the characteristics of a black-box model in the vicinity of a specific prediction 
sample. LIME is particularly valuable for explaining classification problems, as 
it can provide both contradictory and supportive information for each input 
feature in relation to a given prediction. Wastensteiner et al. applied LIME to 
interpret machine learning-based time-series classification models in the context 
of building energy consumption (Wastensteiner et al., 2021). They also 
conducted an analysis to assess the stability and reliability of these 
interpretations.  

Madhikermi et al., utilized LIME to increase the interpretability of context for 
Artificial Neural Networks (ANN) and Support Vector Machines (SVM) for Air 
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Handling Unit (AHU) fault diagnosis (FDD), selecting six random samples for 
demonstration purposes (Madhikermi et al., 2019). Srinivasan et al. conducted 
experiments using LIME for chiller FDD, including issues such as scaling in 
condenser fins, sensor errors caused by flow pulsations, and false alarms (S. 
Srinivasan et al., 2021). LIME's ability to provide contradicting and supporting 
information plays a dual role: it assists decision-makers in understanding the 
model's output, aiding in fault identification, and also helping for the 
identification of potential false alarms generated by the black-box model. While 
LIME is often associated with classification tasks, it is also applicable to 
regression problems. Carlsson et al. for instance, integrated the contradicting 
and supporting values into a single metric to evaluate the confidence level of 
individual predictions related to chiller COP (Coefficient of Performance) 
efficiency, distinguishing between low and high efficiency cases (Carlsson et al., 
2020).  

 

2.5.6 SHapley Additive exPlanations (SHAP) 

SHAP is designed as a tool for local interpretability, however, it can be employed 
also for global interpretation. For instance, Carlsson et al. leveraged the average 
SHAP values to determine feature importance in an ANN model, uncovering 
key features affecting energy consumption (Carlsson et al., 2019, 2020). 
Similarly, Ugwuanyi employed averaged SHAP values to globally interpret CO2 
prediction (Ugwuanyi, 2021). Much like LIME, SHAP is useful for the evaluation 
of influential factors in fault detection scenarios. In S. Park et al. work, SHAP 
elucidated both local and global interpretations of Random Forest (RF) for Fault 
Detection and Diagnosis (FDD) for district heating systems (S. Park et al., 
2020). Gao et al. used SHAP to interpret RF and Light Gradient Boosting 
Machine (LightGBM) models for chiller FDD (Gao et al., 2022). In a different 
context, Sakkas et al. employed XGBoost to detect fraudulent electricity 
consumption (Sakkas et al., 2021). Additionally, M. Wang et al. used a SHAP 
model to interpret time-series classification for building energy consumption (M. 
Wang et al., 2022). SHAP model can be also used for occupancy-related tasks, 
such as for CO2 concentration prediction (Ugwuanyi, 2021). 

W. Zhang, Wen, et al., adopted SHAP to provide local interpretations for 
thermal comfort evaluation calculating the individual Predicted Mean Vote 
(PMV) outputs in a complex numerical equations-based thermal comfort model 
(W. Zhang, Wen, et al., 2021). Moreover, using SHAP values, the authors 
proposed a potential solution to enhance thermal comfort across different 
weather scenarios. H. Park & Park used SHAP values to rank feature importance 
for predicting natural ventilation rates (H. Park & Park, 2021). The most 
influential features included pressure differences, outdoor temperature, and wind 
speed. Additionally, the authors offered individual SHAP value plots for local 



 

110 
 

interpretation. Yang et al., developed a SHAP model to evaluate three thermal 
sensation models hot, neutral, and cold showing how air temperature and 
relative humidity are the most influential features across all three models (Y. 
Yang et al., 2022).  

Moving to building energy benchmarking, SHAP helps pinpoint key features 
contributing to high or low energy usage intensity in individual buildings. As 
example in the work of Papadopoulos & Kontokosta, SHAP has been in a 
XGBoost-based residential building energy benchmarking (Papadopoulos & 
Kontokosta, 2019). SHAP values identified unit density as the strongest 
predictor for energy use intensity in residential buildings, followed closely by the 
property value and the number of floors.  

SHAP is also very used in load/power prediction applications. For example, 
Chang et al. utilized SHAP to analyse and reveal feature importance in PV 
power generation models (TS-SOM and XGBoost) (Chang et al., 2020). Their 
results highlighted global horizontal irradiance as the most influential feature, 
aligning with Pearson Correlation (PC) analyses. (Movahedi & Derrible, 2021) 
delved into interpreting and interrelating three prediction models (electricity, 
water, and gas consumption) using SHAP. They discovered that the type of 
building (residential or commercial) and water consumption were key features 
influencing electricity prediction, showing a strong interrelationship between gas 
and water consumption due to gas usage in water heating. By examining SHAP 
values from an XGBoost model, Chakraborty et al. deduced that single-family 
homes were likely to experience a more substantial increase in building cooling 
energy consumption in the context of global climate change (Chakraborty et al., 
2021). They also found that buildings in hot-humid zones will consume more 
energy for cooling due to global warming.  

In a different context, Golizadeh Akhlaghi et al. used SHAP to interpret 
performance-related indexes (cooling capacity, Coefficient of Performance 
(COP), and wet/dew point efficiency) for a dew point cooler using DNN 
(Golizadeh Akhlaghi et al., 2021). For instance, a sample exhibited higher 
cooling capacity than the base value due to relatively high intake air velocity. 
Lastly, using SHAP model Lu et al. spotlighted load and solar generation one 
hour ahead, along with solar irradiance, as the top three influential features for 
predicting distributed PV power one hour ahead (Y. Lu et al., 2021).  

 

2.5.7 Other techniques 

There are also other techniques different from the aforementioned. For instance, 
permutation importance can assess feature importance by shuffling feature 
values and observing the impact on model predictions. A feature is deemed 
important if its shuffling leads to a substantial prediction error. Carlson et al. 
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used permutation importance to evaluate feature importance in an Artificial 
Neural Network (ANN) model for electricity prediction (Carlsson et al., 2019, 
2020). However, like Partial Dependence Plots (PDP), permutation importance 
can be biased when features exhibit strong correlations. Another approach taken 
by C. Zhang et al. involved the use of a Dimensionless Sensitivity Index (DSI) 
to quantify feature importance (C. Zhang et al., 2020). Their results indicated 
that time-lagged cooling load features held more sway than other factors. J. Y. 
Kim & Cho, on the other hand, employed the Kullback–Leibler divergence 
method to measure feature relevance in prediction using latent states from an 
encoder-decoder model (J. Y. Kim & Cho, 2019).  

Tree-based methods have been widely used in evaluating feature importance by 
calculating each feature's contribution to reducing impurity within the tree 
model. These methods include Random Forest (RF), gradient boosting machine 
(GBM), XGBoost, and Cubist (Moon et al., 2022b, 2022a). For example, Moon 
et al. showed how in a building load prediction scenario utilizing Cubist 
regression it is possible to rank the importance of features, revealing that 
external factors such as outdoor air temperature and holiday indexes, along with 
internal factors like one day-ahead and one week-ahead energy load, plays 
fundamental roles (Moon et al., 2022a).  

Sipple proposed an unsupervised anomaly detection method for Artificial Neural 
Networks (ANN) to identify power meter device failures in office buildings, 
employing an integrated gradients approach to interpret anomalies (Sipple, 
2020). M. Wang et al. developed a similar work by utilizing ANN gradients 
models to quantify the marginal impact of features on predictions based on a 
backpropagation rule for HVAC performances evaluation, the gradients were 
also leveraged for feature selection (M. Wang et al., 2022).  

Counterfactual explanation is yet another system for generating local 
interpretations of individual samples. This method creates nearby samples with 
minimal feature changes that alter the model's output. Sakkas et al. selected 
features through statistical analysis and then utilized them for Diverse 
Counterfactual Explanation (DiCE) model to conduct counterfactual analysis 
to interpretate energy demand forecasting (Sakkas et al., 2021).  

The ELI5 Python package, named "explain like I'm five," has been used to 
interpret various black-box machine learning models, including XGBoost, 
LightGBM, CatBoost, Keras, and Scikit-learn. Sarp et al. employed ELI5 to 
interpret an XGBoost model, facilitating the deployment of a machine learning-
based renewable energy prediction model (Sarp et al., 2021). In their study, time 
and irradiance emerged as the most influential features for predicting solar power 
generation. In addition to global interpretations, the authors also delved into 
local interpretations using ELI5.  
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W. Zhang, Liu, et al. trained a rule-set surrogate model to replace the Random 
Forest (RF) model for building energy prediction (W. Zhang, Liu, et al., 2021). 
Another study of G. Li et al. employed a surrogate model to replace a multi-
objective optimization algorithm for HVAC setpoint control (G. Li et al., 2021). 
Remarkably, the results demonstrated that straightforward decision-tree-like 
rule sets could achieve about 90% of the performance of detailed model 
predictive controllers while significantly reducing computational costs.  

 

2.6 SmartLAB: Use case scenario and Proof of Concept 
(PoC) 

The present research outlines the design and development of a control and 
management system for a local microgrid located within the Faculty of 
Architecture at Sapienza University of Rome (Figure  23). This initiative seeks 
to establish an experimental demonstration environment, called the 
"SmartLAB", endowed with photovoltaic energy generation capabilities and an 
electric vehicle charging station, leveraging advanced artificial intelligence (AI) 
self-learning techniques. In this scenario, the study aims to delineate an 
experimental methodology to develop a Digital Twin prototype, serving as a 
Proof of Concept (PoC), that specializes in the management and optimization 
of Indoor Air Quality (IAQ) and Energy Management for buildings connected 
to a microgrid. 

 

Figure  23. Faculty of Architecture, Sapienza University of Rome 

 

2.6.1 Objectives and Key Performance Indicators 

The prototype aims to experiment with the use of IoT (Internet of Things) 
technologies and open-source tools to establish a Digital Twin architecture. This 
architecture is designed to manage and reduce energy consumption, enhance the 
utilization of spaces, and increase the knowledge of the entire real estate 
portfolio, ensuring air quality control in the most critical indoor environments. 
It involves the installation of IoT devices to measure the energy consumption of 
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equipment and integration with existing building automation systems (BACS 
and BMS) to achieve energy efficiency goals. This also includes monitoring 
thermo-hygrometric well-being, safety, and environmental quality. 

Efficient management of building technology systems translates into energy 
savings and CO2 emission reduction, aligning with national and international 
directives. The system also aims to provide planning and decision-support tools 
for emergency management, including real-time data acquisition and dashboard 
and visual analytics for information sharing with users and building managers. 

In the subsequent sections, the multifaceted approaches to Energy Management, 
Indoor Air Quality Control, and Space Management and Optimization 
representing the main targets of DT-based building management technology are 
described. 

Energy Management 

Multi-zone climate management: temperature regulation based on usage modes 
and independently for different areas of the building. 

Automatic lighting: lights turn on and off automatically based on people's 
presence. 

Disabling temperature control with open windows: deactivation of heating and 
cooling systems in individual rooms when doors and windows are opened. 

Heating and cooling in economy mode in the absence of people: automation of 
the heating system based on the presence or absence of people. 

Management and monitoring of energy consumption data: application of 
machine learning algorithms to highlight patterns and define strategies for 
energy efficiency. 

Reduction of malfunctions and service disruptions: capability for remote 
monitoring and control of devices. 

Indoor Air Quality Control 

Automatic air exchange: automation of window opening based on timing and 
usage of critical environments such as meeting rooms and printer rooms, 
detecting concentrations of airborne pollutants. 

Space Management and Optimization 

Improving knowledge of the real estate portfolio: creating a unique and 
distributed data source to support decision-making processes. 

Data analysis of space occupancy: defining strategies for space utilization 
optimization and scenario simulation in response to critical events or 
emergencies. 
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Key Performance Indicators (KPIs) 

Primary Energy (kWh/m²): Consumption in the supply chains of used energy 
carriers. 

Energy Demand and Consumption (kWh/(m² month or year)): Assessment of 
the building's energy demand and consumption. 

Energy Saving (%): Percentage reduction in energy consumption compared to 
the baseline. 

Global Energy Performance Indicator – EpGl (kWh/m²): Non-renewable energy 
consumption, like gas for heating or hot water production. 

Peak Load Reduction (%): Comparison of peak demand before and after 
technology implementation. 

Building Operational Performance KPI (%): Correlation of energy consumption, 
emissions, and geometric information. 

Reduction in energy costs due to ICT technologies (%): Change in energy-related 
costs post ICT technology implementation. 

EU Energy Label: Energy efficiency rating from A to G. 

Increased reliability (%): Reduction in faults for greater reliability and fewer 
interruptions. 

User involvement: Engagement in controlling energy use in the building. 

Average System Interruption Duration Index: Estimate of the average duration 
of interruptions affecting users and maintenance costs. 

Average System Interruption Frequency Index: Estimate of the average number 
of service interruptions experienced by a typical end user over a defined period. 

 

Indoor Air Quality Control 

Reduction of airborne pollutants (CO2, TVOC, PM2.5, etc.): Measurement of 
pollutant concentration reduction in meeting rooms and printer areas. 

Space Management and Optimization 

Enhancing knowledge of indoor and outdoor spaces: Reducing inefficiencies in 
space management and utilization. 
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Table 6. Objectives, KPI and Enabling technologies 

Domain Objective KPI Indicator 
Tools, 

Methods and 
Technology 

1. Energy 
Management 
 

1.1 Energy 
Breakdown 
- Reduction 
of energy 
consumptio
n for 
lighting 
and air 
conditionin
g 
 

1.1.1 
Reduction of 
building 
energy need 
and 
consumption 

(kWh/m²), 
EpGl, 
EpGl,nren 

Energy 
analysis, BIM 

1.1.2 
Reduction of 
primary 
electrical 
energy 
consumption 

kWhel/m2, 
kWhel/year; 
kWhel/day; 

Smart Building 
smart 
metering, BMS 

1.1.3 
Reduction of 
primary 
thermal 
energy 
consumption 

kWhth/m2, 
kWhth/year; 
kWhth/day; 

Smart 
metering 

1.1.4 
Reduction of 
energy costs 

€/m2; €/m2 
year 

Data analytics, 
BIM 

1.1.5 Energy 
efficiency 
class 
attribution 

A-G 

Energy 
Performance 
Certificate 
(APE) 

1.1.6 
Building 
Operational 
Performance 

BOPerf = 
(EnEq + 
EnLig + 
EnHVAC) / 
Area * Time * 
Ems 

Smart 
meter/plug, 
BMS 

1.2 
Reliability 
and 
occupant 
satisfaction 
– 
Reduction 
of service 
disruptions 
and 
malfunction

1.2.1 
Reduction of 
service 
disruptions 
and 
malfunctions 

Number of 
tickets/month 

Data analytics 
(facility 
management 
data) 

1.2.2 
Reduction of 
extra 
maintenance 
costs 

€/month 
materials, 
€/month 
personnel 
(extra) 

Data analytics 
(facility 
management 
data) 
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s of 
terminals 
through 
remote 
managemen
t/monitorin
g and 
automated 
flows 
 

1.2.3 Average 
duration 
index of 
system 
interruptions 

min./day, 
min./week, 
min./month 

Data analytics, 
BMS (facility 
management) 

1.2.4 Average 
frequency 
index of 
system 
interruptions 

number/day, 
number/week, 
number/month 

Data analytics, 
BMS (facility 
management) 

2. Indoor Air 
Quality 
Control 
 

2.1 
Reduction 
of airborne 
pollutants 
(CO2, 
TVOC, 
PM2.5 etc.) 
 

2.1.1 
Monitoring of 
airborne 
pollutant 
concentration 
in critical 
environments 

Room 
occupancy, 
CO2 levels, 
Humidity 
levels, Average 
seasonal 
temperature 

IAQ sensor, 
BMS, BIM, 
data analytics 

2.1.2 
Reduction of 
airborne 
pollutant 
concentration 
in critical 
environments 

Room 
occupancy, 
CO2 levels, PM 
presence, 
TVOC levels, 
Humidity 
levels, Average 
seasonal 
temperature 

IAQ sensor, 
IAQ actuator, 
BMS, BIM, 
data analytics 

3. Space 
Management 
and 
Optimization 
 

3.1 
Improving 
knowledge 
of indoor 
and 
outdoor 
spaces 

3.1.1 
Reduction of 
inefficiencies 
related to the 
management 
and use of 
spaces 

Number of 
unused spaces, 
Number of 
unrecorded 
environments, 
Number of 
rooms not 
assigned to a 
CC 

Data analytics, 
presence 
sensors, BMS 
(facility 
management, 
inventory, 
BIM) 

3.2 
Improving 
knowledge 
of indoor 
and 
outdoor 
space 
occupancy 

3.1.2 
Probabilistic 
estimation of 
occupant 
presence in 
environments 
for 
emergency 
management 

Times to 
secure 
environments; 
Extent of 
damage to 
people and 
property 

Data analytics, 
presence 
sensors, 
simulation, 
BIM 
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2.6.2 Applied Digital Twin Strategy 

To understand the conceptual foundation of this research, the comprehensive 
definition provided by Michael Grieves is a key element: 

“A Digital Twin represents a comprehensive suite of virtual constructs which 
encapsulate every detail of a prospective or extant physical ly manufactured 
entity. This spans from its intricate atomic structures to its overarching 
geometric configurations. Ideally, any intelligence gleaned from a physical 
inspection of such an entity should be readily retrievable from its Digital Twin 
counterpart”. Michael Grieves, 2016, Digital Twin Institute. 

The International Energy Agency (IEA) forecasts a burgeoning role for artificial 
intelligence in the energy sector, catalyzing a transformation in global energy 
systems to become more interconnected, reliable, and sustainable. Economic 
projections suggest that by 2040, there will be an estimated one billion “Smart 
Homes” and 11 billion smart devices globally. Efficiently optimizing these 
through AI could lead to a more than 10% reduction in energy consumption. 
Integrating this with photovoltaic energy production further provides end-users 
and managers the tools to make more informed energy management decisions. 

Microgrids harvest vast amounts of data from Internet of Things (IoT) systems, 
particularly their sensors. This data undergoes processing and translation into 
actionable insights by sophisticated self-learning algorithms. Concerning 
renewable energy production, unpredictable weather conditions can introduce 
significant challenges. AI systems are well-positioned to optimize the production, 
transmission, and storage of energy harnessed from photovoltaic installations. 

The culmination of these efforts is the realization of a small-scale smart energy 
grid, entirely overseen by artificial intelligence through machine learning 
algorithms. The AI software, at a home automation level, monitors, and 
interprets the unique energy requirements of individual users, proactively 
intervening to eliminate any unnecessary consumption. 

AI's capabilities extend to monitoring multiple photovoltaic installations within 
a network, amalgamating data related to energy generation, maintenance needs, 
and generation efficiency. Within the realm of photovoltaic energy production 
system control and management, AI techniques can be delineated into three 
primary areas: 

 Forecasting and modeling meteorological data 
 Fundamental solar cell modeling 
 Sizing of photovoltaic installations. 

Consequently, through real-time AI analysis, the system can alert users of 
potential power plant malfunctions, anticipate energy generation, and maintain 
a comprehensive database for the optimal management of photovoltaic systems. 
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For instance, should solar energy reserves approach depletion, the system can 
automatically switch off a television, dim the lights, or even reduce a stereo's 
volume or a fan's intensity. 

Such a system, when synchronized with a building-scaled photovoltaic energy 
production system, can provide estimates of costs and consumption. This equips 
a local microgrid manager or user to make more sustainable decisions. 

The research endeavor is structured into three distinct implementation phases: 

1. Creation of a digital information system using Building Information 
Modeling (BIM) methodology; design and implementation of a 
photovoltaic installation for electrical energy production and an electric 
mobility charging system; 

2. Design and execution of a home automation system serving the 
SmartLAB to holistically manage installations and devices; 

3. Development of a machine learning system that records and discerns 
the energy needs of the SmartLAB and vehicle charging, preemptively 
forecasting the actual production of the photovoltaic system. This then 
proactively interacts with the storage system's usage and potentially 
remodulates consumption. 

The benchmark for assessing the research's accuracy and relevance will hinge on 
analyzing data from consumption monitoring software reports of the realized 
micro-smart grid. This is juxtaposed against daily production data from the 
installed photovoltaic system. The AI management system's performance will 
be assessed using the most contemporary criteria for building and microgrid 
energy efficiency and management. 

The facility, depicted in Figure  24 and Figure  25, consists of an electrical 
generation system based on photovoltaic panels mounted on a flat roof. These 
panels, crucial components in harnessing sunlight and converting it to electricity, 
operate in conjunction with an inverter, a device integral to the transformation 
of direct current (DC) generated by the panels into alternating current (AC) 
suitable for domestic or commercial use. 

 

Figure  24. Photovoltaic system powering the SmartLAB 
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Figure  25. Photovoltaic system powering the SmartLAB 

Connected to this energy production system are several loads, which are 
essentially components or sections of the facility that consume the generated 
power. Notable among these are: 

 Lights in the corridors adjacent to the main hall  
 Laboratories of the Interdepartmental Center  
 Electric vehicle (EV) charging station 

The establishment of the network infrastructure involves the placement of 
meters, as depicted in Figure  26. These meters are vital components for the 
real-time monitoring of various parameters like electricity consumption, 
generation, and load demand within the infrastructure. 

These measuring instruments need to be interconnected through a dedicated 
data network using hybrid technology. This technology combines both wired and 
wireless connections. Specifically: 

 Wired Connections: these connections often offer stability, high-speed 
data transmission, and reduced interference. In settings where real-time 
data is critical, such as power consumption metrics, a wired connection 
is often the preferred choice due to its consistent and reliable 
performance. 
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 Wireless Connection Components: while wired connections bring 
stability, wireless connections bring flexibility. They can be especially 
useful in areas that are hard to reach or where laying physical cables 
might be challenging or not cost-effective. Modern wireless 
communication technologies, such as Wi-Fi 6 or LoRaWAN, can ensure 
a relatively stable and secure connection over considerable distances. 

 

Figure  26. SmartLAB’s network infrastructure 

 

The architectural layout (Figure  27) of the SmartLAB laboratory is 
characterized by: 

 Two Distinct Macro Environments: these zones are linked by a 
transitional corridor and are segregated by a translucent polycarbonate 
partition. 

 Functional Workspaces: each of these environments is equipped with 
multiple dedicated workspaces, complete with workstations and 
advanced computing infrastructure. These setups are integral for 
facilitating both routine research and specialized experimental 
undertakings. 

In the context of the case study's objective, these two macro environments will 
be approached as independent entities. The primary aim is to monitor 
environmental parameters encompassing temperature, relative humidity (RH), 
carbon dioxide (CO2) levels, and overall energy consumption metrics. 
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Figure  27. SmartLAB’s architectural layout 

Building upon this foundational understanding, the present research delineated 
specific requirements for the Digital Twin’s PoC, summarized as: 

 Data Management: real-time processing of data from IoT devices with 
storage in specialized databases. 

 Visualization: dynamic portrayal of data through three-dimensional 
models in real-time. 

 Data Analysis: employing Artificial Intelligence (AI) techniques for data 
interpretation, predictive analytics, and disseminating insights via 
comprehensive dashboards. 

 Implementation: concrete strategies rooted in the assimilated data to 
enhance Indoor Air Quality (IAQ) and streamline energy management. 

These requirements were then methodically aligned with capabilities inspired by 
"The Digital Twin Capabilities Periodic Table" (CPT) for the digital model's 
development. Key aspects of significant relevance were discerned based on the 
Clusters proposed by the research consortium (refer to Figure  28). 
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Figure  28. Digital Twin Consortium Capabilities Periodic Table 

The design phase aimed to ascertain the alignment between physical assets and 
their digital counterparts as described below. 

a. Pinpointing use-case specific objectives 

Recognizing essential capabilities based on insights from the Digital Twin 
Consortium, 2022. 

Opting for pivotal technologies and demarcating requisite information types 
across the asset's lifespan. 

The architecture of the system for the SmartLAB Digital Twin encompasses: a 
BIM model for virtual representation; an IoT framework for real-time data 
capture; an interactive IoT platform bridging Physical and Digital Twins; a 
database for data storage; and a system dedicated to data visualization and 
analytics. 

b. Tool Selection & Benchmarking 

There's a research deficit regarding effective Digital Twin creation tools. Both 
proprietary and open-source solutions were evaluated. Given the integration gap 
between BIM and IoT, an IoT platform synergized with a BIM-integrative 
application was explored. The choice was the open-source Node-Red-based 
platform, favored for its user-friendliness and comprehensive toolset that 
facilitates remote IoT device monitoring, data storage, rule-setting for action 
triggers, and data analytics. 

c. Proof-of-Concept Creation 

The preliminary phase involved configuring the platform using simulated 
sensors, replicating real ones. These sensors periodically relayed predefined 
values, either generated through Python scripts for realistic scenarios or 
manually for edge cases. IoT device interaction rules were formulated, and their 
efficacy was validated using simulated data. 
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d. Synchronizing Physical and Digital Twins 

Post-validation with simulated sensors, the physical IoT devices were integrated 
into the SmartLAB. Ensuring high-quality data from sensors was pivotal. With 
collaboration from manufacturer technicians, device models and optimal 
positioning were determined. Subsequently, connections were established 
between IoT devices and the data platform, with real-time data driving the rule 
configurations. 

e. Historical Data Accumulation 

Sensor data is archived in a PostgreSQL database, accessible for advanced 
analytics via Machine Learning. Once adequate data is amassed, it forms the 
foundation for training Machine Learning models. 

f. Machine Learning Integration 

With centralized data storage, advanced analytical models can be crafted. These 
models are adept at emulating and optimizing the primary parameters of the 
sophisticated energy grid. Utilizing location-focused machine learning techniques 
and rules, active devices can be discerned. AI techniques transform power 
consumption patterns into "energy device words", and a "Naïve Bayes classifier" 
discerns each energy load's category, highlighting discrepancies between digital 
and real-world representations. 

g. Data Visualization and Analysis 

Within the IoT platform, data is exhibited on user-centric dashboards. Real-
time information is juxtaposed against reference benchmarks for intuitive 
comprehension. Time-series graphs facilitate historical data comparison across 
sensors. 

h. Augmentation Phase 

Given a Digital Twin's inherent requirement for scalability and expandability, 
the SmartLAB solution was conceived with adaptability in mind. Leveraging 
open-source software ensures seamless future tool integrations, augmenting the 
Digital Twin's prowess. Post-validation, this model's functionalities will extend 
to encompass the entire building, a testament to the platform's scalability 
accommodating multitudes of IoT devices. 

In the contemporary landscape of digital twin technology, there's a diverse 
spectrum of offerings. The market currently leans towards two primary 
segments: 

1. Holistic Commercial Solutions: these are all-encompassing 
platforms offering end-to-end solutions for digital twin creation, 
management, and analysis. 
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2. Modular Solutions: this approach allows the combination of multiple 
applications, each catering to specific functions, thereby piecing 
together a more bespoke digital twin solution. Within this modular 
framework, both commercial and open-source solutions find 
representation. 

For the scope of the study, a hybrid methodology was carried out, emphasizing 
especially on leveraging the strengths of open-source platforms. 

The following diagram is related to the architecture of the DT system which is 
divided into various components and layers that work together to create a digital 
counterpart of a physical asset, allowing for simulation, monitoring, and 
management through the use of technologies such as IoT (Internet of Things), 
BIM (Building Information Modeling), and databases (Figure 29). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main components are: 

1. Virtual Representation: It includes the BIM model, the integration of 
engineering systems, and simulated sensors for synthetic data 
generation. 

2. Physical Asset: Concerns IoT sensors and actuators, data streaming, 
and IoT system integration. 

3. Data Acquisition & Ingestion: This step is responsible for the 
acquisition and ingestion of data from the physical level to the virtual 
one. 

Figure Figure  29. Proposed conceptual architecture for the CITERA 
SmartLAB 
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4. Data Management: Uses a PostgreSQL database for real-time 
processing, data aggregation, temporal data storage, and event logging. 

5. User Interface: Comprises various modules such as the asset manager, 
BIM viewer, rules for command and control, insights for data analysis, 
and dashboards. 

6. Authentication System: Deals with the security of devices and the 
system as a whole. 

7. Actuation Layer: This is the output layer that allows the system to act 
on the physical world, likely through commands sent to actuators. 

The flow of data primarily occurs from the physical asset to the virtual 
representation and back, enabling continuous monitoring and control of the 
physical asset via its digital twin. This type of architecture is typically used for 
the management of buildings, industrial plants, and other infrastructures to 
optimize operations, maintenance, and planning. 

 

2.6.3 Data acquisition and transmission 

Automated production operations can be networked together thanks to real-
time data-driven technologies, producing direct communication and 
coordination systems and resulting in highly autonomous processes. Then the 
Digital Twin paradigm defines a model where computer-driven systems monitor 
physical processes, configuring a virtual copy of the physical world and obtaining 
decentralized decisions based on self-organization mechanisms (Smit, 2016) 

The collaboration between 3D information models and IoT devices is highly 
necessary for a successful implementation of real-time DT purposes as well as 
for developing energy management optimizations. As such, the BIM Model 
containing data and information useful to the process assessments becomes able 
to communicate with the real system using data from sensors, developing 
learning capabilities able to process the received information. 

The implementation of IoT in the real-world environments in a smart, 
ubiquitous and live-interconnected way is still partially restricted by barriers 
like device battery life, network capacity and the cost of maintaining both. 

The core functionality of IoT devices in DT configurations for energy and IAQ 
management is to reliably collect and share data (such as flow rates, 
temperatures, pressures, physical movements, distance, mass etc.) from its 
designated environment to the virtual world. 

The hardware element consists of a battery-powered sensor, an actuator and a 
communication system. The collected data is then processed on the device and 
consequently sent to remote servers through the communication network.  
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In the present methodology, the connection between the physical and virtual 
model is made through sensors (Raval, 2021) able to monitor and communicate 
electrical power data such as Power Energy Voltmeter Ammeter for lighting and 
HVAC systems, and Smart Plugs for electromotive equipment such as 
computers, televisions, washing machines and so forth (Karami et al., 2018). 

AI systems then allow the DT to develop predictive capabilities, learning from 
the events and improving the outputs, ultimately taking and implementing 
autonomous decisions based on the analysis carried out without human 
interventions.  

Then the AI system achieves a balance between energy consumption and 
performance parameters (Corry et al., 2015) of energy production system, 
adapting himself to the environment in order to achieve the predefined 
objectives. In other words, the system takes data from sensing devices and uses 
a reasoning system to generate appropriate and specific actions, modifying the 
behavior of the equipment in order to optimize the energy consumption.  

 

Figure  30. DT comprehensive conceptualization 

The precision-driven design of modern architectural environments requires a 
consistent approach, especially in integrating sensor-based monitoring systems. 
These sensors and their peripherals are crucial for real-time feedback, enabling 
users to fine-tune environmental conditions for optimal performance and safety 
(Figure  30). 

To achieve comprehensive monitoring of the stated environment, an array of 
strategically placed sensors has been deployed. These sensors are tasked with 
tracking various environmental parameters. Furthermore, the associated 
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peripherals are designed not only to receive this data but also to execute specific, 
targeted interventions based on the received input. 

 

2.6.4 IoT sensors network 

In detail, the sensor suite comprises the following devices: 

Shelly SmartPlug S: a smart plug device that can remotely control and 
monitor the power consumption of connected electrical devices. 

Shelly Motion Sensor: a device adept at detecting motion within its field of 
view, crucial for understanding the occupancy and movement patterns in the 
space. 

Shelly Relay 2.5: a versatile actuator that allows for the remote toggling of 
devices, making it instrumental in dynamic environmental adjustments. 

Shelly Door/Window: this sensor provides insights into the opening or closure 
status of doors and windows, thus playing a crucial role in safety and energy 
conservation. 

Kolb Burmeister CO2 Ampel: a CO2 measurement device, ensuring that the 
indoor air quality ensuring safe and comfortable levels for the occupants. 

A notable feature of the Shelly devices is their compatibility with the MQTT 
protocol (Message Queuing Telemetry Transport). This lightweight, 
publish/subscribe network protocol is specifically tailored for devices operating 
over potentially unstable networks, making it ideal for IoT applications. 
Furthermore, these peripherals come with an in-built web server, functioning as 
MQTT brokers. This design facet ensures that the devices are self-reliant, 
negating the need for external servers, and can directly connect to the network, 
rendering them instantly operational. 

Complementing this setup are the XIAOMI sensors within the laboratory. These 
devices communicate through the proprietary MIoT-Spec protocol. They 
interact with dedicated gateways and use the ZIGBEE wireless standard for 
intra-laboratory communication. 

Lastly, the Schneider Electric PowerTags have been integrated into the system. 
Installed within the control panel, these devices liaise through the ModBus 
protocol, a time-tested serial communication protocol conceptualized in 1979 for 
interfacing programmable logic controllers. 

An intricate web of sensors, actuators, and communication protocols culminates 
in a responsive, adaptive, and efficient environment, reflecting the zenith of 
modern architectural practices described as follows (Figure  31). 
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Figure  31. Indoor IoT devices and Communication protocols 

 

Outdoor devices are shown in Figure  32 and include sensors for photovoltaic 
production, consumption associated with electric vehicle charging, and the 
weather station.  

 

Figure  32. Outdoor IoT devices and Communication protocols 

 

Since most sensors monitor multiple parameters simultaneously, the list of 
quantities monitored by the different sensors is detailed in Figure  33 and 
Figure  34. 
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Figure  33. Quantities monitored by the different sensors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  34. SmartLAB's layout and sensors’ location 
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Electricity Consumption Sensors 

The number of smart-plug electricity consumption sensors is determined by the 
need to monitor the consumption of individual users within the CITERA 
environments individually and to correlate the data with the presence data from 
cameras to simulate consumption profiles. The sensors can monitor the 
instantaneous power required by the user (W), the overall electrical consumption 
(kWh) by integrating power over time (min), and potentially turn on and off 
downstream devices to reduce consumption due to the presence of hardware in 
standby or service utilities (coffee machines, fixed lamps, etc.). 

The presence of power-meters at the panel allows for the monitoring of overall 
consumption (kWh) and the required power (W), taking into account and 
separating data from the lighting system, air conditioning, outlets not covered 
by smart-plugs, and energy losses due to transportation. Furthermore, both the 
photovoltaic system and the electric car charging station are monitored. 
However, these elements are currently not active within the structure of the 
Valle Giulia faculty due to delays in the authorization process. The number of 
channels provided in the power-meters is proportional to the number of 
environments and the main expected loads. Specifically, the following are 
monitored through the different channels of the power-meters: 

 CITERA's air conditioning system. 
 CITERA's motive power system. 
 CITERA's lighting system. 
 Photovoltaic system. 
 Electric charging station. 

Monitoring of electrical utilities occurs via smart plugs for the analysis of 
instantaneous and average power (W), status (on-off), and usage time (min); it 
is possible to monitor the general electrical consumption of utilities, lighting 
system, air conditioning, electric column, and photovoltaic system from the 
panel via dedicated power-meters, as well as the analysis of average and 
instantaneous power (W), and time (min). 

Presence Sensors 

Occupancy monitoring is ensured by the presence of occupancy sensors and 
cameras capable of working with computer vision algorithms. Monitoring of all 
environments is carried out using presence sensors, delegating the counting of 
people to cameras only for environments where crowding of several people at 
the same time is expected. 

IAQ Sensors 

The assessment of air quality (IAQ) and thermal comfort is carried out through 
the integration of data available from a series of sensors. In particular, IAQ is 
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guaranteed by the presence of sensors capable of analyzing the level of 
concentration of tVOC, PM2.5, PM10, and CO2 in terms of ppm simultaneously. 
Thus, air quality sensors are expected to be one per room. Considering the air 
recirculation in different environments due to thermal loads, it is not necessary 
to plan for more, since small variations in the values within the environments 
are not significant for monitoring IAQ and thermal comfort (the full scale and 
error of these sensors are normally lower than the concentration variations 
naturally present in the environments). The sensors are able to provide air 
quality assessments also through aggregated metrics (IAQ indices) and 
algorithms for compliance with the relevant ISO standards will be implemented 
on the SW side. 

Thermal Comfort Sensors 

In order to evaluate the temperature, sensors capable of recording the 
temperature in degrees (°C) and ambient humidity in terms of relative humidity 
(RH) are inserted in each environment. This information is obtained from 
presence sensors (temperature), IAQ sensors (temperature and humidity), and 
sensors for the closing of openings (temperature). The data will be taken both 
punctually and aggregated through Machine Learning logic in order to obtain a 
general data capable of describing each environment also at a predictive level 
and performing PVM and PPD calculations as described by UNI EN ISO 
7730:2006. 

Lighting Sensors 

The overall assessment of internal lighting is carried out through the use of 
Luxmeters (Lux) installed inside presence sensors, IAQ sensor, and magnetic 
sensors for doors/windows. As for the assessment of thermal comfort, the data 
will be both aggregated and averaged to create a comprehensive and punctual 
measure based on the information collected in the environment. Furthermore, in 
the future, the data thus obtained may be used for the evaluation of lighting 
comfort at the level of work surfaces (Standard UNI EN 12464-1) and for the 
dimming of the fixtures (currently not supported by the lighting system). 

Actuators 

Smart Plugs, the automatic opening system of the openings, and the relays 
represent the main actuators inserted within the case study. The actuation of 
the devices must be carefully evaluated, as turning off the lighting systems 
represents a risk for safety, turning off the electrical outlets can cause data loss 
from computer devices, damage the connected devices, or interrupt ongoing 
experiments. The expected number is sufficient to ensure the monitoring of 
electrical loads and remote control of the individual workstations to which they 
are connected. The relays are instead inserted internally to the electrical panel 
for monitoring the loads and control (on/off) of the lights inside CITERA and 
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in the box for controlling the servomotor in charge of opening and closing the 
window. Each of the actuators is able to record general absorption in W, the 
system status, and the usage time. These data allow through their historicization 
the use in Machine Learning logics for the development of usage models and the 
creation of future predictions. 

Finally, among the actuators, the role of maintainers and users is integrated, 
who through a Human-in-the-loop logic, can perform the actions recommended 
by the system where the installation of automatic actuators is not foreseen or 
not possible. 

 

Table 7. Smart Lab’s IoT equipment 

Device Location Product Function Com. 
protocol 

Power-
Meter 

Outdoor Acti9 
PowerTag 

Link 
Schneider 

Electrical consumption 
for air conditioning 

ModBus 

Outdoor Acti9 
PowerTag 

Link 
Schneider 

Photovoltaic 
production 

Outdoor Acti9 
PowerTag 

Link 
Schneider 

Electric charging 
station 

Weather 
station 

Outdoor Davis 
Instruments 

Vantage 
Pro2 

Solar radiation, rain 
gauge, wind speed and 

direction, absolute 
pressure, temperature, 
and relative humidity 

REST/API 
Davis 

Workspace A 
Power-
Meter 

Workspace A Acti9 
PowerTag 

Link 
Schneider 

Electrical consumption 
and total power 

monitoring 

ModBus 

Relè Workspace A Shelly 2.5 Monitoring of 
consumption and 

absorbed power for 
turning on/off lights in 

environment A/B 

HTTP / 
MQTT 

Workspace A Shelly 1 Turning on/off HTTP / 
MQTT 

Workspace A - 
Hallway 

Shelly 
Motion 2 

HTTP / 
MQTT 
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Motion 
Sensor 

 

Workspace A – 
Room1 

Monitoring of presence, 
lighting, and 
temperature Workspace A – 

Room2 
Workspace A – 

Room3 
Workspace A – 

Room4 
Workspace A – 

Room5 
IAQ Workspace A Awair 

Omni 
Monitoring of 

temperature, relative 
humidity, CO2, tVOC, 

PM2.5, noise, and 
lighting 

HTTP / 
MQTT 

Window 
sensor 

Workspace A – 
Window1 

Shelly Door 
/Window 
sensor 2 

 

Opening/closing 
windows, lighting, and 

temperature 

HTTP / 
MQTT 

Workspace A – 
Window2 

Workspace A – 
Window3 

Workspace A – 
Window4 

Workspace A – 
Window5 

Smart 
camera 

Workspace A - 
Hallway 

Tapo C110 
TpLink 

People counting, noise HTTP / 
ONVIF 

Workspace A – 
Room3 

Workspace A – 
Room5 

Smart-
plug 

Workspace A – 
Room1 – 

Workstation 1 

Shelly Plug 
S 

Monitoring of electrical 
consumption and 

power 

HTTP / 
MQTT 

Workspace A – 
Room1 – 

Workstation 2 
Workspace A – 

Room2 – 
Workstation 1 
Workspace A – 

Room2 – 
Workstation 2 
Workspace A – 

Room2 – 
Workstation 2 
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Workspace A – 
Room3 – 

Workstation 1 
Workspace A – 

Room3 – 
Workstation 2 
Workspace A – 

Room3 – 
Workstation 3 
Workspace A – 

Room3 – 
Workstation 4 
Workspace A – 

Room4 – 
Workstation 1 
Workspace A – 

Room4 – 
Workstation 2 
Workspace A – 

Room4 – 
Workstation 3 
Workspace A – 

Room5 – 
Workstation 1 
Workspace A – 

Room5 – 
Workstation 2 
Workspace A – 

Room5 – 
Workstation 3 
Workspace A – 

Room5 – 
Workstation 4 
Workspace A – 

Room5 – 
Workstation 5 

Motion 
sensor 

Workspace B – 
Room6 

Shelly 
Motion 2 

Monitoring of presence, 
lighting, and 
temperature 

HTTP / 
MQTT 

Workspace B – 
Room7 

Workspace B – 
Room8 

Workspace B – 
Room9 

Workspace B - 
Hallway 
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Communication Protocols 

The management of communication between devices and the EDGE server node 
is carried out using various IoT communication protocols. The use of HTTP 
allows connection and exchange with any device that has the appropriate 
configuration and registration on the general network, thus respecting a stable 

IAQ Workspace B Awair 
Omni 

Monitoring 
temperature, relative 
humidity, CO2, tVOC, 

PM2.5, noise, and 
lighting 

HTTP / 
MQTT 

Smart 
camera 

Workspace B - 
Hallway 

Tapo C110 
TpLink 

People counting, noise HTTP / 
ONVIF 

Window 
actuator 

Workspace B – 
Window6 

Shelly Door 
/Window 
sensor 2 

Opening/closing 
windows, lighting, and 

temperature 

HTTP / 
MQTT 

Workspace B - 
Hallway 

Shelly 2.5 Window operation (on-
off), consumption 

HTTP / 
MQTT 

Smart-
plug 

Workspace B – 
Room6 – 

Workstation 1 

Shelly Plug 
S 

Monitoring of electrical 
consumption and 

power 

HTTP / 
MQTT 

Workspace B – 
Room6 – 

Workstation 2 
Workspace B – 

Room6 – 
Workstation 3 
Workspace B – 

Room7 – 
Workstation 1 
Workspace B – 

Room7 – 
Workstation 2 
Workspace B – 

Room8 – 
Workstation 1 
Workspace B – 

Room9 – 
Workstation 1 
Workspace B – 

Hallway 1 
Workspace B – 

Hallway 2 
Workspace B – 

Hallway 3 
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and reliable communication standard as required by Digital Twin-type 
infrastructures. MQTT, on the other hand, is a messaging protocol designed for 
Internet of Things (IoT) networks. The use of the MQTT protocol requires a 
specific Broker service that is performed separately through service within server 
nodes or concentrators. Where possible, the use of HTTP is preferred in order 
to reduce the number of active software services on the server. Modbus is a 
communication protocol used for transmitting information over serial lines 
between electronic devices to an industrial standard. ONVIF is a standard 
dedicated to managing video streams from IP cameras and is preferable to data 
access via FTP as it allows for the request of individual frames directly from the 
device and low latency. REST manages data calls over HTTP through APIs 
that are used for communication with local or external servers to access available 
data. Another preferential element is the ability to request data traffic on 
demand from the management platform in order to reduce network traffic, 
decide the update frequency for each device, and ensure system stability. 

During the infrastructure design, an effort was made to standardize the type of 
data protocols used as much as possible, preferring hardware from the same 
manufacturer (where possible) and equipped with open communication libraries 
already integrated into the main existing Digital Twin platforms. For example, 
Shelly peripherals are internally equipped with a web server to allow direct 
network access without the need for configuration of a dedicated MQTT Broker 
service; such peripherals can thus send traffic related to measured data through 
a standard connection. The ModBus protocol is used for the connection of 
Schneider power-meters, which devices are wired and physically integrated into 
the network via Ethernet cable. The weather station operates via REST APIs 
through the Davis service of the manufacturer. Finally, the cameras work 
through ONVIF. Each peripheral is assigned a static IP during registration to 
the network segment; these IPs are used to connect the specific peripheral with 
the management platform and ensure continuity in case of system restart. 

The internal management of the Schneider power-meters, which uses an internal 
radio protocol for wireless communication between the amperometric clamps 
and the data reading device (power-meter), is an exception to the previously 
stated. The system is configurable via the proprietary ECOStruxure software. 
In the case of integrating additional devices that use MQTT and are not 
equipped with an internal web server, Mosquitto Broker, an open-source message 
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broker that implements the said protocol and is widely used for managing 
lightweight messaging in various communication scenarios, will be employed. 

 

2.6.5 Advanced system architecture  

The construction of the system's architecture was founded on a comprehensive 
assessment of the capabilities and tailored solutions employed for the use case. 
This is visualized in a general schema in Figure  35. 

 

Figure  35. Key components and system architecture 

 

Local System Configuration and Data Management: 

A decision was made to deploy a localized system built upon a robust platform. 
This platform receives data inputs, processes it using a feed-forward mechanism, 
and subsequently disseminates this data. This processed data finds utility in 
three primary domains: 

 Implementation 
 Visualization 
 Archival for predictive analytics 

Network Configuration: 

The peripheral devices are linked to an exclusive WLAN to ensure their 
autonomy from the primary laboratory network. The dedicated network utilizes 
EDGE technology for data reception and processing. This design employs data 
publication to segregate the peripherals from logical flows. This strategic 
insertion guarantees peripheral shielding, safeguarding against unauthorized or 
aberrant activities. Notably, the IoT devices in the SmartLAB connect to the 
Digital Twin platform through a specialized Wi-Fi network, with certain 
exceptions like Schneider Acti9 PowerTag Links and the Fronius inverter, which 
employ a wired connection. 



 

138 
 

At the heart of this architecture are the following components: 

Edge System: interacts with the local sensor network, buffering data, and 
managing automated behaviors. It uses a Raspberry Pi 4 Model B with the 
Raspbian operating system. Various software components, both basic and 
application-specific, are deployed. Notably, Real T s.r.l.'s Elettra system 
manages sensor data. 

Proxy: this intermediates the Edge and Server, ensuring uninterrupted data 
synchronization. For this, a standard PC with a Debian Linux distribution is 
employed, utilizing the Zabbix open-source software for data relay to the central 
system. 

Server: handles computation and provides a GUI. A robust server, situated 
outside the SmartLAB, was chosen, running on the Debian Linux distribution. 
This server interfaces with the Zabbix Server, manages connections to specific 
IoT devices, and houses the machine learning system for energy optimization. 

Energy Management System (EMS): in the context of EMS, IoT devices 
liaise with a local data concentrator (edge device), which further interfaces with 
a central data recording and processing unit. Due to the system's scale in this 
study, there's only one data concentrator and integration point with the sensor 
network, as depicted in Figure  36. 

 

Figure  36. IoT devices and local data concentrator (edge device) for Energy 
Management System (EMS) 

 

Centralized Processing and Analytics: The logical structure of the system 
is consolidated in Figure 29 and 30. The Central Control System on the server 
employs Artificial Intelligence to analyze collected data. Its objective is to craft 
algorithms that enhance energy efficiency without compromising comfort. 
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Infrastructure Design and Implementation:  

According to the network configuration described above, the core elements of 
this architecture are three: 

● Edge: it is responsible for interacting with the local sensor network and 
acting as a buffer for automatic data and behaviors; 

● Proxy: it enables the interface between Edge and Server, ensuring 
connection and synchronization of data and commands (and recovery 
after any momentary lack of connectivity); 

● Server: it is responsible for all computation and provides a graphical 
user interface (GUI). 

Edge computer: a classic SoC (System on Chip) often used in research has been 
chosen, the Raspberry system, specifically Raspberry Pi 4 Model B. The 
operating system is the Raspbian (a version of the Debian Linux distribution 
adapted to Raspberry hardware). 

A set of software, both basic and application-specific software, has been installed 
on this device. The basic software components are necessary for managing both 
wired and wireless communications with the sensor networks and the Proxy 
system. The communication chosen was via IP protocol and where possible via 
TCP/IP, as far as sensor networks are concerned, and certainly TCP/IP as far 
as communication with the Proxy is concerned. In this installation, being an 
experimental installation, a remote monitoring VPN (Virtual Private Network) 
was also installed: under normal use this is not expected to be a VPN installation 
in the Edge system. 

In terms of application-specific software, the sensor management component of 
Real T s.r.l.'s Elettra system has been installed. This component has the 
responsibility of the retrieval of consumption information using several 
communication protocols used by hardware vendors (e.g., Shelly, Schneider, 
Fronius) and the production of standardised data in the form [timestamp, 
device_identifier, measurement].  

The Elettra subsystem is responsible for dialogue with assorted sensors and 
therefore must implement the communication protocols typical of each vendor; 
it is therefore appropriate for it to be in close proximity to the sensors themselves 
to minimize transmission problems and to monitor sensor networks even in the 
absence of connectivity to the central system.  For this reason, it has been 
installed on the Edge system. 

Proxy: a standard Personal Computer with a Linux system Debian distribution 
has been used for this purpose.  
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The Proxy subsystem has the responsibility of normalizing the data and 
transmitting it, when connectivity is available, to the central system from which 
it can then receive commands for turn-on or turn-off devices. 

A set of software has been installed on this device.  

The communication software components use TCP/IP protocol through a 
dedicated VPN (Virtual Private Network) to guarantee the connection with the 
server located in a datacenter outside the SmartLAB facility.  

As for the application-specific software, the Proxy component of the open-source 
software Zabbix has been installed: this software has the single responsibility of 
data transfer to the central system. 

Appropriate scripts have been created to enable the communication between the 
Zabbix Proxy and the Elettra subsystem; specifically, they allow to query the 
Elettra system and to properly format the data for the Zabbix Server. 

In the SmartLAB use case this solution might rightfully seem redundant; 
however, the architecture is designed to be scalable: the typical configuration 
should be one Edge system per apartment (or office) and one Proxy per building 
(about 20-30 apartments). In that case it is appropriate to have the Proxy 
responsible for proximity dialogue with the Edge systems and each Edge system 
responsible for dialogue with its own sensor network. 

Server: a server with appropriate computational resources has been chosen in a 
datacentre outside the SmartLAB. The operating system Linux distribution 
Debian has been installed on it. 

As in the proxy system a set of software, described hereafter, has been installed 
on the server. 

The basic software components are in charge of communications with the proxy 
system and are mainly related to the VPN (Virtual Private Network) with the 
proxy located at CITERA and to the web and application server necessary for 
the user interface. 

The Zabbix Server ensures communication with the edge device running the 
Zabbix Proxy. 

The central IoT platform is responsible for connections to IoT devices that don’t 
require management using Elettra, for storing data and sending commands for 
turn-on or turn-off devices. 

The server also hosts the Machine Learning system that performs all calculations 
related to energy management optimization. 
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The logical architecture of the system is described in Figure 37, the software 
stack installed on the server is defined Central Control System. 

The infrastructure was realized in two stages: 

1. Infrastructure design and implementation 
2. Data acquisition, model training, and validation 

Considering energy data as time series recordings from sensors, each with its 
API, there's a need for a synchronous and unified dataset. Each workstation is 
equipped with sensors to monitor individual equipment, aiding in devising 
energy-efficient control solutions. The challenge was to centralize this data 
processing, necessitating a local system responsible for sensor and actuator 
interconnections over networks like the Internet. Two primary challenges were 
addressed: ensuring uniform data and having data processed at requisite 
locations. This led to the design of two subsystems: “elettra” and “proxy”, as 
shown in Figure  38. 

 

 

Figure  38. Design and implementation of the infrastructure 

 

Figure 37. Logical Architecture of the System 
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As energy data are simple time series of power consumption or production, in a 
given time lapse coming from real sensors, each one transmits data with its own 
Application Programming Interface (API); moreover, they are located close to 
energy loads, or near power sources. 

This means that data are not all in the same place at the same time, which is a 
necessary condition to start the analysis which will led to the desired algorithms. 
The first nontrivial problem is therefore to plan and deploy a cost-effective IT 
infrastructure able to provide reliable data for the software to analyse. 

Each single workplace has been implemented with sensors monitoring every 
single equipment, so that the energy consumption of every device can be 
considered to model the control solution for the overall energy requirement of 
each workplace. 

All those metering sensor produce a huge amount of data requiring significative 
computational resources to obtain acceptable analysis performances, so the best 
solution for reducing installation expenses would be to control the system 
acquiring all the information in a data center or a service in a data center. This 
architecture leads to the necessity of setting a local system, each with 
responsibility for interconnecting sensors and actuators over a geographical 
network (e.g., the Internet), executing sort of local computation and buffering 
data in case of connection blackout, using the known “Ubiquitous and Pervasive 
computing” (Tomazzoli et al., 2023a) techniques to deal with the computational 
problems of centralized intelligence. 

So, as mentioned, the first element in the infrastructure will be a sub-system, 
able to cope with several transmission protocols and several time frames, whose 
output will be the synchronized power consumption (or production) of the 
devices smart metered. This sub-system can accept instruction from the second 
element to switch on and off some of the controlled devices.  

This element needs to dialogue with all sensor networks, so it has to be 
physically placed next to them, to minimize transmission problems and 
monitoring local environment even in absence of communication with the central 
control system. This kind of elements in the following will be called “elettra”. 

The second architecture element will be another sub-system, composed of 
different “proxy”, and each proxy receive as input the outputs of the first sub-
system. The proxies will deliver the data to the central unit, and receive back 
commands from the same device, taking care of bandwidth problems and 
unreliability of the network.  

These proxies have to be physically close to the first sub-system while the central 
unit can be remote; the central control system, a centralized unit able to store 
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and process data, operate building digital simulation models and delivers 
commands back to the proxies. 

Following this logic infrastructure, a series of “cheap” small computer, or SoC 
(System on Chip) has to be equipped, containing both the “elettra” and “proxy” 
sub-systems; all those computers are connected to a high-performing server in a 
data center able to run the software of the central control system. 

The operative concept of this infrastructure is exemplified in Figure  39, where 
are sketched only a few energy consumer devices as an example.  

In Figure  39 elements e1, e2, e3, e4, e5 are the cheap computing unequip 
containing the elettra sub-system and the proxy, while elements c1 to c10 are 
energy load examples, and production system is related to photovoltaic panels 
for electric power production. 

 

2.6.6 Multi-service approach 

Utilizing a composite methodology provides the advantage of exploring a diverse 
range of software solutions, each tailored with its unique attributes that address 
specific challenges and requirements. By analyzing software solutions through a 
comparative lens, one can discern the inherent strengths and limitations 
associated with each. 

Embracing an open-source philosophy for the process not only underscores 
transparency and community-driven development but also distinguishes this 
approach markedly from proprietary commercial solutions.  

Open-source platforms typically foster a more collaborative environment, 
encouraging shared knowledge, rapid iteration, and the ability to customize 
applications to suit unique needs. 

Figure  39. Operative concept 
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In our quest to meet the outlined objectives and harness the capabilities desired, 
three distinct platforms were identified: 

 Node-Red: an event-driven programming tool that facilitates visual 
coding for wiring together devices, APIs, and online services. Its flow-
based development environment is specifically designed to assist with 
the integration of disparate systems. 

 Godot: a multifaceted, open-source game engine that supports both 2D 
and 3D game creation. Beyond gaming, Godot's powerful scripting and 
visualization capabilities make it a viable tool for various interactive 
projects and simulations. 

 KNIME: an open analytics platform that offers advanced data 
integration, transformation, and exploration capabilities. With its rich 
set of nodes for data processing and visualization, KNIME provides a 
flexible environment for data-driven tasks and analytics. 

Although each platform excels in its domain, the true potential is realized when 
they operate in unison. By facilitating seamless interoperability and data 
exchange among these platforms, a cohesive workflow that maintains both the 
continuity and the integrity of the overarching process was ensured, as visualized 
in Figure  40's comprehensive diagram. This synergy underscores the potency 
of an integrated multi-platform approach in addressing complex challenges as 
described below. 

 

Figure  40. Interoperability and data exchange 

 

Data Collection 

 IoT: Internet of Things devices, which can range from smart appliances 
to industrial machines, collecting data from the environment. 

 EDGE: the edge computing component where the data from sensors 
and IoT devices is processed. It likely preprocesses this data before it's 
sent to the main system for further processing. 
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Data Processing and Visualization 

 Raspbian: This is a free operating system based on Debian, optimized 
for the Raspberry Pi hardware. It hosts the applications mentioned in 
the diagram. 

 Node Red: A flow-based development tool for visual programming, 
mainly used for wiring together hardware devices, APIs, and online 
services. 

 SQLite Local: A local lightweight database used to store raw data. 
 Internal Event Driven Logic: Processes raw data based on specific events 

or conditions. 
 KNIME: An open-source data analytics platform. It seems to be used 

here for: 
 Data Mining: Extracting patterns from large data sets. 
 Historical Data & Prediction: using past data to forecast future events 

or trends. 
 KNIME/Power BI Data Visualization: Power BI is a business analytics 

tool by Microsoft. Together with KNIME, it's used for visual 
representation of the data. 

Data Output and Integration 

 Actuation: Represents actions or changes triggered based on the 
processed data. 

 Node Red Dashboard: A dashboard that displays data and perhaps 
allows user interaction. 

 Email: Notification or data sending mechanism. 

Graphics and Application Development 

 Godot 3.5: A game engine used for developing multiplatform games and 
applications. 

 IFC, ARC Input Blender: Input formats for 3D modeling, likely used to 
create graphics or representations of the data. 

 GLTF - 3D Open Format: A format for 3D scenes and models. It's a 
common format for three-dimensional graphics data. 

 Multiplatform App: The main application developed using Godot, 
which can run on multiple platforms. 

 HTML5 Windows Executable: A web-based application or frontend. 

The architecture provides an end-to-end flow starting from raw data collection 
to processing, analysis, visualization, and finally to actuation. It incorporates 
both data science elements (like prediction and data mining) and application 
development components (like the multiplatform app). 
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2.6.6.1 Node-Red 

In the expansive realm of applications tailored for managing data from 
peripheral devices, the Node-Red platform stands out and was consequently 
chosen to orchestrate a workflow adept at bi-directionally managing the IoT 
peripherals within the laboratory setting. 

Node-Red is ingeniously built atop Node.js, an open-source, cross-platform 
JavaScript runtime environment. This foundational choice ensures scalability, 
flexibility, and a strong compatibility across diverse hardware and software 
ecosystems. One of the pivotal strengths of Node-Red is its emphasis on a No-
code or Low-code paradigm, primarily executed via nodes. This design 
philosophy paves the way for users to intuitively harness the platform's 
capabilities, eliminating the often-daunting necessity to craft original code from 
scratch. 

These nodes, which encapsulate specific functionalities, are predominantly 
authored in the ubiquitous JavaScript language. Given the vast and vibrant 
community behind Node-Red, there's a continual influx of novel nodes, each 
addressing unique challenges or streamlining existing processes. When these 
nodes are strategically sequenced, they culminate in automated workflows that 
can perpetually operate, ensuring uninterrupted data management and 
processing. This systematic approach has been instrumental in the laboratory, 
especially for the nuanced management of sensors and actuators, as depicted in 
Figure  41. The figure elucidates the strategic interplay of various nodes, each 
contributing to the seamless operation of the entire system. 

 

 

Figure  41. Sensors network implementation 

 

Node-Red offers an array of functionalities that facilitate multifaceted 
interactions. Some notable features encompass: 
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 Data Retrieval: Capability to source data from external devices, 
ensuring a continuous flow of real-time information. 

 Custom Processing: Leverage custom functions to process and 
transform incoming data to meet specific requirements. 

 Active Output Production: Generate outputs that can dynamically 
modify the states of interlinked machinery and peripherals, ensuring 
real-time response and adaptability. 

 Data Visualization: Feature-rich integrated dashboards that allow 
intuitive visualization and monitoring of the system's operations. 

 Image Recognition with Computer Vision: Integration with robust 
frameworks like TensorFlow and implementation of models like YOLO 
facilitates precise image recognition tasks. 

The hands-on experimentation conducted in the laboratory involved interfacing 
peripherals from diverse manufacturers such as SHELLY and KOLB 
BURMEISTER via the MQTT protocol. This flexible approach also postulated 
the potential for connecting peripherals that employ proprietary protocols or 
ones divergent from MQTT. 

A noteworthy application revolves around environmental sensors that monitor 
CO2 concentration. These sensors are adept not only at gauging the primary 
CO2 levels but also provide supplementary data like ambient temperature, 
relative humidity, and illuminance (Lux) measurements. 

In a practical scenario implemented within the laboratory, data from CO2 
sensors undergoes a comparative analysis with real-time occupancy data. If the 
ambient CO2 concentration surpasses a predefined threshold (measured in parts 
per million or ppm), an automated process is triggered. This initiates the 
actuation of a servo motor to open a window, facilitating air circulation and 
renewal. The system is programmed to conclude this ventilation phase after a 
15-minute duration. Post this, a magnetic sensor verifies the window's closure 
status, ensuring environmental safety and energy conservation. 

Furthermore, the lab's setup incorporated Smart Plugs and relays that could be 
remotely actuated by the platform to perform specific tasks associated with 
them. Unique nodes, tailored for each peripheral, were designed to enable 
seamless bidirectional communication through the platform, adapting to the 
requisite protocols. This intricate yet efficient arrangement is visually 
represented in Figure  42, illustrating the synergy among various components. 
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Figure  42. Sensor’s network and communication protocols 

Node-Red, with its versatile and modular architecture, establishes a systematic 
flow of data through nodes. Here's a more scientific elucidation of the platform's 
operation: 

Initialization through the INJECT Node: The workflow commences via the 
INJECT node, which periodically triggers the process based on predefined 
intervals. The signal thus initiated is designated as "Payload", a packet of data 
that traverses through subsequent nodes in the workflow. 

Payload Transformation: as the Payload progresses, its constitution can be 
altered based on the interactions and operations specified. Figure  43 
exemplifies a Payload associated with interconnected sensors. Possible 
transformations include data enrichment—where data is augmented, revised, or 
aggregated to align with specific requirements. 
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Figure  43. Payload associated with interconnected sensors 

 

Visualization through Custom Dashboards: the processed data is funneled 
through nodes to intuitive dashboards. These dashboards, exemplified in Figure  
44, are tailored within the platform using pre-compiled themes, providing 
stakeholders with a consolidated view of the system's status and insights. 

 

 

Figure  44. Data dashboard 
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Figure  45. Export to RDBMS & SQLite Integration 

 

Export to RDBMS & SQLite Integration: data is not merely visualized 
but is also persisted in a Relational Database Management System (RDBMS) 
configured as per the SQLite standard. SQLite, an embedded database library 
written in C, is renowned for its lightweight characteristics. It champions a 
serverless architecture, allowing the database to reside on the executing machine, 
facilitating in-place updates. Figure  45 outlines the structured database with 
its triad of tables, each tailored to accommodate data from distinct sensor types. 

Versatile Data Export Options: beyond relational databases, Node-Red 
offers flexibility in data export formats. Data can be exported in structured 
formats like JSON, CSV, XML, and YAML, or semi-structured formats like 
HTML, ensuring compatibility with diverse downstream applications and 
systems. Figure  46 illustrate the gamut of data export modalities available on 
the platform.  

 

 

Figure  46. Data export modalities 

Integration with Game Engine: to ensure a more immersive experience, real-
time IoT data was rendered accessible in textual formats (.txt) for visualization 
within a three-dimensional model inside a Game Engine. However, this solution 
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is slated for an upgrade. The future roadmap envisions leveraging dedicated 
WebSockets for broadcasting data, streamlining their integration and 
consumption in various applications. 

 

2.6.6.2 Godot Game Engine 

The intricate world of game development hinges on powerful game engines, and 
in this context, the chosen game engine emerges as a robust yet lightweight 
solution, offering a plethora of features. Here's an enriched elucidation of the 
described integration process, enhanced with scientific and technical detail. 

The game engine under discussion is a potent, cross-platform engine designed 
for the creation of both 2D and 3D games. A hallmark of this engine is its 
impressively light footprint. Released under the MIT license, the engine is 
remarkable for its platform-agnostic export capabilities, with native support 
spanning platforms such as HTML5, Android, Windows, Mac, and more. 

Transition from IFC to glTF: A critical aspect of the model integration was 
the conversion from the Industry Foundation Classes (IFC) format, an open 
data model in the architecture and construction sector, to a format amenable to 
the game engine. Out of the multiple formats like FBX, OBJ, and 3ds, the 
Graphics Library Transmission Format (glTF) was singled out. Developed by 
the Khronos Group, glTF stands out as an open standard, purpose-built for the 
seamless transmission of 3D assets, especially in web environments. 

Blender & Blender BIM for Conversion: The conversion endeavor was 
facilitated by Blender, a renowned open-source 3D computer graphics software 
toolset. To specifically cater to IFC files, the Blender BIM plugin was employed, 
an open-source extension enhancing IFC capabilities within Blender. Post-
conversion, the resultant file was funneled into the project's resource directory, 
triggering an automatic import into the game engine. 

Model Visualization & GUI Development: The model's visualization was 
anchored on the laboratory floor, leaning towards a more abstract rendition of 
the integrated geometries. Post-import, essential project elements were discerned 
and classified into distinct categories, accessible and filterable via a Graphic 
User Interface (GUI). This delineation encompassed machinery, CO2 metrics, 
and occupancy data (Refer Figure  47 for a snapshot of the operational GUI). 

Data Visualization via Particle Systems: To translate data into visual form 
within the model, a novel approach was employed. The various data outputs 
were tethered to particle systems, which excel at dynamically rendering 
geometric content based on data input. In this ecosystem, real-time data from 
the Node Red platform steers the behavior of these particle systems. Custom 
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scripts, crafted in the GDScript language, process this data to manifest a 
dynamic visualization reflecting the laboratory's real-world parameters. 

 

Figure  47. Operational GUI 

The developed work was then exported in two different formats, the first in an 
executable format for a Windows environment as a stand-alone application and 
the second in HTML5 format for integration into web pages. 

The export in HTML5 format was then inserted into the general Node Red 
dashboard in order to create a single webpage for the reception of data and their 
consultation. 

This development process resulted in dual export formats, reflecting a broad 
vision to make the work both standalone and web interactive.  

Exportation Flexibility: in today's dynamic software landscape, adaptability 
is crucial. Reflecting this, the project was tailored to be versatile in its 
exportation capabilities. The game engine's robustness played a pivotal role in 
facilitating this flexibility. The first export format is a standalone executable 
tailored for the Windows operating system. This format is beneficial for users 
who prefer a dedicated application, ensuring seamless performance without 
reliance on internet browsers or connectivity. It offers an encapsulated 
environment, streamlining the user experience by eliminating potential browser-
based constraints or compatibility issues. 

HTML5 Format for Web Integration: in stark contrast to the standalone 
format, the second export, in HTML5, emphasizes accessibility and universal 
reach. HTML5, a modern web standard, is recognized for its multimedia 
capabilities and cross-platform nature. It's especially suited for rendering 2D 
and 3D graphics within web browsers without necessitating additional plugins. 
The choice of HTML5 ensures that users, irrespective of their device or operating 
system, can access and interact with the model seamlessly via a web interface. 

Unified Dashboard Integration: to elevate the user experience, the HTML5 
export was seamlessly integrated into the overarching Node Red dashboard. This 
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strategic integration meant that users could access a unified web portal, 
amalgamating real-time data visualization with the 3D model. This singular 
webpage serves as a nexus for data reception and consultation, offering users a 
holistic view of the data interplay within the 3D environment (Figure  48). 

 

Figure  48. Web view of the dashboard integrated with the model updated in real-
time 

 

2.6.6.3 Knime 

KNIME, standing for Konstanz Information Miner, is a hallmark in the realm 
of open-source data analytics, reporting, and integration platform. Emerging 
from the academic corridors of the University of Konstanz, KNIME offers an 
interactive platform that allows users to visually create data workflows (often 
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referred to as "nodes"), allowing for an intuitive process of data analytics and 
modeling. 

With its evolution into version 5, KNIME has continuously enhanced its 
capabilities, refined its tools, and expanded its node library. This evolution 
signifies its persistent commitment to address the escalating complexities of the 
data world. 

At the heart of KNIME lies its intricate node management system. This offers 
the advantage of segmenting various data processes, be it extraction, 
transformation, or modeling. Moreover, its prowess to handle voluminous data 
sets paves the way for comprehensive data analytics, catering to diverse 
objectives. 

The synergy between Node-Red and KNIME is evident when data exported 
from the former, specifically in the SQLite database format (.db), is ingested 
into KNIME seamlessly. The platform possesses dedicated nodes that facilitate 
the connection to specific format databases, as illustrated in Figure  49.  

 

Figure  49. KNIME’s nodes connection 

Once the data is ingested, the platform transitions into its cleaning and 
preprocessing phase. Leveraging its diverse nodes, specific tables can be cherry-
picked from the database, ensuring the data aligns with the requirements of the 
subsequent analytic processes. 

Post-processing, visualization capabilities come into play. Data is orchestrated 
into dedicated dashboards, offering a visual narrative of the analytics. This not 
only enhances data interpretability but also aids in strategic decision-making. 

The true potential of data lies not just in understanding the present, but in 
predicting the future. With this vision, once the data is archived annually, the 
platform plans to delve into advanced ML (Machine Learning) and deep learning 
algorithms.  

The objectives achieved by the experimentation have led to the creation within 
the Node-Red platform of a series of logical flows capable of communicating 
bidirectionally with the peripherals; the data exchange thus defined is archived 
in a SQLite database for processing in Knime and display in the Game Engine. 
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The connection was achieved for the IoT components through the use of 
dedicated nodes, it was possible to control their operation and design an on and 
off scheme linked to logics internal and external to the system. 

The real-time data is transmitted locally to the application developed by the 
game engine for visualization, so the data relating to CO2, switching on/off, 
absorption and crowding of the environments can be viewed. 

The data connected within the Game Engine in this phase only dealt with some 
portions of the available environments, the visualization led to the monitoring 
of an office area and a corridor area for presence checks, while the CO2 was 
monitored extensively for both environments. 

The platform is currently connected and ready for any experiments, such as data 
reading or an increase in physical peripherals. 

The case study offers the possibility of further implementations for both the 
hardware and software sides. 

Among the objectives to be achieved, we will try to connect the PowerTags 
through the ModBus protocol, for a correct reading of the laboratory's energy 
consumption, and to increase the number of peripherals and register them on 
an ad hoc network service, segregated from the external network, in in order to 
make monitoring more widespread with respect to the environment and current 
solutions. 

On the software side, the missing nodes will be integrated to develop and 
consolidate the overall functionality, improve the connectivity of the model by 
replacing the current exchange based on textual input with an ad hoc websocket 
service and increase its functionality by allowing the visualization not only of 
real-time data but also of historical data directly in the model. 

The historicization of at least one month of progressive operation is to be 
completed in order to begin the implementation of the ML algorithms for the 
development of forecasts relating to the use of spaces and energy within the 
environments. 

Once suitable times are reached, they can then be used widely for possible 
monitoring and forecasting on an annual basis. 

For comparison two similar works, developed by X. Zhang et al. (X. Zhang et 
al., 2023) and Muthiah-Nakarajan et al. (Muthiah-Nakarajan et al., 2021) 
discuss about the utilization of Machine Learning tools to reduce energy 
consumption in building also considering the presence of an Electric Veicle 
charging station. However, the two papers do not consider the integration of 
Machine Learning approach in a Digital Twin system.  Moreover, the present 
study discusses about the integration of many physical data comings from 
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different sensors (air quality, temperatures, weather, pressure, humidity, 
occupancy) and from the building itself (materials, HVAC, geometries, electric 
powered devices). Therefore, the presented approach can be considered 
innovative and aimed at developing a holistic model for building energy 
optimization purposes. 

 

2.7 Results 

An Energy Management System (EMS) is a suite of integrated tools and 
strategies designed to monitor, control, and optimize the performance of the 
generation and load profiles in real-time. Deployed initially in 2022, the EMS at 
the SmartLAB has been a pivotal instrument in understanding the energy 
consumption patterns and making improvements based on quantitative 
experimental results, which will be detailed in subsequent sections. 

While the EMS focuses primarily on optimizing energy utilization, it's essential 
to underscore the holistic approach to sustainable operations. Parallelly, the 
SmartLAB has an operational Air Quality Management System (AQMS) 
aligned with pre-established management protocols. It monitors air 
contaminants and ensures optimal indoor air quality, crucial for both human 
health and efficient operation of laboratory equipment. The AQMS is in the 
process of collating historical data, which, upon reaching a significant volume, 
will serve as training datasets for a Machine Learning (ML) algorithm. This 
approach leverages ML's potential in predicting and improving indoor air quality 
based on patterns and trends. 

Over a span exceeding one-year, continuous monitoring has been conducted in 
the SmartLAB, capitalizing on sophisticated sensors. These sensors, integrated 
into a network, relay their readings to a Digital Twin platform. Upon 
comprehensive analysis of this data, the lab's energy consumption was 
delineated. A benchmark was set using a certified software which predicted an 
annual energy intake of 15.612 kWh. 

Diving deeper into the granularities of the data, we discerned the consumption 
metrics associated with individual socket points and the integrated lighting 
system. It's pivotal to note that each socket point was tagged to specific 
apparatuses, ranging from computational devices to routine appliances such as 
coffee machines. 

Given the architectural uniformity of the two workspaces examined, 
characterized by an identical configuration, equipment count, and operational 
hours, it provided a unique opportunity. This uniformity allowed for an 
extrapolation of the data, thereby estimating the energy consumption for the 
entire laboratory infrastructure. 
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Furthermore, a methodical observation of the lab's lighting system was executed, 
shedding light on its consumption metrics that were automatically detected 
through machine learning load recognition algorithms, as demonstrated in the 
following paragraphs. Subsequent graphical representations will illustrate 
device-wise consumption across a typical day (Figure  50-53) and week . 
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Figure  50. Energy consumption monitored over a typical day 
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Figure  51. Energy consumption monitored over a typical week 
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From the development of the specific consumption obtained from the initial 
data monitored in the two workspaces, an average daily consumption of 35Wh 
was achieved during the operating hours of the Smart Lab. 

 

 

Figure  52. SmartLAB overall consumption on a month (April 2023) 
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2.7.1 Intelligent Energy Management 

Machine learning (ML), a subfield of Artificial Intelligence (AI), is 
fundamentally rooted in the concept of enabling systems to acquire knowledge 
not from explicit code but from vast swathes of data. This paradigm shift is 
transformative: systems evolve based on patterns and regularities within 
datasets (Scannapieco & Tomazzoli, 2018). 

Drawing parallels with human cognition, just as young children refine their 
understanding of the world through experiential learning, ML models "learn" 
and "refine" through training data. The underlying algorithms, often referred to 
as "machine-learning algorithms," iterate and improve their performance as they 
process more data (Bock, 2007).  

The efficacy of an ML model is contingent upon both the quality and quantity 
of the training data. A richer dataset invariably lends itself to more robust model 
performance. Once the training phase culminates, these models can make 
predictions or classifications given new input data. 

It's pivotal to note that the computational intensity during the training phase 
far eclipses that during the model's execution or inference stage. Training, 
especially with deep neural networks, demands resources that are often orders 
of magnitude greater, necessitating specialized hardware like Graphics 
Processing Units (GPUs) or Tensor Processing Units (TPUs) (Marques et al., 
2019), (Marques & Pitarma, 2016). 

In the context of SmartLAB, the proposal to deploy a ML architecture stems 
from the imperative to derive insights from the vast troves of data it generates. 
This data, when centralized, takes the form of structured tuples, typically 
represented as {location, date-time, object, value}. This structured approach 
aids in segregating data by individual locations or units. 

With this granularity, it becomes feasible to discern the operational status of 
individual objects - be they energy consumers like appliances or producers like 
solar panels. Such temporal and spatial granularity allows stakeholders to gauge, 
for each monitored interval, which devices are in operation at specific locales. 

A powerful method to extract such insights is through rule-based machine 
learning techniques, notably Association Rule Learning. Such methods unravel 
correlations, helping delineate operational patterns and, subsequently, optimize 
energy consumption and production dynamics. 

 

2.7.2 Association Rule Learning 

The pursuit of an optimal energy management strategy underscores the need for 
an intelligent system that harmonizes electrical loads with anticipated self-
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energy-production. When bolstered with insights from Earth observation 
mechanisms, such as the Copernicus system, the potential of this synergy leaps 
forward. Preliminary estimations posit an efficiency augmentation of over 10%, 
translating to a stark reduction in the building complex's reliance on external 
distribution networks to a mere 15% of its overall energy consumption. 

The intricacies of energy efficiency within building structures are manifold, 
largely due to the cumulative effect of myriad small loads. True energy 
conservation, without compromising on functionality, demands a sophisticated 
approach. This entails meticulous monitoring and adaptive control of energy 
loads, leveraging real-time data on their state, power level, and dynamic 
interactions within the consumption-production continuum. 

Given the heterogeneity and sheer volume of devices in play, invoking principles 
from "Ubiquitous and Pervasive Computing" emerges as a cogent strategy to 
manage the computational demands of this multifaceted challenge. 

While the energy dynamics of each building are uniquely tethered to its 
structural design and user preferences, one cannot overgeneralize energy-saving 
strategies. Yet, there exists a realm of "best practices" tailored for energetically 
congruent environments. 

To actualize an autonomous energy management framework, a pivotal step 
involves the derivation of behavioral heuristics for diverse energy consumers. By 
closely observing and learning from varied energy behaviors, the system can 
dynamically evolve these "best practices", harnessing the prowess of machine 
learning techniques whose efficacy is well-established in academic literature. 

Such an ambitious venture mandates addressing a trifold set of sub-challenges 
(Tomazzoli et al., 2023b). 

1. Categorization Strategy: Formulating methodologies to cluster 
installations based on energy efficiency commonalities. 

2. Rule Source Determination: Identifying the pivotal installation within 
each cluster that serves as the learning paradigm. 

3. Rule Derivation: Engaging in profound analytics to extract actionable 
rules from the consumption patterns of the designated installation. 

Complicating this mission is the inherent volatility of household energy loads, 
which flow with technological evolution and shifting human behaviors. Hence, a 
system's digital mapping must be perpetually rejuvenated, ensuring fidelity to 
the ground reality. This introduces two additional complexities (Tomazzoli et 
al., 2023b) 

a. Dynamic Load Representation: Crafting an adaptive schema that 
lucidly captures the current energy loads within a system.  
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b. Device Recognition: Incorporating mechanisms that intuitively 
discern and catalog devices integral to an installation. 

 

2.7.3 Clustering energy environments 

The landscape of machine learning is dotted with a plethora of techniques aimed 
at deciphering patterns within data. One of the cornerstones of this analytical 
arsenal is the conceptualization of data points within a multidimensional vector 
space. This paradigm paints a holistic picture of the dataset, mapping each 
unique entity (in our case, an energy environment or plant) as a distinct point 
in this expansive space. 

Imagine an energy environment as a complex amalgam of features: power usage, 
type of energy sources, consumption patterns, efficiency metrics, and more. Each 
of these features can be conceived as a dimension in our vector space. 
Consequently, an energy plant with a specific set of these features can be 
pinpointed as a unique vector in this space. The positioning of this vector is 
dictated by the values of its features, effectively transforming abstract 
characteristics into quantifiable coordinates. 

The use of representing energy plants in this geometric format is the inherent 
potential to gauge similarity. Plants that share analogous energy features will 
inevitably reside closer within the vector space, whereas those with divergent 
characteristics will be spaced further apart. In mathematical parlance, this 
spatial closeness is often quantified using distance metrics, such as the Euclidean 
distance. 

Clustering, in essence, is grouping entities based on their similarity. In our 
multidimensional vector space, a cluster is envisaged as a congregation of points 
(energy environments) that reside within close proximity to one another. The 
criterion for this proximity is often dictated by a predetermined threshold. If 
the distance between two points falls below this threshold, they are deemed 
similar and thus belong to the same cluster. 

K-means and hierarchical clustering 

Understanding the structure of data, especially in complex datasets like energy 
environments, is critical. Clustering algorithms facilitate this by grouping data 
points based on inherent similarities. Among the vast array of clustering 
techniques, K-means and hierarchical clustering are notably prominent. Here's 
a comprehensive exploration of both: 

K-means clustering aims to partition a dataset into K distinct, non-overlapping 
subsets (or clusters). It does this by minimizing the variance within each cluster 
and maximizing the variance between clusters. 
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 Initialization: K cluster centroids are randomly chosen. 
 Assignment: Each data point is assigned to the closest centroid, and it 

becomes a member of that cluster. 
 Update: The centroid of each cluster is recalculated as the mean of all 

points in that cluster. 
 Repeat: Steps 2 and 3 are iterated until the centroids no longer change 

significantly, indicating that the algorithm has converged. 

Unlike K-means, which partitions the dataset outright, hierarchical clustering 
creates a tree of clusters. This tree, often visualized as a dendrogram, can be 
dissected at various levels to yield different clustering structures. 

 Initialization: Each data point is treated as a single cluster, meaning 
there are N clusters at the start (where N is the number of data points). 

 Agglomeration: In each of the subsequent stages, the two clusters that 
are closest to each other are merged into a single cluster. 

 Completion: This merging process is repeated until there is only one 
single cluster containing all data points. 

Both K-means and hierarchical clustering are heavily reliant on distance metrics 
to gauge the similarity between data points. Common metrics include: 

 Euclidean Distance: Geometric distance in the multidimensional space. 
 Manhattan Distance: Sum of absolute differences between coordinates. 
 Cosine Similarity: Measures cosine of the angle between two vectors. 

Without loss of generality, we can say that every energy load belongs to a specific 
type such as, for instance: light bulb, microwave induction plate, TV set, 
refrigerator. We define T = {t1 . . . tn} as the set of all possible types of devices 
belonging to any energy environment of a system S.  

The feature representation of a plant pi (denoted by ~pi) is a n-dimensional 
vector whose j-th component ~pij , with 1 ≤ j ≤ n, is the number of devices of 
type tj in pi so that it can be considered a point in a vector space, as represented 
in Figure  53.  

Consider, for instance, a system S with three consumers p1, p2, and p3 where:  

 plant p1 consists of two computers, ten light bulbs and one microwave 
induction plate;  

 plant p2 consists of one refrigerator, two TV sets, one washing machine, 
and one induction plate; 

 plant p3 consists of five computers, one microwave induction plate, one 
refrigerator and one light bulb.  
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The set of all device types in S is thus T = {light bulb, Computer, Refrigerator, 
Microwave induction plate, TV set, Washing machine, Induction plate} and the 
feature representation of the aforementioned plants is  

→ 𝑝1 = [10 2 0 1 0 0 0] 

→ 𝑝2 = [0 0 1 0 2 1 1] 

→ 𝑝3 = [1 5 1 1 0 0 0] 

 

Figure  53. Vector plant representation and clustering 

As a straightforward consequence, plants may be univocally represented in the 
n-dimensional vector space induced by |T| and a clustering algorithm such as k-
means can be applied to isolate groups of similar plants. 

 

2.7.4 Selecting exemplary performers in Energy Clusters 

The process of pinpointing high-performing energy plants within their respective 
clusters is foundational to the establishment of benchmarks and best practices. 
Let's delve into the rationale and methods behind this approach:  

 Benchmarking: Identifying the top-performing plant within a cluster 
provides a standard against which others in the group can be compared. 
This fosters a competitive environment and encourages plants to strive 
for efficiency. 

 Learning from the Best: By scrutinizing the operational strategies 
and technologies of the top performers, valuable insights can be gleaned 
that can be disseminated to other members of the cluster, promoting 
energy-saving practices. 

 Motivation for Continuous Improvement: Recognizing and 
celebrating top-performers can incentivize other plants to constantly 
seek improvement in their operations. 

The methodology is described below. 
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1. Gather Data: Obtain energy consumption data for all plants in a 
cluster for a specific duration. This data can be sourced from utility 
bills, meter readings, or energy management systems. 

2. Standardize the Time Frame: Ensure that the comparison is made 
over a consistent period, such as monthly, quarterly, or annually, to 
guarantee accuracy. 

3. Compare and Rank: Rank plants based on their energy consumption. 
The plant with the lowest consumption, which implies the highest 
efficiency, emerges as the leader. 

4. Adjust for External Factors: Ensure that the comparison is fair by 
considering external factors that might affect energy usage. These can 
include variations in production volume, weather patterns affecting 
heating or cooling needs, or periods of maintenance downtime. 

5. Validation: To further validate the results, one could also examine the 
energy cost. Since energy prices can fluctuate based on demand, time-
of-use, and other market dynamics, the energy bill provides a tangible 
metric that reflects both consumption and cost-effectiveness. 

6. Feedback Loop: Communicate the results to all plants within the 
cluster. Encourage knowledge sharing and collaboration to lift the 
performance of all members. 

While the "best" plants serve as role models, it's essential to remember that 
every plant operates within its unique constraints and opportunities. The goal 
isn't necessarily for every plant to emulate the leader but to understand the 
efficient practices and apply them in ways that make sense for their specific 
context. 

 

2.7.5 Extraction of Behavioral Rules from Energy consumption data 

Understanding the energy behavior of the best-performing environments is 
fundamental to extracting best practices and formulating strategies for efficient 
energy consumption. When dealing with extensive datasets that capture 
configurations and time series of energy usage data, rule-based methods like 
association rule learning are beneficial. However, a detailed methodology is 
required to extract meaningful insights: 

Data Representation: 

1. Energy Consumption Dataset (D)  

Represents the energy consumption of a system. Each data point captures: 

 Plant: the specific energy environment or setup. 
 Device: the specific gear or equipment consuming energy. 
 Power Value: energy level or power consumption of the device. 
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 Timestamp: the time when the measurement was taken. 
 

2. Identification of relevant moments 

In any energy environment, not all moments are equally significant. Some 
moments reflect a change in configuration – a device being turned on/off, or a 
significant surge or drop in energy usage. These moments, called "relevant 
moments," are pivotal for understanding energy behavior. 

Method: 

 From the dataset D, isolate records for each installation in the form: 
{device, power value, timestamp}. 

 Identify changes in power values. The corresponding timestamps 
become the candidate relevant moments. 

 Mark devices as active (power value > threshold) or inactive (power 
value <= threshold) based on the recorded power value. 
 

3. Forming Configurations at relevant moments 

From the isolated records, derive a set of binary configurations corresponding to 
each relevant moment. 

Dataset D0: an itemset of configurations at relevant moments. 

 Each element d_0_i is labeled with a relevant moment. 
 Contains binary variables representing the activity status of each device 

at that moment. 

Variable Set V0: Contains binary variables for each device in system S, 
indicating active (1) or inactive (0) status. 

4. Association Rule Mining 

With the data in the form of D0, association rule mining, such as the Apriori 
algorithm, can be applied to identify patterns and relationships between 
different devices' operational statuses. 

Example of a rule: 

 computer →∼ TV set 
o Meaning: If the computer is on, the TV set is likely off. 

 
5. Rule Refinement and Learning 

Extracted rules can be further refined by: 

 Combining rules that overlap or are closely related. 
 Identifying exceptions where general rules may not apply. 
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 Assigning priorities to different rules based on frequency, importance, 
or other metrics. 
 

2.7.6 Automatic load recognition using Text Mining and Machine 
Learning 

Ensuring the real-time accuracy of the composition of an installation is pivotal 
for the effective implementation of the method. Maintaining an updated 
database of connected devices is not only labor-intensive but is also susceptible 
to accumulating errors over time. Such inconsistencies pose a significant risk to 
the validity of the entire best-practices-based method. Thus, there's an 
imperative need to devise a solution that accurately mirrors the actual load in 
an energy system. 

In a theoretical framework, the power consumption of a device can be delineated 
as a continuous power-over-time function. In practical scenarios, however, 
measurements are typically acquired at discrete intervals. Thus, a pragmatic 
approximation of the power consumption curve can be obtained using linear 
interpolation between these discrete data points. 

When translating this sequence of energy measurements into a symbolic 
representation (as depicted in Figure  54), patterns such as 
"OOOOVOOOOOOOPOOVOOOOOPO" can be observed. To further refine 
this representation, consecutive similar symbols can be condensed, resulting in 
sequences like "O VO O PO VO O PO", thereby transmuting the power curve 
of a device into a textual footprint, termed "energy words". 

Drawing parallels from the established domain of text mining provides valuable 
insights. In the realm of text analytics, the bag-of-words model (Harris, 1954) 
suggests that textual entities sharing a greater number of common "words" or 
tokens are intrinsically more similar than those with fewer overlaps. Extending 
this analogy to our context, the energy word sequence of a device can be 
conceptualized as its unique "bag of energy words." 

Consequently, the process of automated energy load classification can be 
succinctly encapsulated as: given a repository of predefined (labeled) devices 
and a newly introduced, unclassified device, the classification of this new device 
is ascertained by juxtaposing its energy word sequence with the energy word 
bags of the known devices. Through this comparative analysis, the unknown 
device is assigned to the most congruent category or class. 
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Figure  54. Alphabetic mapping applied to power measure 

In the realm of energy consumption optimization, the employment of best 
practices becomes paramount. However, defining a universally applicable set of 
best practices is challenging, given the heterogeneity of installations which can 
vary based on their intended use, be it residential (home), commercial (office), 
or hybrid (mixed-use), and the unique layouts they encompass. 

To address this challenge, leveraging machine learning, particularly clustering 
algorithms, can be instrumental. Clustering allows us to automatically 
categorize installations based on predefined similarity metrics, facilitating the 
management of large-scale energy systems. In creating a feature vector for each 
unit, every energy consumer and producer is meticulously cataloged and 
classified by type, ensuring a comprehensive representation of all energy 
elements within the structure (Tomazzoli et al., 2023b). 

For this undertaking, the K-means algorithm, an unsupervised machine learning 
technique, was employed. The algorithm's efficacy lies in its ability to discern 
and cluster units that exhibit analogous energy consumption patterns. 

Subsequent to the clustering phase, an observational period is designated. Post 
this phase, for each identified cluster, a representative location is chosen based 
on its energy performance metrics. This representative model, or a centroid, is 
then utilized to derive behavioral energy consumption rules, which can then be 
applied across all units within that specific cluster. 

Given real-time data acquisition capabilities, at any given instant, the 
configuration of an arbitrary apartment, say "Ai", can be juxtaposed against the 
centroid model "As". A potential application of this could be in the formation 
of actionable rules. For instance, consider the rule: "At time instance 'tk', 
compare the state of device type 'dj' of apartment 'Ai' (dAij) with its 
counterpart in the centroid model 'As' (dAsj). If states are congruent, no action 
is necessitated; otherwise, toggle the state of 'dAij' to mirror that of 'dAsj'." 
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Such rules can be meticulously formulated into machine-executable formats, 
termed Association Rules. A quintessential association rule in an energy grid 
context might appear as: TheSolarPanel IsOn → TheWashingMachineIsOn. To 
derive such rules, the Apriori Algorithm, renowned for mining frequent item sets 
for boolean association rules, was employed. This algorithm operates by 
recognizing recurrent individual items within the dataset and successively 
aggregates them until a predefined frequency threshold is met. 

Once formulated, these models can be integrated into the control modules of 
each unit, providing either advisory recommendations or mandating specific 
energy consumption patterns. 

However, an intrinsic limitation of such automated systems is their susceptibility 
to inconsistencies between the digital representation and the actual built 
environment. For instance, during the lifecycle of an establishment, the 
relocation or replacement of smart plugs can inadvertently introduce 
discrepancies in the energy model. 

To counteract such discrepancies, AI-driven techniques have been devised. One 
such technique involves converting the power consumption curve of a device into 
a series of symbolic representations, termed "energy words". Thereafter, the 
Naïve Bayes classifier, a probabilistic supervised learning method, discerns the 
nature of each energy load. This assists the system in identifying disparities 
between the digital representation and the actual connected load. 

Notably, the dictionary cataloging these "energy words" has expanded to over 
60,000 entries. To mitigate potential dimensionality issues, any word appearing 
fewer than three times within the energy footprint was excluded. 

The predictive accuracy of the model, constructed using the Naïve Bayes 
classifier, underwent rigorous validation. It was subjected to both a 66% training 
and 33% testing data split, and a ten-fold cross-validation method. For this 
purpose, the open-source machine learning software "Weka" (specifically the 
class weka.classifier.bayes.NaiveBayes) was employed. 
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Chapter 4 

 

   Discussions 

 

 

 

Although energy consumption in industry has been studied in deep, when 
dealing with residential compounds or SOHO (Small Office Home Office) 
buildings we cannot directly borrow solutions from research experiences. In fact, 
the overall consumption is the sum of small contributions by a considerable 
amount and variety of devices, while in industrial environments there are 
generally few big powers draining that can be controlled one by one. 

Therefore, the problem of energy savings in buildings is strictly connected to 
the need of measuring and controlling energy loads in an efficient way, which 
can evolve complex scenarios. Several sensors and actuators must be involved, 
and their data shall be interconnected so that an ad-hoc algorithm derives the 
correct energy saving policy (e.g., a motion sensor shares data with electrical 
relays able to switch on/off the correct devices). 

A possible general solution is the adoption of best practices, which are hard to 
define due to the nature of all installations being quite different according to 
final uses (home, office, mixed use) and layouts; if grouped by location and 
similarities parameters (Westermann et al., 2020) Artificial Intelligence becomes 
able to automatize processes attributing each location to the most appropriate 
group, or cluster.  

This aim can be achieved using machine techniques known as “Unsupervised 
learning”: these techniques refer to machine learning algorithms used to draw 
inferences from datasets consisting of input data without labelled responses 
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(Uhlemann et al., 2017). Unsupervised learning conducts an iterative process, 
analysing data without human intervention. 

The most common unsupervised learning method are cluster analysis and neural 
networks (recently led to deep learning). K-means is one of the simplest 
unsupervised learning algorithms that solve the well-known clustering problem. 
The procedure follows a simple and easy way to classify a given data set through 
a certain number of clusters (assume k clusters) fixed in a “a priori” logic. The 
main idea is to define k centroids, one for each cluster. These centroids should 
be placed specifically and in a cunning way since the result is strongly influenced 
by their position. 

The first step is to define the most efficient and performing context for each 
group or cluster by considering the energy bill over a few months confirmed by 
the energy data collected over a given interval of time.  

The desired “local sample” is the one with higher energy performances regarding 
to all other component of its cluster. 

Moreover, every automated system can easily fail if the digital representation of 
built environment doesn’t match reality. Assuming that, inevitably during the 
lifetime of a building, some smart plug will be connected to different devices, 
this load variation can affect the reliability and accuracy of the digital model 
(Saini et al., 2020b). 

In order to keep the digital model continuously up-to-date, Artificial Intelligence 
techniques, using analytical processes similar to those of text analyses, transform 
a power absorption curve of a single device in a sequence of characters; than a 
supervised learning method named “Naïve Bayes classifier” automatically 
identify the type of each energy load, so that the system can detect a mismatch 
between the digital representation and what is actually connected to the 
network. 

 

2.8  AI for Energy Management 

Basing on the aforementioned studies, a Machine Learning model architecture 
has been proposed in order to analyse the data coming from the 
Interdepartmental Research Centre for Territory, Construction, Restoration and 
Environment (CITERA) SmartLAB located in Rome at the faculty of 
Architecture “Valle Giulia”. The full architecture of models proposed is reported 
in the schematic of Figure 55. 

As can be seen the data architecture consists of a physical layer that contains 
the main physical data coming from sensors and the building, a Machine 
Learning layer that contains the data to be extracted from the physical layer, 
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and a physical action layer that is user oriented and is aimed at defining the 
main output for an Intelligent Digital Twin (IDT). 

 

 

Figure 55. IDT’s layers architecture 

In the chart all data coming as input/output from the previous node/model 
shall be used as input in the next note. Moreover, Machine Learning layer shows 
also the most suitable and promising models to apply for the different tasks, the 
choices are based on the literature studies and are listed below: 

Air quality forecasting: Air quality can be evaluated by Gradient Boosting 
Regression (GBR) with SHapley Additive exPlanations (SHAP) (Ugwuanyi, 
2021). The model can be also used as classifier (for bad, average, and good air 
quality forecasting) and as regressor to give an estimation of the previsioned 
value. The model can be used both for indoor and outdoor air quality and it 
can be used as an input for comfort estimation and loads prediction (combined 
with the power needed by the ventilation system). For natural ventilation Deep 
Q-Network (DQN) model can be used to compare the contribution of opening 
windows on air quality in case of expected high outdoor values of PM (An et 
al., 2021). End users can also directly visualize data to understand the air quality 
expected in the next hours. Considering its importance, a good interpretability 
is fundamental to guide the choices of the decision-maker upon any eventual 
intervention on the building as for installing new air purifiers. Input data can 
be also integrated with and from the local weather services. 

Heat-Exchanging modelling: The purpose of modelling heat-exchangers 
should be underestimated by the end user; however, this data is fundamental to 
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determining the efficiency of the HVAC system and to monitor the status of the 
exchangers. If the efficiency lowers too much there could be some issues related 
to fouling or leakages, therefore a maintenance intervention shall be scheduled. 
Knowing efficiencies is also useful for future intervention where the destination 
of spaces changes (as for the number of people inside the environment) or in 
case of renovations that can alter the geometry of the building. This model can 
be neglected if no one of this element is deemed important by the decision maker. 
The best model to calculate Heat-Exchanging efficiencies is Nonlinear 
AutoRegressive Exogenous (NARX) Long Short-Term Memory (LSTM) 
MultiLayer Perpetron (MLP) as showed in the work of Z. Chen, Xiao, et al. (Z. 
Chen, Xiao, et al., 2022) and C. Yu et al. (C. Yu et al., 2020). 

HVAC efficiency estimation: Support Vector Machine (SVD) with Local 
Interpretable Model-Agnostic Explanations (LIME) can be used to estimate 
HVAC efficiency basing on physical data as demonstrated in the work of C. Fan 
et al. (C. Fan et al., 2019). Using the data coming from the model it is possible 
to control the air conditioning using on a best efficiency approach and thus 
reducing the total energy usage of the device. Moreover, the output can be also 
used as input for the load prediction model to calculate the expected electrical 
consumption of the building. 

Solar radiation forecasting: The solar radiation can be obtained from local 
weather service data but also calculated in the specific position (that is subject 
to shading or partial coverage due to the placement of the photovoltaic panels). 
Deep Neural Networks with Local Interpretable Model-Agnostic Explanations 
(LIME) can be used for the task (H. Wang et al., 2020). The data interpretability 
is useful to understand if there are shading elements that interacts with the 
surfaces and to program intervention, as example to increase the energy 
production obtained from the panels or to reduce or increase the solar heat 
contribution for the building. The tool can be also used to model the effect of 
increasing the panel surface on the building by increasing the number of panels. 
Moreover, solar radiation in an input for the photovoltaic energy production 
model and for the thermal load model. 

Thermal load prevision: Calculating thermal loads contributes to the 
determination of the building power consumption. Moreover, using Machine 
Learning tools is theoretically possible to assess the effect of outdoor condition 
to the total heat loss of the building Also any eventual intervention aimed at 
increasing the building insulation could be evaluated. The best previsioning 
Machine Learning model for thermal loads prevision is probably Artificial Neural 
Network (ANN) improved with a Local Interpretable Model-Agnostic 
Explanation (LIME) for the interpretation of results (Di Natale et al., 2022). In 
case of high natural ventilation, as for Near Zero Energy Buildings (NZEB), it 
is possible to divide the contribution of natural ventilation on the thermal load 
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using an ANN model with SHapley Additive exPlanations (SHAP) to increase 
model interpretability (H. Park & Park, 2021). Knowing the most influential 
factor of thermal loads permits to evidence the criticalities that needs to be 
addressed to increase the global energy performance of the building. Thermal 
load prevision uses as input the data coming from weather, occupancy, natural 
ventilation, HVAC, and the building geometries and materials. Instead, the 
model output is used as input for the electrical power provisioning model and 
for the air quality model.  

Occupancy prevision: Predict the number of people present in an 
environment in a specific time is a challenge, especially if there are no 
information about the number of people obtained by presence sensors. However, 
despite the difficulties, monitoring the number of people is a fundamental data 
that influences many parameters such as the air quality, thermal comfort, and 
power consumption. Therefore, Machine Learning could be very useful in 
addressing such issue as reported in the review of Dai et al. (Dai et al., 2020). 
A suitable Machine Learning tool for the task is Generalized Additive Models 
(GAMs) enhanced by a SHapley Additive exPlanations (SHAP) model for 
interpretability. As input the model it is possible to use building data, CO2 
concentration (or direct air quality measurements), power loads and presence 
sensors data. Then, occupancy data can be used as input for air quality 
forecasting, thermal load prevision, and indoor comport calculation. It must 
consider that, occupancy data is also a sensible information for security and 
safety, its knowledge must be controlled and not open to the public. Moreover, 
decision makers could use the previsions coming from the occupancy model also 
to dimension building services (as for calculating the number of people that need 
to eat at lunchroom, determining the number of parking needed, etc.) and to 
globally increase the building ergonomic. 

HVAC Control: Controlling HVAC permits to reduce and adapt the energy 
consumption of the building by changing the power used by the air conditioning 
system. An effective predictive control model can be developed using by using a 
Non-Dominated Sorting Genetic Algorithm II as suggested by M. G. Yu & 
Pavlak (M. G. Yu & Pavlak, 2022), moreover, if an alert system is implemented 
it is possible to use a Decision Tree algorithm to deliver textual useful 
information to users and stakeholder (Mollo Neto et al., 2020; Tai et al., 2020) 
such as if the HVAC system delivers enough cooling, if it is recommended to 
move from the building due to the excessive  load and other such information. 
The Control model takes as input the HVAC efficiency model, the indoor 
comfort prevision model, and the load prediction model to calculate the optimal 
response for controlling the HVAC. As output the model can relate to an alert 
and maintenance system, with the load management (deactivating unused 
electrical equipment by smart-plugs controls in case of high loads), with the 
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electrical actuator control (opening windows when the HVAC is off and the air 
quality and thermal comfort is good), and with the HVAC system itself.  

Indoor comfort prevision: This model is aimed at evaluating the thermal 
comfort of the indoor area in the building. Generalized Additive Models (GAMs) 
are very suitable for comfort prevision tasks (Charalampopoulos, 2019). To 
develop alerts and recommendations to users and stakeholders both K-Nearest 
Neighbors and Decision Tree models can be used (Mollo Neto et al., 2020; Tai 
et al., 2020; Xie et al., 2022; Yusuf Akbar et al., 2022). It must be considered 
that thermal comfort is a matter of legislation as expressed in EN ISO 7730 
(Cheng et al., 2012; Fanger, 1986; ISO, 2005). Therefore, some empirical rules 
are recommended to aid the comfort model to maintain comfort values inside 
an acceptable range. As model input shall be used the data coming from the air 
quality forecasting model and the occupancy model and the thermal load model. 
As output the model can deliver alerts, act on building electrical actuators (as 
for opening windows), and on the HVAC control model. 

Solar power availability: To model the power output coming from solar 
panels Lu et al. developed a Deep Neural Network integrated enhanced by a 
SHapley Additive exPlanations (SHAP) to increase model for interpretability 
(Y. Lu et al., 2021). The model is useful to provide prevision on the expected 
power developed by solar panels and managing the power usage inside the 
building looking for energy neutrality (when consumption is equal to load). In 
this case the building efficiency is the highest and consumption are null, 
therefore it is the best operative case. However, the balance between load and 
production is usually different from zero and energy shall be stored in batteries 
or taken/delivered from the electrical network. Therefore, the model takes as 
input the solar radiation forecasting and the battery capacity to optimize the 
energy management and reduce consumptions. As output the model contributes 
to the input the loads prediction model. 

Load profiling: Profiling loads is fundamental for the understanding of what 
is connected to the electrical network and to monitor if there are some faults in 
the devices. For this tasks Wastensteiner et al. proposed a Machine Learning 
Model that employs a Convolutional Neural Network (CNN) and a Local 
Interpretable Model-Agnostic Explanations (LIME) to increase the CNN 
interpretability (Wastensteiner et al., 2021). The use of a load profiling model 
can be also applied to monitor fraudulent energy usages identifying malevolent 
users as evidenced by (M. Wang et al., 2022). Knowing what is connected to the 
electrical system is usually a requirement made by decision makers for building 
management purposes. The model takes as input the data coming electrical 
loads and external loads (the EV charging station in the case of CITERA Smart-
Lab). As output, energy profiles are an input of the load prediction model. 
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Loads prediction: Loads prediction is the main goal of any energy monitoring 
machine learning network. There are many literature studies that are focused 
on this issue; therefore, the solution is not unique. In the present work a Deep 
Neural Network model with a Local Interpretable Model-Agnostic Explanations 
(LIME) is proposed. To develop alerts and recommendations to users and 
stakeholders a Decision Tree models can be used (Mollo Neto et al., 2020; Tai 
et al., 2020; Xie et al., 2022; Yusuf Akbar et al., 2022). Interpreting load 
prediction is considered a fundamental requirement for stakeholders because 
they need to know how to operate the power systems, which load is prevalent 
and to develop energy reports for the assessment of the energy class of the 
building. The model takes as input the HVAC efficiency model, the loads 
profiling model, the solar power availability, the thermal load model, and the 
occupancy prevision model. As output the model can deliver alerts, act on 
actuators, recommending maintenance activities and reducing the HVAC power 
usage. 

Fault detection: The last model is related to FDD, a good maintenance keeps 
the building efficient avoiding issue related to shot-circuit, End-of-Life (EoL) of 
devices, efficiency reduction, etc. There are many models that are specific to 
different equipment, as for air handling units (C. Fan et al., 2021). The proposed 
approach is to use two different models, one to detect numerically the efficiency 
reduction and one to interpretate errors and metadata data coming from sensors 
and devices. For numerical data a Convolutional Neural Network (CNN) model 
can be used tanks to its capability in interpretating data coming from very 
different devices (G. Li et al., 2021). For the metadata it is recommended to use 
an encoding-decoding model (C. Li et al., 2022). As input the model takes data 
coming from the physical layer devices and as output the model deliver alerts 
and can shut down faulty devices using the actuators. 

 

4.2  Towards Smart Districts and Energy Communities 

The integration of digital technologies is key to initiating optimization processes 
with data-driven methodologies that lead to real-time monitoring of all the 
functional parameters that characterize the energy and environmental behavior 
of buildings and infrastructures. 

Indeed, only through continuous and real-time in-depth knowledge of physical, 
operational, usage, and performance parameters, combined with knowledge of 
boundary conditions, the system is capable of autonomously reacting to 
maintain optimal operating parameters both under standard conditions and in 
the event of unforeseen events. 

Such an approach becomes increasingly relevant for managing assets of 
considerable size and number, becoming essential for the governance of energy 
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districts, where the significant amount of data requires management techniques 
based on Artificial Intelligence and machine learning. 

The main objective of Digital Twin-based and data-driven approaches on an 
urban scale concern improving the energy efficiency of buildings and 
infrastructures, as well as implementing strategies for defining energy districts 
through a system architecture able to interface with users through a cloud-based 
platform. 

In the perspective of decentralizing electric energy production, the energy 
district can take on the role of the central core of a more extensive 
interconnected and scalable urban network, efficiently managed through 
Artificial Intelligence. 

In this scenario, the virtuous management of energy production requires a 
strategy for migrating consumption by the end-user. It is essential to align the 
network's maximum consumption with the peak renewable energy production 
time. This can be done on individual infrastructure, as well as through the 
creation of a smart grid capable of feeding the energy surplus into the network. 
Considering the heterogeneity of the energy district in terms of usage 
destinations and prosumer habits, non-renewable energy consumption can tend 
towards zero. 

The goal is to connect users of neighboring buildings in a single energy district, 
creating a cloud-based data platform that allows the integrated management of 
consumption and electric energy production, creating a virtuous, autonomous 
energy ecosystem capable of efficiently and effectively managing resources, 
distributing surplus energy among the prosumers, improving network efficiency, 
and minimizing waste. 

As such, the smart district's Digital Twin-based data platform will allow: 

 Archiving and profiling the habits of prosumers in the energy district; 
 Managing the amounts of energy produced from different renewable 

sources to be distributed to different prosumers based on their habits; 
 Sharing, dissemination, disclosure, and awareness-raising on energy-

saving issues. 

To ensure the platform's usability, a scalable user interface is needed to 
implement the system architecture with different services and functionalities 
based on different needs of different users. 

Specifically, the cloud-based platform will need to interface with two types of 
users: 

 Technical staff and Infrastructure Management; 
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 Users of the Smart Energy District and Energy Community (tertiary, 
residential, commercial, etc.), local administrations, stakeholders, etc. 

The interpretation of the vast amount of data collected and updated in real 
time, and the subsequent profiling of users' energy consumption, through the 
use of specific machine learning (ML) algorithms validated following a 
monitoring period, allow the identification of preferential energy efficiency 
interventions, achieving the primary essential goal in the broader vision of a 
virtuous energy management of the built environment and the definition of a 
Smart Energy District and consequently an Energy Community. 

The amount of structured and unstructured data, directly proportional to the 
breadth and heterogeneity of the system's application area, results in the 
definition of Artificial Intelligence algorithms aimed at automatically 
implementing Intelligent Load Management operations, such as Load Shed and 
Load Shift (Figure  56), as well as reporting faults to the assets involved in 
the system through the analysis of anomalies in electrical loads, the prediction 
of consumption, and the estimation of future electrical costs. 

Specifically, the platform allows: 

 Real-time visualization of the infrastructure's electrical consumption 
through dynamic dashboards; 

 Analysis of loads and automatic recognition of consumption profiles to 
implement Intelligent Load Management actions: 

o Efficiency: Improvement of the energy efficiency of systems and 
components. 

o Load Shed: Reduction of load by distributing energy demand 
across multiple energy sources during peak usage periods.  

o Load Shift: Management of energy supply and demand in such 
a way that the peak consumption is shifted to periods of low 
energy demand. 
 

 Analysis of energy consumption and the production of electricity from 
renewable sources through integrated reports with possible intervention 
solutions; 

Figure  56. Load shift - shed 
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 Reporting faults to the assets involved in the system through the 
analysis of anomalies of electrical loads connected to the specific asset; 

 Creating a searchable database accessible at any time with the history 
of energy consumption connected to the infrastructure; 

 Archiving and profiling of user habits; 
 Forecasting consumption and estimating the future electrical costs of 

the building. 

To connect and incentivize the highest number of users with heterogeneous 
energy profiles to join the creation of a near-zero impact Smart Energy District 
and the Energy Community, a cloud-based system scaled based on the specific 
information and usage required by the user is necessary (Figure  57). 

This system can be translated into various services for users of the energy 
district that can monitor their consumption in real time and establish a 
relationship of sharing best practices, as well as take advantage of services such 
as data visualization, metaverse user experience, mixed reality, customer 
assistance, etc. 

Technical Manager & Stakeholders 

The data platform provides technical managers and stakeholders (owners and 
managers of real estate assets, local administrations, etc.) with: 

 Basic and technical data on assets; 
 Analytics on energy consumption and related costs; 
 Alerts and notifications for optimized interaction between the system 

and the user. 

People & Community 

Users of the Smart Energy District and the Energy Community can benefit from 
the services offered by the data platform through: 

 Web Apps; 
 Mobile Apps; 
 Immersive Reality & the Metaverse 



 

182 
 

 

Figure  57. Multi-service data platform 

Below are some of the objectives to be achieved towards the definition of a 
Digital Twin-based Data Platform for Energy Management in Smart Districts 
and Energy Communities in terms of system architecture.  

The system is based on a Multi-Service Data Platform with a cloud architecture, 
integrating a data lake component for data ingestion and storage and a 
repository for unstructured data, as well as a data warehouse for managing 
certified data, and a set of specifically built data marts to meet the publishing 
needs through the Data Visualization and reporting component. 

Specifically, distinct data marts are planned where the calculation rules for the 
metrics needed to process the KPIs for monitoring and control areas will be 
implemented. 

The data ingestion component, using specific connectors, orchestrates data flows 
in streaming (near real-time) and batch modes, both structured and 
unstructured (data from sensors, documents, videos, images). The multi-service 
data platform will also have centralized governance that facilitates and simplifies 
the creation, protection, and management of data; the integrated data 
cataloging component allows secure publishing and management, defining the 
appropriate access levels and implementing data protection policies. 

The system comes with monitoring functions for the correct operation of 
application components and data transformation jobs and provides all the 
necessary auditing functions to verify access logs and configuration changes. 

Supporting the data processing functions, the platform will integrate an 
Artificial Intelligence Engine for energy management. Moreover, all necessary 
integrations towards the Data Presentation, BIM, Analytics, Command & 
Control, Mixed Reality, other external market systems and for exposing Open 
Data externally will be managed (Figure  58). 
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Figure  58. Data platform system architecture 

Data publication will occur through a data presentation component where 
monitoring and control dashboards can be created. The same component allows 
for the creation of reports that can be distributed to recipient lists either on a 
scheduled basis or upon the occurrence of specific events. Furthermore, the 
Analytics component will allow the user to perform data discovery and 
processing activities autonomously on the published data, either through the 
integration with office automation tools or by customizing the dashboards in a 
self-service manner. The Data Visualization component allows the integration 
of published dashboards into third-party applications. 

Within the multi-service data platform, a workflow management component 
allowing metadata configuration and information supporting the necessary 
monitoring dashboards, management of business rules for metric and monitoring 
KPI processing, as well as the definition of integration operation methods, the 
definition of alerts, and activation thresholds will be implemented. 

To support the publication and distribution of data, the platform also integrates 
the generation of alert events towards third-party applications using a service 
bus architecture sending push notifications when alert events occur, and 
querying all acquired data available in the data lake. 

 

4.3  Energy storage optimization towards a Vehicle-to-Grid 
(V2G) scenario 

The contemporary urban environment is becoming more shaped by the pursuit 
of eco-friendliness and energy conservation. Through the incorporation of 
Renewable Energy Sources (RES) into smart grid management, urban areas can 
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tap into a mix of energy resources to guarantee even nocturnal energy demands 
are met without relying on storage systems. 

Nevertheless, the volatile characteristics of essential renewable technologies, such 
as solar and wind, in conjunction with a rise in electrification, threaten the 
balance and reliability of the power grid. Various solutions to these issues include 
energy storage, utilizing steady power generators like nuclear or geothermal 
energy, long-range power transmission, excessive dependence on renewables 
causing surplus during low-consumption times, and transitioning electricity into 
gas forms. As expenses reduce, the prominence of battery storage as a method 
for energy conservation has risen, improving grid efficiency in multiple scenarios. 

Vehicle-to-Grid (V2G) represents the two-way energy exchange between an 
electric vehicle's (EV) battery and the grid. To achieve the kind of stability 
offered by fixed batteries, genuine bidirectional V2G is essential, enabling energy 
to be both supplied to and drawn from EV batteries in a controlled manner. 

In this regard, the study by P.H. Kydd suggests a future where electric vehicles 
will play a pivotal role in energy storage and supply (Kydd, 2023). The storage 
capacity and power output of electric vehicles will see a significant rise over time, 
with a substantial potential impact on the electrical grid and the way energy is 
produced, distributed, and consumed.  

Recent studies examined the potential of EVs in meeting grid storage needs 
investigating the utilization of EVs connected to the grid and batteries from 
retired EVs. Currently, most EV owners charge their cars at home overnight. 
When connected, these batteries could be repurposed for grid storage. By 
striking agreements with energy providers, EV owners can allow controlled 
charging and discharging of their batteries for grid support, earning financial 
incentives in return. 

When EV batteries deteriorate to 70-80% of their original capacity, they're 
typically unfit for transportation but can still serve in grid storage. The 
combined capacity from vehicle-to-grid and expired EV batteries is predicted to 
reach 32 to 62 terawatt-hours by 2050. In contrast, short-term grid storage needs 
might only be 3.4 to 19.2 TWh by that year, implying a potential surplus of 
battery storage supply. 

The study from Kydd reveals that only 12-43% of all EVs need to engage in 
vehicle-to-grid operations to meet global short-term grid-storage needs. This 
drops to under 10% if half the expired EV batteries are reused for grid storage. 
The adoption rate of these practices and the role of government incentives are 
crucial for maximizing EV contributions to grid storage. Effective participation 
requires user-friendly tools and strong regulations to recover and reintegrate 
batteries after their primary vehicle life (Kydd, 2023). 



Discussions 

185 
 

The chart below displays the projections for energy storage in electric vehicles 
(EV) in the United States from 2020 to 2050 (Figure  59). 

 

 

Figure  59. Projections for energy storage in electric vehicles (EV) in the United States 
from 2020 to 2050 (Kydd, 2023) 

 

 Total Fleet and Growth Rate: There are 253 million light vehicles in 
the United States in 2020, with an anticipated annual growth rate of 
1%. 

 EV Percentage of Total: The proportion of electric vehicles out of the 
total vehicle count is expected to see a significant rise over time, going 
from 1% in 2020 to 75% by 2050. 

 Number of EVs: The total number of electric vehicles is projected to 
increase from 3 million in 2020 to 253 million by 2050. 

 Battery Capacity: The average battery capacity of electric vehicles is 
anticipated to grow over time. It starts at 55 kWh per vehicle in 2020 
and is projected to reach 150 kWh per vehicle by 2050. 

 Total Storage Capacity: The overall energy storage capacity of electric 
vehicles will see a substantial increase, moving from 55 million kWh in 
2020 to 37,908 million kWh by 2050. 

 EV Power Capacity: This refers to the maximum rate at which energy 
can be drawn from electric vehicle batteries. It's expected to rise from 
68,750 MW in 2020 to 18,954,125 MW by 2050. 

 US Capacity: The total capacity of the United States will see a modest 
growth, from 456,308 MW in 2020 to 615,035 MW by 2050. 

The chart below shows the projected growth of V2G (Vehicle-to-Grid) 
technology from 2020 to 2040 (Figure  60). 
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Figure  60. Projected growth of V2G (Vehicle-to-Grid) technology from 2020 to 2040 
(Kydd, 2023) 

Sales by Brand: 

 Ford: Ford sales are projected to rise from 200 thousand in 2020 to 2,140 
thousand by 2040. 

 Chevy: Sales for Chevy are expected to increase from 150 thousand in 
2025 to 3,211 thousand by 2040. 

 VW: VW's sales are anticipated to grow from 100 thousand in 2022 to 
1,541 thousand in 2040. 

 Nissan: Nissan's sales are forecasted to align with VW's, increasing from 
100 thousand in 2022 to 1,541 thousand by 2040. 

 Others: Sales from other brands are projected to rise from 100 thousand 
in 2022 to 1,238 thousand in 2040. 

 Total Sales: The combined sales from all brands indicate substantial 
growth during the period in focus. Total sales will increase from 200 
thousand in 2020 to 8,771 thousand by 2040. 

 Total EV: The total number of electric vehicles (EV) in thousands will 
see a significant rise, from 200 in 2020 to 59,287 in 2040. 

 MWh: The overall capacity in MWh will experience a significant hike, 
moving from 20,000 MWh in 2020 to 5,928,663 MWh in 2040. 

In summary, studies depict a strong projected growth in V2G technology from 
2020 to 2040, with a notable increase in V2G vehicle sales and the total MWh 
capacity. This implies a growing adoption and relevance of V2G technology in 
the transportation and energy sectors. 

By 2040, the energy storage capacity of V2G-compatible vehicles is estimated 
to account for 15% of the entire electric vehicle storage. This points to a growth 
equivalent to twenty times the daily solar energy supply and a similar amount 
to the daily usage of the EV fleet. This hints at a substantial potential for 
bidirectional V2G capabilities in the near future. 

Recent studies are examining the potential of electric vehicles (EVs) in meeting 
grid storage needs, investigating the utilization of EVs connected to the grid and 
batteries from retired EVs. Currently, most EV owners charge their cars at home 
overnight. When connected, these batteries could be repurposed for grid storage. 
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By striking agreements with energy providers, EV owners can allow controlled 
charging and discharging of their batteries for grid support, earning financial 
incentives in return. 

When EV batteries deteriorate to 70-80% of their original capacity, they're 
typically unfit for transportation but can still serve in grid storage. The 
researchers predict that the combined capacity from vehicle-to-grid and expired 
EV batteries could amass 32 to 62 terawatt-hours by 2050. In contrast, short-
term grid storage needs might only be 3.4 to 19.2 TWh by that year, implying 
a potential surplus of battery storage supply. 

The study reveals that only 12-43% of all EVs need to engage in vehicle-to-grid 
operations to meet global short-term grid-storage needs. This drops to under 
10% if half the expired EV batteries are reused for grid storage. The adoption 
rate of these practices and the role of government incentives are crucial for 
maximizing EV contributions to grid storage. Effective participation requires 
user-friendly tools and strong regulations to recover and reintegrate batteries 
after their primary vehicle life. 

The vehicle-to-grid capacity refers to the portion of EV battery stock capacity 
suitable for vehicle-to-grid applications, accounting for the capacity allocated 
for EV driving, the capacity of plug-in hybrid electric vehicles (PHEVs) not 
participating in vehicle-to-grid due to limited capacity, and capacity decline 
resulting from battery degradation. EV batteries can serve a dual purpose, 
remaining within the vehicle for vehicle-to-grid utilization or being repurposed 
after the vehicle's end-of-life phase, where they are removed and utilized 
independently for stationary energy storage. "Smart" vehicle-to-grid charging 
strategies can facilitate dynamic EV charging and load-shifting grid services. 
EVs are capable of storing electricity and redistributing it to the grid during 
peak demand periods. 

As mentioned above, vehicle battery EoL is conventionally defined as the point 
at which the remaining battery capacity falls within the range of 70-80% of its 
original capacity. 

One crucial limitation is that these calculations presume that the rated capacity 
per vehicle will remain constant in the future and anticipate that a limited 
number of large battery electric vehicles (BEVs) could offer substantial actual 
vehicle-to-grid capacity. These capacities may undergo alterations in the future 
due to policy incentives, advancements in vehicle design, shifts in consumer 
preferences, enhancements in charging infrastructure, and various other 
influential factors. Moreover, the transportation ecosystem might experience 
profound and fundamental transformations, including a significant and rapid 
shift away from individual car usage toward mass transit, the adoption of shared 
electric vehicles, the implementation of autonomous driving technologies, and 
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the success of battery swapping systems, all of which could reshape the available 
capacity landscape by 2050. 

Using the Sustainable Development (SD) scenario, which envisions an electric 
vehicle fleet in line with the climate objectives of the Paris Agreement, the 
following graphs have been created by (C. Xu et al., 2023)to illustrate how the 
overall electric battery storage capacity is roughly evenly distributed between 
electric vehicles (EVs) and Energy Storage Systems (EoS) as in Figure  61. 

 

Figure  61. Technical capacity (TWh) distributed between electric vehicles (EVs) and 
Energy Storage Systems (EoS) (C. Xu et al., 2023). 

The second graph (Figure  62), on the other hand, illustrates how, depending 
on the required power for storage in response to surpluses and the need to supply 
loads during a production deficit, Energy Storage Systems (EoS) can cover 100% 
of the demand up to a power requirement of 12 TWh (C. Xu et al., 2023). As 
the demand increases beyond 12 TWh and reaches 32 TWh, a portion of Electric 
Vehicles (EVs) becomes necessary for meeting the demand. 

 

Figure  62. Second-use utilization rate vs. Vehicle-to-grid participation rate (C. Xu et 
al., 2023) 

In the context of the issue within Italy, and by focusing on batteries that are 
actually installed in the current vehicle fleet, excluding Energy Storage Systems 



Discussions 

189 
 

(EoS) for which current legislation may serve as a basis for future discussions, 
the following analysis can be made. 

Assuming the constant size of the circulating vehicle fleet in Italy until 2050, 
which is equal to about 39 million vehicles, and multiplying this number by the 
average annual mileage per vehicle in Italy, which is 6,800 kilometers per year, 
results in a total annual distance driven by our cars equal to [265.200.000.000 
kilometers]. 

Given the current efficiency of electric cars, which consume about 20 kWh to 
travel 100 kilometers, there is an energy requirement for electric mobility equal 
to 53,04 TWh. 

According to the most recent document from the GSE (Gestore dei Servizi 
Energetici) on energy scenarios related to renewable sources and [insert relevant 
data], it is inferred that by 2050, the electricity produced will be equal to 
321,5TWh (Figure  63). 

 
Figure  63. The evolution of the electric mix by 2050 

 

Assuming the current surplus production percentages by self-consumption data 
of year 2022 (as shown in Figure  64) of about 13% of the overall FV 
production, suitably reduced by 20% due to the progressive improvement in the 
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distribution network's efficiency, it can be hypothesized that by 2050, 
approximately 10% of the photovoltaic energy produced will be surplus to the 
load and will require storage.  

 

Figure  64. Surplus production percentages by self-consumption data of year 2022 

 

This surplus is equivalent to 32,5 TWh, which is less than the energy 
requirements of electric vehicles in circulation. Consequently, the present 
framework is oriented to manage energy production surplus through electric 
vehicles instead of traditional storage systems. 
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4.4 Final remarks 

The nexus between the built environment and energy utilization presents 
significant ramifications for global energy consumption, emissions, and the 
ongoing transition to more sustainable systems. Recent analyses reveal that 
buildings are responsible for consuming approximately 40% of global energy, 
contributing to over 70% of electricity consumption and nearly a third of all 
carbon emissions. 

As the energy landscape evolves, so does the interaction between the built 
environment and energy sources. The emergence of Distributed Energy 
Resources (DERs) such as microgrids, nanogrids, and behind-the-meter energy 
storage introduces complexity but also opportunity. Other innovations, like grid-
interactive efficient buildings and Electric Vehicle (EV) integration mechanisms 
(EV-to-grid, EV-to-home), are expanding the scope of demand response, 
ushering in a new era characterized by enhanced demand flexibility. 

With advancements on the Internet of Things (IoT) over the past decade, once 
rudimentary equipment is now equipped with sophisticated sensors and 
interconnected devices. This shift from minimal data to vast data repositories 
enables advanced anomaly detection, predictive maintenance, and other 
intelligent functionalities, leveraging machine learning and other advanced 
techniques. 

The inception of Digital Twins has revolutionized the modeling of context and 
environment in which new capabilities operate. Transitioning from smart offices 
to smart buildings and further to comprehensive smart spaces, showcasing its 
versatility across various scenarios including grid interactions and intelligent 
ecosystems, enhancing thermoigrometrical and IAQ real time parameters 
control. 

Modern grids are increasingly integrating renewable sources such as wind and 
solar, creating challenges associated with demand fluctuations and weather-
dependent production. With new additions like local solar and electric vehicles, 
predicting energy dynamics becomes complex.  

As the built environment plays a crucial role in this energy landscape, impacting 
both consumption patterns and infrastructure resilience. This study aims to 
contribute to the research on the topic of introducing digital twin ecosystems in 
the management of the built environment and energy smart grids, providing an 
operational framework supported by open-source tools and methods for the 
creation of intelligent digital twins capable of optimizing the energy management 
of buildings. 

As such it emerges from the study how the built environment intersects with 
multiple industry verticals. Whether it's a healthcare facility, a retail 
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distribution center, or a manufacturing plant, each has distinct energy needs 
and interfaces uniquely with the grid. The rapid digitization and IoT 
implementation, evident in innovations like smart poles integrated with EV 
charging, further blurs these boundaries. 

Incorporating digital twins, AI, and other advanced technologies enhances the 
ability to unlock significant capacities in the built environment. Embracing 
active efficiency — a blend of traditional energy-saving measures and digital 
transformation — ensures multi-dimensional benefits ranging from energy 
savings to improved grid resilience and building health. 

As the built environment continues to integrate more advanced technologies and 
aligns more closely with evolving energy systems, it will increasingly function as 
a dynamic component of broader energy networks. This transformation promises 
significant potential savings, both in terms of energy and costs, emphasizing the 
importance of ongoing research, collaboration, and policy support in this 
domain. 

Intelligent load management plays a pivotal role in optimizing energy efficiency. 
This revolves around several foundational principles: 

Load Shedding & Shifts: simply cutting down the energy consumption during 
peak times, or redistributing loads at various times, can lead to significant 
energy savings using at the same time electric car fleet as a bidirectional 
exchange between an electric vehicle's (EV) battery and the grid. This capability 
becomes particularly potent when integrated with advanced models and AI-
driven capabilities. These technologies not only allow for better energy 
management but can also adjust based on varying external inputs, creating a 
dynamic system that reacts in real-time. 

Real Estate & Incentive Alignment: a challenge in energy management is the 
misalignment of incentives between property owners and tenants. Property 
owners may not feel the urge to invest in efficient systems as the cost savings 
are often passed to the tenants. Conversely, tenants might not be motivated to 
push for energy-efficient solutions for properties they don't own. Integrating AI-
driven load management can create a win-win scenario. By optimizing energy 
usage, everyone benefits from the cost savings. Moreover, these savings can be 
integrated into a Distributed Energy Resource (DER) aggregation, adding 
another layer of benefits and incentives for various stakeholders. 

Advanced Control Systems & Reinforcement Learning: traditional control 
systems for managing energy loads have reached their capacity. While Fault 
Detection and Diagnostics (FDD) systems have made substantial progress, they 
still operate on static rules. This is where reinforcement learning, a subset of AI, 
offers transformative potential. By utilizing a technique that constantly learns 
and adapts, energy systems can optimize beyond what traditional algorithms 
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permit. This real-time adaptability means that energy systems can operate more 
efficiently, leading to substantial savings. An example is Microsoft's 
incorporation of Project Bonsai, which used reinforcement learning to increase 
energy savings from 15% to over 30%. 

Digital Twins & Federated Systems: the concept of a Digital Twin refers to a 
digital representation of a physical system. This can range from components of 
a building to an entire city grid. When these digital representations are 
interconnected, they create an intelligent ecosystem. This ecosystem can analyze 
vast amounts of data, from weather forecasts to energy prices, to optimize energy 
usage in real-time. The challenge lies in creating harmonized ontologies that 
allow for seamless data exchange between various digital twins. Open-source 
initiatives are working towards making this federation more streamlined. 

Equity in Energy Management: beyond efficiency, there's a need to ensure energy 
systems are equitable. As more sophisticated energy management solutions 
emerge, it's vital to ensure they benefit all sections of society. Furthermore, 
focusing on energy efficiency can particularly benefit low-income households, 
who proportionally spend more of their income on energy. Integrating AI and 
other advanced technologies in energy management can mitigate some of these 
disparities. 

In conclusion, while alternative energy sources like wind and solar are essential, 
optimizing our existing systems through Intelligent Digital Twins based on AI 
and advanced load management can lead to a more efficient and equitable energy 
landscape. The integration of these technologies is still a work in progress, but 
the potential benefits are immense. 
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