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Systematic epigenome editing captures the 
context-dependent instructive function of 
chromatin modifications

Cristina Policarpi    1, Marzia Munafò    1, Stylianos Tsagkris    1, 
Valentina Carlini1,2 & Jamie A. Hackett    1,3 

Chromatin modifications are linked with regulating patterns of gene 
expression, but their causal role and context-dependent impact on 
transcription remains unresolved. Here we develop a modular epigenome 
editing platform that programs nine key chromatin modifications, or 
combinations thereof, to precise loci in living cells. We couple this with 
single-cell readouts to systematically quantitate the magnitude and 
heterogeneity of transcriptional responses elicited by each specific 
chromatin modification. Among these, we show that installing histone 
H3 lysine 4 trimethylation (H3K4me3) at promoters can causally 
instruct transcription by hierarchically remodeling the chromatin 
landscape. We further dissect how DNA sequence motifs influence the 
transcriptional impact of chromatin marks, identifying switch-like and 
attenuative effects within distinct cis contexts. Finally, we examine the 
interplay of combinatorial modifications, revealing that co-targeted 
H3K27 trimethylation (H3K27me3) and H2AK119 monoubiquitination 
(H2AK119ub) maximizes silencing penetrance across single cells. Our 
precision-perturbation strategy unveils the causal principles of how 
chromatin modification(s) influence transcription and dissects how 
quantitative responses are calibrated by contextual interactions.

Regulation of eukaryotic transcription is guided by a complex inter-
play between transcription factors (TFs), cis regulatory elements 
and epigenetic mechanisms. The latter includes chromatin-based 
systems, most prominently post-translational histone and DNA 
modifications. Such ‘chromatin modifications’ influence transcrip-
tion activity by directly altering chromatin compaction, by acting  
as specific docking sites for ‘reader’ proteins and/or by influencing  
TF access to cognate motifs1–3. As a result, chromatin marks are 
thought to play a central regulatory role in deploying and propagating 
gene expression programs during development, while, conversely, 
aberrant chromatin profiles are linked with gene mis-expression 
and pathology4–6.

Major initiatives have mapped genome-wide chromatin modifica-
tions across healthy and disease cell types, revealing correlations with 
genomic features and transcription activity7–12. For example, H3K4me3 
is enriched at active gene promoters, and H3K9 dimethylation 
(H3K9me2), H3K9me3, H3K27me3 and H2AK119ub are correlated with 
transcription repression, while active enhancers are comarked by H3K4 
monomethylation (H3K4me1) and H3K27 acetylation (H3K27ac)13. 
Whether the observed correlations indicate causation remains unre-
solved however14–17. To interrogate the nature of functional relation-
ships, perturbation strategies have been widely deployed, often by 
manipulating chromatin-modifying enzymes or histone residues5,18–20. 
While insightful, such approaches affect the entire (epi)genome 
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Fig. 1 | A modular toolkit for precisely programming chromatin states.  
a, Schematic of the modular epigenetic editing platform. Upon DOX induction, 
dCas9GCN4 recruits five copies of the CD of chromatin-modifying effector(s) or 
control GFPscFV to target loci via a specific gRNA. DNAme, DNA methylation.  
b, Relative abundance of the indicated histone modification at Hbb-y assayed 
by either CUT&RUN–qPCR or by chromatin immunoprecipitation followed 
by qPCR (ChIP–qPCR) (H3K36me3, H3K79me2), following epigenetic editing 
or control GFPscFV recruitment in ESCs for 7 d. Shown is the mean of three 
biologically independent experiments; error bars indicate s.d. Norm., normalized. 
c, Histogram showing mean DNA methylation installed at the unmethylated 
Col16a1 promoter, determined by bisulfite pyrosequencing in three biologically 
independent experiments; error bars indicate s.d. d–i, Relative abundance of the 
indicated histone modification (H3K4me3 (d), H3K27me3 (e), H2AK119ub (f), 

H3K27ac (g), H3K9me3 (h), H3K36me3 (i)) across the Hbb-y locus after epigenetic 
programming with a specific CDscFV (Prdm9 (d), Ezh2 (e), Ring1b (f), p300 (g), G9a 
(h), Setd2 (i); red line) or control GFPscFV (gray line), assayed by CUT&RUN–qPCR. 
Mean enrichment across a ~14-kb region centered on the gRNA-binding site is 
shown for editing in biological triplicates as well as for endogenous positive (Pos1 
and Pos2) and negative (Neg1 and Neg2) loci for each mark. NS, not significant. ND, 
not determined. j, Percentage of DNA methylation at CpG dinucleotides across the 
Col16a1 and Hand1 promoters in triplicate experiments. k, Scatterplots showing 
limited OFF-target gene expression changes following induction of the indicated 
epigenetic mark at Hbb-y for 7 d, relative to that of control GFPscFV. Differentially 
expressed genes are indicated in green or orange. Gray dots indicate unaffected 
genes. p300, ep300; G9a, Ehmt2; Ring1b, Rnf2. P values in all panels were 
calculated by one-tailed unpaired t-test. *P < 0.05, **P < 0.01, ***P < 0.001.
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simultaneously and thus render it challenging to distinguish direct 
from indirect effects. Indeed, chromatin-modifying enzymes also have 
multiple non-histone substrates21,22 and non-catalytic roles23,24, which 
further complicates interpretation of their loss of function. Thus, the 
extent to which chromatin modifications per se causally instruct gene 
expression states remains unresolved.

A deeper understanding of the functional role of epigenetic modi-
fications on DNA-templated processes would be facilitated by the devel-
opment of tools for precision chromatin perturbations. Epigenome 
editing technologies that enable manipulation of specific chromatin 
states at target loci have recently emerged, primarily based around 
programmable dead Cas9 (dCas9)-fusion systems25,26. For example, 
p300 and histone deacetylase 3 (HDAC3) have been fused to dCas9 
to reciprocally modulate histone acetylation, while other systems 
aimed to edit DNA methylation, H3K27me3, H3K4me3 and H3K79me2 
(refs. 27–36). Such pioneering studies revealed proof of principle 
that altering the epigenome can induce at least some changes in gene 
expression. However, the transcriptional responses to specific marks 
are generally modest, if at all, and register at only a restricted set of 
target genes. This may partly reflect technical limitations of current 
approaches in depositing physiological levels of chromatin modifica-
tions, but also implies that their functional impact varies depending on 
context-dependent influences. Indeed, there is increasing appreciation 
that factors such as underlying DNA motifs and variants, and the cell 
type-specific repertoire of TFs, will all modulate the precise impact of a 
chromatin modification at a given locus37,38. Thus, beyond the principle 
of causality, it is also important to deconvolve the degree to which each 
chromatin mark affects transcription levels quantitatively (as opposed 
to an ON–OFF toggle), how DNA sequence context influences this and 
the hierarchical relationships involved.

Here, we develop a suite of modular epigenome editing tools to 
systematically program nine biologically important chromatin modifica-
tions to target loci at physiological levels. By coupling this with single-cell 
readouts, we capture the causal and quantitative impact of specific 
modification(s) on transcription. We further show that epigenetic marks 
are linked to each other by hierarchical interplays, act combinatorially, 
and are functionally influenced by underlying sequence motifs.

Results
A toolkit for precision epigenome editing at endogenous loci
We sought to engineer a modular epigenome editing system that can 
program de novo chromatin modification(s) to target loci at physi-
ological levels. To achieve this, we exploited a catalytically inactive 
dCas9 fused with an optimized tail array of GCN4 motifs (dCas9GCN4)39,40. 
This tethers five scFV-tagged epigenetic ‘effectors’ to genomic targets, 
thereby amplifying editing activity (Fig. 1a). To program a broad range of 
chromatin modifications, we built a library of effectors, each compris-
ing the catalytic domain (CD) of a DNA- or histone-modifying enzyme 
linked with scFV (collectively, CDscFV). By isolating the CD, we can 
exclude confounding effects of tethering entire chromatin-modifying 
proteins, which can exert non-catalytic regulatory activity. The toolkit 
includes catalytic cores that deposit H3K4me3 (Prdm9-CDscFV), H3K27ac 

(p300-CDscFV), H3K79me2 (Dot1l-CDscFV), H3K9me2 (G9a-CDscFV), 
H3K36me3 (Setd2-CDscFV), DNA methylation (Dnmt3a3l-CDscFV), 
H2AK119ub (Ring1b-CDscFV) and full-length (FL) enzymes that write 
H3K27me3 (Ezh2-FLscFV) and H4K20me3 (Kmt5c-FLscFV) (Fig. 1a). As 
further controls, we generated catalytic point mutants for each CDscFV 
effector (mut-CDscFV) that specifically abrogate their enzymatic activity 
(Extended Data Fig. 1a). Our strategy therefore enables direct assess-
ment of the functional role of the deposited chromatin mark per se.

We engineered the system to be doxycycline (DOX) inducible for 
dynamic epigenetic editing and used an enhanced guide RNA (gRNA) 
scaffold for targeting41. Moreover, all CDscFV effectors were tagged 
with superfolder green fluorescent protein (GFP) to monitor pro-
tein stability, to track dynamics and to isolate epigenetically edited 
populations (Extended Data Fig. 1b–d). Finally, up to three nuclear 
localization sequences were incorporated into effectors, as fewer 
often precluded nuclear accumulation, for example, for Dot1l-CDscFV 
(Extended Data Fig. 1e).

To test for epigenome editing, we introduced dCas9GCN4 and 
each CDscFV into mouse embryonic stem cells (ESCs) with the piggy-
Bac system and targeted the endogenous Hbb-y locus with a single 
gRNA. Following DOX induction, each effector directed significant 
deposition of its chromatin modification relative to recruitment of 
GFPscFV, judged by quantitative cleavage under targets and release 
using nuclease (CUT&RUN–quantitative PCR (qPCR)). This includes 
de novo establishment of H3K27ac (P = 0.0003), H3K4me3 (P = 0.011), 
H3K79me2 (P = 0.029), H4K20me3 (P = 0.001), H3K27me3 (P = 0.0006), 
H2AK119ub (P = 0.0002), H3K36me3 (P = 0.001), H3K9me2/3 
(P = 0.0002) (Fig. 1b) and DNA methylation (P < 0.0001) (Fig. 1c).

To determine the quantitative level and genomic spreading 
of installed chromatin marks, we independently assessed enrich-
ment across the entire Hbb-y locus. We observed a peak around the 
gRNA-binding site, with programmed domains extending >2 kb on 
either side. Enrichment of targeted histone modifications ranged from 
sevenfold to >20-fold over background (Fig. 1d–i) and, importantly, 
was quantitatively comparable to strong positive peaks in most cases. 
For example, H3K4me3 installation at Hbb-y was equivalent to that 
at highly marked Pou5f1 (Oct4) and Nanog promoters (Fig. 1d), while 
de novo H3K27me3 and H2AK119ub were similar to those at Polycomb 
targets Zic4 and Wnt10a (Fig. 1e,f). Moreover, de novo H3K36me3, 
H3K79me2 and H4K20me3 were equivalent to endogenous peaks, 
while H3K9me2/3 and H3K27ac were deposited at moderately lower 
levels (Fig. 1g–i and Extended Data Fig. 1f). Finally, up to 60% DNA meth-
ylation was installed at previously unmethylated promoters (Fig. 1j).

We did not detect OFF-target chromatin mark deposition at nega-
tive (nontargeted) loci with most effectors (Fig. 1d–i and Extended 
Data Fig. 1f). Indeed, analysis of the highly active Prdm9-CDscFV effec-
tor revealed robust H3K4me3 installation at ON-target Hbb-y but only 
six other de novo sites genome wide, implying that our recruitment 
strategy largely facilitates ON-target chromatin editing (Extended Data 
Fig. 2a,b). We further tested for indirect and OFF-target effects at the 
functional level by performing RNA-seq following induction of each 
epigenome editing system. We observed no toxicity and only minor 

Fig. 2 | Distinct chromatin modifications causally instruct transcriptional 
responses. a, Schematic depicting the structure of the REF reporter and its 
targeted integration into either a transcriptionally permissive (chr9, ON) or 
nonpermissive (chr13, OFF) locus. Asterisks indicate gRNA target sites within the 
neutral DNA context. UTR, untranslated region.; pA, poly-A tail; TE, transposable 
element. b, Representative fluorescence images (left) and expression from 
quantitative flow cytometry (right) showing activity of the REF reporter when 
integrated into either the permissive or nonpermissive locus. n = 1,000 individual 
cells; reading was performed for three independent experiments. Bars denote 
the geometric mean. The P value was determined by two-tailed unpaired t-test. 
Scale bars, 100 μm. c–k, Programming of a specific chromatin modification 
(left) and transcriptional responses in single cells (right) for H2AK119ub (c), 

H3K9me2/3 (d), DNA methylation (e), H3K4me3 (f), H3K27ac (g), H3K79me2 (h), 
H4K20me3 (i), H3K36me3 (j) and H3K27me3 (k). Left: histogram showing relative 
(rel.) enrichment of the indicated chromatin modification after targeting control 
GFPscFV (gray bar), wild-type CDscFV (red bar) or catalytically inactive mut-CDscFV 
(blue bar) for 7 d. Displayed is the mean of at least two independent quantitations 
by CUT&RUN–qPCR or ChIP–qPCR. Error bars represent s.d. Rep, reporter. Right: 
dot plot showing log10 (mCherry expression) in response to epigenetic editing 
of the indicated chromatin mark. n = 250 individual cells; bars denote geometric 
mean of the population; gray shading indicates control geometric mean. Reading 
was performed for four independent experiments. P values were calculated by 
one-way ANOVA with Tukey’s multiple-test correction.
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changes in global gene expression (Fig. 1k). An exception is p300-CDscFV, 
which elicited indirect expression changes and reduced cell viability. 
To mitigate this, we limited p300-CDscFV induction by using DOX at a 
concentration 20-fold lower (Extended Data Fig. 2c,d). Overall, the data 
suggest that OFF-target and/or indirect effects are minimized with our 
modular CDscFV recruitment design.

Thus, we developed a flexible epigenome editing toolkit capable 
of programming high levels of nine key chromatin modifications to 
specific endogenous loci. The system includes multiple controls to 
isolate the causal function of chromatin modifications per se, is com-
patible with combinatorial targeting, and can track temporally resolved 
responses and epigenetic memory.

Chromatin modifications can instruct transcriptional outputs
To investigate the direct regulatory role of chromatin modifications 
on transcription, we initially engineered a reporter system that facili-
tates quantitative single-cell readouts. We embedded the endogenous 
Ef1a (Eef1a1) core promoter (212 bp) into a contextual DNA sequence 
(~3 kb) selected from the human genome to be feature neutral: it car-
ries no transposable elements, has ~50% GC content and has minimal 
TF motifs (Fig. 2a). We inserted the sequences for this ‘reference’ (REF) 
reporter into two genomic locations, chosen to be either permissive 
(chromosome (chr)9) or nonpermissive (chr13) for transcriptional 
activity (Fig. 2a). Consistently, knock-in to the permissive locus sup-
ported strong expression (ON), whereas the nonpermissive landing 
site resulted in minimal activity (OFF), which partially reflects acquisi-
tion of Polycomb silencing (Fig. 2b and Extended Data Fig. 2e,f). These 
identical reporters residing within distinct genomic locations thus 
enable assessment of both activating and repressive activity of induced 
chromatin modifications on the same underlying DNA sequence.

We targeted each CDscFV to each reporter and confirmed signifi-
cant programming of the expected chromatin modification (Fig. 2c–k, 
left). Importantly, catalytic mutant effectors (mut-CDscFV) did not 
change the chromatin state (Fig. 2c–k). We therefore moved to assess 
the functional impact of each programmed mark on transcription 
quantitatively and in single cells by flow cytometry. Using this sen-
sitive strategy, we grouped chromatin marks into three functional 
categories: (1) modifications that instruct transcriptional repression, 
with penetrance across the majority fraction of cells, (2) modifica-
tions that trigger transcription activation, with majority penetrance 
and (3) modifications that have subtle and/or partially penetrant 
transcriptional effects.

The first group is characterized by the Polycomb repressive 
complex 1 (PRC1) modification H2AK119ub and heterochromatic 
H3K9me2, which is endogenously converted to H3K9me3. De novo 
deposition of either H2AK119ub or H3K9me2/3 is sufficient to drive 

silencing of the permissive (ON) reporter >100-fold in some cells, with  
average repression exceeding tenfold (geometric mean) (Fig. 2c,d, 
right). Moreover, while there was heterogeneity, >98% of cells shifted 
expression below the average level of control GFPscFV. DNA methylation 
is also included here, as it elicited penetrant albeit modest effects, aver-
aging 1.9-fold (±0.1 s.d.) repression (Fig. 2e and Extended Data Fig. 3a). 
Targeting mut-Ring1B-CDscFV, mut-G9a-CDscFV or mut-Dnmt3a3l-CDscFV 
had no significant impact on expression (Fig. 2c–e). This indicates 
that H2AK119ub and H3K9me2/3 marks per se are sufficient to caus-
ally instruct silencing, while partial (~50%) DNA methylation causes 
moderate repression.

The second group induced quantitative transcriptional activation 
when deposited at a repressed promoter and comprised H3K4me3, 
H3K27ac and H3K79me2. Programming each mark triggered a repro-
ducible population shift leading to 18.1-fold (±3.8 (s.d.)), 3.5-fold (±0.2) 
and 2.4-fold (±0.4) increased expression, respectively, with some cells 
activating >50-fold over the GFPscFV control (Fig. 2f–h). Moreover, 
programming H3K4me3 to the active (ON) locus shifted cells into a 
homogenous state of maximal expression (Extended Data Fig. 3b). 
Targeting catalytically inactive mut-Prdm9-CDscFV, mut-p300-CDscFV 
or mut-Dot1l-CDscFV did not affect transcription, indicating that the 
marks per se are responsible.

The third functional group elicited variable or weak repressive 
responses and comprised H4K20me3, H3K36me3 and H3K27me3. 
Repression amounted to 1.6-fold (±0.3 (s.d.)), 1.2-fold (±0.1) and 1.5-fold 
(±0.1) (geometric mean) at the population level, respectively, with the 
relevant catalytic mutant CDscFV controls bearing no effect (Fig. 2i–k). 
Notably, these marks triggered repression in a highly heterogeneous 
manner, >50-fold in some cells, but with the majority of cells remain-
ing within the original expression range (Fig. 2i–k and Extended Data 
Fig. 3c). Because other equivalently enriched modifications provoked 
more penetrant impacts, these heterogeneous responses likely reflect 
biological rather than technical outcomes.

We next assessed other response parameters to programming each 
modification. We first captured the temporal dynamics of transcrip-
tional changes, noting that, while the majority of the response occurred 
by day 2, differences between marks arose. For example, H3K9me2 
elicits its repressive activity faster than H2AK119ub (Extended Data 
Fig. 4a). We also found that promoter accessibility correlated well with 
the directionality of gene expression change induced by epigenetic 
editing, supporting an impact of modifications on transcriptional 
levels rather than post-transcriptional levels (Extended Data Fig. 4b). 
Finally, we observed a dose-dependent correlation between the induc-
tion level of the epigenetic editing machinery and target expression 
changes, suggesting that gene activity can be tuned with chromatin 
modifications (Extended Data Fig. 4c).

Fig. 3 | De novo H3K4me3 triggers transcription upregulation. a, H3K4me3 
enrichment over the transcriptional start site (TSS) ±5 kb in wild-type and  
Mll2CM/CM ESCs, stratified according to H3K4me3 changes in Mll2CM/CM ESCs. b, MA 
plot of expression change for each gene in Mll2CM/CM ESCs, colored by whether the 
promoter loses H3K4me3 (green) or retains H3K4me3 (red). WT, wild type.  
c, Bar plots showing expression of the indicated genes in wild-type, Mll2CM/CM and 
Mll2CM/CM + Prdm9scFV ESCs, in which H3K4me3 has been programmed back to a 
repressed promoter that previously lost H3K4me3. Shown is the mean of three 
biological replicates assayed by qPCR with reverse transcription (RT–qPCR). 
Error bars represent s.d., and significance of rescue was calculated by two-tailed 
unpaired t-test. d, Bar plots of endogenous gene expression in wild-type ESCs 
and upon programming H3K4me3 with Prdm9scFV or control mut-Prdm9scFV. Data 
are the mean of biological triplicates; error bars represent s.d. Significance was 
calculated by one-way ANOVA with Tukey’s correction. Oct6 (Pou3f1). e, Dot plots 
showing single-cell expression of the OFF reporter after targeting with different 
H3K4me3 effectors: Prdm9scFV (left) or Setd1ascFV (right). n = 500 individual cells; 
bars denote the geometric mean. Reading was performed for three independent 
experiments. f, Bar plots of mean gene expression in wild-type ESCs targeted with 

Setd1ascFV or untargeted (−DOX), assayed by RT–qPCR from biological triplicates. 
Error bars, s.d. with significance calculated by two-tailed unpaired t-test.  
g, Epigenetic landscape response at the OFF reporter before (−DOX) and after 
(+DOX) targeted H3K4me3 programming. Histone modification enrichment 
is indicated across ~2 kb. n = 3 independent experiments with significance 
calculated by two-tailed unpaired t-test. h, Left: bar plots showing that the 
mean percentage of mCherry-positive cells is restricted after (+DOX) H3K4me3 
installation by Prdm9scFV in the presence or absence of the p300 inhibitor (inh) 
A485. Con, control. Data are biological triplicates; error bars represent s.d. 
P values were calculated by two-way ANOVA with Tukey’s correction. Right: 
relative abundance of the indicated histone modifications after programming 
H3K4me3 (+DOX) in the presence of A485. n = 3 independent experiments, with 
significance calculated by two-tailed unpaired t-test. i, Schematic of the strategy 
and scatterplot showing genes that depend on MLL2-mediated promoter 
H3K4me3 for upregulation (up) during the ESC transition to EpiLCs. Significant 
genes are colored. j, Dot plots showing normalized log expression of each gene 
(n = 498) that is normally activated in wild-type EpiLCs but fails to be upregulated 
in Mll2CM/CM cells. Where indicated, *P < 0.05, **P < 0.01, ***P < 0.001.
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In summary, by exploiting a sensitive single-cell readout and 
precision epigenome editing, we capture that de novo epigenetic 
marks can causally instigate quantitative changes in gene expression.  
We report the magnitude and nature of these changes, which vary 
from robust, to subtle and/or heterogeneous, to nonfunctional, 
depending on the identity of the mark and the genomic context. 
These data thus support the principle that each chromatin modifica-
tion tested here has the potential to directly influence transcription 

output when measured at an appropriate quantitative and single- 
cell resolution.

H3K4me3 can trigger transcription upregulation
Among the salient impacts of epigenome editing was robust reporter 
activation by H3K4me3 deposition (Fig. 2f). H3K4me3 is universally 
correlated with transcriptional activity, yet whether it can instruct 
expression or is merely a consequential marker is intensely debated42,43. 
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To probe this further, we generated ESCs with homozygous knock-in 
Y2602A catalytic point mutations (CM) in the H3K4 methylase  
gene Mll2 (Kmt2b), which specifically disrupts its enzymatic activity 
(Mll2CM/CM). This enables loss of H3K4me3 per se to be assessed without 
confounding issues associated with deletion of MLL2 protein and com-
plexes. CUT&RUN-seq identified 3,102 H3K4me3 promoter peaks that 
are lost in Mll2CM/CM ESCs, while 15,244 promoters retained H3K4me3 
due to redundant H3K4me3 methylases (Fig. 3a). Among promoters 
depleted of H3K4me3, almost all exhibited reduced expression as a 
consequence (P < 0.0001), while promoter clusters that maintained 
H3K4me3 showed no change (P = 0.53) (Fig. 3b and Extended Data 
Fig. 5a). Indeed, 98% (347) of significantly differential genes (adjusted 
P (Padj) < 0.05, fold change > 2) within the H3K4me3-loss cluster were 
downregulated, with just 2% (six) upregulated (Extended Data Fig. 5b). 
Profiling the chromatin landscape in Mll2CM/CM ESCs revealed that 
elimination of promoter H3K4me3 triggered a secondary depletion 
of H3K27ac and gain of H3K27me3 domains (Extended Data Fig. 5c,d). 
Thus, specifically removing H3K4me3 unmasks the potential for silenc-
ing a subset of genes that were previously active.

To distinguish whether H3K4me3 simply safeguards against silenc-
ing versus whether H3K4me3 is capable of instigating transcriptional 
upregulation, we next programmed H3K4me3 back to genes that 
became repressed due to H3K4me3 loss in Mll2CM/CM cells. Upon DOX 
induction of Prdm9-CDscFV to restore H3K4me3, all targeted genes 
showed a trend of reactivation, with five out of seven reaching signifi-
cant transcriptional rescue, including Setmar, Ttll4 and Ddx4 (Fig. 3c 
and Extended Data Fig. 6a,b). By contrast, the control Pldn (Bloc1s6) 
gene, which was downregulated without H3K4me3 loss, exhibited no 
reactivation (Extended Data Fig. 6b). Thus, (re)acquisition of H3K4me3 
can activate endogenous genes that were previously expressed before 
genetically-induced depletion of H3K4me3. To examine whether 
H3K4me3 can also instigate expression of genes that were never active 
in a given cell type, we targeted H3K4me3 to eight silent promoters in 
naive ESCs. Installation of H3K4me3 resulted in significant activation at 
three out of eight of these genes, with maximal upregulation reaching 
>400-fold at Cldn16 (Fig. 3d and Extended Data Fig. 6c). Importantly, 
targeting the catalytically inactive mut-Prdm9-CDscFV had no detectable 
impact. Forced H3K4me3 programming at promoters can therefore 
overcome silencing to instigate transcription, at least at some genes, 
and this reflects activity of the H3K4me3 mark itself.

To validate this further, we generated a second H3K4me3 effec-
tor based on the catalytic core of SET domain-containing protein 
1A (Setd1a-CDscFV). We targeted compound Setd1a-CDscFV to the 
OFF reporter, which triggered robust activation (Fig. 3e). Indeed, 
>85% of cells expressed above the control average in response to 
Setd1a-CDscFV-mediated H3K4me3, with 3.3-fold (±0.3 s.d.) increased 
transcription across the population. The catalytically inactive 
mut-Setd1a-CDscFV effector had no impact (Fig. 3e). We also targeted 
endogenous genes with Setd1a-CDscFV and again observed significant 
transcription activation of some (two of four) (Fig. 3f). Of note, the rela-
tive activation induced by each effector (Prdm9-CDscFV > Setd1a-CDscFV) 
correlated with the amount of H3K4me3 they respectively depos-
ited (Extended Data Fig. 6d), suggesting a dose-dependent impact of 
H3K4me3. Consistently, responding cells within a population acquire 
more H3K4me3 than less-responsive cells (Extended Data Fig. 6e). 
In sum, independent targeted gain-of-function approaches support 
the principle that sufficient H3K4me3 can trigger transcription at 
otherwise silent promoters. Furthermore, the data show that, in some 
instances, de novo H3K4me3 is not sufficient to activate transcription.

Functional implications of promoter H3K4me3
We next investigated the mechanisms through which H3K4me3 oper-
ates by initially asking whether de novo H3K4me3 remodels the local 
chromatin landscape. Installing H3K4me3 to the OFF reporter caused a 
highly significant secondary depletion of the Polycomb mark H3K27me3 

(Fig. 3g), which is the reciprocal response to removing H3K4me3 
(Extended Data Fig. 5c,d). Programming H3K4me3 also triggers a major 
gain of H3K27 acetylation (Fig. 3g). Because histone acetylation is linked 
with active transcription, we tested the functional implications of this by 
installing H3K4me3 with or without the p300 and CREB-binding protein 
(CBP) inhibitor A485, which blocks acetyltransferase activity44. A485 did 
not affect efficient programming of H3K4me3 but did restrict down-
stream activation to <10% of cells, compared to ~70% in no-inhibitor 
controls (Fig. 3h and Extended Data Fig. 6f). Programming H3K4me3 in 
the presence of A485 also largely blocked displacement of H3K27me3. 
This supports a hierarchical model by which de novo H3K4me3 function-
ally operates, at least partially, by facilitating promoter acetylation and 
evicting epigenetic silencing systems such as Polycomb.

To examine whether H3K4me3 contributes to gene activation 
programs during development, we induced differentiation of naive 
Mll2CM/CM ESCs into formative epiblast-like cells (EpiLCs). This entails 
activation of 3,130 genes (Padj < 0.05, log2 (fold change) > 2) in wild-type 
cells. The majority of these activated normally in Mll2CM/CM EpiLCs, 
while naive and formative markers also exhibited dynamics indistin-
guishable from those of the wild type, suggesting that mutant EpiLCs 
acquire appropriate cell identity (Fig. 3i and Extended Data Fig. 7a–c). 
Nevertheless, among the 3,130 genes that normally undergo upregu-
lation, 498 exhibited significant failure in Mll2CM/CM EpiLCs (Fig. 3i,j). 
Most (63%) were either silent or lowly expressed in precursor ESCs 
(log2 (reads per million (RPM)) < 0.1), suggesting that MLL2-mediated 
H3K4me3 participates in timely de novo activation of genes during cell 
fate transition (Extended Data Fig. 7d). For example, Col1a2 and Spon1 
normally acquire promoter H3K4me3 and evict H3K27me3 coincident 
with activation in EpiLCs but fail to be upregulated in Mll2CM/CM EpiLCs 
(Extended Data Fig. 7e).

In summary, our complementary precision gain-of-function and 
loss-of-function strategies demonstrate that de novo H3K4me3 installa-
tion is sufficient to remodel the local chromatin landscape and instigate 
transcription upregulation, at least at some genes, rather than only 
reflecting a consequence of activity.

Epigenetic–genetic interactions modulate transcription
The precise functional impact of a given histone modification is likely 
dependent on contextual interactions, including with the underlying 
DNA sequence features. To investigate this interplay, we generated an 
allelic series of reporters in which each comprises an identical ~3-kb 
REF sequence but is distinguished by insertion of short DNA motifs 
(8–14 bp) (Fig. 4a). We employed motifs corresponding to binding 
sites of TFs (OCT4, OTX, EBOX, GATA), or that impact chromatin 
architecture by recruitment of proteins (TFs CTCF, YY1) or by forming 
G-quadruplexes (G4-U, G4-D)45,46 (Fig. 4a and Extended Data Fig. 8a). 
We knocked in the sequence for each reporter to the permissive (ON) 
and nonpermissive (OFF) genomic landing sites (Fig. 2a). Most motifs 
did not impact baseline expression, albeit the inclusion of CTCF, G4-U 
or YY1 motifs subtly altered activity (Fig. 4b). Overall, we generated 
a reporter series that carries specific DNA sequence variants within 
highly controlled genomic environment(s).

To systematically explore cis genetic–epigenetic functional inter-
plays, we installed each chromatin modification to each reporter, 
within each genomic context. We first focused on the ‘ON’ reporter(s), 
where repressive modifications generally exhibited coherent effects 
across the series. For instance, H3K9me2/3 and H2AK119ub manifested 
strong silencing irrespective of most underlying motifs (Fig. 4c). Nev-
ertheless, we did observe striking interactions between specific marks 
and cis genetics (Fig. 4c and Extended Data Fig. 8b,c). For example, 
the presence of YY1 motifs within an otherwise identical sequence 
effectively blocked H2AK119ub- and H3K27me3-mediated transcrip-
tional repression. Such YY1 sites also dampened the quantitative 
impact of DNA methylation and H3K9me2/3 (Fig. 4c). Conversely, 
OTX motifs rendered the reporter more amenable to repression by 
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DNA methylation. The most striking observation related to switch-like 
behavior of H3K36me3. Here, programming H3K36me3 specifically on 
the +CTCF reporter imposed highly significant gene silencing beyond 
levels observed for any other modification (Fig. 4c).

To validate these contextual relationships, we generated inde-
pendent knock-in reporter lines. We confirmed that inclusion of cis YY1 
motifs buffered the repressive activity of H2AK119ub and H3K9me2/3 
(Fig. 4d,e). Quantitatively, this meant that expression was diminished by 
only 1.5-fold and 4.3-fold by H2AK119ub and H3K9me2/3, respectively, 
rather than 6.1-fold and 18.5-fold repression on the REF reporter lack-
ing 12-bp YY1 sites. While the link between DNA methylation and OTX 
motifs was variable (Extended Data Fig. 8c), we reproducibly observed 
that inclusion of CTCF motifs licensed H3K36me3 to instruct transcrip-
tional silencing exceeding 20-fold at the population level, with >98% of 
cells responding (Fig. 4f and Extended Data Fig. 8b). By contrast, there 
was almost no effect of programming H3K36me3 on the REF reporter.

Taken together, these data exploit a controlled system to reveal 
that underlying genetic motifs or variants mediate complex regula-
tory interactions with epigenetic modifications that quantitatively 
influence the transcriptional response. This implies that the precise 
function of a chromatin modification ‘peak’ is not unequivocal but 
highly context-dependent.

Context-dependent impact of H3K36me3
To explore context dependency further, we focused on the H3K36me3 
interaction with CTCF. We first confirmed that transcription responses 

are driven by H3K36me3 itself, as targeting mut-Setd2-CDscFV to the 
+CTCF reporter had no impact (Fig. 5a). Moreover, H3K36me3 is 
programmed to comparable levels on both REF and +CTCF report-
ers, ruling out technical disparities in epigenome editing (Fig. 5b). 
We therefore investigated the nature of CTCF motif dependency by 
first knocking-in reporters with CTCF motifs in varied orientations, 
which influences their ability to form chromatin loop structures47. 
Programming H3K36me3 was sufficient to repress all CTCF-containing 
sequences, albeit with some quantitative differences between arrange-
ments (Fig. 5c), implying that the functional interaction between 
H3K36me3 and CTCF motifs is mostly independent of orientation.

We next assessed the hierarchical impact of installing H3K36me3 on 
other epigenomic features. We found that H3K4me3 sharply decreased 
upon programming H3K36me3 at the +CTCF reporter but remained 
unaffected in the REF context (Fig. 5d). While H3K27me3 and H3K9me3 
were unaltered, DNA methylation was also specifically increased on 
the +CTCF reporter by H3K36me3 installation (Fig. 5d and Extended 
Data Fig. 9a,b). Thus, equivalent levels of H3K36me3 induce different 
epigenetic cascades depending on the underlying genetic sequence or 
motifs. To test the importance of this epigenomic cascade, we targeted 
Setd2-CDscFV to the +CTCF reporter coincident with 5-azacytidine (AZA), 
a potent DNA methylation inhibitor. AZA reduced the fraction of cells 
that switch OFF the +CTCF reporter in response to H3K36me3, implying 
a partial downstream role for DNA methylation (Fig. 5e). We conclude 
that the functional output of H3K36me3 is sensitive to the cis genomic 
sequence and its susceptibility to epigenomic remodeling.

Permissive (ON) locus

REF G4-D OTX OCT GATA EBOX YY1 CTCF G4-USi
ng

le
-c

el
l l

og
10

 (e
xp

re
ss

io
n)

TF or structural motif insertion(s)

95% 
CI

b

102

103

105

104

G4-D

G4-U

YY1

CTCF

OCT

GATA

OTX

EBOX

REF

Baseline reporter expressionSt
ru

ct
ur

al
m

ot
if

TF
 m

ot
if

d2 d7d2 d7d2 d7d2 d7
+DOX

d2 d7
+DOX

d2 d7
+DOX

d2 d7
+DOX

(20× lower
concentration)

d2 d7

−3 −2 −1 0 1 2 3 104 304 504

log2 (FC) expression
(norm. to GFPscFV)

Abs. exp
(geo mean)

c H3K4me3

(Prdm9
scFV )

H3K27ac

(p300
scFV )

H3K79me2

(Dot1l
scFV )

H3K36me3

(Setd2
scFV )

DNAme

(Dnmt3a3ls
cFV )

H3K9me2

(G
9as

cFV )

H4K20me3

(Kmt5c
scFV )

H2Aub

(Ring1b
scFV )

H3K27me3

(Ezh
2
scFV )

GFP
scFV

d2 d7
+DOX

H3K36me3
d

101

102

103

105

104

H3K9me2/3H2AK119ub

GFP
sc

FV

GFP
sc

FV

GFP
sc

FV

Setd
2
sc

FV

GFP
sc

FV

Setd
2
sc

FV

G9a
sc

FV

GFP
sc

FV

G9a
sc

FV

Ring1b
sc

FV

Ring1b
sc

FV

GFP
sc

FV
Si

ng
le

-c
el

l l
og

10
 (e

xp
re

ss
io

n)

fe

Permissive locus Nonpermissive locus

REF +CTCF motifREF +YY1 motifREF +YY1 motif

a
Re

po
rt

er
 s

er
ie

s

mCherry2
OCT OCT OCT

mCherry2
EBOX EBOX EBOX

mCherry2
GATA GATA GATA

mCherry2
OTX OTX OTX

mCherry2
CTCF CTCF CTCF

mCherry2
YY1 YY1 YY1

mCherry2
G4-U

mCherry2
G4-D

TF motifs Structural motifs

DNA motif
(8–14 bp)

mCherry2REF
3 kb

Fig. 4 | Functional interplay between chromatin marks and TF motifs. 
a, Schematic of the reporter series in which each is identical apart from 
the insertion of specific short sequence motifs. b, Dot plots of mCherry2 
expression from the indicated reporter type, integrated in either the permissive 
or the nonpermissive locus. Each data point represents a single cell (n = 500),  
and bars denote the geometric mean. Reading was performed for four 
independent experiments. CI, confidence interval. c, Heatmap showing the 
log2 (fold change (FC)) in transcription at the ON locus upon programming the 
indicated chromatin mark (x axis) to the indicated cis motif reporter (y axis),  

relative to control GFPscFV targeting. Data are shown after 2 d (d2) and 7 d (d7) 
of DOX-induced epigenetic editing and correspond to the average of four 
technical replicates. Abs., absolute; exp, expression; geo, geometric. d–f, Dot 
plots showing independent validations of functional interactions between 
programmed epigenetic marks (H2AK119ub (d), H3K9me3 (e), H3K36me3 (f)) 
and the underlying sequence motifs (REF versus +YY1 motif (d,e), REF versus 
+CTCF motif (f)). Each data point is log10 (expression) in a single cell (n = 500) 
carrying the indicated reporter, and bars denote geometric mean.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | June 2024 | 1168–1180 1176

Article https://doi.org/10.1038/s41588-024-01706-w

To investigate whether H3K36me3 sequence dependency is rel-
evant for endogenous gene regulation, we derived Setd2-knockout ESCs 
that lack H3K36me3. While H3K36me3 is rarely enriched at promoters, 
several of the most derepressed genes were modified by promoter 
H3K36me3 (Extended Data Fig. 9c–e). In particular, the X-inactivation 
regulator Xist is associated with both promoter H3K36me3 and 
CTCF motifs and was highly upregulated in Setd2−/− cells (Fig. 5f,g).  

To dissect the functional relevance of these (epi)genetic features, we 
programmed H3K36me3 back to the Xist promoter in Setd2−/− female 
ESCs (Fig. 5h). This resulted in re-imposition of transcriptional silencing 
in independent Setd2−/− lines (>50-fold), supporting the principle that 
H3K36me3 can function at endogenous promoters (Fig. 5i and Extended 
Data Fig. 9f). To test the role of underlying CTCF motifs for this effect, 
we deleted the Xist-adjacent CTCF sequence in Setd2−/− ESCs and then 
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again re-installed H3K36me3 by epigenome editing. The absence of 
this CTCF motif resulted in failure of H3K36me3 to reimpose silencing 
at Xist (Fig. 5j). This suggests that the interplays between cis sequence 
and epigenome function we identified are physiologically relevant.

Functional interaction between activating marks and  
TF motifs
To examine genetic–epigenetic interplays further, we tested interac-
tions at the nonpermissive locus. We found that H3K27ac is recipro-
cally modulated by short motifs, with EBOX and YY1 attenuating and 
OTX enhancing H3K27ac output (Fig. 6a–c). We also reproducibly 
confirmed that H3K4me3 is quantitatively impacted by underly-
ing OCT4, CTCF and EBOX cis contexts, with the latter attenuating 
H3K4me3 activity (Fig. 6d,e and Extended Data Fig. 8c). Because EBOX 
can recruit repressive PRC1.6 complexes48, we hypothesized that this 
counteracts H3K4me3. To test this, we generated Pcgf6−/− cells that lack 
PRC1.6 and installed H3K4me3 to the +EBOX reporter. This rescued 
H3K4me3 functional attenuation relative to wild type (Fig. 6f,g), sug-
gesting that PRC1.6 recruitment via EBOX motifs provides a genetically 
encoded mechanism to threshold maximal induction. These data 
further underscore the relevance of genomic context for quantitative 
epigenome function.

Epigenetic memory of chromatin marks in ESCs
We next deployed our editing toolkit to interrogate other regulatory 
questions. We first asked whether epigenetically programmed tran-
scriptional states are inherited through mitotic divisions and whether 
DNA context impacts this. We targeted each CDscFV to each reporter in 
each genomic context to install the panel of epigenetic modifications 
and then withdrew DOX to remove the inducing signal. Despite robust 
initial transcriptional responses, upon a 7-d washout of the editing 
machinery, we observed no significant long-term memory of either 
activated or repressed reporter activity (Fig. 7a,b). This was evident for 
all tested genetic contexts and regardless of genomic location, implying 
that transcriptional changes instigated by de novo chromatin marks 
are robustly reset to baseline in naive ESCs. Such lack of ‘epigenetic 
memory’ may reflect the unique ESC cell type, as acquired heterochro-
matin domains also do not propagate in naive pluripotent cells but do 
so in differentiated cellular contexts40.

Functional synergy of H3K27me3 and H2AK119ub
We finally asked whether and to what extent combinatorial chroma-
tin marks interact with one another to synergize or antagonize their 
quantitative effects on transcription. We exploited our modular 
system to induce pairs of CDscFV, focusing on marks that co-occur on 
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chromatin. Among functional interactions, we noted that co-deposition 
of H3K9me2/3 and DNA methylation (G9a-CDscFV and Dnmt3a3l-CDscFV) 
increased the transcriptional response, relative to each mark singularly 
(Fig. 7c). Specifically, while the maximal level of repression among sin-
gle cells was similar to that of H3K9me2/3 alone, there was an increase 
in the fraction of cells that fully silenced expression when DNA methyla-
tion was co-targeted (35% ± 6% versus 41% ± 4%), indicating that these 
marks may cooperate to confer robustness (Fig. 7c and Extended Data 
Fig. 10a). Accordingly, when DNA methylation was inhibited following 
H3K9me2/3 deposition using AZA (Extended Data Fig. 10b), an elevated 
percentage of cells did not fully silence reporter activity (Extended 
Data Fig. 10c).

The most striking synergy, however, came from co-targeting 
H3K27me3 and H2AK119ub (Ezh2-CDscFV and Ring1b-CDscFV), which insti-
gated a significant increase in the single-cell penetrance of silencing, 
relative to installing either mark individually (Fig. 7c–e and Extended 
Data Fig. 10d,e). We confirmed that significant levels of both H3K27me3 
and H2AK119ub were programmed by combinatorial targeting (Fig. 7d). 
Moreover, independent ESC lines supported the notion that multiplex 
epigenetic editing led to functional synergism, with 41% (±7% s.d.) of 
cells reaching the fully OFF state, relative to deposition of H2AK119ub 
(28% ± 7%, P = 0.029) or H3K27me3 (7% ± 3%, P < 0.001) alone (Fig. 7e 
and Extended Data Fig. 10e). Importantly, catalytic mutant effectors 

registered only a subtle negative effect on reporter activity. Overall, 
these data suggest that combinatorial chromatin modifications can 
increase the single-cell penetrance of transcriptional responses, with 
H3K27me3 and H2AK119ub together exemplifying effects that are at 
least additive and potentially synergistic. Such functional interactions 
between marks provides an additional layer of context dependency 
and further uncovers the parameters that modulate the quantitative 
effects of chromatin modifications.

Discussion
The extent to which specific chromatin modifications are causative or 
consequential of DNA-templated processes and in which contexts is 
an area of intense debate37,42. To address this, we developed a compre-
hensive epigenome editing toolkit that enables de novo installation 
of nine key chromatin marks at precise genomic loci with high effi-
ciency. We leverage this platform to capture that acquisition of each 
tested modification is sufficient to trigger at least some transcrip-
tional response, in at least some contexts. The precise quantitative 
impact and single-cell penetrance of a mark is contingent on multiple 
contextual factors, however, and we provide direct evidence that 
the underlying DNA sequence, genomic location and combinatorial 
modifications interact to modulate the overall expression output. 
This is likely further complicated by cell type context. Thus, while 
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Fig. 7 | Functional synergy between H3K27me3 and H2AK119ub. 
 a,b, Heatmaps showing log2 (fold change) in transcription upon programming 
the indicated chromatin mark (x axis) to the indicated motif reporter (y axis) 
and then upon washout (DOX wo) for 4 d (d4) or 7 d (d7) to assay epigenetic 
memory. Shown are transcriptional persistence effects at the ON locus (a) and 
the OFF locus (b). c, Representative dot plots indicating log10 (expression) after 
control GFPscFV, single CDscFV or multiplex CDscFV targeting for 7 d to program 
combinatorial marks. Each data point represents a single cell (n = 500), and bars 

denote the geometric mean. d, Bar plots showing enrichment of H2AK119ub 
(left) and H3K27me3 (right) on the ON REF reporter assayed by CUT&RUN–qPCR 
following control GFPscFV or combinatorial Ezh2scFV and Ring1bscFV targeting. 
Shown is the mean of three biological replicates; error bars represent s.d.; 
significance was determined by two-tailed unpaired t-test. e, Contingency plot 
indicating that an elevated fraction of cells acquire the ‘OFF’ expression state 
following combinatorial H3K27me3–H2AK119ub programming. Significance was 
calculated by two-way ANOVA with Tukey’s correction. *P < 0.05, ***P < 0.001.
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chromatin marks have the potential to causally instruct transcrip-
tion programs, they represent one regulatory layer within multiple 
nonlinear governing mechanisms.

Among our findings, we charted a function for H3K4me3, which 
is an evolutionary conserved marker of transcriptionally active  
promoters7,49. Nevertheless, loss-of-function studies across model 
systems suggest that H3K4me3 is not required for the majority of 
gene expression43,50,51. Using an array of H3K4me3 programming 
tools, catalytic mutant controls and Mll2CM/CM ESCs that specifi-
cally lack H3K4me3, we uncover that H3K4me3 per se can directly 
impact transcription. The cumulative studies point toward a 
dual-feedback relationship in which transcription itself promotes 
downstream accumulation of H3K4me3, but, reciprocally, de novo 
acquisition of H3K4me3 can trigger transcription. Mechanistically, 
H3K4me3 acquisition initiates an epigenetic cascade including loss 
of H3K27me3 and gain of promoter acetylation, which is necessary 
for H3K4me3-mediated effects. This is likely reinforced by H3K4me3 
promoting RNA polymerase II pause release52 and by the transcription 
machinery having affinity for the mark53,54. However, H3K4me3 activity 
is ultimately contingent on the appropriate TF in the cellular milieu, 
and, indeed, only a fraction (~35%) of silent genes responded to de novo 
deposition. In this respect, acquisition of H3K4me3 may instruct 
transcriptional upregulation primarily by antagonizing repression 
systems55, thereby establishing a permissive environment for the 
relevant TF. This may require a threshold level of H3K4me3, with 
our optimized toolkit amplifying both the magnitude and genomic 
breadth of de novo H3K4me3 domains, thus unmasking functionality.

Understanding the regulatory relationship(s) between the 
genome and the epigenome is key toward deciphering how DNA 
sequence variants influence molecular outputs and phenotypic 
traits56. By quantifying the instructive potential of multiple marks,  
we were subsequently able to dissect how underlying TF motifs inter-
act with chromatin functionalities to tune expression. For example, 
EBOX motifs act as genetically encoded signals to threshold epi-
genetic activation by de novo H3K4me3 or H3K27ac. More strik-
ingly, H3K36me3 exhibits switch-like behavior in the context of cis 
CTCF motifs, a relationship relevant to endogenous Xist regulation. 
The interplay between overlapping chromatin modifications repre-
sents a further contextual parameter for genome regulation. Indeed, 
combinatorial H3K27me3 and H2AK119ub enhances the fraction of 
responsive cells but not absolute repression capacity. Such epige-
netic ‘penetrance’ effects imply an equilibrium of regulatory forces, 
where programming more influential (or combinatorial) marks 
has greater probability of overcoming the governing status quo in 
each cell. Importantly, however, while our data imply that chroma-
tin marks can be instructive, they emphasize that their impacts are 
context-dependent. This argues against a hard-wired ‘histone code’ 
where specific patterns of chromatin marks elicit a specific output 
and instead points toward a nonlinear regulatory network that pro-
duces quantitative outputs depending on myriad inputs including 
TF binding, chromatin architecture, cis genetics, cell type and indeed 
epigenetic modifications themselves.

In summary, our study captures the principles of how de novo 
chromatin modifications can causally influence gene expression 
across contexts. Moreover, the modular epigenetic editing toolkit 
provides a framework to explore regulatory mechanisms across 
DNA-templated processes and to precisely manipulate chromatin for 
desirable responses in disease models.
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Methods
Cell culture
Wild-type mouse ESCs (mESCs) were derived freshly (mixed 129/B6, 
XY) and cultured on gelatin-coated cell culture plates under naive 
conditions (2i/leukemia inhibitory factor (LIF)), in accordance with the 
approved protocol by the laboratory animal management and ethics 
committee of the EMBL under license 20191001MBJH. Routine pas-
saging was performed in N2B27 basal culture medium (NDIFF, Takara, 
y40002), supplemented with 1 μM PD0325901 and 3 μM CHIR99021 
(both from Axon Medchem), 1,000 U ml−1 LIF (in-house production), 
1% FBS (Millipore) and 1% penicillin–streptomycin (Gibco). All culture 
media were filtered through a 0.22-µm pore Stericup vacuum filtra-
tion system (Millipore). Cells were maintained at 37 °C in a humidified 
atmosphere with 5% CO2 and were passaged every 2 d by dissociation 
with TrypLE (Thermo Fisher Scientific). Culture medium was replaced 
with fresh stocks daily. Mycoplasma contamination was tested rou-
tinely by the ultrasensitive qPCR assay (Eurofins).

Generation of reporter cell lines
We designed a REF reporter to provide a baseline context and to 
enable the influence of subsequently inserting sequence motifs or 
variants to be assessed. We used the endogenous EF1α core promoter 
(~200 bp) embedded into a DNA sequence context selected from 
human chr7:41,344,065–41,346,105 (GRCh38/hg38) to be neutral 
in respect of genomic features, including depleted of TF motifs, GC 
percentage (50%), lacking retrotransposons and without epigenetic 
enrichments. The resulting cassette (~3 kb) was designed as a gBlock 
gene fragment from Integrated DNA Technologies and amplified by 
PCR using Q5 hot start high-fidelity polymerase (NEB, M0494S) and 
primers with appropriate overhangs. This was inserted by In-fusion 
HD Cloning into a recipient vector upstream of a Kozak sequence, the 
mCherry2–H2B fluorescence coding sequence and a polyA motif. The 
assembled reporter construct (DNA::EF1α Pr::DNA::mCherry2-H2B::pA) 
was verified by sequencing and then amplified by PCR with Q5 poly-
merase, using ultramer DNA oligonucleotides (Eurofins) carrying 
200-bp-long overhangs homologous to DNA sequences flanking the 
desired genomic insertion site(s). Specifically, we chose two intergenic 
genomic insertion sites that differentially support transcription. First, a 
permissive landing site (chr9:21,545,329, ON locus, TIGRE) and second, 
a nonpermissive landing site that only supports weak transcription 
(chr13:45,253,722, OFF locus), albeit within a euchromatic domain57.

To insert the cassettes into each locus, we transfected 1 μg of 
PCR-amplified dsDNA reporter sequence into naive mESCs together 
with the spCas9 plasmid pX459 (Addgene, 62988), carrying a single 
gRNA complementary to the genomic integration site. After puro-
mycin selection (1.2 µg ml−1) for transient px459 transfection (2 d), 
mCherry2-positive cells that were candidates for correct insertion 
were purified by fluorescence-activated cell sorting. Single clones 
were expanded, and correct mono-allelic (hemizygous) integration 
of the reporter was verified by PCR genotyping and Sanger sequenc-
ing (Azenta). The full allelic series of reporter variants, which each 
comprised the same baseline sequence as the REF, but with insertion 
of several discrete TF or structural motifs (Supplementary Informa-
tion) were also ordered as gBlock Gene Fragments from Integrated 
DNA Technologies. Generation of the complete reporter cassette and 
genomic integration was carried out as described above for the REF to 
generate a total of 18 independent reporter lines (nine reporter variants 
in two genomic locations), each with independent clones. We validated 
independent insertions of each reporter to confirm reproducibility.

Generation of epigenetic editing toolkit constructs
Epigenetic editing tools comprising sequences for a nuclease dCas9GCN4 
and the catalytic cores of chromatin-modifying enzymes were cloned 
into piggyBac recipient plasmids by homology arm recombination 
using In-Fusion HD Cloning (Takara, 639650). Specifically, the sequence 

for Streptococcus pyogenes dCas9GCN4 was amplified by PCR from the 
PlatTET-gRNA2 plasmid39 (Addgene, 82559) and subcloned under the 
control of a DOX-inducible TRE-3G promoter into a piggyBac backbone. 
The vector also carries sequences for the Tet-On 3G transactivator and 
hygromycin resistance.

For all chromatin-modifying ‘effector’ plasmids, the sequence for 
the scFV domain and an sfGFP coding sequence were amplified from 
the PlatTET-gRNA2 plasmid (Addgene, 82559) and fused in frame with 
the CD or FL mouse Prdm9, p300, Dot1l, G9a, Kmt5c, Setd2, Ezh2 and 
Ring1b, all amplified from early-passage ESC cDNA. Sequences for 
the Dnmt3a CD and the C-terminal part of mouse Dnmt3a (3a3l) were 
amplified from pET28-Dnmt3a3l-sc27 (Addgene, 71827). The resulting 
constructs (collectively, CDscFV) were cloned in piggyBac recipient vec-
tors under the control of the TRE-3G promoter. These vectors are also 
designed for constitutive expression of a neomycin resistance gene. 
The control GFPscFV effector was cloned as described above but lacks any 
chromatin-modifying domain. Finally, catalytic mutant (mut-CDscFV) 
effectors were also cloned as described above. Specific mutations 
that abolish the catalytic activity of each CDscFV but that retain protein 
stability were introduced during PCR amplification with oligonucleo-
tide primers designed with precisely mismatched nucleotides. The 
catalytically inactivating point mutations introduced in each CDscFV 
are p300, D1398Y; Dot1l, GS163–164RC; Prdm9, G282A; Setd2, R1599C; 
Dnmt3a, C706S; G9a, Y1207del; Kmt5c, NHDC182–185AAAG; Ezh2, 
Y726D; Ring1b, I53S; Set1a, S1631I29,58–64.

The gRNA plasmid, carrying an enhanced gRNA scaffold, was 
amplified from Addgene plasmid 60955 and cloned into a piggyBac 
recipient vector, which are also designed for constitutively expression 
of a puromycin resistance gene and TagBFP. All gRNA species used to 
target the epigenetic editing system were designed using the GPP Web 
Portal (Broad Institute). gRNA forward and reverse strands carrying 
appropriate overhangs (final concentration of 10 μM) were annealed 
in buffer containing 10 mM Tris, pH 7.5–8.0, 60 mM NaCl and 1 mM 
EDTA at 95 °C for 3 min and allowed to cool down at room temperature 
for >30 min. Annealed gRNA was ligated with T4 DNA ligase (NEB, 
M0202S) for 1 h at 37 °C into the piggyBac recipient vector previously 
digested with BlpI (NEB, R0585S) and BstXI (NEB, R0113S) restriction 
enzymes. Final plasmids were amplified by bacterial transformation 
and purified by endotoxin-free midi preparation (Zymo Research, 
D4200). Correct assembly and sequences were confirmed by Sanger 
sequencing (Azenta). All gRNA species used in this study are listed in 
Supplementary Table 1.

Epigenetic editing assays
For stable integration of the epigenetic editing system, mESC lines were 
co-transfected to express dCas9GCN4 and one or more CDscFV constructs 
(or control GFPscFV) and with gRNA plasmids in addition to the piggyBac 
transposase vector using a molar ratio of 10:20:2:1, respectively. Cells 
with successful integration of all three constructs were enriched by 
successive antibiotic selection with hygromycin (250 μg ml−1) for 5 d, 
neomycin (300 μg ml−1) for 5 d and puromycin (1.2 μg ml−1) for 2 d. 
After allowing cells to recover and expand, expression of dCas9GCN4 
and CDscFV was induced by supplementing the culture medium with 
DOX (100 ng ml−1) for either 2 or 7 d, with the exception of p300-CDscFV, 
for which we used 5 ng ml−1 DOX to mitigate against OFF targeting 
and toxicity. Correct induction of all epigenetic editing components 
results in double GFP- and BFP-positive cells (GFP+BFP+). Activity of 
endogenous target genes or reporter (mCherry2) was analyzed by qPCR 
or quantitative flow cytometry by sorting and gating to analyze only 
GFP+BFP+ cells that had correctly induced the editing system (typically 
>75% of cells). For experiments employing the p300 inhibitor A485, 
cells were stimulated with 100 ng ml−1 DOX for 3 d and, in parallel, 
treated with 3 μM A485 (Cayman Chemical, 24119). When indicated, 
1 μM AZA (Sigma-Aldrich) was included in media and replaced daily 
for 3 d in a row.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01706-w

For epigenetic memory experiments, cells were washed thor-
oughly with PBS and subsequently cultured in the absence of DOX, 
which led to rapid downregulation of the epigenetic editing machinery 
(GFP−). Memory of reporter expression changes was quantified by flow 
cytometry after 4 or 7 d of DOX washout in cells that were confirmed 
to have fully switched off the epigenetic editing tool (BFP+GFP− cells, 
typically >99%).

Transfection
DNA transfection was performed with Lipofectamine 3000 (Thermo 
Fisher Scientific, L30000015). Cells were seeded 1 d in advance to reach 
~60% confluency on the day of transfection. Appropriate amounts 
of DNA were calculated according to the manufacturer’s instruc-
tions. The medium was changed after 8 h and replaced with fresh 
antibiotic-containing medium.

Generation of genetically edited embryonic stem cell lines
Knockout cell lines for Pcgf6 were generated by means of CRISPR–
Cas9 genome editing. Specifically, for each target gene, two plas-
mids (pX459) were transiently transfected into low-passage wild-type 
ESCs that had previously been engineered to carry a specific knock-in 
reporter. Each plasmid encoded one of two gRNA species targeting the 
flanking introns of a critical coding exon in the gene of interest (Pcgf6) 
(Supplementary Table 3) and wild-type Cas9. The critical exon was pre-
sent within all known isoforms, and gRNA species were designed with 
the goal of specifically deleting the entire exon. After transfection, cells 
were selected with puromycin (1.2 μg ml−1) for 3 d and subsequently 
seeded at low density (1,000 cells per 10 cm2) for single-clone isolation. 
Following expansion, single clones were screened for homozygous 
genetic editing by PCR genotyping (Supplementary Table 2), and dual 
loss-of-function (frame-shifted) alleles were confirmed by Sanger 
sequencing (Genewiz).

For generation of precision-edited catalytic mutant Mll2  
(Mll2CM/CM) and Setd2−/− lines, homozygous ESCs were derived freshly 
from heterozygous FVB crosses of mice carrying either an Mll2 
(Y2602A) or a Setd2-null allele, under Italian Ministry of Health authori-
zation code 101/2024-PR. To generate the Setd2−/− ΔCTCF lines, Setd2−/− 
ESCs were transiently transfected with a plasmid (pX459) expressing 
a gRNA targeting a CTCF site (identified using ChIP–seq data from  
Nora et al.65 and by manual inspection of the CTCF consensus sequence) 
upstream of the Xist promoter. After transfection, cells were selected 
with puromycin (1.2 μg ml−1) for 3 d and subsequently seeded at low 
density (1,000 cells per 10 cm2) for single-clone isolation. Following 
expansion, single clones were screened for genetic editing by PCR 
genotyping followed by Sanger sequencing (Genewiz). Homozygosity 
was confirmed by Sanger sequencing and restriction digest with BbsI, 
the cut site of which is absent in deletion mutants.

Flow cytometry
Cells were washed with PBS and gently dissociated into a single-cell 
suspension using TrypLE, followed by resuspension in FACS buffer 
composed of PBS with 1% FBS, and filtered through a 40-μm cell strainer 
(BD, cup-Filcons, 340632). A FACSAria III (Becton Dickinson) and the 
Attune NxT Flow Cytometer (Thermo Fisher Scientific) were used for 
sorting and analysis, respectively. Ninety-six-well plates containing 
the different combinations of reporter × epigenetic effector cell lines 
were analyzed using the Attune NxT Flow Cytometer Autosampler, and 
resulting data were used to generate the heatmaps shown in Figs. 4c 
and 5a. Alternatively, specific reporter × epigenetic effector cell lines 
were generated and cultured in 12-well plates, and samples were ana-
lyzed one by one using the single-sample line of the Attune NxT Flow 
Cytometer. Flow cytometry data analysis was performed with FlowJo 
version 10.5.3 (Tree Star).

To generate the dot plots shown in this study, FlowJo software was 
used first to gate for live cells and then for cells expressing all epigenetic 

editing components (GFP+BFP+). The resulting population was ran-
domly downsampled to 1,000 cells. The mCherry2 scaled fluorescent 
values corresponding to the relative expression intensities for each cell 
were exported and imported into GraphPad Prism statistical software. 
Dot plots were constructed with the geometric mean of the raw data 
shown (black bar). For dot plots representative of individual reporter 
expression, before transfection of the editing machinery (Fig. 4b), 
analysis was performed as described above, except that no GFP+BFP+ 
gating was performed and mCherry2 single-cell values were obtained 
from the whole population of live cells. To generate histograms, the 
parental GFP+BFP+ cell population was selected as above and the fre-
quency distribution of the flow data was plotted versus mCherry2 
fluorescence intensity using a log10 scale. The bisector gating tool was 
then used to split histograms into two sectors corresponding to the 
mCherry2 ON expression state and the mCherry2 OFF expression state, 
based on negative and positive controls. Alternatively, the ranged gate 
tool was used to split the histogram into three sectors corresponding 
to mCherry2 ‘high’, mCherry2 ‘low’ and mCherry2 ‘OFF’ expression 
states. Identical gates were applied to all samples within an experiment.

Finally, to generate heatmaps, mCherry2 scaled fluorescent values 
for 1,000 GFP+BFP+ cells were obtained, and the geometric mean for 
each sample (indicating reporter expression after GFPscFV or specific 
CDscFV effector targeting) was calculated. The geometric mean of each 
CDscFV effector was normalized to the corresponding geometric mean 
of GFPscFV to obtain the fold change of reporter expression following 
epigenetic editing (geometric mean CDscFV effector/geometric mean 
GFPscFV). The normalized geometric mean values coming from four 
technical replicates of the experiments were averaged and log2 trans-
formed. log2 (fold change) values were plotted in R statistical software 
(version 3.6.2) using Bioconductor packages.

RNA extraction, library preparation and sequencing
Total RNA was extracted from cells using the Monarch Total RNA  
Miniprep Kit (NEB, T2010), following manufacturer instructions. Puri-
fied RNA was quantitated with a Qubit Fluorometer (Thermo Fisher 
Scientific) and checked for quality with an automated electrophoresis 
system (Agilent TapeStation System) to ensure RNA integrity (RIN > 9). 
Precisely 1 μg of each RNA sample was used to prepare sequencing 
libraries using the NEBNext Ultra II Directional RNA Library kit by the 
EMBL Genomics facility. Libraries were sequenced on the NextSeq 
Illumina sequencing system (paired-end 40 sequencing). Raw FastQ 
reads were trimmed to remove adaptor sequences with Trim Galore 
(0.4.3.1, ‘-phred33–quality 20–stringency 1 -e 0.1–length 20’), checked 
for quality and aligned to the mouse mm10 (GRCm38) genome using 
RNA Star (2.5.2b-0, default parameters except for ‘–outFilterMulti-
mapNmax 1000’). Analysis of the mapped sequences was performed 
using SeqMonk software (Babraham Bioinformatics, version 1.47.0) 
to generate log2 (RPM) or gene length-adjusted (reads per kilobase 
per million mapped reads) gene expression values, and data were 
plotted with R statistical software (version 3.6.2). Differentially 
expressed genes were determined using the DESeq2 package (version 
1.24.0), inputting raw strand-specific mapping counts and applying a 
multiple-testing-adjusted (FDR) significance threshold of P < 0.05 and 
log2 (fold change) filter where indicated.

Quantitative PCR with reverse transcription
Total RNA was extracted from cells using the Monarch Total RNA 
Miniprep Kit (NEB, T2010), following manufacturer instructions. After 
quantification using a Qubit Fluorometer (Thermo Fisher Scientific), 
1 μg of each sample was treated with DNase and used as input for 
cDNA synthesis by incubation with a mixture of random hexamers 
and reverse transcriptase (Takara PrimeScript RT Reagent Kit with 
gDNA Eraser, Takara Bio, RR047A). The resulting cDNA was diluted 
1:10, and 2 µl of each sample was amplified using a QuantStudio 5 
(Applied Biosystems) thermal cycler, employing the SyGreen Blue Mix 
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(PCR Biosystems) and prevalidated gene-specific primers that span 
exon–exon junctions. Results were analyzed using the 2−∆∆Ct method 
(relative quantitation) with QuantStudio 5 software and normalized 
to the housekeeping gene Rplp0. All primers used for qPCR analysis 
are listed in Supplementary Table 2.

Bisulfite pyrosequencing
DNA bisulfite conversion was performed starting from a maximum of 
1 × 105 pelleted cells per sample using the EZ DNA Methylation-Direct 
Kit (Zymo Research, D5021) and following the manufacturer’s instruc-
tions. Target genomic regions were amplified by PCR using 1 μl of 
bisulfite-converted DNA and specific primer pairs, one of which was 
conjugated to biotin, using the PyroMark PCR kit (Qiagen, 978703). 
Ten microliters of the PCR reaction was used for sequencing using the 
dispensation orders (below) generated by PyroMark Q24 Advanced 
3.0 software, along with PyroMark Q24 advanced reagents (Qiagen, 
970902) according to the manufacturer’s instructions. Briefly, the PCR 
reaction was mixed with streptavidin beads (GE Healthcare, 17-5113-
01) and binding buffer, denaturated with denaturation buffer using a 
PyroMark workstation (Qiagen) and released into a PyroMark Q24 plate 
(Qiagen) preloaded with 0.3 μM sequencing primer. Annealing of the 
sequencing primer to the single-strand PCR template was achieved 
by heating at 80 °C for 2 min and cooling down at room temperature 
for 5 min. Pyrosequencing was run on the PyroMark Q24 advanced 
pyrosequencer (Qiagen). Results were analyzed with PyroMark Q24 
Advanced 3.0 software. Primers used for PCR amplification are listed 
in Supplementary Table 2.

Cleavage under targets and release using nuclease
The CUT&RUN protocol66 was used to detect genomic enrichment 
of histone modifications. Cells (2.5 × 105 to 3 × 106, depending on the 
selected antibody) were pelleted at 300g for 3 min following flow sort-
ing. Cells were washed twice with wash buffer (1 ml of 1 M HEPES, pH 
7.5, 1.5 ml of 5 M NaCl, 12.5 μl of 2 M spermidine, final volume brought 
to 50 ml with dH2O, complemented with one Roche cOmplete Protease 
Inhibitor EDTA-free tablet). Pellets were then resuspended in 1 ml wash 
buffer and 10 μl concanavalin beads (Bangs Laboratories, BP531-3ml) in 
1.5-ml Eppendorf tubes and allowed to rotate at room temperature for 
10 min. The supernatant was removed by placing the samples on a mag-
net stand, and 300 μl antibody buffer (wash buffer supplemented with 
0.02% digitonin and 2 mM EDTA) containing 0.5–3 μg of target-specific 
antibody was added. Samples were left to rotate overnight at 4 °C. 
Antibodies used were as follows: rabbit anti-H3K4me3 (Diagenode, 
C15410003, 0.5 µg for 2.5 × 105 cells), rabbit anti-H3K27me3 (Millipore, 
07-449, 0.5 µg for 2.5 × 105 cells), rabbit anti-H3K9me3 (Abcam, ab8898, 
2 µg for 3 × 106 cells), rabbit anti-H2Aub (Lys119) (CST, 8240, 3 µg for 
3 × 106 cells), rabbit anti-H3K36me3 (Active Motif, 61101, 3 µg for 3 × 106 
cells), rabbit anti-H3K27ac (Active Motif, 39133, 3 µg for 3 × 106 cells), 
rabbit anti-H4K20me3 (Abcam, ab9053, 0.5 µg for 2.5 × 105 cells).

The following day, each tube was placed on a magnetic stand, and 
cell–bead complexes were washed twice with cold Dig-wash buffer 
(wash buffer containing 0.02% digitonin) and then resuspended in 
300 μl of cold Dig-wash buffer supplemented with 700 ng ml−1 of puri-
fied protein A–MNase fusion (pA–MNase). Samples were left to rotate 
on a rotor at 4 °C for 1 h. After two washes with cold Dig-wash buffer, 
cell–bead complexes were resuspended gently in 50 μl Dig-wash buffer 
and placed on an aluminum cooling rack on ice to precool to 0 °C. To 
initiate pA–MNase digestion, 2 μl of 100 mM CaCl2 was added, and sam-
ples were flicked to mix and immediately returned to the cooling rack. 
Digestion was allowed to proceed for 30 min and was then stopped by 
adding 50 μl 2× stop buffer (340 mM NaCl, 20 mM EDTA, 4 mM EGTA, 
0.02% digitonin, 250 µg RNase A, 250 µg glycogen). Samples were 
incubated at 37 °C for 10 min to release CUT&RUN fragments from 
insoluble nuclear chromatin and centrifuged at 16,000g for 5 min at 
4 °C. The supernatant was isolated by means of a magnetic stand and 

transferred into a new tube while cell–bead complexes were discarded. 
Two microliters of 10% SDS and 2.5 µl proteinase K were added, and 
the samples were incubated for 10 min at 70 °C. Purification and size 
selection of DNA were performed using SPRI beads (Beckman Coulter, 
B23318) following the manufacturer’s instructions for double size 
selection with bead volume-to-sample volume ratios of 0.5× and 1.3×. 
Purified DNA was eluted in 30 µl ultrapure water.

For analysis of specific genomic targets, CUT&RUN DNA fragments 
were subjected to qPCR analysis. A 1:10 dilution was performed, and 2 µl 
of diluted DNA was amplified by means of a QuantStudio 5 (Applied Bio-
systems) thermal cycler using the SyGreen Blue Mix (PCR Biosystems) 
and specific primers for both targeted and control genomic regions. 
Relative abundance of histone marks was determined by calculating 
the 2−Ct value for each genomic region of interest and normalizing 
it to the 2−Ct value of a positive control genomic locus (2−Ct targeted 
region/2−Ct positive control region). Data were then shown as relative 
fold change between experimental samples and control samples (for 
example, CDscFV over GFPscFV) with a randomly selected control replicate 
set as the baseline (=1). Primers used for CUT&RUN–qPCR are listed in 
Supplementary Table 2.

For genome-wide analysis, CUT&RUN was performed as described 
above, followed by library preparation. Specifically, eluted DNA frag-
ments were purified and subjected to DNA size selection using SPRI 
beads (Beckman Coulter, B23318) following the manufacturer’s instruc-
tions for double size selection with bead volume-to-sample volume 
ratios of 0.5× and 1.3×. Purified DNA was eluted in 30 µl ultrapure 
water, and 10 ng was input into the NEBNext Ultra II DNA Library Prep 
Kit for Illumina (NEB, E7645S) using the following PCR program: 98 °C 
for 30 s, 98 °C for 10 s, 65 °C for 10 s and 65 °C for 5 min, steps 2 and 3 
repeated for 12–14 cycles. After quantification and checking for qual-
ity with an automated electrophoresis system (Agilent TapeStation 
System), library samples were sequenced on the NextSeq Illumina 
sequencing system (paired-end 40 sequencing). Raw FastQ sequences 
were trimmed to remove adaptors with Trim Galore (version 0.4.3.1, 
‘-phred33–quality 20–stringency 1 -e 0.1–length 20’), checked for 
quality and aligned to the mouse mm10 genome with the inserted 
mCherry reporter using Bowtie 2 (version 2.3.4.2, ‘-I 50 -X 800–fr -N 0 -L 
22 -i ‘S,1,1.15’–n-ceil ‘L,0,0.15’–dpad 15–gbar 4–end-to-end–score-min 
‘L,-0.6,-0.6’’). Analysis of the mapped sequences was performed using 
SeqMonk software (Babraham Bioinformatics, version 1.47.0) by 
enrichment quantification of the normalized reads. To identify promot-
ers with H3K4me3 changes in Mll2CM/CM cells, a 1-kb window centered 
on the transcriptional start site was quantified among replicates, and a 
normalized log (fold change) filter was applied between samples. Meta-
plots over genomic features were constructed by quantifying 100-bp 
bins centered on the features of interest, and normalized cumulative 
enrichments were plotted.

Chromatin immunoprecipitation followed by  
quantitative PCR
A total of 3 × 106 cells were dissociated with TrypLE, resuspended in 
PBS and pelleted at 200g for 4 min at room temperature. After, PBS 
was removed, and the cell pellet was fixed in 1 ml of 1% PFA for 10 min at 
room temperature, followed by centrifugation at 200g for 4 min. The 
supernatant was discarded, and fixation was quenched by adding 1 ml 
of 0.125 M glycine for 5 min at room temperature. Glycine was removed, 
and pellets were washed twice with cold PBS. Samples were kept on ice 
from this stage onward. Cells were resuspended in 1 ml of cold lysis 
buffer (50 mM HEPES, pH 8.0, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 
0.5% NP-40, 0.25% Triton X-100), incubated on ice for 5 min and sub-
sequently centrifuged at 1,200g for 5 min at 4 °C. One wash in rinse 
buffer (10 mM Tris, pH 8.0, 1 mM EDTA, 0.5 mM EGTA, 200 mM NaCl) 
was performed, followed by another centrifugation at 1,200g for 5 min 
at 4 °C. Cell nuclei were then resuspended in 900 μl shearing buffer 
(0.1% SDS, 1 mM EDTA, pH 8.0 and 10 mM Tris, pH 8.0), transferred into 
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a Covaris milliTUBE 1 ml AFA Fiber (Covaris, 520135) and sonicated for 
12 min using a Covaris ultrasonicator at 5% duty cycle, 140 PIP and 200 
cycles per burst. The sonication cycle was repeated twice. Sonicated 
chromatin was centrifuged at 10,000g for 5 min at 4 °C, and the super-
natant was collected and moved to a new tube. Twenty microliters of 
chromatin was taken to analyze appropriate chromatin shearing on a 
1% agarose gel, while 1/10 of the total volume (~90 μl) was topped up 
with 5× IP buffer (250 mM HEPES, 1.5 M NaCl, 5 mM EDTA, pH 8.0, 5% 
Triton X-100, 0.5% DOC and 0.5% SDS) and frozen at −20 °C for total 
input analysis. The remaining chromatin was topped up to 1 ml with 5× 
IP buffer, and then 30 μl Protein A/G Magnetic Beads (Thermo Fisher 
Scientific, 88802) and 3 μg antibody were added to each tube, and 
samples were left to rotate overnight at 4 °C. Antibodies used were as 
follows: rabbit anti-H3K36me3 (Diagenode, C15410192, 3 µg for 3 × 106 
cells) and rabbit anti-H3K79me2 (Abcam, ab3594, 2 µg for 3 × 106 cells), 
rabbit anti-H3K9me2 (Active Motif, 39041, 3 µg for 3 × 106 cells).

The following day, beads were washed with 1 ml of 1× IP buffer 
by constant rotation at 4 °C for 10 min. This step was repeated twice. 
Two more washes were performed: the first one with DOC buffer 
(10 mM Tris, pH 8, 0.25 M LiCl, 0.5% NP-40, 0.5% DOC, 1 mM EDTA) 
and the second one with 1× TE buffer. Next, beads were resuspended 
in 100 μl freshly prepared elution buffer (1% SDS, 0.1 M NaHCO3) and 
agitated constantly on a vortex for 15 min at room temperature. The 
eluted chromatin was transferred to a new tube, and the elution was 
repeated again as before by adding 50 μl elution buffer to the beads. 
The eluted chromatin was combined. Finally, 10 μl of 5 M NaCl was 
added to the eluted chromatin as well as to the thawed total input 
tubes. Samples were incubated overnight at 65 °C in a water bath. The 
next day, DNA was purified using the Zymo Genomic DNA Clean & Con-
centrator Kit (Zymo Research, D4011) and eluted with 30 μl ultrapure 
water. For qPCR analysis, samples were handled as described above for 
CUT&RUN–qPCR. Specifically, a 1:10 dilution was performed, and 2 µl 
of diluted DNA was amplified by means of a QuantStudio 5 (Applied 
Biosystems) thermal cycler using the SyGreen Blue Mix (PCR Biosys-
tems) and specific primers for both targeted and control genomic 
regions. Relative abundance of histone marks was determined by 
using the ‘percent input’ method (the 2−Ct values obtained from ChIP 
samples were divided by the 2−Ct values of the input samples). Data are 
then shown as relative fold change between experimental samples and 
control samples (for example, CDscFV over GFPscFV). Primers are listed 
in Supplementary Table 2.

Assay for transposase-accessible chromatin with sequencing
Cells were initially treated in culture medium with 200 U ml−1 DNase 
I for 30 min at 37 °C to digest degraded DNA released from dead cells 
and then collected. Cells were then washed five times with PBS, dis-
sociated with TrypLE and counted. A total of 5 × 104 cells were pelleted 
at 500g and 4 °C for 5 min. The supernatant was removed, and the 
cell pellet was resuspended in 50 μl of cold ATAC resuspension buffer 
(10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, supplemented 
with 0.1% NP-40, 0.1% Tween-20 and 0.01% digitonin), followed by 
incubation on ice for 3 min. Lysis was stopped by washing with 1 ml 
of cold ATAC resuspension buffer supplemented with 0.1% Tween-20 
only. Nuclei were pelleted at 500g for 10 min at 4 °C. The supernatant 
was removed, and the nuclei were resuspended in 50 μl transposi-
tion mixture (25 μl 2× TD buffer, 2.5 μl transposase from the Illumina 
Tagment DNA Enzyme and Buffer Kit (20034197), 16.5 μl of 1× PBS, 
0.5 μl of 1% digitonin, 0.5 μl of 10% Tween-20 and 5 μl water). Samples 
were incubated at 37 °C for 30 min in a thermomixer while shaking 
at 1,000 rpm. Next, DNA was purified using the Zymo Genomic DNA 
Clean & Concentrator Kit (Zymo Research, D4011) and eluted with 
21 μl elution buffer. Twenty microliters was used for PCR amplifica-
tion using Q5 hot start high-fidelity polymerase (NEB, M0494S) and a 
unique combination of the dual-barcoded primers P5 and P7 from the 
Nextera XT Index kit (Illumina, 15055293). The cycling conditions were 

as follows: 98 °C for 30 s, 98 °C for 10 s, 63 °C for 30 s, 72 °C for 1 min, 
72 °C for 5 min, repeated for five cycles. After, 5 μl of the pre-amplified 
mixture was used to determine additional cycles by qPCR amplification 
using SyGreen Blue Mix (PCR Biosystems) and the P5 and P7 primers 
selected above in a QuantStudio 5 (Applied Biosystems) thermal cycler. 
The number of additional PCR cycles to be performed was determined 
by plotting linear Rn (the value calculated by dividing the fluorescence 
of the reporter dye (SYBR Green) by the fluorescence of the passive 
reference dye (ROX)) versus cycle and by identifying the cycle number 
that corresponded to one-third of the maximum fluorescent inten-
sity67. The determined extra PCR cycles were performed by placing 
the pre-amplified reaction back in the thermal cycler. Finally, cleanup 
of the amplified library was performed again using the DNA Clean & 
Concentration Kit (Zymo, D4014), and DNA was eluted with 20 μl water. 
After quantification and a quality check with an automated electro-
phoresis system (Agilent TapeStation System), library samples were 
pooled together and sequenced on the NextSeq Illumina sequencing 
system (paired-end 40 sequencing). Following sequencing, raw reads 
were first trimmed with Trim Galore (version 0.4.3.1, reads >20 bp and 
quality >30) and then checked for quality with FastQC (version 0.72). 
The resulting reads were aligned to the custom mouse mm10 genome 
containing the reporter using Bowtie 2 (version 2.3.4.3, paired-end 
settings, fragment size ‘0-1,000,–fr’, allow mate dovetailing). Aligned 
sequences were then analyzed with SeqMonk (Babraham Bioinformat-
ics, version 1.47.0) by performing enrichment quantification of the 
normalized reads.

Statistical analysis
Details on all statistical analyses used in this paper, including the sta-
tistical tests used, the number of replicates and precision measures, 
are indicated in the corresponding figure legends. Statistical analy-
sis of replicate data was performed using appropriate strategies in 
GraphPad Prism statistical software (version 8.4.3), with the following 
significance designations: not significant, P > 0.05; *P ≤ 0.05; **P ≤ 0.01; 
***P ≤ 0.001.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data derived from next-generation sequencing assays have been 
deposited in the ArrayExpress database under the accession codes 
E-MTAB-13466, E-MTAB-13467, E-MTAB-13468 and E-MTAB-12101. Addi-
tionally, previously published ChIP–seq data are used in this study65: 
GSE98671. All data are publicly available.

Code availability
All analyses were performed using previously published or developed 
tools, as indicated in Methods. No custom code was developed or used.
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Extended Data Fig. 1 | An optimised toolkit for precision & dynamic 
chromatin state perturbations. (a) Table detailing the catalytic domains (CD) 
used as epigenetic ‘effectors’ in this study, and the precise point-mutant controls 
to specifically disrupt their catalytic activity. Each CD effector is tagged with 
superfolder GFP (sfGFP) and an scFV domain that specifically binds the GCN4 
tail of dCas9GCN4. (b-c) Representative flow cytometry dot plots showing (b) the 
initial filtering and gating strategy, and (c) DOX-dependent induction of the 
epigenetic editing system, shown in upper panels for Ring1b-CDscFV (H2AK119ub) 
and lower panels for G9a-CDscFV (H3K9me2). The enhanced gRNA scaffold is 
constitutively expressed and marked by tagBFP (x-axis). dCas9GCN4 and each 
CDscFV effector is activated by +DOX, leading to nuclear GFP signal (y-axis) and 
epigenetic editing. Note GFP signal confirms CDscFV or mut-CDscFV stability, 
enables dose-dependent responses to be ascertained, and is used to flow sort 
pure populations of cells that have appropriately activated the editing system 

(GFP+). Note lack of GFP signal in -DOX conditions is consistent with minimal 
‘leaky’ activity. (d) Protein levels of induced WT- and mut- CDscFV epigenetic 
effectors, confirming their comparable stability and relative expression level 
upon DOX induction relative to uninduced (-DOX). Shown is the geometric mean 
with 95% CI of individual cells (n = 500). (e) Representative GFP fluorescence 
image showing that CDscFV effectors often required additional (>2) nuclear 
localization sequences (NLS) for nuclear accumulation and efficient epigenetic 
editing. Scalebar=50μm. (f) High resolution enrichment of H3K79me2 (upper) 
and H4K20me3 (lower) across the entire Hbby locus after epigenetic editing, 
targeted with three gRNAs. Enrichment at positive control endogenous loci and 
negative control (untargeted) loci is shown. Error bars represent S.D. of three 
independent experiments. P−values are calculated by one-tailed unpaired t-test. 
*P < 0.05 **P < 0.01, ***P < 0.001.
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Extended Data Fig. 2 | Minimal OFF-targeting from epigenetic editing & 
reporter (epi)genomic features. (a) Dot plot of genome-wide H3K4me3 
enrichment across sliding 3 kb tiles by calibrated Cut&Run. Shown is genome-
wide H3K4me3 upon epigenetic editing at the Hbby locus with Prdm9-CDscFV 
relative to control ESC with GFPscFV, demonstrating the vast majority of the 
genome does not acquire H3K4me3 peaks (minimal OFF-targeting). (b) Genome 
tracks showing ON-target enrichment of programmed H3K4me3 across the 
Hbby locus by Prdm9-CDscFV mediated epigenetic editing. (c) Correlation matrix 
of replicate transcriptomes (RNA-seq) following induction of the indicated 
epigenetic editing system with DOX. We routinely observed high correlation 

(>0.98) between global gene expression, with few OFF-target genes mis-ex- 
pressed, indicative of preferential ON-target activity. The exception is p300scFV, 
and we therefore reduced the DOX concentration to mitigate indirect effects. 
(d) ESC proliferation following a titration of p300-CDscFV induction levels with 
DOX. (e) Schematic and fluorescent images of ESC carrying the reference (REF) 
reporter knocked-in to distinct genomic locations; a permissive locus for 
transcription (left) and a non-permissive locus (right). Images were captured in 
two independent experiments with similar results. (f ) Quantification of baseline 
H3K4me3 and H3K27me3 at identical reference reporters located within the each 
genomic context.
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Extended Data Fig. 3 | Transcriptional impact of programmed chromatin 
marks at active & inactive loci. (a-c) Representative flow cytometry histograms 
of reporter gene expression following de novo programming of the indicated 
chromatin modification. For each modification, the transcriptional effect is 
shown from a inactive location (initial expression OFF; see left panels) and on 
an identical promoter in a permissive location (initial expression ON; see right 
panels). The percentage of cells that acquire a new expression state following 

precision chromatin editing in each context is indicated, along with control 
(GFPscFV) targeting. Based on reproducible transcriptional responses, we grouped 
chromatin modifications into functional cohorts whereby (a) deposition 
promotes significant gene repression amongst a major fraction of cells, from 
an active genomic location (b) deposition facilitates significant gene activation 
amongst a major fraction of cells, from a repressed location, and (c) de novo 
targeting has a subtle or highly partially-penetrant repressive effect.
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http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01706-w

Extended Data Fig. 4 | Temporal dynamics and dose-dependent responses 
to epigenetic editing. (a) Dot plots showing log expression of the reference 
reporter in each cell following targeted epigenetic editing with the indicated 
chromatin modifications. Shown is the transcriptional response at day 2 (d2) and 
day 7 (d7) after programming each mark with its cognate CDscFV effector relative 
to control targeting of the GFPscFV effector. N = 250 cells. Reading was performed 
in four independent experiments. (b) Promoter accessibility at the permissive 
reporter locus measured by ATAC-seq. Shown is the genome view of promoter 
accessibility following de novo programming of the indicated chromatin 

modification. (c) Dose-dependent transcriptional responses to the indicated 
chromatin modification effectors. A single population of +DOX cells was 
stratified based on the level of induced CDscFV expression, as determined by GFP. 
Shown is the transcriptional response of the reporter, which is directly correlated 
with the amount of epigenetic editing activity in the cell. Representative 
dose-dependent responses are displayed as boxplots of single-cell expression 
levels following programming of H3K4me3, H3K9me2/3, H2AK119ub and DNA 
methylation. Lines indicate median values and box 25th and 75th percentiles. 
Whiskers indicate 10th and 90th percentile.
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Extended Data Fig. 6 | Programming H3K4me3 activates gene expression via 
H3K27ac. (a) Genome view of replicate assays showing genes that specifically 
lose promoter H3K4me3 in Mll2CM/CM ESC (red), which is linked with strong 
expression downregulation (green). (b) qRT-PCR showing re-targeting H3K4me3 
back to endogenous promoters that have lost H3K4me3 in Mll2CM/CM ESC partially 
rescues their expression level (see also Fig. 3c). The control Pldn gene exhibits 
no initial loss of H3K4me3 (indirectly affected), and accordingly was not rescued 
by deposition of further H3K4me3. Bar plots show the mean of n = 3 biologically 
independent experiments. Error bars represent S.D. Significance of rescue is 
calculated by two-tailed unpaired t-test. (c) Silent endogenous genes targeted 
for H3K4me3 epigenetic editing that do not exhibit significant transcriptional 
responses. Bar plots show the mean of N = 3 biologically independent 
experiments. Error bars represent S.D. Significance by one-way ANOVA with 
Tukey’s multiple test correction. (d) Comparison of two independent H3K4me3 
effectors for epigenetic editing (Prdm9-CDscFV and Setd1a-CDscFV). Upper: 
CUT&RUN-qPCR showing the level of H3K4me3 deposited at the OFF reporter 
promoter by each effector and their respective catalytic-mutant controls. Note 
Prdm9-CDscFV deposits significantly higher levels of H3K4me3 than Setd1a-CDscFV. 

Lower: transcriptional impact of H3K4me3 programming in single cells to each 
effector reveals a dose-dependent response. Bar plots show the mean of N = 3 
biologically independent experiments. Error bars represent S.D. P-values are 
calculated by one-way ANOVA with Tukey’s multiple test correction. (e) Flow 
cytometry plot at day 3 of Prdm9scFV induction, showing ~half the population 
have initiated a transcriptional response (activation). Active (ON) and inactive 
(OFF) populations were purified and the level of deposited H3K4me3 assayed 
by CUT&RUN-qPCR. Whilst all cells are enriched with H3K4me3, those with the 
higher levels are active, indicating a threshold level of H3K4me3 is necessary to 
trigger transcriptional activation. Bar plots show the mean of N = 3 biologically 
independent experiments. Error bars represent S.D. (f) Representative flow 
cytometry histogram showing that programming H3K4me3 no longer activates 
expression in the presence of an acetylation inhibitor (A485) - compare with 
short-term induction plot above with no A485. Shown right is CUT&RUN-qPCR 
confirming H3K4me3 is programmed in the presence of A485 but cannot elicit 
downstream effects on transcription. Significance calculated by one-tailed 
unpaired t-test. *P < 0.05 **P < 0.01, ***P < 0.001.
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indicative of impaired cell fate commitment. N = three independent experiments 
(d) Expression of the geneset that requires H3K4me3 for de novo activation in 
EpiLC. Shown are genes that are silent in ESC (RPM < 0.1) but fail to fully initiate 
expression (DEG) in Mll2CM/CM EpiLC that lack H3K4me3, despite normal cell fate 
transition. Each datapoint represents a single gene (N = 313) (e) Representative 
genome view plots of genes that are normally activated in WT EpiLC but fail to 
initiate expression in Mll2CM/CM EpiLC. These genes normally gain H3K4me3 and 
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the reporter. For example, H3K27ac-mediated activation is attenuated in the 
context of YY1 motifs, H3K4me3 activation is strengthened in the presence 
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cells. (f) qRT-PCR of de-repressed Xist expression in Setd2 knockout ESC (-DOX), 
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almost complete re-imposition of silencing. N = three biologically independent 
experiments. Error bars represent S.D. Significance was calculated by two-tailed 
unpaired t-test.
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Extended Data Fig. 10 | Combinatorial chromatin modifications enhance 
penetrance of single-cell silencing. a) Dot plot showing log10 single-cell 
expression (N = 500) upon specific programming of DNA methylation, 
H3K9me2/3 or both modifications together relative to control. Reading 
was performed for three independent experiments. (b) DNA methylation 
pyrosequencing confirming that treatment with 1 μM 5-azacytdine (AZA) impairs 
DNA methylation deposition at the reporter. (c) Fraction of cellular population 
that is in either a ‘off’, ‘low’ or ‘high’ expression state following epigenetic editing 

+/− AZA. (d) Dot plot showing log10 single-cell expression (N = 500) upon specific 
programming of H3K27me3, H2AK119ub or both polycomb modifications 
together relative to control. Reading was performed for three independent 
experiments. (e) Representative and independent flow cytometry plots showing 
the distribution of gene expression across the population upon single- or 
combinatorial- polycomb targeting (upper), or with catalytic mutant controls 
(below). Note that both polycomb marks together increase the penetrance of 
‘full’ silencing.
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