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Abstract

The renormalization group is a key set of ideas and quantitative tools of statistical
physics that allow for the calculation of quantities that encompass the collective
behaviour of different kinds of systems. According to the renormalization group
theory, different collective behaviours can be organised into universality classes,
based only on general properties of the underlying system, such as symmetries
and conservation laws. Extension of the predictive power of the renormalization
group, and its most fruitful consequence, namely universality, to collective biological
systems would greatly strengthen the effort to put biophysics on a firm basis.

Living systems are very different from equilibrium systems statistical physics used
to deal with. The ability to convert free energy from the environment into systematic
movement, known as activity, drives living systems far from thermal equilibrium.
Furthermore, the wide range of scales over which biological processes take place,
from the chemical reactions of metabolism at the cell scale up to social interactions
on inter-individual scales, makes the behaviour of living systems infinitely more
complex. Given these premises, one may question whether the collective behaviour
of a living system can solely be described by symmetries and conservation laws,
challenging the idea of universality.

Here, by focusing on the case of natural swarms of insects, I provide one of the
first successful tests of universality in active biological systems, by calculating the
dynamic critical exponent of swarms using the renormalization group.

Swarms of midges in the field perform collective behaviour, as recent experiments
highlighted. Despite the lack of global order, swarms exhibit strong scale-free
connected correlations between midges’ velocities. These findings, together with the
observation of scaling laws, both static and dynamic, suggested that swarms behave
as systems near a critical point, in which order is low but correlations are large and
the capability to respond collectively to external perturbations is strong.

By focusing only on a few general properties of swarming midges, I developed
a field theory aiming to describe their collective behaviour. Although based on
experimental evidence, this approach entirely relies on the symmetries of the system,
mainly the rotational symmetry, and the associated conservation laws entailed
by the Noether theorem. The novelty of the field theory here developed is the
combined presence of activity and inertia. Activity is represented by the ability of
individuals to self-propel and thus accounts for the fact that the order parameter is
the local direction of motion. Inertial behaviour, on the other hand, stems from the
presence of a mode-coupling interaction with the conserved generator of the rotational
symmetry of the direction of motion of midges and accounts for the observation of
non-exponential relaxation of the temporal velocity-velocity correlation function.

I then perform a perturbative renormalization group analysis of this theory at
first order in ϵ = 4 − d, showing that a new fixed point where both activity and
inertia are relevant emerges. At this fixed point, the dynamic critical exponent is
found to be z = 1.35, in very good agreement with experiments on natural swarms
(z = 1.37 ± 0.11). On the path to this result, particular care has been taken to
the effects of density fluctuations, which I show must be small in all active systems
exhibiting collective behaviour in the absence of global order. This agreement
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between theory and experiments suggests that statistical physics, particularly the
renormalization group, can play a decisive role in describing collective behaviours in
biological systems.

Finally, within the present work, I focus also on the development of a field-
theoretical framework for models of flocking with discrete symmetry. Intending to
understand the universal features of active systems near the flocking transition, I
provide a comprehensive hydrodynamic approach to these systems, investigating
their behaviour at the onset of flocking.
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1

Introduction

Collective behaviour is a phenomenon that can be observed in a variety of different
contexts, ranging from condensed matter systems like Ising [1, 2] or Heisenberg [3]
ferromagnets near their critical temperature or superfluid helium [4], to biological
systems such as birds flying in flocks [5, 6], sheep herds [7], and bacterial clusters [8].

Most of these biological systems exhibit collective order, suggesting a strong
link between ordered dynamical structures and collective behaviour. This is the
case of bird flocks and fish schools, which are strongly polarised systems where a
spontaneously-selected direction of motion emerges. Is the presence of collective
order in biological systems therefore necessary to achieve collective behaviour? The
answer is no: what matters are correlations, and not order [9]. By thinking in
terms of statistical physics systems, collective behaviour is related to the non-trivial
presence of strong (connected) correlations among the fluctuations of the system,
which measures to what extent a change in the state of one individual influences
the change of the state of another individual [9]. Strong correlations thus allow the
system to have an efficient, namely collective, response to external stimuli.

The misconception that collective behaviours and collective order are somewhat
connected does not come out of nowhere. Strong and scale-free correlations are
naturally achieved by systems in which collective order emerges via the spontaneous
breaking of a continuous symmetry: when this happens, collective excitations can be
represented as quasiparticles, known as Goldstone bosons, which have no energy gap
and therefore can be exited by random fluctuations [10, 11]. Nevertheless, collective
behaviour can be also performed by systems with no global order: this is the case
of swarms of flies, mosquitoes or midges in the field [12]. Swarm formation plays
a crucial role in the mating process of these insects, and thus understanding their
properties is of great biophysical interest.

Insects gathering in swarms only apparently seem to behave as a cloud of non-
interacting particles; in fact, their behaviour is strongly correlated, thus suggesting
that interactions play a relevant role in the formation of swarms [12]. Furthermore,
the observation of both static [12] and dynamic [13] scaling laws in natural swarms,
together with the lack of global order, suggests that the proximity to a critical point
can describe swarms and their collective behaviour. These observations paved the
way for a theoretical investigation of swarms using the tools developed in the context
of the physics of critical phenomena [1, 2, 14, 15, 16], above all the renormalization
group [17].

The extension of the predictive power of the renormalization group (RG) and
its fruitful consequence, namely universality, to collective biological systems would
greatly strengthen the effort to put biophysics on a firm basis. Were universality
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shown to play a decisive role in strongly correlated biological systems, it would
allow one to describe collective behaviours in living systems based only on their
general properties, such as dimensionality, symmetries and conservation laws. In
the broader field of active matter [18], RG is already a key tool. The pioneering
hydrodynamic theory of Toner and Tu [19, 20] has been studied through the RG
both in the polarised [21, 22] and near ordering phase [23, 24], with applications in
systems with nematic or polar order [25, 26, 27]. RG has also been employed to
study motility-induced phase separation [28, 29], active membranes [30], bacterial
chemotaxis [31], cellular growth [32]. Direct comparisons with experiments are few,
though: the exponent of giant number fluctuations in d = 2 [22] was confirmed in
experiments on vibrated polar disks [33], while in [34] the exponents of the Vicsek
Model in the ordered phase were found to be incompatible with those conjectured by
Toner and Tu [19]. Other RG exponents have been checked in numerical simulations
[35, 36, 37, 38]. Comparisons with biological experiments are scarcer. Experiments
studying giant number fluctuations in swimming filamentous bacteria displaying
long-range nematic order [39] found an exponent in disagreement with RG predictions
of active nematic [26] and polar [22] systems. To the best of my knowledge, prior to
my recent work on swarms [MyPaper1], there has been no successful test of an RG
prediction against experiments on active biological systems.

In the case of natural swarms, the presence of dynamic scaling [13] links the
relaxation time τ to the correlation length ξ through a power law, τ ∼ ξz, where z
is known as the dynamic critical exponent. The value of this dynamic exponent in
swarms, of which the latest and most solid prediction is zexp = 1.37±0.11 [MyPaper1],
is far from that of any standard statistical model [13]. To give an example, in three
dimensions, the dynamical critical exponent of a model for alignment interactions
with no conservation laws is z ≈ 2 (Model A [40]).

In my PhD thesis, I will use a field-theoretical approach to characterise the
collective behaviour of insect swarms. To do this, I will focus on a theory that
combines the presence of activity and behavioural inertia. The former, activity,
is the ability of midges to perform self-propelled motion by consuming stored or
ambient free energy. The latter, behavioural inertia, refers to the presence of inertia
in the orientation dynamics of midges. Both these ingredients are motivated by
strong experimental evidence [13]. Following recent literature [23, 41], I will attempt
to build a field theory that properly accounts for collective swarming behaviour.
Some challenges will arise during the discussion, mainly regarding the role of density
fluctuations. Solving all these issues has been an integral part of my research work,
and has led to the publication of the two papers [MyPaper2, MyPaper3]. Finally, the
characterisation of the dynamic behaviour of swarms has been performed through
a renormalization group approach, showing a remarkable agreement with both
experimental and numerical results [MyPaper1].

Thesis structure
The thesis is organised as follows. In Chapter 1 I will introduce the reader to the main
subject of my work, namely natural swarms of insects. An overview of their collective
behaviours, together with a first characterisation of the interactions between midges



Introduction 3

will be provided. The role of correlations will draw useful connections with statistical
physics, as it allows one to describe swarms as systems in the proximity of a critical
point. I will then move on by introducing, in Chapter 2, a set of minimal models
developed to describe the collective behaviour of active matter, above all the Vicsek
model [42]. In these models, individuals are self-propelled and move at a constant
speed, and they interact with neighbours via an effective alignment of their direction
of motion.

In Chapter 3 I introduce and discuss a general coarse-grained description of active
matter systems, known as the Toner and Tu hydrodynamic theory [19]. This theory
merges the relaxation dynamics of an equilibrium ferromagnetic system, known as
Model A [40], with Navier-Stokes equations [43]. This theory provides a general
description of the large-scale behaviour of Vicsek-like systems. After a detailed
discussion of the Toner and Tu theory, I show through a linear stability analysis
that the homogeneous steady-state is unstable in the proximity of the transition,
a mechanism that turns the second-order transition of Model A into a first-order
transition [44]. This mechanism is however suppressed when the compressibility
vanishes, suggesting that swarms might behave as incompressible systems.

To perform a detailed analysis of the large-scale behaviour of the incompressible
theory, and of other systems in the following, I review in Chapter 4 the main concepts
and ideas behind the renormalization group, both in the case of static and dynamic
systems.

The renormalization group calculation of the incompressible Toner and Tu theory
near criticality of Chapter 5 is a review of a paper by Chen, Toner and Lee [23]. This
calculation represents an important stepping stone towards the characterisation of
swarming behaviour, as it addresses the effects of activity on the critical dynamics,
and provides insightful technical details on how RG can be applied to active theories.
For these reasons, I decided to dedicate a full chapter to this calculation although it
is not original content. In their analysis, the authors of [23] find that incompressible
active matter systems, with no conservation laws, have a dynamic exponent of
z = 1.73 in the physical case of three dimensions. The shift from the value of z ≈ 2
of equilibrium Model A dynamics to z = 1.73 for (incompressible) active systems
is an encouraging result, as it shows that activity modifies the collective behaviour
pushing z in the right direction. However, some missing ingredient is still needed to
fill the gap between theory and experiments.

Before proceeding to the introduction of inertial behaviour, in Chapter 6 I ask
myself whether the behaviour of swarms, which are not incompressible, can be truly
characterised by enforcing incompressibility. Recent numerical evidence suggests that
the dynamic critical behaviour of the compressible Vicsek model in the near-ordering
phase is described by the incompressible universality class, as long as the density
profile is homogeneous. To provide theoretical support to this hypothesis, I study
a version of the Toner and Tu theory in which density fluctuations are partially
suppressed by the presence of birth and death processes, known as Malthusian theory
[45]. In this work, published in [MyPaper3], I find a crossover between a second-order
phenomenology at finite scales and a first-order transition in the infinite size limit.
Moreover, the scaling behaviour exhibited by finite-size systems is described by the
exponents of the incompressible universality class [MyPaper3]. This result provides
strong support for working under the assumption of incompressibility in the context
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of homogeneous systems as swarms.
In Chapter 7, I tackle the problem of what other ingredient, in addition to

alignment and activity, is needed to describe the collective behaviour of swarms.
Following experimental evidence, I show that behavioural inertia in the orientation
dynamics of the directions of motion might be the missing ingredient [13]. At the
general level, inertial dynamics stems from the existence of a reversible coupling
between the primary field (playing the role of the generalised coordinate) and the
generator of the symmetry (playing the role of the generalised momentum); in
the case at hand, the symmetry is the rotation of the direction of motion field,
hence its generator has been called ‘spin’. In the absence of explicit dissipation,
a reversible mode-coupling dynamics leads to global spin conservation, which is
known – at equilibrium – to significantly decrease the dynamical exponent, from
z ≈ 2 of Model A [40], to z = 1.5 of three-dimensional superfluid helium or quantum
antiferromagnets (Models E/F and G [40]). At the end of Chapter 7, I introduce the
reader to Self-Propelled Model G, the field theory in which inertia and self-propulsion
merge.

The need to model natural swarms as incompressible systems, to account for the
scaling laws observed in experiments, requires the direction of motion field to obey
a solenoidal constraint [46]. In Chapter 8, I address the question of what are the
consequences of this constraint on the dynamic behaviour of the spin field. Since
this issue is unrelated to the presence of self-propulsion, I perform this analysis in
the fixed-network approximation by studying a solenoidal-constrained version of
Model G. I show that an additional interaction, relevant in the RG sense, is needed
for the theory to pass some crucial consistency checks. Moreover, in the presence
of this solenoidal constraint, I reveal that the dynamic universality class remains
unchanged compared to Model G. This is remarkable, as the solenoidal constraint
does instead modify the static universality class, usually believed to be more robust
compared to the dynamic one. The results presented within this Chapter have been
published in [MyPaper2].

Overall, the scenario presented so far suggests that the combined effect of activity
and inertia may account for the experimental exponent of natural swarms. In Chapter
9 I, therefore, start to investigate this hypothesis, by performing a field-theoretical
study of Self-Propelled Model G in the incompressible limit. In particular, I discuss in
detail the equation of motion, provide arguments for the presence of some additional
anomalous terms which were neglected in the introduction of Self-Propelled Model
G in Chapter 7, and provide an equivalent field-theoretical description of the system
using a Martin-Siggia-Rose formalism [47].

Chapter 10 is completely dedicated to the renormalization group calculation of
Self-Propelled Model G. There, I discuss in detail the effects of the renormalization
group transformation on the action of the theory and provide a primer of the
calculation of the Feynman diagrams, which have not been reported explicitly. I also
show that the anomalous terms, introduced in the previous Chapter, are generated
by the renormalization group. This means that even if one started with equations
of Chapter 7, the renormalization group would have singled out the presence of
these interactions anyway. Most importantly, I reveal that the collective behaviour
of Self-Propelled Model G is described by a novel fixed point, characterised by the
presence of both activity and inertia.
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In Chapter 11 I characterise the collective behaviours of the system in the
proximity of this new RG fixed point, revealing its many interesting features. Above
all, I compute the dynamic critical exponent z and find a new dynamic universality
class, describing active inertial systems, characterised by z = 1.34(8), in great
agreement with both experimental (zexp = 1.37 ± 0.11) and numerical results
(znum = 1.35 ± 0.04). The analysis performed in Chapters 9-11 is now published in
[MyPaper1].

In the last Chapter, I present work done during a visiting period spent in
Cambridge, in collaboration with Dr Pausch and Prof Cates. There, I investigate the
behaviour of flocking models with discrete symmetry, known as Active Ising Models.
I use a field-theoretical approach to study the emergent behaviours of these models,
confirming some known results and presenting some new findings concerning the
universality class of the system. Most of the results of Chapter 12 are now published
in [MyPaper4], although some will be presented in a paper currently in preparation
[MyPaper5].
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Chapter 1

Collective behaviour in active
biological systems

As physicists, we are usually interested in finding simple descriptions of the phe-
nomena we observe in the world surrounding us. To do this, sophisticated tools
and techniques have been developed throughout the centuries, both theoretical and
experimental. In particular, statistical physics aims to provide a general framework
to characterise emergent properties of a system using a statistical description of its
constituents.

The great success of statistical physics in describing collective properties of
matter, which culminated with the development of a theory of critical phenomena,
found prolific applications in many areas of science and technology. Ferromagnetism
is a typical example of an emerging property: thanks to the ability of neighbouring
atoms in a material to locally align their spins, as a consequence of induced magnetic
fields, the material can develop a global net magnetic field if the temperature is
sufficiently low. Moreover, the response of the system to external perturbations - as
an external magnetic field - is extremely efficient. Superconductors and superfluids
also provide examples of collective behaviour. The vanishing electrical resistance
in the former, and the vanishing viscosity in the latter both emerge from local
interactions between the constituents of the system through the presence of collective
excitations.

Similarly, emergent behaviour is also observed all the time in a wide variety of
living systems: bird flocks move all in the same direction and respond efficiently to
the attack of a falcon, resembling the aforementioned behaviour of ferromagnetic
materials. Fish schooling, swarming midges and herds of mammals all provide
other collective behaviour emerging from local interactions between the system’s
constituents. A unifying ingredient of collective behaviours in these living systems,
which also provides an insightful connection with statistical physics, is the presence
of strong correlations, which allow small fluctuations of an individual’s behaviour to
quickly propagate and influence the behaviour of others, hence allowing the system
to respond collectively to external perturbations.

In contrast to ferromagnets, superfluids and superconductors, understanding
the emergent behaviour of a living system within the boundaries of equilibrium
physics would not be possible. Most biological systems are made of active self-driven
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units, able to convert energy from the environment into mechanical motion at the
individual’s scale. This property, known as activity, drives the system far from
thermal equilibrium, and often has far-reaching consequences on its large-scale
behaviour [18, 26]. A typical example is flocking, namely, the collective coherent
motion of a large group of self-propelled units, which can spontaneously emerge
in a system moving on a surface [19]. In equilibrium systems, a phenomenon like
flocking would violate the Mermin-Wagner-Hohenberg theorem, which states that no
continuous symmetry can be spontaneously broken in two spatial dimensions [48, 49].
However, the presence of self-advection and the consequent rewiring of the interaction
network gives rise to a feedback mechanism that stabilises the ordered flocking phase.
It should therefore be no surprise that active matter physics represents one of the
most prolific fields of the last decades since the introduction of a simple model to
describe flocking by Vicsek et al. [42] paved the way for deep theoretical investigation
of collective behaviours in living matter.

1.1 Is there universality in living systems?
One of the central questions I will address throughout this work is whether univer-
sality applies to strongly correlated biological systems, namely understanding if the
collective behaviour observed in a biological system can be explained by looking at
a few general properties, such as symmetries and conservation laws.

This concept of universality, according to which only a few general features
contribute to the observed emergent properties in strongly correlated systems, has
been proposed in the context of critical phenomena and phase transitions [14, 2, 15, 1].
As a system approaches a critical point, it exhibits fluctuations on increasingly wider
length scales, which leads to the presence of a diverging correlation length. A set of
phenomenological scaling laws have been proposed by Widom and Kadanoff [50, 51],
which link the divergence of the free energy of the system, and its derivatives, to the
proximity to the critical point through a set of critical exponents. Experiments soon
reported that systems very different one from another, often shared the same critical
exponents when approaching a phase transition [14], providing strong evidence for
universality in physics.

Within the renormalization group (RG) developed by Wilson [17, 52], universality
finds an elegant and rather simple explanation. In the RG context, each specific
microscopic system can be identified by a different point in the parameter space.
Universality consists of the fact that one single fixed point rules the long-wavelength
behaviour of a large class of theories, all sharing only a few general properties, such
as symmetries, conservation laws and dimensionality. Hence, at the critical point, all
systems sharing these general properties will fall into the same universality class and
have the same critical exponents. Moreover, the RG gives a constructive method to
compute these exponents [53], making it one of the most powerful tools of the theory
of critical phenomena, broadly employed to characterise the critical behaviour in
equilibrium systems. The predictive power of the RG is not limited, however, to
systems that are precisely tuned at the critical point: any system which has strong
correlations, regardless of its proximity to a phase transition, can be treated through
an RG approach.
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Whether the RG and its most fruitful consequence, universality, can be applied
to biological systems should not be taken for granted. Biological systems appear
to be very far from the world of condensed matter physics, where the ideas of the
renormalization group were first applied. In the first place, these systems are active,
namely, they are able to convert stored or ambient free energy into movement,
driving living systems far from thermal equilibrium. Secondly, and perhaps most
importantly, living systems are way more complex than non-living ones. What
one observes on the macroscopic scale is the result of a chain of different processes
ranging on several scales: from chemical reactions in the Krebs cycle of cellular
respiration up to the social interactions among different individuals, passing through
the internal organisation into tissues and organs in the case of animals. Their
large-scale properties might therefore depend on the concatenated effect of all these
processes, challenging the foundations of universality.

Despite these striking differences, when it comes to collective behaviour all
systems share the same features: they exhibit strong, scale-free, correlations between
the system’s components. In the realm of biological systems, this has been experi-
mentally observed in a wide range of systems, from bird flocks [5] and sheep herds
[7] to midge swarms [5] and bacterial clusters [8]. The presence of a strong scale-free
correlation associated with collective behaviour, although not proving direct evidence
of universality, can be hardly considered a coincidence. This calls for an attempt to
employ the tools of critical phenomena to explain collective behaviours in biology.

1.2 The case of natural swarms of midges
Within the present thesis, I will put to test the renormalization group approach in
the biophysical context by focusing on the case of natural swarms of insects. Before
starting with any theoretical approach to swarms, it is useful to review some relevant
experimental evidence.

The claim that flocks of birds or schools of fish behave collectively seems quite
intuitive. In these systems individuals all move in the same direction and turn at the
same time, hence giving rise to emergent phenomena which can usually be detected
already “by eye”. This common intuition would suggest that the presence of some
ordered structure and collective behaviour are two faces of the same medal.

In this respect, natural swarms of insects represent a tricky case. Swarms consist
of a relatively large group of insects, mainly males, that gather together to attract
females [54, 55]. The group however does not seem to exhibit any emergent pattern
nor does it move around as a whole. Rather, it remains stationary over a landmark,
usually a water puddle or a street lamp [54]. The reproductive function of the swarm
together with the absence of any evidence of order broadly intended, challenges the
link between emergent order and collective behaviour.

1.2.1 Collective behaviour vs emergent phenomena

It is therefore important to settle this issue, by making clear what I intend as
collective behaviour, and how it might differ from the presence of an emergent
ordered pattern. An ordered pattern emerges when individuals do all the same
thing, for example arranging their position in space in a given way, moving all in
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the same direction, or synchronising some degree of freedom. Collective behaviours
arise instead when behavioural changes throughout the group are synchronised. To
put this in the words of a theoretical physicist, the presence of an ordered pattern
is related to the properties of the ground state of the system, while a collective
behaviour arises when the energy gap of collective modes vanishes.

In the language of statistical physics, this means that the (connected) correlation
is the observable to watch for to understand collective behaviour [9]. An intuitive
explanation of this fact can be given as follows: when correlations are large, small
fluctuations of an individual’s behaviour quickly propagate throughout the system,
influencing the behaviour of others. This allows the system to behave collectively, and
respond efficiently to external perturbations. At equilibrium, the connection between
fluctuations and response is entailed by the Fluctuation-Dissipation Theorem. In
non-equilibrium systems, as living matter, fluctuations and response are not directly
linked to each other; nevertheless, the presence of strong correlations is usually
linked to an efficient response to an external perturbation.

Please note that the association between collective behaviour and emerging order
is not completely unjustified: whenever order emerges through the spontaneous
breaking of continuous symmetry, as happens in flocks, Goldstone modes arise.
These modes, often referred to as spin-waves in the context of ferromagnets, can
be excited with a vanishing energetic cost and therefore are characterised by a
diverging correlation length. Hence, in these cases collective behaviour do arise
from the presence of emerging order. It is however important to be aware that this
might not be the only mechanism through which collective behaviours arise. In
general, emergent order might be present in the absence of collective behaviour and
vice-versa.

1.2.2 Evidence of collective behaviour in swarms

In the previous section, I justified that collective behaviour can be detected by
looking at the connected correlations in a system. In the case of natural swarms,
this has been done by the Collective Behaviour in Biological Systems lab in [12],
where swarms of midges have been recorded in urban parks in Rome, their trajectory
reconstructed and the correlation between the velocity fluctuations of different midges
computed.

Short-range metric aligning interactions

Midges in the field seem to interact mainly with sound-mediated interactions with
an interaction range of only a few centimetres [57, 58], way smaller than the size
of the swarms observed. The short-range nature of the interactions in swarms was
also confirmed in [12], where the radius of the effective aligning interaction was
estimated to be of 2 − 5 cm, in agreement with acoustic interactions. Moreover,
because correlations were found to be larger in denser swarms, midges are expected
to interact through a metric perceptive apparatus: the strength of the perception
decreases with the distance, so that when midges are further apart from each other
the interaction is weaker. Note that this is different from what happens in flocks,
where birds interact only with a fixed number of neighbours [59], hence giving rise
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Figure 1.1. Natural swarms [56]. (a) 3D trajectories for swarm 20120907_A1 (see
[56]), N = 169. (b) Velocity correlation function. The correlation length, ξ ∼ r0, is
much larger than the nearest-neighbour distance. The correlation is averaged over the
whole time acquisition. (c) Alignment event between two midges (real trajectories).
Permission to reuse granted by the American Physical Society under License Number
RNP/23/OCT/071428.

to topological interactions. Finally, interactions between neighbouring swarms were
shown to promote alignment between their direction of motion [56]. This is not only
suggested by the presence of positive velocity-velocity corrections in neighbouring
midges, which per se suggests that a mechanism through which a change in direction
of one midge is followed by a similar change in a neighbouring one, but also observed
directly on real trajectories - see Fig 1.1, panel (c).

This overall picture suggests that midges effectively interact with their neighbours
through short-range metric alignment interactions. Although this behaviour emerges
from the complex interactions between many underlying biochemical processes,
it is under universality that one can hypothesise all these details do not matter,
allowing an effective description to be able to quantitatively account for the collective
properties. If this were true, from a theoretical point of view swarms could be cast in
the context of ferromagnetic-like models, where individuals tend to act to minimise
an effective energy [14]

H = J
∑
ij

nijψiψj . (1.1)

Here ψi = vi/ |vi| is the direction of motion of the i-th individual, while nij is the
adjacency matrix, which tells whether two individuals i and j are interacting or not.

Lack of global order

To establish whether emergent order was present in the system, three order pa-
rameters were monitored: the alignment order parameter Φ, the rotational order
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Figure 1.2. Natural swarms lack global order [56]. Order parameters in a typical
natural swarm. In all panels, the grey band around zero is the expected amplitude of the
fluctuations in a completely uncorrelated system. In the left panels, the time series of the
order parameters are reported, in the right panels their probability distributions. Top:
The alignment order parameter, known as polarisation, Φ ∈ [0 : 1] In red the reference
value of the polarisation in a flock of starlings is reported. Middle: Rotational order
parameter, R ∈ [0 : 1] Bottom: Dilatational order parameter, Λ ∈ [−1 : 1]. Permission
to reuse granted under the terms of the Creative Commons Attribution License CC BY
4.0

parameter R and the dilatational order parameter Λ (see Methods of [12] for def-
initions). The former provides a measure of translational modes, associated with
collective motion, the second of rotational modes, as milling, and the latter of pulsa-
tion modes, observed when contractions and dilations follow one another cyclically.
As can be seen from Fig. 1.2, all these order parameters are small [12], hence
suggesting swarms belong to an overall disordered phase. Furthermore, let me note
how none of these order parameters is conserved, as they all fluctuate in time.

Strong correlation and near-critical behaviour

On the other hand, however, connected velocity-velocity correlations were found to
be large, and in particular to scale linearly with the size of the system [12, 56]. But
even most remarkably, scaling laws were observed in natural swarms of insects [56].
Through a finite-size scaling analysis, data for natural swarms could be explained
by the proximity to the critical point of an ordering transition, suggesting that
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the collective behaviours of swarms are of the same nature as those observed in a
ferromagnet near the Curie temperature.

Note that, however, being near to a critical point is not the only mechanism
through which biological systems in general exhibit collective behaviour and scaling
laws. Often, collective behaviour arise from other mechanisms, as the spontaneous
breaking of continuous symmetries or the presence of conserved quantities. In the
former case, Goldstone modes of large wave-length can be excited with arbitrary
small energetic cost. Therefore, random fluctuations are able to give rise to strong
collective behaviour. On the other hand, in systems with conservation laws scale
invariant structures arise in the fluctuations of the conserved quantities. In these
systems, universal collective behaviours are expected to emerge without the need of
any fine-tuning of parameters, while in cases as swarms some fine-tuning near the
critical point is required.

How swarms perform this fine tuning is a topic that will not be addressed here.
Let me just mention that, although no definitive answer has been provided yet, two
main scenarios are possible. One is that natural swarms do fine-tune their intrinsic
parameters to achieve scale invariance. This would however require midges to be able
to change their interactions with neighbours and tune them accordingly. A second
possibility is that each swarm in the field has a given set of parameters, and tunes its
size to maximise its susceptibility, namely the collective response. This mechanism,
proposed in [56], lies on a simple assumption: midges gather in swarms only when it
is convenient, namely when they maximise their ability to behave collectively and
therefore to mate. This could happen due to interactions we are currently not aware
of, that make the swarm unstable whenever its size is too large, naturally breaking
it into smaller swarms until the collective response is maximal. This mechanisms
would mean that swarms might be able to cut off their size close to that of their
correlation length. Note that, whatever is the correct scenario, based on the results
in [12, 56], swarms can be effectively described as a system near a critical point.

1.2.3 Dynamic scaling in swarms

While the finite-size scaling observed in [56] involved only static quantities, as the
integrated same-time correlation function, the scaling analysis has been further
expanded in [13] by probing the presence of dynamic scaling in natural swarms.

Dynamic scaling is a property exhibited by spatiotemporal correlations of critical
systems, entangling the relaxation time-scales of large-scale modes with the correla-
tion length [60, 61]. In particular, it states that the dynamic correlation function
C, when expressed as a function of wave vector and frequency, takes the following
simplified scaling form,

C (k, ω; ξ) = C0 (k; ξ) F
(
ω

ωk
, kξ

)
, (1.2)

where ξ is the correlation length and where the static correlation function C0 has in
turn the scaling form,

C0(k, ξ) = k2−ηF0 (kξ) (1.3)
and where the characteristic frequency at scale k is given by,

ωk = kzΩ (kξ) (1.4)
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Figure 1.3. Dynamic scaling in swarms [13]. (a) Normalised time correlation function,
Ĉ(k, t), evaluated at k = 1/ξ, in several natural swarms. Sizes range from N = 100 to
N = 300, time is measured in seconds and correlation length ξ is centimetres. (b) Ĉ(k, t)
as a function of the scaling variable kzt for the same events (here the value z = 1.2 was
used). The quality of the collapse deteriorates for longer times because Ĉ(k, t) is the
average over tmax − t time pairs (tmax is the sequence duration); hence, large t data are
noisier. (c) Characteristic timescale, τk, computed at k = 1/ξ, as a function of k (log-log
scale). Each point corresponds to a different natural swarm; all experimental events of
[13] are reported. P − value = 10−6, z = 1.12 ± 0.16, consistent with the estimate from
the collapse in (b). (d-f) Dynamic scaling analysis of the 3D Vicsek model for N = 128,
256, 512, 1, 024, 2, 048 particles; τk scale with k with an exponent z = 1.96 ± 0.04, which
also produces an excellent collapse of the correlation functions. Permission to reuse
granted by Springer Nature under License Number 5655281510730.

In the relations above, Ω, F0 and F are well-behaved scaling functions, whose explicit
form is inessential to capture the gists of dynamic scaling [60, 61]; η is the critical
exponent for the static correlation function (normally called anomalous dimension
[14]). The fundamental meaning of dynamic scaling is that in critical systems space
and time do not scale independently from each other, but they are linked by the
dynamic critical exponent z. The space-time correlation function has a very simple
form, as its whole spatiotemporal dependence goes through the product kξ. When
k = 0, the collective relaxation time τ of the system is linked to the correlation
length ξ through the relation,

τ ≃ ω−1
k=0 ∼ ξz (1.5)

This phenomenon is known as critical slowing down and it represents a consequence
of the fact that the time τ needed to decorrelate a spatially correlated region grows
with the region’s size, namely with the correlation length ξ, making the latter the
only relevant scale also at a dynamic level.

Notably, natural swarms of insects have been found to obey dynamic scaling [13],
with a dynamical critical exponent z quite close to 1. In Fig. 1.3, one can appreciate
the collapse of the correlation functions of swarms arising from the validity of Eq.
(1.2). Note that the analysis of [13], where a Least Squares regression method
[62] was used to infer z, predicted an exponent of z = 1.12 ± 0.16. However, the
addition of other data points to the analysis, and the realisation that the hypothesis
underneath the Least Square method – negligible error bars on the abscissa – was



1.2 The case of natural swarms of midges 14

violated in the case of swarms, led to a revision of the analysis in [MyPaper1]. In
this case, a Reduced Major Axis method [63, 64] has been used to take into account
non-negligible error bars on both the ordinate and abscissa variables, which lead to
the result [MyPaper1]

zexp = 1.37 ± 0.11 . (1.6)

In conclusion, because the validity of scaling laws is one of the hallmarks of critical
systems, the experimental evidence of static and dynamic scaling in natural swarms
[12, 13] suggests that the swarming phase can be theoretically described as a near-
ordering phase of ferromagnetic-like theories. The novelty of this dynamic critical
exponent, not reported previously in any other theory to my knowledge, suggests
swarms belong to a new universality class. In the present dissertation, I will attempt
to first understand what features should characterise this new universality class, and
then use a renormalization group approach to provide a theoretical estimate of this
exponent.

Comparison with other systems

Let me try to put this exponent into context, and compare it to that of other systems
sharing with swarms the same properties I discussed so far. As pointed out in Sec.
1.2.2, the presence of effective short-range alignment interactions between midges
allows to model swarms as ferromagnetic-like systems, such as the Heisenberg model
[3]. The proximity to a critical point further suggests collective swarming behaviour
can be studied within the framework provided by the theory of dynamic critical
phenomena [40].

The most simple dynamic behaviour, which takes into account the presence of
effective alignment interactions between the order parameter field, but neglects any
other feature, is known as Model A in Halperin and Hohenberg classification [40],
and exhibits a dynamic critical exponent of z ≈ 2 in d = 3, quite far from the value
observed in natural swarms. When in addition the average magnetisation – which is
the equivalent of the direction of motion in swarms – is conserved, as in Model B
[40], the agreement becomes even worse, as z ≈ 4.

Both Models A and B discussed here describe the dynamic behaviour of an
equilibrium system in which no couplings with other conserved quantities are present.
The following few Chapters will be therefore dedicated to understanding what
ingredients, in addition to effective alignment, should be taken into account in a
quantitative description of the collective behaviours of natural swarms of midges. As
it will turn out, Model A fails to describe swarms both because it is an equilibrium
model, while swarms are inherently active, and because a coupling with the conserved
generator of the underlying rotational symmetry is neglected. Combining these
two ingredients will therefore turn out to be crucial to understanding the collective
behaviour of swarms.
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Chapter 2

Activity through self-propulsion:
minimal models

Although midges in a swarm interact via short-range effective alignment, their
dynamic collective behaviour is hard to explain within the standard theories of
ferromagnetic alignment. Midge-midge interactions might therefore not be the whole
story: other ingredients must be taken if a quantitative description of swarming
collective behaviour is aimed to be provided.

The first obvious candidate to lower the value of z from the value of 2 of Model
A to the experimental value of swarms is activity, which represents the ability of a
system to convert stored or ambient free energy into mechanical motion [18]. As
such, active particles contain internal degrees of freedom able to dissipate this energy
and, in the process, execute systematic movement [26]. Many biological systems
indeed fit into this definition: from mammals to insects, from birds to bacteria,
most living matter can sustain self-propelled movement. These motile organisms
are usually able to intake nutrients from the environment, transform them into
energy through metabolism, store this energy if necessary and then use it to perform
work. This energy flow drives living systems far from thermodynamic equilibrium,
allowing them to perform the biological functions that characterise the presence of
life. The emergent behaviours of active systems are therefore expected to be way
more complex compared to equilibrium systems.

In the context of equilibrium physics, when focusing on the large-scale properties
of a system, universality [14] ensures that the precise details of the interactions are
not usually necessary to describe its collective behaviour. Thus, a description in
terms of some general effective features only – such as symmetries, conservation
laws and dimensionality – is expected to be sufficient to characterise the observed
emergent behaviours. Whether this holds also for biological systems is far from
being completely understood. To probe the existence of universal behaviour in living
systems, the route I will follow here is assuming universality holds, and check what
conclusions can one draw based on this assumption. The main focus of the rest of
the present thesis will be to attempt to provide a posteriori evidence in favour of the
applicability of universality in biology by focusing on the case of natural swarms.

In the present chapter, I will start by discussing what activity is expected to be
a relevant feature in the description of the large-scale behaviour of swarms. Then,
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inspired by universality, I will introduce some particle-based models describing active
systems with effective imitative alignment interactions among individuals, above all
the Vicsek model [42]. Note that in what follows I will use the adjective “microscopic”
to indicate these particle-based models. This choice is made to differentiate the
behaviour of the system on the “microscopic” particle scale from the mesoscopic scales
on which coarse-grained descriptions will become applicable and the macroscopic
scales on which collective behaviour occurs.

2.1 Activity meets alignment: the Vicsek model
When self-propelled individuals group, social interactions among them usually take
place, allowing living matter systems to give rise to fascinating collective behaviours.
Among social interactions, imitation often plays a crucial role in allowing efficient
responses to external stimuli. Imagine having a neighbour under attack by a predator:
if they try to move away from the threat, by imitating them you avoid being attacked
even if you are not able to directly detect the predator’s presence. Countless biological
systems, including swarms of midges [56], act guided by an imitative interaction,
as individuals tend to align their motion to that of neighbours. Understanding the
behaviour of active aligning systems is thus of fundamental interest in biophysics.

2.1.1 Relevance of activity in natural swarms

Before delving into the details of the Vicsek model, let me start the discussion by
addressing the effective relevance of activity on the collective behaviour of natural
swarms. While activity is indeed relevant on the scale of single midges, as it allows
them to move in space, it is reasonable to question its relevance on the large-scale
dynamics. There are several good reasons why this should be a good question to ask
oneself. The first is that in other biological systems, such as flocks, local equilibrium
behaviour has been reported [65]. In flocks, this happens because the time scale
over which the network rearranges - a measure of the relevance of activity on large
scales - is much larger than the time scale over which neighbouring birds align their
directions of motion.

To understand whether this is what happens also in swarms, in [MyPaper1] the
characteristic time scale of the network correlation function has been computed, and
compared to the time scale of the velocity-velocity correlation. The results, reported
in Fig. 2.1, leave little room for interpretation: these time scales are comparable, and
hence activity has the same relevance as the alignment dynamics. As a consequence,
guided by the spirit of universality, the large-scale behaviour of swarms is expected
to be triggered by the combined presence of imitative interactions and activity. The
former can be modelled as a social force whose effect is to align the direction of
motion of neighbouring individuals. The latter property comes instead from the
presence of an internal force that sustains movement. These are precisely the two
features underlying the development of the model proposed by Vicsek et al. in [42].
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Figure 2.1. Swarms are strongly active. a, b: Network correlation (yellow) and
velocity correlation (green) as a function of time, at two different spatial scales r. The
network correlation measures the fraction of neighbours remaining within a region of
size r around a given individual, after a time t; it therefore quantifies how quickly the
interaction network rearranges on a given spatial scale. The two values of r considered
correspond to neighbourhoods with - on average - 3 individuals and 41 individuals. c:
Characteristic time of network and velocity correlation vs. r in the range [0.05m, 0.15m],
an interval within which the metric interaction range of real swarms certainly belongs to
[12]. Results show that network rearrangement occurs on the same timescale as velocity
relaxation both locally and for neighbourhoods containing many individuals. Data are
from event 20150924_ACQ2, with N = 781 individuals (SI-Table 1 of [MyPaper1]).

2.1.2 Moving Ferromagnets

Fortunately, physics is not new to polar systems, whose aim is to align some vectorial
degree of freedom. The classical theory of ferromagnetism is based exactly on the
same principle: atoms in a certain material tend to align their spin. While spins
align simply because of the presence of a magnetic field induced by neighbouring
spins, social interactions inducing animals to align their direction of motion are
way more complex, and require the coordination of biological functions of different
organs and systems.

Claiming that animals are similar to ferromagnets is therefore an apparent
blunder. However, the final effects of the very diverse processes in these two
systems can be easily summarised with the same sentence: individuals align to their
neighbours. The only macroscopic difference in this effective description is that
atoms in ferromagnets are located on a fixed network, and spins therefore are simple
pointers in space, while in active systems what is being aligned is the direction of
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motion, which in turn affects how the network changes in time. This will be the
only effective difference between these two systems I will take into account in this
section. Yet, I will later show that this "tiny" difference has important consequences
on the large-scale properties of the system.

The core idea behind most of the models aiming to describe collective behaviours
in flocks and swarms is based on the empirical observation of combined self-propelled
motion and imitative interactions between neighbours. Note that the biological
mechanisms leading to alignment in these systems might be quite complex and
perhaps not completely understood. It is not even clear whether in these systems
individuals voluntarily tend to align one with the other, or whether alignment
emerges as an effective consequence of other interactions. However, if the aim is to
describe effectively the dynamics of these biological systems on large scales, it is
reasonable to expect this deep understanding to not be needed.

In the most simple description, imitation can be encoded by the tendency of a
given individual i to align its velocity to that of neighbours. Given that individuals
are moving at a known velocity at time t, after a small time ∆t the new velocity
will get closer to the average velocity of neighbours ⟨v⟩r, following the update rule

vi (t+ ∆t) = v0
vi (t) + ∆t ⟨v⟩r (t)
|vi (t) + ∆t ⟨v⟩r (t)| (2.1)

To enforce the fact that particles are self-propelled, I am here considering individuals
that move at a constant speed v0, so that the velocity is not dissipated. More realistic
assumptions might be made, such as a speed fluctuating with Gaussian statistics
around an average speed v0. Unless scale-free speed correlations are a feature one
wants to reproduce, for which marginal models are required [66, 67], other choices
that do not allow speed dissipation are expected to lead to analogue behaviours.

In the limit ∆t → 0, only the component of ⟨v⟩r orthogonal to vi contributes to
the evolution of vi itself, thus meaning that

dvi
dt (t) = ⟨v⟩⊥

r (t) (2.2)

To take into account the self-propelled nature of the particles, this equation should
be coupled to the temporal evolution of the positions

dxi
dt (t) = vi (t) (2.3)

Systems with the same alignment interaction in which the ability to move is
absent have been widely studied in the context of ferromagnetism. If (2.2) is not
coupled to (2.3), namely if the limit v0 → 0 is taken, the positions xi of each
individual do not depend on time, and therefore the interaction network is fixed.
In this limit, the magnitude of vi vanishes, since it is equal to v0. However, the
direction of motion

ψi = vi
v0

(2.4)

remains well-defined at arbitrarily small v0. When v0 = 0 the vector ψ does not
represent the direction of motion, since no motion is occurring, and equilibrium
ferromagnetic models are recovered. However, the presence of movement through the
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evolution of xi radically changes the properties of the model. When v0 ̸= 0 then the
positions are not fixed, and thus the adjacency matrix nij , that is a function of xi
and xj , will indirectly depend on time. This leads the system to be off-equilibrium.

2.1.3 The model

One of the first and most simple models proposed to describe the collective behaviour
of active biological systems in the presence of an effective alignment interaction was
proposed by Vicsek and collaborators in [42]. The Vicsek model (VM) describes
the dynamics of a collection of self-propelled individuals with a ferromagnetic-like
alignment interaction between their directions of motion. The model, originally
introduced in the two-dimensional case in terms of the angular orientation of the
velocity [42, 68], can be defined in a more general way by the following equations
for the direction of motion ψi and the positions xi of each individual i:

dψi
dt = θ

J
∑
j

nijψj +
√

2Dψζi

 (2.5)

dxi
dt = v0ψi (2.6)

Because the direction of motion ψi is, by definition, a unitary vector, the operator
R is present to enforce the conservation of the moduli of ψ. To fulfil this, θ must
project its argument perpendicular to ψi, so that no change in the magnitude of ψ
occurs:

θ [φ] = φ− (ψi ·φ)ψi (2.7)
The social force inducing imitative interactions, in virtue of the similarity with

ferromagnetic-like alignment, can be written as arising from the following Hamiltonian

H = −J
∑

nijψi ·ψj (2.8)

and results in the term
Fi = − ∂H

∂ψi
= J

∑
j

nijψj (2.9)

in Eq. (2.5). In addition to alignment, ζi is a noise term that encodes the presence of
intrinsic errors in the ability of each individual to imitate the behaviour of neighbours.
Note that this noise can be defined in many different ways, and depending on the
precise form different phenomenologies may take place. In Eq (2.5) I wrote it as
an additive noise, but other choices are possible. For what concerns here, let me
assume this noise to be an additive random white noise with Gaussian statistics

⟨ζαi (t)ζβj (t′)⟩0 = δαβδijδ
(
t− t′

)
. (2.10)

The noise amplitude Dψ in Eq. (2.5) plays the role of an effective temperature, a
measure of how much individuals tend to make mistakes in their imitation.

Activity, which in this context is the ability to self-propel, is reflected by the
presence of a fixed speed v0 in (2.6). The velocity of each individual is therefore
given by

vi = v0ψi (2.11)
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The presence of activity causes the interaction matrix nij to not be fixed, but
dependent on the specific configuration of the system at a given time. In the case of
metric systems as swarms, where all individuals interact with a set of neighbours
within a given distance r0, this interaction matrix takes the form

nij = n (xi,xj) =
{

1 if |xi − xj | < r0
0 else (2.12)

As a consequence, the effective energy H is not the Hamiltonian of the system, but
should be viewed only as an objective function midges tend to minimise. Equations
(2.5) and (2.6) therefore define what could be called a moving ferromagnet, in which
ψ plays a double role: it is both the direction of motion of the single individual and
the orientation to which neighbouring individuals tend to align.

2.1.4 The flocking phase

The Vicsek model displays two distinct phases as the temperature T and the density
ρ changes [42]. The order parameter that rules this transition is the magnitude of
the average direction of motion

Ψ = 1
N

∣∣∣∣∣∑
i

ψi

∣∣∣∣∣ (2.13)

At high temperatures or low densities, the system is in a disordered phase, where
particles display a random motion. No emergent phenomena associated with the
alignment interaction are detected: in this phase, the order parameter vanishes
Ψ ≃ 0 meaning that the system displays no net group motion and the centre of mass
remains stationary. This phase closely resembles the disordered high-temperature
phase of ferromagnets.

On the other side, at low temperatures and high densities, a flocking phase
emerges, characterised by the presence of net group motion on the macroscopic scale,
associated with a non-vanishing order parameter Ψ > 0. Although the system has
no a priori preferred direction of motion, in this phase all of the particles tend to
move in the same direction. This mechanism whereby a given state of a system has
fewer symmetries than the system itself, known as spontaneous symmetry breaking,
is precisely what allows for ferromagnetism to arise. In analogy with the low-
temperature phase of ferromagnetic systems, in this flocking phase, spin-wave-like
excitations emerge, giving rise to interesting collective behaviours.

Long-range order in two dimensions

Despite the similarities with ferromagnets, the Vicsek model and ferromagnets exhibit
many qualitative and quantitative differences. One of them is the presence of long-
range order in two dimensions. As a consequence of the Mermin-Wagner-Hohenberg
theorem [48, 49], a continuous symmetry can not be broken in equilibrium systems
with short-range interactions at any finite temperature in dimensions d ≤ 2. This
prevents ferromagnetism in two dimensions and apparently suggests that no flocking
phase should be possible in two dimensions either. However, numerical simulations
have shown that this is incorrect, and Vicsek flocks can form even in d = 2 [42].
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What makes this possible is the active nature of individuals in the Vicsek
model, which poses the system out of equilibrium. This feature explicitly violates the
hypothesis of the Mermin-Wagner-Hohenberg theorem, therefore solving the apparent
contradiction. A naive argument to understand what is the physical mechanism
that allows for long-range order in d = 2 is that the rewiring of the interaction
network generates density fluctuations that couple to velocity fluctuations generating
sound-wave propagation. This leads to a more efficient mechanism of information
propagation, which is believed to stabilise the ordered phase of the Vicsek model in
d = 2 [19, 20].

2.1.5 The swarming phase

Generally speaking, when two phases differ in their symmetries, a phase transition
separating them is always expected, since it is not possible to smoothly go from one
phase to the other. In the temperature-density plane, this phase transition occurs
at a critical line Tc (ρ), at which the symmetry spontaneously breaks.

In ferromagnetic systems, the behaviour near this transition is characterised by
non-analyticity of the free energy, which in turn gives rise to the divergence of many
thermodynamic quantities [50, 51]. Moreover, a set of scaling laws was shown to
arise, linking all these divergences to the divergence of the correlation length. When
this happens, non-trivial collective behaviours take place, as the system becomes
strongly correlated and the response to external perturbations becomes extremely
efficient. Note the difference between this near-ordering phase and the flocking
phase: here the order parameter is still small since no symmetry is explicitly broken.
Because of the analogy between this phase and natural swarms, characterised by
small average polarisation and scaling laws, I will refer to this critical near-ordering
phase as the swarming phase.

When scaling laws are observed and the order parameter continuously changes
across the transition, a phase transition is called second-order or continuous. This
is the case of transitions in ferromagnetic systems in the absence of an external
magnetic field. On the other hand, if the order parameter experiences a jump as
in the liquid-gas transition, this is referred to as first-order or discontinuous phase
transition. Note that in the case of first-order phase transition, scaling laws are
not expected to arise. On the other hand, when the transition is second-order the
presence of scaling laws means that large-scale collective behaviours are taking place.

First-order ordering phase transition

The most relevant difference between the Vicsek model and the Heisenberg ferro-
magnet is the order of the phase transition. Heisenberg ferromagnets undergo a
second-order continuous phase transition, while a system obeying equations (2.5)-
(2.6) exhibits a first-order phase transition [44, 36]. The nature of the first-order
transition is strongly related to the presence of density-velocity coupling. Near the
phase transition, large density fluctuations arise. These density fluctuations couple
to the velocity, generating a phase separation, typical of first-order transitions such
as the liquid-gas transition. It has been observed that when the critical temperature
is approached band structures arise, within which order is generated despite Ψ
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remaining very close to 0. However, it has been shown that above the ordering
transition, in the near-ordering swarming phase where density heterogeneities are
less prone to develop, a constant density constraint gives results that apply also
to the compressible case [69]. Because the incompressible model does not develop
phase separation and thus undergoes a continuous phase transition, in the present
work an incompressible constraint will be enforced to work in a near-critical phase.
In Chapter 6 I will, however, address the question of what happens when weak
density fluctuations are taken into account, and show that incompressible theories
well-describe the behaviour of spatially homogeneous finite-size systems as swarms.
It has to be stressed the fact that the main interest of the present work is on the
near-ordering phase, and not on the phase transition itself. Therefore, a situation in
which the correlation between velocity fluctuations is large but density fluctuations
are very weak will be the ideal scenario in which to expect to find collective behaviour
typical of swarms.

2.2 A general model for active particles
The Vicsek model introduced in the previous section represents the archetype
of collective behaviour models in active living systems. However, its description
completely neglects the potential collisions between the individuals and the particles
that constitute the surrounding medium. A more complete and general description
should therefore take into account both the ability to generate an active force
ensuring self-propulsion and the presence of the effect of random collisions with the
medium.

In this case, the two forces act on the system: one is the active force, which can
be taken to a force with fixed magnitude f0 in the direction of self-propulsion ψ.
The second is a damping force, which can be written as the sum of a drag term
−γv and a random Gaussian white noise with variance

√
2D̃. The dynamics of this

system is thus given by

ṙi = vi

mv̇i = −γvi + f0ψi +
√

2D̃ξi

ψ̇i = R

J
∑
j

nijψj +
√

2Dψζi

 (2.14)

Here v is the velocity of the individual and m its mass, while ψ is a unitary vector
that points in the desired direction of motion of the particle i and undergoes the
alignment dynamics as in the Vicsek model (2.5).

When the time-scale mγ−1 on which the velocity relaxes is fast compared to
that of ψ, one can approximate v̇i ≈ 0, and hence use

vi = v0ψi +
√

2γ−2D̃ξi , (2.15)

where v0 = f0/γ is the average self-propulsion speed. In this regime, the equations
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of motion thus become

ṙi = v0ψi +
√

2Dr ξI

ψ̇i = R

J
∑
j

nijψj +
√

2Dψζi

 (2.16)

Where Dr = γ−2D̃. When Dr → 0, the Vicsek behaviour is recovered, with ψ
coinciding with the direction of motion and the velocity being v = v0ψ. If Dr ̸= 0,
the vector ψ is not the direction of motion anymore, since the velocity has also a
stochastic component. However, because ⟨ξ⟩ = 0, it is still true that the average
value of ψ is the average direction of motion. This holds whenever v0 ̸= 0. If instead
v0 → 0, the spatial motion is decoupled from the behaviour of ψ. One therefore
recovers a model where diffusive agents align an internal degree of freedom ψ, which
is not linked to motion in any way. Nevertheless, note that in both cases, however,
the adjacency matrix nij is not constant, potentially violating thermal equilibrium
anyway.

2.2.1 Active Ising Models of flocking

Among the models that fall into this class, it is worth mentioning the case of Active
Ising Models (AIMs) of flocking [70], [MyPaper4]. Contrary to the Vicsek model,
where the system has a continuous rotational symmetry, AIMs are characterised
by having a discrete symmetry, as individuals perform directed motion along a
preferred direction in space. In AIMs, particles can be considered as active spins,
which undergo diffusion in all directions but one, in which the value of the spin
determines the preferred direction of motion. Spins of different particles undergo an
alignment process with neighbouring particles, in a similar fashion with Ising-like
dynamics - hence the name Active Ising Models.

Although AIMs have been originally introduced in an on-lattice formulation,
numerical evidence is that their behaviour is equivalent to an off-lattice definition
[71], where particles’ position is updated according to:

ṙi = v0six̂+
√

2Dr ζ (2.17)

Here si is a spin-like variable, which can take ±1 value, which undergoes an aligning
process with neighbouring spins. This equation is quite similar to Eq. (2.16), with
the main difference that ψ = sx̂ has a discrete symmetry rather than a continuous
one.

Although in the active case, v0 ̸= 0, the presence of diffusion is not expected to
affect the large-scale behaviour of the model, for weak activity v0 → 0 the presence
of diffusion allows to keep the model out of equilibrium, as the adjacency matrix
nij would still be time-dependent. From the theoretical point of view, this opens
the question of whether the behaviour of systems with v0 = 0 is affected by the
presence of diffusion. To make progress in this direction, in Chapter 12 I will derive
a field-theoretical approach to Active Ising Models.
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Chapter 3

Hydrodynamic approach to
self-propelled systems: the
Toner and Tu theory

Numerical investigation of models like the Vicsek model, introduced in the previous
Chapter, certainly represents one of the standard ways in which the collective
behaviour of active systems can be investigated and characterised. However, dealing
with finite-size effects and boundary conditions is often a nightmare in the context of
numerical simulations. Establishing unambiguously what phenomena are associated
with bulk behaviours and what with boundary effects becomes therefore a hard task.
To circumvent these difficulties, coarse-grained approaches typically provide more
solid and reliable tools to characterise bulk large-scale behaviours. I do not want to
claim that coarse-grained approaches are better than simulations, but they provide
a powerful complementary framework where some of the large-scale features can be
better understood.

In the present Chapter, I will review the hydrodynamic theory of Toner and Tu.
This hydrodynamic theory of flocks was introduced by J. Toner and Y. Tu in their
seminal paper [19], to prove the stability of the flocking state observed numerically
by Vicsek et. al. [42] in two spatial dimensions, in apparent violation of the
Mermin-Wagner-Hohenberg theorem [48, 49]. The theory was developed to account
for the large-scale behaviour of Vicsek-like models, combining the Navier-Stokes
description of the velocity field in a fluid with a dynamical XY model, namely Model
A in Halperin and Hohenberg classification [40], to account for velocity-velocity
alignment interactions. The resulting theory, morally representing a coarse-grained
description of the Vicsek model introduced in the previous Chapter, is expected to
describe the collective behaviours of a wider class of systems, namely any collection
of self-propelled agents with rotational and translational invariance.

Compared to Model A, in the Toner and Tu theory the consumption of energy
at the microscopic scale, i.e. activity, allows each individual to self-propel. This
promotes the order parameter from being a simple pointer in space - as in Model
A dynamics - to be the direction of motion of individuals. As I will review in this
Chapter, this has a huge impact on the large-scale behaviour of the system, leading
to surprisingly new emergent behaviours. Particular attention will be dedicated
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to what happens in the near-ordering phase, which is believed to describe natural
swarms of insects.

3.1 The hydrodynamic approach: Navier-Stokes equa-
tions

To properly describe the collective modes of a system, a full description of the
behaviour over all the physical scales is usually not necessary. This is because
the collective modes represent the fluctuations around the steady-state occurring
on collective, i.e. large, spatial and temporal scales. On such large scales, it is
often more convenient to focus on a coarse-grained description of the system, in
which the precise details of the microscopic interactions are averaged out. In these
coarse-grained descriptions, only a few of the many degrees of freedom experience
significant fluctuations and therefore contribute to the determination of the collective
behaviours. Putting it in another way, the behaviour of the collective modes is
expected to be universal, and not depend on the details of the system.

The relevant coarse-grained degrees of freedom are usually referred to as hydro-
dynamic modes, or slow modes, as their characteristic frequency vanishes as the wave
vector does. Interactions between slow and fast modes are encoded by two elements
in the coarse-grained description. The first is the presence of effective phenomenolog-
ical couplings, which cannot be computed within the coarse-grained approach, but
in principle require the knowledge of the microscopic details, namely the dynamics
of the fast modes, to be computed. Secondly, fluctuations of the fast modes might
induce some slight change in the behaviour of slow modes. However, because these
fluctuations relax on time scales much faster compared to the hydrodynamic modes,
from the point of view of the latter the former behaves as a random white noise.

3.1.1 Coarse-grained degrees of freedom

In a coarse-grained description of the system, the large-scale degrees of freedom
are usually represented by local averages of the microscopic ones. In particular,
the systems of interest (as in the Vicsek model) are made of particles with a given
position xi and some additional degree of freedom, e.g. the velocity vi. By calling
ϕi the set of all degrees of freedom of the i-th particle, the coarse-grained variable
associated with some local observable qα can be written in the form

Qα(x) = 1
V∂x

∑
j∈∂x

qα({ϕj}) . (3.1)

where the sum runs over all the particles in a neighbourhood ∂x of x. The volume
of this neighbourhood, V∂x, is taken to be proportional to hd, with h being a
coarse-graining scale and d being the spatial dimensionality. The precise form of
this neighbourhood is not relevant, and it can be imagined to be a ball centred
in x. What is important is that h must be quite larger than the characteristic
inter-particle distance a, say the interaction range. When this happens, Q(x) is
obtained by averaging over many particles and hence is expected to approach a
smooth function of the spatial variable x. Furthermore, h should also be much
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smaller than the size of the system L, in such a way that Q(x) describes fluctuations
that are local in space. Substituting particle-based descriptions with continuous
fields is a standard process in deriving hydrodynamic equations: the Navier-Stokes
equations for example completely neglect the discrete microscopic nature of fluids
and yet provide an excellent description of them [43].

Since these coarse-grained observables Q(x) are obtained by averaging over
volumes V ∼ hd, the coarse-grained theory has a spatial resolution of h. Variations
of Q over length scales smaller than h have no physical meaning. The coarse-grained
scale h can be usually assumed to be a multiple of the characteristic microscopic
scale a, say the length of the individuals, hence h ∝ a. As a consequence, in Fourier
representation, the field Q does not take any contributions from wave-vectors

|k| > Λ ∼ 1
a
, (3.2)

setting a natural cutoff in momentum space, where modes of higher wave vector do
not enter the effective description, namely have already been coarse-grained. This
requirement can be explicitly enforced on the real-space field Q by stating that

Q (x) =
∫

|k|<Λ

ddk
(2π)d

Q (k) eix·k (3.3)

Indeed, one might construct as many coarse-grained variables as one wants.
However, only a few coarse-grained variables represent the hydrodynamic variables
of the system. As previously discussed, these variables are characterised by the
fact that they fluctuate on large spatiotemporal scales. This, in turn, means that
hydrodynamic variables should vary slowly in both space and time and hence their
spatial and temporal derivatives are small. This legitimates a gradient expansion in
writing the coarse-grained equations for these variables.

Coarse-grained variables for Vicsek-like models

In the case of current interest, namely for Vicsek-like systems, the microscopic
degrees of freedom for each particle are given by their position xi and its velocity vi.
The natural coarse-grained quantities associated with these two microscopic degrees
of freedom are the density field and the velocity field, defined as

ρ(x) = 1
V∂x

∑
j∈∂x

1 , (3.4)

v(x) = 1
ρ(x)V∂x

∑
j∈∂x

vj (3.5)

In this definition, ρ is the average number of particles in a small volume around
x, while v is the average velocity of a particle in the same volume. These are the
only two degrees of freedom I will assume to be relevant on the hydrodynamic
scale. Conservation of the number of particles automatically makes the density ρ a
hydrodynamic variable, as ρ must satisfy a continuity equation of the form

∂tρ = −∇ · J , (3.6)
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where the current J is given by J = ρv. When decomposed in Fourier modes, the
large wave-length fluctuations relax on long time scales, as a consequence of the
presence of the ∇ on the r.h.s. of the continuity equation. In fact, in Fourier space
the continuity equation reads ∂tρ(k, t) = −ik · J(k), from which one can clearly see
that ∂tρ(k) → 0 when k → 0, making ρ an hydrodynamic variable. The velocity
field v is instead not always a hydrodynamic variable, as in some regimes it might
relax on finite time-scales [72]. However, both in the ordered flocking phase and the
near-ordering swarming phase, the velocity field is a hydrodynamic variable. In the
former case, this is because the continuous rotational symmetry of v is spontaneously
broken, and hence v develops d−1 Goldstone modes. In the swarming phase instead,
the proximity to a second order phase transition with |⟨v⟩| as an order parameter
makes fluctuations of v to become slow modes too.

On the other hand, in some active matter systems, other quantities might be
relevant at the hydrodynamic scale. A typical example is the nematic tensor for non-
polar particles [73], e.g. rod-shaped bacteria. In this case, motion is performed along
a preferred axis n̂ without a preferred direction along the axis. As a consequence,
the local expected velocity vanishes, and the large-scale description of the system is
made in terms of a coarse-grained nematic tensor

Q(x) = 1
ρ(x)V∂x

∑
j∈∂x

(
n̂j ⊗ n̂j − 1

d
I
)

(3.7)

Where I is the d× d identity matrix. This higher-order tensor is however expected
to be a fast mode in the case of polar systems I will be interested in, and can be
therefore dropped from the hydrodynamic description.

3.1.2 Coarse-grained active matter as a fluid

From the coarse-grained perspective introduced in the previous sections, hydrody-
namic properties of polar active matter are well described by the behaviour of the
density ρ and velocity v fields. The idea behind the Toner and Tu theory was to
provide a hydrodynamic description of systems with rotational and translational in-
variance for which the hydrodynamic variables, whose relaxation time-scale vanishes
at large wavelengths, are the velocity field v (x, t) and the density field ρ (x, t).

In the context of fluid dynamics, the hydrodynamic behaviour of the velocity
field v and the density field ρ is well-captured by the Navier-Stokes equations [43].
Active matter is indeed different from passive fluids. However, on scales much larger
than their characteristic microscopic scales they both have similar coarse-grained
descriptions: active matter on coarse-grained scales can be modelled as a fluid with
the presence of an additional active force.

The dynamics of such a polar active fluid is thus expected to be ruled by some
kind of generalisation of the Navier-Stokes equations [43]. In its most general form,
the dynamics of the velocity in a fluid can be written as

ρ∂tvα + ρ (v · ∇) vα = ∂γσαγ + fα . (3.8)

Here σ is the stress tensor while f are the volume forces. Because in the microscopic
model, particles move in space, the local density ρ is not fixed. If the total number



3.1 The hydrodynamic approach: Navier-Stokes equations 28

of particles is conserved, ρ admits hydrodynamic fluctuations around its mean value
ρ0. The equation associated with this conservation law is the continuity equation
for the density, which reads

∂tρ+ ∇ · (ρv) = 0 . (3.9)

Navier-Stokes equations for passive fluids are then derived by the additional
requirements that (i) the momentum field p = ρv is globally conserved, namely
∂tP (t) = ∂t

∫
ddxp(x, t) = 0, and (ii) that the physical description is the same

in all inertial reference frames, that is the equations are invariant under Galilean
transformations. These requirements further limit the structure of the stress-tensor
σ and the volume forces f . It is however important to note that none of these two
properties apply to polar active fluids, since they move in a frictional medium that
acts as a momentum sink and serves as a preferred reference frame.

On Galilean invariance

So far, I have discussed the most general description possible of the behaviour of a
fluid. In passive fluids, in addition to rotational and translational symmetries, and
the conservation of the total density, a third symmetry is at play: Galilean invariance.
A system obeys Galilean invariance if its physics is invariant when observed in two
inertial reference frames, namely in two reference frames moving at fixed velocity
one with respect to the other. The laws of physics, as the equations of motion, must
therefore be invariant under the Galilean transformation

x′ = x− vt t′ = t v′(x′, t′) = v(x, t) − v (3.10)

Where v is the relative velocity of the two reference frames, v,x, t are respectively
velocity, position and time measured in the first reference frame. At the same time,
prime quantities indicate they are measured in the second reference frame.

Interestingly, an operator which is invariant under a Galilean transformation is
the material derivative

Dt = ∂t + v(x, t) · ∇ (3.11)

To show this operator is a Galilean invariant, let me apply it to a test function
f(x, t) - not to be confused with the volume force:

Dtf(x, t) = [∂t + (v · ∇)] f(x, t) (3.12)

Let me now perform the change of coordinates, by using x′ = x−vt and v′ = v−v -
note that t′ = t. To simplify the reading, I lighted the notation by implicitly assuming
v = v(x, t) and v′ = v′(x′, t). Assuming that under a Galilean transformation the
quantity f transforms as f ′(x′, t) = f(x, t) - note that t′ = t - the temporal partial
derivative can be written as follows:

∂tf(x, t) = d
dtf

′(x′(x, t), t) = ∂tf
′(x′, t) +

(
∂tx

′(x, t)
)

· ∇′f ′(x′, t) =

= ∂tf
′(x′, t) − v · ∇′f ′(x′, t)

(3.13)
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Where in the last equality I used the fact that ∂tx′(x, t) = −v. The advective term
v · ∇ transforms instead in the following way

v · ∇f(x, t) = (v′ + v) · ∇′f ′(x′, t) = v′ · ∇′f ′(x′, t) + v · ∇′f ′(x′, t) (3.14)

While the two operators, namely partial temporal derivative and advective term,
are not independently invariant, their sum is, as

Dtf(x, t) =∂tf(x, t) + v · ∇f(x, t) =
=∂tf ′(x′, t) − v · ∇′f ′(x′, t) + v′ · ∇′f ′(x′, t) + v · ∇′f ′(x′, t) =
=∂tf ′(x′, t) + v′ · ∇′f ′(x′, t) = D′

tf
′(x′, t)

(3.15)

Therefore, for a fluid to be Galilean-invariant the only requirement is that all
terms contained in f and σ are themselves Galilean-invariant. At the lowest order
in a gradient expansion, the Galilean-invariant terms contributing to σ are:

σ = Γ1∂αvβ + Γ2∂βvα + Γ3δαβ(∂γvγ) + δαβP(ρ) (3.16)

Here Γi are three coefficients, which contribute to bulk and shear viscosity, while
P(ρ) is the pressure. On the other hand, the volume forces f might depend on the
interactions with external objects, as the gravitational force, in which case f = −ρg.
What is important is that in the presence of Galilean invariance, f does not depend
directly on the local velocity, as it would not be invariant under a change of reference
frame.

3.2 Alignment interactions: Model A
Simple models of active fluids, such as the Vicsek and Toner and Tu models, and
experimental systems confined to a substrate, are not Galilean invariant. In fact, in
systems like the Vicsek model (introduced in the previous Chapter), the speed of
each individual is fixed to be v0 in a particular frame of reference, namely that of the
substrate on which individuals are moving. The presence of a privileged reference
frame violates Galilean invariance, thus allowing a more complex structure of the
equations of motion compared to the standard Navier-Stokes equations.

To understand how the simplest introduction of activity violates Galilean in-
variance, let me focus on how to incorporate in the fluid-dynamics description the
presence of a fixed speed v0 at the microscopic level. As strange as it may sound,
to understand how to incorporate this active force, I will get inspiration from the
equilibrium counterpart of the Vicsek model, namely the relaxation dynamics of
ferromagnetic Heisenberg model, obtained by sending v0 → 0. This is because, at
the microscopic level, the effect of the active force is keeping the magnitude of ψ -
and in turn the magnitude of the velocity, namely the speed - fixed. In a similar
fashion, also in equilibrium ferromagnetic models the magnitude of the local “spin”
ψ is fixed (its dynamic behaviour being described by Eq. (2.5)). Although in this
case the force is not active, as the positions are fixed on a lattice, its effect is precisely
what we need here: keeping the magnitude of the degree of freedom fixed.
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3.2.1 The equilibrium limit

The Heisenberg model describes the behaviour of classical ”spins”, with fixed mag-
nitude |ψ| = 1, that align to the total magnetic field induced by neighbours. The
dynamic behaviour of the Heisenberg model can be obtained by taking the v0 → 0
limit of the Vicsek model. This is not a surprise, as the Vicsek model was built to be
an off-equilibrium version of the ferromagnetic models. In this limit v0 → 0, particles
are fixed on a lattice and ψ, which for v0 ̸= 0 used to represent the direction of
motion, becomes a unity vector unrelated to the external position space. Its dynamic
behaviour can be written by taking v0 → 0 in Eq (2.5), and reads

dψi
dt = R

[
− ∂H

∂ψi
+ ζi

]
, (3.17)

where the operator R, defined in (2.7), projects its argument on the direction
orthogonal to ψi. The present dynamics approaches a steady-state in which the
static features are well captured by the Gibbs-Boltzmann distribution P ∼ e−βH ,
with H being the Hamiltonian of the Heisenberg ferromagnet, namely

H = −
∑
ij

nijψi ·ψj . (3.18)

Here the adjacency matrix nij is fixed in time since for v0 → 0 positions are fixed
on a network. This Hamiltonian was introduced to explain the ferromagnetic phase
transition, characterised by a O(n) rotational symmetry in the internal space of ψ.

The large-scale description of this system can be given in terms of the coarse-
grained field

ψ(x) = 1
N∂x

∑
j∈∂x

ψj , (3.19)

where N∂x is the number of particles in the neighbourhood ∂x of x. Note that,
because positions are not updated for v0 → 0, the density field ρ is not even a
fluctuating quantity, as it is fixed once and for all. In this coarse-grained description,
the Hamiltonian H is replaced by an effective free energy H, obtained by averaging
over the degrees of freedom that have been integrated into the coarse-graining
procedure. Performing this explicit calculation is usually quite long and tedious: for
this reason, it is often easier to follow general principles, such as symmetries, to write
down the effective free energy. The drawback of this procedure is not having an
explicit connection between the parameters of the new effective free energy and the
original microscopic model. However, this generality allows capturing the behaviour
of several different models, irrespective of their precise microscopic formulation,
as long as they share the same symmetries of the coarse-grained free energy. For
systems with rotational symmetry, as the Heisenberg model, a quite general form
for H is given by

H =
∫

ddx1
2(∂αψβ)(∂αψβ) + V (ψ) . (3.20)

Here the (∇ψ)2 term stems from local alignment since it suppresses fluctuations of
ψ and favours uniform configurations. The potential V (ψ), on the other hand, takes
contributions both from the aligning interactions, which favours highly polarised



3.2 Alignment interactions: Model A 31

configurations with |ψ| ∼ 1, and from entropic effects, which favours configurations
with higher number of associated micro-states, namely disordered configurations
with |ψ| ∼ 0. Because of the rotational symmetry, V is expected to depend only on
the absolute value of ψ.

The simplest form of V (ψ) arising from the above picture, which also turns out
to capture the phase diagram of the Heisenberg model, is

V (ψ) =
∫

ddxr2ψ ·ψ + u

4 (ψ ·ψ)2 , (3.21)

where u > 0 ensures the magnitude of the average polarisation, |⟨ψ⟩|, to be bounded.
The aforementioned competition between alignment and entropy is expected to allow
r to take both positive and negative values. As r changes sign, a mean-field analysis
predicts a transition between two phases (or ground states):

• a disordered phase for r > 0, where the average polarisation is |⟨ψ⟩| = 0;

• an ordered phase for r < 0, where the average polarisation is |⟨ψ⟩| =
√

−r/u.

This confirms the phenomenology observed in the Heisenberg model, where for high
temperatures, namely high noise amplitudes, entropic effects dominate and |ψ| = 0
configurations are favoured, while for low temperatures, namely low noise, alignment
wins and |ψ| ∼ 1.

From a coarse-grained perspective, the dynamics of the Heisenberg ferromagnet
is described by the relaxation dynamics

∂tψα = −Γ δH
δψα

+
√

2Γ θα , (3.22)

where Γ is a kinetic coefficient, while θ is a random Gaussian noise with unitary
variance. Note that detailed balance conditions force the noise amplitude to be
equal to the kinetic coefficient in this coarse-grained model. This dynamic behaviour
is known as Model A in Halperin and Hohenberg classification [40]. As for its
microscopic discrete counterpart, in Model A, the effective free energy H defines the
steady-state probability distribution P ∼ e−H. By explicitly using the form of H
given in (3.20), the equation of motion of Model A can be written as

∂tψα = Γ∇2ψα − Γ δV

δψα
+

√
2Γ θα . (3.23)

The zeros of δV/δψ set the steady-state, while the ∇2ψ term suppresses fluctuations
around the steady-state, hence favouring local alignment. As in the Heisenberg
Model, also in the Vicsek model the direction of motion ψ has a fixed magnitude at
the microscopic level, which in turn allows to maintain a fixed microscopic speed v0.
The fixed magnitude of the microscopic velocity, which is what in the context of the
Vicsek model represents activity, requires the presence of a bulk force in the equation
for the coarse-grained velocity field analogue to the −ΓδV/δψ term in Model A.



3.3 Self-Propelled Model A 32

3.3 Self-Propelled Model A
The presence of alignment interaction on its own is not sufficient to explain the
dynamic collective behaviours observed in natural swarms of insects. As I mentioned
previously, the dynamic critical exponents for theories of relaxation dynamics with
alignment interactions is z ≈ 2, far from the experimental value of z = 1.35
[MyPaper1]. Besides alignment interactions, activity is a hallmark of biological
systems as swarms.

To take activity into account in the coarse-grained description, I will follow the
idea of Toner and Tu, who combined the Navier-Stokes equations with Model A
dynamics to develop a hydrodynamic theory inspired by the Vicsek model [19]. I
shall therefore refer to this theory, commonly known as the Toner and Tu theory, as
Self-Propelled Model A. The reason for this is that, further on, I will build an active
theory which has Model G, rather than Model A, as its equilibrium counterpart.
Since I will call that theory Self-Propelled Model G, I use here Self-Propelled Model
A to refer to the Toner and Tu theory.

This theory of Self-Propelled Model A (SPMA) describes moving ferromagnets,
namely systems where individuals are self-propelled and align their direction of
motion, as in the Vicsek model. To keep the connection with Model A, which must
be recovered as the speed v0 → 0, I will describe the behaviour of the coarse-grained
direction of motion ψ rather than the velocity v. Since the Vicsek model, at the
particle level, has vi = v0ψi, the coarse-grained velocity field introduced in Eq. (3.5)
can be expressed as

v(x) = 1
ρ(x)V∂x

∑
j∈∂x

v0ψj = v0ψ(x)

ψ(x) = 1
ρ(x)V∂x

∑
j∈∂x

ψj

(3.24)

Let me note, once again, that while at the microscopic level ψj is a unitary vector,
at the coarse-grained level this is not true anymore.

3.3.1 Minimal active theory

The conservation of
∣∣∣ψj∣∣∣ = 1 in time, crucial to keeping the microscopic speed fixed

to v0, was explicitly enforced in the Vicsek dynamics of ψj , Eq. (2.5). As I showed
in the previous section, in the equilibrium limit v0 → 0 the requirement of

∣∣∣ψj∣∣∣ = 1
at the microscopic level can be softened when coarse-graining, as long as a dynamic
force

∂tψ ∼ −ΓδV
δψ

+
√

2Γ̃ θα (3.25)

is appropriately introduced in the coarse-grained dynamic equation of ψ. Here V is
a potential which can be taken of the form

V (ψ) =
∫

ddxr2ψ ·ψ + u

4 (ψ ·ψ)2 (3.26)

Now, since the system is active and thus far from thermal equilibrium, the coefficients
Γ and Γ̃ need not be equal as in (3.22) as detailed balance is not expected to hold.
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A minimal set of equations of motion can be thus derived by adding an active
force like (3.25) to the Navier-Stokes equations. This leads to the theory proposed
by Toner and Tu in their first paper of 1995 [19], namely

∂tψα + v0 (ψ · ∇)ψα = Γ∇2ψα + Γ2∂α (∇ ·ψ) − Γ δV

δψα
− ∇P +

√
2Γ̃ θα ,

∂tρ+ v0∇ · (ρψ) = 0 .
(3.27)

Here I took as stress-tensor of the same form of viscous Navier-Stokes equations
[43], where P is a pressure force that depends on ρ, while the two Γ viscous terms
can be interpreted, within the Toner and Tu theory, as aligning terms. The effect of
viscosity is precisely that of suppressing strong fluctuations in the velocity field, in a
similar fashion with alignment interactions.

Note that these equations can be also obtained by promoting the field ψ of
Model A to be self-advected, namely by promoting the temporal derivative ∂t to be
a material derivative:

∂tψ → Dψ = ∂tψ + v0 (ψ · ∇)ψ (3.28)

where the self-advection term (ψ · ∇)ψ is proportional to the microscopic speed v0.
From this point of view, the active term is given precisely by this self-advective term,
which is what encodes activity. This double interpretation comes from the existence
of two different ways of switching activity off in the microscopic dynamics: the first
is to drop the constraint

∣∣∣ψj∣∣∣ = 1, and thus the force δV/δψ from the coarse-grained
dynamics while keeping the presence of some local alignment interaction - namely
the viscous gradient terms of Navier-Stokes equations. In this limit, one expects
to recover precisely the Navier-Stokes behaviour, which is not at equilibrium but
neither describes a self-propelled system.

On the other hand, a second more sound way to turn activity off is to send the
self-propulsion speed to zero, v0 → 0. In this limit, the Vicsek model describes
the equilibrium relaxation dynamics of a Heisenberg model with non-conserved
magnetisation. This limit has also a clearer interpretation from a physical point of
view: when v0 → 0, the system is froze on a lattice, and one can therefore probe
the effects of the other interactions that characterise the dynamic behaviour. Since
this procedure will turn quite useful in the following chapters, I stick to this second
point of view and identify as active terms those coming from self-advection.

The presence of the active force has, however, a quite drastic effect on the
symmetries of the system. When individuals move by self-propulsion, they do it by
exerting a force opposite to motion on a given substrate/medium. The reference
frame of this substrate/medium therefore represents a privileged frame of reference:
in the context of the Vicsek model, for example, this is the frame in which the speed
is v0. The very existence of a privilege reference frame breaks Galilean invariance,
and because the active force originates from self-propulsion, it does break Galilean
invariance. This allows for the presence of other non-standard terms in the stress
tensor σ, and also in the force f .
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3.3.2 The Toner and Tu theory

The theory just proposed in the previous section does indeed account for the presence
of both alignment interactions and self-propulsion. However, it is not the most
general theory one can write down given the symmetries of the system. For example,
I showed in the previous sections that the material derivative operator Dt = ∂t+v ·∇
does obey Galilean invariance, and in doing so the coefficient in front of the v · ∇
must be equal to unity. This property must be preserved under coarse-graining,
and indeed in the contest of Navier-Stokes, it does [46]. However, when Galilean
invariance is violated and detailed balance is violated, there is no reason to expect it
to be equal to unity [74, 75]. Even if one did choose its bare value to be equal to
unity, upon coarse-graining the RG flow of that coupling would likely drive it away
from 1. The equation of motion of ψ can therefore be generalised by accounting for
a non-Galilean invariant material derivative operator

Dt = ∂t + γv · ∇ = ∂t + v0γψ · ∇ (3.29)

Similarly, other additional non-Galilean invariant terms can be identified, and
perhaps the most general form possible of the theory of the Self-Propelled Mode A
is given by

∂tψα + v0γ1 (ψγ∂γ)ψα + v0γ2 (∂γψγ)ψα + v0γ3∂α (ψγψγ) = Uψα+

+ Γ∇2ψα + Γ2∂α (∂γψγ) + Γ3 (ψγ∂γ)2 ψα − ∂αP − ψα (ψγ∂γ) P2 +
√

2Γ̃θα (3.30)

∂tρ+ v0∂γ (ρψγ) = 0 (3.31)

These are precisely the equations of the Toner and Tu theory, as proposed in their
latest version in [76]. Here all coefficients are in principle functions of the density ρ
and the magnitude of the alignment order parameter |ψ|, but not of its direction,
since a rotational symmetry is present in the system. In addition to the standard
advective term, (ψγ∂γ)ψα, other two terms with the same number of fields and
derivatives are present, namely those proportional to γ2 and γ3. These will be
referred to as anomalous advection terms, as they differ from the standard one of
Navier-Stokes equations. The term Uψ is the one responsible of bounding |ψ|, and
will be here taken of the form

U(|ψ|) = −m− J |ψ|2 , (3.32)

with m and J potentially still functions of ρ. This is the minimal form that allows
to recover the flocking transition as m goes from positive to negative. In addition to
the two kinetic coefficients Γ and Γ2, which in the Navier-Stokes context represent
shear and bulk viscosity [43], a third anisotropic kinetic coefficient Γ3 is also allowed
by the symmetries. Similarly, also an anisotropic pressure P2 should be taken into
account. The two pressures are usually expanded in the form

P =
+∞∑
n=1

σn(|ψ|) (ρ− ρ0)n P2 =
+∞∑
n=1

µn(|ψ|) (ρ− ρ0)n (3.33)

Where ρ0 is the (conserved) average density of the system.



3.3 Self-Propelled Model A 35

3.3.3 Density-velocity feedback and first-order ordering transition

To understand how the Toner and Tu theory behaves in the proximity of the flocking
transition, I will here perform a mean-field analysis, namely setting Γ̃ = 0, of the
phase diagram. I will then study the linear stability of homogeneous states of the
system. To have a rough idea of how the phase diagram looks like, I will assume
U to take the form of (3.32) with J roughly constant and always positive, and
m ∝ (ρc − ρ0), where ρc is some critical density at which a transition is expected to
take place. In contrast with ferromagnets, I will show that the coupling of density
and velocity fluctuations gives rise to an instability which is known to lead to a
discontinuous, i.e. first-order, phase transition [44, 77].

Homogeneous solution

Spatially homogeneous but time-dependent solutions of the noiseless hydrodynamic
equations are found by assuming ψ(x, t) = ψ(t) and ρ(x, t) = ρ(t) in the Toner and
Tu equations, which then take the form

∂tψ = Uψ ∂tρ = 0 (3.34)

The second of these expresses particle conservation: ρ(t) ≡ ρ0, the initial density, for
all times. In contrast, ψ relaxes, with an asymptotic solution limt→+∞ |ψ| = |ψ|0.
A disordered state with

|ψ|0 = 0 , (3.35)

is always a steady-state solution, however, it is asymptotically stable only when
m > 0, namely when ρ0 < ρc. For ρ0 > ρc, namely m < 0, another steady-state
solution emerges, obtained by setting

U(|ψ|0 , ρ0) = 0 ⇒ |ψ|0 =
√

−m
J

∝
√
ρ0 − ρc . (3.36)

I will refer to this as the flocking state for obvious reasons. Note that for m > 0,
this state does not even exist, while for m < 0 it turns out to be linearly stable for
homogeneous perturbations. Based on this analysis, the system is therefore expected
to undergo a phase transition at m = 0, where the continuous rotational symmetry
is spontaneously broken for m < 0 and a phase with non-zero average polarisation
|ψ|0 emerges. Note that, precisely because of the rotational symmetry, the direction
of ψ is spontaneously selected by the system and can not be determined a priori.

Linear stability analysis

The presence of a transition via spontaneous symmetry-breaking suggests some
similarity with the phase transition in ferromagnetic systems, apparently suggesting
the phase transition to be continuous. However, this would be true only if the
homogeneous polarised state |ψ|0 ̸= 0 was stable, for all ρ0 > ρc, against spatially
inhomogeneous perturbations. While this is the case for standard ferromagnetic
theories, as Model A, I will now show that this is not the case for Self-Propelled Model
A. In the latter case, there is a range of densities just above ρc where no homogeneous
solution is stable, in which the system is driven towards a phase-separated state.
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Let me assume the system for ρ0 > ρc is found in a state ψ = ψ0x̂, ρ = ρ0,
with x̂ being the direction in which the ψ field spontaneously breaks the rotational
symmetry. To check the linear stability of this homogeneous solution, I should
examine the dynamic behaviour of small perturbations δψ = δψxx̂+ δψ⊥ and δρ.
For the sake of simplicity, let me here neglect the δψ⊥ fluctuations in directions
orthogonal to the flocking direction, and consider only fluctuations parallel to x̂. At
the linear level, these fluctuations obey the equations:

∂tδψx + v0ψ0γx∂xδψx = −2 |m| δψx − gδρ+ Γ∇2δψx + Γx∂2
xδψx − σ∂xδρ , (3.37)

∂tδρ+ v0ψ0∂xδρ+ v0ρ0∂xδψx = 0 (3.38)

where I defined

γx = (γ1 + γ2 + 2γ3) Γx = Γ2 + ψ2
0Γ3 (3.39)

g = ψ0

(
∂m

∂ρ
+ ψ2

0
∂J

∂ρ

)
σ = σ1 + ψ2

0µ1 (3.40)

In Fourier space, where the general field ϕ can be expressed as ϕ (k, t) =∫
ddxϕ (x, t) e−ix·k, the linearised dynamics becomes

∂t

(
δρ
δψx

)
= M (k)

(
δρ
δψx

)
(3.41)

Here
M(k) =

(
−iv0kx −iρ0kx

−g − σikx −2 |m| − iv0ψ0γxkx − Γk2 − Γxk2
x

)
(3.42)

and stability against perturbations at wave-vector k requires both eigenvalues of
M(k) to have a nonpositive real part. At small momenta, where the hydrodynamic
approach is valid, the real part of the eigenvalues are given by

ℜ[λ1 (k)] = −2 |m| + O(k) (3.43)

ℜ[λ2 (k)] = k2
xρ0v0

g2v0ρ0 + 2v0ψ0(γx − 1)g |m| − 4 |m|2 σ
8 |m|3

+ O(k3) (3.44)

While the first eigenvalue always has a negative real part for sufficiently small k, the
latter might not. In fact, close enough to ρc, namely for small enough |m|, the real
part of λ2 is ℜ[λ2 (k)] ≃ k2

x(ρ0v0g)2/(8 |m|3), which is always positive, signalling
the instability of the homogeneous flocking phase in the proximity of the phase
transition.

The careful reader might have noticed that this instability is present only for
wave-vectors pointing in the x̂ direction: in fact, this instability leads to the formation
of plane waves running orthogonal to the direction of motion, but moving along it.
These are the band-like structures observed in numerical simulations of the Vicsek
model [44, 36], which are responsible for turning the transition into first-order.
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3.4 Conclusion
In the present Chapter, I introduced the Toner and Tu theory, a coarse-grained
field theory able to capture the large-scale phenomenology of Vicsek-like models,
where active, self-propelled particles align their direction of motion. I reviewed in
detail what non-linear interactions are needed to go from an equilibrium theory
for ferromagnetic alignment, as Model A, to the active Toner and Tu theory, also
called Self-Propelled Model A. The minimal substitution to do so is to promote
the temporal derivative to a material derivative, following ∂t → Dt = ∂t + γv · ∇,
where γ ̸= 1 as a consequence of the lack of Galilean invariance and activity. All
this repertoire will turn out to be extremely useful later on, in Chapter 7, where to
account for inertial behaviour in swarms I will build the Self-Propelled version of
another equilibrium theory, namely Model G [40].

For the moment, let me focus on the effects of activity only on the dynamics in the
near-ordering phase, which is believed to describe swarms. As I just mentioned in the
last Section, the presence of self-propulsion allows the density to fluctuate. A feedback
mechanism between velocity and density fluctuations makes the homogeneous state
unstable in the proximity of the phase transition, turning the transition from second
to first-order.

Systems in the proximity of a first-order transition do not exhibit scaling laws,
while swarms do. Moreover, no trace of the heterogeneous spatial profiles that
arise as a consequence of the instability has been observed in experiments on
swarms. To explain both these phenomena at once, one can assume the system
to be incompressible: as the inverse compressibility σ diverges, the real part of
λ2 becomes always negative, hence restoring the second-order nature of the phase
transition. As I will show in Chapter 6, incompressibility is more than a simple
simplifying assumption: in the presence of weak density fluctuations, finite-size
systems with small enough compressibility do exhibit the same collective behaviours
of incompressible theories.

To study the collective behaviour of the incompressible Toner and Tu theory,
which will be performed in Chapter 5, it is however fundamental to first introduce
the main tool that will be used for this purpose: the renormalization group. Hence,
I will devote the following Chapter to discussing the main ideas and concepts of this
powerful technique.
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Chapter 4

The renormalization group

The introduction of coarse-grained descriptions of active matter systems has been
motivated by the need to find a framework in which collective properties of biophysical
systems, such as natural swarms, could be characterised and understood. The power
of these coarse-grained, or hydrodynamic, descriptions is that they allow a simple
description of large-scale properties in terms of interactions between few fields, e.g.
chemical concentrations, particle density, and the local average velocity. Moreover,
a hydrodynamic theory usually provides an accurate and comprehensive mesoscopic
description of a wide range of microscopic models, all sharing the same emergent
behaviour.

When interested in the description of large-scale collective modes, the renor-
malization group (RG) turns out to be a very useful tool. In a nutshell, the RG
provides a way to study how the description of a system changes as one changes the
wave-length resolution at which they observe the system, resulting in an extremely
versatile tool. In the context of particle physics, for example, the RG is used to
investigate the behaviour of small wavelength, i.e. high-energy, fluctuations of the
quantum fields. On the other side, in the condensed matter physics attention is
instead given to the large wavelength, i.e. low-energy, fluctuations of collective
modes. In this latter case, when the system behaves collectively the large-scale
physics is scale-invariant. In this scale-invariant regime, many observables exhibit a
power-law behaviour, thus allowing one to encompass the description of the system
in a set of few scaling exponents.

The momentum shell RG scheme developed by Wilson [17, 52] provides an explicit
method to calculate scaling exponents. By integrating out the short-wavelength
modes iteratively, the RG generates a flow in the parameter space of the effective
action. This coarse-graining procedure tells how the effective action changes as one
zooms out and looks at the system’s behaviour on larger and larger scales. When
this RG flow eventually converges towards an attractive fixed point, the study of
the linearised flow equations near this fixed point allows computing explicitly the
critical exponents of the theory. Universality, in this RG context, consists of the fact
that one single fixed point rules the long-wavelength behaviour of a large class of
theories, each one identified by a different initial point in the parameter space.

The best way to perform RG calculations is to have the system described by a
field theory defined through a path-integral formulation, namely to have an action
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S which defines the probability P of a given configuration ϕ through P = eS[ϕ].
At equilibrium, it is the free energy functional that plays the role of the action.
Therefore, one can directly attempt to build a suitable free energy in agreement with
all the symmetries of the underlying system. This is exactly the process that led to
the Landau-Ginzburg free energy for Ising-like systems. However, in non-equilibrium
physics, the behaviour of a system usually cannot be described by a free energy.
Instead, the dynamics of the system is often described by a set of stochastic Partial
Differential Equations (PDEs), or by the Master-Equation ruling the evolution of
the probability distribution. Many different tools have been developed to perform
RG analysis of these systems. Here I will review the Martin-Siggia-Rose/Janssen-De
Dominicis formalism [47, 78, 79], which allows to derive a field-theoretical action
from stochastic PDEs, and the Doi-Peliti formalism [80, 81, 82], which allows to
derive field-theory out of a Master-Equation.

4.1 Momentum-shell renormalization group
The starting point to understand the momentum-shell RG is to define an RG
transformation of the effective action. This RG transformation consists of two steps:

i) the probability distribution of the fields is marginalised by integrating short-
wavelength modes on the shell b−1Λ < k < Λ, with b > 1, hence effectively
decreasing the cutoff in momentum space;

ii) space and time are rescaled, to formally restore the same cutoff as the original
theory.

The action obtained after one RG transformation has different parameters and it
describes the system when it is observed on a larger scale. However, since the
partition function remains the same up to a multiplicative constant, the physical
observables are left unchanged. The iteration of such an RG transformation gives
rise to a flow in the space of the actions. The flow equations are obtained in the
form of recursive relations, describing how the parameters at the iteration (l + 1)
can be obtained starting from those at step l.

4.1.1 Shell integration

In the Gaussian theory, when all interaction terms vanish, the shell integration is
harmless since modes at different wavelengths are independent [15], and thus the RG
flow is trivial: essentially each parameter rescales according to naive dimensional
analysis. However, when non-Gaussian interactions are present, the shell integration
couples long and short wavelength modes, generating nontrivial corrections to the
bare action. To perform the shell integration, it is convenient to split the fields
in their Infra-Red (IR) and Ultra-Violet (UV) modes [15], and write the partition
function as,

Z =
∫

Dϕ e−S[ϕ] =
∫

Dϕ<Dϕ> e−S[ϕ<+ϕ>] (4.1)

where ϕ stands for all the fields of the theory, while superscripts < and > indicate
whether the field has momenta lower (IR modes) or higher (UV modes) than b−1Λ
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respectively. The action S can then be written in the following form,

S[ϕ< + ϕ>] = S[ϕ<] + S0[ϕ>] − V[ϕ<,ϕ>] (4.2)

where S0 is the Gaussian part of the action while V represents all the UV-IR and
UV-UV interactions. The goal now is to write down an effective action for the
large-wavelength ϕ< modes only, by integrating out the short-wavelength details ϕ>.
To do this, it is best to write Eq. (4.1)in the following form,

Z =
∫

Dϕ<eS[ϕ<]
∫
Dϕ> eS0[ϕ>]e−V[ϕ<,ϕ>] (4.3)

From this equation, it is straightforward to achieve my aforementioned goal, since Z
can be now written as

Z = Z>
0

∫
Dϕ<e−S<[ϕ<] , S<[ϕ<] = S[ϕ<] + ∆S[ϕ<] (4.4)

The action S< represents what I wanted to achieve: an effective action for the IR
modes only, independent of the UV ones. The UV modes do however leave their sign:
the action for the ϕ< acquired a correction ∆S[ϕ<], which is obtained by averaging
eV[ϕ<,ϕ>] over the Gaussian action of the UV fields with on-shell momentum, namely

e−∆S[ϕ<] = 1
Z>

0

∫
Dϕ>e−S0[ϕ>]eV[ϕ<,ϕ>] (4.5)

This process is known as shell integration, where all the UV modes with wave vectors
belonging to the so-called momentum shell have been integrated out. The shell
integration is typically performed under a thin-shell approximation, namely taking
b → 1+: in this limit ∆S is proportional to the shell thickness 1 − b−1 ≃ ln b. The
final result after the integration over the UV modes ϕ> is an effective action with a
new cutoff b−1Λ and modified parameters, namely,

P0 → P0 + P0δP ln b = P0 (1 + δP ln b) ≃ P0b
δP (4.6)

where I used the relation ba ≃ 1 + a ln b when b is close to 1, while δP is in general
a function of the bare parameters P0. The typical aim of an RG calculation is to
calculate the corrections to the parameters δP.

4.1.2 Rescaling

At this point, I would like to compare the bare action with the new action obtained
after shell integration. However, these two theories have at the moment different
cutoffs, since the former has cutoff Λ while the latter b−1Λ. To recover a renormalized
theory with the same cutoff Λ of the bare theory, the space must be rescaled as
xb = b−1x or equivalently momenta must be rescaled as kb = bk. While doing
this rescaling, it is typically convenient to also rescale frequencies and fields in the
following way

k =b−1kb ω =b−zωb ϕ(k, ω) =b−χϕϕb(kb, ωb) (4.7)
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where z is the dynamical exponent and χϕ the scaling dimension of the field. Note
that although there might be some convenient choices to fix the exponents z and
χϕ, the physical predictions can not depend on this choice. Once this rescaling
is done, the action has the same cutoff as the bare one, but its parameters and
couplings change. Note that potentially new interaction terms might arise after shell
integration: in this case, the couplings of these terms only changed from 0 to a finite
value. These new values of the parameters, which will be denoted with a subscript b,
are defined to absorb all the powers of b in front of them after shell integration and
rescaling, and can be expressed as functions of the bare parameters,

Pb = bχP (P0)P0 (4.8)

where χP is the total scaling dimension of P , and depends on the values of P0. This
total scaling takes into account both naive scaling, coming from dimensional analysis,
and the anomalous scaling due to the RG coupling of IR and UV modes. I may
therefore write χP as

χP = dP + δP (4.9)

where dP is the naive physical dimension of P in units of momentum k while δP is
RG correction, as defined in Eq (4.6). Thanks to this transformation, the partition
function can be written as,

Z ∝
∫

Dϕ<e−(S[ϕ<]+∆S[ϕ<]) ∝
∫

Dϕe−Sb[ϕ] (4.10)

where Sb[ϕ] is the renormalized action, obtained after integration over a shell of
thickness ln b and rescaling.

4.1.3 RG flow and fixed points

The iteration of this renormalization group transformation many times defines a
flow in the parameter space, where the parameters after l+ 1 iterations are given by

Pl+1 = bχP (Pl)Pl (4.11)

where χP (Pl) means that the scaling dimension χP is evaluated using the parameters
at the step l. Furthermore, when a thin shell approximation b → 1+ is taken, one
can define a continuous flow of the parameters of the theory, ruled by the equation

Ṗ = βP (P) = P χP (P) (4.12)

The beta-function βP can be computed from Eq. (4.8), by taking the derivative
of P with respect to ln b, namely βP = ∂P/∂ ln b = P χP . The values P∗ to which
the flow of P approaches when l → ∞ are called fixed points, and play a crucial
role in determining the critical behaviour of the theory [15]. Fixed points are given
by the zeros of βP since these are the points at which Ṗ = βP |P=P∗ = 0. Among
these fixed points, some are (IR-)stable meaning that the flow is driven towards
them, while others may have one or more directions of instability from which the
RG flow escapes. Asymptotically IR-stable fixed points are those typically ruling
the critical behaviour of systems in the thermodynamic limit. The power of the
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RG lies in the fact that critical exponents can be inferred by the study of the RG
flow in the neighbourhood of a fixed point. The fixed point at which the critical
exponents should be evaluated usually is the stable one, since one expects the RG
flow to eventually reach its stable fixed point.

4.1.4 Perturbation theory

Computing exactly the RG corrections is often an impossible task. To overcome this
problem, the RG can be performed using a perturbative expansion. This is done by
assuming the interaction couplings entering V to be small - an assumption that will
be verified a posteriori at the stable fixed point. Within this perturbative approach,
it is possible to expand eV in powers of the couplings. The consequence of this is that
also ∆S can be expressed in an expansion in these small couplings. In particular, it
can be graphically represented as a series of Feynman diagrams, composed only by
connected diagrams [15] in which the momenta k of the UV modes are integrated
only over the shell b−1Λ < k < Λ.

The small parameter in which the perturbative expansion is performed is ϵ =
dc − d, where dc is the upper critical dimension, namely the dimension above which
mean-field theory is exact, while d is the spatial dimension. This well-established
expansion method to compute the critical exponents, known as ϵ-expansion [53],
often allows one to get good predictions of the scaling exponents of the theory
already at first order.

4.2 renormalization group approach to dynamic phe-
nomena

Most of the theories I will discuss in this dissertation are defined by a set of stochastic
partial differential equations describing the temporal evolution of the hydrodynamic
variables in the system. To employ the standard RG tools, introduced in the present
Chapter, to the study of these theories I need a formalism that allows me to describe
the system of interest through a field-theoretical action. Many possible strategies
to do so have been formulated, but here I will follow the formalism proposed by
Martin, Siggia, Rose [47], Janssen [78] and De Dominicis [79], which provides a
mapping between the behaviour of fields evolving according to stochastic differential
equations with a field-theory formulated using path integrals.

Let me assume the dynamic behaviour of the field ϕ is defined by the following
Langevin equation with Ito time-discretisation:

F [ϕ] − θ = 0 , (4.13)

with the noise θ characterised by the distribution Pθ, while F is the deterministic
evolution operator. The expected value of a given observable O can be computed
by averaging O [ϕ] over the possible noise realisations, requiring ϕ to obey (4.13),
namely

⟨O⟩ = 1
Z

∫
DϕO [ϕ]

∫
Dθ Pθ(θ;ϕ) δ(F [ϕ] − θ) (4.14)
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where
Z =

∫
Dϕ

∫
Dθ Pθ(θ;ϕ) δ(F [ϕ] − θ) . (4.15)

By means of an integral representation of the delta-function δ(x) =
∫

dx̂ ei x̂ x, one
can write ⟨O⟩ as

⟨O⟩ = 1
Z

∫
Dϕ

∫
Dϕ̂O [ϕ] e−iϕ̂·F [ϕ]

∫
Dθ Pθ(θ;ϕ) eiϕ̂·θ =

= 1
iZ

∫
Dϕ

∫
Dϕ̂O [ϕ] e−ϕ̂·F [ϕ]+Kθ[ϕ̂,ϕ]

(4.16)

where I performed the substitution ϕ̂ → iϕ̂. Moreover

Kθ[x,ϕ] = ln
[∫

Dθ Pθ(θ;ϕ) ex·θ
]

(4.17)

is the cumulant-generating function of the distribution Pθ. In the case of a Gaussian
distribution with zero mean and covariance matrix 2Lαβ, the cumulant-generating
function is given by Kθ[x] = xαLαβxβ.

The bottom line of this algebraic manipulation is that the statistics generated
by dynamic behaviour defined by Eq. (4.13) is reproduced by the field-theoretical
action S given by,

S[ϕ, ϕ̂] =
∫

dx dt ϕ̂ · F [ϕ] −Kθ[ϕ̂,ϕ] (4.18)

The introduction of the hatted field ϕ̂ in the action is the price that has to be
paid to exploit the path integral formulation, using the standard rules of static
renormalization and writing the perturbative series in terms of Feynman diagrams.
The field theoretical description reproduces the stochastic dynamics in the sense
that, for a given observable O [ϕ],

⟨O⟩ = ⟨O⟩S (4.19)

where ⟨O⟩ is the average value of O over all possible realisations of the noise θ, while

⟨O⟩S = 1
Z

∫
Dϕ

∫
Dϕ̂O [ϕ] e−S[ϕ,ϕ̂] (4.20)

Thanks to this equivalence, the critical dynamics can be investigated by studying the
action S through RG techniques. The Gaussian part of the action S derives from
the linear dynamics, namely the linear part of the operator F , while the interactions
derive from non-linear terms. Within this formalism, an external source h introduced
in the dynamical equation of ϕ is coupled to ϕ̂ in the effective action. Therefore, the
response function, known also as the Green function or propagator, can be written
as,

δ⟨ϕα (x, t)⟩
δhβ (x′, t′) = ⟨ϕα

(
x, t

)
ϕ̂β
(
x′, t′

)
⟩ (4.21)

For this reason, ϕ̂ takes the name ‘response field’.
Note that the equivalence derived in this section works also the other way round:

if one obtains a field theoretical action like (4.18) from other approaches, say a
Doi-Peliti approach [16], the resulting behaviour of ϕ is equivalent to that obtained
if ϕ obeyed Eq. (4.13).
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Chapter 5

Incompressible Toner and Tu
theory

The presence of instability of the homogeneous state in the proximity of the ordering
phase transition in polar active matter systems, and its main consequence, namely the
presence of a first-order transition, is in apparent contradiction with the simulations
made by Vicsek et al. in their seminal paper [42] where a second order phenomenology
was reported. After some debate among the community [44, 83, 84, 85], there is
nowadays a quite large consensus on the first-order nature of the transition. The
earlier belief of a second-order transition was likely a result of finite-size effects.
While the coupling between velocity and density fluctuations drives the transition
from second to first-order in infinitely large systems, finite-size systems are often
not large enough to make this effect noticeable. This is the case of the simulations
made in [42], where a second-order phenomenology appeared at finite scales, with
no strong heterogeneous spatial structures, as bands, forming in the system in the
ordered phase.

Quite interestingly, natural swarms of midges in the field were shown to be well
described by the proximity to an ordering critical point [12, 56], because of their
low polarisation but long-range velocity-velocity correlations. Midges however are
self-propelled units that align to their neighbours [56], making swarms a polar active
matter system that should undergo a first-order transition rather than a second-
order one. Once again, the explanation for their critical behaviour might come
from finite-size effects. Remarkably, midges and finite-size simulations of the Vicsek
model not only have the observation of scaling laws in common but also the absence
of heterogeneous spatial structures such as bands. This evidence suggests that the
finite size of the system might suppress the density-velocity coupling responsible for
turning the transition into a first-order one.

From the point of view of the large-scale dynamics of the direction of motion
field, the suppression of density-velocity couplings means that density can be treated
as a constant, hence calling for an investigation of a theory for incompressible polar
active matter. Interestingly, as the compressibility of the longitudinal modes σ−1

becomes smaller, the range of values of ρ0 for which the instability occurs gets
smaller, eventually vanishing when σ−1 → 0 (see (3.44) of Chapter 3). This suggests
that the phase transition in the incompressible limit is continuous at all scales.
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In their seminal paper [23], Chen, Toner and Lee performed a renormalization
group calculation of the incompressible Toner and Tu theory near criticality, aiming
to show that in this case, the transition is continuous. The finding on a new non-
trivial fixed point ruling the large-scale behaviour of near-ordering incompressible
active matter confirmed the expectations of the authors, proving the transition
is second-order (i.e., continuous) in the incompressible limit. The authors of [23]
probably did not have natural swarms in mind, and the dynamic critical exponent
found in their active theory (z = 1.73 in d = 3) is not compatible with that observed
in swarms. Nevertheless, their calculation is extremely valuable, both from a physical
and from a technical point of view. Physically, it shows that being self-propelled
can affect the large-scale dynamic behaviour. Even though self-propulsion on its
own is not able to explain the dynamic exponent observed in swarms, compared to
the non-active case z shifts in the right direction. From a technical point of view,
instead, this calculation will represent a reference point for the RG analysis I will
perform in Chapters 9-11. For these reasons, it is extremely useful to review in
detail the calculation performed in [23], a topic to which I will dedicate the following
sections.

5.1 The incompressible theory
Incompressibility is the requirement that the density field remains constant, namely
that ρ ≡ ρ0. This might happen for a variety of reasons, but when this happens the
continuity equation of the density reduces to a solenoidal constraint on the direction
of motion field:

∂tρ+ v0∂α (ρψα) = 0 ⇒ ∂αψα = 0 (5.1)

With this constraint, the theory describing the large-scale behaviour of incompressible
polar active fluids in the near-ordering phase [23] can be written in the form:

∂tψα + v0γ (ψγ∂γ)ψα = Γ∇2ψα − Γ δV

δψα
− ∂αP +

√
2Γ̃ θα ,

∂αψα = 0 .
(5.2)

Here the pressure term P , in which also the γ3 term was absorbed, acts as a Lagrange
multiplier enforcing the incompressibility condition ∂αψα = 0. On the l.h.s. of (5.2)
one can recognise a modified material derivative Dtψ = ∂tψ + v0γ (ψ · ∇)ψ, with
γ ̸= 1 in the general case since Galilean invariance is broken [20]. On the r.h.s.
instead, there is the alignment force ∇2ψ, which from the fluid-dynamics perspective
can also be interpreted as a shear viscosity, the active force coming from a Landau
potential V , the pressure P and a Gaussian white noise of variance 2Γ̃.

The parameter v0, namely the microscopic speed, is what quantifies activity: when
v0 = 0, one recovers the behaviour of Model A [40] with a solenoidal constraint, which
describes systems like dipolar ferromagnets [86]. The system thus effectively behaves
as an equilibrium one. Any active field theory, aiming to describe collective behaviours
of self-propelled units therefore requires the presence of advection, effectively captured
by the presence of a material derivative, in addition to the presence of an active
force.
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On the other hand, it is relevant to observe that, when m = J = 0, one recovers
the behaviour of an incompressible fluid stirred by a force which acts even at k = 0,
namely Model B of [46].

5.1.1 The equations in Fourier space

In Fourier space, the incompressibility constraint has an expression which is local in
the wave vector, namely

kαψα(k) = 0 , (5.3)
Note that the real-space fields can be recovered via

ϕ (x) =
∫
k

eix·kϕ (k) . (5.4)

Here and in the following, I will use the notation,∫
k

=
∫

|k|<Λ

ddk
(2π)d

(5.5)

The locality of the constraint in momentum space makes it a more convenient
choice compared to real space, as the constraint can be easily imposed on the
equation of motion. When written in Fourier spare, the dynamic equation (5.2)
becomes

∂tψα(k) + iv0γ

∫
q
ψγ(k − q)qγψα(q) = −Γk2ψα(k) −mψα(k)−

− J

∫
q,h

ψγ(q)ψβ(h)ψα(k − q − h) − kαP(k) +
√

2Γ̃ θα(k) , (5.6)

which must be complemented by kαψα(k) = 0. As done in [46], one can approach
the implementation of this constraint as follows. The geometrical interpretation of
incompressibility is that, in Fourier space, the direction of motion ψ(k) belongs to
the plane orthogonal to k, hence obeying the following relations

P
∥
αβ(k)ψβ(k) = 0 P

∥
αβ(k) = kαkβ

k2 , (5.7)

P⊥
αβ(k)ψβ(k) = ψα(k) P⊥

αβ(k) = δαβ − kαkβ
k2 . (5.8)

Here P ∥ is an operator that projects on the direction of k, while P⊥ = 1 − P ∥

projects on the plane orthogonal to k [46]. The reason why working in Fourier space
is convenient is that one can enforce the constraint by simply applying P⊥ to both
sides of Eq. (5.6). By doing this, because P⊥

αβkβ = 0, no Lagrange multiplier needs
to be explicitly used and hence the constraint is automatically satisfied. When
performing this projection, the equation of motion becomes

∂tψα(k) + iv0γP
⊥
αβ(k)

∫
q
ψγ(k − q)qγψβ(q) = −Γk2ψα(k) −mψα(k)−

− JP⊥
αβ(k)

∫
q,h

ψγ(q)ψβ(h)ψβ(k − q − h) +
√

2Γ̃P⊥
αβ(k)θβ(k) . (5.9)
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Using again the incompressible constraint kαψα(k) = 0 allows one to write

ψγ(k − q)qγ = ψγ(k − q)(kγ − qγ) + ψγ(k − q)qγ = ψγ(k − q)kγ (5.10)

This equality, when used in the γ term, leads to

∂tψα(k) + iv0γP
⊥
αβ(k)kγ

∫
q
ψγ(k − q)ψβ(q) = −Γk2ψα(k) −mψα(k)−

− JP⊥
αβ(k)

∫
q,h

ψγ(q)ψβ(h)ψβ(k − q − h) +
√

2Γ̃P⊥
αβ(k)θβ(k) . (5.11)

For technical reasons, related to the calculation of Feynman diagrams, it is convenient
to make the two interaction terms symmetric under the exchange of two ψ fields

∂tψα(k) + iv0γ

2 Y ⊥
αβγ(k)

∫
q
ψβ(q)ψγ(k − q) = −Γk2ψα(k) −mψα(k)−

− J

3Q
⊥
αβγν(k)

∫
q,h

ψβ(q)ψγ(h)ψν(k − q − h) +
√

2Γ̃P⊥
αβ(k)θβ(k) . (5.12)

Here two new tensors were defined, namely

Y ⊥
αβγ(k) = P⊥

αβ(k)kγ + P⊥
αγ(k)kβ (5.13)

Q⊥
αβγν(k) = P⊥

αβ(k)δγν + P⊥
αγ(k)δβν + P⊥

αν(k)δβγ (5.14)

5.1.2 Linear theory

As in the Toner and Tu theory discussed in Chapter 3, also in this incompressible
theory a mean-field analysis reveals the presence of an ordering transition when
m turns from positive to negative [23]. Before approaching the field-theoretical
analysis of the transition that allows one to go beyond mean-field, it is instructive
to review the linear theory in the proximity of the transition. In the disordered
near-critical phase, small fluctuations of ψ - which coincide with ψ itself, as ⟨ψ⟩ = 0
- are expected to behave as follows:

∂tψα = −(m+ Γk2)ψα +
√

2Γ̃P⊥
αβ(k)θβ(k) . (5.15)

The presence of the P⊥ operator in front of the noise term guaranteed that when
kαψα = 0 at t = 0, the incompressibility constraint is conserved by the dynamics.

To obtain the response and correlation functions, it is easier to move to frequency
space, namely performing a Fourier transform of the temporal variable, where the
equations become

−iωkψα(k̃) = −(m+ Γk2)ψα(k̃) +
√

2Γ̃P⊥
αβ(k)θβ(k̃) . (5.16)

Here the Fourier-transformed field ψ(k̃) was introduced, with k̃ = (k, ωk), linked to
the real space-time field using an inverse Fourier transformation, namely

ϕ (x, t) =
∫
k̃

e−iωt+ix·kϕ(k̃) ,
∫
k̃

=
∫
k

∫ +∞

−∞

dω
2π (5.17)
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Eq. (5.16) can be written in the form

ψα(k̃) = Gαβ(k̃)hβ(k̃) Gαβ(k̃) = 1
−iωk +m+ Γk2 δαβ , (5.18)

where G is the response function, which gives the response of ψ to external pertur-
bations h, where in the present case h represents the noise: hα =

√
2Γ̃P⊥

αβ(k)θβ(k̃).
Knowing that the noise correlations are given by

⟨θα(k̃)θβ(k̃)⟩ = δαβ δ̂(k̃ + q̃) (5.19)

where
δ̂(k̃) = (2π)d+1δ(d)(k)δ(ωk) , (5.20)

The correlation function for the direction of motion ψ can be computed in the
following way:

⟨ψα(k̃)ψβ(q̃)⟩0 = 2Γ̃Gαγ(k̃)Gβν(q̃)P⊥
γσ(k)P⊥

ντ (q)⟨θσ(k̃)θτ (k̃)⟩
= 2Γ̃Gαγ(k̃)Gβν(−k̃)P⊥

γν(k)δ̂(k̃ + q̃)
(5.21)

Here the subscript 0 means that the average ⟨·⟩0 is performed within the linear
theory. The expression in the last row is obtained by reminding that the delta
function imposes q̃ = −k̃, that P⊥

ντ (−k) = P⊥
ντ (k) and that P⊥

γσ(k)P⊥
νσ(q) = P⊥

γν(k).
Finally, by using the explicit form of Gαβ(k̃) previously derived, one obtains

⟨ψα(k̃)ψβ(q̃)⟩0 = Cαβ(k̃)δ̂(k̃ + q̃) Cαβ(k̃) = 2Γ̃
ω2
k + (m+ Γk2)2P

⊥
αβ(k) (5.22)

5.2 The field theoretical action
Contrary to what was done in [23], I will here use the Martin-Siggia-Rose/Janssen-De
Dominicis (MSRJD) formalism discussed in Chapter 4 to study the near-critical
behaviour of the theory and compute the corrections to mean-field. Note however
that the two approaches are completely equivalent, and will lead to the same results.
Following the MSRJD formalism, one can write a field-theoretical action which
reproduces the same statistics of a stochastic Langevin equation - see Chapter 4 for
details. The price to do this is the introduction of an auxiliary field ψ̂, known as
the response field, which acts as a Lagrange multiplier enforcing the primary field ψ
to obey the stochastic Langevin dynamics.

The action can be usually written in the form S = S0 + SI , where S0 is the
Gaussian action, coming from the linear dynamic terms, while SI represents the
interactions, arising from non-linear dynamics. In the case at hand, these two
contributions read

S0 =
∫
k̃

(
−iωk +m+ Γk2

)
ψ̂α(−k̃)ψα(k̃) − Γ̃P⊥

αβ(k)ψ̂α(−k̃)ψ̂β(k̃) (5.23)

SI = −J

3

∫
k̃,q̃,h̃

Q⊥
αβγγ(k)ψ̂α(−k̃)ψβ(q̃)ψγ(h̃)ψν(k̃ − q̃ − h̃)+

+ iv0γ

2

∫
k̃,q̃

Y ⊥
αβγ(k)ψ̂α(−k̃)ψβ(q̃)ψγ(k̃ − q̃)

(5.24)
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5.2.1 Gaussian theory

Since the RG analysis will be performed using a perturbative expansion in the
non-linear dynamic couplings γ and J , it is useful to first review the behaviour
of the Gaussian theory. It should be perhaps not surprising that the Gaussian
theory presented here reproduces the behaviour of the linear dynamics: in fact, the
MSRJD action has been built to reproduce the behaviour of the stochastic Langevin
dynamics.

The two correlation functions are given by

⟨ψα(k̃)ψ̂β(q̃)⟩0 = Gαβ(k̃)δ̂(k̃ + q̃) Gαβ(k̃) = 1
−iωk +m+ Γk2 δαβ , (5.25)

⟨ψα(k̃)ψβ(q̃)⟩0 = Cαβ(k̃)δ̂(k̃ + q̃) Cαβ(k̃) = 2Γ̃
ω2
k + (m+ Γk2)2P

⊥
αβ(k) (5.26)

As one can see, the ⟨ψψ⟩ correlation function coincides with that of the linear
dynamics, while the correlation ⟨ψψ̂⟩ equals the linear response function of [23]. This
is no coincidence as a source field h in the dynamics of ψ enters the action as

∫
hψ̂,

and therefore the response function for small fields is given by ∂⟨ψ⟩/∂h = ⟨ψψ̂⟩.
This is the reason why ψ̂ is known as the response field. Let me finally note that
the ⟨ψ̂ψ̂⟩ always vanishes, as in all MSRJD theories, since a ψψ term is missing in
the action.

Graphically, the two non-vanishing correlation functions are represented by lines
joining the two fields in the following way

⟨ψαψ̂β⟩0 = ⟨ψαψβ⟩0 = , (5.27)

where the arrows in the propagators point in the direction of the response field ψ̂.

5.2.2 Non-linear theory

Non-linear terms play a relevant role in the proximity of the phase transition, where
m ≃ 0, as fluctuations become so large that linear theory is not enough to predict
the large-scale properties. In this incompressible theory, there are two relevant non-
linearities, respectively γ and J , which are responsible for mixing the short and long
wavelength modes of the ψ field. In the diagrammatic framework, these interactions
are graphically represented by Feynman vertices, in which different lines merge, each
representing one of the fields involved in the interaction. In the representation I will
use here, an entering arrow is used to identify the leg representing the response field.
Moreover, vertices have opposite signs compared to the associated interaction; the
convenience of this choice is that vertices play a crucial role in building Feynman
diagrams, which come from the expansion of exp(−SI).

Therefore, incompressible SPMA has only two Feynman vertices, defined as
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follows:

ψ̂α(−k̃)

ψβ(q̃)

ψγ(p̃)

: i v0γ

2 Y ⊥
αβγ(k)δ̂(k̃ − q̃ − p̃) , (5.28)

ψ̂α(−k̃)

ψβ(q̃)

ψγ(p̃)

ψγ(h̃)

: −J

3Q
⊥
αβγν(k)δ̂(k̃ − q̃ − p̃− h̃) , (5.29)

The first vertex (5.28) will be called the self-propulsion vertex, as it arises from
the ability of the particle to be self-propelled at the microscopic level. This can
be seen by the fact that this vertex is proportional to v0, meaning that when the
microscopic speed is sent to v0 → 0, this self-propulsion vertex vanishes too. This self-
propulsion vertex is composed of the usual advective derivative term, proportional
to γ, as the anomalous advective terms typical of the Toner and Tu theory, which
are introduced because of the Galilean-invariance breaking, vanish as a consequence
of incompressibility [23]. The second vertex (5.29) is the standard ferromagnetic
relaxation vertex, characteristic of ferromagnetic theories belonging to the O(n)
universality class [2, 3].

5.3 Critical behaviours at the ordering transition
Starting from the action introduced in the previous section, one can perform an
RG analysis of the theory in the proximity of the ordering transition, namely near
m ∼ 0. In this regime, modes are massless, and therefore the coupling between
short and large wavelength fluctuations induced by the non-linear terms gives rise
to non-trivial corrections to the scaling predicted by the linear theory.

5.3.1 Shell integration

To work out these non-trivial corrections, the idea of the momentum shell RG is
to integrate little by little the short-wavelength details. As detailed in Chapter 4,
this is done by first integrating the short-wavelength modes over the momentum
shell Λ/b < |k| < Λ. When these modes are integrated, one is left with a new action
S< = S + ∆S describing the behaviour of the modes with |k| < Λ/b. As for the
action S, the corrections ∆S can be written as the sum of a Gaussian part and an
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interacting part, namely ∆S = ∆S0 + ∆SI , where each contribution takes the form

∆S0 =
∫ <

k̃
ψ̂α(−k̃)Σαβ(k̃)ψβ(k̃) − ψ̂α(−k̃)Σ̃αβ(k̃)ψ̂β(k̃)

∆SI = −
∫ <

k̃,q̃
V ψ̂ψψ
αβγ (k̃, q̃)ψ̂α(−k̃ − q̃)ψβ(k̃)ψγ(q̃)−

−
∫ <

k̃,q̃,p̃
V ψ̂ψψψ
αβγν (k̃, q̃, p̃)ψ̂α(−k̃)ψβ(q̃)ψγ(p̃)ψν(k̃ − q̃ − p̃) .

(5.30)

Here all momenta are integrated off-shell, k < Λ/b, while frequency integrals still
run from −∞ to ∞. This is the meaning of the superscript < over the integral sign,
which stems for ∫ <

k̃
=
∫

|k|<Λ/b

ddk
(2π)d

∫ +∞

−∞

dωk
2π (5.31)

The quantities Σ and Σ̃ are known as the self-energies [40], which contribute to the
perturbative corrections of the Gaussian part of the original action, while V ψ̂ψψ and
V ψ̂ψψψ are known as vertex-functions, and correct the non-linear dynamic couplings.
From a diagrammatic point of view, each self-energy and vertex-function is given by
the sum of all amputated 1-particle irreducible diagrams with external fields ψ̂ψ,
ψ̂ψ̂, ψ̂ψψ and ψ̂ψψψ respectively. Graphically, they are represented by the blobs in
the following diagrammatic scheme

Σαβ(k̃) : ψ̂α(−k̃) ψβ(k̃) (5.32)

Σ̃αβ(k̃) : ψ̂α(−k̃) ψ̂β(k̃) (5.33)

V ψ̂ψψ
αβγ (k̃, q̃) : ψ̂α(−k̃ − q̃)

ψβ(k̃)

ψγ(q̃)

(5.34)

V ψ̂ψψψ
αβγν (k̃, q̃, h̃) : ψ̂α(−k̃)

ψβ(q̃)

ψγ(h̃)

ψγ(k̃ − q̃ − h̃)

(5.35)

To compute these self-energies and vertex functions, one can use a perturbative
approach, by treating the coupling constants of the non-linear dynamic terms as
small. This assumption will be justified a posteriori, by showing the validity of this
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assumption in the proximity of the upper critical dimension dc = 4. To compute the
corrections to scaling at first order in ϵ = 4 − d, a diagrammatic approach was used
in [23].

At first order in ϵ, the self-energies and the vertex-functions take non-vanishing
contributions from the diagrams listed in Appendix A. By expanding at relevant
order in k and ω, the self-energies and the vertex-functions take the form

Σαβ(k̃) = m0 δm δαβ ln b+ Γ0 δΓ δαβ ln b Σ̃αβ(k̃) = 0 , (5.36)

V ψ̂ψψ
αβγ (k̃, q̃) = v0γ0

2 δγ Y ⊥
αβγ(k) ln b ,

V ψ̂ψψψ
αβγν (k̃, q̃, h̃) = J0

3 δJ Q
⊥
αβγν(k) ln b ,

(5.37)

where

δm = d2 + d− 2
d

Γ̃0J0
Γ0m0

KdΛd−2 δγ = − 3d2 − 8
d(d+ 2)

Γ̃0J0
Γ2 KdΛd−4 , (5.38)

δΓ = d− 2
2d

Γ̃γ2

Γ3 KdΛd−4 δJ = −d3 + 9d2 + 2d− 12
d(d+ 2)

Γ̃0J0
Γ2 KdΛd−4 . (5.39)

Here Kd = Sd/(2π)d, with Sd being the surface of the d-dimensional sphere with
unity radius. The mass term m has been set to 0 in all the corrections, apart from
those to m itself. This is because keeping m in these terms leads to contributions of
order at least ϵ2, which are irrelevant for working out the critical exponents at order
ϵ. Finally, for the same reason, one can set d = 4 in these corrections, obtaining

δm = 9
2

Γ̃0J0
Γ0m0

KdΛd−2 δγ = −5
3

Γ̃0J0
Γ2 KdΛd−4 , (5.40)

δΓ = 1
4

Γ̃γ2

Γ3 KdΛd−4 δJ = −17
2

Γ̃0J0
Γ2 KdΛd−4 . (5.41)

The overall effect of the shell integration on the action can be summarised as
follows:

S<0 =
∫ <

k̃

(
−iωk +m0(1 + δm ln b) + Γ0(1 + δΓ ln b)k2

)
ψ̂ψ − Γ̃0P

⊥ψ̂2 (5.42)

S<I = −iv0
2 γ0(1 + δγ ln b)

∫ <

k̃,q̃
Y ⊥ψ̂ψ2 + 1

3J0(1 + δJ ln b)
∫ <

k̃,q̃,h̃
Q⊥ψ̂ψ3 (5.43)

Here, for the benefit of the reader, I lightened the tensorial structure for easier
reading. One can appreciate here how the shell integration affects the action by
providing corrections to the bare parameters and couplings of the theory, denoted
by a subscript 0. In principle, also corrections to the −iωkψ̂ψ and Γ̃0ψ̂

2 might arise.
However, in the present case the advection vertex is proportional to k, and thus
does not contribute to any correction to these terms. Furthermore, corrections from
the ferromagnetic interaction are expected to be at least of order ϵ2 as happens
in Model A [40]. Note that the structure of S< is the same as the original one.
Higher order terms in the number of fields or terms with higher powers of k or ω
may be generated by this shell integration; however, they turn out to be irrelevant
at first-order in ϵ [52].
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5.3.2 Rescaling

The second step of the RG consists of the following rescaling of momenta, frequencies
and fields,

kb = kb ωb = ωbz (5.44)
ψ̂(kb, ωb) = bχψ̂ψ̂(k, ω) ψ(kb, ωb) = bχψψ(k, ω) (5.45)

Here the exponent z is called the dynamical exponent and it rules the interplay
between spatial and temporal scales. Once this transformation is performed, the
action recovers its original cutoff Λ.

Note that the scaling dimension of ψ̂ can be fixed by requiring that the coefficient
in front of the −iωψ̂ψ term remains equal to unity. Any non-unity coefficient in
front of this term would reflect into a coefficient different from one in front of the
partial temporal derivative of the ψ field in the Langevin equation (5.12). This
coefficient can be easily removed by dividing by it both sides of the equation, which
is equivalent to fixing the scaling dimension of ψ̂ in the action.

Since the −iω term scales as∫
k̃

−iωψ̂(−k̃)ψ(k̃) =
∫
k̃b

−ib−χψ−χψ̂−d−2zωbψ̂(−k̃b)ψ(k̃b) , (5.46)

The scaling dimension of ψ̂ can be fixed to keep

−χψ − χψ̂ − d− 2z = 0 ⇒ χψ̂ = −χψ − d− 2z (5.47)

When all the other terms are concerned, the final action takes the same form as
the bare action (5.23)-(5.24), but with renormalized coefficients:

mb = m0 b
χm χm = z + δm (5.48)

Γb = Γ0 b
χΓ χΓ = z − 2 + δΓ (5.49)

Γ̃b = Γ̃0 b
χΓ̃ χΓ̃ = 2χψ + d+ 3z (5.50)

γb = γ0 b
χγ χγ = −χψ − d+ δγ (5.51)

Jb = J0 b
χJ χJ = −2χψ + 2d+ z + δJ (5.52)

5.3.3 Effective couplings and RG flow equations

To carry out the RG flow equations properly, it is useful to focus on a set of effective
couplings whose scaling dimension does not depend on the scaling exponents z and
χψ. The best choice for this set of couplings is

cv = v2
0

Γ̃γ2

Γ3 KdΛd−4 ũ = Γ̃J
Γ2 KdΛd−4 r̃ = m

Γ Λ−2 (5.53)

These three couplings are equivalent to the g1, g2 and a couplings of [23]. After an
RG transformation, these couplings are modified as follows

cv,b = cv,0b
χcv χcv = 4 − d+ 2δγ − 3δΓ (5.54)

ũb = ũ0b
χũ χũ = 4 − d+ δJ − 2δΓ (5.55)

r̃b = r̃0b
χr̃ χr̃ = 2 + δm− δΓ (5.56)
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It is crucial to notice that the perturbative corrections depend uniquely on these 3
effective couplings. Rewriting them in terms of these newly defined couplings leads
to

δm = 9
2
ũ

r̃
δγ = −5

3 ũ δΓ = cv
4 δJ = −17

2 ũ . (5.57)

When many RG iterations are performed, in the thin shell limit ln b → 1+, the
effective parameters flow according to the following equations

Ṗ = βP βP = PχP (5.58)

Where βP is known as the beta-function of P. In the present case, these beta-
functions are given by

βcv = cv

(
ϵ− 10

3 ũ− 3
4cv

)
(5.59)

βũ = ũ

(
ϵ− 17

2 ũ− 1
2cv

)
(5.60)

βr̃ = r̃

(
2 − cv

4

)
+ 9

2 ũ (5.61)

Critical exponents can be obtained by looking at the large-scale behaviour of
these parameters, namely by searching fixed points of the RG flow and looking at
the linearised flow in their surroundings. Fixed points can be found by searching
for zeros of the beta-functions, namely by setting βP = 0. In the present case, four
fixed points can be found by analytic inspection of the beta-functions. A plot of the
RG flow trajectories, together with the four fixed points, can be found in Fig. 5.1.

Gaussian fixed point. The first is the trivial Gaussian fixed point, where
c∗
v = ũ∗ = 0. When starting the flow on the critical manifold, the mass r̃ flows to
r̃∗ = 0. At this fixed point, mean-field exponents are found. This fixed point is
however unstable whenever ϵ > 0, namely for all d < 4.

Dipolar ferromagnet fixed point. When d < 4, but activity is switched off
by setting v0 = 0, and thus cv = 0, the coupling ũ flows towards the fixed-point
value of ũ∗ = 2ϵ/17, while r̃ = −9ϵ/34. This fixed point, which described the critical
relaxation dynamics of a ferromagnet with dipolar interactions [87, 86], is unstable
for any active perturbation below d = 4.

Incompressible stirred fluid fixed point. On the other hand, still for d < 4,
when ũ = 0 but cv ̸= 0, the flow approaches the fixed point c∗

v = 4ϵ/3, which
describes the behaviour of turbulent incompressible fluids stirred by a random force
at zero wave vector [46]. This fixed point is however unstable to any ũ perturbation.

Incompressible polar active matter fixed point. Finally, when both activity
and alignment interactions are relevant, the stable fixed point is given by that found
in [23], where

cv = 124
11 ϵ ũ∗ = 6

113ϵ r̃∗ = − 27
226ϵ . (5.62)

This fixed point is expected to describe the critical behaviour of any incompressible
polar active matter system with no conservation laws.
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Figure 5.1. Renormalization group flow of the incompressible Toner-Tu theory
[23] RG flows on the critical surface. Besides the unstable Gaussian fixed point (black
diamond) and the stable fixed described in Equation (5.62) (red square), there are
two unstable fixed points: one at c∗

v = 0, ũ∗ = 2ϵ/17, which is the fixed point of an
isotropic ferromagnet with long-ranged dipolar interactions [86] (purple circle), and one
at c∗

v = 4ϵ/3, ũ∗ = 0, which is the fixed point of a fluid forced at zero wavevector (model
B of [46]) (blue triangle). Permission to reuse granted under the terms of the Creative
Commons Attribution License CC BY 3.0

5.3.4 Dynamic critical exponent and comparison with swarms

To check whether activity and alignment interactions are sufficient to account for
the collective behaviours observed in swarms, it is important to check whether there
is any agreement between the dynamic critical exponent of swarms with that of the
incompressible Toner and Tu theory.

The dynamic critical exponent of this incompressible theory can be computed by
requiring the relaxation coefficient Γ to remain finite at large scales. This ensures
that the relaxation timescale of the renormalized system remains finite at large
scales. Requiring Γ to remain finite is equivalent to asking for its scaling dimension
χΓ to approach zero, hence

χΓ = 2 − z + δΓ = 0 ⇒ z = 2 − δΓ (5.63)

Reminding the explicit form of δΓ, and the fixed point values of the effective couplings
at the incompressible polar active matter fixed point found in the previous section,
one finally obtained

z = 2 − 31
113ϵ (5.64)

By sending ϵ → 1, an estimation of the dynamic critical exponent for three-
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dimensional systems as swarms can be obtained. This leads to

z = 2 − 31
113 = 195

113 = 1.72(5) (5.65)

Unfortunately, this result is quite far from the value of z in natural swarms, namely
z = 1.37 ± 0.11, suggesting some new physical ingredient is necessary to account for
the collective behaviours observed in swarms.

One possible explanation of this discrepancy could be that this is an expansion in ϵ
that was stopped at first order (one loop), hence maybe the second-order estimate of z
could be closer to the experimental value; often second-order calculations are required
to get exponents in satisfactory agreement with experiments and/or simulations.
Unfortunately, this cannot be the case. Not only does the gap between 1.73 and 1.37
seem far too large to be bridged by a second loop correction, but most importantly
this explanation clashes with the numerical evidence. A recent investigation of
the near-critical Vicsek model in [69] has reported a dynamic exponent of z ≈ 1.7,
in good agreement with the result predicted by the first-order perturbative RG
calculation [23]. This further strengthens the hypothesis that new physics, other than
alignment and activity, is required to account for collective behaviours in biological
systems as natural swarms.

5.4 Conclusions
The study of the incompressible Toner and Tu theory near criticality performed by
Chen, Toner and Lee [23] represents an important stepping stone towards the charac-
terisation of swarming behaviour. Although not in agreement with the experimental
value of z observed in natural swarms, the one in [23] is the first successful attempt
to characterise the universality class of an active matter system undergoing an
ordering transition. To achieve quantitative agreement with experiments, however,
some new ingredients must be taken into account. For example, as in the case of
equilibrium dynamic critical phenomena [40], the presence of additional conservation
laws are expected to give rise to other, new, universality classes of active matter. The
development and study of a compelling theory for swarms will represent a crucial
part of this thesis, to which I will dedicate Chapters from 7 to 11.

Before proceeding, there is still another issue that needs to be solved. As
discussed at the beginning of the present Chapter, there are plenty of valid reasons
for which one should expect density fluctuations in natural swarms to be small,
above all the very observation of scaling laws and the homogeneous spatial profile.
Nevertheless, whether the behaviour of homogeneous systems can be described by
assuming incompressibility is not a given. Recent numerical simulations suggest
homogeneous systems have the same dynamic critical exponent as incompressible
ones [69]. On the other hand, in the context of equilibrium systems, the presence of
a solenoidal constraint is known to change the universality class, as a consequence
of the long-range interactions introduced by it. In the following Chapter, I will
precisely try to address this question, by studying a version of the Toner and Tu
theory in which density fluctuations are partially suppressed.
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Chapter 6

Incompressibility as a tool to
study collective homogeneous
systems

The Heisenberg model is known to approach the ordered phase through a continuous,
second-order, phase transition as the temperature of the system is lowered [3, 15].
However, I explained in Chapter 3 that the presence of self-propulsion makes the
phase transition more similar to a first-order one rather than to a second-order one
[44, 36, 88]. A naive explanation of why the transition in the Vicsek model is first
order may be given by the following argument. In the presence of self-propulsion,
particles’ movement causes a rewiring of the interaction network, which generates
positive feedback between density and velocity fluctuations. This mechanism favours
the formation of spatially heterogeneous patterns, such as clusters, when velocity
correlations become large, which in turn causes the equilibrium-like second-order
behaviour to be replaced into an off-equilibrium first-order phase transition at the
onset of collective motion [36, 88].

Despite being self-propelled, natural swarms of insects do not exhibit the expected
phenomenology of systems near a first-order transition. Instead, they exhibit
near-critical scaling laws, a hallmark of second-order transitions. Similarly, many
numerical studies do report scaling behaviour in the near-ordering Vicsek model [42,
83, 69]. How can these observations be compatible with the first-order phenomenology
expected from the linear instability of the ordered state I reported in Chapter 3?
To answer this question, together with my former fellow PhD student Dr Luca Di
Carlo, I studied the near-ordering behaviour of a version of the Toner and Tu theory
in which density fluctuations are not conserved, known as Malthusian Toner and
Tu theory. In [MyPaper2] we reported the presence of a crossover between two very
distinct behaviours: a second-order phenomenology is observed at finite sizes, while
in the large-size limit, the first-order behaviour is recovered. Remarkably, the finite-
size behaviour of this Malthusian theory is ruled by the incompressible universality
class discovered in [23]. These results not only confirm that finite-size systems might
exhibit a second-order phenomenology [69] but also show that incompressibility
becomes more than a simplifying hypothesis when characterising the behaviour of
these systems.
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6.1 Introducing fast density fluctuations
From a theoretical perspective, the large-scale properties of the Vicsek model are
captured by its corresponding hydrodynamic theory: the celebrated Toner and Tu
(TT) theory [20]. In the seminal paper [23] by Chen, Toner and Lee, the authors
realised that the phase transition is however second-order if density fluctuations
are completely suppressed, namely if the system is incompressible. As I showed in
Chapter 5, an RG approach to the Toner and Tu theory in the incompressible limit
allows one to find a novel non-equilibrium fixed-point that rules the critical dynamics
of incompressible active matter [23]. This study revealed that although activity is
an important feature and changes the critical dynamics, it is not responsible per se
for turning the phase transition from second to first order. A feedback mechanism
between density and velocity fluctuations seems to be a fundamental ingredient to
explain the first-order phenomenology of the transition [89].

The results of [23] represent an important stepping stone in the understanding of
why so many studies did report scaling laws in active matter systems. In fact, neither
the numerical simulations performed by Vicsek et. al. in [42] nor experimental
data of natural swarms of insects [12] seem to exhibit spatial clustering of any kind.
This suggests that to understand why a second-order phenomenology is observed in
finite-size active matter systems, the following question should be addressed: when
do density fluctuations become strong enough to turn a second-order transition into
an off-equilibrium first-order one?

To understand how the interplay between density and velocity fluctuations
renders the phase transition first order, one would have to study the Toner and Tu
theory in its near-ordering regime. However, precisely because of the presence of
velocity-density couplings, this is not a piece of cake; and, from a mere technical
point of view, many things could go wrong with trying to study the Toner and Tu
theory in its critical phase. In the present Chapter, instead of the Toner and Tu
theory I study a modification of it, namely the Malthusian Toner and Tu (MTT)
theory [45], in its near-ordering phase [MyPaper2], which has never been done before.

The peculiarity of this MTT theory is that individuals reproduce and die. When
this happens, the total density is not conserved and its local fluctuations quickly
relax to a steady-state determined by the local velocity field. Apart from very
fast transients, which may be neglected in the hydrodynamic limit, the density
field is therefore enslaved to the velocity field. The density is therefore not an
independent hydrodynamic variable, and thus the hydrodynamic behaviour of the
velocity completely ignores density fluctuations. In this sense, the MTT theory can
be viewed as analogue to an infinitely compressible limit of the TT theory.

Nevertheless, the MTT theory can be viewed as a case in which density fluctu-
ations are partially suppressed: they are neither strictly constant, as in the ITT
theory, nor they are an hydrodynamic variable, as in the TT theory. The density
instead does fluctuate around a local steady-state value, but because of the lack of
mass conservation, it relaxes quickly. In this sense, from the point of view of the
strength of density fluctuations, the MTT theory poses in between the ITT theory
and the TT theory. The MTT theory is easy enough to be tackled with perturbative
renormalization group techniques; furthermore, recent numerical simulations [90]
showed that the homogeneous flocking state is metastable, suggesting that the MTT
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is rich enough to give rise to a phenomenology qualitatively different from the one
of the incompressible Toner and Tu theory.

Note that by no means I am suggesting that in systems as natural swarms
midges are born and die while flying: while this Malthusian theory might be relevant
to describe other kinds of systems, it is not expected to be suitable to correctly
describe swarms. However, this will serve as an important theoretical study case to
understand the relevance of density fluctuations near the phase transition and shed
light on how finite-size compressible systems exhibit scaling laws when approaching
the phase transition.

6.1.1 The hydrodynamic equations

The Malthusian Toner and Tu theory, introduced by J. Toner in [45], is a model for
self-propelled agents that reproduce and die. In its hydrodynamic description, the
equations of motion (EOM) for the direction of motion field ψ and the density field
ρ are [45]:

∂tψ + v0γv (ψ · ∇)ψ = Γ∇2ψ − ΓδV
δψ

− ∇P +
√

2Γ̃θ + . . . (6.1)

∂tρ+ v0∇ (ρψ) = g(ρ) (6.2)

The equation for ψ is the same as in the TT theory, where P is a pressure term, θ
is Gaussian white noise with variance 2Γ̃, and (ψ · ∇)ψ is the material derivative
accounting for self-advection [43]. Dots stand for the possible presence of other,
non-standard advective terms as those discussed in Chapter 3.

The force term F (ψ) = −dV/dψ is responsible for the order/disorder phase
transition, and it arises from the imitation/ferromagnetic interaction, encoded in
the choice of V as a Landau potential, given by

V =
∫

ddx r

2ψ
2 + u

4ψ
4 (6.3)

As in Model A and TT theory, the state of the system depends on the values of r
and u [27]. While the coupling u must be positive - otherwise the potential V would
be unbounded - the sign of r determines, at the mean-field level, whether or not the
system is in a polarised phase ⟨ψ⟩ ≠ 0. Precisely, if r < 0 the average polarisation
of the system is non-zero,

r > 0 =⇒ ⟨ψ⟩ = 0

r < 0 =⇒ ⟨ψ⟩ =

√
|r|
u

(6.4)

6.1.2 Birth and death processes

The main difference with the immortal Toner and Tu theory lie in the presence of
the g(ρ) term in the equation for the density, which accounts for the birth/death
process [45, 91]. This g(ρ) term represents the net, local growth rate of the density
field in the absence of motion. Before trying to understand how this affects collective
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motion, let me first focus on what happens in the absence of self-propulsion, namely
when v0 = 0. In this case, the density’s dynamics simply becomes

∂tρ = g(ρ) , (6.5)

Which also represents a sort of mean-field equation for the local density.
But what is a possible form of g? A very basic case is that in which individuals

die at a given fixed rate α and are spawned in random positions at some rate λ. The
process give g(ρ) = −αρ+ λ, describing the following mean-field density dynamics

∂tρ = −αρ+ λ (6.6)

The only steady-state solution in this case is given by ρ0 = λ/α, and since g′(ρ) ≡ −α,
this state turns out to be stable at mean-field level. If the local density is ρ < ρ0 or
ρ > ρ0, it will relax back to the steady-state with a non-hydrodynamic time scale of
τρ = α−1.

Other more complicated death and birth processes are of course possible. When-
ever these processes rely on the realistic hypothesis that population growth is limited
by the finiteness of resources, then limρ→∞ g(ρ) < 0. This is because positive g at
large ρ would lead to uncontrolled population growth. If the population does not go
extinct, this is because there is some steady-state value ρ0 ̸= 0 at which g(ρ) = 0.
Although this is often called active state, this name would be misleading in the
present contest, in which activity is referred to self-propulsion. Absorbing phase
transitions usually occur when ρ0 → 0, however, I am here interested only in cases
where ρ0 is far from 0.

For ρ0 to be a stable steady-state, the following conditions are required

g(ρ0) = 0 g′(ρ0) < 0 . (6.7)

Therefore, near to ρ0 the function g(ρ) acts as a harmonic restoring force, ∂tρ =
g′(ρ0)δρ, with δρ = ρ − ρ0. At first glance, the birth/death mechanism seems to
further complicate the problem, but it is a significant simplification. Because of the
term g(ρ), density is not a conserved field [45]. For conserved quantities, fluctuations
of large wave-vectors k relax on timescales proportional to powers of |k|, meaning
that sufficiently smooth fluctuations might take ages to relax to their steady-state.
On the other hand, non-conserved density fluctuations relax on finite time scales,
regardless of their wave-vector. In this Malthusian case, the field ρ stops from being
an independent hydrodynamic variable [26], and can be likely dropped from the
large-scale description.

Note that when v0 ̸= 0, the presence of the density-velocity coupling in (6.2)
slightly changes this picture. While the steady state of ρ is still expected to be ρ0,
fluctuations δρ will not relax quickly to 0. To see this, let me expand (6.2) at linear
order in the fluctuations:

∂tδρ+ v0ρ0∇ ·ψ = g′(ρ0)δρ (6.8)

Near-ordering, ψ is known to relax on hydrodynamic time scales, which are much
slower than the relaxation time scale of δρ. Assuming this scale separation, one can
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consider ψ spatial fluctuations to be frozen on the short time scales of δρ dynamics.
Therefore, δρ will not relax to 0, but to [45, 92]

δρ(x, t) = − ρ0v0
|g′(ρ0)|∇ ·ψ(x, t) (6.9)

This equation enslaves density fluctuations δρ to fluctuations of the order parameter
ψ, making it possible to get rid of the former when attempting to describe large-scale
fluctuations of the latter.

6.1.3 Non-galilean invariant interactions

Before explicitly deriving the EOM, a remark is in order. In general, the TT theory
breaks Galilean invariance [43, 27, 76], and the Malthusian TT theory is no exception.
Galilean invariance is the symmetry under a change of reference frame, and it is
defined by the following transformation [43]:

x′ = x+ v0ψ̄t t′ = t ψ′ = ψ + ψ̄ (6.10)

implying that the derivatives in the new reference frame (∇′, ∂t′) are different from
the derivates in the old reference frame (∇, ∂t) :

∇′ = ∇ ∂t′ = ∂t − v0ψ̄ · ∇ (6.11)

The force term F (ψ) breaks explicitly Galilean invariance, and the TT theory
is not invariant under the transformation (6.117). In the hydrodynamic approach,
symmetries determine which terms are allowed in the equation [1, 3], and particularly
in Galilean-invariant theories the only allowed term, with one derivative and two
fields, is ψ · ∇ψ [43]. Conversely, in a theory with broken Galilean invariance, as the
TT theory, one must include all the possible terms with one derivative and two fields,
namely ψ∇ ·ψ and ∇ψ2 [76]. I anticipate that, as will be later shown, even if I did
not consider these terms the RG would generate them spontaneously, suggesting
that indeed they must be included in the theory.

The first of these two terms can be interpreted as a density-dependent alignment
force [93]. To understand this, let me write explicitly Eq. (6.1):

∂tψ + v0γv (ψ · ∇)ψ = Γ∇2ψ −mψ − J |ψ|2ψ − ∇P +
√

2Γ̃θ (6.12)

Where I defined m = Γr and J = Γu. By assuming that the aligning force depends
also on the local density, the mass m might take the form

m(ρ) = m0 +m′(ρ0)δρ . (6.13)

Using the relation (6.9), I can write the term mψ in the equation of ψ as

m(ρ)ψ = m(ρ0)ψ −m′(ρ0) ρ0v0
|g′(ρ0)| (∇ ·ψ)ψ (6.14)

where the second term reproduces the expected structure ψ∇ ·ψ.
The second non-Galilean-invariant term can be interpreted as a non-linear

pressure term, of the kind P ∼ −v0γ3ψ
2, which would lead to the following pressure

force:
−∇P(ρ,ψ) = −∇P(ρ) + v0γ3∇ψ2 (6.15)

which reproduces the structure of the second non-Galilean-invariant term, ∇ψ2.
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6.1.4 Pressure forces

The last step needed to derive an EOM for the velocity alone is an explicit expression
for the pressure force ∇P. Following standard literature on active matter [27], the
pressure term P can be expressed as a series in powers of density fluctuations:

P(ρ) =
∑
n=1

σnδρ
n . (6.16)

Using equation (6.9), at the leading order in the fluctuations the pressure force
reduces to

P ≃ σ1δρ = −σ1
ρ0v0

|g′(ρ0)|∇ ·ψ . (6.17)

6.2 The Malthusian Toner and Tu theory
Finally, I am ready to write down the final EOM for the Malthusian Toner and Tu
theory. This is an equation for the direction of motion only, since the relation (6.9)
enslaves density fluctuations to velocity fluctuations. Taking into account all the
dynamic terms discussed in the previous paragraphs, the dynamics of the direction
of motion field in the MTT theory is described by the following EOM:

∂tψ + v0γ1 (ψ · ∇)ψ + v0γ2ψ (∇ ·ψ) + v0γ3∇
(
ψ2
)

=

= Γ∇2ψ + Γ2∇(∇ ·ψ) −
(
m+ J ψ2

)
ψ +

√
2Γ̃θ

(6.18)

Where θ is a Gaussian white noise with unitary variance, namely

⟨θα(x, t)θβ(y, s)⟩ = δαβδ
d(x− y)δ(t− s) (6.19)

Note that I obtained an EOM for the sole velocity field; however, a relic of the
coupling with density is hidden in the parameters γ2 and Γ2, given by

γ2 = m′(ρ0) ρ0
|g′(ρ0)| Γ2 = σ1

ρ0
|g′(ρ0)| (6.20)

A final remark is in order: both Eq. (6.18) and the equation of motion of the
incompressible theory [23] can be obtained by taking the Toner and Tu theory of
Chapter 3 and dropping the equation for the density. The real technical difference
between the two cases resides in the fact that in the incompressible case, the velocity
field is also constrained to be divergence-free. In this sense, both the incompressible
theory and the MTT theory lack an associated hydrodynamic equation for the density.
Nevertheless, in the MTT the density is not constant, as density fluctuations can
always be computed through equation (6.9).

6.2.1 Linear theory

I will now analyse the linearised equations of motion. This will turn out to be
necessary for two reasons. The first is that it serves as a starting point for the
renormalization group study I will perform later on. The core idea of the perturbative
RG is to perform an expansion in small non-linear couplings. Therefore, the linear
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(free) theory will represent the expansion point of my RG analysis. The second is
that, within this linear theory, one can better understand how to properly recover
the incompressible limit.

The linear theory is obtained by setting to zero all the non-linear terms, γi = 0,
J = 0, in the equation of motion (6.18). In Fourier space, hence using the variables
k and t, the linearised equation of motion is:

∂tψ = −mψ − Γk2ψ − σ1
v0ρ0

|g′(ρ0)|k (k ·ψ) +
√

2Γ̃θ (6.21)

where the real-space fields can be recovered via

ϕ (x) =
∫
k

eix·kϕ (k) . (6.22)

Here and in the following, I will – as usual – use the notation,∫
k

=
∫

|k|<Λ

ddk
(2π)d

(6.23)

In equation (6.21), one can distinguish two different types of terms: relaxation
terms that are in the same direction of the field ψ(k), and pressure-like terms that
are always in the direction of the wave vector k. Because of this, the dynamics of the
Fourier transformed fields ψ∥(k, t) and ψ⊥(k, t) are different, where ψ∥ and ψ⊥ are
respectively the component of ψ(k, t) parallel and orthogonal to the wave vector k.
Note that, since the k-space analogue of equation (6.9) links density fluctuations to
k ·ψ = kψ∥, this means that density fluctuations are present only if ψ∥ fluctuations
are not suppressed.

For this reason it is practical to introduce the transverse P⊥
αβ(k) and longitudinal

P
∥
αβ(k) projection operators,

P⊥
αβ(k) = δαβ − kαkβ

k2 P
∥
αβ(k) = kαkβ

k2 . (6.24)

In this way, the ψ∥ and ψ⊥ modes are simply given by

ψ⊥
α = P⊥

αβ(k)ψα ψ∥
α = P

∥
αβ(k)ψα . (6.25)

Using (6.24), the equation of motion (6.21) can be written as,

∂tψα = −(m+ Γ⊥k2)P⊥
αβψβ − (m+ Γ∥k2)P ∥

αβψβ +
√

2Γ̃θα , (6.26)

where Γ⊥ = Γ and Γ∥ = Γ+Γ2 are the transverse and longitudinal kinetic coefficients
respectively. This makes it more evident that longitudinal and transverse fluctuations
behave differently. Intuitively, since longitudinal fluctuations are coupled to density
fluctuations, as shown in equation (6.9), they relax faster than transverse fluctuations
and Γ∥ > Γ⊥.

Solving Eq. (6.26) is easier when it is written in frequency space. This is because
in frequency space the temporal derivative is transformed according to ∂t → −iω.
The solution for ψ can be therefore easily computed and leads to

ψα(k, ω) =
√

2Γ̃Gαβ(k, ω)θα(k, ω) , (6.27)
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Note that the field in real space-time can be computed through an inverse Fourier
transformation, given by

ϕ (x, t) =
∫
k

+∞∫
−∞

dω
2π e−iωt+ix·kϕ (k, ωk) . (6.28)

In Eq. (6.27), the tensor Gαβ(k, ω) is the bare linear response function of ψ,
which quantifies variations of ψ in the presence of small external fields. This linear
response function is given by

Gαβ(k, ω) = G⊥
0 (k, ω)P⊥

αβ(k) +G
∥
0(k, ω)P ∥

αβ(k) (6.29)

G
⊥,∥
0 (k, ω) = 1

−iω + Γ⊥,∥k2 +m
(6.30)

Notice that the response function naturally decomposes in a longitudinal G∥
0 and

orthogonal G⊥
0 component to k. These two response functions precisely represent

the response function of the ψ∥ and ψ⊥ modes respectively.
In the case of Eq. (6.27), the behaviour of ψ is completely determined once the

noise is specified. Here, the noise is assumed to be a white Gaussian noise with zero
mean and variance

⟨θα(k, ωk)θβ(q, ωq)⟩ = (2π)dδαβδd(k + q)δ(ωk + ωq) , (6.31)

Note that this variance is precisely the Fourier-space analogue of Eq. (6.19). The
knowledge of the noise variance allows one to easily compute the velocity-velocity
correlations. To do this, let me recall that the correlations are given by

⟨ψα(k, ωk)ψβ(q, ωq)⟩ = 2Γ̃Gαγ(k, ωk)Gβν(q, ωq)⟨θα(k, ωk)θβ(q, ωq)⟩ . (6.32)

By reminding the form of the noise-variance (6.19), it is straightforward to compute
the correlations, finding that

⟨ψα(k, ωk)ψβ(q, ωq)⟩ = Cαβ(k, ω)(2π)dδαβδd(k + q)δ(ωk + ωq) (6.33)
Cαβ(k, ω) = 2Γ̃G0

αγ(k, ω)G0
βν(−k,−ω) (6.34)

Similarly to the response function G, also C0
αβ(k, ω) can be decomposed in a longi-

tudinal and orthogonal component to k, namely

Cαβ(k, ω) = C⊥
0 (k, ω)P⊥

αβ(k) + C
∥
0 (k, ω)P ∥

αβ(k) (6.35)

C
⊥,∥
0 (k, ω) = 2D0

ω2 + (Γ⊥,∥
0 k2 +m0)2

. (6.36)

Note that expressions (6.30) and (6.36) can also be obtained through the Martin-
Siggia-Rose formalism detailed in Chapter 4.
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6.2.2 Recovering the incompressible limit

To address the relevance of density fluctuations δρ, one must understand the strength
of their correlations. As I pointed out, even if one removed density from the equation
of motion of velocity, density is still a fluctuating field. Larger correlations might
lead to heterogeneous spatial structures, while incompressible behaviour is expected
to be recovered when these correlations become small. To compute this correlation
function, I can once again make use of Eq. (6.9), linking fluctuations of ρ to those
of ψ. The density-density correlation function can be therefore written as

⟨ρ(k, ωk)ρ(q, ωq)⟩ = −
(

ρ0v0
|g′(ρ0)|

)2
qαkβ⟨ψα(k, ωk)ψβ(q, ωq)⟩ (6.37)

Using the explicit form of velocity-velocity correlations, given by Eq. (6.33), one
can finally obtain the form of the density correlations, given by

⟨ρ(k, ωk)ρ(q, ωq)⟩ = Cρρ,0(k, ω)(2π)dδαβδd(k + q)δ(ωk + ωq) , (6.38)

Cρρ,0(k, ω) =
(

ρ0v0
|g′(ρ0)|

)2 2Γ̃ k2

ω2 + (Γ∥k2 +m)2 . (6.39)

By looking at the poles of the correlation function of the (linear) theory, it is possible
to understand on what time scales the system is relaxing. These poles are

ω⊥(k) = ±i(m+ Γ⊥k2) (6.40)
ω∥/ρ(k) = ±i(m+ Γ∥k2) (6.41)

Here ω⊥ are the poles of the transverse correlation function C⊥
0 , while ω∥ are the

poles of the longitudinal correlation function C∥
0 . Poles ωρ of the density correlation

function Cρρ,0 are equal to ω∥, since the two fluctuations are linked by Eq. (6.9).
The time scale over which these correlations relax is given by the inverse of the
imaginary part of the pole. Near criticality, where m ≈ 0, density fluctuations relax
slower when Γ∥ > Γ⊥. When Γ∥ ≪ Γ⊥, on the other hand, density fluctuations
(as well as longitudinal ψ∥ fluctuations) relax much faster than the transverse ψ⊥

fluctuations, hence becoming irrelevant.
The important parameter, ruling the relevance of density fluctuations, is therefore

given by the ratio between the transverse and longitudinal kinetic coefficients,

µ = Γ∥

Γ⊥ = 1 + σ1
ρ0

|g′(ρ0)|Γ . (6.42)

At the linear level, the MTT theory becomes equivalent to the ITT when µ → ∞,
namely when Γ∥ ≫ Γ⊥. In this regime, both bare correlation and response functions
of the longitudinal mode vanish, which means that as in incompressible theories,
the field fluctuates only in the transverse direction [23, 46]. To further convince
ourselves that µ = ∞ corresponds to the incompressible regime, I recall that the
difference between longitudinal and transverse kinetic coefficients arises from the
pressure force P ≃ σ1δρ, where σ1 is proportional to the inverse compressibility χ:

χ = 1
ρ

∂ρ

∂P

∣∣∣∣
ρ0

= 1
ρ0

∂δρ

∂P

∣∣∣∣
δρ=0

= 1
ρ0σ1

(6.43)
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Since ρ0 is finite, a system is incompressible (χ = 0) if σ1 → ∞, which corresponds
to µ → ∞. The parameter µ plays an important role in ruling the relevance of
density fluctuations not only in the linear theory but also at the non-linear level.
The renormalization group analysis of Sec. 6.3 will reveal that the phase transition
is second-order in the µ → ∞ limit, with a large-scale behaviour ruled by the
incompressible universality class found in [23], namely with z = 1.73 in d = 3.

The question of whether this µ → ∞ fixed point is stable or not naturally arises.
In other words, one may wonder whether a system with very small, but non-zero
compressibility χ will still be ruled by the µ → ∞ fixed point in the large-size limit.
To answer this question, naive scaling analysis is not enough. In fact, by simple
power-counting, one can convince themselves that Γ⊥/∥ must have the same scaling
dimensions, and hence µ has a scaling dimension of 0. Non-linear effects are therefore
crucial to address this question. This will be done in Sec. 6.4, where I will show
that this incompressible fixed point is indeed unstable against density fluctuations.

6.2.3 The field-theoretical action of MTT

To prepare the RG analysis that will be performed in the next Section, I will hereby
use a Martin-Siggia-Rose/Janssen-De Dominicis (MSRJD) formalism [1], a standard
technique that allows writing a stochastic differential equation as a field theory,
formulated using path integrals. This path integral representation will be the starting
point of the renormalization group computation.

The details of the MSRJD formalism can be found in Chapter 4.2, but let me
review it very quickly here. Let ϕ be a field whose dynamics is ruled by a stochastic
differential equation, determined by a deterministic evolution operator F and a
Gaussian noise θ with zero mean and 2Dαβ variance,

F [ϕ] − θ = 0 , (6.44)

Then, the same statistics of this stochastic PDE – i.e. its correlation and response
functions – is reproduced by the field-theoretical action

S[ϕ̂,ϕ] =
∫

ddxdt
[
ϕ̂αFα [ϕ] − ϕ̂αDαβϕ̂β

]
, (6.45)

where averages ⟨·⟩ are performed over the pseudo-probability distribution P [ϕ̂,ϕ] =
e−S . The auxiliary field ϕ̂ is known as response field, since the response function
G(k̃), computed in the previous section, can be written as [94]:

⟨ϕ̂α
(
k̃
)
ϕβ (q̃)⟩ = Gαβ

(
k̃
)
δ̂
(
k̃ + q̃

)
, (6.46)

To compact the notation, I defined k̃ and δ̃(k̃) as follows:

k̃ = (k, ωk) δ̂(k̃) = (2π)d+1δd(k)δ(ωk) (6.47)

Applying this procedure to the equation of motion of the Malthusian Toner
and Tu theory, given by Eq. (6.18), leads to the MSRJD action S = S0 + SI . I
distinguish between the Gaussian and non-Gaussian parts of the action: S0 is the
Gaussian action, corresponding to the linear terms in the equation of motion (6.1),
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and SI is the non-Gaussian action, corresponding to the non-linear terms in the
equation of motion (6.1). These two contributions are given by

S0 =
∫
k̃

[
(−iω +m+ Γ∥k2)P ∥

αβ + (−iω +m+ k2Γ⊥)P⊥
αβ

]
ψ̂α(−k̃)ψβ(k̃) − Γ̃ψ̂α(−k̃)ψ̂α(k̃)

SI = i v0

∫
k̃,q̃

[γ1δαβqγ + γ2δαγqβ + γ3δβγkα] ψ̂α(−k̃)ψβ(q̃)ψγ(k̃ − q̃)−

− J

∫
k̃,q̃,p̃

Qαβγνψ̂α(−k̃)ψβ(q̃)ψγ(p̃)ψν(k̃ − q̃ − p̃)

(6.48)

Where I used the notation ∫
k̃

=
∫

|k|<Λ

ddk
(2π)d

+∞∫
−∞

dω
2π (6.49)

And defined the tensor

Qαβγν = δαβδγν + δαγδβν + δανδβγ (6.50)

I remark that the action has the standard structure shown in equation (6.44): the
linear part in the auxiliary field ψ̂ multiplies the deterministic part of the equation
of motion, while the quadratic term in the auxiliary field ψ̂ multiplies the noise
amplitude.

Linear correlation functions

In this section, I will provide an alternative derivation of the linear response and
bare correlation function, starting from the MSRJD action. In the Malthusian Toner
and Tu theory, because of the anisotropy given by the pressure force, the two-point
functions are not diagonal in the spatial indices, which means that ⟨ψαψβ⟩ is not
proportional to δαβ. To derive the two-point function, I write the Gaussian action
S0 in the form:

S0 = 1
2

∫
k̃
ϕα(k̃)Mαβ(k̃)ϕβ(−k̃) ,

Mαβ(k̃) =

 0 A⊥P⊥
αβ +A∥P

∥
αβ

Ā⊥P⊥
αβ + Ā∥P

∥
αβ −2D0δαβ

 ,
(6.51)

where the vector ϕ is defined as ϕ(k̃) = (ψ(k̃), ψ̂(k̃)), while A⊥ and A∥ are defined
as follows

A⊥,∥ = −iω +m0 + Γ⊥,∥
0 k2, (6.52)

and Ā∥,⊥ are the respective complex conjugate. I remark that the matrix M is a
2d × 2d matrix, and each block of the matrix, as defined in equation (6.51), is a
d× d block.

Correlation and response functions are obtained by inverting the matrix Mαβ(k̃).
The matrix Mαβ is a block matrix, and also will be its inverse G:

Gαγ(k̃)Mγβ(k̃) =
(
δαβ 0
0 δαβ

)
Gαβ =

(
Cαβ Ḡαβ
Gαβ 0

)
, (6.53)
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The matrix elements of Gαβ(k̃) are the Gaussian correlation and response function
[2, 1]; Cαβ is the Gaussian correlation function, and Gαβ is the Gaussian response
function,

⟨ψ̂α(k̃)ψβ(q̃)⟩ = Gαβ(k̃)δ̂(k̃ + q̃) ⟨ψα(k̃)ψβ(q̃)⟩ = Cαβ(k̃)δ̂(k̃ + q̃) . (6.54)

By explicitly computing the inverse matrix G, one finds that the response function
Gαβ and the correlation function Cαβ are precisely given by those found in Sec. 6.2.1,
namely Eq. (6.29), (6.35). As made explicit by Eq. (6.29)-(6.35) the transverse and
longitudinal modes are non-interacting in the linear theory. This means that the
longitudinal and transverse fluctuations of the velocity field are independent at the
Gaussian level.

Non-linear terms

Of course, even if the longitudinal and transverse fluctuations are not coupled
at the Gaussian level, they interact at the non-linear level. There are four non-
linearities, respectively γ1, γ2, γ3, and J , which mix the longitudinal and transverse
components of the velocity field. In the diagrammatic framework, these interactions
are graphically represented by Feynman vertices, in which different lines merge, each
representing one of the fields involved in the interaction. In the representation I
will use here, an entering arrow is used to identify the leg representing the response
field. Moreover, I shall choose vertices to have opposed signs with respect to the
interactions; the convenience of this choice is that vertices play a crucial role in
building Feynman diagrams, which come from the expansion of exp(−S).

In principle, each Feynman vertex represents a non-linearity, however since the
first three non-linearities involve two fields ψ and one field ψ̂, one can represent
them with only one Feynman vertex. Therefore, the theory has only two Feynman
vertices, defined as follows:

ψ̂α(−k̃)

ψβ(q̃)

ψγ(p̃)

: − iv0
2 Yαβγ(q,p)δ̂(k̃ − q̃ − p̃) , (6.55)

ψ̂α(−k̃)

ψβ(q̃)

ψγ(p̃)

ψγ(h̃)

: −J

3Qαβγν δ̂(k̃ − q̃ − p̃− h̃) , (6.56)

where the tensor Qαβγν is given by (6.50), while Yαβγ(q,p) is defined as follows:

Yαβγ(q,p) = γ1(δαγpβ + δαβqγ) + γ2(δαγqβ + δαβpγ) + 2γ3δβγ(qα + pα) (6.57)
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I remark that each non-linearity has been symmetrised here, for each interaction
term to be symmetric under the exchange of the direction of motion field. The first
vertex (6.55) is called the self-propulsion vertex since it arises from the particle being
self-propelled at the microscopic level. This can be seen by the fact that this vertex
is proportional to v0, meaning that when the microscopic speed is sent to v0 → 0,
this self-propulsion vertex vanishes too. This self-propulsion vertex is composed by
the convective derivative term, proportional to γ1, and by the two terms, γ2 and γ3,
which are introduced because of the Galilean-invariance breaking. The second vertex
(6.56) is the standard ferromagnetic relaxation vertex, characteristic of ferromagnetic
theories belonging to the O(n) universality class [2, 3].

6.3 Renormalization group calculation
In the present section, I will perform the one-loop RG calculation for the near-critical
behaviour of the Malthusian Toner and Tu theory. This work, now published in
[MyPaper2], provides one of the first RG evidence that the phase transition in active
matter is first-order for large enough systems. But more importantly for my purposes,
it also proves that fine-size effects might lead to the observation of a second-order
phenomenology even in compressible systems. Remarkably, the associated scaling
exponents are shown to belong to the incompressible universality class. These
results, in agreement with numerical studies [42, 69], provide a compelling and solid
explanation of why swarms behave like incompressible systems. This will allow me
to study their critical properties by analysing an incompressible theory.

To understand the large-scale behaviour of the MTT theory, I will undertake
a momentum-shell renormalization group approach. As detailed in Chapter 4,
the momentum-shell RG unfolds through two stages. The first stage consists
of integrating out large momenta fluctuations, precisely fluctuations inside the
momentum shell Λ/b < k < Λ. The key point is that b, which determines how many
modes one is integrating out, is close to one, b ≃ 1; this means that a thin shell of
modes is integrated out, defining in this way a continuous transformation. After
the integration, one is left with a theory whose cut-off is not Λ anymore, but it is
Λ/b. To recover the original cutoff Λ, and compare apples with apples, a second step
consisting of rescaling momenta, frequencies and fields is performed. This will allow
me to obtain the recursion relations for the parameters of the theory, enabling me
to investigate the large-scale properties.

6.3.1 Shell integration and perturbative corrections

When the short-wavelength modes, with wave-vector belonging to the momentum-
shell with Λ/b < k < Λ are integrated out in the Malthusian Toner and Tu theory
(6.48), one ends up with an action S< = S + ∆S for the modes with k < Λ/b. For
convenience, I will split the corrections ∆S = ∆S0 + ∆SI , with ∆S0 being the
corrections to the Gaussian part and ∆SI those to the interacting part of the action.
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These two contributions take the form

∆S0 =
∫ <

k̃
ψ̂α(−k̃)Σαβ(k̃)ψβ(k̃) − ψ̂α(−k̃)Σ̃αβ(k̃)ψ̂β(k̃)

∆SI = −
∫ <

k̃,q̃
V ψ̂ψψ
αβγ (k̃, q̃)ψ̂α(−k̃ − q̃)ψβ(k̃)ψγ(q̃)−

−
∫ <

k̃,q̃,p̃
V ψ̂ψψψ
αβγν (k̃, q̃, p̃)ψ̂α(−k̃)ψβ(q̃)ψγ(p̃)ψν(k̃ − q̃ − p̃) .

(6.58)

Here all momenta are integrated off-shell, k < Λ/b, while frequency integrals still
run from −∞ to ∞. This is the meaning of the superscript < over the integral sign,
which stems for ∫ <

k̃
=
∫

|k|<Λ/b

ddk
(2π)d

∫ +∞

−∞

dωk
2π (6.59)

The quantities Σ and Σ̃ are known as the self-energies [40], which contribute
to the perturbative corrections of the Gaussian part of the original action, while
V ψ̂ψψ and V ψ̂ψψψ are known as vertex-functions, and correct the non-linear dynamic
couplings. From a diagrammatic point of view, each self-energy and vertex-function
is given by the sum of all amputated 1-particle irreducible diagrams with external
fields ψ̂ψ, ψ̂ψ̂, ψ̂ψψ and ψ̂ψψψ respectively. Graphically, they are represented by
the blobs in the following diagrammatic scheme

Σαβ(k̃) : ψ̂α(−k̃) ψβ(k̃) (6.60)

Σ̃αβ(k̃) : ψ̂α(−k̃) ψ̂β(k̃) (6.61)

V ψ̂ψψ
αβγ (k̃, q̃) : ψ̂α(−k̃ − q̃)

ψβ(k̃)

ψγ(q̃)

(6.62)

V ψ̂ψψψ
αβγν (k̃, q̃, h̃) : ψ̂α(−k̃)

ψβ(q̃)

ψγ(h̃)

ψγ(k̃ − q̃ − h̃)

(6.63)

Let me remark that the structure of this novel action is the same as the original one.
Higher order terms in the number of fields or terms with higher powers of k or ω
may be generated, but they turn out to be irrelevant at first-order in ϵ [52]. The
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complete list of diagrams contributing to these self-energies and vertex-functions
relevant at first order in ϵ is given in Appendix B.

Each of these self-energies and vertex-functions contributes to giving corrections
to different parameters of the bare action (6.48). In particular

• the self-energy Σαβ corrects the mass term m, the kinetic coefficients Γ⊥/∥,
and it will eventually provide a correction to the term proportional to −iω;

• the self energy Σ̃αβ corrects the noise amplitude Γ̃;

• the three-point function V ψ̂ψψ corrects the couplings γ1, γ2 and γ3;

• the four point function V ψ̂ψψψ corrects the ferromagnetic coupling J .

It is, therefore, useful to expand these terms in k and ω, to better identify the terms
they are correcting. At leading order in this expansion, the self-energies read

Σαβ(k̃) = (−iω δΩ +m0 δm) δαβ ln b+

+ Γ∥
0k

2 δΓ∥ P
∥
αβ(k) ln b+ Γ⊥

0 k
2 δΓ⊥ P⊥

αβ(k) ln b+ . . . ,

Σ̃αβ(k̃) =Γ̃0 δΓ̃ δαβ ln b+ . . . .

(6.64)

Here I denoted the bare parameters with the subscript 0, and the ellipses stand
for higher order terms in ω and k, which are irrelevant in determining the critical
behaviour at first order in ϵ. Notice that all the corrections are proportional to
the volume of the momentum shell, which is proportional to 1 − b−1 ≃ ln b. It is
possible to appreciate that the structure of the self-energy Σαβ(k, ω) has a quite
complicated k dependence since it contains isotropic, longitudinal and transverse
corrections respectively proportional to δαβ , P ∥

αβ(k) and to P⊥
αβ(k). The new action

S< can be therefore written in the same form as the bare action (6.48), but with
modified coefficients. Note moreover that the presence of the δΩ corrections leads to
a modification of the unity coefficient in front of the −iωψ̂ψ term. To take care of
this and keep this coefficient equal to one during the RG flow, rescaling will play a
crucial role. For the moment however, the Gaussian part of S< is modified as follows

S<0 =
∫ <

k̃
−iω (1 + δΩ ln b) ψ̂ψ + Γ0(1 + δΓ ln b)k2ψ̂ψ +m0(1 + δm ln b)ψ̂ψ+

+
∫ <

k̃
Γ⊥

0 (1 + δΓ⊥ ln b)k2P⊥ψ̂ψ + Γ∥
0(1 + δΓ∥ ln b)k2P ∥ψ̂ψ−

−
∫ <

k̃
Γ̃0
(
1 + δΓ̃ ln b

)
ψ̂ψ̂

(6.65)

where the tensorial structure of the action was omitted to facilitate the reading.
The vertex-functions, which I remind give corrections to the non-Gaussian part
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of the action, can be expanded as

V ψ̂ψψ
αβγ (k̃, q̃) = − iv0

2 γ1,0 δγ1 (δαγqβ + δαβkγ) ln b−

− iv0
2 γ2,0 δγ2 (δαγkβ + δαβqγ) ln b−

− iv0γ3,0 δγ3 δβγ (qα + kα) ln b+ . . . ,

V ψ̂ψψψ
αβγν (k̃, q̃, p̃) = − J0

3 QαβγνδJ ln b+ . . . ,

(6.66)

Again, I recall that I denoted the bare parameters with the subscript 0, while the
ellipses stand for higher orders terms in ω and k, which are irrelevant in determining
the critical behaviour at first order in ϵ. Let me note that the vertex correction
V ψ̂ψψ has quite an intricate tensorial structure, which however reproduces that of
the tensor Yαβγ . Once these vertex functions are computed, the new non-Gaussian
action S<I takes the following form

S<0 = − iv0
2

∫ <

k̃,q̃
γ1,0(1 + δγ1 ln b) (δαγqβ + δαβkγ)ψ̂α(−k̃ − q̃)ψβ(k̃)ψγ(q̃)−

− iv0
2

∫ <

k̃,q̃
γ2,0(1 + δγ2 ln b)(δαγkβ + δαβqγ)ψ̂α(−k̃ − q̃)ψβ(k̃)ψγ(q̃)−

− iv0

∫ <

k̃,q̃
γ3,0(1 + δγ3 ln b)δβγ (qα + kα)ψ̂α(−k̃ − q̃)ψβ(k̃)ψγ(q̃)+

− J0
3

∫ <

k̃,q̃,p̃
QαβγνJ0(1 + δJ ln b) ,

(6.67)

Note once again that S< has the same form of the bare action (6.48), but with
modified couplings.

6.3.2 Rescaling

The second step of the RG consists of the following rescaling of momenta, frequencies
and fields,

kb = kb ωb = ωbz (6.68)
ψ̂(kb, ωb) = bχψ̂ψ̂(k, ω) ψ(kb, ωb) = bχψψ(k, ω) (6.69)

Once this transformation is performed, the action recovers its original cutoff Λ.
Before looking at the full action, let me focus on what happens to the −iωψ̂ψ

term after this RG step. Once both shell-integration and rescaling are performed,
this terms is modified as follows∫

k̃
−iωψ̂(−k̃)ψ(k̃) =

∫
k̃b

−ib−χψ−χψ̂−d−2z(1 + δΩ ln b)ωbψ̂(−k̃b)ψ(k̃b) . (6.70)

In other words, the renormalized field theory acquires a non-unity coefficient in front
of the −iωbψ̂ψ term. In terms of Langevin equations, this would mean having a
coefficient different from 1 in front of the temporal derivative ∂tψ term. It is easy to
understand that one can easily get rid of this coefficient, by simply dividing both
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sides of the equation by it. In the context of MSRJD field theories, this same result
is achieved by fixing the scaling dimension of the auxiliary ψ̂ field, requiring its
scaling to keep this coefficient equal to unity. Therefore, I will require χψ̂ to satisfy

b−χψ−χψ̂−d−2z(1 + δΩ ln b) = 1 ⇒ χψ̂ = −χψ − d− 2z − δΩ (6.71)

Here I used the fact that for b ∼ 1 one can express 1 + δΩ ln b ≃ bδΩ.
With this caveat in mind, let me now turn my attention to the new action, which

takes the form

S0,b =
∫
k̃b

(
−iωb +mb + k2

b Γ⊥
b

)
P⊥
αβψ̂α(−k̃b)ψβ(k̃b)+

+
∫
k̃b

(
−iωb +mb + k2

b Γ∥
b

)
P

∥
αβψ̂α(−k̃b)ψβ(k̃b)−

−
∫
k̃b

Γ̃bψ̂α(−k̃b)ψ̂β(k̃b) ,

SI,b = − iv0
2

∫
k̃b,q̃b

Y
(b)
αβγ(k̃b, q̃b)ψ̂α(−k̃b)ψβ(q̃b)ψγ(k̃b − q̃b)−

−Jb
3

∫
k̃b,q̃b,p̃b

Qαβγνψ̂α(−k̃b)ψβ(q̃b)ψγ(p̃b)ψν(k̃b − q̃b − p̃b)

(6.72)

Where the tensor Y (b)
αβγ is the same of Yαβγ , but with γi,b instead of γi, namely

Y b
αβγ(k, q) = γ1,b(δαγqβ + δαβkγ) + γ2,b(δαγkβ + δαβqγ) + 2γ3,bδβγ(qα + kα) (6.73)

The subscript b indicates that this is the action after an RG transformation with
shell-thickness ln b. These new parameters are defined to reabsorb all the powers
of b comparing in front of them. Once the perturbative corrections are computed,
these new parameters are linked to the bare ones through the following relations

mb = m0 b
−χψ−χψ̂−d−z(1 + δm ln b) (6.74)

Γ⊥
b = Γ⊥

0 b−χψ−χψ̂−d−z−2(1 + δΓ⊥ ln b) (6.75)

Γ∥ = Γ∥
0 b

−χψ−χψ̂−d−z−2(1 + δΓ∥ ln b) (6.76)
γi,b = γi,0 b

−2χψ−χψ̂−2d−2z−1(1 + δγi ln b) (6.77)
Jb = J0 b

−3χψ−χψ̂−3d−3z(1 + δJ ln b) (6.78)
Γ̃b = Γ̃0 b

−2χψ̂−d−z(1 + δΓ̃ ln b) (6.79)

where I remind all the perturbative corrections δP are functions of the bare parame-
ters, while χψ̂ takes the form derived in Eq. (6.71). The scaling exponents z and χψ
are instead yet to be determined.

6.3.3 RG flow equations

The action after the RG transformation differs from the original one because of two
different kinds of contributions: naive rescaling and perturbative contributions. The
perturbative contributions are given by the momentum shell integral, and they are
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determined by the terms Σαβ , Σ̃αβ , V ψ̂ψψ
αβγ and V ψ̂ψψψ

αβγν . The actions (6.48) and (6.72)
have the same structure, but their parameters are different. The parameters after
and before the RG transformation are linked by the following recursion relations,

mb = m0 b
χm χm = z + δm− δΩ (6.80)

Γ∥,⊥
b = Γ∥,⊥

0 bχ∥,⊥ χ∥,⊥ = z − 2 + δΓ∥,⊥ − δΩ (6.81)
Γ̃b = Γ̃0 b

χΓ̃ χΓ̃ = 2χψ + d+ 3z + δΓ̃ − 2δΩ (6.82)
γi,b = γi,0 b

χγi χγi = −χψ − d+ δγi − δΩ (6.83)
Jb = J0 b

χJ χJ = −2χψ + 2d+ z + δJ − δΩ (6.84)

where I denote with Pb the parameter P after the RG transformation, and with
δP the perturbative contribution to the parameter P. The fact that perturbative
corrections are proportional to ln b is here taken into account by noticing that
1 + δP ≃ bδP when b ∼ 1, as in the present case. Finally, the quantities χP are the
scaling dimensions of the parameters and tell how the parameters scale when an RG
transformation is made. Note that χP is given by the naive dimension of P plus
perturbative corrections coming from Feynman diagrams. It is precisely these latter
contributions, which come from the coupling of IR and UV fluctuations, that give
rise to non-trivial scaling behaviours.

Before proceeding, it is useful to define a set of effective parameters and effective
couplings, whose scaling dimension is independent of the exponents χψ and z. This
will allow their RG flow equations to depend only on the effective parameters
themselves, making their RG flow closed. For the theory in study, the effective
parameters are given by:

µ0 = Γ∥
0

Γ⊥
0

gi,0 = γi,0
Γ⊥

0

√√√√ Γ̃0
Γ⊥

0

√
Λ4−dKd (6.85)

r0 = m0
Γ⊥

0
ũ0 = J0

Γ⊥
0

Γ̃0
Γ⊥

0
Λ4−dKd (6.86)

where Λ is the cutoff of the theory and Kd = Sd/(2π)d, being Sd the surface of the
d-dimensional hyper-sphere. Note that r coincides with the mass r of the Landau
potential (6.3), while the relation between u of (6.3) and the effective coupling ũ is
given by ũ ∝ Γ̃u/Γ.

One can obtain the recursion relations of the effective parameters from the
recursion relations (6.80)-(6.84):

rb = r0b
χr χr = 2 + δm− δΓ⊥ (6.87)

µb = µ0b
χµ χµ = δΓ∥ − δΓ⊥ (6.88)

ub = u0b
χu χu = ϵ+ δJ + δD − 2δΓ⊥ − δΩ (6.89)

g1,b = g1,0b
χg1 χg1 = ϵ/2 + δγ1 + 1

2δΓ̃ − 3
2δΓ

⊥ − δΩ (6.90)

g2,b = g2,0b
χg2 χg2 = ϵ/2 + δγ2 + 1

2δΓ̃ − 3
2δΓ

⊥ − δΩ (6.91)

g3,b = g3,0b
χg3 χg3 = ϵ/2 + δγ3 + 1

2δΓ̃ − 3
2δΓ

⊥ − δΩ (6.92)
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The scaling dimension of an effective parameter P can be written as the sum of its
naive dimension dP and perturbative contributions, namely

χP = dP + perturbative corrections (6.93)

To assess the relevance of each parameter, it is useful to look at their naive dimension:
this will tell when a given coupling becomes relevant near the Gaussian fixed point.
The naive scaling dimensions of the effective parameters are:

dµ = 0 dgi = ϵ/2 du = ϵ dr = 2 (6.94)

The effective coupling constant u has naive scaling dimension ϵ, suggesting that its
fixed point value must also be of order ϵ. Similarly, since the coupling constants
gi have naive scaling dimension ϵ/2, their fixed point will be of order ϵ1/2. The
parameter r represents the distance from the transition point, and it is analogous
to the distance from the critical temperature T − Tc in equilibrium systems. At
the mean-field level, the transition point corresponds to r = 0; however, because of
the non-linear terms, the transition point is shifted of O(g2

i , u) from its naive value.
One also concludes that the critical value of r must be of the same order rc = O(ϵ).
Since an expansion in powers of ϵ is performed, I can neglect, at the leading order
in ϵ, the r dependence in most of the Feynman diagrams, since this would lead to
corrections of order ϵ2.

In the present calculation, perturbative corrections are computed in the thin-shell
limit b → 1+. Each RG step therefore provides an infinitesimal correction to the
parameters of the theory, proportional to ln b. As shown in Chapter 4, in this limit
the iteration of many RG steps defines a continuous flow of the parameters of the
theory, ruled by the equation

Ṗ = βP (P) = P χP (P) (6.95)

Where βP are known as the beta-functions. The values P∗ of the parameters to
which the flow eventually approaches are called fixed points, and play a crucial role
in determining the critical behaviour of the theory. These fixed points are given by
the zeros of βP . The beta-functions for the effective parameters and coupling are
therefore given by

βr = r
(
2 + δm− δΓ⊥

)
(6.96)

βµ = µ
(
δΓ∥ − δΓ⊥

)
(6.97)

βũ = ũ
(
ϵ+ δJ + δD − 2δΓ⊥ − δΩ

)
(6.98)

βg1 = g1

(
ϵ

2 + δγ1 + δΓ̃
2 − 3

2δΓ
⊥ − δΩ

)
(6.99)

βg2 = g2

(
ϵ

2 + δγ2 + δΓ̃
2 − 3

2δΓ
⊥ − δΩ

)
(6.100)

βg3 = g3

(
ϵ

2 + δγ3 + δΓ̃
2 − 3

2δΓ
⊥ − δΩ

)
(6.101)
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6.3.4 Fixed points

This section discusses some consistency checks that the recursion relations must pass.
The Malthusian Toner-Tu theory, just as the Toner-Tu theory, combines the Landau-
Ginzburg λϕ4 theory and the Navier-Stokes theory equations of fluid dynamics. The
first one accounts for the ferromagnetic-like interaction, while the latter brings the
theory off-equilibrium and accounts for the particle’s movement at the microscopic
level. Therefore, when all active elements are removed, the theory must reproduce
the behaviour of equilibrium isotropic and dipolar ferromagnets. Similarly, when all
the O(n) λϕ4-like terms are set to zero, the theory must reproduce the behaviour of
a stirred fluid, discussed in [46]. To summarise, it is possible to divide the terms of
the equation of motion into three groups:

1 - Landau Ginzburg mψ, Jψ2ψ

2 - Navier Stokes v0γ1(ψ · ∇)ψ
3 - Galilean invariance breaking v0γ2(∇ ·ψ)ψ, v0γ3∇ψ2

(6.102)

The first class represents the equilibrium terms of the theory, while the second
and third classes contain mostly off-equilibrium, active, terms. I shall show how
setting to zero some of these terms in the Malthusian Toner-Tu theory allows to
recover many of the know fixed points. Furthermore, I will provide two additional
consistency checks of the theory.

Equilibrium ferromagnet

The first, obvious, fixed point of the Malthusian Toner and Tu theory can be obtained
by setting to zero all the Navier-Stokes and Galilean invariance breaking non-linear
terms, namely γi = 0. This leads to the behaviour of an equilibrium ferromagnet,
in which transverse and longitudinal fluctuations relax differently, governed by the
following equation of motion

∂tψ = −ΓδH
δψ

+
√

2Γ̃θ H =
∫
ddx

1
2(∇ψ)2 + µ− 1

2 (∇ ·ψ)2 + r

2ψ
2 + u

4ψ
4 ,

(6.103)

in which the force term can be expressed as the derivative of an effective free-energy
H. This theory interpolates between an ordinary isotropic ferromagnet, at µ = 1,
and a ferromagnet with dipolar interactions, µ = ∞, where the configurations with
∇ · v ̸= 0 are completely suppressed (their Boltzmann weight e−H vanishes). This
analogy is explained by the fact that dipolar interactions suppress all the longitudinal
fluctuations of ψ.

In this limit the beta functions (6.96)-(6.101) reduce to

βr = r

(
2 + 3ũ (3µ+ 1)Λ2 + 4r

2r(r + Λ2)(r + µΛ2)

)
βµ = 0 (6.104)

βũ = ũ

(
ϵ− ũ

17µ2 + 2µ+ 5
2µ2

)
βgi = 0 (6.105)
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The fact that βgi = 0 confirms that, if one switches of all the gI couplings, they are
not generated in any way by the RG. What is instead a peculiarity of the one-loop
approximation, is the fact that βµ = 0. Were this result exact, one would find a
manifold of fixed points, namely infinitely many fixed points, one for each value of µ.
Higher order RG calculations have however shown that only µ = 1 and µ = +∞ are
fixed points when higher order corrections are taken into account [95], with the latter
being unstable under RG. These two fixed point coincide with the Wilson-Fisher
fixed point [53] for isotropic ferromagnets and that of ferromagnets with dipolar
interactions [87].

The first fixed point, for µ = 1, is given by

r∗ = −1
4ϵΛ

2 µ∗ = 1 (6.106)

u∗ = 1
12ϵ g∗

i = 0 . (6.107)

At the leading order in ϵ = 4−d, this fixed point gives the following critical exponents,

ν = 1
2 + ϵ

8 η = 0 z = 2 . (6.108)

reproducing correctly the critical behaviour of an isotropic ferromagnet, or in the
classification of Halperin and Hoenberg the critical behaviour of model A of critical
dynamics [40].

The second fixed point, for µ = +∞, is instead given by

r∗ = − 9
34ϵΛ

2 µ∗ = +∞ (6.109)

u∗ = 2
17ϵ g∗

i = 0 . (6.110)

and the associated critical exponents, in agreement with the literature [87], are

ν = 1
2 + 9

68ϵ η = 0 z = 2 . (6.111)

An equilibrium consistency check

Besides the equilibrium case investigated in the previous paragraphs, there is an
even more general equilibrium model which can be recovered from the Malthusian
Toner and Tu theory. This is given by an equilibrium model with dynamics arising
from the following free-energy:

F =
∫
ddx

1
2(∇ψ)2 + µ− 1

2 (∇ ·ψ)2 + r

2ψ
2 + u

4ψ
4 + λψ2 (∇ ·ψ) , (6.112)

which is a λϕ4-like theory, as the one define in (6.103), at which the term ψ2(∇ ·ψ)
was added in the free energy. It is possible to obtain this theory from the equation of
motion of the Malthusian Toner and Tu theory by setting γ1 = 0, and γ2 = −2γ3 =
−2λ/Γ.

Clearly, the fact that this model is at equilibrium depends crucially on the
condition γ2 = −2γ3. This constraint must be preserved by the renormalization



6.3 Renormalization group calculation 78

group - it would be strange that the large-scale properties of an equilibrium theory
revealed to be off-equilibrium. Requiring that the RG transformation preserves this
constraint, γ2 = −2γ3, implies that the perturbative contributions δγ2 and δγ3 must
coincide when one sets γ1 = 0 and γ2 = −2γ3. One can easily check that this is the
case, as

δγ2 = δγ3 = g2
3

3µ+ 4
µ2 − u

9µ2 − 2µ+ 5
2µ2 (6.113)

Incompressible stirred fluid

When, opposite to the equilibrium case, one sets the Landau-Ginzburg terms together
with the Galilean invariance breaking terms to zero, in the incompressible limit one
expects to recover the behaviour of an incompressible Navier-Stokes equation with a
stochastic force stirring the fluid even at zero wave-vector. This model, called Model
B in the classification of [46], is governed by the following equations of motion

∂tψ + v0γ1 (ψ · ∇)ψ = Γ∇2ψ +
√

2Γ̃θ (6.114)

Complemented by the incompressible condition ∇ ·ψ = 0, which in the present case
is expected to be recovered for µ = +∞.

To check this, I set g2,3 = ũ = r = 0 in the flow equations, and then take the
µ → ∞ limit. In this limit, all the flow equations besides that of g1 vanish, while g1
flows according to

βg1 = g1

(
ϵ

2 − 3
8g

2
1

)
(6.115)

Besides the gaussian fixed point, this flow equations admits one non-trivial fixed
point, namely g1 = 2

√
ϵ/3, which coincides with that found for Model B in [46].

Consistency of Galilean invariance

More generally, whenever the theory is found to be Galilean invariant, this property
is expected to be preserved by the RG flow. Within the Malthusian Toner and Tu
theory, the most general form of a theory obeying Galilean invariance is given by

∂tψ + v0γ1 (ψ · ∇)ψ = Γ∇2ψ + Γ2∇ (∇ ·ψ) +
√

2Γ̃θ (6.116)

This theory is obtained by setting m = J = γ2,3 = 0, which are all the terms
that violate Galilean invariance, namely that do not leave the equations of motion
invariant under the a change of reference frame [43]:

x′ = x− v0γ1ψ̄t t′ = t ψ′ = ψ + ψ̄ (6.117)

This transformation also implies that the derivatives in the new reference frame are
different,

∇′ = ∇ ∂t′ = ∂t − v̄ · ∇ , (6.118)

where the prime indicates the derivatives in the new reference frame. It can be
easily seen that the force terms proportional to m, J , γ2, and γ3 explicitly break this
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symmetry; this means that if one applied the transformation (6.117) to the equation
of motion, they would get a theory different from the original one.

The presence of Galilean invariance, which must be preserved under the RG
flow, guarantees that the material derivative Dt = ∂t + (v · ∇), which is a Galilean-
invariant operator, does not take perturbative RG contributions. As expected, when
m = J = γ2 = γ3 = 0, or equivalently when r = u = g2 = g3 = 0, we have that

δΩ = δγ1 = 0 (6.119)

Incompressible active matter

Here, I will show that in the µ → ∞ limit, the Malthusian Toner and Tu theory
precisely reproduces the critical behaviour of incompressible active matter studied
by Chen et al. in [23]. To check this, let me show how do the flow equations look on
the µ = ∞ manifold. In this limit, the β-functions read

βũ = ũ

(
ϵ− 1

2g
2
1 − 17

2 ũ
)

(6.120)

βr = r

(
2 − 9

2
r − Λ2

r
ũ− 1

4g
2
1

)
(6.121)

βg1 = g1

(
ϵ

2 − 3
8g

2
1 − 5

3 ũ
)

(6.122)

βg2 = g2

(
ϵ

2 − 3
8g

2
1 + 9

2 ũ− 11
12
g1ũ

g2

)
(6.123)

βg3 = g3

(
ϵ

2 − 3
8g

2
1 + 9

2 ũ− 13
17
g1ũ

g3

)
, (6.124)

Quite remarkably, the behaviour of r, ũ and g1 decouples from the coupling constants
g2 and g3. But what turns out to be even more surprising is that the recursion
relations for r, ũ and g1 (6.120)-(6.122) take the same form as in [23], thus leading
to the same fixed-point structure.

These flow equations give rise to three unstable fixed points, namely the trivial
Gaussian fixed point, with g∗

i = u∗ = r∗ = 0, the incompressible Navier-Stokes fixed
point [46] where u∗ = r∗ = 0 but g∗

1 ̸= 0 and the equilibrium dipolar Model A fixed
point where g∗

i = 0 [23]. The stable fixed point, describing incompressible active
matter systems, is given by

g∗
1 = 2

√
31
113ϵ g∗

2 = 11
17

√
31
113ϵ g∗

3 = 13
17

√
31
113ϵ (6.125)

µ∗ = ∞ ũ∗ = 6
113ϵ r∗ = − 27

226ϵΛ
2 , (6.126)

at which both advection gi and ferromagnetic u effective couplings have a finite
fixed-point value. The critical exponents of this fixed point coincide with the ones
found in [23]. I give here the expression of the critical exponents ν, η and z

ν = 1
2 + 29

226ϵ η = 31
113 z = 2 − 31

113ϵ (6.127)
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Interestingly, the critical behaviour of incompressible active matter was derived
without imposing any constraint on the order parameter. In [23] the authors impose
a constraint on the order parameter at the beginning of the computation; that is
the reason why the equilibrium limit of their model is a dipolar ferromagnet and
not a simple isotropic ferromagnet. To some extent, the incompressible limit of the
Malthusian Toner-Tu theory looks quite different from the strictly incompressible
Toner-Tu Theory, since here no constraint was imposed. It is therefore remarkable
that these two theories reproduce the same critical behaviour.

6.3.5 Examples of RG flow

The careful reader might have noticed that no active fixed point with µ < ∞ has
been discussed so far. The full RG flow equation are too intricate to be solved
analytically, but in the present section I will try to show some behaviours of the RG
flow, integrated numerically by starting in different regions of the parameter space.

The first initial condition I shall look at is what happens when all parameters
are chosen to be close to the equilibrium manifold, which is for γi small. The RG
flow of a selection of parameters is showed in Fig. 6.1, from which one can clearly
see that the RG first approaches the equilibrium fixed point, but then leaves the
equilibrium manifold entering a region of runaway RG trajectories. Interestingly, no
fixed point is approached in the IR limit, an interesting feature of this Malthusian
system that will better discussed in the following section.

To further strength the idea that no active compressible RG fixed point is
present, I also simulated the RG flow equations by starting with parameters all of
order 1. In this case, no transient arises, and the flow enters a runaway trajectory
phase immediately. The RG flow for these initial conditions is shown in Fig. 6.2.
Interestingly, in both cases the runaway trajectory regime is anticipated by a change
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Figure 6.1. Renormalization group flow near equilibrium. In this example, the
flow starts in the nearly equilibrium manifold, with ũ = µ = 1 and gi = 10−2. As
the flow escapes from the equilibrium manifold, namely as g1 grows, the ferromagnetic
coupling ub (blue curve) eventually becomes negative, and then the flow is characterised
by run-away trajectories.
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Figure 6.2. Renormalization group flow far from equilibrium. In this example, the
flow starts in the far from equilibrium regime, with all coupling constants of order 1,
namely ũ = µ = gi = 1. The coupling ub (blue curve) quickly becomes negative, and
then the flow is then characterised by run-away trajectories.

of sign of the coupling constant ũ, which flows from positive values to negative
values.

6.4 Evidence of fluctuation induced first-order transi-
tion in active matter

Among many other fixed points, all reported in [MyPaper2], and reviewed in the
previous the one on which I will focus my attention at the moment is the one
describing incompressible active matter. As anticipated in Sec. 6.2.3, from the
linearised theory one understands that the system becomes incompressible when
µ → ∞, namely when Γ∥ ≫ Γ⊥. In this limit, fluctuations of ψ parallel to k are
suppressed, and in turn, so are the fluctuations of the density field ρ. The RG
calculation performed in the previous Section allowed me to confirm that this holds
also at the non-linear level, recovering the incompressible theory for µ → ∞.

6.4.1 Stability of the incompressible fixed point

Let me now address the question of whether the incompressible active matter fixed
point is stable or not. While a full linear stability analysis can be performed, I prefer
here to take a simpler and more insightful approach, which will lead to the same
results.

Since I know the incompressible fixed point to be stable in the incompressible
manifold µ → ∞, the only instability could come from the presence of small density
fluctuations. In such a system, the value of µ would be large but finite, therefore
still belonging to the neighbourhood of the incompressible fixed point. Near this
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fixed point, the recursion relation of µ takes the form,

µb = µ0

[
1 − g2

1
4 ln b

]
= µ0b

−g2
1/4 as µ ≫ 1 , (6.128)

This reveals that the incompressible fixed point is unstable under a small deviation
from incompressibility, since its scaling dimension −g2

1/4 is negative. For large
but finite µ, the RG flow therefore escapes this fixed point. Not everything is lost
however: as I will show in the next section, the larger µ - i.e. the less the system is
compressible - the longer the RG flow lingers near the incompressible active matter
fixed point. This will give rise to a crossover [1], where depending on its size a finite
system might still exhibit large-scale behaviours ruled by this incompressible active
matter fixed point.

6.4.2 Crossover between second- and first-order transition

The properties of the Malthusian Toner and Tu theory in the vicinity of the transition
are determined by the RG flow equations (6.96)-(6.101). These recursion relations are
complicated, and it is unfortunately not easy to study them analytically. Therefore,
to try to understand what happens near the transition, a set of initial values of the
parameters were chosen and the flow equations were simulated numerically. Usually,
this procedure leads the system’s parameters to an IR-stable fixed point; however,
things are more complicated in the MTT theory. As I will show here, the RG flow
enters an unstable region, suggesting the presence of a fluctuation-induced first-order
phase transition.

The first-order transition

In Fig. 6.3 I show the RG flow obtained by numerical integration, where initial
conditions were chosen with a large initial value of µ, meaning that the RG flow
starts in a neighbourhood of the incompressible active matter fixed point. As soon
as the flow escapes this fixed point - which means that the longitudinal fluctuations,
along with density fluctuations, become relevant - the RG flow enters an unstable
region, where the ferromagnetic coupling ũ becomes negative. After that, the RG
flow is characterised by run-away trajectories, and the couplings blow up to larger
and larger values. The condition ũ > 0 ensures that the pseudo-potential V of Eq.
(6.3) is bounded, and as shown in Fig. 6.3 after the potential enters the ũ < 0 region,
the potential becomes unbounded.

To have an idea of what is happening, let me consider how the pseudo-potential
V changes along the RG flow. At the beginning of the RG flow, this potential
takes a double-well shape, characteristic of λφ4 theories [1], guaranteeing that the
order parameter is small. However, if the flow enters the ũ < 0 region, the pseudo-
potential becomes unbounded. The interpretation of this is that the order parameter
is not fluctuating around zero anymore, suggesting a breakdown of the perturbative
expansion. The situation may seem puzzling: all the theories along an RG trajectory
describe the same system, which means that if the system is stable at the beginning
of the flow, it should remain stable along the whole RG trajectory, but figure 6.3
clearly shows the contrary.
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Figure 6.3. Renormalization group flow of the Malthusian Toner-Tu theory
[MyPaper2] In this example, the flow starts in the nearly incompressible regime,
µ ≫ 1 and µ/(1 + µ) ≃ 1; as soon as the flow escapes from the incompressible regime,
the ferromagnetic coupling ub (green curve) becomes negative, and then the flow is
characterised by run-away trajectories. In the ub < 0 regime the system is unstable.
In the inserts, it is qualitatively shown how the pseudo-potential V (ψ) changes before
(blue dot) and after (red square) the flow enters the unstable region; when ub becomes
negative the pseudo-potential is unbounded.

This apparent contradiction can be solved considering that the RG transformation
may generate additional couplings that grant the stability of the theory also in the
ũ < 0 region. In Fig. 6.4 (right) I show two Feynman diagrams that generate a ψ6

term in the potential V of Eq. (6.3), which may stabilise the system whenever u < 0
(I remind that ũ is proportional to the coupling u in V ). Even if the coefficient
u becomes negative, a force term −ΓKψ4ψ could still guarantee the stability of
the equation of motion, provided that K > 0. Adding this novel force term in the
equation of motion is equivalent to modifying the pseudo-potential Vnew as follows:

Vnew = r

2ψ
2 + u

4ψ
4 + K

6 ψ
6 (6.129)

If K is zero, the potential V develops a non-zero minimum only for r < 0;
moreover, these minima are arbitrarily close to zero provided that r is small enough.
This scenario gives rise to the phenomenology of a second-order phase transition.
Conversely, if K > 0, the potential V may develop a minimum which is not close to
zero when u becomes negative. As shown in figure 6.4, when the constant u becomes
negative the potential may develop a global minimum far from ψ = 0, provided that
both r and K remain positive; this would result in a discontinuous, first-order, phase
transition.

In the literature, this scenario, where one or more couplings become negative
and then run away, is often, but not always [96, 97], related to a fluctuation-induced
first-order transition. The Heisenberg model with cubic anisotropy and the scalar
electrodynamics [98] are two paradigmatic examples in which run-away trajectories
result in a first-order phase transition. Non-perturbative techniques are often needed
to prove that a run-away RG trajectory results in a first-order phase transition
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first-order
phase transition

Figure 6.4. The RG generates new interactions [MyPaper2]. Left - An idea of
how the inclusion of the ψ6 term in the potential, Vb = rb

2 ψ
2 + ub

2 ψ
4 + Kb

6 ψ
6, may

affect the renormalization group flow of the Malthusian Toner-Tu theory. ub becoming
negative, while both rb and Kb staying positive, could lead to a first-order phase transition
phenomenology. When the RG flow enters the ub < 0 region (red curve), the perturbative
expansion breaks down. Right - Two of the 39 possible Feynman diagrams contributing
to the generation of the coupling K.

[99, 98], but this is beyond the purposes of this perturbative RG calculation.
The RG allows to investigate properties of a system on larger and larger scales.

What I just have shown is that, at sufficiently large scales, the RG flow enters an
unstable u < 0 region; when it happens because of the strong fluctuations, the phase
transition becomes first-order [98]. In this sense, I refer to this phase transition as a
fluctuation-induced first-order phase transition [98].

The crossover

To understand how finite-size compressible systems, as natural swarms of insects,
may still be ruled by the incompressible fixed point, I will here analyse the crossover
between this fixed point and the first-order transition. Let me consider a system
with relatively small compressibility, namely large µ0. This system therefore lives
close to the incompressible manifold µ = ∞. For large enough µ, the RG flow is
therefore expected to rapidly approach the incompressible fixed point, linger around
it for quite a while and eventually enter the unstable region of the RG flow.

While this is the general picture for an infinite-size system exactly at criticality
(ξ = ∞), the system might behave differently if ξ < ∞. To determine whether or not
the critical dynamics is ruled by the incompressible fixed point one must consider the
stopping condition of the RG flow. The RG flow stops when the correlation length
becomes of the order of the inverse cutoff, namely when ξstop = Λ−1. Reminding
that the correlation length ξ after l RG steps trivially scales as

ξl = ξl−1
b

= ξ0
bl
, (6.130)
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one can derive the number of RG iterations before stopping lstop by requiring that
ξlstop = Λ−1, which leads to lstop = logb(Λξ). If at the end of the RG flow µstop is
still large, the incompressible active matter fixed point rules the critical dynamics.

Let me now show what this can tell us about the size of the system. As shown
in Eq. (6.128), the scaling of µ, at large µ, is given by

µl = µl−1b
−g2

1/4 = µ0b
−
∫ l

0 dl′g1(l′)2/4 . (6.131)

After the last equality, at the exponential, I have the integral over the RG flow
trajectory of the scaling exponent χµ = −g2

1/4. When the RG starts close enough
to the incompressible manifold, the parameters rapidly converge towards the incom-
pressible fixed point and linger there for many RG iterations. If by the time the
number of iterations reaches lstop, the parameters are still in the proximity of the
incompressible point, the large-scale behaviour is ruled by this fixed point. When
this happens, for most of the RG time g1(l) = g∗

1, with g∗
1 being the fixed point

value of g1, given by Eq. (6.125). Therefore, the integral on the r.h.s. of (6.131) can
be approximated by

∫
dlg1(l)2/4 ≈ lstop(g∗

1)2/4. With this in mind, let me turn my
attention back to the value of µ at this stopping condition, given by

µstop = µ0b
−lstopϕ = µ0(ξΛ)−ϕ ϕ = (g∗

1)2

4 = 31
113ϵ (6.132)

Since I assumed the parameters are still in the proximity of the incompressible
manifold, µstop ≫ 1. As a consequence, the correlation length of a system whose
behaviour is ruled by the incompressible active matter fixed point (6.127) is bounded
by

ξ ≪ Λ−1µϕ0 , ϕ = 31
113ϵ , (6.133)

Here ϕ is the so-called crossover exponent [1].
In finite systems, the correlation length is always bounded by the system size L,

and a relation akin to (6.133) can be derived. If

L ≪ Λ−1µϕ (6.134)

the critical dynamics is ruled by the incompressible fixed point, meaning that the
results of Chen et al. [23] also hold in sufficiently small systems with mild density
fluctuations µ ≫ 1, as it has been observed numerically in [69]. Conversely, if the
system size is large enough, L ≫ µϕ, its properties at the transition point are not
described by the incompressible active matter fixed point and the system crosses over
to a first-order behaviour. Let me remark that µ can be measured by looking at the
system’s transverse and longitudinal correlation functions, and, at least in principle,
it could be measured both in numerical simulations and in real experiments.

6.4.3 Take-home message for swarms

The analysis of this Malthusian Toner and Tu theory revealed the presence of
a crossover between an unstable incompressible critical point and a first-order
phenomenology. To understand how this applies to swarms, let me recall that
midges are indeed active and they have been shown to align with their neighbours.
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Based on these simple observations, one should in principle conclude that swarms’
dynamics is described by some Vicsek-like model, and therefore undergo a first-order
transition. However, the very observation of scaling laws - a hallmark of second-order
phenomenology - in swarms, together with the absence of phase separation - usually
encountered near the phase transition-, suggests that compressibility should be low.
In [69] this idea was tested in numerical simulations, showing that Vicsek swarms
with homogeneous density profiles are well-described by the incompressible active
matter fixed point found in [23]. Here, I gave additional support to this interpretation
through a renormalization group analysis. I furthermore demonstrated that the
scaling laws for these finite-size systems are ruled by incompressible exponents even
if the system is not strictly incompressible, as long as their size is smaller than a
critical scale µϕ. These results will allow me to theoretically study swarms through
an incompressible theory, simplifying the task by getting rid of density fluctuations.
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Chapter 7

The role of behavioural inertia
in biological systems

In the analysis performed in Chapter 3, I showed that the combined effect of activity
and alignment, both properties detected in natural swarms of insects, give rise to
a rich phenomenology. Because of the presence of an instability of the ordered
state near the phase transition, it has been argued that this is turned into a first-
order phase transition where no scaling laws should be expected. Since, in natural
swarms, no strong spatial heterogeneity has been detected, it might be tempting
to enforce incompressibility and hope that the behaviour of swarms is equivalent
to that of systems where density fluctuations are completely suppressed. When
incompressibility is enforced, the transition is shown to be second-order [23].

Further analysis on the role of density fluctuations has been performed in Chapter
6, where a renormalization group approach strongly supports the idea that incom-
pressibility is not only a mere simplification when attempting to describe natural
swarms but a valid hypothesis. I showed that, whenever scale-free velocity-velocity
correlations are observed in a near-critical active matter system, the associated
critical exponents belong to the incompressible universality class even if the system
of interest is not incompressible. Therefore, although the system might allow mild
density fluctuations, on large scales it behaves as if it was incompressible. This
extends the results of [23], reviewed in Chapter 3, to finite-size compressible polar
active systems.

In principle, one would expect natural swarms of insects to fall into this class.
They exhibit scaling laws [13] and are indeed active [MyPaper1]. However, swarms’
dynamic critical exponent of zexp = 1.37 ± 0.11 [MyPaper1] is far from the RG
prediction of z = 1.73 of the incompressible Toner and Tu theory [23]. In the
present chapter, in an attempt to fill this gap, I will introduce the concept of
inertial behaviour and show that it is required to correctly describe swarms’ dynamic
behaviour. Following symmetries and conservation laws, I will then show in the
equilibrium case what are the effects of introducing inertia on the structure of the
field theory. Finally, I will review how these changes in the field theory’s structure
give rise to a change in universality class, from that of Model A to that of Model G
[40].
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7.1 Experimental evidence suggests the presence of in-
ertial behaviour

The first hints about the necessity of restoring inertial dynamics in the description
of collective behaviour in biological systems came from experiments on bird flocks.
When a flock undergoes a collective turn, local variations in the direction of motion
propagate linearly in time with surprising efficiency [100]. Although “sound” modes
arise in the Toner and Tu hydrodynamic theory as a consequence of density-velocity
coupling, they are known to lead to giant density fluctuations [27] that have not
been observed in turning flocks. To explain these observations, a different physical
mechanism responsible for the propagating sound waves during turns has been
proposed in [100], namely the presence of inertia in the orientational dynamics of
the particles.

In the case of natural swarms of insects, hints of something missing in the
description provided by the Toner and Tu theory come from direct inspection of the
temporal correlation functions. These correlation functions exhibit a non-exponential
decay on short timescales [13], which cannot be explained within the context of
systems falling in the hydrodynamic description provided by the Toner and Tu
theory. Note that density-velocity couplings, present in Toner and Tu theory, do
generate sound modes, and thus might in principle give rise to a non-exponential
decay for short times. However, as discussed in Chapter 6, these couplings are
negligible in swarms’s description. When density fluctuations are suppressed, the
dynamic equation of the Toner and Tu theory is first-order in time and thus cannot
give rise to sound modes. This implies that temporal relaxation is exponential in
time, as observed in numerical simulations of the Vicsek model [13]. Therefore, to
recover the proper inertial shape of the correlation function, some other coupling
that recovers second-order dynamics is required.

To see this, in [13] the following function was introduced, whose limit in for
x → 0 gives useful information on the presence of inertia:

h(x) = − 1
x

log Ĉ(τx) , x ≡ t

τ
. (7.1)

Here Ĉ(t) = C(t)/C(0) is the normalised temporal correlation function, while τ
is the characteristic decorrelation time-scale. For a vanishing derivative in t = 0,
Ĉ ′(0) = 0, the quantity h(x) vanishes near x = 0. To see this, one can use the
Bernoulli-De l’Hospital rule:

lim
x→0+

h(x) = − lim
x→0+

log Ĉ(τx)
x

H= − lim
x→0+

τĈ ′(τx)
Ĉ(τx)

(7.2)

Reminding that Ĉ(0) = 1 for normalisation, one finally obtains that

lim
x→0+

h(x) = −τĈ ′(0) (7.3)

Therefore, if Ĉ ′(0) = 0, then h(0) = 0.
On the other hand, if one considers the case of purely exponential correlations

Ĉ(t) = e−t/τ , the derivative of Ĉ for small times is finite, Ĉ ′(0) = −τ−1, and



7.1 Experimental evidence suggests the presence of inertial behaviour 89

therefore the function h(x) approaches 1 for x → 0. In fact, for purely exponential
correlations h(x) ≡ 1 for all x. Summarising, one can say to observe

· Inertial Behaviour, if: lim
x→0+

h(x) = 0 (7.4)

· Non-inertial Behaviour if: lim
x→0+

h(x) = 1 (7.5)

In [13], the behaviour of the function h in natural swarms was compared to that
obtained in numerical simulations of the Vicsek model. As shown in Fig. 7.1, the
difference in the behaviour of h is remarkable: Vicsek dynamics exhibits a clear
non-inertial behaviour, while in natural swarms h → 0 as x → 0, a hallmark of
inertial behaviour.

7.1.1 Inertial vs non-inertial behaviour: a toy model

To better understand how inertia can be recovered, let me here focus on the simplest
case possible where inertial vs non-inertial behaviour can be appreciated: the
stochastic harmonic oscillator [101]. This will serve as a toy model to better
understand the concept of behavioural inertia, and how it connects to the shape of
the temporal correlation function.

The stochastic harmonic oscillator is defined by the equation

mü = −γu̇− ∂U

∂u
+
√

2γT θ , (7.6)

which directly follows from Newton’s second law. Here u is some generalised
coordinate, say the position, γ the viscosity, T the temperature and U = 1

2κu
2 the

harmonic potential. The quantity m, which is the mass if u is a position, is often
referred to as inertia and represents a sort of resistance in the change of behaviour.
This resistance inhibits sudden changes in the system’s configuration, thus delaying
decorrelation and giving the correlation function the characteristic inertial shape.
The white noise θ is Gaussian, delta-correlated in time and with unitary variance.
This second-order differential equation can be written as a system of two coupled
first-order differential equations{

u̇ = p
m

ṗ = − γ
mp− ∂U

∂u +
√

2γT θ
, (7.7)

where p = mu̇ is the conjugate momentum of u, namely linear momentum in the
present case.

The overdamped limit

Let me start my analysis by looking at what happens in the overdamped limit, namely
on timescales much larger than m/γ. On these timescales, the conjugate momenta
relaxes to a steady-state value, and hence ṗ ≈ 0. Therefore from the second equation,
one can work out the steady-state value of p, namely

p

m
= − 1

γ

∂U

∂u
+
√

2T
γ
θ (7.8)
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Figure 7.1. Inertial behaviour in swarms [13]: a) The correlation in Vicsek swarms
displays exponential relaxation (linear decay in semi-log scale), while natural swarms
have a strongly non-exponential correlation function (flat derivative for small t). b) To
quantify the different forms of the correlation the function h(x) defined in (7.1) was
calculated, where x = t/τ ; in contrast with Vicsek, natural swarms are characterised by a
small value of h(x) in the interval 0 < t < τ . c) The estimated intercept h0 = h(x = 0.1)
was computed for all data [13] and its distribution reported here: all natural swarms
have a low first derivative, indicating the existence of non-dissipative modes, while
Vicsek swarms have a purely dissipative peak at h0 ∼ 1. Permission to reuse granted by
Springer Nature under License Number 5655281510730.

which, if inserted in the first equation, leads to

γu̇ = −∂U

∂u
+
√

2γTθ (7.9)

Note that this equation is equivalent to taking m = 0 in the equation (7.6): in fact,
the overdamped limit can be defined as the limit for mκ/γ2 → 0. In this limit, the
timescale needed for inertial effects to remain relevant τm = m/γ is infinitely smaller
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than the timescale over which the harmonic force exerts its influence τκ = γ/κ.
The correlation function of this kind of dynamics can be obtained by standard

techniques, leading to the usual overdamped form

Ĉ(t) = e−t/τ τ = κ

γ
(7.10)

which, according to the aforementioned classification of inertial vs non-inertial
dynamics, clearly falls in the latter case as h(t → 0) → 1. The overdamped
description is however valid only as t ≫ m/γ, or equivalently when the limit
mκ/γ2 → 0 is taken. Only in this limit, the dynamics becomes exactly first-order,
and the overdamped description here presented is correct.

Finally, let me highlight the striking similarity between both Model A dynamics
(3.22) and the (incompressible) Toner and Tu theory (5.2), and the overdamped
dynamics of the stochastic harmonic oscillator (7.9): in both cases the dynamics
is first-order in time. This explains the lack of inertial behaviour observed in the
Vicsek model (see Fig. 7.1), supporting the idea that alignment and activity on their
own are not expected to be enough to describe collective behaviours in swarms.

The underdamped regime

The statistics of the stochastic harmonic oscillator can be worked out also in the
general case, as its dynamics is linear. In particular, after a little effort, one can
show that the normalised temporal correlation function of the system takes the form
[13, 101]

Ĉ(t) = C(t)
C(0) = e−t/τ

(
cos (ωt) + 1

τω
sin (ωt)

)
, (7.11)

where

τ = 2m
γ

ω =

√
κ

m
− γ2

4m2 (7.12)

The temporal derivative of this correlation function is given by

Ĉ ′(t) = −e−t/τ (τ2ω2 + 1
)

sin(ωt)
τ2ω

t→0→ 0 (7.13)

Therefore, for any m ̸= 0, even if very small, the limit h(x → 0+) = 0, hence meaning
that inertial behaviour is present when the dynamics is second-order in time.

This apparently seems to contradict the result found in the previous section, in
which I showed that for m/γ ≪ γ/κ non-inertial behaviour was found, namely that
Ĉ ′ ̸= 0 as t → 0. To solve this puzzle, one has to keep in mind that the overdamped
limit (mκ/γ2 → 0) and the t → 0 limit taken in (7.13) do not commute. Therefore,
for any finite m the correlation functions will always display inertial behaviour,
while only if mκ/γ2 = 0 then the dynamics is non-inertial and thus Ĉ ′(0) ̸= 0.
However, the timescale separating these two different behaviours of h is precisely
τm = m/γ: therefore, in the m → 0 inertial behaviour is detectable only if the data
are sufficiently time-resolved.
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7.1.2 Relevance of inertial behaviour for collective behaviours swarms

From the discussion of the previous section, I hope I convinced the reader that
experimental evidence clearly shows swarms are systems where inertial behaviour
is present at the time resolution of current experiments. At this point, a key
question to answer is whether this inertial behaviour is relevant in describing the
collective behaviours of swarms. The property of being inertial seems deeply related
to the small time behaviour, while collective behaviours characterise the large time
behaviour of a system.

To answer this question one has to look at the behaviour of h(x) over larger values
of x. In particular, one expects that in the presence of some viscosity coefficient γ,
for large enough x, namely for large enough times, the overdamped description gets
better and better. The function h(x) is therefore expected to eventually saturate
at the overdamped value limx→+∞ h(x) = 1. To address the relevance of inertia,
one has to look at the scale x∗ = t∗/τ where the crossover between overdamped
and underdamped behaviour occurs. If x∗ ≪ 1, namely if the time-scale on which
h saturates is t∗ ≪ τ , the large-scale properties are expected to be well-described
by the overdamped theory since inertial effects influence the dynamics only on very
short scales t < t∗ ≪ τ .

On the other hand, in systems like natural swarms where the decorrelation time
increases with the size of the system τ ∼ Lz, inertial effects are relevant in the
large-scale description of the system whenever x∗ ∼ 1, namely when t∗ and τ are of
the same order. In this way, a large portion of the modes of the theory are affected
by the presence of inertial behaviour. Inertia should thus be taken into account
in an effective description of the large-scale modes. By a direct inspection of the
behaviour of h(x) in swarms (see Fig. 7.1.c), it is clear that t∗ and τ are of the same
order, and hence inertial behaviour is expected to be relevant in the description of
collective behaviours in swarms.

7.2 Behavioural inertia from a symmetry perspective
Given that inertial behaviour is a relevant feature of the description of natural
swarms of insects, as shown in the previous section, the natural following question
is how to account for this inertial behaviour. Therefore, I will review what in the
context of swarms (and flocks) is the most proper way to achieve inertial dynamics.

7.2.1 Recovering a Hamiltonian structure

As one can see from the case of the stochastic harmonic oscillator, the critical
difference between an overdamped, non-inertial dynamics (7.9) and an inertial one
(7.7) is the structure of the equations of motion. In the former case, the force coming
from the harmonic potential acts directly on the dynamics of the order parameter u,
while in the latter it is mediated by the linear momentum p.

To recover inertial behaviour, I need to introduce a similar symplectic structure
for Self-Propelled Model A. One of the best ways of doing so, proposed in [100]
for the case of flocks, is by recognising that although Self-Propelled Model A
is invariant under rotations, there is no trace of an associated conservation law.
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However, according to Noether’s theorem, when a system is invariant under a given
symmetry group, the generator of this symmetry should be conserved. The presence
of conservation laws heavily affects the critical properties of a system, potentially
changing its dynamic behaviour. Since Self-Propelled Model A was explicitly built
to be invariant under a rotational symmetry, the idea is to recover inertial behaviour
by coupling (5.2) with the conservation law associated with rotational invariance.

The Inertial Spin Model

A possible way to restore inertial behaviour has been proposed in [102], where a
model named Inertial Spin Model (ISM) has been introduced to provide a theoretical
explanation for information propagation in flocks [100]. The ISM shares many
common features with the Vicsek model, but has one main (and crucial) difference:
the aligning force does not act directly on the equation of the direction of motion ψi
but is mediated by the local generator of rotational symmetry si, in the following
way:

dψi
dt = ψi × si

χ
dsi
dt = − η

χ
si +

[
J nijψj + ζi

]
×ψi

(7.14)

Here χ is usually referred to as inertia, since it plays a role similar to that of the
mass for the stochastic harmonic oscillator, while η is the dissipation, playing a
role analogue to viscosity. As in the case of the stochastic harmonic oscillator, the
overdamped limit is reached for times t ≪ χ/η. In this limit, the behaviour of the
Vicsek model is properly recovered, as when t ≪ χ/η the spin quickly approaches a
steady-state, where si/χ = ψi ×

[
J nijψj + ζj

]
, and hence

dψi
dt = ψi ×

[(
J nijψj + ζj

)
×ψi

]
= R

[
J nijψj + ζi

]
(7.15)

The local generator of rotational symmetry s, in analogy with quantum mechanics,
has been called spin, since it represents the generator of rotations in the internal
space of the velocities. It must not be confused with angular momentum, which is
the generator of rotations in positions’ space. To put this new quantity into context,
it can be viewed as a measure of how much an individual is rotating around its own
axis; more precisely, it is proportional to the curvature of the trajectory, namely to
the inverse of its radius of curvature: all individuals sharing the same spin undergo
equal radius turns rather than parallel-path turns [100].

Conservation (or slow dissipation) of the total spin has a huge impact on the
dynamics of the system. The presence of a spin-velocity coupling makes the spin
responsible for carrying information, giving rise to second-sound propagation in
flocks. The presence of second-sound modes even close to the ordering transition
(called ‘paramagnons’ in condensed matter) was also found experimentally in natural
swarms [13], supporting the idea that spin-velocity mode-coupling is also an essential
mechanism of these systems.
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Inertia at the hydrodynamic level

When shifting my attention to hydrodynamics, inertia can be restored by dynamically
coupling the direction of motion field with to spin field [41]. The global conservation
of the spin induced by the Noether theorem allows it to fluctuate on space-time
scales comparable with those of critical fluctuations, thus making spin-velocity
couplings relevant in the RG sense. To simplify the discussion, I will first discuss the
effects of restoring inertia in the absence of activity, namely using a fixed network
approximation. This approximation is indeed not suitable for swarms since network
rearrangements induced by activity are indeed relevant in the description of swarms,
as I showed in Chapter 3. Nevertheless, understanding how inertia can be restored
in the equilibrium context of Model A will help me develop the correct self-propelled
theory, in a similar fashion to how Toner and Tu developed the self-propelled version
of Model A.

At equilibrium, namely when v0 → 0, a mode-coupling interaction between the
order parameter ψ and its spin s arises from their Poisson-bracket relation [40]{

sαβ (x) , ψγ
(
x′)} = 2 g Iαβγνψν (x) δ

(
x− x′) , (7.16)

which encodes the fact that s is the generator of rotations of ψ. The parameter
g is the reversible coupling regulating the symplectic structure, i.e. the inertial
coupling between polarisation and spin. In general, when the order parameter is
a n-dimensional vector, the generator of its rotations s is a n× n anti-symmetric
tensor [103]. The tensor I represents the identity in the space of sαβ , and it is given
by,

Iαβγν = δαγδβν − δανδβγ
2 , (7.17)

with the factor 1
2 ensuring that Iαβγνsγν = sαβ and Iαβστ Iστγν = Iαβγν .

Working with an order parameter of generic dimension n, rather than set directly
n = 3 as in the physical case, might seem inconvenient at first glance. When n = 3
the spin s can be written as a 3-dimensional vector, lightening the tensorial structure
and reducing the number of indices. This comes from the fact that when n = 3,
the plane on which the rotation occurs can be uniquely identified by the vector
orthogonal to it, while this does not happen when n > 3. However, there is an
important reason to work with a tensorial spin, rather than a vectorial one. In
the active case, which will be studied later, the velocity v has the same dimension
d as space, and therefore so will the order parameter ψ, the direction of motion.
Although the physical case is given by n = d = 3, the RG perturbative expansion
is performed by expanding d near the upper critical dimension dc = 4, hence one
is forced to work with an order parameter of dimension n = d ∼ dc to correctly
perform the RG perturbative expansion.

7.3 Restoring behavioural inertia at equilibrium: Model
G

The equilibrium dynamics of a near-critical system in which s is conserved, known
respectively as Model E and G for a two- and three-dimensional order parameter
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[40] and generalised by the Sasvari-Schwabl-Szepfalusy (SSS) model in n dimensions
[103, 104], can be constructed following the Mori-Zwanzig formalism [105, 106] and
it is given by [103, 107],

∂tψα = −Γ δH
δψα

+ g ψβ
δH
δsαβ

+ θα , (7.18)

∂tsαβ = −Λαβγν
δH
δsγν

+ 2g Iαβγνψγ
δH
δψν

+ ζαβ . (7.19)

Here, and in the following, summation over repeated index is understood.
To encode the presence of alignment, free energy functional H is chosen to take

the usual Landau-Ginzburg form for the critical field ψ while it is purely Gaussian
for the spin field, namely

H =
∫

ddx1
2(∂αψβ)(∂αψβ) + V (ψ) +

∫
ddx1

4sαβsαβ . (7.20)

Here the (∇ψ)2 term tends to suppress the presence of strong fluctuations, namely
favouring local alignment between neighbouring regions, while the potential is

V (ψ) =
∫

ddxr2ψ ·ψ + u

4 (ψ ·ψ)2 , (7.21)

Inertia is restored thanks to the presence of mode-coupling interactions that
encode the conservative nature of the dynamics, arising as a consequence of the
Poisson-bracket relation (7.16). The term ∂ts ∼ gψ × δψH represents the action of
the force on the dynamics of the spin, rather than directly on the order parameter.
The indirect action of this force on the dynamics of ψ is guaranteed by the term
∂tψ ∼ gψ × δsH, which expresses the rotation of ψ induced by the conservation of
s. This mode-coupling mechanism restores the inertial structure of the equations
of motion, thus allowing one to describe the behaviour observed experimentally in
swarms in the field [13].

On the other hand, the terms ∂tψ = −ΓδψH and ∂ts ∼ −ΛδsH represent dynamic
relaxations, giving rise to the diffusion and transport phenomenology typical of
stochastic statistical systems. These relaxation terms are thus complemented by
the white Gaussian noises θ and ζ, whose variances are given by Einstein relations
when the system is at equilibrium. The dissipative constant (or kinetic coefficient) Γ
rules the relaxation of the order parameter and it is a crucial player in determining
the dynamic exponent z since it fixes the time scale on which relaxation occurs.
Similarly, the kinetic tensor Λαβγν rules the relaxation of the spin. When the total
spin is conserved, the tensor Λ is proportional to ∇2 [40], and in the isotropic theory
it takes the form,

Λαβγν = −λ∇2 Iαβγν . (7.22)

With the choice of H in (7.20), the equations of Model G can be written as
follows:

∂tψα = Γ∇2ψα −mψα − Jψβψβψα + g sαβψβ + θα , (7.23)

∂tsαβ = λ∇2sαβ − 2g Iαβγνψγ∇2ψν + ζαβ . (7.24)

where I introduced m = Γr and J = Γu.
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In this theory, the total spin is conserved. To see this, one can exploit the fact
that Iαβγν = −Iαβνγ to rewrite the mode-coupling term in the equation for s:

Iαβγνψγ∇2ψν = Iαβγν∂σ (ψγ∂σψν) . (7.25)

Therefore, the equation for s can be written in the form of a continuity equation. If
also the noise is conservative, namely if its variance is proportional to a Laplacian
∇2, the total integral of the spin is conserved

Ṡαβ(t) = d
dt

∫
ddx sαβ(x, t) = 0 . (7.26)

7.3.1 Dynamic critical behaviour of Model G

To understand if the introduction of behavioural inertia helps to fill the gap between
experimental evidence in natural swarms and theoretical results, it is useful to briefly
review the dynamic RG analysis of Model G. I will not perform any diagrammatic
calculation here, but only go through the argument for which the dynamic critical
exponent can be computed non-perturbatively, yielding z = d/2 for all d < 4, namely
z = 1.5 in the physical case of interest for swarms d = 3.

Let me review the naive scaling generated by a scaling transformation

x =bxb , t =bztb , (7.27)
ψ(x, t) =b−χψψb(xb, tb) , s(x, t) =b−χssb(xb, tb) . (7.28)

Please note that, contrary to all the other scaling transformations carried out in
the other sections, this is performed directly in real space rather than in Fourier
space. The naive scaling dimensions of the fields will therefore not match. A relation
between the fields’ scaling dimensions in real and Fourier space is provided by the
relation

χϕ(x,t) = χϕ(k,ω) + d+ z , (7.29)

where the relation between ϕ(x, t) and ϕ(k, ω) is given by the usual Fourier transform

ϕ(x, t) =
∫

|k|<Λ

ddk
(2π)d

∫ +∞

−∞

dω
2π e−itω+ik·xϕ(k, ω) . (7.30)

With this set of scaling relations in mind, the rescaled equations of motion read

∂tbψα = Γ bz−2∇2
bψα −mbzψα − J bz−2χψψβψβψα + gbz−χssαβψβ + θα , (7.31)

∂tsαβ = λ bz−2∇2
bsαβ − 2g bz−2+χs−2χψ Iαβγνψγ∇2

bψν + ζαβ . (7.32)

When the total spin is conserved, and the equation for the spin can be written in
the form of a continuity equation, no diagrammatic correction can arise to the ∂tsαβ
term. This implies that the scaling dimension of s gets no anomalous contribution
[107], and remains equal to its naive value χs = d/2, which can be derived by
requiring H to be dimensionless.
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Furthermore, a Ward identity for the response function [107] prevents the coupling
g from getting any correction from the RG. Therefore, the scaling of the mode-
coupling term in the equation of ψ is exact. To make inertia relevant in the large-scale
description of the system, one must have

z = χs = d

2 . (7.33)

I would like to drive the attention of the reader on how, in three dimensions,
this mode-coupling mechanism gives z = 1.5, a value significantly closer to the
experimental window z = 1.37 ± 0.11 than the value z = 1.73 found in active
dissipative models. This result indicates that an inertial dynamical coupling is
necessary to develop a theory of natural swarms fully consistent with experiments.

7.3.2 On possible violations of spin conservation

The mode-coupling dynamics introduced in the previous section was mainly motivated
by symmetry arguments and associated conservation laws. However, in real biological
systems, information is not expected to be propagated forever with zero dissipation,
as damping effects may become relevant over longer and longer distances. Thus, a
(small) spin dissipation cannot be excluded in real biological systems. Note that
the introduction of this dissipation does not violate the rotational symmetry of the
problem, since all hydrodynamic equations are still invariant upon rotations.

Spin dissipation without symmetry violation

To understand why the violation of spin conservation does not come from a weak
violation of symmetry, let me discuss an example in a case with which the reader
might be more familiar. In a translational invariant system - say a collection of
marbles -, the Noether theorem states that the total linear momentum is conserved. If
one had complete control of all degrees of freedom, namely position q and momentum
p of each marble, the system could be described through Hamilton equations ṗi =
− ∂H
∂qI

, q̇i = ∂H
∂pi

. In this case, Noether theorem can be explicitly tested: since all
the interactions in H must obey translational invariance qi → qi + δq, the time
derivative of the total momentum P = ∑

i pi vanishes. In which cases can momentum
conservation be violated? The first case is when the system is closed in a box. In
this case, collisions with the walls of the box violate momentum conservation. This
lack of conservation is due to the violation of symmetry: the presence of a wall in a
precise point of space manifestly violates translational invariance.

If instead these marbles were surrounded by some medium, say a fluid, an
exchange of momentum between the system and the medium is allowed. Hence,
when observing the momentum of the collections of marbles only, it might be
that violations of momentum conservation are detected. Does this mean that
the symmetry is violated? Of course not: Noether theorem ensures conservation
of the total momentum of all degrees of freedom, including those describing the
medium. What happens to the total momentum of the marbles only depends on
the interactions between fluid and marbles. When one aims to describe only the
degrees of freedom of the system of marbles, non-Hamiltonian effective interactions



7.3 Restoring behavioural inertia at equilibrium: Model G 98

must be taken into account to describe the effect of those degrees of freedom that
were coarse-grained (the medium). These interactions between the system and the
medium can be effectively described as a dissipation of the momentum, apparently
violating the conservation law associated with the symmetry. Instead, this effective
dissipation arises as a consequence of not taking into account all the possible degrees
of freedom; the symmetry and its associated conservation law are still in place.

Similarly, if the swarm were an isolated system, its total spin would be exactly
conserved. Nevertheless, midges in a swarm interact not only with each other but
also with the surroundings. Due to the global rotational symmetry, in virtue of
Noether’s theorem, the total spin of all degrees of freedom is expected to be conserved.
However, Self-Propelled Model G is an effective description of swarms, in which
the interactions with the environment have been coarse-grained. Hence, some spin
dissipation may arise as the effect of external forces on the swarms. Whether these
interactions between midges and the environment allow some spin exchange is out
of current knowledge, and hence they cannot be excluded. Indeed, if spin exchange
was possible, it has to be weak since the presence of inertial effects in the correlation
functions [13] indicates that the spin dissipation is small. Nevertheless, for the sake
of completeness, in the renormalization group analysis performed in Chapter 10, I
will also address the question of what happens in the presence of spin dissipation.

Spin dissipation in Model G

To introduce spin-dissipation, a k-independent term must be added to the kinetic
coefficient of the spin, Λαβγν → Λαβγν + ηIαβγν where η represents spin-dissipation.
The new form of Λαβγν , in isotropic theories, is therefore given by

Λαβγν = ηIαβγν − λ∇2Iαβγν . (7.34)

From a purely hydrodynamic perspective - i.e. at long wavelengths and long times -
the existence of spin dissipation η would make the field s a fast mode that can be
dropped from the hydrodynamic description [40]. Hence, any spin dissipation would
eventually make inertia to become irrelevant.

This naive argument was indeed shown to be true in [41, 108], where the authors
studied the critical behaviour of Model G in the presence of dissipation, showing that
the stable fixed point is given by Model A behaviour, reached for η → +∞. However,
inertial effects might be still relevant in the description of finite-size systems if the
spin dissipation η is small enough. This phenomenology can be explained in terms of
a crossover between an underdamped and an overdamped regime. Consider a system
with linear size L: when dissipation is weak, namely η ≪ λL−2 (k ∼ L−1 being the
largest wavelength mode), the system is in its underdamped regime and conservative
Model G dynamics (η = 0) effectively describes the behaviour of the system over
all the physically accessible scales. On the other hand, when the size of the system
becomes large enough, an overdamped regime is accessed, where dissipative effects
prevail and the non-conservative behaviour of Model A is recovered. These two
regimes are separated by a crossover length-scale R =

√
λ/η, determined by the

extent of dissipation: for modes with wave-vector k ≫ R−1, the critical dynamics
has a conservative nature (as if η = 0), with z = 1.5 [41]. On the other hand, on
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(Chen-Toner-Lee, 2015)

Figure 7.2. Map of the active theory. The difference between inertial and non-
inertial dynamics, conservative and non-conservative behaviour, and underdamped and
overdamped regimes is presented synthetically.

length scales larger than R, k ≪ R−1, the dissipation overcomes and the dissipative
result of Model A is recovered.

Natural swarms definitively have a finite size. Moreover, in natural swarms,
the spin dissipation must be small enough to keep the system in its underdamped
phase, as otherwise, the temporal correlation functions of the theory would not
reproduce the experimental ones [13] (see Sec 7.1.2). This implies that the crossover
length-scale R must be larger than the system’s size, so that experimentally one
observes the conservative inertial dynamics at all the accessible scales [41]. For this
reason, I will be particularly interested in the neighbourhood of the conservative
η = 0 plane, even though η turns out to be a relevant perturbation in the RG sense.

At this point, a lot of different concepts have been introduced: inertial, conser-
vative, underdamped. Although the reader might feel they are all synonyms, they
are not. Let me try to clarify here, once and for all, the difference between these
terms. The coarse-grained dynamical equations may either have or not have the
reversible couplings, arising from the Poisson-bracket relation (7.16) between the
polarisation ψ (i.e. the generalised coordinate) and the spin s (i.e. the generalised
momentum). In the first case (g ̸= 0) one has an inertial theory, with a Poisson
structure expressing the fact that s is the generator of the rotational symmetry. In
this case, correlation functions exhibit the inertial shape discussed in Sec. 7.1. If
the reversible coupling is structurally absent (g ≡ 0) one recovers the non-inertial
theory of [23], where polarisation is decoupled from the spin and the symmetry does
not entail any Poisson structure. In this case, one recovers the result of z = 1.73.

On the other hand, in the inertial theory, the irreversible kinetic coefficient of
the spin Λαβγν may be either conservative or non-conservative. In the conservative
case there is no spin-dissipation (η = 0), and a fixed point yet to be determined
(see Chapter 10) will rule the large-scale behaviour of this inertial-conservative. In
the non-conservative case, the kinetic coefficient contains a dissipative term (η ≠ 0).
The impact of a non-conserved spin on the collective properties, however, depends
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on the interplay between the strength of spin dissipation and the size of the system.
In the underdamped regime, where either the spin dissipation or the system’s size are
small, collective fluctuations are still ruled by the inertial-conservative fixed point;
this is the regime in which I expect to find natural swarms [41]. Conversely, in the
infinite-size limit, the overdamped regime is entered. Here the Poisson structure,
which is still present in the underlying dynamics, is washed out by the finite time-
scale over which the spin relaxes, namely η−1. The spin therefore drops out of the
calculation and collective fluctuations are ruled by the fully non-conservative fixed
point, hence giving z = 1.73.

A useful "map" of these concepts is provided in Fig. 7.2. To summarise:

• inertial behaviour is related to the short-time shape of the correlation function,
discussed in Sec 7.1. From a field-theoretical point of view, it manifests through
the presence of a coupling between the order parameter and the spin (g ̸= 0);

• conservative behaviour is related to the conservation of the spin (g ̸= 0 and
η = 0), which therefore renders the behaviour inertial over all scales;

• underdamped behaviour is instead the behaviour observed in a finite-size inertial
non-conservative system for small enough spin dissipation (g ̸= 0 and η ≪ 1).

7.4 Towards a new field theory for swarms
I now have all the ingredients a field theory for natural swarms should have, namely
local alignment interactions, self-propulsion and inertial behaviour. If universality
holds in living systems, the combination of these three features is expected to describe
collective behaviour observed in swarms, as their effects on the dynamic behaviour
can be all described by the presence of symmetries and conservation laws.

To build out an active inertial field theory, I will take a similar path to that
taken by Toner and Tu when first deriving their theory of flocking [19], reviewed in
Chapter 3: merging an equilibrium model for alignment with Navier-Stokes. The
only, crucial, difference is that to reproduce inertial behaviour, Model G rather than
Model A will be used as a starting point. Hence, in the following the field theory for
swarms will be built by merging Model G, namely the inertial counterpart of Model
A, and Navier-Stokes dynamics. The resulting equations will be therefore referred to
as Self-Propelled Model G, in opposition to Self-Propelled Model A, which represents
the Toner and Tu theory.

Similarly to the path followed in Sec. 3.3.1, this can be done in Model G by
promoting the order parameter ψ to be proportional to the velocity field, through
the relation

v (x, t) = v0ψ (x, t) . (7.35)

Here v0 is the speed of the individuals at the microscopic level, which is typically
assumed to be fixed. From the field-theoretical point of view, this “promotion” of ψ
can be encoded by substituting the temporal derivative ∂t with a material derivative:

∂t → Dt = ∂tψ + v0 (ψ · ∇) , (7.36)
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Note that in Model G ψ is not only responsible for self-advection, but advects also
the spin field s. Moreover, in this active case the behaviour of a third field must
be taken into account, namely the density field ρ, which is not fixed anymore as a
consequence of particles moving. This leads to the presence of a pressure force in
the equation for the speed.

A minimal theory for active inertial systems can be therefore written starting
from Model G structure and taking into account the advection generated by ψ. This
results into [109]:

Dtψα = −Γ δH
δψα

+ gψβ
δH
δsαβ

− ∂αP + θα , (7.37)

Dtsαβ = −Λαβγν
δH
δsγν

+ 2gIαβγνψγ
δH
δψν

+ ζαβ (7.38)

∂tρ+ v0∂γ (ρψγ) = 0 (7.39)

Note that here all the couplings might depend on the local density. Unlike other
approaches, this theory should be considered only as a minimal theory, in the sense
that other terms compatible with the symmetries of the problem could be introduced,
some of which will be discussed in Chapter 9. Nevertheless, Eqquations (7.37)-(7.39)
will represent the starting point for the field-theoretical approach presented here,
and already include all the necessary ingredients needed to capture the collective
behaviour of swarms of insects.

As discussed in detail in Chapters 3 and 6, density fluctuations are not expected to
play a relevant role in near-ordering systems exhibiting scaling behaviour as natural
swarms. When this happens, density fluctuations can be completely suppressed
by enforcing incompressibility [MyPaper2], see Chapter 6. Suppressing density
fluctuations is desirable also from a technical point of view, as it allows handling a field
theory with two fields, ψ and s, rather than one with three. This reduces enormously
the number of interactions, and hence the complexity of the RG calculation, which
as I will show in Chapters 9-11 is already quite hard in the presence of two fields.

Enforcing incompressibility, namely requiring the density to be fixed ρ ≡ ρ0, can
be done by imposing a solenoidal constraint on ψ,

∇ ·ψ = 0 . (7.40)

In a non-inertial theory, enforcing this constraint has been proven to be relatively
straightforward [23], see Chapter 5, as a projection of the equation for ψ allows to
get rid of fluctuations of ψ which would lead to a violation of incompressibility. How
this requirement affects the behaviour of the spin is however something that never
had been investigated previously. Before tackling the study of the critical behaviour
of Self-Propelled Model G in the incompressible limit, understanding the effects
of such a limit on the behaviour of s turns out to be a necessary task, which has
surprising consequences even at equilibrium.
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Chapter 8

Enforcing incompressibility in
the equilibrium limit

Recent experimental evidence has shown that natural swarms of insects display
collective phenomena even in the absence of collective order [12]. Remarkably,
correlation functions in swarms exhibit both static and dynamic scaling laws [12, 13],
a hallmark of near-critical systems. This evidence made a renormalization group
approach to swarming behaviour seem particularly appealing. The previous chapters
have focused on the different ingredients required to account for the dynamic
behaviour of natural swarms. Local alignment between the direction of motion of
each midge can qualitatively explain collective behaviours in swarms, posing swarms
near a critical ordering transition [56], but fails to explain the low dynamic critical
exponent z. Model A, the dissipative dynamics of aligning systems, predicts z ≈ 2
[40] as opposed to z = 1.37 ± 0.11 observed in natural swarms [MyPaper1]. Two
possible mechanisms can explain a drop in the value of the dynamic critical exponent
in natural swarms compared to that of standard ferromagnetic systems in the Model
A class.

As discussed in the previous Chapter, one factor that may lower the value of z,
and that is relevant in the description of both insect swarms and bird flocks, is the
presence of inertial dynamics, namely a coupling between the direction of motion
field ψ (x, t) and the generator of its rotations, known as the spin s (x, t) [100, 13].
This mechanism lowers the dynamic critical exponent to the value of z = 1.5 in
d = 3 [40, 41]. The second relevant feature of swarms, explored in Chapter 3, is
midges’ activity. The ability of individuals to self-propel leads to a time-dependent
network of interactions between the particles’ velocities, thus driving the system out
of equilibrium. The rewiring of the interaction network due to activity leads to a
more efficient propagation of the information, which is responsible for lowering z
from 2 to the value of 1.73 three-dimensional incompressible systems [23].

A theory that keeps into account both the off-equilibrium active nature of
swarms and the mode-coupling nature of their interaction, may provide a value of
the dynamical critical exponent close to the experimental one. The bad news is that
in a full-fledged out-of-equilibrium field theory, the presence of activity gives rise to
density fluctuations, thus meaning that in addition to the direction of motion field
ψ (x, t) and spin field s (x, t), also the density field ρ (x, t) must be included in the
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hydrodynamic description of the system [19, 20]. The presence of 3 fields, of which
only one is scalar, leads to a large number of couplings between them and a near-
prohibitive level of intricacy. However, I gave evidence in Chapter 6 that to observe
scaling laws, the compressibility of the system must be small so that collective modes
effectively behave as if the system was incompressible. Therefore, to make theoretical
progress, one needs to make the simplifying assumption of incompressibility, obtained
by enforcing a solenoidal constraint on the order parameter field ∇ ·ψ = 0.

In the present Chapter, I will address the problem of understanding the effects
of incompressibility on the mode-coupling dynamics. To do this, I will work in
the fixed-network approximation, namely taking the equilibrium limit by sending
the microscopic speed v0 → 0 while keeping the solenoidal constraint active. The
resulting field theory, which I shall refer to as Solenoidal Model G, therefore describes
the dynamics of an inertial system where the order parameter ψ obeys ∇ ·ψ = 0.

8.1 The solenoidal constraint
To join activity and inertia into one single dynamical field theory, one needs to
write equations for three coupled fields - density, direction of motion and spin
- with several non-linear couplings among them, giving rise to a diagrammatic
RG proliferation that is impossible to keep under control without any simplifying
assumption. One such simplification is that of incompressibility. The first, huge,
advantage of working under the hypothesis of incompressibility is that the density field
drops out the theoretical description [46, 23], thus reducing the number of fields that
have to be studied from three to two, hence dramatically simplifying the theoretical
investigation. One may worry that incompressibility introduces some non-local
interactions in the system, potentially changing the critical exponents compared to
the compressible case. However, numerical simulations of the standard compressible
Vicsek model have found the dynamic scaling exponent to be in perfect agreement
with theoretical RG predictions of the incompressible theory [69], thus indicating
that the effects of activity on the dynamical critical exponent are independent of
whether incompressibility is enforced or not. This is very useful indeed, as it means
that incompressibility can be used as a simplifying tool, without changing critical
dynamics.

Not only do numerical simulations support this idea, but also the RG analysis
performed in Chapter 6 points in the same direction. The presence of density fluctu-
ations in the system turns the ordering phase transition of Vicsek-like models into a
first-order (i.e. discontinuous) transition [44]. In incompressible systems, however,
the absence of density fluctuations suppresses the dynamic instability leading to a
first-order transition, hence always recovering a second-order (continuous) behaviour
[23]. Scaling behaviour is thus observed at all sizes and all the complications about
phase separation are avoided. A crossover between these two regimes, discussed in
Chapter 6, has been shown to arise for finite-size systems with mild density fluc-
tuations [MyPaper2]: sufficiently small systems in the near-ordering phase exhibit
scaling laws with exponents falling in the incompressible universality class, while in
the infinite size limit, a first-order transition is recovered. The very observation of
scaling behaviour, combined with the absence of heterogeneous spatial structures
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in natural swarms [12, 56], strongly suggests their collective properties behave as
if the system was incompressible. In this sense, incompressibility is not merely a
simplifying hypothesis, but also a sound theoretical description of actual empirical
data.

Incompressibility in the RG study of the Navier-Stokes equations was first used in
the seminal paper by Forster, Nelson and Stephen [46], while it was used first in the
context of dynamical field theories for active matter in [23]. This hypothesis seems
quite reasonable both in natural insect swarms and bird flocks, because experiments
show that density fluctuations are indeed very limited in these systems, and they do
not seem to be a crucial ingredient in their collective behaviour [12, 65].

Following the results discussed in Chapter 6, I expect that also in the presence
of mode-coupling dynamics, the presence of scaling laws in active systems can be
explained by a finite size crossover in the compressibility. The observed large-scale
behaviour of natural swarms is therefore ruled by the incompressible fixed point, yet
to be determined, describing the active inertial universality class.

The dynamic behaviour of density fluctuations in systems with a conserved
number of individuals is ruled by the continuity equation

∂tρ+ ∇ · (ρv) = ∂tρ+ v · ∇ + ρ∇ · v = 0 (8.1)

Incompressible can be achieved by requiring the density to be fixed to its average
value ρ ≡ ρ0, thus meaning that both its temporal and spatial derivatives vanish.
Thanks to the continuity equation (8.1), the condition of incompressibility reduces
to imposing a solenoidal constraint on the velocity field,

∇ · v = 0 . (8.2)

Incompressible swarms in the fully dissipative case (i.e. without inertial mode-
coupling) have been studied in [23]. When moving to the inertial case, where
the coupling with the conserved spin is at work, the introduction of a solenoidal
constraint on the primary field within mode-coupling dynamics is far from trivial.
In the case of a theory with one single field (the velocity), the solenoidal constraint
is simply enforced by projecting the force acting on the velocity onto the direction
orthogonal to the wave vector k in Fourier space [46, 23]; in this way, the constraint
is naturally conserved during the temporal evolution of the system. But in systems
with mode-coupling dynamics, incompressibility cannot be achieved in this simple
way, as the aligning forces now act also on the spin, rather than solely on the velocity.
Since the spin is not subject to the solenoidal constraint, an apparently paradoxical
situation emerges: the assumption that was supposed to radically simplify the
calculation, reducing from three to two the number of fields, creates a new challenge.

Instead of giving up the crucial simplification of incompressibility, I choose to try
and solve the problem of how to impose a solenoidal constraint in a mode-coupling
theory. The only encouraging thing is that the complications arising are completely
unrelated to activity, so it seems sound to first find a conceptually consistent way
to impose the solenoidal constraint on a theory at equilibrium and then use this
result to make progress off-equilibrium. Indeed, surprising as this may seem, the
problem of how to impose the solenoidal constraint on a mode-coupling theory has
never been investigated in the literature before. My work on solenoidal constrained



8.1 The solenoidal constraint 105

mode-coupling theories, now published in [MyPaper2], therefore represents the first
attempt to tackle this issue. By solving this problem, pushing the calculation
out-of-equilibrium, still retaining the incompressibility condition, will become an
easier task. Therefore, in this Chapter activity will be neglected by assuming the
adjacency network to be fixed in time. The virtue of this approach is that any future
calculation performed in the active case must have the present calculation as a limit
in the zero-speed case.

Notice that in the absence of activity, it does not make much sense to refer to
any kind of velocity field v, as it would identically vanish. This happens because in
the microscopic description of Vicsek-like systems, each individual has a fixed speed
v0, and the fixed-network approximation can be formally seen as a limit where v0
vanishes, which is equivalent to freeze the position of each particle. While in this
limit the velocity field acquires a singular behaviour, since no particle is moving, the
coarse-grained direction of motion ψ, defined by the relation

v (x, t) = v0ψ (x, t) (8.3)

still has a smooth behaviour when v0 → 0, and therefore represents the ideal
candidate to be the order parameter in the fixed network approximation. Because
of this connection, the solenoidal constraint given by Eq. (8.2) must hold also for ψ
at any finite value of v0. Therefore, in the equilibrium limit of an incompressible
theory, the order parameter ψ must still obey

∇ ·ψ(x, t) = 0 . (8.4)

8.1.1 Static critical behaviour of the solenoidal theory

Before moving on with the study of the dynamic properties of inertial theories with
a solenoidal constraint, let me first focus on reviewing, for the benefit of the reader,
what happens to the static behaviour in the presence of such a constraint. The static
behaviour of inertial systems as Model G is completely determined once the free
energy functional H is given, which in the case of models with aligning interactions,
that are invariant under a O(n) symmetry group, takes the usual Landau-Ginzburg
form

H =
∫

ddx1
2 (∂αψβ) (∂αψβ) + r

2ψαψα + u

4 (ψαψα)2 (8.5)

Note that summation is implicit in the presence of repeated indices. When r changes
sign while u > 0, these systems undergo a phase transition from a disordered state
with |⟨ψ⟩| = 0 to an ordered state with |⟨ψ⟩| =

√
−r/u. At the transition, the

collective properties are ruled by the universality class of O(n) systems [110]. But
what happens if I now require the order field ψ to obey a solenoidal constraint?

In the non-solenoidal theory, the behaviour of the system is described by the
partition function

Z[J ] =
∫

Dψe−H−
∫

ddxJαψα (8.6)

Within this framework, the addition of a solenoidal constraint can be done by
simply adding a Dirac delta function enforcing this constraint in the integral defining
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Z, which suppresses any configuration of ψ which does not obey the constraint.
Therefore the solenoidal contained theory is characterised by the partition function

Z[J ] =
∫

Dψ δ(∇ ·ψ)e−H−
∫

ddxJαψα (8.7)

By representing the delta function as the limit of a Gaussian distribution δ(x) =
lima→∞(a/π)1/2e−a x2 , one can see how the behaviour of the solenoidal theory is
described by the free energy

H =
∫

ddx1
2 (∂αψβ) (∂αψβ) + a

2 (∂αψα)2 + r

2ψαψα + u

4 (ψαψα)2 (8.8)

in the limit a → ∞. Note that this Hamiltonian is equivalent to that of antifer-
romagnets with dipolar interactions in the absence of lattice anisotropies, derived
in [95], which in the a → ∞ limit is known to reproduce the critical behaviour of
ferromagnets with dipolar interactions [87, 86, 111].

This parallelism between solenoidal constraint and dipolar ferromagnets can be
perhaps better understood by shifting the attention to Fourier space, where the
solenoidal constraint reads

kαψα (k) = 0 (8.9)
Note that the Fourier-transformed fields are defined by the relation

ψα (x) =
∫
k

eik·xψα (k) (8.10)

where
∫
k

=
∫

|k|<Λ

ddk
(2π)d

. In Eq. (8.10) the cutoff Λ is the value of the wave-vector above

which fluctuations have no physical meaning. Since a field theory, in the context
of biophysics, is obtained by coarse-graining a discrete model, fluctuations cannot
occur on distances shorter than a given coarse-graining length scale a, therefore
meaning that the cutoff can be taken to be Λ ∼ a−1.

The relation (8.9) tells me that fluctuations of ψ longitudinal to the wave vector
k are completely suppressed. An equivalent way of stating this is by saying that the
field ψ belongs to the plane orthogonal to k, which means that

P⊥
αβ (k)ψβ (k) = ψα (k) (8.11)

Here P⊥ is the transverse projection operator, which projects vectors in the transverse
direction to k, and thus takes the form

P⊥
αβ (k) = δαβ − kαkβ

k2 (8.12)

In general, dipolar ferromagnets may exhibit both longitudinal and transverse
fluctuations. However, the non-critical nature of the longitudinal mode leads to their
full suppression in the long-wavelength limit, meaning that an RG analysis finds a
stable fixed point that describes a solenoidal-constrained theory. The renormalization
group analysis of isotropic dipolar ferromagnets, performed to order ϵ = 4 − d in
[87], shows a recursive relation for the ferromagnetic coupling constant given by

du
dl = u

(
ϵ− 17

2 uΛ−ϵKd

)
. (8.13)
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In dimension d < 4, namely ϵ > 0, the stable fixed point u∗ ruling the critical
behaviour of dipolar ferromagnets is thus given by [87]

u∗ = 2
17Kdϵ (8.14)

Even though the change in the static universality class is very interesting at the
theoretical level, it must be said that the new critical exponents are so close to those
of the standard O(n) universality class that the difference is often experimentally
difficult to observe [111]. A two-loop estimation of the critical exponents ν, ruling
the behaviour of the mass r while the transition is approached, and η, modifying
the spatial dependence of the correlation function, are reported in Table 8.1. Here it
is clear the little difference between the scaling behaviour of dipolar ferromagnets
class and Landau-Ginzburg class.

8.2 The solenoidal mode-coupling theory
I will now turn my attention to the derivation and the study of a solenoidal inertial
theory. The corresponding coarse-grained dynamic equations will hence describe the
critical behaviour of a field ψ which is coupled to the generator of its rotations, s,
in the presence of the solenoidal constrain, ∇ · ψ = 0. I shall refer to this theory
as Solenoidal Model G (SMG) because, in the absence of the solenoidal constraint,
this field theory is known in the literature as Model G [40]. This classic model for
equilibrium quantum antiferromagnets, which has been discussed in detail in Chapter
7, will therefore represent the starting point of the derivation of SMG equations.

8.2.1 The Sasvari-Schwabl-Szepfalusy model: a necessary general-
ization

The first problem one faces is that the presence of the solenoidal constraint,

∇ ·ψ = 0 (8.15)

forces the order parameter to have the same dimensionality as the space in which the
theory is defined. Thus, since in the following sections I will need to perform an RG
expansion near d = 4, I must work with the generalisation of Model G to arbitrary
dimensions, known as the Sasvari-Schwabl-Szepfalusy (SSS) model [103, 104]. Given
that I will be calculating the properties of the Solenoidal Sasvari-Schwabl-Szepfalusy
model, strictly speaking, I should use the nomenclature ”SSSS model"; however,

Table 8.1. Values of ν and η up to order ϵ2 [111]

Landau-Ginzburg Dipolar Ferromagnets
Mean-field ϵ-expansion ϵ = 1 ϵ-expansion ϵ = 1

ν 1
2

1
2 + 1

8ϵ+ 1
16ϵ

2 0.6875 1
2 + 9

68ϵ+ 7013
117912ϵ

2 0.692

η 0 1
48ϵ

2 0.0208 20
867ϵ

2 0.0231
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chiefly for aesthetic reasons, I prefer not to do that and rather stick to Solenoidal
Model G even in generic dimension d.

In the SSS model, the spin s is an anti-symmetric d × d matrix, with one
independent component for each possible plane around which a rotation can be
performed. The Poisson-bracket relation between s and ψ, a hallmark of the presence
of inertial behaviour, is still given by{

sαβ (x) , ψγ
(
x′)} = 2g Iαβγρψρ (x) δ(d) (x− x′) (8.16)

where repeated greek-letter indices are intended to be summed, if not otherwise
indicated, and the tensor I is the identity tensor in the space of d× d anti-symmetric
matrices given by

Iαβγρ = 1
2 (δαγδβρ − δαρδβγ) (8.17)

The factor 1
2 in the definition of I arises as a consequence of the fact that, when s

is represented as an anti-symmetric matrix, each independent component appears
twice.

The static properties of the SSS model are fully determined by its effective
Hamiltonian, which reflects the fact that ψ is a critical field with O (d) symmetry
group and local interactions, having the static critical properties of the Landau-
Ginzburg universality class, while s is a non-critical massive field. The effective
Hamiltonian of the system takes the following natural generalisation,

H =
∫

ddx
[1

2 (∂αψβ) (∂αψβ) + r

2ψαψα + u

4 (ψαψα)2 + sαβsαβ
4

]
(8.18)

The equations of motion of the critical SSS model have been derived in Chapter 7
starting from the Poisson-bracket relation (8.16) and the effective free energy (8.18)
by following a procedure coming from the works of Mori et al. [105] and Zwanzig
[106] (see [112] and [113]) These equations are given by

∂ψα
∂t

= −Γ δH
δψα

+ g
δH
δsαβ

ψβ + θα (8.19)

∂sαβ
∂t

= λ∇2 δH
δsαβ

+ 2gIαβγν ψγ
δH
δψν

+ ζαβ (8.20)

where θ and ζ are two Gaussian white noises, with variance

⟨θα (x, t) θβ
(
x′, t′

)
⟩ = 2Γδαβδ(d) (x− x′) δ (t− t′

)
(8.21)

⟨ζαβ (x, t) ζγν
(
x′, t′

)
⟩ = −4λIαβγν∇2δ(d) (x− x′) δ (t− t′

)
(8.22)

The λ∇2 terms in the stochastic parts of the dynamics of s ensure that the spin is
conserved.

8.2.2 Dynamic behaviour of the solenoidal inertial theory

In this crucial section, the dynamical equations of the mode-coupling theory subject
to a solenoidal constraint will be derived through the classic Mori-Zwanzig formalism
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[106, 105] by using the Poisson relation (8.16), the effective free energy of the SSS
model and the suppression of fluctuations longitudinal to k.

Because the field ψ is subject to the constraint,

kαψα (k) = 0 (8.23)

the most natural representation in which one would like to derive the equations of
motion is,

ψ (k) = ψ∥ (k) ê∥ (k) +
d−1∑
i=1

ψ⊥,i (k) ê⊥,i (k) (8.24)

where ê∥ = k/ |k| is the unitary vector identifying the direction of k, while the ê⊥,i

are orthogonal unitary vectors spanning the space perpendicular to k, in such a way
that ê∥ · ê⊥,i = 0 and ê⊥,i · ê⊥,j = δij ; indeed, within this set of coordinates, the
constraint simply reads,

ψ∥ (k) = 0 (8.25)
leaving only the (d− 1) independent modes ψ⊥,i (k) to take care of. The advantage
of this notation is that the constrained field theory can be formulated in terms of
the (d− 1) independent transverse modes and not in terms of a constrained set of d
cartesian coordinates, ψα, to which it is not clear how to apply the Mori-Zwanzig
procedure. However, the explicit form of both the effective free energy H and of the
Poisson bracket relation is given in terms of the cartesian coordinates, ψα, while
their form in terms of the ψ⊥,i would be extremely cumbersome. What I shall do,
then, will be to first obtain the equation of motions for the ψ⊥,i and then to go back
to the standard ψα fields by using the chain rule. In doing that, something new will
pop out in the spin equation.

The dynamic behaviour of the constrained variables ψα is given, in terms of the
independent variables ψ⊥, by

∂ψα
∂t

(k, t) =
d−1∑
i=1

ê⊥,i
α (k) ∂ψ⊥,i

∂t
(k, t) (8.26)

Following the Mori-Zwanzig procedure, the equations of motion for the (d − 1)
independent fields ψ⊥,i and s take the following form

∂tψ⊥,i (k, t) = −Γ δH
δψ⊥,i (−k)+

+ 1
2

∫
q

{sγν (−q) , ψ⊥,i (k)} δH
δsγν (−q) + ê⊥,i

β (k) θ̃β (8.27)

∂tsαβ (k, t) = −Λαβγν (k) δH
δsγν (−k)−

−
d−1∑
i=1

∫
q

{sαβ (k) , ψ⊥,i (−q)} δH
δψ⊥,i (−q) + ζαβ (8.28)

where the t dependence is always understood even when not made explicit for reasons
of space. In Eqs. (8.27) and (8.28) H is the free energy given by Eq. (8.18) in which
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ψ∥ is set to 0; θ̃, ζ are white gaussian noises with variance respectively given by
2Γδαβ and 4Λαβγν (k). The tensor Λαβγν (k) is a function of the wave-vector k.
In the field theory without constraint, it takes the simple form Λαβγν = k2λIαβγν ;
however, since the solenoidal constraint generates an anisotropy in Fourier space
for the order parameter, I expect that anisotropic effects can affect also the spin
dynamics. Therefore, to generalise I will allow λ to take different values for the
longitudinal and transverse components of s, namely by taking,

Λαβγν (k) = k2λ⊥P⊥
αβγν (k) + k2λ∥P∥

αβγν (k) (8.29)

where P⊥ is the generalisation of the projection operator P⊥ defined in Eq. (8.12)
acting on the space of 2-indices antisymmetric tensors, and takes the following form

P⊥
αβγν (k) = Iαβγν − IαβστP⊥

σγ (k)P⊥
τν (k) (8.30)

On the other hand, the projection operator P∥ represent the generalisation of P ∥,
and takes the form

P∥
αβγν (k) = Iαβγν − P⊥

αβγν (k) (8.31)

Note that when λ⊥ = λ∥ = λ, the tensor Λ reduces to the standard isotropic form of
Model G, namely Λ = k2λI.

To find the equations of motion of ψα and sαβ , I will proceed by making explicit
the terms in Eqs. (8.27) and (8.28) exploiting the chain rule between the fields ψ⊥
and ψα. The chain rule applied to the variations of the free energy with respect to
ψ⊥,i reads,

δH
δψ⊥,i (−k) =

∫
ddp δψβ (−p)

δψ⊥,i (−k)
δH

δψβ (−p) = ê⊥,i
β (k) δH

δψβ (−k) (8.32)

while the Poisson-bracket relation between s and ψ⊥,i can be written as

{sγν (−q) , ψ⊥,i (k)} =
∫

ddp {sγν (−q) , ψβ (p)} δψ⊥,i (k)
δψβ (p) =

= ê⊥,i
β (k) {sγν (−q) , ψβ (k)}

(8.33)

In the last equality of both Eq. (8.32) and (8.33), I made use of the relation between
the two representations of ψ, given by the relations

δψ⊥,i (k)
δψβ (p) = ê⊥,i

β (k) δ(d) (k − p) , (8.34)

δψβ (p)
δψ⊥,i (k) = ê⊥,i

β (k) δ(d) (k − p) . (8.35)

Thanks to Eq. (8.32) and (8.33) it is possible to write the mode-coupling term of
the dynamics of the spin in the following way:

d−1∑
i=1

∫
q

{sαβ (k) , ψ⊥,i (−q)} δH
δψ⊥,i (−q) =

=
∫
q

{sαβ (k) , ψν (−q)}
[
d−1∑
i=1

ê⊥,i
ν (q) ê⊥,i

ρ (q)
]

δH
δψρ (−q) =

=
∫
q

{sαβ (k) , ψν (−q)}Pνρ (q) δH
δψρ (−q) , (8.36)
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where I used the following alternative definition of P⊥, equivalent to (8.12), which
follows directly from the definition of the unitary vectors ê⊥,i

Pαβ (k) =
d−1∑
i=1

ê⊥,i
α (k) ê⊥,i

β (k) . (8.37)

Thanks to the equalities (8.32), (8.33) and (8.36), it is now possible to write the
equations of motion Eq. (8.27) and (8.28) in the following form

∂tψ⊥,i (k, t) = ê⊥,i
β (k)

[
−Γ δH

δψβ (−k) + 1
2

∫
q

{sγν (−q) , ψβ (k)} δH
δsγν (−q) + θ̃β

]
(8.38)

∂tsαβ (k, t) = −Λαβγν
δH

δsγν (−k) −
∫
q

{sαβ (k) , ψν (−q)}Pνρ (q) δH
δψρ (−q) + ζαβ

(8.39)
The equation for ψ in Cartesian coordinates can be derived by making use of

Eq. (8.26). By plugging the equation for ψ⊥,i (8.38) into Eq. (8.26), reminding
that P⊥ is given by (8.37) and using the explicit Poisson-bracket relation given in
Eq. (8.16), the equations of motion for the Cartesian components ψα and for sαβ
can finally be written as

∂tψα (k, t) = −ΓPαβ (k) δH
δψβ (−k) + gPαρ (k) Iρβγν

∫
q
ψβ (k − q) δH

δsγν (−q) + θα

(8.40)

∂tsαβ (k, t) = −Λαβγν (k) δH
δsγν (−k) + 2 gIαβγν

∫
q
ψγ (k − q)Pνρ (q) δH

δψρ (−q) + ζαβ

(8.41)
Here the free energy H can be taken to be the same as the SSS model, since all the
terms involving derivatives of H with respect to ψ are already projected. Moreover,
the two Gaussian random white noises ζ and θ have variance

⟨θα (k, t) θβ
(
k′, t′

)
⟩ = 2ΓPαβ (k) δ̂(d) (k + k′) δ (t− t′

)
(8.42)

⟨ζαβ (k, t) ζγν
(
k′, t′

)
⟩ = 4Λαβγν (k) δ̂(d) (k + k′) δ (t− t′

)
(8.43)

where I remind that δ̂(x) = (2π)δ(x).

8.2.3 Effects of the constraint

The solenoidal constraint has a triple effect on the equations of motion of Model
G. The first, and maybe the most trivial, is that the equation of motion for ψ
is projected orthogonally to k, as it happens in incompressible field theories with
no mode-coupling interaction [46, 23]. The second effect is that it allows a more
complex form of the spin relaxation tensor Λ: while up to this point there no reason
to claim that this tensor must take such a complex form, I will show in the following
sections how the RG naturally generates two different relaxation coefficients λ⊥ and
λ∥ even if one starts with λ⊥ = λ∥.
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The last effect is the less obvious one, and it is represented by the presence of a
projection operator Pνρ (q) in the mode coupling interaction of the spin dynamics.
The existence of this projector is a consequence of the fact that, in the presence of a
solenoidal constraint, the conservative Hamiltonian force is not simply,

Fν (q) = − δH
δψν (−q) (8.44)

but rather,
Fν (q) = −Pνρ (q) δH

δψρ (−q) (8.45)

The linear part of the force is not affected by this new projector, but the non-linear
terms are. This can be seen by writing explicitly the new force,

Fν (q) = −
(
r + q2

)
ψν (q) + uPνρ (q)

∫
p,h

ψρ (p)ψσ (h)ψσ (q − p− h) (8.46)

where in the first linear term I used the fact that Pνρ (q)ψρ (q) = ψν (q). The linear
part of the force contributes to the dynamics of s with the same term as Model G
[40]

∂tsαβ (k) ∼ gIαβγν
∫
q

[
q2 − (k − q)2

]
ψγ (k − q)ψν (q) (8.47)

Here the factor q2 −(k − q)2 arises as a consequence of mode-coupling and it vanishes
as k → 0, thus conserving the total spin S(t) =

∫
ddx s (x, t) = s (k = 0, t). But

now, thanks to the presence of the projector, the non-linear term also contributes
to the dynamics of the spin. More precisely, it does so through a novel dynamical
interaction term given by,

∂tsαβ (k) ∼ 2guIαβγν
∫
q,h,p

ψγ (k − q)Pνρ (q)ψρ (p)ψσ (h)ψσ (q − p− h) (8.48)

This is a completely new term, which mixes the static ferromagnetic interaction
(the coupling constant u) with the dynamic mode-coupling interaction (the coupling
constant g); such vertex is absent in the non-constrained theory, since when Pνρ is
substituted by δνρ, as in the non-solenoidal case, the r.h.s. of Eq. (8.48) vanishes.
I will call this new interaction the DYS vertex, which stands for DYnamic - Static
vertex since it mixes the dynamic mode-coupling structure to the static ψ4 term.
As I will show later on, the DYS vertex is crucial to keep closed and self-consistent
the RG calculation and to recover the correct static critical exponents.

Remarkably, the DYS interaction does not vanish when k → 0, meaning that the
equation of motion of s cannot be written as a continuity equation any more and thus
that the total spin S(t) is no longer conserved. However, in the following section, I
will show that no spin dissipation is generated by the DYS vertex, suggesting that
the violation of the spin conservation is equivalent to a generalized precession of the
total spin vector.

8.3 Field theoretical description of Solenoidal Model G
To set up the renormalization of the theory I will follow the procedure proposed by
Martin, Siggia, Rose [47], Janssen [78] and De Dominicis [79] to write stochastic
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differential equations as a field theory formulated using path integrals, reviewed
in Chapter 4. Thanks to this procedure, the behaviour of a field ϕ governed by
a stochastic differential equation with a deterministic evolution operator F and a
Gaussian noise θ

F [ϕ] − θ = 0 (8.49)
can be described through a field-theoretical action that correctly reproduces its
statistics, i.e. the correlation and response functions,

S[ϕ̂,ϕ] =
∫

ddxdt
[
ϕ̂αFα [ϕ] − ϕ̂αLαβϕ̂β

]
(8.50)

where 2Lαβ is the variance of the Gaussian noise θ, while ϕ̂ is an auxiliary field.
The presence of this additional field is the cost which has to be paid to exploit
standard path integral formulation, which allows one to use the standard rules
of static renormalization and write the perturbative series in terms of Feynman
diagrams.

The Martin-Siggia-Rose (MSR) action for the stochastic differential equations
(8.40) and (8.41) takes the following form

S[ψ̂,ψ, ŝ, s] = S0,ψ[ψ̂,ψ] + S0,s[ŝ, s] + SI [ψ̂,ψ, ŝ, s] (8.51)

where S0,ψ and S0,m are the two Gaussian actions of the two fields, which reproduce
the linear dynamic theory, while SI , which takes contributes from the non-linear
dynamic terms, represents the interacting part of the action. These contributions
are respectively given by

S0,ψ =
∫
k̃
ψ̂α(−k̃)

(
−iω + Γk2 +m

)
ψα(k̃) − ψ̂α(−k̃)ΓPαβ(k)ψ̂β(k̃) (8.52)

S0,s = 1
2

∫
k̃
ŝαβ(−k̃) [−iωIαβγν + Λαβγν(k)] sγν(k̃) − ŝαβ(−k̃)Λαβγν(k)ŝγν(k̃)

(8.53)

while SI , which takes contributes from the non-linear dynamic terms and represents
the interaction part of the action, is given by

SI = −g Iρβγν
∫
k̃,q̃

Pαρ(k)ψ̂α(−k̃)ψβ(q̃)sγν(k̃ − q̃)−

+J

3

∫
k̃,q̃,p̃

Qαβγν(k)ψ̂α(−k̃)ψβ(q̃)ψγ(p̃)ψν(k̃ − q̃ − p̃)−

−g Iαβγν
∫
k̃,q̃
k · q ŝαβ(−k̃)ψγ(−q̃ + k̃/2)ψν(q̃ + k̃/2)+

− κ

12

∫
k̃,q̃,p̃,h̃

Kαβγνστ (k, q,p,h,k − q − p− h)×

× ŝαβ(−k̃)ψγ(q̃)ψν(p̃)ψσ(h̃)ψτ (k̃ − q̃ − h̃− p̃)

(8.54)

where I have introduced the new parameters,

m = Γr J = Γu κ = ug (8.55)
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Here m and J represent a sort of dynamical generalization of the mass and the
ferromagnetic coupling constant, respectively, while κ is the coupling constant
associated with the DYS vertex. It will be crucial to check, in what follows, that the
renormalization of all the couplings maintains the validity of these relations along
the RG flow since otherwise the system would not be at equilibrium. Moreover, in
Eq. (8.54) the following new tensors have been introduced

Qαβγν (k) = Pαβ (k) δγν + Pαγ (k) δβν + Pαν (k) δβγ (8.56)
Kαβγνστ (k,p1,p2,p3,p4) =IαβγρQρνστ (k − p1) + IαβνρQργστ (k − p2) +

+IαβσρQργντ (k − p3) + IαβτρQργνσ (k − p4)
(8.57)

Note that the fields in Fourier space for both the spatial and temporal domains,
introduced in the previous equations, are related to real-space fields as follows

ϕ (x, t) =
∫
k̃

ei(k·x−ωt)ϕ(k̃) (8.58)

where k̃ = (k, ω) and
∫
k̃ =

∫
k

∫∞
−∞

dω
2π .

Free theory

The starting point to build the perturbative expansion of the equations of motion
is the free, or Gaussian, dynamic theory, obtained by setting to 0 all the dynamic
non-linear couplings, namely g and u. From the Gaussian part of the action, given
by Eqs. (8.52) and (8.53), the expressions for the bare propagators and correlation
functions for the effective field theory can be easily derived, and are given by:

⟨ψα(k̃)ψ̂β(q̃)⟩0 = G0,ψ
αβ (k̃)δ̂(k̃ + q̃) (8.59)

⟨sαβ(k̃)ŝγν(q̃)⟩0 = G0,s
αβγν(k̃)δ̂(k̃ + q̃) (8.60)

⟨ψα(k̃)ψβ(q̃)⟩0 = C0,ψ
αβ (k̃)δ̂(k̃ + q̃) (8.61)

⟨sαβ(k̃)sγν(q̃)⟩0 = C0,s
αβγν(k̃)δ̂(k̃ + q̃) (8.62)

where δ̂(h̃) = (2π)d+1δ(d)(h)δ(ωh). The subscripted 0 on thermal averages indicate
that they are computed within the non-interacting theory, namely by setting u =
g = 0 (and thus also J = κ = 0). The tensors G and C are given by

G0,ψ
αβ (k̃) = G0,ψ(k̃)δαβ (8.63)

C0,ψ
αβ (k̃) = C0,ψ(k̃)P⊥

αβ(k) (8.64)

G0,s
αβγν(k̃) = G⊥

0,s(k̃)P⊥
αβγν(k) +G

∥
0,s(k̃)P∥

αβγν(k) (8.65)

C0,s
αβγν(k̃) = C⊥

0,s(k̃)Pαβγν(k)⊥ + C
∥
0,s(k̃)P∥

αβγν(k) (8.66)
In Eq. (8.63), (8.65), (8.64) and (8.66) I have,

G0,ψ (k, ω) = 1
−iω + Γk2 +m

C0,ψ (k, ω) = 2Γ
ω2 + (m+ Γk2)2 (8.67)

G⊥
0,s (k, ω) = 2

−iω + λ⊥k2 C⊥
0,s (k, ω) = 4λ⊥k2

ω2 + (λ⊥k2)2 (8.68)

G
∥
0,s (k, ω) = 2

−iω + λ∥k2 C
∥
0,s (k, ω) = 4λ∥k2

ω2 + (λ∥k2)2 (8.69)
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In the diagrammatic framework, bare propagators and correlation functions are
represented in the following way

⟨ψαψ̂β⟩0 = ⟨sαβ ŝγν⟩0 = (8.70)
⟨ψαψβ⟩0 = ⟨sαβsγν⟩0 = (8.71)

where the arrows in the propagators always point in the direction of the response
field.

Non-linear terms: the vertices

The four terms that compose SI represent the non-linear interactions in the equations
of motion. Two of them involve one field ψ̂, since they derive from the equation
of motion of ψ, while the other two involve one field ŝ since they derive from the
equation of motion of s. In the diagrammatic framework, these interactions are
represented by vertices, in which different lines merge, each representing one of the
fields involved in the interaction. Here I will be representing with a solid line the
fields ψ and ψ̂, with wavy lines the fields s and ŝ. Moreover, an arrow is used to
recognise which legs represent a response field.

The first vertex - namely interaction - involving ψ̂, represents the mode coupling
non-linearity,

ψ̂α(−k̃)

ψβ(q̃)

sγν(p̃)

= gPαρ (k) Iρβγν δ̂(k̃ − q̃ − p̃) (8.72)

This interaction represents a purely dynamic interaction since it is proportional only
to the dynamic coupling g.

The second vertex involving ψ̂ comes from the ferromagnetic quartic interaction of
the static free energy, ensuring that the field ψ relaxes towards the static equilibrium
distribution, and therefore is proportional to static coupling u. It is represented by
the term

ψ̂α(−k̃)

ψβ(q̃)

ψγ(p̃)

ψγ(h̃)

= −J

3Qαβγν (k) δ̂(k̃ − q̃ − p̃− h̃) (8.73)

The other two vertices involve one field ŝ, and both derive from the mode-coupling
interaction in the equation for s. The first comes from the linear part of the "force"
defined in Eq. (8.45), representing a purely dynamic interaction proportional to g,
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and it takes the same form as in the non-constrained theory

ŝαβ(−k̃)

ψγ(q̃)

ψν(p̃)

= g

2
(
p2 − q2

)
Iαβγν δ̂(k̃ − q̃ − p̃) (8.74)

Here the factor (p2 − q2), coming from the cross-product structure of the mode-
coupling interaction, guarantees that this interaction vanishes when k = 0. This is a
consequence of the symmetry of the non-constrained theory, which conserves the
total instantaneous spin S(t) = s(k = 0, t).

The last interaction term is the DYS vertex, given by the novel non-linear
contribution peculiar to the solenoidal theory, discussed at the end of Sec. 8.2.2.
This interaction mixes static and dynamic terms since it represents the effects of
the static quartic interaction on the dynamics of s, mediated by the mode-coupling
dynamic interaction. Therefore, the DYS vertex is proportional to the product of
the static coupling u0 and the dynamic coupling g0 and it takes the following form,

ŝαβ(−k̃)

ψγ(q̃1)
ψν(p̃2)

ψσ(p̃3)
ψτ (p̃4)

= κ

12Kαβγνστ (k,p1,p2,p3,p4) δ̂(k̃ − p̃1 − p̃2 − p̃3 − p̃4) (8.75)

The DYS vertex arises as a consequence of the solenoidal constraint since the tensor
Kαβγνστ vanishes in the non-constrained theory. At variance with the vertex (9.56),
DYS causes a violation of the spin conservation because the order parameter has lost
the O(d) symmetry as a consequence of the solenoidal constraint, meaning that it
does not vanish when k = 0. However, the fact that the total spin is not conserved
does not mean that it is dissipated. I will show in the following sections that at first
order in perturbation theory, no spin dissipation is generated by the RG after the
shell integration as a consequence of the presence of the DYS vertex, reinforcing
the hypothesis according to which s is a hydrodynamic slow-variable of the system.
Note that, were this not the case, the RG flow would lead to the stable fixed point
of solenoidal Model A [41].

8.4 Renormalization group calculation
The key idea behind the renormalization group is that, under the assumption of
a large correlation length, scaling laws and critical exponents can be obtained by
looking at how the parameters of a theory change by changing the length scale
at which the system is observed [17]. The RG itself consists of a transformation
through which a set of equations describing the dependence of the couplings from
the length scale, namely the β-functions, can be derived.
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I will use Wilson’s momentum shell approach [17], detailed in Chapter 4, which
in a nutshell is performed by following a two-step procedure: i) integrating out
the short wavelength details, hence decreasing the cutoff in momentum space; ii)
rescaling space and time, to formally reinstate the same original cutoff.

8.4.1 Self-energies

In the first step, one integrates out the small length scale (large momenta) fluctuations,
namely fluctuations with momenta Λ/b < k < Λ. The effect of this integration
is twofold: i) it changes the cut-off of the theory since now only fluctuation k <
Λ/b are allowed; ii) it changes the value of the parameters of the model, which
acquires corrections due to the coupling between low and high momenta fluctuations.
When focusing the attention on the Gaussian action, shell integration corrects the
parameters in the following way

S<0 =
∫ <

k̃
ψ̂
[
−iω + Γ(1 + δΓ ln b)k2 +m(1 + δm ln b)

]
ψ+

+1
2

∫ <

k̃
ŝ
[
−iω + λ⊥(1 + δλ⊥ ln b)k2 + λ∥(1 + δλ∥ ln b)k2

]
s+ . . . ,

(8.76)

where the ellipses stand for higher order terms in k and ω, which turn out to be
irrelevant at first-order in ϵ. Here I omitted the tensorial structure of the action for
easier reading. Note that because the shell integration has been already performed,
the integral over k runs from 0 to Λ/b, as denoted by the < superscript to the
integral sign, namely ∫ <

k̃
=

∫
|k|<Λ/b

ddk
(2π)d

∞∫
−∞

dω
2π (8.77)

Moreover, because diagrams will be computed in the thin shell limit b → 1+, all
the corrections are proportional to the volume of the momentum shell, which is
proportional to 1 − b−1 ≃ ln b.

In general, also corrections to the −iωψ̂ψ and −iωŝs terms in (8.76) might arise.
However, this is not the case for the present calculation. The absence of corrections
to −iωŝs is a relic of the rotational symmetry of the unconstrained theory: even
though the constrained theory is not O(n)-invariant and the dynamics of the spin
can not be written as a continuity equation because of the DYS vertex, no corrections
to −iωŝs arise. I will provide a more complete argument for why this happens later.
The absence of corrections to −iωψ̂ψ is instead only a consequence of the order in
the perturbation theory I am working at. Corrections to this term would contribute
to the anomalous dimension η, which is known to be O(ϵ2) in the static universality
class of dipolar ferromagnets [111] SMG is expected to belong to (see Sec. 8.1.1).

Diagrammatic expansion

The standard way to compute the corrections to the bare parameters of the model
is using perturbation theory; to be more precise I will compute the corrections
δP using a Feynman diagram expansion. The diagrams that contribute to these
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perturbative corrections to the Gaussian parameters of the action, namely m,Γ,
λ⊥, λ∥, are known as Self-Energies, and take the following form:

Σαβ(k̃) : ψ̂α(−k̃) ψβ(k̃) (8.78)

Παβγν(k̃) : ŝαβ(−k̃) sγν(k̃) (8.79)

which corrects the action as follows:

∆S0 =
∫ <

k̃
ψ̂α(−k̃)Σαβ(k̃)ψβ(k̃) + ŝαβ(−k̃)Παβγν(k̃)sγν(k̃) (8.80)

Therefore Σαβ corrects Γ and m, while Παβγν corrects λ⊥ and λ∥. Here all momenta
are integrated off-shell, k < Λ/b, while frequency integrals still run from −∞ to ∞.
The quantities Σ and Π are the self-energies, which contribute to the perturbative
corrections of the Gaussian parameters of the original action. At first order in ϵ, the
self-energies are given by the following Feynman diagrams:

Σαβ = + + (8.81)

Παβγν = (8.82)

These diagrams can be written as integrals, using the standard Feynman diagram-
matic rules, and read

Σαβ(k̃) = − JQαβστ (k)
∫ >

p̃
C0,ψ
στ (p̃)+

+ g2P⊥
αρ(k)

∫ >

p̃
P⊥
τµ(p+)G0,ψ

στ (−p̃+)C0,s
ρσµβ(p̃−)

+ g2P⊥
αρ(k)

∫ >

p̃
(k2 − p2

−)G0,s
ρστβ(−p̃+)C0,ψ

στ (p̃−)

(8.83)

Παβγν(k̃) = g2IαβσµIρτγν
∫ >

p̃
(p2

+ − p2
−)P⊥

ιρ(p+)G0,ψ
µι (−p̃+)C0,ψ

στ (p̃−) (8.84)

where p̃+ = p̃+ k̃
2 , while p̃− = p̃− k̃

2 . The integration over the frequency is performed
explicitly, as ω has no cutoff, while the integration in the wave vector is performed
on the momentum shell Λ/b < k < Λ, as the > superscript to the integral sign
suggests: ∫ >

p̃
=
∫ Λ

Λ
b

ddp
(2π)d

∫ ∞

−∞

dω
2π (8.85)

When working in the thin-shell limit, which is achieved by sending b → 1+; the
diagrams of Σαβ and Παβγν can be computed exactly up to the relevant order in k,
namely up to order k2. This calculation gives:

Σαβ(k̃) = −(m+ Γk2)δαβ
3(1 + 3w + 2x)f
4(1 + w)(x+ w) ln b+ δαβ

9
2 ũ(m− ΓΛ2) ln b

Παβγν(k̃) = −1
2λ

⊥P⊥
αβγνk

2 f

6x ln b− 1
2λ

∥k2P∥
αβγν

f

3 ln b
(8.86)
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These results are given in terms of the following effective parameters, whose meaning
will be discussed in the following section,

f = g2

Γλ∥KdΛd−4 ũ = J

ΓKdΛd−4 r = m

Γ w = Γ
λ∥ x = λ⊥

λ∥ . (8.87)

Here Kd = Sd/(2π)d, with Sd being the surface of the d-dimensional sphere, while
Λ is the cutoff of the theory (not to be confused with the relaxation tensor of the
spin Λαβγν). Moreover, because I am working on the critical manifold T = Tc when
results at first order in ϵ are concerned one can set r = m = 0 in all corrections but
those of m itself.

From (8.86) it is possible to read the perturbative correction to the parameters
Γ,m, λ⊥, λ∥:

δΓ = 3(1 + 3w + 2x)
4(1 + w)(x+ w)f (8.88)

δm = −9
2 ũ(1 − r−1Λ2) + 3(1 + 3w + 2x)

4(1 + w)(x+ w)f (8.89)

δλ⊥ = f

6x δλ∥ = f

3 (8.90)

Absence of spin dissipation

It is important at this point to emphasise a key result: the self-energy Παβγν(k, ω)
vanishes when k → 0. This fact has two very important implications: the first is
that the RG is not generating a dissipative term for the spin −ηŝs, namely a linear
term in the spin equation of motion which is finite at k = 0. The second is that no
correction to the −iωŝs term arises. This result is strictly related to the particular
structure of the mode coupling vertex of the spin’s equation of motion (9.56), and
in particular to the fact that this vertex vanishes at zero external momentum k. I
believe that this result, which was proven here only at one loop level, could be valid
at all orders in perturbation theory. Indeed, the most general diagram that can
generate a dissipation is given by,

Παβγν = (8.91)

where the blob represents the sum of all 1-particle irreducible diagrams compatible
with the given external legs, namely the renormalized mode coupling spin vertex, in
which all the possible diagrammatic corrections (at all orders) are taken into account.
If the renormalized spin mode coupling vertex vanishes at zero external momentum
k, then Π is zero too at k = 0, implying that no dissipation is generated. Therefore,
as far as the structure of the spin mode coupling vertex is preserved under RG, no
spin dissipation can be generated. Even though in this work I explicitly showed that
the structure of this vertex is preserved under RG only at one loop level, there are
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some hints suggesting that this result could remain valid at all order in perturbation
theory.

It can be shown, by computing the Fokker-Planck equation of SMG from the
Langevin equations (8.40) and (8.41), that the probability density of the system
approaches the equilibrium Gibbs-Boltzmann stationary state, P ∼ exp (−H). This
non-perturbative result relies on the specific structure of the mode coupling vertices,
which means that if the structure of the mode coupling interactions (8.74) and (8.72)
were different, the system would not have a stationary equilibrium distribution.
This is similar to what was observed in the case of (non-solenoidal) Models E/F
in [114]. As this result is not perturbative, it is reasonable to think that the RG
does not violate it; indeed, it would be very strange if under coarse-graining an
equilibrium model flowed to an out-of-equilibrium one. Therefore, the structure of the
mode coupling vertices should be preserved by the RG at all orders in perturbation
theory. Since an essential requirement to generate a spin dissipation is that the RG
changes the structure of the mode coupling spin vertex (9.56), one concludes that
no dissipation is generated at any orders in perturbation theory. Note also that this
result ensures that in the presence of a small bare dissipation, the same crossover
observed in [41, 108] between a conservative and a dissipative dynamics is expected
to arise.

Finally, I remark once again that the absence of spin dissipation does not imply
that the total spin is instantaneously conserved: due to the presence of the novel
DYS vertex (8.48), which is not zero at k = 0, conservation is broken, even though it
is still true that the mean value of the total spin vector is conserved, suggesting that
a generalised spin precession occurs: similarly to a standard angular momentum
without dissipation but in presence of an external force, which performs a periodic
precession with constant time average, so the total spin in presence of the solenoidal
constraint has a non-dissipative time dynamics that conserves its mean value. To see
why this happens, let me notice that the DYS vertex is the only contribution to the
dynamics of the total spin S(t) =

∫
ddxs(x, t) = s(k = 0, t), which takes the form

Ṡ(t) = 2κIαβγν
∫
q,h,p

ψγ (−q)Pνρ (q)ψρ (p)ψσ (h)ψσ (q − p− h) (8.92)

The average value ⟨Ṡ(t)⟩ can be computed through a diagrammatic approach as the
amputated diagram

⟨Ṡ(t)⟩ = (8.93)

Where the blob stands for the sum of all diagrams with one ŝ(k̃) external leg
evaluated ad k̃ = 0. Since the mode-coupling vertex is proportional to k, this will
not contribute to ⟨Ṡ(t)⟩. At first order in perturbation theory, the DYS vertex
contributes to ⟨Ṡ(t)⟩ through the diagram,

(8.94)

This diagram can be shown to vanish identically, supporting the idea that although
Ṡ(t) might fluctuate, it is not dissipated by the presence of the DYS vertex.
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Perturbative corrections from the noise terms

It is quite crucial to notice how in the action (8.52)-(8.53) the coefficients Γ, λ⊥

and λ∥ do not appear only in the ψ̂ψ and ŝs terms, but also in the ψ̂ψ̂ and ŝŝ
terms. While the former terms arise from the deterministic relaxation dynamics,
the latter arise from the Gaussian noises. In the presence of detailed balance,
relaxation coefficients and noise amplitudes are linked by Einstein’s relations. In
this equilibrium theory, the relaxation coefficients must be equal to the amplitude of
noise correlations. This equality follows from the presence of detailed balance with
respect to the equilibrium Gibbs-Boltzmann distribution e−H.

It is crucial for this relation to also hold at a coarse-grained level, namely after
applying an RG transformation. Therefore, the corrections δΓ and δλ⊥∥ appearing
in (8.76) should equal the corrections to the ψ̂ψ̂ and ŝŝ terms respectively. These
noise terms get corrected from the shell integration in the following way:

S<0 = −
∫ <

k̃
ψ̂ Γ(1 + δΓ ln b) ψ̂−

−1
2

∫ <

k̃
ŝ
[
λ⊥(1 + δλ⊥ ln b)k2 + λ∥(1 + δλ∥ ln b)k2

]
ŝ+ . . . ,

(8.95)

To verify this, I compute here the following Self-energies

Σ̃αβ(k̃) : ψ̂α(−k̃) ψ̂β(k̃) (8.96)

Π̃αβγν(k̃) : ŝαβ(−k̃) ŝγν(k̃) (8.97)

which correct the ψ̂ψ̂ and ŝŝ terms in the action as follows:

∆S0 =
∫ <

k̃
ψ̂α(−k̃)Σ̃αβ(k̃)ψ̂β(k̃) + ŝαβ(−k̃)Π̃αβγν(k̃)ŝγν(k̃) (8.98)

Therefore Σ̃αβ corrects Γ, while Π̃αβγν corrects λ⊥ and λ∥. At first order in ϵ, the
noise self-energies are given by the following Feynman diagrams:

Σ̃αβ = Π̃αβγν = (8.99)

These diagrams can be written as integrals, using the standard Feynman dia-
grammatic rules, and read

Σ̃αβ(k̃) = g2P⊥
αρ(k)P⊥

βµ(k)
∫ >

p̃
G0,ψ
στ (−p̃+)C0,s

ρσµτ (p̃−) (8.100)

Παβγν(k̃) = g2IαβσµIρτγν
∫ >

p̃
(p2

+ − p2
−)P⊥

ιρ(p+)G0,ψ
µι (−p̃+)C0,ψ

στ (p̃−) (8.101)

where p̃+ = p̃+ k̃
2 , while p̃− = p̃− k̃

2 .
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When working in the thin-shell limit, which is achieved by sending b → 1+; the
diagrams of Σ̃αβ and Π̃αβγν can be computed exactly up to the relevant order in k,
which is k0 for Σ̃ and k2 for Π̃. This calculation gives:

Σ̃αβ(k̃) = ΓP⊥
αβ(k)3(1 + 3w + 2x)f

4(1 + w)(x+ w) ln b

Π̃αβγν(k̃) = 1
2λ

⊥P⊥
αβγνk

2 f

6x ln b+ 1
2λ

∥k2P∥
αβγν

f

3 ln b
(8.102)

From (8.102) it is possible to read the perturbative correction to the parameters
Γ, λ⊥, λ∥:

δΓ = 3(1 + 3w + 2x)
4(1 + w)(x+ w)f δλ⊥ = f

6x δλ∥ = f

3 (8.103)

Remarkably, these results coincide with those of (8.88) and (8.90), derived from the
corrections to the relaxation terms.

8.4.2 Mode coupling vertex corrections

The corrections to the mode coupling constant g are given by the following vertex
functions,

V ψ̂ψs
αβγν(k̃, q̃) = ψ̂α(−k̃)

ψβ(q̃)

sγν(k̃ − q̃)

(8.104)

V ŝψψ
αβγν(k̃, q̃) = ŝαβ(−k̃)

ψγ( k̃2 − q̃)

ψν( k̃2 + q̃)

(8.105)

These two vertex functions correct the action as follows:

∆S =
∫ <

k̃,q̃
ψ̂α(−k̃)ψβ(q̃)sγν(k̃ − q̃)V ψ̂ψs

αβγν(k̃, q̃)

+
∫ <

k̃,q̃
ŝαβ(−k̃)ψγ(k̃/2 − q̃)ψν (k̃/2 + q̃)V ŝψψ

αβγν(k̃, q̃)
(8.106)

Note that it is a crucial requirement for these equilibrium theories that g renormalizes
in the same way in both terms. I am interested in how these vertex functions change
the value of the mode coupling constant, hence one can compute V ψ̂ψs at the zeroth
order in the momenta, and V ŝψψ up the second order in the momentum because the
gŝψψ term in the action is of second order in the wave vector.
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A first key consistency check: perturbative renormalization vs symmetry
generator

The coupling g is the parameter conjugated to the generator of the rotational
symmetry (the spin), hence it plays a central role in the definition of the Poisson
structure and for this reason, it cannot take perturbative contributions from the RG
calculation. Therefore, I expect both V ψ̂ψs and V ŝψψ to be zero, and fortunately
this is indeed the case in the present calculation. From the technical point of view,
however, the fact that these vertex functions are zero is extremely nontrivial and it is
worth showing, as it is a vital consistency check of the calculation and in particular
of the necessity of the new DYS vertex. The vertex function V ψ̂ψs is given by the
following Feynman diagrams:

V ψ̂ψs
αβγν = + + + (8.107)

To compute the corrections to g one must compute V ψ̂ψs at the zeroth order it the
momentum. As it happens in the non-constrained case [40], these four diagrams, at
zero external momenta k̃, q̃, sum up to zero.

V ψ̂ψs
αβγν(0, 0) = 0 (8.108)

The vertex function V ŝψψ
αβγν(k̃, q̃), on the other hand, is given by the following nonzero

Feynman diagrams:

V ŝψψ
αβγν = + + + (8.109)

The first two diagrams (the triangles) cancel each other, exactly as in the non-
solenoidal case. The other two diagrams are, on the other hand, specific to the
solenoidal case. The first diagram, which vanishes in the non-constrained theory
[108], is nonzero when the solenoidal constraint is present, due to the suppression of
the longitudinal ψ∥ mode,

= −gu

8 Iαβστ (kσkγδτν + kσkνδτγ) Λd−4Kd ln b+ . . . (8.110)

where the ellipses stand for higher order in the momentum expansion, representing
corrections to RG-irrelevant interactions. These vertex corrections not only would
give to g a perturbative correction due to the shell integration, but it would generate
a novel interaction term too since it does not have the same tensorial structure as the
original interaction (9.56). If no other diagram cancelling it were present, the RG
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would not have a closed structure, meaning that the equations of motion would not
be eigenstates of the RG transformation, since the shell integration generates new
interaction terms that were not present in the bare theory. In the general case, as in
the off-equilibrium theory that I will study in the following chapters, this and other
novel interaction terms will be generated anyway by activity. When this happens, it
is sufficient to take into add these novel terms to the bare equations and start the
RG procedure once again. However, as far as this equilibrium case is concerned,
one would not expect any term other than those derived from the Mori-Zwanzig
formalism to be generated by the RG. This unpleasant scenario, in which a new
relevant interaction arises during the RG flow, is avoided by the key presence of
a new Feynman diagram formed by a bubble connection of two lines of the DYS
vertex, namely,

= κ

8 Iαβστ (kσkγδτν + kσkνδτγ) Λd−4Kd ln b+ . . . (8.111)

where, as before, the ellipses stand for higher order in the momentum expansion.
The presence of this diagram is fundamental, since for κ = ug as in the present case,
it exactly cancels the contributions of diagram (8.110), therefore curing the anomalies
that the latter carries and making the solenoidal RG calculation self-consistent. I
therefore consider the following diagrammatic equation a key result of the present
calculation:

+ = 0 (8.112)

This calculation not only showed that g does not take any perturbative correction,
but it also indirectly showed that no terms of O(k = 0) are generated by the DYS
vertex. Although the DYS vertex contributes to the dynamic behaviour of s also at
k = 0, namely violating the conservation of the total spin, the last diagram vanishes
at k = 0. The fact that the simplest one-loop diagram that can be constructed
starting from the DYS vertex does not give any perturbative contribution at vanishing
momenta suggests that no spin dissipation should arise, not even at higher orders
in the ϵ-expansion. This is related to the fact that the DYS vertex violates the
conservation of the spin in a weak way, leading to a sort of generalised precession
that keeps its average value fixed.

8.4.3 Ferromagnetic vertex corrections

In contrast to the mode coupling vertex, the ferromagnetic coupling does have
perturbative corrections due to the shell integration. The coupling J is corrected by
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the four-field vertex function V ψ̂ψψψ,

V
(ψ̂ψψψ)
αβγν (k̃, q̃, p̃) = ψ̂α(−k̃)

ψβ(q̃)

ψγ(p̃)

ψν(k̃ − q̃ − p̃)

(8.113)

that corrects the action as follows:

∆S =
∫ <

k̃,q̃,p̃
ψ̂α(−k̃)ψβ(p̃)ψγ(q̃)ψν(k̃ − q̃ − p̃) V ψ̂ψψψ

αβγν (k̃, q̃, p̃) (8.114)

At one loop, only the following Feynman diagrams contribute to the vertex function
V ψ̂ψψψ in a non-trivial way:

V ψ̂ψψψ
αβγν = + +

+ + +
(8.115)

The first term is the classic fish diagram of the standard ferromagnetic theory; the
second diagram is generated by joining a mode-coupling vertex with the DYS vertex;
the last three diagrams are of purely mode-coupling origin. Computing V ψ̂ψψψ at
the zeroth order in the external momenta, gives,

V ψ̂ψψψ
αβγν (k̃, q̃, p̃) = −J

3Qαβγν(k)
[
−17

2 ũ+ 3(1 + 3w + 2x)
4(1 + w)(x+ w)f

]
ln b (8.116)

so that the perturbative correction to the coupling J0 is

δJ = −17
2 ũ+ 3(1 + 3w + 2x)

4(1 + w)(x+ w)f (8.117)

A second key consistency check: statics vs dynamics

The dynamical RG calculation (at equilibrium) must, of course, contain in itself
the static RG calculation; more specifically, if a coupling constant is present also
in the static case, its dynamical renormalization must be the same as its static
renormalization. This is the case for the ferromagnetic coupling, which is perfectly
well-defined also within a purely static framework. Therefore, in this section, I show
that this consistency between statics and dynamics is achieved by this calculation.

First of all, I recall that the actual ferromagnetic coupling, namely the coupling
constant that appears in the static Hamiltonian, is u = J/Γ (see (8.55)). Hence, the
static ferromagnetic coupling u gets perturbative corrections both from J and Γ,

δu = δJ − δΓ (8.118)
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and from equations (8.117) and (8.88) one has,

δu = −17
2 ũ = −17

2 Λd−4Kdu (8.119)

Hence, the static coupling u does not receive any perturbative corrections from the
dynamic coupling g, which is healthy. But the crucial check is whether the recursive
relation I get for u from the dynamic RG is the same as the static one, equation
(8.13). Fortunately, it is. Let me stress that this key consistency is recovered in an
extremely nontrivial way; in particular, the DYS vertex plays a crucial role. The
cancellation of the dynamical coupling g in the perturbative correction of the static
coupling is achieved through the following diagrammatic identity:

D1

+

D2

+

D3

+

D4

= ∂

∂k2

D5

D1 = − f

4(w + x)

D2 +D3 +D4 = (2 + 5w + 3x)
2(1 + w)(x+ w)f

D5 = 3(1 + 3w + 2x)
4(1 + w)(x+ w)f

(8.120)

where the l.h.s of the equation is computed at zero external momenta. The diagram
D1 is the product of the interplay between the mode-coupling vertex and the DYS
vertex, which is therefore crucial - once again - in recovering the correct static
behaviour.

8.4.4 DYS vertex corrections

There is a third, and subtler, consistency check that is related to the renormalization
of the ferromagnetic coupling constant. The coupling u not only appears in front of
the ferromagnetic vertex but - due to the static-dynamic coupling induced by the
solenoidal constraint - it also appears in front of the DYS vertex, which is indeed
proportional to κ = gu (see equation (8.75)). I showed that g does not acquire
perturbative corrections, hence any diagrammatic correction to the DYS vertex
must be billed to u; but u has been already corrected by its natural ferromagnetic
corrections V ψ̂ψψψ, in the static-compliant way that I have just seen, equation
(8.119). Hence, it seems two potentially independent corrections to u might arise,
one coming from the bona fide ferromagnetic vertex, and a second one from the DYS
vertex. If these diagrammatic corrections were different from each other, I would have
a serious problem, as there would be a bifurcation of the ferromagnetic interaction,
with highly dubious physical interpretation, not to mention the impossible recovery
of the equilibrium static results. Once again, fortunately, the calculation does not
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disappoint me, even though in a very nontrivial way. The DYS vertex function
V ŝψψψψ has (at one loop) the following non-vanishing diagrammatic contribution,

V ŝψψψψ
αβγνστ = (8.121)

Computing this Feynman diagram I get,

V ŝψψψψ
αβγνστ (k̃, q̃, h̃, p̃) = κ

12
17
2 ũKαβγνστ (k, q,h,p,k − q − h− p) (8.122)

and therefore the correction to κ that one obtains from the DYS vertex is

δκ = −17
2 ũ (8.123)

Because κ = gu, the following relation between the perturbative correction of κ, g
and u is expected to hold:

δu = δκ− δg (8.124)
Since δg = 0, as shown previously, I obtain the same correction to u as the one
obtained from the ferromagnetic vertex, namely δu = −17/2ũ, which saves the day.

8.4.5 Rescaling

Now that the shell integration has been performed, it is time to move to the second
step of the RG transformation. This second step consists of re-scaling momenta,
frequencies and fields according to

k =b−1 kb , ω =b−zωb , (8.125)
ψ(k, ω) =b−χψψ(kb, ωb) , ψ̂(k, ω) =b−χψ̂ψ̂(kb, ωb) , (8.126)
s(k, ω) =b−χss(kb, ωb) , ŝ(k, ω) =b−χŝ ŝ(kb, ωb) . (8.127)

After this rescaling, one recovers an action with the same cutoff Λ but with new
renormalized parameters and couplings, which will be denoted with a subscript b in
what follows.

Note that by χϕ I indicated here the scaling dimension of the field ϕ written in
momentum-frequency space. Since the physical real-space fields ψ(x, t) and s(x, t)
are linked to χψ and χs by a Fourier transform, their scaling dimensions are given
by

χψ(x,t) = χψ + d+ z χs(x,t) = χs + d+ z (8.128)

These scaling dimensions of real-space fields are fixed by the requirement that the
coefficients in front of the terms (∂ψ)2 and s2 in the Hamiltonian (8.18) remain
equal to the unity under static RG flow and therefore are

χψ(x,t) = d− 2 + η

2 χs(x,t) = d

2 (8.129)

where η is critical exponent characterising the anomalous dimension of the ⟨ψψ⟩
correlation function.Because I am working at first order in ϵ, and η = O(ϵ2) in the
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static universality class of reference, i.e. dipolar ferromagnets [87], I will here work
at η = 0.

The scaling dimensions of the response fields ψ̂ and ŝ can be determined by
requiring the coefficient in front of ∂tψ and ∂ts in the equations of motion to remain
equal to one along the RG flow. In Fourier space, this is equivalent to requiring that
the coefficient in front of the −iω terms in the action (8.52)-(8.53) remains equal to
unity. With these requirements, at first order in ϵ, one gets that

χψ = −6 + d

2 χs = −4 + d

2 (8.130)

χψ̂ = −2 + d

2 χŝ = −4 + d

2 (8.131)

The effect of this rescaling step is to restore the original cut-off of the theory.
Moreover, after this step, all the parameters of the model acquire a naive scaling
factor, corresponding to their naive/engineering scaling dimension:

Γ → bz−2Γ λ⊥ → bz−2λ⊥ λ∥ → bz−2λ∥ (8.132)

g → bz− d
2 g J → b2z−dJ κ → b3z−3d/2κ m → bzm (8.133)

where z is the dynamic critical exponents, which determines how the order parameter
relaxes close to the critical point.

8.5 The critical dynamics of solenoidal Model G
After an RG step, namely after both shell integration and rescaling are performed,
one ends up with a theory defined by a new set of parameters:

Γb = bz−2+δΓ Γ mb = bz+δm m (8.134)

λ
∥
b = bz−2+δλ∥

λ∥ λ⊥
b = bz−2+δλ⊥

λ⊥ (8.135)

gb = bz− d
2 +δg g Jb = b2z−d+δJ J (8.136)

κb = b3z− 3
2d+δκ (8.137)

Here I used the fact that in the thin shell limit b → 1+, the perturbative corrections
1 + δP ≃ bδP . How the parameters change iterating this procedure defines the
renormalization group flow, and the fixed point of this flow rules the critical dynamics
of the system.

8.5.1 Effective parameters and RG flow equations

Even though I have seven equations for seven parameters, it is possible to reduce the
complexity of the problem by using the set of five effective parameters introduced
in Eq. (8.87). Let me recall here, for the benefit of the reader, what these effective
parameters look like:

f = g2

Γλ∥KdΛd−4 ũ = J

ΓKdΛd−4 r = m

Γ w = Γ
λ∥ x = λ⊥

λ∥ , (8.138)
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Please note also that all perturbative corrections computed in the previous section
depend unambiguously on these effective parameters. The parameter r is precisely
the coefficient in front of the quadratic ψ term in the free energy (8.18). Also, the
coupling ũ has connections with the static free energy, since it can be written as
ũ = uΛd−4Kd: hence it is not a new effective coupling constant. I just went back to
the original static ferromagnetic coupling constant u of (8.18) multiplied by Λd−4Kd

for computational convenience. Finally, note that in principle I should add a fifth
coupling ũκ = κ/gΛd−4Kd. However, because at equilibrium κ = ug, then ũκ = ũ.

The effective coupling constants, through equations (8.134)-(8.137), are regulated
in a closed manner by the following four equations:

fb = bϵ+2δg−δΓ−δλ∥
f

ũb = bϵ+δJ−δΓ ũ

wb = bδΓ−δλ∥
w

xb = bδλ
⊥−δλ∥x

rb = b2+δm−δΓr

(8.139)

The flow equation for ũκ would take instead the form ũκ,b = bϵ+δκ−δg ũκ. However,
as I checked explicitly in Sec. 8.4.4, δJ − δΓ = δκ − δg, hence maintaining the
crucial relation ũκ = ũ also along the RG. Let me point out that if I were to set
λ∥ = λ⊥ ≡ λ the effective parameters (8.138) would coincide with the one of the
standard, unconstrained Model G [40].

By iterating this RG transformation, one obtains a set of recursive relations
defining the RG flow, which link the parameters at the step l + 1 to those at the
step l:

fl+1 = bϵ+2δg−δΓ−δλ∥
fl

ũl+1 = bϵ+δJ−δΓ ũl

wl+1 = bδΓ−δλ∥
wl

xl+1 = bδλ
⊥−δλ∥xl

rl+1 = b2+δm−δΓrl

(8.140)

In the thin shell limit the b → 1+, these recursive relations can be written in terms
of a continuous number of step variable l as

df
dl = βf = (ϵ+ 2δg − δΓ − δλ∥)f (8.141)
dũ
dl = βũ = (ϵ+ δJ − δΓ)ũ (8.142)

dw
dl = βw = (δΓ − δλ∥)w (8.143)
dx
dl = βx = (δλ⊥ − δλ∥)x (8.144)
dr
dl = βr = (2 + δm− δΓ)r (8.145)
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Note that explicit expression of the various perturbative corrections δΓ, δλ⊥/∥, δm, δJ
have been calculated in the previous sections, and can be found in Eq. (8.88)-(8.90)
and Eq. (8.117), while δg = 0 as shown in Sec. 8.4.2.

The fixed point value of these parameters will determine the value of the critical
exponents of the model. Let me notice that the naive scaling dimension of the
effective couplings f and ũ is ϵ = 4 − d, which suggests that their fixed point
will be of order ϵ. Moreover, the naive scaling dimension of r is 2, which means
that r will be a relevant perturbation in the RG sense: the critical manifold is
unstable to perturbations of r. This is related to the fact that r ∝ T − T0, with
T0 being the mean-field transition temperature, and hence for values of r different
from a given critical value r ̸= rc, the RG flow is driven towards the non-critical
infinite-temperature or zero-temperature fixed points.

8.5.2 Fixed point

I am ready to finally calculate the dynamical critical exponent z at one loop in a
mode-coupling theory subject to a solenoidal constraint, that is in solenoidal Model
G. To do this, I need to find the fixed points of the RG flow equations. Since the
calculation here is performed at one loop, the static coupling u does not contribute
to the renormalization of the dynamic parameters, therefore completely decoupling
the dynamic behaviour from the static one. Because I have already abundantly
checked that the renormalization of u is compatible with the static behaviour of
dipolar ferromagnets, I will simply drop this equation from now on.

Fixed points can be searched by looking at the zeros of the β-functions of the
effective parameters f , w and x, obtained in Eqs. (8.141), (8.143) and (8.144), are
given by:

βf = f

(
ϵ− f

3 − 3 (1 + 3w + 2x)
4 (1 + w) (x+ w)f

)
(8.146)

βw = wf

( 3 (1 + 3w + 2x)
4 (1 + w) (x+ w) − 1

3

)
(8.147)

βx = f

3

(1
2 − x

)
(8.148)

Since I am interested in a genuine mode-coupling dynamical regime, I will not
consider the trivial fixed points with f∗ = 0, since they lead to the overdamped
dynamics with z = 2 (at one loop) typical of Model A [40]. I find a set of non-trivial
fixed points, among which only one is IR-stable while all the others are unstable.
This stable fixed point is given by,

f∗ = 3ϵ
2 , w∗ = 21 +

√
697

8 , x∗ = 1
2 (8.149)

As expected the effective coupling constant is of order ϵ = 4 − d at this fixed point.
The stability of the new fixed point p⃗∗ = (f∗, w∗, x∗) can be verified by studying

the RG flow of small perturbations δp⃗ = p⃗− p⃗∗. The linearized flow equation in the
surroundings of p⃗∗ is given by

dp⃗
dl ≃ W · δp⃗ (8.150)
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where the matrix W is the Jacobian of the β-functions β⃗ = (βf , βw, βx), namely

W =


∂βf
∂f

∂βf
∂w

∂βf
∂x

∂βw
∂f

∂βw
∂w

∂βw
∂x

∂βx
∂f

∂βx
∂w

∂βx
∂x

 (8.151)

When the eigenvalues of the Jacobian matrix are negative, Eq. (8.150) guarantees
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that small deviations δp⃗ form the fixed point flow back towards p⃗∗. At the fixed
point (8.149) the matrix W has eigenvalues

e1 = − ϵ

2; e2 = −ϵ; e3 = −
(

3
√

697
4 − 697

36

)
ϵ ≈ −0.44ϵ (8.152)

which are all strictly negative for ϵ > 0, thus making the novel fixed point stable
in d < dc = 4. In Fig. 8.1 (upper panel) I plot the RG flow in the (f, w) plane at
x = 1/2 in d = 3 (upper panel), which converges to the stable fixed point (8.149) as
expected. In the lower panel, I show the flow of the running couplings as a function
of the RG step, from which one can see that the parameters flow from the Gaussian
fixed point with f = 0 and z = 2 towards the new fixed point with z = d

2 .

8.5.3 Anisotropy in the spin dynamics

In Model G the absence of anisotropic effects leads to the implicit assumption that
all the different directions of the fields, both in real and Fourier space, meaning that
transverse and parallel modes must be equal and therefore λ = λ⊥ = λ∥, namely
x = 1. However, at the new stable fixed point of the solenoidal Model G described
by Eq. (8.149) x∗ = 1/2, meaning that the anisotropy due to the suppression of the
longitudinal ψ-mode leads to different dynamic behaviour of the two s-modes s⊥

and s∥, in such a way that λ∥∗ = 2λ⊥∗. This result directly follows from the fact
that the perturbative corrections δλ⊥ and δλ∥, given in Eq. (8.90), obey the relation

δλ∥ = 2x δλ⊥ (8.153)

It is not yet clear to me whether this factor 2 between λ⊥ and λ∥ can be guessed
through a direct analysis of the equations of motion, or if it is valid only in the
long-wavelength and long-time dynamic behaviour.

In any case, since the diagram contributing to δλ⊥ and δλ∥ involves neither
propagators nor correlators of the field s, this result is a pure consequence of the
suppression of the ψ∥ modes. Even if I had naively left λ0 = λ⊥

0 = λ
∥
0 at a bare

level, the RG transformation would have led to two different perturbative corrections
δλ⊥ and δλ∥, meaning that the infrared behaviour of this theory has two different
diffusive coefficients for the s⊥ and s∥ modes.

8.5.4 The dynamical critical exponent z

To find the dynamic critical exponent, following [40] and [1], I require that the
kinetic coefficient of the primary field, Γ, is non-singular at the RG fixed point, thus
ensuring that the effective RG theory has a non-singular characteristic time scale.
This amounts to imposing the condition,

Γ∗ = lim
l→∞

Γl = O(1) (8.154)

and thus I need to write explicitly the recursive RG equation for the kinetic coefficient;
that equation can be found in equations (8.134), complemented by its perturbative
corrections, equation (8.88), thus giving,

Γl+1 = bχΓ Γ χΓ = z − 2 + 3(1 + 3wl + 2xl)fl
4(1 + wl)(xl + wl)

(8.155)
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By requiring Γ∗ = O(1), which means asking that at the fixed point χΓ = 0, I finally
get

z = 2 − 3 (1 + 3w∗ + 2x∗) f∗

4 (1 + w∗) (x∗ + w∗) (8.156)

and once I use the one-loop values of the parameters at the stable fixed point (8.149),
I obtain

z = d

2 (8.157)

Despite the difference of all effective parameters and coupling constants at the stable
fixed point, this is exactly the same dynamic critical exponent as the standard
unconstrained Model G [40]. This result is somewhat surprising. The solenoidal
constraint does change the static universality class: the static critical exponents are
different from the Landau-Ginzburg class, and define the novel dipolar ferromagnet
class (see Table I and [87]). According to the common wisdom in the theory of
critical phenomena, one would expect a change also in the dynamic universality class,
as universality is normally broader at the static level than at the dynamic level. For
example, Ising-like ferromagnets, have the same static critical exponents, while the
dynamical critical exponents varies depending on whether the order parameter is
conserved (Model B) or not (Model A). Here, I see something different: the dynamic
universality class does not change due to the solenoidal constraint. Even though I
have derived this conclusion perturbatively, this is probably a non-perturbative result
due to the great power of the symmetry; the lack of diagrammatic renormalization
of the coupling constant conjugated to the generator of the rotations, g, leads to the
recursive relation,

gl+1 = bz− d
2 gl (8.158)

If one now asks that g does not change at all, they get z = d/2 at the non-perturbative
level.

The fact that the solenoidal constraint does not alter the dynamical critical
exponent is an encouraging result since it suggests that using the incompressibility
condition to simplify the dynamical equations of active matter with mode coupling
interactions is reasonable, as in the case of equilibrium systems it does to change
the dynamical behaviour of the system.

8.6 Conclusions
I have studied the effects of a solenoidal constraint on the critical dynamics of a
field ψ with O(d)-symmetry in the presence of mode-coupling interaction with the
generator of the rotational symmetry s, called spin; more succinctly, I have studied
Solenoidal Model G. The presence of the constraint leads to the suppression of the
ψ-mode parallel to the wave-vector k, namely ψ∥(k) = k ·ψ (k) / |k|, violating the
O(d)-symmetry and modifying the static behaviour. The equations of motion of the
constrained theory have been derived starting from the symmetries and Poisson-
bracket relations between the hydrodynamic variables, namely the order parameter
ψ and the spin s. I performed a one-loop renormalization group calculation to
investigate the long wave-length and long time behaviour in the critical region. The
closed structure of the RG transformation and the consistency of the RG flow with
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the static behaviour of dipolar ferromagnets provide a self-consistent proof that no
RG-relevant interaction has been omitted and that the equations of motion I derived
are correct.

Two main dynamic effects arise as a consequence of the solenoidal constraint.
The first, and most predictable one, is the projection on the plane orthogonal to k
of the equation of motion for the order parameter ψ. On the contrary, no similar
projection of the equation for s can be performed to obtain the spin dynamics;
instead, the suppression of ψ∥(k) leads to a novel non-linear interaction - the DYS
vertex - combining the effect of the static ferromagnetic coupling of the field ψ and
the mode-coupling dynamic interaction. The presence of this new mixed interaction
is the second, less intuitive, effect of the constraint, which adapts the spin dynamics
to the presence of the constraint by making the static quartic coupling contributing to
the torque-like interaction ∂ts ∼ g0ψ × δψH. Moreover, the DYS vertex contributes
to the time-derivative of the spin also at zero wave vector, therefore violating the
conservation of the total spin.

The lack of conservation of the spin is not something strange: the order parameter
is not rotational-invariant, due to the solenoidal constraint, and therefore the
generator of its rotations is not a conserved quantity. It is however crucial to
understand whether the spin is dissipated or not, since the presence of a dissipation
generated by the RG would make the spin stop being an hydrodynamic variable,
therefore suppressing any inertial behaviour in the critical region. The torque-
like nature of the DYS vertex, which is the only dynamic term violating the spin
conservation, indicates that this violation gives rise to a generalized precession of
the total spin, rather than a dissipation. At one loop, the perturbative expansion
confirms this interpretation, since the self-energy of the spin Π does not contain any
perturbative corrections at k = 0. Moreover, I have shown that the presence of any
dissipative term in the linear dynamics of the spin can arise only if the dynamic
mode-coupling vertex in the equation of s did not vanish when k = 0, which seems
not to be the case for this theory.

Our RG calculation passed several nontrivial consistency checks. First of all,
the fact that the equations of motion appear to be eigenstates of the RG, in the
sense that the shell integration step does not generate new interaction terms, ensures
that I did not miss any relevant coupling in the problem description. Secondly, the
RG recursive relations for the dynamic theory reproduce the behaviour of dipolar
ferromagnets, ensuring that the static behaviour is correctly reproduced by the
dynamics. Let me remark that both these results directly follow from the presence of
the new DYS vertex, in the absence of which the theory would not describe correctly
the dynamics of the system; therefore meaning that this new non-trivial interaction
plays a crucial role in making the dynamic behaviour of the spin compatible with
the constraint.

From the study of the RG recursive relations, the dynamic behaviour has been
shown to be characterised by a critical exponent z = d

2 , which is the same as
the non-constrained theory. This result was somewhat unexpected. In general,
static properties are more robust compared to dynamical properties; models with
different dynamical critical behaviours are often characterised by the same static
behaviour, such as Model A and Model G of [40]. On the contrary, in my model
the solenoidal constraint changes the static universality class, leaving unchanged the
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critical dynamics of the system. This suggests that the dynamic critical behaviour of
homogeneous systems does not change when a solenoidal constraint, i.e. incompress-
ibility, is enforced; this indicates that one can try and understand their dynamic
critical behaviour by studying their incompressible version. Homogeneous systems
are governed by equations of motion in which incompressibility is, in general, not
required, but where density fluctuations, and therefore density-velocity couplings,
are negligible. Incompressibility, though, completely suppresses density fluctuations
and therefore represents a stronger requirement than homogeneity. Moreover, re-
quiring incompressibility, hence imposing a solenoidal constraint on the velocity
field, generates long-range interactions that could change the properties of a system;
while this is indeed the case for the static behaviour of the present theory, the
long-range interactions are not sufficient to modify its dynamic universality class.
Numerical pieces of evidence of this fact have already been discussed in [69], where
it was shown that homogeneous active systems exhibit similar dynamic collective
behaviours to their incompressible counterpart. Furthermore, the analysis performed
in Chapter 6 provides a theoretical explanation of why this happens. With the
addition of the results obtained within the present Chapter, evidence that imposing
incompressibility is justified in the description of natural swarms is extremely solid,
as the solenoidal constraint resulting from it does not affect the critical dynamic
behaviour in the presence of either activity or mode-coupling terms. This result is
therefore very encouraging, as it allows one to study the homogeneous phase of the
off-equilibrium Inertial Spin Model under an incompressible hypothesis, where the
absence of the density field leads to a great simplification of the calculation.

This result is an important stepping stone towards developing an RG theory for
natural swarms. The DYS interaction vertex in the spin dynamics that I derived in
this chapter, which emerges as an effect of the solenoidal constraint, must certainly
characterise also the equations of motion of an incompressible out-of-equilibrium
field theory, in which terms coupling the order parameter to its generator of rotations
are present. It would have been extremely difficult to derive the DYS vertex had one
tackled the problem directly in the presence of activity. Despite this step forward,
though, the complexity of the present calculation suggests that significantly more
theoretical efforts will be needed to carry out the full-fledged out-of-equilibrium
mode-coupling RG study of natural swarms.
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Chapter 9

Field theory for natural swarms

So far, a comprehensive description of what features a field theory for collective
swarming behaviour should account for has been provided. The lack of global
order and the presence of long-range, scale-free velocity-velocity correlations suggest
swarms belong to a near-ordering phase. Their collective behaviour therefore arises
from the critical nature of the velocity fluctuations in a system near a second-order
transition.

The need to account for alignment interactions and self-propulsion suggested
that swarms can be modelled within the framework of the Toner and Tu theory [19]
(see Chapter 3), describing the behaviour of an active rotational invariant system.
However, the lack of consistency between theoretical predictions and experimental
data [13] suggested some additional relevant feature was missing in this description.
Experimental evidence highlighted this missing ingredient was inertial behaviour, as
discussed in Chapter 7. To account for this inertia, a coupling with the conserved
generator of the rotational symmetry, known as spin, has been proposed [100, 102].
This coupling leads, at equilibrium, to the universality class of Model G in Halperin
and Hohenberg classification [40, 41].

Starting from these ingredients, I presented in Chapter 7 a minimal field theory
for swarms, describing the fluctuations of the direction of motion field ψ, the spin
field s and the density field ρ. However, to account for the observations of scaling
laws in natural swarms, in Chapter 6 I gave evidence that density fluctuations
are expected to be negligible [MyPaper2]. Incompressibility, namely a solenoidal
constraint on ψ, should be therefore imposed, a task which turned out to be not
so straightforward in the presence of a mode-coupling interaction between ψ and s.
By working in a fixed-network approximation, I showed in Chapter 8 that in the
presence of incompressibility, a new interaction arises in the dynamics of s.

This long route will allow me to finally provide in the present and following
Chapters a field-theoretic description able to explain the dynamic collective behaviour
observed in natural swarms of insects. By starting from the minimal active inertial
field theory presented in Chapter 7, I will here present the complete version of an
active inertial theory, which I shall call Self-Propelled Model G. This will allow me,
in the following chapters, to perform a renormalization group analysis of this field
theory aiming to characterise dynamic collective properties and compare them to
experiments and numerical results.
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9.1 Self-Propelled Model G
In the present section, I will present the equations of motion of Self-Propelled Model
G (SPMG) in the incompressible limit. The behaviour of SPMG describes active
systems in which inertia in the orientational dynamics of the velocity is relevant.

9.1.1 Effective interactions in natural swarms

Before proceeding, let me briefly review, for the benefit of the reader, what effective
interactions are required to capture swarms’ behaviour from a field-theoretical
perspective. As these aspects have been widely discussed in the previous Chapters,
the reader familiar with them can skip the present section and proceed directly to
Sec. 9.1.2, where the field theory for swarms is introduced.

Effective alignment in the near-ordering phase

Evidence in swarms is that midges interact in such a way that they align their
direction of motion to that of neighbours when they become sufficiently close [56].
These interactions are metric, probably mediated by sound, and short-range [12, 56].
From a field-theoretical point of view, the best framework to model this kind
of behaviour is that of Landau-Ginzburg theory, originally employed to describe
alignment interactions in ferromagnets. According to this theory, the effective free
energy of a system as swarms in which individuals tend to align their direction of
motion ψ is given by

HLG =
∫

ddx1
2(∂αψβ)(∂αψβ) + V (|ψ|) (9.1)

The summation over repeated index is understood. Here the (∂ψ)2 term tends
to suppress the presence of strong fluctuations, namely favouring local alignment
between neighbouring regions. The potential can usually be taken in the form

V (ψ) = r

2ψ
2 + u

4ψ
4 . (9.2)

When r is positive the ground state is given by ψ = 0, thus well describing a
disordered phase with zero global magnetisation. For r < 0 instead, a flocking
phase with |ψ|2 = |r|

u arises at mean-field level. Swarms are instead expected to be
described by the critical near-ordering phase, namely where r ≃ 0.

Behavioural inertia and mode-coupling interactions

The main difference between inertial and non-inertial behaviour can be detected
by looking at the correlation function at small times. Correlations of non-inertial
systems decay exponentially also in this limit, with a finite negative slope, whereas
inertial systems have a vanishing derivative near t = 0. Evidence of inertial behaviour
in swarms is strong [13], and in Chapter 7 I showed that inertia is present at all
scales.

As discussed in Chapter 7, at equilibrium inertial behaviour in the orientational
dynamics is described by Model G [40], in which the order parameters ψ is coupled



9.1 Self-Propelled Model G 138

to its local generator of rotations s. This new variable, in analogy with quantum
mechanics, has been called spin since it represents the generator of rotations in the
internal space of the velocities. It must not be confused with angular momentum,
which is the generator of rotations in positions’ space. The dynamic mode-coupling
between between the direction of motion ψ and the spin s arises from the presence
of a Poisson-bracket relation [40, 41],{

sαβ (x) , ψγ
(
x′)} = 2 g Iαβγνψν (x) δ

(
x− x′) , (9.3)

which encodes the fact that s is the generator of rotations of ψ.

Midges move in space: the role of active self-propulsion

The final feature of midges is their ability to self-propel, which drives the system
far from thermal equilibrium. This property of being active is well encoded by the
relation between the order parameter ψ, which is not simply a pointer in space but
rather represents the local coarse-grained average of the direction of motion of the
individuals, and the velocity field:

v (x, t) = v0ψ (x, t) . (9.4)

The parameter v0, namely the microscopic speed, is what quantifies activity: when
v0 = 0 the system effectively behaves as an equilibrium one. When describing the
dynamics of the system, the relation (9.4) states that the order parameter ψ is
responsible for the presence of advection. At a coarse-grained level, the system can
be hence described as an active fluid. This can be done by adding the presence of a
pressure force in the equation for ψ and substituting the temporal derivative with
the material derivative

∂t → Dt = ∂t + v0 (ψγ∂γ) . (9.5)

Any active field theory, aiming to describe collective behaviours of self-propelled units
therefore requires the presence of advection, effectively captured by the presence of
a material derivative, in addition to the presence of an active force.

9.1.2 The equations of motion

The combined effect of alignment, inertia and self-propulsion, led me to introduce
the field theory of Self-Propelled Model G at the end of Chapter 7. The equations of
motion for this theory have been derived from those of Model G, already accounting
for both alignment and inertia, by adding activity through the minimal substitution
(9.5), which encodes the fact that ψ advects both itself and the spin. This leads to
the following set of equations:

Dtψα = −Γ δH
δψα

+ gψβ
δH
δsαβ

− ∂αP + θα , (9.6)

Dtsαβ = −Λαβγν
δH
δsγν

+ 2gIαβγνψγ
δH
δψν

+ ζαβ (9.7)
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where the material derivatives are given by

Dtψα = ∂tψα + v0γv (ψν∂ν)ψα (9.8)
Dtsαβ = ∂tsαβ + v0γs (ψν∂ν) sαβ (9.9)

These equations are almost equivalent to those introduced at the end of Chapter
7, (7.37) and (7.38), with the exception that here I introduced two couplings in
the material derivative, namely γψ/s. In contrast with the case of Navier-Stokes
equations, γψ/s need not be equal to 1 nor to each other, since activity breaks
Galilean invariance.

Although in equilibrium systems Γ needed to be a coefficient, rather than a matrix,
because of the rotational symmetry, out of equilibrium the possibility of having
non-symmetric interactions allows in principle for more complex tensorial structures,
making Γαβ a matrix rather than a real coefficient. However, non-symmetric linear
couplings between the different components of ψα are typically known to lead to
totally different phase transition phenomenology, very different from that in which I
am interested [115]. Hence, for the sake of simplicity, I shall assume that Γαβ has no
anti-symmetric component. Because of the rotational symmetry, the only symmetric
form Γαβ can take is that proportional to the identity: Γαβ = Γδαβ.

The theory presented in Eq. (9.6)-(9.7) will be studied in the incompressible
case, for the reasons discussed in Chapter 6, therefore I omit all terms incompatible
with this constraint, such as - for example - the two non-standard advective terms
ψ (∇ ·ψ) and ∇ψ2 arising in the compressible Toner and Tu theory as a consequence
of the absence of Galilean invariance [20]. Incompressibility, however, does not forbid
the presence of non-standard advection terms in the equation of motion for the spin.
As I will demonstrate in Section 10.1.4 through a Renormalisation Group analysis,
two of these advection-like (adv) terms will be needed to correctly describe the
large-scale behaviour. These terms are given by

V adv,1
αβ =v0 µ1 γs ∂ν (sανψβ − sβνψα) ,

V adv,2
αβ =v0 µ2 γs [∂α (ψνsνβ) − ∂β (ψνsνα)] .

(9.10)

Moreover, the RG also generates two of other anomalous terms in the equation
of the spin (see Section 10.1.4). Because of the similar structure they share with
the interaction arising from mode-coupling, I shall refer to them as anomalous
mode-coupling (mc) terms. These terms read

V mc,1
αβ =ϕ1 g [∂α (ψν∂νψβ) − ∂β (ψν∂νψα)] ,

V mc,2
αβ =ϕ2 g ∂ν [ψν (∂αψβ − ∂βψα)] .

(9.11)

Crucially, each one of these anomalous terms is the divergence of a current, implying
that the RG does not generate non-conserved (k-independent) spin dissipation: the
conservation of the total spin, Ṡαβ(t) = 0, a hallmark of the mode-coupling theories
[40], is preserved even out of equilibrium. The novel vertices are accompanied by
four new dimensionless couplings µ1, µ2, ϕ1, ϕ2.

Some other terms could be included in the calculation. It is the case of linear
couplings between spin and velocity described in [116], which near criticality take
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the form ∂tψα ∼ ∂βsαβ and ∂tsαβ ∼ ∇2 (∂αψβ − ∂βψα). These terms modify the
structure of linearised hydrodynamic equations, allowing the presence of propagators
and correlation functions that mix the fields s and ψ. However, if such terms were
included, the number of diagrams (which are not few even in the present calculation)
would inevitably become enormous and impossible to manage. Moreover, the
presence of these new linear terms does not modify the dynamic critical exponent
z of the linear theory, while the presence of advection or inertial mode-coupling
alone has a great impact on it. Therefore, the presence of these additional linear
terms is expected only to perturb the effect of non-linear interactions on the critical
exponents. Hence, I decided to focus on the study of spin-velocity couplings due to
non-linear interactions only by working on the sub-manifold of the parameter space
where such linear terms are not present. Because the RG calculation is in perfect
agreement with numerical simulations even in the case in which these linear terms
are ignored, I believe that including them from the beginning should not really affect
the results I find here.

The resulting equations of motion therefore become,

∂tψα + v0γv (ψν∂ν)ψα = −Γ δH
δψα

+ gψβ
δH
δsαβ

− ∂αP + θα , (9.12)

∂tsαβ + v0γs (ψν∂ν) sαβ + v0 µ1 γs ∂ν (sανψβ − sβνψα) +

+ v0 µ2 γs [∂α (ψνsνβ) − ∂β (ψνsνα)] = −Λαβγν
δH
δsγν

+ 2gIαβγνψγ
δH
δψσ

+

+ ϕ1 g [∂α (ψν∂νψβ) − ∂β (ψν∂νψα)] + ϕ2 g ∂ν [ψν (∂αψβ − ∂βψα)] + ζαβ (9.13)

In principle, these equations should be coupled to an additional equation for the
density field ρ. However, as discussed in Chapter 6, when interested in characterising
scaling laws in active systems, it is possible to get rid of the density field by studying
incompressible systems.

Although the system I am dealing with is out of equilibrium, it is possible to
identify the truly non-equilibrium dynamic terms from those arising from a free
energy functional H that would survive also in the equilibrium limit v0 → 0. In
this limit, the theory resembles the dynamical structure of Model G [40]. Therefore
equations (9.12), (9.13) can be viewed as given by the merging of this equilibrium
model with Navier-Stokes equation [46]. The latter takes into account the active
motion of particles, as it happens for the Toner and Tu theory.

Because the system is out of equilibrium, Einstein’s relations between the kinetic
coefficients and the corresponding noise variances are not expected to hold. Therefore,
θ and ζ of Eq. (9.12), (9.13) are white Gaussian noises with zero mean ⟨θ⟩ = ⟨ζ⟩ = 0
and variance given by

⟨θα (x, t) θβ
(
x′, t′

)
⟩ = 2Γ̃δαβδ

(
x− x′) δ (t− t′

)
, (9.14)

⟨ζαβ (x, t) ζγν
(
x′, t′

)
⟩ = 4Λ̃αβγνδ

(
x− x′) δ (t− t′

)
, (9.15)

where Γ̃ ̸= Γ and the amplitude Λ̃ to take the same form of Λ but with different
coefficients (λ̃ ̸= λ and η̃ ̸= η).
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All the other terms, which cannot be written as derivatives of a free energy
functional, represent genuinely off-equilibrium interactions; these are advection and
anomalous terms, which all occur as a consequence of the fact that individuals are
not fixed on a network. As I already mentioned, the couplings of the advective terms
γv and γs need not be equal to 1 nor to each other, due to the absence of Galilean
invariance [20]. Together with these active terms, a pressure force −∂αP was added
to (9.12), as it happens in Navier-Stokes, as well as in Toner-Tu equations.

The equations of motion I just derived in the present section describe inertial
active matter. By tuning the different parameters, these equations are expected to
be able to describe many different phases of active matter. As discussed in Chapter
1, since swarms have large, scale-free correlations but no net global polarisation
[12, 56], they are expected to be described by the near-critical regime of the present
field-theory. The absence of any intrinsic length scale in the correlations of swarms
suggests that the renormalized mass of the field theory has to vanish. This means
that the bare mass r is expected to be small.

9.2 Enforcing incompressibility
As discussed previously, equations (9.12) and (9.13) must be complemented by incom-
pressibility, which is merely a solenoidal constraint on the field v and, consequently,
on the polarisation ψ:

∇ ·ψ = 0 (9.16)

In Fourier space, this constraint translates into the following two equivalent state-
ments,

kαψα (k) = 0 , P⊥
αβ (k)ψβ (k) = ψα (k) , (9.17)

where I have (re-)defined (see Eq. (6.24)) an object which is rather central to this
calculation, namely the projector onto the subspace orthogonal to k,

P⊥
αβ (k) = δαβ − kαkβ

k2 (9.18)

and where,
ϕ (x) =

∫
k

eix·kϕ (k) . (9.19)

Here and in the following, I will use the notation,∫
k

=
∫

|k|<Λ

ddk
(2π)d

, (9.20)

where Λ is the ultraviolet cutoff of the theory, of the order of the inverse of the
microscopic inter-particle distance, which must not be confused with the relaxation
tensor of the spin Λαβγν . Summation over repeated indices is always understood.

In Chapter 8, I showed that enforcing this solenoidal constraint at equilibrium
has a triple effect on the equations of motion. The first, and maybe the most trivial,
is that the equation of motion for ψ is projected orthogonally to k, as it happens
in incompressible field theories with no mode-coupling interaction [46, 23] - see
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Chapter 5. The second is that the relaxation tensor Λαβγν of s, since the theory is
not isotropic in k-space, will take the general anisotropic form

Λαβγν (k) = η Iαβγν + λ⊥P⊥
αβγν (k) + λ∥P∥

αβγν (k) (9.21)

where P⊥ and P∥ are the generalisation of the projection operator P⊥ and P ∥ defined
in Eq. (6.24) acting on the space of 2-indices antisymmetric tensors, namely

P⊥
αβγν (k) = Iαβγν − IαβστP⊥

σγ (k)P⊥
τν (k) , (9.22)

while P∥ = I−P⊥. Let me recall that I is the identity tensor in the space of s, which
reads

Iαβγν = δαγδβν − δανδβγ
2 . (9.23)

The third effect is less obvious, and it is represented by the presence of a projection
operator Pνρ (q) in the mode-coupling interaction of the spin dynamics. The existence
of this projector comes from the fact that in the presence of a solenoidal constrain
the conservative Hamiltonian force must be projected also in the mode-coupling
term of Eq. (9.13), namely

δH
δψν (−q) ⇒ Pνρ (q) δH

δψρ (−q) . (9.24)

The linear part of the force is not affected by this new projector, but the non-linear
terms are. The presence of the projector in (9.24) gives rise to an additional non-
linear term that contributes to the dynamics of the spin. More precisely, it does
so through a novel dynamical interaction term, known as DYS vertex, given by
[MyPaper2],

∂tsαβ (k) ∼ 2κIαβγν
∫
q,h,p

ψγ (k − q)Pνρ (q)ψρ (p)ψσ (h)ψσ (q − p− h) . (9.25)

Such vertex is absent in the non-constrained theory, since when Pνρ is substituted
by δνρ in Eq. (9.24), as in the non-solenoidal case, the r.h.s. of Eq. (9.25) vanishes.

Finally, note that while at equilibrium κ = g u, off-equilibrium effects may lead
to a violation of the relation between κ, g and u meaning that, in general, one can
have,

κ ̸= g u . (9.26)

In the active case, it is not even clear whether this new interaction is needed to
account for the description of natural swarms. For example, repulsive interactions
among individuals, encoded in the pressure term P, might be responsible on their
own to keep the density constant. Remarkably, I shall demonstrate in the next
Chapter that at the new off-equilibrium inertial fixed point, u and g remain finite,
while κ vanishes. One might be therefore tempted to neglect the κ vertex in the
discussion. However, although it vanishes, there are two good reasons to keep a
trace of this coupling. First, it allows maintaining a connection with the equilibrium
theory of [MyPaper2], in particular, recovering the same result as in equilibrium
when v0 → 0 is an important consistency check in such a complicated calculation.
Secondly, the presence of this vertex is crucial for an additional reason: the high
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dimensionality of the parameter space (16 dimensions) and the intricate form of
the beta-functions will not allow me to find analytically the RG fixed points. To
perform a successful numerical integration of the RG flow equations, it is convenient
to choose the initial condition in a region of the parameters space close to the
equilibrium theory with solenoidal constraint. For the RG flow to go smoothly from
the equilibrium to the off-equilibrium novel fixed point, it is technically crucial to
keep this interaction in the calculation, even though it eventually flows to zero at the
new RG fixed point. In other words, although the DYS vertex is not relevant at the
novel fixed point so that it does not contribute to the new value of the dynamical
critical exponent, the DYS vertex is technically relevant to find the new fixed point
in the large parameter space.

9.2.1 The final equations for incompressible active inertial swarms

I am now ready to write down the equations of SPMG, (9.12) and (9.13), in
the incompressible limit. After projecting Eq. (9.12), adding the DYS vertex
to Eq. (9.13), and symmetrising terms containing powers of the same field, the
incompressible equations of motion in k-space, finally become

∂tψα (k, t) +
(
k2Γ +m

)
ψα (k, t) = θα − v0

iγv
2 Pαβγ (k)

∫
q
ψβ (q, t)ψγ (k − q, t)

− J

3Qαβγν (k)
∫
q,h

ψβ (q, t)ψγ (h, t)ψν (k − q − h, t)

+ gP⊥
αρ (k) Iρβγν

∫
q
ψβ (k − q, t) sγν (q, t) ,

(9.27)

∂tsαβ (k, t) + Λαβγνsγν (k, t) = ζαβ − v0 i γs Iαβγνkρ
∫
q
sγν (q, t)ψρ (k − q, t)

− 2 v0 iµ1 γs IαβρηIρτγνkτ
∫
q
sγν (q, t)ψη (k − q, t)

− 2 v0 iµ2 γs IαβρσIρηγνkσ
∫
q
sγν (q, t)ψη (k − q, t)

+ 2 g Iαβγν
∫
q
k · q ψγ (−q + k/2, t)ψν (q + k/2, t)

+ 2 Φ1 g IαβρσIρτγν
∫
q
kσqτψγ (−q + k/2, t)ψν (q + k/2, t)

+ 2 Φ2 g IαβρσIρτγν
∫
q
kτqσψγ (−q + k/2, t)ψν (q + k/2, t)

+ κ

6

∫
q,h,p

Kαβγνστ (k, q,h,p,k − q − h− p) ×

× ψγ (q, t)ψν (h, t)ψσ (p, t)ψτ (k − q − h− p, t) ,

(9.28)
where the following tensors were introduced,

P⊥
αβγ (k) = kβP

⊥
αγ (k) + kγP

⊥
αβ (k) , (9.29)
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Q⊥
αβγν (k) = P⊥

αβ (k) δγν + P⊥
αγ (k) δβν + P⊥

αν (k) δβγ , (9.30)

Kαβγνστ (k,p1,p2,p3,p4) =IαβγρQ⊥
ρνστ (k − p1) + IαβνρQ⊥

ργστ (k − p2) +
+IαβσρQ⊥

ργντ (k − p3) + IαβτρQ⊥
ργνσ (k − p4) ,

(9.31)

and the noises have correlations,

⟨θα (k, t) θβ
(
k′, t′

)
⟩ = 2 (2π)d Γ̃P⊥

αβ (k) δ(d) (k + k′) δ (t− t′
)
, (9.32)

⟨ζαβ (k, t) ζγν
(
k′, t′

)
⟩ = 4 (2π)d Λ̃αβγν (k) δ(d) (k + k′) δ (t− t′

)
, (9.33)

To simplify the notation, in (9.27), (9.28) the following reduced parameters have
been defined,

J = Γu Φ1 = −2 (ϕ1 + ϕ2) , (9.34)
m = Γr Φ2 = −2ϕ2 . (9.35)

9.3 The field-theoretical action of SPMG
I now proceed with the field-theoretical approach by deriving the field-theoretical
action for Self-Propelled Model G. This is done by following the standard Martin-
Siggia-Rose technique, detailed in Sec. 4.2, which allows to derive a path-integral
field theory from a set of Langevin equations.

9.3.1 The action

The MSRDJ action S for the stochastic equations (9.27) and (9.28) depends upon
four fields: ψ, ψ̂, s and ŝ. The action can be split into the following terms,

S[ψ, ψ̂, s, ŝ] = S0,ψ[ψ, ψ̂] + S0,s[s, ŝ] + SI [ψ, ψ̂, s, ŝ] (9.36)

where S0,ψ and S0,s are the Gaussian parts of the action, respectively coming from
the linear dynamic terms of the equations of motion of ψ and s, while SI is the
interacting part. From Eq. (4.18),

S0,ψ[ψ, ψ̂] =
∫
k̃

[
−iω + Γk2 +m

]
ψ̂α(−k̃)ψα(k̃) − Γ̃P⊥

αβ (k) ψ̂α(−k̃) ψ̂β(k̃) (9.37)

S0,s[s, ŝ] = 1
2

∫
k̃

[−iωIαβγν + Λαβγν ] ŝαβ(−k̃) sγν(k̃) − Λ̃αβγν ŝαβ(−k̃) ŝγν(k̃) (9.38)
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SI [ψ, ψ̂, s, ŝ] = − g

∫
k̃,q̃

P⊥
αρ (k) Iρβγνψ̂α(−k̃)ψβ(k̃ − q̃)sγν(q̃)+

−g IαβρσIρτγν
∫
k̃,q̃

[k · q δστ + Φ1kσqτ + Φ2qσkτ ] ×

× ŝαβ(−k̃)ψγ(−q̃ + k̃/2)ψν(q̃ + k̃/2)−

+v0
iγv
2

∫
k̃,q̃

P⊥
αβγ (k) ψ̂α(−k̃)ψβ(q̃)ψγ(k̃ − q̃)−

+v0
iγs
2 IαβρσIρτγν

∫
k̃,q̃

[kηδστ + 2µ1kτδση + 2µ2kσδτη] ×

× ŝαβ(−k̃)sγν(q̃)ψη(k̃ − q̃)−

+J

3

∫
k̃,q̃,h̃

ψ̂α(−k̃)Q⊥
αβγν (k)ψβ(q̃)ψγ(h̃)ψν(k̃ − q̃ − h̃)+

− κ

12

∫
k̃,q̃,h̃,p̃

ŝαβ(−k̃)Kαβγνστ (k, q,h,p,k − q − h− p) ×

× ψγ(q̃)ψν(h̃)ψσ(p̃)ψτ (k̃ − q̃ − h̃− p̃)

(9.39)

Here I wrote the effective action in k and ω space, where the generic field ϕ is given
by

ϕ (x, t) =
∫
k̃

ei(x·k−tω)ϕ(k̃) , (9.40)

with k̃ = (k, ω) and ∫
k̃

=
∫

|k|<Λ

ddk
(2π)d

∞∫
−∞

dω
2π . (9.41)

Notice that there is no cutoff in the frequency ω.

9.3.2 Free theory: propagators and correlation functions

The starting point to build the perturbative expansion of the equations of motion
is the free theory, obtained by setting to zero all the dynamic non-linear couplings,
namely g, γv, γs, J and κ. From the Gaussian part of the action, given by Eqs. (9.37)
and (9.38), it is possible to derive the expressions for the bare propagators and
correlation functions for the effective field theory, which are very similar to those of
Model G with solenoidal constraint [MyPaper2], and are given by,

⟨ψα(k̃)ψ̂β(q̃)⟩0 = G0,ψ
αβ (k̃)δ̂(k̃ + q̃) , ⟨sαβ(k̃)ŝγν(q̃)⟩0 = G0,s

αβγν(k̃)δ̂(k̃ + q̃) , (9.42)

⟨ψα(k̃)ψβ(q̃)⟩0 = C0,ψ
αβ (k̃)δ̂(k̃ + q̃) , ⟨sαβ(k̃)sγν(q̃)⟩0 = C0,s

αβγν(k̃)δ̂(k̃ + q̃) , (9.43)

where δ̂(h̃) = (2π)d+1δ(d)(h)δ(ωh). The subscripted zeros on thermal averages
indicate that they are computed within the non-interacting theory. The tensors G
and C are given by,

G0,ψ
αβ (k̃) = G0,ψ(k̃)δαβ (9.44)

C0,ψ
αβ (k̃) = C0,ψ(k̃)P⊥

αβ(k) (9.45)

G0,s
αβγν(k̃) = G⊥

0,s(k̃)P⊥
αβγν(k) +G

∥
0,s(k̃)P∥

αβγν(k) (9.46)

C0,s
αβγν(k̃) = C⊥

0,s(k̃)P⊥
αβγν(k) + C

∥
0,s(k̃)P∥

αβγν(k) (9.47)
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where,

G0,ψ (k, ω) = 1
−iω + Γk2 +m

C0,ψ (k, ω) = 2Γ̃
ω2 + (m+ Γk2)2 (9.48)

G⊥
0,s (k, ω) = 2

−iω + η + λ⊥k2 C⊥
0,s (k, ω) = 4λ̃⊥k2

ω2 + (η + λ⊥k2)2 (9.49)

G
∥
0,s (k, ω) = 2

−iω + η + λ∥k2 C
∥
0,s (k, ω) = 4λ̃∥k2

ω2 + (η + λ∥k2)2 (9.50)

In the diagrammatic framework, the fields ψ and ψ̂ are represented with a solid
line, while the fields s and ŝ are represented with wavy lines. Bare propagators and
correlation functions thus take the following graphical representation

⟨ψαψ̂β⟩0 = ⟨sαβ ŝγν⟩0 = (9.51)
⟨ψαψβ⟩0 = ⟨sαβsγν⟩0 = (9.52)

where the arrows in the propagators always point in the direction of the response
field.

9.3.3 Non-linear terms: the vertices

The six terms that compose SI represent the non-linear interactions in the equations
of motion. Each interaction involves one response field, identifying the equation
of motion in which the corresponding non-linearity appears: ψ̂ if the vertex comes
from a non-linearity in the equation of ψ; ŝ if it comes from a non-linearity in the
equation of s. In the diagrammatic framework, these interactions are graphically
represented by vertices, in which different lines merge, each representing one of the
fields involved in the interaction. Full lines will represent ψ̂ and ψ fields, while ŝ
and s fields will be represented by wavy lines. Moreover, an entering arrow is used
to identify the leg representing the response field. I shall choose vertices to have
opposed signs with respect to the interactions; the convenience of this choice is that
vertices play a crucial role in building Feynman diagrams, which come from the
expansion of exp(−S).

The first vertex involving ψ̂ represents the mode coupling non-linearity propor-
tional to the reversible dynamic coupling g,

ψ̂α(−k̃)

ψβ(q̃)

sγν(p̃)

: gP⊥
αρ (k) Iρβγν δ̂(k̃ − q̃ − p̃) , (9.53)

The second interaction involving ψ̂ is the self-propulsion (or advection) interaction
coming from the convective derivative in the equation of motion. This vertex is
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proportional to v0γv, and it vanishes when the microscopic speed does. Graphically,
this interaction is represented by

ψ̂α(−k̃)

ψβ(q̃)

ψγ(p̃)

: −v0
iγv
2 Pαβν (k) δ̂(k̃ − q̃ − p̃) , (9.54)

The third vertex involving ψ̂ derives from the ferromagnetic ψ3 Landau-Ginzburg
interaction, proportional to J . It is represented by the term,

ψ̂α(−k̃)

ψβ(q̃)

ψγ(p̃)

ψγ(h̃)

: −J

3Qαβγν (k) δ̂(k̃ − q̃ − p̃− h̃) , (9.55)

The other three vertices involve one field ŝ and derive from the equation for the
spin. The first one represents the dynamic mode-coupling interaction proportional
to g with the addition of the two mode-coupling anomalous terms, with different
tensorial structures,

ŝαβ(−k̃)

ψγ(h̃)

ψν(p̃)

: g

2IαβρσIρτγν δ̂(k̃ − h̃− p̃)×

×
[(
p2 − h2

)
δστ + Φ1p

(+)
σ p(−)

τ + Φ2p
(−)
σ p(+)

τ

]
,

(9.56)

where p(+) = p + h while p(−) = p − h. This vertex vanishes when h = p,
guaranteeing that this interaction does not contribute to the dynamics of the total
spin S (t) = s (k = 0, t). The anomalous mode coupling terms are those proportional
to Φ1,2. From a technical point of view, it is essential to note that this vertex can
be rewritten in an alternative form; by using the delta function, together with a
symmetric distribution of the external momenta, one has,

ŝαβ(−k̃)

ψγ(k̃/2 − q̃)

ψν(k̃/2 + q̃)

: g IαβρσIρτγν [k · q δστ + Φ1 kσqτ + Φ2 qσkτ ] .

(9.57)
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This second form is convenient for two reasons: first, it has a simpler structure,
which makes it easier to recognise corrections to the coupling constant g; secondly,
in this form, it is more transparent to demonstrate the diagrammatic origin of the
anomalous terms, a derivation that will be given later on in Section 10.1.4. On
the other hand, the first form of this same vertex, equation (9.56), is handier when
calculating diagrams in which ŝαβ appears as an internal leg.

The second vertex involving ŝ is the self-propulsion interaction, coming from
the fact that s is advected by the velocity v0ψ, and it is proportional to v0γs.
Graphically, this interaction is represented by,

ŝαβ(−k̃)

sγν(q̃)

ψη(p̃)

: −v0
iγs
2 IαβρσIρτγν [kηδστ + 2µ1kτδση + 2µ2kσδτη] δ̂(k̃−q̃−p̃) ,

(9.58)
This interaction also vanishes when q = p, and therefore does not contribute to the
dynamics of the total spin either. This vertex takes into account also the anomalous
advection of s through the terms proportional to µ1,2.

The last interaction term is the DYnamic-Static (DYS) vertex [MyPaper2] intro-
duced in Chapter 8. This interaction mixes the ferromagnetic-like interaction and the
mode-coupling dynamic term, as a consequence of the presence of incompressibility.
It represents the effects of the Landau confining potential on the dynamics of s,
mediated by the mode-coupling dynamic interaction. It takes the following form,

ŝαβ(−k̃)

ψγ(p̃1)
ψν(p̃2)

ψσ(p̃3)
ψτ (p̃4)

: κ

12Kαβγνστ (k,p1,p2,p3,p4) δ̂(k̃−p̃1−p̃2−p̃3−p̃4) .

(9.59)
This interaction does not vanish when k = 0, and thus it contributes to the dynamics
of the total spin. However, it is important not to confuse the absence of conservation
with the presence of dissipation. If the spin was largely dissipated, it would become
a non-hydrodynamic variable whose behaviour does not affect that of the order
parameter. As shown in Chapter 8, where the fixed network approximation of the
incompressible theory developed here is analysed, even though the spin may not be
globally conserved due to the DYS interaction, it represents still a hydrodynamic
slow mode. This is because the DYS vertex does not involve the spin, and thus
represents the effects of the slow-mode ψ. Even if this effect remains finite as k → 0,
it may only be responsible for slow variations of the total spin s. Hence, although
the total spin is not conserved, it is not even dissipated and thus it undergoes a
generalised precession caused by the DYS vertex [MyPaper2].
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Chapter 10

Renormalization group
calculation for swarms

The derivation of a field theory for natural swarms, a topic to which I have devoted
the previous Chapter, is only the starting point of a deeper analysis of swarms.
Characterising the collective behaviour exhibited by Self-Propelled Model G is the
next step required to provide a quantitative assessment of inertia as a key ingredient
in describing natural swarms.

In the present Chapter, the tools of the theory of critical phenomena [15, 2, 14]
will be used to investigate the collective behaviours in Self-Propelled Model G. The
core of this Chapter is represented by the perturbative renormalization group (RG)
calculation, which I will perform in the momentum-shell scheme. In a nutshell, the
momentum-shell RG unfolds through two stages: i) Integrating out small length-
scale details, on the so-called momentum shell Λ/b < k < Λ, where b < 1, but close
to 1; ii) Rescaling of momenta, together with frequencies and fields, to restore the
cutoff Λ. The reader can refer to Chapter 4 for a more complete discussion of the
RG procedure. Let me highlight only that the effect of step (ii) is to rescale each
parameter by its corresponding naive dimension, while shell-integration (i) provides
each parameter with an anomalous dimension. This last step is usually done by
using the Feynman diagram technique [53]. It is therefore the very presence of
Feynman diagrams that allows non-trivial collective behaviours to take place.

Following this structure, Sec. 10.1 will be dedicated to the computation of
Feynman diagrams of Self-Propelled Model G, while in Sec. 10.2 the rescaling
process will be discussed in detail. Through the computation of diagrams, I will
prove the need to take into account some dynamic interactions, compatible with the
symmetries of the system, not included in the heuristic derivation of Self-Propelled
Model G given in Sec. 9.1.1.

Combining the perturbative and the naive scaling dimensions leads to a set of
recursion relations, which determine how the parameters of the model have changed.
Iterating the RG transformation results in a flow in the space of theories, all describing
the same system at different length scales [1], known as the renormalization group
flow. Analysis of the large-scale behaviour of the RG flow allows one to obtain the
collective properties of the system. Section 10.4 will be devoted precisely to the
study of the RG flow. First, the flow of Self-Propelled Model G in the absence of
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spin dissipation will be analysed, revealing the presence of a novel active-inertial
fixed point. Finally, the RG flow in the presence of dissipation will be studied.

10.1 The shell-integration
To obtain an effective description of the large-scale behaviour of a system, the first
crucial step is to integrate the short-wavelength details, represented by those modes
with wave-vector k on the momentum-shell Λ/b < k < Λ. Due to the presence
of non-linear dynamic interactions, the shell integration couples short- and long-
wavelength modes, giving rise to non-trivial corrections to the parameters of the
bare action of the theory (9.36). Understanding how these corrections affect the
action is the main purpose of the present section.

In what follows, I will split the discussion in two: first I will discuss the corrections
to the Gaussian part of the action S0 (see (9.37) and (9.38)), known as Self-energies,
and later those to the interacting part of the action SI (see (9.39)), known as
Vertex-functions. Since I am interested in the dynamic behaviour near criticality,
the bare mass m0 of the field theory is set to 0 in all diagrams [15], except for those
giving corrections to the mass itself.

10.1.1 Self-Energies

Self-energies are the corrections to the Gaussian action arising from the shell inte-
gration, and are customary to write in the following way [40],

∆S0 =
∫
ψ̂α(−k̃)Σαβ(k̃)ψβ(k̃) − ψ̂α(−k̃)Σ̃αβ(k̃)ψ̂β(k̃)+

+
∫
ŝαβ(−k̃)Παβγν(k̃)sγν(k̃) − ŝαβ(−k̃)Π̃αβγν(k̃)ŝγν(k̃) ,

(10.1)

Here all momenta are integrated off-shell, k < Λ/b, while frequency integrals still run
from −∞ to ∞. The quantities Σ, Σ̃, Π and Π̃ are the self-energies, which contribute
to the perturbative corrections of the Gaussian parameters of the original action.
Notice that all the corrections are proportional to the volume of the momentum
shell, which is given by 1 − b−1 ≃ ln b.

It is possible to distinguish four different self-energies, one for each combination
of fields appearing in S0, namely ψ̂ψ, ψ̂ψ̂, ŝs and ŝŝ. From a diagrammatic point of
view, each self-energy is given by the sum of all amputated 1-particle irreducible
diagrams with external fields ψ̂ψ, ψ̂ψ̂, ŝs and ŝŝ respectively. Graphically, they are
represented by the blobs in the following diagrammatic scheme

Σαβ(k̃) : ψ̂α(−k̃) ψβ(k̃) (10.2)

Σ̃αβ(k̃) : ψ̂α(−k̃) ψ̂β(k̃) (10.3)

Παβγν(k̃) : ŝαβ(−k̃) sγν(k̃) (10.4)

Π̃αβγν(k̃) : ŝαβ(−k̃) ŝγν(k̃) (10.5)
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To identify perturbative corrections of the Gaussian parameters, one needs to
expand the self energies in ω and k and keep only the leading terms. By comparing
the corrections ∆S0 in Eq. (10.1). with the form of the bare action S0 in Eq.
(9.37)-(9.38), I can define the perturbative corrections to the Gaussian parameters
through the relations,

Σαβ(k̃) =
[
−iω δΩ +m0 δm+ k2Γ0 δΓ

]
ln b P⊥

αβ(k) + . . . (10.6)

Σ̃αβ(k̃) = Γ̃0 δΓ̃ ln b P⊥
αβ(k) + . . . (10.7)

Παβγν(k̃) = 1
2k

2λ⊥
0 δλ

⊥ ln b P⊥
αβγν(k) + 1

2k
2λ

∥
0 δλ

∥ ln b (I − P⊥)αβγν(k) + . . .

(10.8)

Π̃αβγν(k̃) = 1
2k

2λ̃⊥
0 δλ̃

⊥ ln b P⊥
αβγν(k) + 1

2k
2λ̃

∥
0 δλ̃

∥ ln b (I − P⊥)αβγν(k) + . . .

(10.9)

where I denoted the bare parameters with the subscript 0 and where the ellipses
stand for higher order terms in ω and k, which are irrelevant in determining the
critical behaviour at first order in ϵ. The ln b factors present in all terms reflect the
fact that perturbative corrections are proportional to the volume of the momentum
shell. After the shell integration, the Gaussian action takes the following form,

S<0 =
∫ <

k̃

[
−iω (1 + δΩ ln b) ψ̂ψ + Γ0(1 + δΓ ln b)k2ψ̂ψ +m0(1 + δm ln b)ψ̂ψ

]
−

−
∫ <

k̃
Γ̃0
(
1 + δΓ̃ ln b

)
ψ̂ψ̂+

+1
2

∫ <

k̃

[
−iωŝs+ η0ŝs+ λ⊥

0 (1 + δλ⊥ ln b)k2ŝs+ λ
∥
0(1 + δλ∥ ln b)k2ŝs

]
−

−1
2

∫ <

k̃

[
η̃0ŝŝ+ λ̃⊥

0 (1 + δλ̃⊥ ln b)k2ŝŝ+ λ̃
∥
0(1 + δλ̃∥ ln b)k2ŝŝ

]
(10.10)

where the tensorial structure of the action was omitted to facilitate the reading, and
the integral

∫<
k̃

is given by

∫ <

k̃
=

∫
|k|<Λ/b

ddk
(2π)d

∞∫
−∞

dω
2π (10.11)

The self-energies thus give perturbative corrections to the Gaussian parameters Γ,
m, Γ̃, λ⊥/∥ and λ̃⊥/∥. Moreover, the self-energy Σ has also a non-vanishing term
linear in ω, namely δΩ, which gives a perturbative correction to −iωψ̂ψ; because this
term is not multiplied by any parameter in the original bare action, the only way
to reabsorb this correction will be through a modification of the scaling dimension
of the fields ψ̂ and ψ. On the other hand, analogous perturbative terms do not
arise in the self-energy Π, because all one-loop diagrams are at least of order k as
a consequence of the particular properties of the vertices (9.56) and (9.58), which
vanish at k = 0, so that the term −iωŝs acquires only k-dependent perturbative
corrections that vanish when k = 0. Another – rather crucial – consequence of
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the fact that all corrections to Π and Π̃ are proportional to k, is that there are no
perturbative corrections to neither η0ŝs nor η̃0ŝŝ, and hence no δη and δη̃ corrections
are present in Eq. (10.8) and (10.9). This is no coincidence, but it is a result deeply
related to the presence of the underlying (rotational) symmetry of the problem.
Although terms explicitly violating the conservation of the spin s are present, namely
the dissipative terms η and η̃, the symmetry is still at work and the non-linear
interactions are not able to generate any perturbative corrections to the dissipative
coefficients η and η̃.

The standard way to explicitly perform this shell integration, and to compute
the corrections to the bare parameters of the model, is using perturbation theory.
The corrections δP are thus computed using a Feynman diagram expansion. At
order ϵ, the non-vanishing diagrams contributing to the self-energies are provided in
Appendix C.1.

10.1.2 Vertex-functions

As happens to the Gaussian part of the action, the non-Gaussian interactions in
SI also acquire corrections due to shell integration. To distinguish them from the
Self-energies, I shall refer to them as Vertex-functions.

The corrections to the interacting part of the action (9.39) can be written in the
form,

∆SI =
∫
ψ̂α(−k̃)V ψ̂ψs

αβγν(k̃, q̃)ψβ(k̃ − q̃)sγν(q̃)+

+
∫
ŝαβ(−k̃)V ŝψψ

αβγν(k̃, q̃)ψγ(−q̃ + k̃/2)ψν(q̃ + k̃/2)+

+
∫
ψ̂α(−k̃)V ψ̂ψψ

αβγ (k̃, q̃)ψβ(q̃)ψγ(k̃ − q̃)+

+
∫
ŝαβ(−k̃)V ŝsψ

αβγνη(k̃, q̃)sγν(q̃)ψη(k̃ − q̃)+

+
∫
ψ̂α(−k̃)V ψ̂ψψψ

αβγν (k̃, q̃, h̃)ψβ(q̃)ψγ(h̃)ψν(k̃ − q̃ − h̃)+

+
∫
ŝαβ(−k̃)V ŝψψψψ

αβγνστ (k̃, q̃, h̃, p̃)ψγ(q̃)ψν(h̃)ψσ(p̃)ψτ (k̃ − q̃ − h̃− p̃) ,

(10.12)

where the various Vertex-functions V s give perturbative corrections to the coupling
constants of the non-linear interactions. Notice that, as for Self-energies, all vertex-
functions are proportional to the volume of the momentum shell, which is given by
1 − b−1 ≃ ln b. These vertex functions can be diagrammatically expressed through
the sum of all the amputated connected diagrams having as external fields the same
fields of the vertex they are correcting. The six vertex functions of the present
theory, one for each bare vertex, can be graphically represented through the blobs
in the following expressions. The two Mode-Coupling vertex-functions, correcting
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the mode-coupling terms, are

V ψ̂ψs
αβγν(k̃, q̃) : ψ̂α(−k̃)

ψβ(k̃ − q̃)

sγν(q̃)

, V ŝψψ
αβγν(k̃, q̃) : ŝαβ(−k̃)

ψγ(k̃/2 − q̃)

ψν(k̃/2 + q̃)

(10.13)

The advection vertex-functions, correcting the advective terms of the theory, are
given by

V ψ̂ψψ
αβγ (k̃, q̃) : ψ̂α(−k̃)

ψβ(q̃)

ψγ(k̃ − q̃)

V ŝsψ
αβγνη(k̃, q̃) : ŝαβ(−k̃)

sγν(k̃/2 − q̃)

ψη(k̃/2 + q̃)

(10.14)

Then there is the ferromagnetic Vertex-Function, correcting the standard ψ̂ψ3

dynamic coupling coming from the Landau potential

V ψ̂ψψψ
αβγν (k̃, q̃, h̃) : ψ̂α(−k̃)

ψβ(q̃)

ψγ(h̃)

ψγ(k̃ − q̃ − h̃)

(10.15)

Finally, the last Vertex-Function is that giving corrections to the DYS vertex, given
by

V ŝψψψψ
αβγνστ (k̃, q̃, h̃, p̃) : ŝαβ(−k̃)

ψγ(q̃)
ψν(h̃)

ψσ(p̃)
ψτ (k̃ − q̃ − h̃− p̃)

(10.16)

The full list of non-vanishing one-loop diagrams associated with each Vertex-Function
is provided in Appendix C.2. For the moment, it is useful to remind that each
vertex function contributes to the corrections of couplings and parameters of Eqs.
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(9.53)-(9.59) in the following way,

V ψ̂ψs
αβγν(k̃, q̃) = g δgψ P

⊥
αρ (k) Iρβγν (10.17)

V ψ̂ψψ
αβγ (k̃, q̃) = −v0

iγv
2 δγvPαβν (k) (10.18)

V ψ̂ψψψ
αβγν (k̃, q̃, h̃) = −J

3 δJ Qαβγν (k) (10.19)

V ŝψψ
αβγν(k̃, q̃) = g IαβρσIρτγν [δgs k · q δστ + Φ1 δgs1 kσqτ + Φ2 δgs2 qσkτ ] (10.20)

V ŝsψ
αβγνη(k̃, q̃) = −v0

iγs
2 IαβρσIρτγν [δγs kηδστ + 2µ1 δγs1 kτδση + 2µ2 δγs2 kσδτη]

(10.21)

V ŝψψψψ
αβγνστ (k̃, q̃, h̃, p̃) = κ

12δκKαβγνστ (k, q,h,p,k − q − h− p) (10.22)

Higher orders in ω and k turn out to be irrelevant in determining the critical
behaviour at the first order in ϵ. The perturbative corrections to the anomalous
terms have been defined as,

δgs1 ≡ δ (gΦ1) , δgs2 ≡ δ (gΦ2) (10.23)
δγs1 ≡ δ (γs µ1) , δγs2 ≡ δ (γs µ2) (10.24)

(because they represent corrections to the products gΦ1,2 and γs µ1,2, they were not
simply called δΦ1,2 and δµ1,2). At one loop, the non-vanishing diagrams contributing
to the vertex functions are given in Appendix C.2.

10.1.3 A primer of the diagrammatic expansion

The one-loop Feynman diagrams generated by the action’s expansion, and necessary
to calculate all the corrections δP to the parameters and coupling constants, are
given in Appendix C; not only they are many, but they are also quite complicated
due to the tensorial structure of the theory. The integrals represented by each of
these diagrams have been computed analytically with the help of Mathematica, and
for space reasons will not be explicitly reported here.

However, I will perform in this Section the explicit calculation of one diagram,
hoping that this may help the interested reader in picking up the general technique.
The diagram I calculate is a contribution to the self-energy Σ defined in (10.2),

Dαβ(k, ωk) : −k,−ωk k, ωk

α β

k/2 − p, ωk/2 − ωp

k/2 + p, ωk/2 + ωp

(10.25)

To facilitate the reader to follow the calculation and understand it better, I shall set
η = η̃ = 0 in the following paragraphs. The generalisation of the following calculation
in the case with η and η̃ is straightforward. The integral expression corresponding
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to this diagram can written following the definitions of lines and vertices given in
Sections 9.3.2 and 9.3.3,

Dαβ(k, ωk) =
∫ ddp

(2π)d
dωp
2π [g Pαθ(k)Iθγρσ]

[
g Pνη

(
k

2 − p
)
Iηβµλ

]
×

× G0,ψ
γν

(
k

2 − p, ωk2 − ωp

)
C0,s
ρσµλ

(
k

2 + p, ωk2 + ωp

) (10.26)

where I remind the reader that summation over repeated indexes is understood.
While the momentum integral is restricted to the momentum shell, Λ/b < p < Λ, the
frequency integral is extended over the whole spectrum (−∞,+∞). Furthermore,
I notice that the integrand (10.26) depends on the frequency ωp only through the
correlation functions G0,ψ and C0,s defined in Section 9.3.2; this is in general true for
any Feynman diagram present in this work. All the correlation functions (9.44)-(9.47)
have at most two poles in the complex plane, and it is always possible to compute
the frequency integral using the residue theorem. In the case of this diagram the
integration over ωp yields,

Dαβ(k, ωk) = g2
∫ ddp

(2π)dPαθ(k)IθγρσPνη(k/2 − p)Iηβµλ×

×
[

2λ̃⊥ δγνP⊥
ρσµλ(k/2 − p)

λ⊥[Γ(k/2 − p)2 + λ⊥(k/2 + p)2 − iωk +m]+

+
2λ̃∥ δγν(P⊥

ρσµλ(k/2 − p) − Iρσµλ)
λ∥[Γ(k/2 − p)2 + λ∥(k/2 + p)2 − iωk +m]

] (10.27)

When not explicitly interested in the corrections to the mass m, since I am going to
work at first order in ϵ = 4 − d (one loop), it is possible to drop the m dependence
in the Feynman diagrams, because this would lead to higher order corrections.
Although this diagram does give contributions to the correction of the mass, I will
set m = 0 in the following. This is done to avoid giving very long, complicated and
perhaps not very insightful expressions, which would not allow the reader to get any
additional information and in fact would take me away from the goal of this section.

The integral over the modulus of the momentum becomes trivial if one assumes
that the RG transformation is infinitesimal, namely if b ≃ 1; this means that the
thickness of the momentum shell is infinitesimal and it is possible to approximate
the integral of a generic function f(p) as follows,∫ Λ

Λ/b
ddp f(p) =

∫
f(p)dΩdp

d−1dp = ln b Λd
∫
f(p)

∣∣∣∣
|p|=Λ

dΩd (10.28)

which corresponds to approximating the integral as the value of the function at
|p| = Λ times the volume of the momentum shell Λd(1 − 1/b) ≃ ln b. After this step,
the integrand may still depend on the direction of the momentum p̂ = p/|p|, which
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is a unit vector. Applying this procedure to equation (10.27) leads to,

Dαβ(k, ωk) = g2
∫

dΩd

(2π)dΛd ln b Pαθ(k)IθγρσPνη(k/2 − Λp̂)Iηβµλ×

×
[

2λ̃⊥ δγνP⊥
ρσµλ(k/2 − Λp̂)

λ⊥[Γ(k/2 − Λp̂)2 + λ⊥(k/2 + Λp̂)2 − iωk]
+

+
2λ̃∥ δγν(P⊥

ρσµλ(k/2 − Λp̂) − Iρσµλ)
λ∥[Γ(k/2 − Λp̂)2 + λ∥(k/2 + Λp̂)2 − iωk]

] (10.29)

where the unit vector p̂ is integrated over the d-dimensional sphere Ωd. The main
advantage of having an expression of this kind is that all the dependence on the
cut-off Λ is made explicit.

To recognise within this diagram the corrections to the various parameters of the
original action, one has to expand in small external momenta and frequency, as I
did in (10.6). The order in which it is convenient to perform this expansion depends
on the particular Feynman diagram I am considering and the specific parameters
or coupling constants that it corrects. For example, the diagram I am studying
here gives rise to perturbative corrections to the ψ̂ψ term in the Gaussian action
(9.37); hence this diagram must be expanded up to the second order in the external
momentum k and up to the first order in the external frequency ωk. In this example,
I will calculate explicitly only the contribution of order ωk of this diagram, even
though the diagram gives also contributions of O(1) and of O(k2). The diagram at
order ωk is,

Dαβ(k, ωk) = iωkg2Λd−4 ln b
∫

dΩd

(2π)dPαθ(k)IθγρσPνη(p̂)Iηβµλδγν×

×
[
2λ̃⊥ P⊥

ρσµλ(p̂)
λ⊥(Γ + λ⊥)2 + 2λ̃∥P

⊥
ρσµλ(p̂) − Iρσµλ
λ∥(Γ + λ∥)2

] (10.30)

Expanding all the tensors in equation (10.30), using the definitions (9.18), (9.22)
and (9.23), I obtain,

Dαβ(k, ωk) = iωkg2Λd−4 ln b Pαθ(k)
∫

dΩd

(2π)d

[
λ̃⊥

λ⊥(Γ + λ⊥)2 (1 − d)p̂β p̂θ +

+ λ̃∥

λ∥(Γ + λ∥)2 (d− 2)(p̂β p̂θ − δαβ)
] (10.31)

To perform the integral over the d-dimensional sphere dωd, it is useful to remember
the following two relations,

⟨p̂αp̂β⟩p̂ = 1
d
δαβ , ⟨p̂αp̂β p̂γ p̂ν⟩p̂ = 1

d(d+ 2) (δαβδγν + δαγδβν + δανδβγ) ,

(10.32)
where the brackets indicate the average over the d-dimensional sphere,

⟨·⟩ = 1
Ωd

∫
· dωd (10.33)
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While the average of an even number of uni vectors p̂ is nonzero, the angular average
of an odd number of momenta vanishes by symmetry. This leads to the following
expression for the diagram (10.25),

Dαβ(k, ωk) = −iωkg2 Λd−4d− 1
d

[
λ̃⊥

λ⊥(Γ + λ⊥)2 + λ̃∥

λ∥(Γ + λ∥)2 (d− 2)
]

ln b P⊥
αβ(k)

(10.34)
Since an ϵ-expansion around the upper critical dimension dc = 4 is performed
here, I can set d = 4 in all the Feynman diagrams when results at first order in ϵ
are concerned. In the end, by comparing this expression to the expansion of the
self-energy in (10.6), the correction δΩ coming from this one diagram can be derived
and is given by

δΩ = g2
[

3
4

λ̃⊥

λ⊥(Γ + λ⊥)2 + 3
2

λ̃∥

λ∥(Γ + λ∥)2

]
+ . . . (10.35)

where the dots indicates the corrections from all other diagrams contributing to the
self-energy Σ, which are listed in Appendix C.1.1.

10.1.4 Generation of the anomalous terms

The equations of motion proposed initially at the beginning of Sec. 9.1.2, namely
(9.6) and (9.7), in which the anomalous terms proportional to µ1, µ2, Φ1 or Φ2 do
not appear, have a (relatively) clear physical interpretation. However, as previously
pointed out, in the absence of some additional terms, the equations of motion
are not RG-invariant; basically, what happens is that the RG generates some
terms that were not present in the original action. To see how this happens,
I perform here a shell integration starting from a theory with bare coefficients
Φ10 = Φ20 = µ10 = µ20 = 0 and show that these anomalous terms are spontaneously
generated by the renormalization group transformation. I also hope that this further
direct analysis of some highly non-trivial diagrams may provide the reader with a
more robust technique to perform the entire calculation. Since the generation of
these non-linear terms does not rely on the presence of η and η̃, as in the previous
section they will be set both to 0. Once again, the hope is that this makes the
calculation easier to follow.

Anomalous Mode-Coupling terms

Without anomalies, the non-Gaussian action (9.39) has only one term proportional
to ŝψψ, corresponding to the following vertex,

ŝαβ(−k̃)

ψγ(k̃/2 − q̃)

ψν(k̃/2 + q̃)

: gIαβγνk · q (10.36)
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which is the same mode coupling vertex as (9.57), but without the anomalous terms.
To compute the perturbative corrections to this vertex, all the diagrams with an
incoming ŝ line and two outcoming ψ lines must be considered; these are 12 diagrams,
listed in Appendix C.2.2, most of which produce anomalous corrections. Here, as an
example, I limit myself to consider only the first two of all these diagrams namely,

Dmc,1
αβγν : − k̃, αβ

k̃
2 + q̃

2 + p̃

k̃
2 − q̃

2 − p̃

p̃− q̃
2

k̃/2 − q̃, γ

k̃/2 + q̃, ν

,

Dmc,2
αβγν : − k̃, αβ

k̃
2 + q̃

2 + p̃

k̃
2 − q̃

2 − p̃

p̃− q̃
2

k̃/2 − q̃, γ

k̃/2 + q̃, ν

,

(10.37)

where I explicitly wrote also the momentum of internal field lines. These diagrams
can be converted into integral expressions following the usual Feynman rules. It is
important to note, though, that this is exactly one of the cases in which it is more
convenient to write the spin mode-coupling vertex as in (9.56) (but of course with
Φ1 = Φ2 = 0), rather than as in (9.57). This results in the following expressions for
the two diagrams,

Dmc,1
αβγν = g3

∫
Λ/b<|p|<Λ

ddp
(2π)d

∞∫
−∞

dωp
2π P⊥

µη

(
p+ k

2 + q

2

)
Iηγξζ×

× Iαβσρ

[(
p+ k

2 + q

2

)2
−
(
p− k

2 + q

2

)2]
×

× Iϕχτν

[(
q + k

2

)2
−
(
p− k

2 + q

2

)2]
×

× G0,ψ
ρµ

(
p̃+ k̃

2 + q̃

2

)
G0,s
ξζϕχ

(
p̃− q̃

2

)
C0,ψ
στ

(
p̃− k̃

2 + q̃

2

)
,

(10.38)
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Dmc,2
αβγν = g3

∫
Λ/b<|p|<Λ

ddp
(2π)d

∞∫
−∞

dωp
2π

[(
p+ k

2 + q

2

)2
−
(
p− k

2 + q

2

)2]
×

× IαβσρP⊥
µ,η

(
p+ k

2 + q

2

)
IηγξζP⊥

σ,δ

(
p− k

2 + q

2

)
Iϕχτν×

× G0,ψ
ρµ

(
p̃+ k̃

2 + q̃

2

)
C0,s
ξζϕχ

(
p̃− q̃

2

)
G0,ψ
δτ

(
−p̃+ k̃

2 − q̃

2

)
.

(10.39)

At leading order in the momentum-frequency expansion, after integrals and index
contraction are performed, the sum of these two diagrams can be written as

Dmc,1
αβγν +Dmc,2

αβγν = gIαβρσIρτγν [δgs k · qδστ +A kσqτ +B qσkτ ] ln b , (10.40)

where the constants δgs, A and B are,

δgs = g2w
λ̃⊥w(w + 1)2 + Γ̃x(w(x− 5) − 3x− 1) − λ̃∥(w − 3)wx(w + x)

12Γ3(w + 1)2x(w + x)

A = −g2w
−3λ̃⊥w(w + 1)2 + Γ̃x(w(6w + 3x+ 11) + 5x+ 3) − λ̃∥w(3w + 5)x(w + x)

12Γ3(w + 1)2x(w + x)

B = g2w
−5λ̃⊥w(w + 1)2 + Γ̃x(w(7 − 5x) − 3x+ 5) + λ̃∥w(5w + 3)x(w + x)

12Γ3(w + 1)2x(w + x)
(10.41)

with w = Γ/λ∥ and x = λ⊥/λ∥. These two Feynman diagrams correct the interacting
part of the action relative to the mode-coupling of the spin as follows,

∆Smc = IαβρσIρτγν ln b
∫ Λ/b

0
dk̃ dq̃ŝαβ(−k̃)ψγ(k̃/2 − q̃)ψν(k̃/2 + q̃)×

× g [ δgs k · q δστ︸ ︷︷ ︸
bare structure

+ A kσqτ +B qσkτ︸ ︷︷ ︸
absent in the bare theory

] , (10.42)

Note that, in terms of the corrections defined in Eq. (10.20), the terms A and B
contribute to Φ1δgs1 = A+ . . . and Φ2δgs2 = B + . . . , where the ellipses stand for
contributions coming from diagrams other than Dmc,1 and Dmc,2.

The core idea of the renormalization group is that the perturbative contributions
generated by Feynman diagrams can be reabsorbed into a redefinition of the model’s
parameters. Comparing equations (10.36) and (10.42) it is evident that the first
term, proportional to Iαβγν k ·q, has the same form as the bare vertex (10.36), hence
it can be reabsorbed in the coupling, g → g(1 + δgs ln b). However, it is not possible
to reabsorb the second and third terms of equation (10.42) as correction of any
pre-existing parameters, because of the different tensorial structure. For this reason
two novel terms, proportional to IαβρσIρτγν kσqτ and IαβρσIρτγν qσkτ respectively,
must be included in the action. These two terms coincide with the two anomalous
terms Φ1 and Φ2 in equations (9.39). Let me note that most of the diagrams listed
in Appendix C.2.2 generate the same anomalous terms with different coefficients A
and B. It is crucial to note that, if the model is at equilibrium, v0 = 0, Γ̃ = Γ and
λ̃⊥,∥ = λ⊥,∥, all these perturbative contributions vanish: A = B = δgs = 0, so that
no anomalous terms are generated in the non-active case.
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Anomalous Advection terms

The same procedure can be used to prove that the two anomalous advection terms,
proportional to µ1 and µ2, are fundamental to guarantee the closure of the theory
under the RG transformation. I use the same strategy: even assuming that the
anomalous terms are zero in the bare theory, µ1 = µ2 = 0, they are spontaneously
generated by the renormalization group transformation. If one assumes that µ1 =
µ2 = 0, there is only one term proportional to ŝsψ in the non-Gaussian action (9.39),
corresponding to the advective derivative. In the diagrammatic expansion, this
corresponds to modifying the vertex,

ŝαβ(−k̃)

sγν(k̃/2 − q̃)

ψη(k̃/2 + q̃)

: −v0
iγs
2 Iαβγνkη (10.43)

The term proportional to ŝsψ in the action is corrected by the Feynman diagrams
with an incoming ŝ, one outcoming s and ψ line. These are only 3 diagrams, listed
in Appendix C.2.4, so I calculate here all three of them, namely,

Dadv,1 : −k̃, αβ

k̃
2 + q̃

2 + p̃

k̃
2 − q̃

2 − p̃

p̃− q̃
2

k̃/2 − q̃, γν

k̃/2 + q̃, η

,

Dadv,2 : −k̃, αβ

k̃
2 + q̃

2 + p̃

k̃
2 − q̃

2 − p̃

p̃− q̃
2

k̃/2 − q̃, γν

k̃/2 + q̃, η

,

Dadv,3 : −k̃, αβ

k̃
2 + q̃

2 + p̃

k̃
2 − q̃

2 − p̃

p̃− q̃
2

k̃/2 − q̃, γν

k̃/2 + q̃, η

.

(10.44)
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The integral expressions of these Feynman diagrams are:

Dadv,1 = −iv0
γsg

2

2

∫
Λ/b<|p|<Λ

ddp
(2π)d

∞∫
−∞

dωp
2π Iαβξζkρ×

× P⊥
µι

(
p+ k

2 + q

2

)
IισγνP⊥

τδ

(
p− q

2

)
Iδηϕχ×

× G0,ψ
ρµ

(
p̃+ k̃

2 + q̃

2

)
G0,ψ
στ

(
p̃− q̃

2

)
C0,s
ξζϕχ

(
p̃− k̃

2 + q̃

2

)
,

(10.45)

Dadv,2 = −iv0
γsg

2

2

∫
Λ/b<|p|<Λ

ddp
(2π)d

∞∫
−∞

dωp
2π Iαβξζkρ×

× P⊥
µι

(
p+ k

2 + q

2

)
Iισγν

[(
q + k

2

)2
−
(
p− q

2

)2
]
Iϕχτη×

× G0,ψ
ρµ

(
p̃+ k̃

2 + q̃

2

)
C0,ψ
στ

(
p̃− q̃

2

)
G0,s
ξζϕχ

(
−p̃+ k̃

2 − q̃

2

)
,

(10.46)

Dadv,3 = −iv0
γsg

2

2

∫
Λ/b<|p|<Λ

ddp
(2π)d

∞∫
−∞

dωp
2π Iαβξζkρ×

× P⊥
σι

(
−p+ q

2

)
Iιµγν

[(
q + k

2

)2
−
(
p− q

2

)2
]
Iϕχτη×

× C0,ψ
ρµ

(
p̃+ k̃

2 + q̃

2

)
G0,ψ
στ

(
−p̃+ q̃

2

)
G0,s
ξζϕχ

(
−p̃+ k̃

2 − q̃

2

)
,

(10.47)
At leading order in the momentum-frequency expansion, after integrals and index
contraction are performed, the sum of these three diagrams can be written as

Dadv,1 +Dadv,2 +Dadv,3 = −v0
iγs
2 IαβρσIρτγν [δγs kηδστ + C kτδση +Dkσδτη] ln b

(10.48)
with the constants δγs, C and D, given by,

δγs = − g2 −x(x− 1)(1 + 2w + x)Γ̃ + wx(w + x)2λ̃∥ − w(1 + w)2λ̃⊥

12Γ3(1 + w)2x(w + x)2

C = − g2 −x(5 + 10w + 12w2 + 14wx+ 7x2)Γ̃ + 7wx(w + x)2λ̃∥ + 5w(1 + w)2λ̃⊥

12Γ3(1 + w)2x(w + x)2

D = − g2 −x(x− 1)(1 + 2w + x)Γ̃ + wx(w + x)2λ̃∥ − w(1 + w)2λ̃⊥

12Γ3(1 + w)2x(w + x)2 ,

(10.49)
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These three Feynman diagrams correct the interacting part of the action relative to
the advection of the spin as follows,

∆Sadv = v0
−iγs

2 IαβρσIρτγν
∫ Λ/b

0
dk̃ dq̃ŝαβ(−k̃)sγν(k̃/2 − q̃)ψη(k̃/2 + q̃)×

× [ δγskηδστ︸ ︷︷ ︸
bare structure

+ C kτ δση +D kσδτη︸ ︷︷ ︸
absent in the bare theory

] , (10.50)

Comparing equations (10.50) and (10.43) it is evident that the term proportional to
IαβρσIρτγνkηδστ = Iαβγνkη is the same as in the bare case and it can be reabsorbed
as a correction of the advection coupling, γs. On the other hand, the two terms
proportional to IαβρσIρτγν kτ δση and IαβρσIρτγν kσδτη have a tensorial structure
different from the bare action so that they require the addition of two new anomalous
advection terms, which are exactly the ones proportional to µ1 and µ2 in equation
(9.39). In terms of the corrections of Eq. (10.21), the terms C and D thus contribute
to 2µ1δγs1 = C and 2µ2δγs2 = D.

Summary of the anomalous terms

I have shown explicitly that some vertex-correction diagrams generate the following
mode-coupling and advective anomalous terms in the equation of motion for the
spin,{

ψγ(k̃/2 − q̃)ψν(k̃/2 + q̃)Iαβρσkσqτ Iρτγν
ψγ(k̃/2 − q̃)ψν(k̃/2 + q̃)Iαβρσqσkτ Iρτγν

−→
{

[∂α (ψν∂νψβ) − ∂β (ψν∂νψα)]
∂ν [ψν (∂αψβ − ∂βψα)]

,

(10.51){
sγν(k̃/2 − q̃)ψη(k̃/2 + q̃)IαβρσIρτγν kτδση −→ ∂ν (sανψβ − sβνψα)
sγν(k̃/2 − q̃)ψη(k̃/2 + q̃)IαβρσIρτγν kσδτη −→ [∂α (ψνsνβ) − ∂β (ψνsνα)] .

(10.52)

which have been summarised here together with the real-space form that I anticipated
in (9.10) and (9.11). Notice a complication: while each one of the two advection
terms in k space gives rise to one term in x space, both mode-coupling anomalous
terms in k space contribute to both terms in x space. For this same reason the
couplings of the mode-coupling anomalous terms in momentum space, Φ1,Φ2 are a
linear combination of those in real space, ϕ1, ϕ2 (see equations (9.34) and (9.35)).

The crucial result of the diagrammatic calculation is that all mode-coupling
and advection diagrams generating anomalous terms (including all diagrams that I
have not explicitly analyzed in this Section), generate only terms with one of these
four tensorial structures. In this sense, the RG calculation is closed once I include
these four vertices in the action. Notice also that the total perturbative amplitudes
of these terms are not simply given by the coefficients A,B,C,D calculated here,
indeed because these anomalous terms will give rise to additional self-correcting
contributions.
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10.2 Rescaling
Once the shell integration is performed, one is left with an effective action with a
smaller cutoff Λ/b, a coefficient different from 1 in front of the −iωψ̂ψ term and
modified parameters, namely

P0 → P0(1 + δP ln b) ≃ P0b
δP (10.53)

Following Section 4, to be able to compare apples with apples, one must perform
a scaling transformation which restores the previous cutoff Λ. This in principle
requires rescaling only k; However, it is convenient to rescale also the frequency and
the fields, according to

k =b−1 kb , ω =b−zωb , (10.54)
ψ(k, ω) =b−χψψ(kb, ωb) , ψ̂(k, ω) =b−χψ̂ψ̂(kb, ωb) , (10.55)
s(k, ω) =b−χss(kb, ωb) , ŝ(k, ω) =b−χŝ ŝ(kb, ωb) . (10.56)

After this rescaling, one recovers an action with the same cutoff Λ but with new
renormalized parameters and couplings, which will be denoted with a subscript b in
what follows.

To understand how this works in practice, let me first focus on what happens to
the −iω terms under rescaling. Once the shell integration is performed, the rescaling
procedure defined by Eq. (10.54)-(10.56) transforms these terms as follows

∫
|k|<Λ/b

ddk
+∞∫

−∞

dω
[
−iω (1 + δΩ ln b) ψ̂(−k,−ω)ψ(k, ω)

]
=

= b−χψ̂−χψ−d−2z+δΩ
∫

|kb|<Λ

ddkb
+∞∫

−∞

dωb
[
−iωbψ̂(−kb,−ωb)ψ(kb, ωb)

]
, (10.57)

∫
|k|<Λ/b

ddk
+∞∫

−∞

dω [−iωŝ(−k,−ω)s(k, ω)] =

= b−χŝ−χs−d−2z
∫

|kb|<Λ

ddkb
+∞∫

−∞

dωb [−iωbŝ(−kb,−ωb)s(kb, ωb)] , (10.58)

where I remind that the −iωŝs term has no perturbative corrections because of
the rotational symmetry – see Sec. 9.3.3 for a discussion on this. As previously
mentioned, these terms lack a coupling constant to redefine. Hence, the scaling
dimensions of the fields must be properly chosen to restore the same structure of
the bare action, namely

χψ̂ + χψ = −d− 2z + δΩ χŝ + χs = −d− 2z (10.59)
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With this choice, the renormalized theory will still have a coefficient equal to one in
front of the time derivative of the equation of motion. This requirement allows me
to fix the scaling dimension of the response fields χψ̂ and χŝ,

χψ̂ = −χψ − d− 2z + δΩ χŝ = −χs − d− 2z . (10.60)

Rescaling can be performed on all the other terms of the action in the same way as it
was done in Eq. (10.57)-(10.58). In these cases, however, the powers of b appearing
after rescaling can be reabsorbed by defining new renormalized parameters of the
theory. These new values of the parameters can be expressed as functions of the
bare parameters, through the perturbative corrections, the dynamic exponent z and
the scaling dimensions χ of the fields. Scaling dimensions for time and fields are not
known a priori but can be determined by imposing additional conditions. For what
concerns the Gaussian action, the renormalized parameters are given by

Γb = Γ0b
χΓ χΓ = −χψ̂ − χψ − d− 2 − z + δΓ (10.61)

Γ̃b = Γ̃0b
χΓ̃ χΓ̃ = −2χψ̂ − d− z + δΓ̃ (10.62)

λ
⊥/∥
b = λ

⊥/∥
0 bχλ⊥/∥ χλ⊥/∥ = −χŝ − χs − d− 2 − z + δλ⊥/∥ (10.63)

λ̃
⊥/∥
b = λ̃

⊥/∥
0 bχλ̃⊥/∥ χλ̃⊥/∥ = −2χŝ − d− 2 − z + δλ̃⊥/∥ (10.64)

ηb = η0b
χη χη = −χŝ − χs − d− z (10.65)

η̃b = η̃0b
χη̃ χη̃ = −2χŝ − d− z (10.66)

mb = m0b
χm χm = −χψ̂ − χψ − d− z + δm (10.67)

By taking advantage of Eq. (10.60) it is furthermore possible to write all the scaling
dimensions of the parameters in terms of the scaling dimensions of the frequency
and physical fields only, namely of z, χψ and χs:

χΓ = z − 2 + δΓ − δΩ χΓ̃ = 2χψ + d+ 3z + δΓ̃ − 2δΩ (10.68)
χλ⊥/∥ = z − 2 + δλ⊥/∥ χλ̃⊥/∥ = 2χs + d+ 3z − 2 + δλ̃⊥/∥ (10.69)

χη = z χη̃ = 2χs + d+ 3z (10.70)
χm = z + δm− δΩ (10.71)

Let me note here a crucial fact: since the dynamic critical exponent z is always
positive, so is the scaling dimension χη of the dissipation η. Due to this, η grows
exponentially when the RG transformation is iterated over and over, eventually
diverging. This makes η a relevant parameter, with a role similar to that of the mass
m: while m is the relevant parameter that drives the system away from the critical
manifold, similarly η drives the system away from the conservative plane (while
remaining on the critical manifold). Hence, independent of all the other parameters,
I expect η to diverge under the RG flow whenever its bare value is non-zero. This
will have important consequences that I will discuss later on.

When turning the attention to the non-Gaussian part of the action, the renor-
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malized couplings and parameters are given by

γψb = γψ0b
χγψ χγψ = −χψ̂ − 2χψ − 2d− 1 − 2z + δγψ (10.72)

γsb = γs0b
χγs χγs = −χŝ − χs − χψ − 2d− 1 − 2z + δγs (10.73)

µ1b = µ10b
χµ1 χµ1 = δγs1 − δγs (10.74)

µ2b = µ20b
χµ2 χµ2 = δγs2 − δγs (10.75)

g
(ψ)
b = g0b

χ
g(ψ) χg(ψ) = −χψ̂ − χψ − χs − 2d− 2z + δgψ (10.76)

g
(s)
b = g0b

χ
g(s) χg(s) = −χŝ − 2χψ − 2d− 2 − 2z + δgs (10.77)

Φ1b = Φ10b
χΦ1 χΦ1 = δgs1 − δgs (10.78)

Φ2b = Φ20b
χΦ2 χΦ2 = δgs2 − δgs (10.79)

Jb = J0b
χJ χJ = −χψ̂ − 3χψ − 3d− 3z + δJ (10.80)

κb = κ0b
χκ χκ = −χŝ − 4χψ − 4d− 4z + δκ (10.81)

By using Eq. (10.60) I can write all the scaling dimensions of the interaction
couplings in terms of the scaling dimensions of the frequency and physical fields,
namely of z, χψ and χs:

χγψ = −χψ − d− 1 + δγψ − δΩ χγs = −χψ − d− 1 + δγs (10.82)
χµ1 = δγs1 − δγs χµ2 = δγs2 − δγs (10.83)
χg(ψ) = −χs − d+ δgψ − δΩ χg(s) = χs − 2χψ − d− 2 + δgs (10.84)
χΦ1 = δgs1 − δgs χΦ2 = δgs2 − δgs (10.85)
χJ = −2χψ − 2d− z + δJ − δΩ χκ = χs − 4χψ − 3d− 2z + δκ (10.86)

By looking at Eqs. (10.76) and (10.77) it may seem that one has two different
mode-coupling constants; however, this is not the case. I defined two different renor-
malized coupling constants g(ψ) and g(s) only because the perturbative corrections
δgψ and δgs arising in Eqs. (10.17) and (10.20) are completely independent of each
other, but this does not mean that there are two different physical constants. In fact,
there must be only one mode-coupling constant, because g arises in the derivation
of the equations of motion as the consequence of a symmetry, encoded by the
Poisson-bracket relation {s, ψ} ∝ gψ, stating that s is the generator of the rotations
of ψ. The mode-coupling terms in both the equations of motion derive from this one
Poisson-bracket relation; therefore, the existence of two different couplings would
mean losing the connection with the underlying symmetry and Poisson structure. As
I mentioned before, the scaling behaviour of the physical fields ψ and s is arbitrary,
which allows a certain freedom in determining the scaling dimensions χψ and χs,
which enter Eqs. (10.76) and (10.77). Hence, it is possible to use this freedom to
restore the identity of the two mode-coupling constants,

g
(ψ)
b = g

(s)
b = gb (10.87)

by simply asking that χs is chosen in such a way that,

χg(ψ) = χg(s) (10.88)

Essentially, I am requiring the field s to scale in such a way that the coupling
regulating the symmetry has one unique scaling behaviour.
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10.3 Effective coupling constants
As it is always the case in RG calculations, it is now possible to define a set of
effective parameters whose scaling behaviour does not depend on z, χψ and χs, so
that all physical quantities turn out to depend on the parameters of the theory
only via these effective couplings. The effective couplings can be found by looking
at the scaling dimensions of the parameters of the theory, given in Eqs. (10.68)-
(10.70), (10.82)-(10.86). By recalling that the scaling dimension of the product of
two couplings is given by the sum of the respective scaling dimensions, namely,

Cb = AbBb = bχA+χBA0B0 = bχC C0 → χC = χA + χB (10.89)

it is always possible to find a set of combinations of coupling constants and parameters
of the theory that have a scaling behaviour which is independent of z, χψ and χs
[107]. For example, let me consider the coupling constant J : its scaling, given by
Eq. (10.86), depends on χψ and z. To compensate for the dependence on χψ one
can multiply it by the noise strength Γ̃, which also has a χψ scaling dependence;
thus, the product Γ̃J does not depend anymore on χψ. Similarly, the dependence
on z can be compensated by dividing by Γ2, making the scaling behaviour of the
combination Γ̃J/Γ2 depending only on d and perturbative corrections, which are
computed through Feynman diagrams. A similar procedure can be applied at any
other constant; multiplying it by appropriate powers of λ̃⊥/∥ or Γ̃ to compensate
the dependence on χs or χψ respectively, and by appropriate powers of Γ, λ⊥/∥

to compensate the dependence on z. There is some arbitrariness on the choice
of whether to use λ̃⊥ or λ̃∥ to compensate χs and whether to use Γ, λ⊥ or λ∥ to
compensate z. However, as long as these parameters are not singular (and they will
not be at the fixed point), this choice is irrelevant.

The effective parameters for (9.12)-(9.13) are,

w = Γ
λ∥ , x = λ⊥

λ∥ , θ⊥ = Γ̃λ⊥

Γλ̃⊥
g(s)

g(ψ) , θ∥ = Γ̃λ∥

Γλ̃∥
g(s)

g(ψ) , (10.90)

where θ⊥,∥ ̸= 1 if the system is out-of-equilibrium. Although the technical definition
of θ⊥/∥ contains the ratio g(s)/g(ψ), the physical case is given by g(s) = g(ψ), as argued
in Sec. 10.2 . Hence, the physical meaning of θ⊥/∥ is that of the ratio between the
effective temperatures of the two fields, Tψ = Γ̃/Γ and T

⊥/∥
s = λ̃⊥/∥/λ⊥/∥, namely

θ⊥ = Tψ
T⊥
s

= Γ̃λ⊥

Γλ̃⊥ , θ∥ = Tψ

T
∥
s

= Γ̃λ∥

Γλ̃∥ . (10.91)

From the dissipative coefficients η and η̃, two effective parameters can be obtained

η̂ = η

λ∥Λ2 + η
, η̆ = η̃

λ̃∥Λ2 + η̃
(10.92)

Here the presence of Λ is needed for dimensional reasons. In terms of these reduced
dissipations, the conservative dynamics is recovered when η̂ = η̆ = 0, while the
fully dissipative dynamics is recovered when η̂ = η̆ = 1, namely when η ≫ λ∥/⊥Λ2,
η̃ ≫ λ̃∥/⊥Λ2.
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The effective coupling constants regulating activity are,

cv = v0
γv
Γ

√
Γ̃
Γ

√
KdΛd−4 , cs = v0

γs
λ∥

√
Γ̃
Γ

√
KdΛd−4 , (10.93)

the ferromagnetic coupling J and the mass m have effective couplings given by

ũ = Γ̃
Γ
J

ΓKdΛd−4 = Γ̃
Γ uKdΛd−4 , r̃ = m

Γ KdΛd−2 = Γ̃
ΓrKdΛd−2 ; (10.94)

while the mode-coupling and the DYS effective coupling constants respectively are,

f = λ̃∥

λ∥
g2

λ∥Γ
KdΛd−4 , ũκ = Γ̃

Γ
κ

g
KdΛd−4 ; (10.95)

where Λ is the cutoff of the theory and Kd is the surface of the unitary sphere in d
dimensions. The presence of Λ to the power 4 − d in all effective couplings except
for r suggests that the upper critical dimension of the theory is dc = 4, which means
that all couplings are relevant in d < 4, while mean-field behaviour is recovered
for d ≥ 4. The dependence of r on Λd−2 indicates instead that the mass is always
a relevant perturbation above d = 2, driving the system away from the critical
manifold. Therefore, this requires the mass to be fine-tuned to be near the critical
point. At equilibrium, where v0 = 0 and Γ̃ = Γ, λ̃ = λ, κ = ug, all the effective
couplings become identical to their standard equilibrium counterpart [40], with the
equilibrium result ũ = ũκ [MyPaper2] being recovered.

Finally, the four adimensional parameters regulating the anomalous mode-
coupling and self-propulsion non-linearities, namely

Φ1 , Φ2 , µ1 , µ2 . (10.96)

should be added to the list of effective parameters.

10.4 RG flow equations and β-functions
The flow of the effective couplings can be obtained by iterating the RG transformation,
thus defining a set of recursive relations. After l iterations, the new parameters will
take the form,

Pl+1 = bχP Pl (10.97)
where χP is evaluated using the values of the parameters at step l. The values P∗

to which the flow of P approaches when l → ∞ are called fixed points, and play a
crucial role in determining the critical behaviour of the theory [15]. To study the
RG flow of the present theory, it is convenient to rewrite Eq. (10.97) in the thin
shell limit ln b → 0. In this limit, the flow equations become

Ṗ = ∂P
∂ ln b ≡ βP (10.98)

where βP , known as β-function, is defined as the derivative of P with respect to ln b.
The fixed points P∗ of the RG-flow are given by the zeros of βP , since these are the
points at which

Ṗ = βP |P=P∗ = 0 . (10.99)
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Among these fixed points, some are (IR-)stable meaning that the flow is driven
towards them, while others may have one or more directions of instability from
which the RG flow escapes. Asymptotically IR-stable fixed points are those typically
ruling the critical behaviour of systems in the thermodynamic limit. Note that, as
previously discussed, the mass coupling r always represents a source of instability
since it drives the system away from criticality. Hence, stability is intended as
stability in all directions except r.

The β-function of the generic parameter P is given by βP = PχP . Hence, for
the parameters defined in Eqs. (10.90)-(10.95) the beta-functions take the following
form,

βw =w
(
δΓ − δλ∥

)
(10.100)

βx =x
(
δλ⊥ − δλ∥

)
(10.101)

βθ⊥ = θ⊥
(
δΓ̃ − δΓ + δλ⊥ − δλ̃⊥ + δgs − δgψ

)
(10.102)

βθ∥ = θ⊥
(
δΓ̃ − δΓ + δλ∥ − δλ̃∥ + δgs − δgψ

)
(10.103)

βη̂ = η̂ (1 − η̂)
(
2 − δλ∥

)
(10.104)

βη̆ = η̆ (1 − η̆)
(
2 − δλ̃∥

)
(10.105)

βr̃ = r̃ (2 + δm− δΓ) (10.106)

βcv =1
2cv

(
ϵ+ δΓ̃ + 2δγψ − 3δΓ − δΩ

)
(10.107)

βcs =1
2cs

(
ϵ+ δΓ̃ + 2δγs − δΓ − 2δλ∥ − δΩ

)
(10.108)

βf = f
(
ϵ+ δλ̃∥ + 2δgψ − 2δλ̃∥ − δΓ − δΩ

)
(10.109)

βũ = ũ
(
ϵ+ δΓ̃ + δJ − 2δΓ − δωψ

)
(10.110)

βũκ = ũκ
(
ϵ+ δΓ̃ + δκ− δΓ − δgs − δΩ

)
(10.111)

βµ1 =µ1
(
δγs1 − δγs

)
(10.112)

βµ2 =µ2
(
δγs2 − δγs

)
(10.113)

βΦ1 = Φ1
(
δgs1 − δgs

)
(10.114)

βΦ2 = Φ2
(
δgs2 − δgs

)
(10.115)

where all the perturbative corrections δP are obtained from the Feynman dia-
gram expansion. The explicit expressions of these beta-functions are given in the
Mathematica notebook from [MyPaper1].

Before I proceed, let me draw the reader’s attention to the beta functions of
the reduced dissipative coefficients, η̂ and η̆, Eq. (10.104) and (10.105). Within the
perturbative approach, near 4 dimensions the parameters η̂ and η̆ may take only
two possible fixed point values: 0 or 1. This is because the perturbative corrections
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δλ∥ and δλ̃∥ are both of O (ϵ); hence the quantities 2 − δλ∥ and 2 − δλ̃∥ will always
be strictly positive and close to 2; hence, the only way in which βη̂ = 0 is by setting
η̂ = 0 or η̂ = 1. Similarly, βη̆ = 0 is achieved only when η̆ = 0 or η̆ = 1. Near the
conservative manifold η̂ = η̆ = 0, the scaling dimensions of both η̂ and η̆ are positive,
meaning that the flow drives the system away from it. On the other hand, the fully
dissipative manifold η̂ = η̆ = 1 is attractive. Hence, both η̂ and η̆ flow from the
conservative value of 0 towards the dissipative value of 1, regardless of what all the
other parameters do. In terms of the dissipations coefficients η and η̃, the stability
of the η̂ = η̆ = 1 manifold reflects the fact that both parameters grow under the RG
flow, eventually diverging: η → ∞, η̃ → ∞. This means that the asymptotically
stable behaviour of the theory is given by the overdamped limit.

10.5 Properties of the RG solution in the absence of
dissipation

The power of the RG lies in the fact that critical exponents can be inferred by the
study of the RG flow in the neighbourhood of a fixed point. The fixed point at which
the critical exponents should be evaluated usually is the stable one, since one expects
the RG flow to eventually reach its stable fixed point. However, unstable fixed points
often play a crucial role in determining the behaviour of finite-size systems, since
crossover phenomena may take place.

In the following section, I will show that this is indeed the case for the field
theory I have introduced. Although the IR-stable fixed point in the presence of spin
dissipation is that of the incompressible Toner and Tu theory [23], an RG crossover
takes place for small dissipation η̂ ≪ 1, as in [41, 108]. The (IR-unstable) fixed point
ruling the behaviour of systems with small dissipation can be found by focusing on
the RG flow of the conservative theory. It is worth noting that the conservative
subspace is RG-invariant, since βη̂ = βη̆ = 0 when η̂ = η̆ = 0. Hence, I shall first
restrict myself to the sub-space η̂ = η̆ = 0, and come back to the dissipative theory
later on in Section 10.6.

10.5.1 Flow and fixed points

In simple cases, fixed points can be found by solving analytically the set of equations
βP = 0 in the parameters P. Here this was not possible. Instead, I tackled this
problem by integrating numerically the set of partial differential equations defining
the RG flow, namely (10.98), and looking at what values of the parameters the flow
converges. If the flow does converge, the point to which it will converge is a fixed
point of the theory. This procedure does not allow me to find any fixed point, but
only the ones that are stable in the manifold I decide to restrict myself to, which is
the η̂ = η̆ = 0 manifold in the present case.

To perform this numerical integration, great care must be taken in the choice
of initial conditions of the parameters and couplings, as a large portion of this
14-dimensional coupling space is expected to be just unphysical. Therefore, before
proceeding with the search for a new active inertial fixed point, it is useful to identify
the most relevant fixed points I already know about. As I will here show, a rich
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fixed-point structure emerges.
Model A fixed point. The first, most trivial fixed point that the present

theory exhibits is given by Model A [40] with solenoidal constraint. To find this
fixed point, I first have to set f = 0, effectively decoupling the dynamics of the
order parameter from that of the spin, hence turning off inertial effects. At this
point, one can therefore forget about the equation for the spin and focus only on the
dynamic of the order parameter. Model A dynamics is completely recovered when
v0 = 0 (cv = 0), switching activity off. On this equilibrium non-inertial manifold,
the only remaining coupling is the ferromagnetic coupling ũ, which flows to the
fixed point of classical ferromagnets with dipolar interactions [87, 86, 111]. This
equilibrium non-inertial fixed point thus describes non-active systems, as classical
ferromagnets, where the polarisation is not coupled to the spin. This fixed point is
however unstable both against activity and inertial perturbations.

Model G fixed point. By keeping the system at equilibrium, but turning
on inertia the equilibrium inertial manifold can be now accessed. This manifold
is represented by set of parameters v0 = 0 (and thus cv = cs = 0), θ⊥/∥ = 1,
Φ1 = Φ2 = 0 and ũ = ũκ ̸= 0, representing the equilibrium limit of the present theory –
Eq. (9.12) (9.13). On this manifold, the couplings w, f and ũ eventually approach the
Solenoidal Model G fixed point [MyPaper2]. In the absence of solenoidal constraints,
this fixed point is known to describe equilibrium superfluids and antiferromagnets
(Models E/F and G of [40]). While this fixed point is stable on the equilibrium
manifold, it is unstable against activity perturbations.

Self-Propelled Model A fixed point. On the other hand, it is possible to
turn on activity while keeping inertial effects irrelevant. This is done by setting
f = 0, but allowing v0 ̸= 0 (and hence cv ̸= 0). On this manifold, the inertial
reversible terms are absent from the dynamics, hence the polarisation is decoupled
from the spin. This leads to Self-Propelled Model A fixed point, which was first
discovered in [23]. This active non-inertial fixed point is stable against fluctuations
of cv, but as soon as one perturbs it with an inertial coupling, f ̸= 0, the RG flow
diverges. There is a sound reason for this: the correct way to attain non-inertial
dynamics is not to kill the reversible coupling between coordinate and momentum,
but to introduce dissipation and let it take over in the overdamped limit. This
analysis will be performed later on, in Sec. 10.6.

Let me now come back to my original goal, namely finding a new active inertial
fixed point. As previously mentioned, this turns out to be not feasible by analytically
solving βP = 0. Therefore, the RG flow must be solved numerically from a sound
initial condition in order to find this new fixed point. Since any inertial system
with small, but non-vanishing activity v0 belongs to the neighbourhood of the
equilibrium limit, the surroundings of Model G fixed point seem as a good starting
point. If activity is relevant, and indeed I will show it is, the corresponding coupling
constants cv and cs should grow along the RG flow and drive the system towards an
out-of-equilibrium active fixed point if it exists. Let me remark that I do not start
close to equilibrium because I expect activity to be weak in swarms; in fact, quite
the opposite: activity in natural swarms is strong [MyPaper1]. I start close to the
equilibrium fixed point for a mere technical point: I need a safe path through a very
dangerous parameter space in which it is far too easy for the RG flow to go bonkers
if one deviates too much from a physical initial condition.
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Figure 10.1. RG flow of ũ, ũκ and cv [MyPaper1]. As an example, I show a portion
of the RG flow of the couplings ũ, ũκ and cv from the unstable equilibrium fixed point
towards the stable off-equilibrium fixed point. From the plot, one can see that as activity
increases, ũ and ũκ become different from the other. As the fixed point is approached,
the value of ũκ drops to 0. Permission to reuse granted under the terms of the Creative
Commons Attribution License CC BY 4.0

The constants µ1 and µ2 have undefined values in the equilibrium limit since
they are both multiplied by v0γs in the equations of motion and thus there are no
a priori arguments to fix their value near equilibrium. However, I find that the
β-functions of these two parameters, namely βµ1 and βµ2 , vanish when µ1 and µ2
take the following values

µ1 = 1
2 , µ2 = −1

2 (10.116)

µ1 = −1 , µ2 = 0 (10.117)

independently of the values of all other parameters. This means that both these
combinations of µ1,2 remain constant along with the RG flow, whatever the other
couplings and parameters are doing. The first solution of µ1,2 turns out to be
unstable for small perturbations of their values, at least near the equilibrium fixed
point, while the second solution is stable. Hence, I fix from the beginning µ1 = −1
and µ2 = 0 and check the consistency of this choice by checking a posteriori the
stability of the RG flow with respect to perturbations in µ1 and µ2, thus reducing
the problem to 11 coupled equations instead of 13.

Self-Propelled Model G fixed point. I then simulate the RG flow starting
from various initial conditions close to equilibrium by using the built-in NDSolve
function of the software Mathematica, and always find the same attractive fixed
point,

ũ∗ =0.213ϵ ũ∗
κ =0 c∗

v =0.189
√
ϵ (10.118)

f∗ =1.68ϵ Φ1 = − 0.762 Φ∗
2 = − 0.137 (10.119)

c∗
s =0.882

√
ϵ µ1 = − 1 µ2 =0 (10.120)

x∗ =0.369 θ∗
⊥ =1.34 η̂∗ =0 (10.121)

w∗ =3.95 θ∗
∥ =0.920 η̆∗ =0 (10.122)
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Figure 10.2. RG flow in the conservative case [MyPaper1]: The novel fixed point
(red circle), with non-zero off-equilibrium activity and non-zero inertial coupling, is
the only stable one, with a dynamical critical exponent z = 1.35 in d = 3. The
equilibrium non-inertial fixed point (black square), z = 2.0, corresponds to standard
ferromagnets (Model A of [40]); the equilibrium inertial fixed point (blue diamond),
z = 1.5, corresponds to superfluids and quantum antiferromagnets (Models E and G of
[40]); finally, the active non-inertial fixed point (green triangle), z = 1.73, corresponds to
active matter without reversible coupling between velocity and spin [23]; this last fixed
point is not connected to the active inertial one onto this plane. Permission to reuse
granted under the terms of the Creative Commons Attribution License CC BY 4.0

The typical RG flow of a selected number of couplings is represented in Fig. 10.1,
while the full picture of the RG flow in the conservative plane is represented in
Fig. 10.2. Since cv, cs and f have a finite fixed point value, both activity and
mode-coupling are relevant at this fixed point, making it the ideal candidate to
describe incompressible inertial active matter. The stability of the novel fixed point
is analysed by looking at the Jacobian matrix of the beta functions

Jβ = ∂β⃗

∂P⃗
(10.123)
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The eigenvalues of Jβ at the new fixed point are given by

−2.26ϵ , −1.66ϵ , −1.00ϵ , (10.124)
−0.562ϵ , −0.498ϵ , −0.315ϵ , (10.125)
−0.0584ϵ , −0.0532ϵ , −0.0167ϵ , (10.126)

(−0.724 + 0.107 i)ϵ , (−0.724 − 0.107 i)ϵ , (10.127)
(−0.247 + 0.00185 i)ϵ , (−0.247 − 0.00185 i)ϵ , (10.128)

2 − 0.816ϵ , 2 − 0.651ϵ (10.129)

A negative (positive) real part of an eigenvalue indicates that the flow near the
fixed point converges (diverges) exponentially along the direction of the associated
eigenvector. On the other hand, the presence of an imaginary part of the eigenvalues
stems from a spiralling convergence or divergence of the flow in the direction of the
eigenvalue.

The last two eigenvalues of Jβ, namely 2 − 0.816ϵ and 2 − 0.651ϵ, are positive
for all values of ϵ that may be of physical interest (0 ≤ ϵ ≤ 2). They indicate the
presence of two directions of instability of the fixed point. From an analysis of the
eigenvectors, it is possible to see that these instabilities point in the direction of
η̂ and η̆ respectively, indicating that this fixed point is not stable with respect to
spin-dissipation. However, since the real part of all other eigenvalues is negative
when ϵ > 0, I can conclude that this new fixed point is stable in the subspace
η̂ = η̆ = 0 for d < 4 and thus it is expected to rule the long-wavelength behaviour of
active inertial systems for d = 3.

10.6 Properties of the RG solution in the presence of
dissipation

Up to now, I analysed the RG flow only in its fully conservative manifold, namely at
η̂ = η̆ = 0, since expectations are that finite size systems with small dissipation are
well described by fixed points in this manifold. In the present section, I will test the
validity of these expectations. First, I will look at the behaviour of the RG flow in
the strong-dissipation limit, showing that the behaviour of Self-Propelled Model A
is recovered. Secondly, I will focus on the crossover between underdamped (small
dissipation) and overdamped (strong dissipation) dynamics by analysing the RG
flow in the proximity of the new active, inertial conservative fixed point found in
Section 10.5.1.

10.6.1 Dissipative fixed point

As discussed at the end of Sec. 10.4, whenever η̂ = η̆ ̸= 0 the RG flow makes them
grow, approaching the fully dissipative manifold η̂ = η̆ = 1. When η̂ = η̆ = 1, the
β-functions of the parameters and coupling constants of the theory take a simplified
form. In particular, the β-functions of cv and ũ become independent from all the
other parameters, while all the critical exponents can be expressed in terms of cv and
ũ alone. This is a consequence of the fact that, in the presence of spin-dissipation,



10.6 Properties of the RG solution in the presence of dissipation 174

inertia

activitydissipation
  = 2

  = 1.73

  = 1.35

activity

in
er

tia
l c

ou
pl

in
g

RG instability boundary

  = 1.5

  = 2
  = 1.73

a) b)

Figure 10.3. RG flow with spin dissipation [MyPaper1]: Spin dissipation, η, is a
relevant parameter that brings the flow out of the conservative plane (bottom right plane
of the cube). Perturbing the active inertial fixed point, z = 1.35, with some dissipation,
the RG flow leaves the η̂ = 0 plane, until it eventually reaches the active overdamped
fixed point for η̂ = 1 (green pyramid), where z = 1.73. This fixed point is best seen as
belonging to the overdamped η̂ = 1 line, rather than to the conservative but non-inertial
line, η = 0, f = 0: even though the value of f̂ is the same on the two lines, only the first
one corresponds to the correct overdamped limit. All flow lines are actual numerical
solutions of the RG equations. Permission to reuse granted under the terms of the
Creative Commons Attribution License CC BY 4.0

the actual mode-coupling effective constant in the perturbative expansion is no
longer f , but rather

q = λ̃∥

λ∥
g2

ηΓKdΛd−2 (10.130)

whose scaling dimension in proportional to 2 − d, suggesting that mode-coupling
is relevant only below 2 dimensions, and not 4, when dissipation is present. The
upper critical dimension of the field theory however remains dc = 4, since both cv
and ũ still become relevant below 4 dimensions. The physical reason behind this
change of dimension at which mode-coupling is relevant is the fact that the spin
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Figure 10.4. RG flow in the presence of dissipation [MyPaper1]: I show the RG
flow of the couplings cv, η̂, f̂ = (1 − η̂) f and ũ from the conservative active fixed point
towards the dissipative active fixed point. Note that the coupling f̂ interpolates between
f and q, as the parameter η runs from 0 to ∞. From the plot, one can see that as
dissipation increases, cv and ũ flow to the fixed point values of [23]. Permission to reuse
granted under the terms of the Creative Commons Attribution License CC BY 4.0

becomes a fast mode. When η ≠ 0, the finite relaxation time for the spin η−1 will
become, close to criticality, much smaller than the velocity relaxation time τ = ξz.
Hence, the effect of the spin on the order parameter becomes irrelevant, since its
effect can be represented as noise. The presence of dissipation strongly modifies the
asymptotic critical behaviour, since near criticality only the modes fluctuating on the
same scales of the order parameter may affect universal quantities [40]. Therefore,
when dissipation is present, the asymptotic critical dynamics in the large-size limit
is unaffected by the presence of the spin-velocity coupling.

In this limit, where η̂ = η̆ = 1, the present theory should become equivalent to
the overdamped incompressible theory of [23]. In all perturbative corrections to the
equation of motion of ψ, the diagrams proportional to f are always also proportional
to (1 − η̂). This suggests the best choice of inertial coupling constant should be

f̂ = (1 − η̂) f . (10.131)

This constant correctly interpolates between f when η̂ = 0 and q when η̂ = 1. When
f̂ = 0, all these diagrams vanish, giving no contributions to the critical exponents.
The velocity field ψ thus fully decouples from the spin s in the overdamped limit,
making the behaviour of the fast mode s irrelevant in determining the universal
quantities, so that for η̂, η̆ → 1, or equivalently for f̂ → 0, I obtain,

βcv = 1
2 cv

(
ϵ− 3

4c
2
v − 10

3 ũ
)

(10.132)

βũ = ũ

(
ϵ− 1

2c
2
v − 17

2 ũ
)

(10.133)

βr̃ = r̃

(
2 − c2

v

4

)
+ 9

2 ũ (10.134)

βf̂ = −2f̂ (10.135)
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which are the same RG flow equations obtained by Chen, Toner and Lee in [23],
analysed in Chapter 5. The stable fixed point of these flow equations is thus
represented by [23]:

ũ∗ = 6
113ϵ c∗

v =
√

124
133ϵ r̃∗ = − 27

226ϵ f̂∗ = 0 . (10.136)

Note that the coupling constant of activity used here, cv, is the square root of that
used in Chapter 5 and [23].

This prediction is confirmed also by the numerical integration of the full RG
flow. As shown in Fig.10.4, f̂ flows to 0 as expected, while the couplings cv and ũ
approach the active overdamped fixed-point values of Self-Propelled Model A. As
required by physical consistency, the overdamped limit of the theory is given by the
non-inertial theory of [23]. Full RG flow, in terms of cv, f̂ and η̂ is depicted in Fig.
10.3.

Finally, it is interesting to observe how, at this fixed point, f̂∗ = 0 while f∗ ≠ 0.
This means that the coupling between the direction of motion and the spin remains
finite along the RG flow, providing an interesting confirmation of the common belief
that couplings with fast modes do not affect large-scale properties. Nevertheless,
as I will argue in the next Chapter, this only holds when one is interested in the
asymptotic large-size regime. At finite sizes, instead, the presence of a mode-coupling
between order parameter and spin will be shown to play a crucial role in the collective
behaviour of systems in which spin-dissipation is small, as in the case of swarms.

10.7 Conclusion
In the present Chapter, I presented the full RG calculation of the field theory of Self-
Propelled Model G, developed to describe the collective behaviour of natural swarms
of insects. In particular, I showed that a rich fixed-point structure emerges. In the
absence of dissipation, η̂ = 0, in addition to the previously reported universality
classes of equilibrium non-inertial Model A (cv = 0, f̂ = 0), equilibrium inertial
Model G (cv = 0, f̂ ̸= 0) and active non-inertial Self-Propelled Model A (cv ̸= 0,
f̂ = 0), a new universality class emerges, described by a fixed point at which both
activity and inertia are important features. Its stability, within the conservative
plane, indicates that this is the fixed point ruling the large-scale behaviour of
Self-Propelled Model G.

In the presence of spin dissipation η̂ ̸= 0, the conservation of the total spin is
violated and the system therefore does not belong anymore to the conservative plane.
The RG relevance of the parameter η̂ makes the conservative plane unstable to the
presence of an arbitrary weak spin dissipation, and the RG flow therefore drives the
system back to the Self-Propelled Model A universality class. This same mechanism
has already been reported at equilibrium, where spin dissipation in Model G has
been shown to lead to Model A university class [41]. This can be viewed as the
consequence of the fact that, when spin dissipation is present, the spin ceases to be a
hydrodynamic variable and can be therefore dropped from the large-scale description
of the systems.

In the following chapter, I will address how this RG calculation can be applied
to the case of natural swarms of insects. In particular, I will argue that the
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Self-Propelled Model G dynamic universality class properly describes the dynamic
collective behaviour observed in swarms, therefore suggesting universality might play
an important role in the description of living systems.
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Chapter 11

Collective behaviours near the
swarms’ fixed point

The renormalization group calculation performed in Chapter 10 allowed to organise
the large-scale behaviour of Self-Propelled Model G in different universality classes,
one for each fixed point that was found. In addition to several well-known universality
classes, my results show the existence of a novel fixed point at which both activity
and inertial behaviour are important. In the absence of explicit spin-dissipation,
this new fixed point is found to be stable within the critical manifold. This finding
suggests this is the fixed point ruling the collective properties of any near-critical
active and inertial system. However, the presence of spin dissipation challenges the
relevance of inertial effects, weakening the effects of the spin-velocity coupling at
large scales.

The plans for the present Chapter are to characterise the universal collective
properties exhibited by critical systems ruled by the active-inertial fixed point.
To provide a quantitative assessment of experimental results, I will focus on the
computation of the dynamic critical exponents z, which links the relaxation time-
scale τ and the correlation length ξ through τ ∼ ξz, known as critical slowing down.
Because this is the most robust prediction of an exponent in natural swarms, I will
take it as the principal quantity to be compared in order to judge the suitableness
of Self-Propelled Model G in describing swarms’ behaviour. Estimations of other
critical exponents are however also provided.

A second feature of the new active inertial fixed point which deserves attention
is the exact conservation of the spin. Although in inertial systems such as Model
G the spin is expected to be conserved [40], as I showed in Chapter 8 introducing
incompressibility, namely a solenoidal constraint on the order parameter, may
violate this exact conservation [MyPaper2]. This spin-conservation violation, which
I remember does not give rise to any spin dissipation, arises at equilibrium as
a consequence of the artificial introduction of the solenoidal constraint. Quite
remarkably, the interaction which is responsible for this spin-conservation violation
is found to be irrelevant near the active inertial fixed point, hence restoring effective
spin-conservation at large scales.

Finally, to keep the present analysis as general as possible, I study what happens
to systems with small spin dissipation. What I find is a crossover between inertial
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behaviour at small scales and non-inertial behaviour at large scales, similar to that
reported in [41]. As swarms have a finite size, this analysis suggests they would still
exhibit active inertial collective behaviour even if some small spin-dissipation was
present.

11.1 Scaling laws and their exponents
The proximity to a critical point is always characterised by the presence of scaling
laws [50, 51], expressing the divergence of some thermodynamic or quantities or
correlation functions as the critical point is approached. One of the best examples
is the divergence of the correlation length of the system: when a given control
parameter T , which depending on the system might be e.g. the temperature, the
noise amplitude or the density, approaches its critical value Tc, the correlation length
is known to diverge according to ξ ∼ |T − Tc|−ν , with ν being a critical exponent.
In the framework of the RG, each fixed point can be associated with a given set of
exponents, which uniquely determine the behaviour in the proximity of the critical
point. This feature is known as universality.

Among the exponents ruling the divergence of different quantities, one usually
distinguishes between the so-called static exponents, which rule the divergence
of equal-time observables, and the dynamic exponent. The latter provides an
estimation of how quickly the systems decorrelates and is strictly entangled to the
specific dynamic structure. It is common knowledge that many equilibrium systems
sharing the same static universality class might have different dynamic exponents.
This is because, at equilibrium, the static exponents are completely determined by
the free energy, while the dynamical one further depends on the specific dynamic
rules and conservation laws. Take Model A and Model B [40] for example: they both
describe the behaviour of Ising spins, but the former has a relaxation dynamics with
non-conserved magnetisation, while in the latter the total magnetisation is conserved.
They both share the universality class of the Ising Model, described by the Landau-
Ginzburg free energy. Their dynamic exponent is however different: Model A relaxes
with z ≈ 2, while Model B has z ≈ 4 [40]. This leads to the common misconception
that dynamic universality classes provide uniquely an internal subdivision of the
larger static class.

I call this misconception because, despite it is often true, there are some cases
where it is not. Remarkably, inertial behaviour is one of those cases. In the presence
of inertia, the equilibrium reference model is indeed given by Models E/F/G, which
have been extensively studied throughout this thesis. In the presence of inertial
behaviour at equilibrium, the symmetries are so powerful that the dynamic critical
exponent is z = d/2 regardless of the dimension of the order parameter, and event on
what is the functional form of the free energy. In fact, despite their static universality
being different, Model G and Solenoidal Model G both share this same exponent. It
therefore appears to be clear that the dynamic exponent in an inertial system is less
sensible to these differences than the static exponents.
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11.1.1 The dynamical critical exponent

The spatiotemporal behaviour of a collective system is described by the two-point
connected correlation function of the order parameter, C(x, t). In general, the
correlation function encodes a very complicated relation between space and time and
it depends on the set of parameters P defining the state of the system. In the case
of critical systems, the parameters enter the correlation function only through the
correlation length ξ (P). This property is known as dynamic scaling [60, 61], and it
states that the correlation function C, when expressed as a function of wave-vector
and frequency, obeys the following scaling form,

C (k, ω; P) = C0 (k; ξ) F
(

ω

ωk (P) , kξ
)

(11.1)

where ξ = ξ (P) is the correlation length and where the static correlation function
C0 has in turn the scaling form,

C0(k, ξ) = k2−ηF0 (kξ) (11.2)

while the characteristic frequency at scale k is given by,

ωk (P) = kzΩ (kξ (P)) (11.3)

In the relations above, Ω, F0 and F are well-behaved scaling functions, whose
explicit form is not relevant for my purposes; η is the critical exponent for the static
correlation function (normally called anomalous dimension of the order parameter
[14]), which must not be confused with the dissipation. What dynamic scaling
asserts is that the divergence of space correlations and time correlations are not
independent near the critical point, but they are connected by the dynamic critical
exponent z. To find the critical exponent z, following a standard procedure [1, 40]
I require that the kinetic coefficient of the velocity field is not singular at the RG
stable fixed point, namely,

Γ∗ = O (1) → χΓ = 0 (11.4)

By plugging χΓ = 0 into Eq. (10.68), I find,

z = 2 − δΓ + δΩ (11.5)

Once the diagrammatic results for δΓ and δΩ at η̂ = η̆ = 0 are plugged in the
equation for z, one can obtain the following expression for the dynamic critical
exponent,

z = 2 − 3f(3w + 2x+ 1)
4(w + 1)(w + x) − c2

v

4 + f(θ⊥ − 1)
(
13w2 + 12wx+ 5x2)

12θ⊥(w + x)3 −

− f(θ∥ − 1)
(
13w3 + w2(4x+ 75) + w(48x+ 51) + 24x+ 9

)
12(w + 1)3(w + x) −

− f(θ∥ − 1)(θ⊥ − 1)
(
13w2 + 12wx+ 5x2)

12θ⊥(w + x)3 − fθ∥Φ1x(3w + 2x)
4(w + x)3 −

− fθ∥Φ2
(
9w3x+ 2w2 (4x2 + 9x− 1

)
+ wx

(
2x2 + 16x+ 3

)
+ 2x2(2x+ 1)

)
12(w + 1)2(w + x)3

(11.6)



11.1 Scaling laws and their exponents 181

The value of z at any fixed point is then simply obtained by plugging into (11.6) the
fixed point values of the parameters. At the active inertial fixed point discovered in
Sec 10.5.1, this gives,

z = 2 − 0.65(2)ϵ (11.7)

For d = 3 (ϵ = 1), I finally obtain the RG prediction for the dynamic critical
exponents of the active inertial theory,

z = 1.34(8) . (11.8)

The correction 0.65ϵ with respect to the free value z = 2 might seem large for a
first-order term in a perturbative expansion, in particular when I set ϵ = 1 in d = 3.
However, comparing this result with the equilibrium non-inertial theory of Model A
might be misleading. The new Self-Propelled Model G fixed point has been found by
adding non-linear activity to Model G [40], which has a non-perturbative dynamic
critical exponent z = d

2 = 2 − ϵ
2 [107]. Thus, the present result should be considered

as a 0.15ϵ departure from Model G’s non-perturbative exponent, rather than a 0.65ϵ
correction to Model A. To compare this result with previous ones in a similar context,
Self-Propelled Model A (Toner and Tu theory) has a dynamic critical exponent of
z = 2 − 0.27ϵ [23], with a perturbative departure of 0.27ϵ from equilibrium Model
A’s exponent, which is its natural expansion point. This makes the active inertial
dynamic exponent closer to its reference value compared to the active non-inertial
exponent.

Note that both exponents are obtained by working in a first-order approximation
in ϵ. In principle, although first-order results almost always give qualitative insights
on the exponents of a system, they often still fail to provide quantitative agreement
with the measured exponents in d = 3, namely when ϵ = 1. Nevertheless, in the
active fixed points I study here, both inertial and non-inertial, the agreement with
numerical simulations is surprising. Concerning non-inertial dynamics, when setting
ϵ = 1 the one-loop analysis of Self-Propelled Model A predicts an exponent z = 1.73.
Numerical simulations of Vicsek model in d = 3 found a dynamic exponent of
z ≃ 1.7 [69], showing that the dynamic exponent found in [23] holds with remarkable
accuracy also in d = 3, namely when ϵ = 1. Similarly, simulations of the Inertial
Spin Model [102], near criticality and at low values of spin dissipation [MyPaper1],
have found a numerical dynamic exponent of

znum = 1.35 ± 0.04 , (11.9)

in remarkable agreement with the RG theoretical prediction. Note that neither the
simulations in [69] nor those of [MyPaper1] imposed incompressibility. This gives
additional support to the idea expressed in Chapter 6 that the incompressible theory
can indeed be used to describe finite-size compressible systems, as long as density
fluctuations are not strong.

Finally, I am ready to check whether Self-Propelled Model G accurately describes
the dynamic behaviours of natural swarms of midges in the field. To this day, the
most reliable estimation of the dynamic exponent of swarms is [MyPaper1]

zexp = 1.37 ± 0.11 , (11.10)
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Contrary to the first estimations provided by [13], this new estimation relies not only
on a larger swarm data set, counting swarms with up to 800 midges, but also on a
more suitable method to perform the linear regression of ln τ vs ln ξ. In [13] z was
fitted through a standard Least Squares regression, which gave zexp = 1.12 ± 0.16 on
the dataset of [13], and zexp = 1.16 ± 0.12 on the larger dataset of [MyPaper1]; the
problem with Least Squares, though, is that it assumes that experimental uncertainty
is only present in the dependent variable y, which is not true for experimental data
on swarms, as both τ and ξ are subject to experimental uncertainty; when using it on
a dataset where the error affects also x, Least Squares systematically underestimate
the slope [117]. Therefore, Least Squares is not a good method in this case. Reduced
Major Axis regression, on the other hand, is a method that works under the hypothesis
that both x and y are affected by uncertainties [63, 64]. Hence, a value of z fitted
through a Reduced Major Axis regression appears to be more reliable than one
obtained through a Least Squares regression.

In conclusion, because the value of z obtained from my RG calculation is in
remarkable agreement with experiments on natural swarms and numerical simulations
of an active inertial system, I can confidently claim Self-Propelled Model G correctly
describes the dynamic universality class of natural swarms of insects.

11.1.2 Static critical exponents

In the present section, I will derive some of the static critical exponents relative to
the active inertial fixed point found in the previous Chapter. Before proceeding,
however, an important caveat is in order. The present RG calculation was performed
by imposing a solenoidal constraint on the primary field, ∇ · ψ = 0, to enforce
incompressibility. In non-active equilibrium systems, the presence of the solenoidal
constraint is known to change the static universality class [87, 86], while leaving
unchanged the dynamic universality class [MyPaper2]; this means that an equilibrium
RG calculation with solenoidal constraint would find the same dynamic critical
exponent z as a simulation without solenoidal constraint, but would fail to reproduce
the static critical exponents of that same simulation. It is not known how this
scenario generalises to the active off-equilibrium case, but some caution is certainly
required: although in active systems with mild density fluctuations incompressibility
is a reasonable hypothesis to calculate the dynamic critical exponents, one must
be careful about the static exponents, as there is no certainty that they must be
the same as in system where the solenoidal constraint is not imposed, as in natural
swarms or numerical simulations.

Critical exponent ν

The first exponent I shall compute is ν, which characterises the divergence of the
correlation length as the transition is approached via

ξ ∼ |T − Tc|−ν . (11.11)

Here T is the control parameter (the temperature in the case of ferromagnetic
equilibrium systems, or the nearest neighbour distance in the case of swarms [56])



11.1 Scaling laws and their exponents 183

and Tc its value at the critical point. This exponent can be computed from the
runaway behaviour of the mass, namely from the mass β-function. Let me define,

ym = ∂βm
∂m

∣∣∣∣
P=P∗

. (11.12)

where P∗ are the values of the parameters at the fixed point. Therefore, the RG
flow of the mass near the critical fixed point will be given by

ṁ = ym(m−m∗) . (11.13)

This gives the following runaway from the critical point m∗

δm(l) ∼ eyml , (11.14)

where l is the number of RG iterations.
To compute ν, one can remember that the correlation length scales as ξ(l) ∼ e−l.

This allows one to derive the following relation between ν and ym, which reads

ν = 1
ym

≃ 1
2 + 0.248(0)ϵ , (11.15)

which in d = 3 yields,
ν ≃ 0.748(0) . (11.16)

Critical exponent η

The second exponent I shall compute here is anomalous dimension η (not to be
confused with the spin dissipation), which defines how the (connected) correlation
function of the order parameter ψ decays with space. In particular, near criticality
the equal-time correlation function is expected to have a scaling form that behaves
as

C(bx) = b−2χψ(r,t)C(x) . (11.17)

Here χψ(r,t) is the scaling dimension of ψ in position and time space, which is often
referred to as roughness exponent. In the standard literature of critical phenomena,
the roughness exponent is usually expressed as

−2χψ(r,t) = 2 − d− η , (11.18)

where η gives the deviation from the mean-field scaling exponent of 2 − d. Positive
(negative) values of η indicate that correlation decay faster (slower) compared to
mean-field.

In principle, to compute the exponent η one should compute correlation functions
at small distances, or equivalently at large k if working in Fourier space, and use
equalities derived from the RG flow to determine the exponents. In some cases, as
for the evaluation of z in the previous section, this can be avoided and alternative
methods can be used. In the case of z, requiring that Γ∗ = O(1) is a well-established
and well-understood prescription, both in and out of equilibrium [112, 114, 40, 69],
and it has been validated by countless simulations and experiments. To my knowledge,
on the other hand, there is no standard validated prescription to fix χψ.
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Nevertheless, as all the effective coupling constants flow to a finite fixed-point
value, it seems reasonable imagine that the amplitude of the fluctuations of the field
is determined by the amplitudes of the noise terms. If this was true, as it happens in
[23], one can compute η by requiring that, in addition to Γ∗ = O(1), also the noise
strength is not singular at the stable fixed point, namely

Γ̃∗ = O (1) → χΓ̃ = 0 (11.19)

By plugging χΓ̃ = 0 into Eq. (10.68) and using (11.5), I find

η = δΓ + δΩ − δΓ̃ . (11.20)

By evaluating the perturbative corrections at the stable fixed point, I find that

η = −0.217(5)ϵ , (11.21)

which leads to the prediction of η = −0.217(5) in d = 3.
To put this exponent into perspective, let me focus on how can we compare this

exponent with the experimental results obtained in [56]. There, the authors looked
at the scaling behaviour of the integrated equal-time correlation function, which they
refer to as ‘generalised susceptibility’, naming it χ. It is important to stress that,
despite the name, this is not a susceptibility, namely it doesn’t describe the response
of the system to external perturbations. It is rather a measure of the degree of
correlation of the system.

In [56], it has been observe that χ scales with the size of the system L through
a power law, χ ∼ Lγ/ν , with γ/ν ≃ 2.57. The choice of the name of the exponent
is unfortunately ambiguous, as γ is usually the exponent associated with response
functions, while χ is not a response function, but the integrated correlation function.
Translating the definition of χ given in [56] in the field-theoretical formalisms used
here, its expression in terms of C(x) can be written as

χ =
∫ ξ

Λ−1
ddxC(x) . (11.22)

Thus, this variable χ is expected to scale as

χ ∼ ξ2−η . (11.23)

It might have become now clear why the choice of calling this exponent γ/ν in [56]
is misleading. While in equilibrium systems it is true that γ/ν = (2 − η), because of
a well known hyper-scaling relation arising from the fluctuation dissipation theorem,
the same relation might not hold out of equilibrium. In fact, in the present case I
will show later on that when γ is taken to be the exponent of the response function,
then

γ

ν
̸= (2 − η) . (11.24)

The exponent γ/ν computed in [56] should be compared with 2 − η, which in
d = 3 reads

2 − η = 2.217(5) (11.25)
Although the matching is not exact, we can appreciate the shift of 2 − η towards
the experimental value 2.57 compared to the mean-field value of 2.
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Critical exponent γ

The third exponent I will compute, γ, characterises the response of the system to a
small external fieldH coupled to the order parameter. Assuming linear response of ψ
on H , ⟨ψ⟩ = χHH , the exponent γ characterises the divergence of the susceptibility
χH in the proximity to the phase transition,

χH ∼ |T − Tc|−γ (11.26)

where T is the control parameter. Since χH = ∂⟨ψ⟩
∂H , the exponent γ will be given by,

γ = ν
(
−χψ(r,t) + yH

)
, (11.27)

where χψ(r,t) is the scaling dimension of ψ in position and time space, and yH is the
scaling dimension of the field H. It is crucial here, to compute these exponents up
to one loop, to notice that no one loop graphical corrections to such a field term
appear in the calculation. The absence of graphical correction to H at one loop,
namely the absence of diagrams with only one external field ψ̂, implies that yH can
be determined only by power counting, as happens in [23]. To determinate yH , let
me recall how H would enter the equation of motion for ψ: ∂tψ ∼ H , hence leading
to yH = z + χψ(r,t) + O

(
ϵ2
)
. At first order in ϵ, the exponent γ is thus given by,

γ = νz ≃ 1 + 0.171ϵ , (11.28)

which in d = 3 becomes
γ ≃ 1.171 . (11.29)

Let me remark, once again, that this exponent does not quantify the divergence
of the space integral of the connected correlation function, as it would be the
case for equilibrium systems because the fluctuation-dissipation relation linking the
susceptibility χH to the correlation function loses its validity when the system is
out-of-equilibrium. This is precisely the case here, where one can directly check that

γ ̸= ν(2 − η) (11.30)

11.2 Off-equilibrium activity restores the conservation
of the spin

One of the most intriguing features of the novel active inertial fixed point is the
vanishing of the DYS vertex effective coupling constant, namely ũ∗

κ = 0. At
equilibrium, the presence of the DYS vertex, with ũκ = ũ, had such a crucial role in
keeping the dynamics of s consistent with the solenoidal constraint on ψ [MyPaper2]
that it seems surprising to find that this vertex disappears when the system is the
off-equilibrium active phase. Moreover, the couplings ũ and ũκ both derive from
derivatives of the uψ4 term in the free energy functional H, and thus one would
expect a deep connection between the two. However, the fact that the DYS vertex
vanishes at this novel fixed point avoids the odd scenario of having two different
ferromagnetic couplings; both at equilibrium and off-equilibrium, the RG suggests
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that only one ferromagnetic coupling should exist, by requiring in the former case
that ũ = ũκ and in the latter ũκ = 0.

But by far the most surprising consequence of the off-equilibrium vanishing of
the DYS vertex is that when ũκ = 0 (and when the dissipation η = 0) the global
spin turns out to be conserved. As mentioned in Section(9.3.3) and discussed in
[MyPaper2], the DYS vertex is the only interaction that contributes to the dynamics
of the spin at k = 0, thus violating the spin conservation (although it does not
violate it strongly, e.g. through dissipation). Since ũκ is the effective coupling
associated with the DYS interaction, the fact that it vanishes means that this vertex
is irrelevant at the novel fixed point and thus the spin becomes globally conserved.
The restored spin conservation in the active off-equilibrium case is surprising, and it
can hardly be a mere accident of the RG calculation. To understand its meaning
one has to go back to the underlying symmetry and conservation law in the theory.

At equilibrium, and in the absence of any constraint on the field, the presence of
an exact rotational symmetry guarantees that the spin is globally conserved since it is
the generator of the symmetry. This is exactly what happens in Model G, described
in Chapter 7. When added, a solenoidal constraint breaks the rotational invariance:
as it is clear from Fig.11.1-left, if one starts from a solenoidal configuration of the
field and rotate each vector by the same constant amount, they obtain a new field
configuration which violates the solenoidal constraint. At the field-theoretical level,
this manifests itself by the RG generation of the DYS vertex discussed in Chapter 8,
which indeed breaks the symmetry and conservation of the spin [MyPaper2]. This
is what happens at equilibrium, namely in the non-active case.

According to the RG, when turning from the inactive solenoidal case to the
active incompressible one, the presence of activity restores the full power of the
rotation symmetry - at least on long wavelengths - by making the spin conserved
once again. This suggests that - at variance with the inactive case - activity preserves
incompressibility under local rotations. A qualitative cartoon of this mechanism can
be seen in Fig.11.1-right: in the active case a local rotation generated by the spin
has a twofold effect: i) it rotates the field (as in the inactive case); ii) it also rotates
the positions, through the self-propelled part of the equations, ˙⃗x = v⃗ (at variance
with the inactive case). These two rotations balance each other, giving rise to a new
field configuration that is still solenoidal, i.e. incompressible (Fig.11.1-right). I stress
that this is far from being a general mathematical proof, as it is restricted to the
very simple case of a purely rotational field, while one would need to generalise this
argument to a generic solution of the dynamical equations. It may be that the full
proof of spin conservation in the case of active incompressible dynamics is the very
RG calculation that I carried out here; even though one would hope for a simpler
and more direct way to prove this result, I could not find it.

In fact, when one reflects on the whole RG flow, rather than restricting themselves
to the fixed point, the situation becomes even more intriguing. As I wrote above,
I found the new active incompressible inertial fixed point by starting close to the
inactive (equilibrium) incompressible inertial fixed point. At the starting point,
ũ∗
κ ̸= 0, because - as I said - at equilibrium, the DYS vertex is required to enforce

incompressibility; along with the flow which goes from equilibrium to off-equilibrium,
the coupling ũ∗

κ decreases weakly (see Fig.10.1) until it abruptly goes to zero right
before arriving at the new fixed point. If one tried to start the flow with all
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Figure 11.1. Incompressibility in the inactive vs. active case [MyPaper1]. Left: in
the inactive case, if one starts from a solenoidal configuration of the field (ψ0, black) and
let a constant uniform spin rotate the field, they obtain a non-solenoidal configuration
(ψ2, orange). This is equivalent to saying that the solenoidal constraint breaks rotational
invariance at equilibrium. Right: in the active case the particles are dragged by the field,
hence the rotation generated by the spin rotates both the field and the position of the
field, giving rise to a new configuration that is equally solenoidal (that is incompressible).

parameters close to their equilibrium values, but with ũ∗
κ = 0 from the outset, they

would not reach the new off-equilibrium fixed point, and the RG flow would simply
go bonkers. Hence, not only the symmetry-breaking coupling ũ∗

κ is necessary at
equilibrium, but it is also necessary to accompany the RG flow to the off-equilibrium
fixed point; only there ũ∗

κ is finally allowed to vanish. Clearly, this phenomenon
deserves a deeper study.

11.3 The crossover from underdamped to overdamped
dynamics

While the active inertial fixed point found in Chapter 10 is stable in the conservative
manifold, a linear stability analysis clearly revealed its instability with respect to
spin dissipation. In this latter case, the asymptotic stable fixed point was found to
be given by the active non-inertial fixed point already discovered in [23]. This is no
surprise since the presence of spin-dissipation makes the spin s a non-hydrodynamic
mode, which is turn not expected to influence the critical behaviour.

Unstable fixed points can still play a crucial role in determining critical exponents
for finite-size systems [41]. It often happens that for small enough sizes, the critical
properties of a system are determined by the closest fixed point, rather than the
fully stable one. As the size of the system is increased, a crossover between different
regimes emerges, changing the critical properties of the system. What I am interested
in here is understanding how small the system must be in order to observe the
behaviour associated with the active inertial fixed point.
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In general, I expect a finite-size system with small enough dissipation to initially
behave as if it were inertial, and turn to the overdamped, non-inertial behaviour
only when the large-size limit is approached. At the theoretical level, this crossover
between a finite-size physics influenced by inertia, and an asymptotic non-inertial
physics manifests itself as a crossover between different RG fixed points. Hence,
following [41, 108], I will investigate the crossover between the underdamped dynamic
behaviour, ruled by the novel active inertial fixed point with z = 1.35, and the
dissipative incompressible theory with z = 1.73.

The starting point of this analysis is the observation that the ratio between
dissipation η and conservative kinetic coefficient λ∥ naturally defines, by simple
power counting, a length-scale R given by [41, 108],

R =
√
λ∥

η
(11.31)

An alternative length-scale could be also
√
λ⊥/η. However, it turns out this second

length-scale has the same scaling behaviour as R, hence it makes no difference what
definition one uses.

The parameter R plays the role of a conservation length-scale, in the sense that
fluctuations occurring on length-scales smaller than R obey a conservative dynamics,
while beyond R fluctuations are insensitive to inertia and conservation laws. The
scaling dimension of R is that of a length, but only at the naive (non-interacting)
level; in fact, the RG coupling between the UV and IR degrees of freedom generates
non-trivial modifications of naive scaling dimensions of λ∥ and in principle also of η.
The RG flow of R can be written – defining its scaling dimension χR – as (see Eq.
(10.97)),

Rl+1 = bχR Rl , (11.32)

and from equations (11.31),(10.69) and (10.70) I obtain,

χR = 1
2(χλ∥ − χη) = −1 + 1

2δλ
∥ (11.33)

where −1 is the naive dimension of R, which allowed one to naively identify it as a
length-scale, while δλ∥ the correction to the kinetic coefficient λ∥.

I recall that η has no perturbative correction, δη = 0, due to the symmetry of
the problem. The physical origin of this fact is that all diagrams contributing to the
self-energy Π (which contains corrections to both η and λ∥) vanish at k = 0 as a
consequence of the form of the mode-coupling and the self-propulsion vertices for s.
This has been verified in the present calculation at first order in perturbation theory,
where higher order effects of diagrams containing the DYS vertex on Π are not taken
into account; however, if the result κ∗ = 0 is exact to all orders, the DYS vertex is
always irrelevant and thus no diagrams could ever generate dissipation. This is what
I expect, as κ∗ = 0 implies a global conservation of the spin (at η = 0), which does
not seem like a perturbative accident (see Section 11.2). But even in the unlikely
case in which the result κ∗ = 0 were an accident of first-order perturbation theory, I
prove here that the dissipation of the spin still can never receive any perturbative
corrections. In general, the self-energy Π takes contributions only from the following
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two distinct classes of diagrams,

Π = + (11.34)

where the blobs represent the renormalized mode-coupling and self-propulsion vertices
respectively, in which all the possible diagrammatic corrections (at all orders in k
and q) are taken into account. Because the renormalized spin mode-coupling and
self-propulsion vertices vanish at zero external momentum k, these diagrams are
zero at k = 0, implying that no dissipation is generated. Therefore, as long as the
structure of the equations of motion (9.12) and (9.13) is preserved under the RG,
no spin dissipation can be generated.

To work out the correction δλ∥ I need a different argument. As I previously
showed, the ratio w = Γ/λ∥ is finite at the novel fixed point, w∗ = 3.95 (equation
(10.122)); moreover, the kinetic coefficient of the primary field is also finite at the
fixed point, Γ∗ = O(1) (this is how one works out the dynamic exponent z), implying
that also the kinetic coefficient of the spin is finite, λ∥∗ = O(1), and thus that
χλ∥ = 0. From (10.68) I conclude,

δλ∥ = 2 − z . (11.35)

From equations (11.33) and (11.35), one finally obtains the scaling dimension of R
near the active conservative fixed point,

χR = −z

2 . (11.36)

where z is the dynamic exponent of the conservative inertial fixed point one is
interested in. The fact that the scaling dimension of R is negative implies (through
(11.32)) that it decreases along the RG flow, making the length-scale within which
critical dynamics is underdamped shorter and shorter; this is another way to see
that dissipation eventually takes over in the hydrodynamic limit. However, thanks
to (11.36), I can now quantitatively describe the RG crossover from the conservative
active fixed point to the dissipative one, or – more precisely – describe the departure
of the RG flow from the conservative active fixed point when one starts close to it.
Close to criticality, the correlation length scales as,

ξl = b−1ξl−1 = b−lξ0 , (11.37)

where ξ0 is its physical value in the original system under study. The RG flow
stops when the system is far from the critical manifold, namely when the correlation
length becomes of the same size of the microscopic scale Λ−1, giving blstop = ξ0Λ
[40, 1]. Let me consider a system with small bare dissipation, η0, and therefore with
a large conservation length-scale R0 (the subscript zero indicates the bare values
of the parameter, namely the starting values of the RG flow or the parameters
that are those of the equations of motion). The RG flow will rapidly approach the
conservative fixed point, remaining in its neighbourhood for a large number of RG
iterations and eventually flowing towards the dissipative fixed point [108]. Whether
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Figure 11.2. Crossover between different critical regions [MyPaper1]. Different
values of R0 lead to different critical behaviour, depending on the correlation length ξ. I
restrict myself to the physical range ξ0 > Λ−1, and measure lengths in units of Λ−1. The
figure refers to the d = 3 case. The dark red region is where dissipation is weak enough
that conservative dynamics still hold, thus leading to z = 1.35: this is the underdamped
regime. In the light green region, dissipation overcomes and an overdamped regime is
achieved, where the dynamic behaviour is controlled by z = 1.73. The red line represents
Lc, the threshold between the two behaviours in the active case. The black dashed
line represents instead the threshold between underdamped and overdamped dynamics
at equilibrium: since the underdamped region is lower here, I conclude that activity
protects underdamped behaviour up to high scales.

the system is ruled by the conservative or dissipative fixed point depends on how
large Rlstop is when the RG flow leaves the critical region: if when the flow stops
Rlstop ≫ Λ−1, the critical behaviour is ruled by the conservative fixed point; this is
equivalent to the condition,

R0(bχR)lstop = R0(ξ0Λ)χR ≫ Λ−1 (11.38)

that is,
ξ0 ≪ (R0Λ)− 1

χR Λ−1 . (11.39)
By using equation (11.36) and by measuring all lengths in units of the microscopic
scale Λ−1 (which is equivalent to simply set Λ = 1 in all equations), one obtains the
following condition for active underdamped dynamics,

ξ0 ≪ R2/z
0 , (11.40)
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where κ = 2/z is the so-called crossover exponent, which determines how slowly
the dissipative dynamics becomes relevant. Beyond this regime, the overdamped
fixed point with dynamic exponent 1.73 takes over. In Fig. 11.2 I show the regions
corresponding to the two dynamical behaviours. In the case of finite-size systems as
natural swarms, the size of the system L is a physical upper bound to the correlation
length ξ0. Therefore, if the dissipation η0 is small enough to have L ≪ R2/z

0 , the
ruling fixed point is the active inertial one. By recalling the definition of R, equation
(11.31), I get,

L ≪
(
λ

∥
0
η0

)1/z

−→ z = 1.35 . (11.41)

Because λ∥
0 is always finite, the condition above can be finally rewritten as,

η0L
z ≪ 1 −→ z = 1.35 , (11.42)

which clearly shows that the regime of the system (underdamped vs. overdamped)
depends essentially on the balance between system size and spin dissipation.

A final remark is in order. From (11.41) one clearly sees that the smaller is z,
the larger the system can be before crossing over to the dissipative fixed point. Since
the new active inertial critical exponent, z = 1.35 is smaller than its equilibrium
inertial counterpart, z = 1.5, this means that in the active off-equilibrium case,
conservative dynamics rules the collective behaviour of the system up to larger scales
compared to the equilibrium case (see Fig. (11.2)); this means that activity protects
the conservative structure against dissipation, rather than thwarting it, which is
quite remarkable.

11.4 Conclusions
In the present and previous two Chapters, I studied the near-ordering collective
behaviour of Self-Propelled Model G, a field theory which combines activity and
inertia. Through a one-loop renormalization group calculation, I was able to find a
new RG fixed point ruling the large-scale behaviour of the theory. At this new fixed
point, both the couplings controlling inertia and activity have a non-zero value, and
the dynamic critical exponent is z = 1.35 in the physical case of three dimensions.
Remarkably, this result is in very good agreement with the value measured in
experiments on natural swarms of insects, zexp = 1.37 ± 0.11 [MyPaper1], for which
both activity and inertia were found to be important features (see Chapters 2 and
7). Symmetries and conservation laws, which are the only features on which the RG
result relies, are therefore sufficient to provide a theoretical prediction of z which
explains the experimental data. This calculation represents the first confirmation
that universality, namely the independence of the collective behaviour from the
microscopic details, applies also to active biological systems.

The active inertial fixed point of Self-Propelled Model G describes, in principle,
systems that exhibit an exact conservation of the generator of the rotational symmetry
of the order parameter (the spin). Because a weak dissipation of the spin cannot
be ruled out a priori in swarms, I addressed its effects on collective behaviour. For
infinite-size systems, I find that any spin dissipation makes inertia irrelevant on large
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scales, therefore recovering the fixed point found by Chen, Toner and Lee [23], where
z = 1.73 in three dimensions. However, for finite sizes, this is not necessarily the
case: a crossover, similar to that reported in [41], occurs between an underdamped
and an overdamped regime. Finite-size systems are described by the active inertial
fixed point with z = 1.35, provided that spin-dissipation is small enough, while the
non-inertial exponent of z = 1.73 is recovered at large size. As shown in Chapter
7, experiments show that swarms exhibit strong inertial behaviour over all scales,
indicating that spin-dissipation, if present, must be weak, so that inertial behaviour is
present over all scales. Therefore, swarms would in any case live in the underdamped
regime, where z = 1.35. The result strengthens the applicability of the theoretical
prediction attained here, extending its validity to finite-size systems with weak
violations of the conversation of the spin.

The confirmation of the presence of universality in biological systems, provided
in the present thesis, opens new research prospects and offers deeper connections
between biology and physics. Natural swarms of midges might be just the first
of many living systems whose collective behaviour can be characterised within a
renormalization group approach. The case of flocks of birds, for example, is a
paradigmatic example of collective behaviour in biology. In contrast to swarms,
whose collective behaviours are described by the proximity to a critical point, flocks
behave collectively because they spontaneously break a continuous symmetry [20].
Nevertheless, inertial behaviour has shown to be particularly relevant in describing
their collective turns [100]. Therefore, possibilities are that Self-Propelled Model G
might, in its spontaneously broken phase, describe also the collective behaviour of
flocks in addition to those of swarms.

While in swarms activity is indeed strong, as the interaction network rearrange-
ment occurs on the same time scales of alignment, in flocks these two time scales
are well separated. Alignment of neighbouring birds thus occurs in a context of
local equilibrium [65]. It would be therefore of great interest to compare the extent
of activity in these two systems. To do this, entropy production is the quantity
to watch out for. While entropy is always produced at the individual’s scale, as a
consequence of self-propelled motion, it might be not on the large scale. Using the
tools of non-equilibrium statistical mechanics, it is possible to estimate the entropy
production in an active field theory [118, 119] as Self-Propelled Model G, both in
the swarming and in the flocking phase. A comparison between the two cases would
help in understanding to what extent activity affects collective behaviour in flocks.
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Chapter 12

Active Ising Models of flocking

Flocking, namely the coherent collective motion of a group of self-propelled particles,
is an emergent phenomenon displayed by a wide variety of biological and soft-
matter systems [27]. To achieve this behaviour, the presence of effective alignment
interactions is required, hence creating many similarities between flocking and
ferromagnetism. This precise analogy led Vicsek et al. to introduce in [42] a flocking
model, which I discussed in Chapter 2, where the velocity of neighbouring individuals
align as spins in ferromagnets.

Despite the similarity with ferromagnets, flocks are inherently active, and driven
far from thermal equilibrium. Because of the presence of activity, under the form
of self-propulsion, flocking models exhibit a richer phenomenology compared to
ferromagnets. Although much recent research has addressed collective behaviour
and phase transitions in flocking models, there are still many unanswered questions
[18]. This is often related to the fact that these flocking models are quite hard to
analyse from a theoretical point of view.

To help understand some of the aspects of the flocking transition, Solon and
Tailleur introduced a simplified toy model, where flocking can emerge only along one
privileged axis (the x-axis, say). This class of modes took the name of Active Ising
Models [70, 71], as the discrete nature of the system, with motion occurring mainly
along a privileged axis, resembles that of an equilibrium Ising model. Although the
Active Ising Model was introduced with a specific choice of spin-alignment dynamics,
in the present Chapter I will refer to any model in which velocities locally tend to
align along a fixed axis as an Active Ising Model (or AIM).

Although direct numerical simulations of active matter models are often able
to reveal many of their interesting features, it is only through field-theoretical
approaches that their large-scale bulk behaviour can be investigated. To prove the
ordering transition observed in the two-dimensional Vicsek model [42] was not some
kind of finite-size effect, Toner and Tu studied a hydrodynamic theory describing a
coarse-grained version of the Vicsek model. Only within this framework, they were
able to show that activity breaks the precepts of the Mermin-Wagner-Hohenberg
theorem, stabilising the ordered phase even in two dimensions [19, 20, 76]. Moreover,
to give evidence that the phase transition from disorder to the ordered (flocked)
phase is first-order also required hydrodynamic (or field-theoretical) descriptions
[44, 36], [MyPaper3].
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In the present Chapter, I study the behaviour of various AIMs through a
field-theoretical approach. As in equilibrium, the main advantage of using field
theory is that the collective behaviour of the system does not depend on the
specific microscopic details, allowing a description of the large-scale properties
in terms of interactions between coarse-grained fields. When this happens, once
the hydrodynamic variables are identified, an expansion in small, slowly variating
fluctuations is typically possible – either directly, or by re-expressing as an expansion
in dimensionality via the renormalisation group (RG).

Below, starting from the Master Equation for AIM systems, I will derive a
field theory through a coherent-state path-integral representation. This approach
leads to what is known as the Doi-Peliti field theory of the system, which offers
an exact mapping between the coefficients of the microscopic model and the bare
couplings of a field-theoretic action. It not only enables standard field-theoretical
approximations including RG, but also gives the exact deterministic hydrodynamic
equations, together with their lowest order fluctuation corrections [16]. Using a
field theoretical approach, I will present several new results, some in line with
prior expectations based on less formal analyses, but some others contradicting
such expectations. The research I will present in this Chapter was performed in
collaboration with Dr Pausch and Prof Cates during a visiting period spent at the
University of Cambridge between March and July 2022, and is now published in
[MyPaper4].

12.1 Active Ising Models
An Active Ising Model (AIM) is a minimal description of a system in which individuals
align their directions of motion. Contrary to the Vicsek model [42], where collective
motion may occur in any possible direction in space, in an AIM, individuals prefer
to move parallel to a given axis, which I identify without loss of generality as the
x axis. The state of each particle is thus defined by its lattice position and a spin
variable ±1 that tells which direction ±x̂ it prefers to move in. The particles sit on
a d-dimensional square lattice without any occupation number constraint and move
through space by hopping onto neighbouring sites. In the x direction (only) the
hopping rates are actively biased: particles with positive (negative) spin will hop
preferentially towards more positive (negative) x values. In all directions other than
x, particles undergo unbiased, diffusive hopping. Finally, imitative behaviour among
individuals, effectively encoded in a ferromagnetic spin alignment interaction among
particles on the same site, creates a tendency towards mutual alignment and hence
collective motion [70, 71].

Thus an AIM represents a minimal, Ising-like model of flocking, with a discrete
symmetry replacing the full rotational symmetry of the Vicsek model. Two crucial
differences between an AIM and the equilibrium Ising Model must be kept in mind:
(i) an AIM has no occupancy constraint on each lattice site, and (ii) the alignment
interaction occurs only between same-site particles instead of between particles on
nearest neighbour sites. The former means that particles are never blocked from
hopping by excluded volume, allowing a simpler treatment of the bias. The latter
choice is likewise made for simplicity in the hope that same-site interactions are
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sufficient to describe emergent properties; in most cases one expects diffusion to
mix particles enough that on-site and nearest-neighbour alignment interactions are
equivalent.

The state of the k-th particle is defined by its position on the lattice i(k) =(
i
(k)
1 , . . . , i

(k)
d

)
and its spin sk = ±1. The state of the whole system can then be

identified via the number of +1 and −1 spin particles on each site i, respectively
n+
i and n−

i , or equivalently via the local density ρi = n+
i + n−

i , and magnetisation
mi = n+

i − n−
i . With no occupational constraint, ρi has no upper bound, but the

magnetisation mi is bounded by ρi, since −ρi ≤ mi ≤ ρi.

12.1.1 Description using reactions

Due to its on-lattice definition, the dynamics of an AIM can be described as a set of
reactions between two particle species Ai and Bi, representing respectively particles
at site i having +1 and −1 spin. The model is completely defined once the following
two processes are specified:

i) how particles move in space, namely with what rates they undergo hopping
reactions

Ai −→ Aj Bi −→ Bj (12.1)

ii) how particles change direction, namely with what rate they undergo the
spin-flip reactions

Ai −→ Bi Bi −→ Ai (12.2)

I will next address these processes separately.

Hopping

In an AIM, particles are assumed to hop with a fixed rate D in all spatial directions,
except for the x̂ direction where there is a preferred motion set by the spin variable.
The biased hopping reactions in the x̂ direction are therefore given by

Ai −→ Ai±x̂ rate: D(1 ± ϵ) (12.3)
Bi −→ Bi±x̂ rate: D(1 ∓ ϵ) (12.4)

In all other directions ŷ ̸= x̂ instead, the hopping is unbiased and hence

Ai −→ Ai±ŷ rate: D
Bi −→ Bi±ŷ rate: D

(12.5)

Here the bias parameter 0 ≤ ϵ ≤ 1 quantifies self-propulsive activity. The hop-
ping reactions are not influenced by the presence of other particles and hence are
independent of particle concentration.
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Figure 12.1. AIM0 hopping and spin-flipping processes [71]. Sketch of the two
possible actions and their rates of occurrence. The ferromagnetic interaction between
particles is purely on-site and particles diffuse freely. Beyond the biased diffusion
shown here, particles also hop symmetrically in all other directions with equal rates D.
Permission to reuse granted by the American Physical Society under License Number
RNP/23/OCT/071565.

Spin-flipping

In this Chapter, I will address three different types of AIM (AIM0, AIM1 and AIM2,
the latter with several sub-variants), which are distinguished by different choices of
spin-flip reaction rates [MyPaper4].

AIM0: Original Ising flip rates
In the original formulation of the AIM, as introduced in [70], the rates for a spin-
flipping event took inspiration from equilibrium dynamics of a fully-connected Ising
model in the canonical ensemble. This means that, in the absence of any hopping,
each site behaves as a fully-connected Ising model. In terms of reactions between A
and B particles, this choice of rates leads to

Ai −→ Bi rate: γ exp
(

−βmi

ρi

)
Bi −→ Ai rate: γ exp

(
β
mi

ρi

) (12.6)

which I shall refer to as AIM0. Here γ is the rate of particle flipping in the m = 0
case, while β plays the role of an inverse temperature. A schematic representation
of the reactions of AIM0 is presented in Fig. 12.1.

This choice of flip rates is however unfeasible to implement in a Doi-Peliti
framework: although it is possible to formally derive a field-theoretical action for
this choice, I could not express it in terms of simple functions but only as an infinite
series, as I will detail in the following. Given that the choice of rates in [70] is
somewhat arbitrary, I am at liberty to make others for which the field theory is
simpler.

AIM1: Alternative Ising-like flip rates
From a technical point of view, what makes it difficult to study the rates of (12.6)
is the presence of the ρi in the denominator of the exponential argument. Hence,
a choice of reactions which still mimics the equilibrium dynamics of Ising spins is
given by [120]

Ai −→ Bi rate: γ exp (−βmi)
Bi −→ Ai rate: γ exp (βmi)

(12.7)
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I shall refer to this model as AIM1. The two sets of reactions (12.6) and (12.7) are
expected to give qualitatively similar phase diagrams, but quantitative agreement
is not expected. In particular, strong differences are expected to arise in the zero
and infinite density limits, where the absence of normalisation of mi by ρi might
lead to drastic consequences. However, I will later show that, at finite densities, the
behaviour near the ordering transition is extremely similar.

AIM2: Collisional flip rates In the context of off-equilibrium systems such as
active matter, one has no particular reason to argue that the flip dynamics should
mimic that of any equilibrium spin system. The rates that will be introduced here
are inspired by the process of multiple-particle collisions, involving a finite and fixed
number of particles (chosen at random from the same site), in contrast with the
equilibrium-inspired rates, where all particles on the same site interact to set the
rates. I consider the following three reaction processes:
AIM2.1: One-body collisional flip rate

Ai −→ Bi rate: γ

Bi −→ Ai rate: γ
(12.8)

AIM2.2: Two-body collisional flip rate

Ai +Bi −→ 2Bi rate: λ

Ai +Bi −→ 2Ai rate: λ
(12.9)

AIM2.3: Three-body collisional flip rate

2Ai +Bi −→ 3Ai rate: τ

Ai + 2Bi −→ 3Bi rate: τ
(12.10)

The one-body collision (or random) spin-flipping AIM2.1 introduces a random error
in the alignment process, not dissimilar to thermal noise. Not surprisingly, the rates
in (12.8) are exactly equivalent to the infinite-temperature limit β → 0 of both
AIM0 (12.6) and AIM1 (12.7). It amounts to a random interconversion of A and B
particles, and there is no phase transition.

On the other hand, the two-body (12.9) and three-body (12.10) collisional terms
favour alignment. For both cases, in the absence of any additional random spin-
flipping, the two fully ordered states (all A or all B particles) are absorbing states:
once the system reaches them, it will remain there forever. One might therefore
expect AIM2.2 and AIM2.3 to give rise to a phenomenology similar to the original
AIM0, at least qualitatively, with spontaneous symmetry breaking leading to a
strongly flocked state of positive or negative spins. However, in Sec. 12.4, I will show
how this expectation fails for AIM2.2: the two-body flip reaction cannot create order
in the presence of any random (one-body) spin-flipping rate, no matter how small.
Therefore a three-body interaction (AIM2.3) will be needed below to get an ordering
transition. With this term present, one can add back two- and one-body collisional
flips without qualitatively altering the outcome; I use the inclusive nomenclature
‘AIM2’ for this most general case.
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Figure 12.2. AIM0 violates detailed balance in absence of biased-diffusion [71]. A
loop of four configurations involving two particles on two sites that breaks Kolmogorov’s
criterion [121], thus showing that the system does not satisfy detailed balance even
when ϵ = 0. The numbers associated with the arrows are the transition rates for ϵ = 0.
The product of the transition rates along C1 → C2 → C3 → C4 → C1 (left to right) is
2D2e−2β , whereas the reverse order (right to left) yields 2D2e−β . Permission to reuse
granted by the American Physical Society under License Number RNP/23/OCT/071565.

12.1.2 Phase diagram of the AIM0

To understand what features an AIM is expected to exhibit, I will start here by
reviewing the main features of the phase diagram of the AIM0, with the spin-flipping
rates originally introduced and studied in [70, 71]. The phase diagram of the
AIM0 has been characterised as the bias diffusion parameters ϵ, the inverse effective
temperature β and the average density ρ0 were changed. At low temperatures
T = β−1 and high densities ρ0 a homogeneous ordered liquid phase has been
observed, while at high temperatures and low densities, the system is found in a
homogeneous disordered gas phase. Whenever ϵ ̸= 0, the two phases are separated by
a region of phase-coexistence, in which dense ordered bands move on a low-density
disordered background. Hence, the transition between the two homogeneous phases
has been claimed to look like a liquid-gas transition [71]. The phase diagram of the
AIM0 is shown in Fig. 12.3.

Interestingly, the width of the region of phase-coexistence vanishes as ϵ → 0,
with the transition between the liquid and gas phases becoming continuous. This
might seem not too surprising: when ϵ = 0 the dynamics in space is purely diffusive,
and no active processes seem to be in place. Moreover, at ϵ = 0 spin alignment
does not generate any collective motion, as the spin state does not influence how
the particle moves in space and particles stop being self-propelled. However, the
hopping and spin-flip rules do not obey detailed balance even in this propulsion-free
limit [71]. In Fig. 12.2 an example of a loop violating Kolmogorov’s criterion [121]
for the AIM0 is provided. It is possible to construct different AIM variants in which
detailed balance is recovered in the limit ϵ → 0[71, 122], but I will not address these
variants here. Numerical simulations on the AIM performed in [71] showed that
while the system is out-of-equilibrium, in 2d the phase transition falls in the Ising
universality class, suggesting that the violation of detailed balance is not sufficient
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Figure 12.3. Phase diagram of the AIM [71]. The red and blue lines delimit the region
of existence of phase-separated profiles (G+L) between the disordered gas phase (G) and
the ordered liquid phase (L). On the left, it is shown the phase diagram at fixed ϵ = 0.9,
D = 1, γ = 1, as a function of ρ0 and T = β−1. The green dashed line corresponds to
the case ϵ = 0, in which the red and blue lines collapse onto one single line. On the
right, the phase diagram at fixed β = 1.9, D = 1, γ = 1. Permission to reuse granted by
the American Physical Society under License Number RNP/23OCT071565.

to perturb the long-scale behaviour of the system. Moreover, it was conjectured
that the universality class of unbiased AIMs might have been that of Model C in
Halperin and Hohenberg classification [40]. The reason this was conjectured is that
Model C describes systems in which the order parameter (the local magnetisation)
is coupled to a conserved diffusive quantity (the density). I will address the issue of
the universality class of AIMs later on, showing that non-equilibrium effects prevent
the critical behaviour from being described by the Model C universality class.

12.1.3 Master Equation for AIMs

Having specified the hopping and flip rates, the behaviour of the model can be
studied via a Master Equation

∂tP = L [P ] (12.11)

for the probability distribution P (n+,n−; t) in configuration space. Crucially, the
operator L is linear in the probability distribution P , and therefore each different
process gives an independent contribution to L:

L [P ] = Lhop [P ] + Lflip [P ] , (12.12)

where Lhop is the contribution coming from the hopping processes, while Lflip that
of the alignment processes. It is convenient to further split Lhop in two:

Lhop = LD [P ] + Lϵ [P ] . (12.13)

Here LD arises from the unbiased hopping dynamics while Lϵ takes into account the
hopping bias and is linear in the bias parameter ϵ. The contribution LD is therefore
what remains after the limit ϵ → 0 is taken, and is expected to give rise to standard
diffusive dynamic, while directed motion is contained in Lϵ.
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In the cases of AIM2, the alignment contribution can be also further written as
Lflip = Lγ + Lλ + Lτ , with terms stemming from reaction (12.8), (12.9) and (12.10)
respectively.

12.2 The Doi-Peliti field theory
When dealing with reaction-diffusion processes, the Master Equation can be exactly
represented by a field-theoretic action, constructed through a coherent-state path
integral representation of the evolution operator L, following the second-quantisation
formalism introduced by Doi [80, 81] and Peliti [82]. Although originally introduced
to describe reaction-diffusion systems, it has recently started being used to study
active matter systems as well [123, 124]. For a pedagogical review of Doi-Peliti
formalism, which is beyond the scope of the present work, I shall refer the reader
to [16, 125]. I will however quickly review, for the benefit of the reader, the main
features of this approach.

12.2.1 Building the action

Consider the Master Equation of a given microscopic model, written in the form
∂tP (n, t) = L [P (n, t)] . (12.14)

Here L is a linear operator acting on P (n, t) in which n specifies a micro-state at
time t. (That is, n lists the occupancies of each type of particle at every site in the
system.)

Second-quantisation formalism

The first step is to define a second-quantised Fock space representation: for a single
site and particle type I will call |n⟩ the state in which n particles are present. More
generally, one has a Fock state |n1, n2, n3, . . .⟩ = |n⟩. The state of the system at
time t, represented by the probability generating function, can be written as a
superposition in Fock space as

|ψ(t)⟩ =
∑
n

P (n, t)|n⟩ . (12.15)

On this Fock space, one can furthermore define a bosonic ladder operator algebra,
with a creation operator a† and annihilation operator a that act on the system in
the following way

a†
i |ni⟩ = |ni + 1⟩ ai|ni⟩ = ni|ni − 1⟩ . (12.16)

Note that this normalisation convention differs from that usually introduced in
many-body quantum systems. However, the usual commutation relations still hold[

ai, aj
]

=
[
a†
i , a

†
j

]
= 0

[
ai, a

†
j

]
= δij . (12.17)

In this new notation, one can express |ψ(t)⟩ as

|ψ(t)⟩ =
∑
n

P (n, t)
∏
i

(
a†
i

)ni |0⟩ , (12.18)

where |0⟩ is the vacuum state, where no particles are present.
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Master equations as an imaginary-time Schrödinger equation

The Master Equation is then written in a second-quantisation formalism, such that
the state of the system |ψ(t)⟩ – namely the probability generating function – evolves
via an imaginary-time Schrödinger equation with an evolution operator Ĥ derived
from L. The evolution of |ψ(t)⟩ is thus described by

∂t|ψ(t)⟩ = −Ĥ|ψ(t)⟩ . (12.19)

Given L in (12.14), an explicit expression of the operator Ĥ in (12.19) can be
explicitly constructed from it by using the relation between |ψ⟩ and P provided in
Eq. (12.18).

The coherent-state path integral representation

From this imaginary-time Schrödinger equation, a field theory can be derived through
a coherent-state path integral representation. The coherent states, defined as the
eigenstates of the creation and annihilation operators, are given by

|ϕ⟩ =
(∏

i

eϕia
†
i

)
|0⟩ ⟨ϕ∗| = ⟨0|

(∏
i

eϕ
∗
i ai

)
(12.20)

Note that, in this representation, for each particle species, two fields are introduced,
ϕ and ϕ∗, representing the eigenvalues of the annihilation and creation operators
respectively. Therefore, ϕ and ϕ∗ will be referred to as annihilation and creation
fields.

The field-theoretical action S for these fields is obtained by computing the matrix
elements of Ĥ in the basis of the coherent states, of which the fields are the associated
eigenvalues. The action of the Doi-Peliti field theory is therefore given by

S =
∑
i

∫
dt ϕ∗

i (t)∂tϕi(t) +
∫

dt ⟨ϕ∗(t)|Ĥ|ϕ(t)⟩
⟨ϕ∗(t)|ϕ(t)⟩ (12.21)

The last step to get an explicit form for the Doi-Peliti action is to compute the
second term of (12.21), and in particular the numerator ⟨ϕ∗(t)|Ĥ|ϕ(t)⟩. This is
straightforward if Ĥ is normal-ordered, but might become a more complicated task
when it is not. Operationally, one therefore first writes Ĥ in normal ordered form
and then replaces annihilation and creation operators with their corresponding fields.
If difficulties arise, one can revert to finding the normal ordered form directly by
computing ⟨ϕ∗(t)|Ĥ|ϕ(t)⟩, bearing in mind that

eϕia
†
i =

∑
l

(ϕi)l

l!
(
a†
i

)n
eϕ

∗
i ai =

∑
l

(ϕ∗
i )
l

l! (ai)n (12.22)

Doi shift

The evolution operator L in Eq. (12.14) must satisfy a basic condition: it must keep
the probability distribution P normalised to unity. The fulfilment of this requirement
implies that the second-quantised evolution operator Ĥ vanishes when all creation
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operators are set equal to unity, a†
i → 1 [125]. This property is reflected in the fact

that the action S vanishes when all creation fields are set to unity, ϕ∗ → 1. It is
therefore often convenient to perform what is known as a Doi shift, namely shifting
the creation field according to:

ϕ̃ = ϕ∗ − 1 . (12.23)

12.2.2 Building the operators

The main drawback of the Doi-Peliti formalism is that the fields it describes are
of difficult physical interpretation. In fact, not only does the evolution operator
have to be written in a second-quantised formalism, but so do the observables of
the theory. For simplicity, let me consider a model with a single species of particles
on a lattice. The number of particles on a given site i can then be expressed as
ni = a†

iai, where a† and a are creation and annihilation operators. Say we wanted
to compute the expectation value of some observable containing products of ni at
different sites and times. The rule to construct the corresponding field-theoretical
operator is very similar to that needed to build the action. First, particle numbers
are written in terms of creation and annihilation operators, then such operators have
to be normal-ordered, and then operators are substituted by fields. A simplifying
feature of the Doi-Peliti theory is that any creation operators appearing at the last
of the chosen times can then be dropped. The underlying reason is causality: the
event of a particle created after all the measurements should not affect the averages
one is computing.

Accordingly, the field-theoretical operator whose average is equal to the expected
value of ni at time t is constructed as follows:

ni(t) → a†
i(t)ai(t) → ϕi(t) , (12.24)

with ϕ the annihilation field. (The creation operator at time t can be dropped as
stated above.) Therefore, the following relation for the expected value of n holds

E [ni(t)] = ⟨ϕi(t)⟩ (12.25)

where we denote with E [·] expected values for the microscopic stochastic process,
while ⟨·⟩ indicates the average over the field-theoretic measure, namely

⟨O⟩ = 1
Z

∫
Dϕ

∫
Dϕ∗O e−S[ϕ,ϕ∗] (12.26)

Here S is the field-theoretic action, while the factor Z ensures the correct normalisa-
tion ⟨1⟩ = 1. This case is simple, but more complicated operators are not always so
intuitive. For example, to compute the correlation between ni at time t and nj at
time t′ < t, one has to compute the field-theoretical average of

ni(t)nj(t′) → a†
i(t)a

†
j(t

′)ai(t)aj(t′) → ϕi(t)ϕ∗
j(t′)ϕj(t′) , (12.27)

where ϕ∗ is the creation field. This is because the a†
i operator, acting at time t > t′,

can be dropped, while the a†
j at time t′ cannot, leading to

E
[
ni(t)nj(t′)

]
= ⟨ϕi(t)ϕ∗

j(t′)ϕj(t′)⟩ = ⟨ϕi(t)ϕ̃j(t′)ϕj(t′)⟩ + ⟨ϕi(t)ϕj(t′)⟩ (12.28)
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Meanwhile, the equal time and equal position correlation obeys

E
[
ni(t)2

]
= ⟨ϕi(t)2⟩ + ⟨ϕi(t)⟩ (12.29)

This follows from normal-ordering, whereby

n2
i →

(
a†
iai
)2

= a†
ia

†
iai ai + a†

iai → ϕ2
i + ϕi . (12.30)

12.2.3 Doi-Peliti field theory for Active Ising Models

Active Ising Models have two distinct particle types A, B, corresponding to spins
±1 respectively, so alongside annihilation and creation fields ϕ, ϕ∗ for species A, I
need counterparts ψ and ψ∗ for B.

Just as for the Master Equation, the spacetime action S of the field theory is
additive over the various hopping and jump processes, and also over spatial (site)
and temporal variables. The action can be therefore written in the form [MyPaper4]:

S =
∑
i

∫
dtA

A = ϕ∗
i (t)∂tϕi(t) + ψ∗

i (t)∂tψi(t) + AD + Aϵ + Aflip

(12.31)

Here A is the action density. Since the spin-flip dynamics involves only same-site
particles, Aflip is fully local in both space and time, while the diffusive AD and
propulsive Aϵ hopping contributions connect neighbouring sites. The explicit form
of these various contributions for the different AIMs, derived in Appendix D.2, is
given as follows. For later convenience, I will give the form of the action without
performing the Doi shift of the creation fields.

Hopping

The action for the hopping processes is given by [MyPaper4]

AD = D

2
∑

j:|i−j|=h

[(
ϕ∗
i (t) − ϕ∗

j(t)
)

(ϕi(t) − ϕj(t)) +
(
ψ∗
i (t) − ψ∗

j (t)
)

(ψi(t) − ψj(t))
]

(12.32)
Aϵ = −ϵD

[(
ϕ∗
i+hx̂(t) − ϕ∗

i−hx̂(t)
)
ϕi(t) −

(
ψ∗
i+hx̂(t) − ψ∗

i−hx̂(t)
)
ψi(t)

]
(12.33)

Here h is the lattice spacing, separating two neighbouring sites. Moreover, here and
in what follows I am omitting the temporal dependence on t.

Spin-flipping

I will here present the results for the action of the three choices of flipping rates
introduced in Sec. 12.1.1. Since flipping processes all occur on the same site, the
subscript i will be omitted.

AIM0 action. As anticipated, the process of deriving the action for the AIM0
leads to an infinite series of terms, which I was not able to sum up. This series is
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given by:

Aflip = −γ e−β−ψψ∗−ϕϕ∗(ϕ∗ − ψ∗)
∑
k

ϕ

(
ψψ∗e

2β
k+1 + ϕϕ∗

)k
− ψ

(
ϕϕ∗e

2β
k+1 + ψψ∗

)k
k!

(12.34)
Details of the derivation are provided in Appendix D.2.2. Because of this, from
now on I will restrict my attention mainly to the AIM1 and AIM2, whose actions I
compute below.

AIM1 action. For the flipping rates of AIM1, the action takes the same form
as that of AIM0, except for the fact that all the k + 1 factors in the denominator of
the exponentials are absent. In this case, the sum over k can be performed exactly,
and leads to [MyPaper4]:

Aflip = γ (ϕ∗−ψ∗)e−β−ψ∗ψ−ϕ∗ϕ
(
ϕ exp [eβψ∗ψ + e−βϕ∗ϕ] − ψ exp [e−βψ∗ψ + eβϕ∗ϕ]

)
(12.35)

AIM2 action. In the case of the AIM2, the action Aflip can be split into three
different contributions [MyPaper4]

Aflip = Aγ + Aλ + Aτ , (12.36)

where:

Aγ = γ (ϕ∗ − ψ∗) (ϕ− ψ) , (12.37)
Aλ = −λ (ϕ∗ − ψ∗)2 ϕψ , (12.38)

Aτ = −τ

2 (ϕ∗ − ψ∗)
[
(ϕ∗)2 ϕ− (ψ∗)2 ψ

]
ϕψ . (12.39)

12.3 The hydrodynamic limit
Here I will derive hydrodynamic-level equations for the various Active Ising Models
proposed in Sec. 12.1. The case of the AIM0 will be excluded because, as mentioned
previously, its Doi-Peliti action is intractable.

The derivation is lengthy but it offers important insights. The strategy is as
follows: starting from the Doi-Peliti field theory derived in the previous Section,
I will first convert to a description in terms of physical fields via a Cole-Hopf
transformation, and then use a reverse Martin-Siggia-Rose/Janssen-De Dominics
procedure [MyPaper4]. In this procedure, a link is made between the field-theoretic
action and Langevin equation for the fields. This programme can be followed exactly
to the last stage, at which point the non-Gaussian noise that emerges at the exact
level can be either made Gaussian, to give the Langevin equations, or suppressed
to give deterministic hydrodynamics. The last stage is achieved by sending the
linear size of the system L → ∞ while keeping fixed the density of particles. In this
limit, exact hydrodynamic PDEs emerge, describing the behaviour of hydrodynamic
variables on scales comparable with L, while the leading order stochastic corrections
give the Gaussian (Langevin) noises.
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12.3.1 Mapping of a Doi-Peliti field-theory on a Langevin equation

Once the field theory has been derived, the action can be split into two contributions:
one linear in the Doi-shifted creation field ϕ̃ and one containing all the non-linearities
of ϕ̃:

S[ϕ, ϕ̃] =
∫

dx dt ϕ̃ · F [ϕ] −Kθ[ϕ, ϕ̃] . (12.40)

Note the absence of a term independent on ϕ̃: this is a consequence of conservation
of the total probability [125].

I would like to drive the reader’s attention to the similarity between this action and
that derived from a Martin-Siggia-Rose/Janssen-De Dominicis (MSRJD) formalism
from a Langevin equation in Chapter 4. The connection between the two is not as
straightforward as it might seem: in principle, the creation and annihilation fields ϕ∗

and ϕ are complex, and in particular, one is the complex conjugate of the other. On
the other hand, in the MSRJD formalism, the response field is integrated over the
imaginary axis, while the physical field is always real. This riddle can be however
solved by realising that through analytic continuation, the two field theories can be
mapped one into the other [125].

Once the details of the integration domain of the fields are settled, one can find
a set of Langevin equations describing the behaviour of ϕ by utilising the connection
provided by the MSRJD formalism. In contrast to what is typically done, namely
building a path-integral field-theory from a Langevin equation, here I am doing the
opposite: in this sense, I will say to use a reverse MSRJD procedure. The behaviour
of the field ϕ described by the action S is therefore equivalent to that described by
the Langevin equation

F [ϕ] − θ = 0 . (12.41)

Here θ is a random noise, with zero mean and statistics defined by the cumulant
generator function Kθ.

The interpretation of this Langevin equation is however not so clear: in some
simple cases, as in the case of pair annihilation processes, the noise term can often
turn out to have an imaginary amplitude [16, 125, 126]. Moreover, ϕ is a complex
field, which is linked to physical observables through complex relations, as discussed
in the previous section. All these complications can be partially solved, as I will
show in the next section, by using what is known as a Cole-Hopf transformation.

The Cole-Hopf transformation

In the attempt to derive a set of Langevin equations describing the behaviour of the
fields, by interpreting the Doi-Peliti field theory through a MSRJD formalism, it is
convenient to first perform a Cole-Hopf transformation [16, 127]. This transformation
connects the Doi-Peliti fields to physical observables, namely particle density fields.
Moreover, the Cole-Hopf transformation avoids the well-known problem, discussed in
the previous section, of imaginary-noise Langevin equations, which are obtained if the
MSRJD interpretation is performed directly on the Doi-Peliti action [16, 125, 126].

For the one-species example of Sec 12.2.2, the transformed fields ρ and ρ̃ obey

ϕ∗ = eρ̃ , ϕ = e−ρ̃ρ (12.42)



12.3 The hydrodynamic limit 206

Thus the density field ρ = ϕ∗ϕ is analogue to the second-quantised number operator
n̂ = a†a, while the correlation function of Eq. (12.28) now takes the more intuitive
form

E
[
ni(t)nj(t′)

]
= ⟨ρi(t)ρj(t′)⟩ (12.43)

More generally, for all density correlations evaluated at different times and/or
different sites, one can now replace the expectation value by the average over
the field-theoretical measure, and replace the particle number operators with the
corresponding ρ fields.

However, to compute correlation functions on the same site at the same time,
subtleties remain because the corresponding number operators must remain normal-
ordered. Thus the correlator given in Eq. (12.29) obeys

E
[
ni(t)2

]
= ⟨ρi(t)2 + ρi(t)⟩ . (12.44)

This non-intuitive result is the unavoidable price for building an exact theory in
terms of (almost!) physical density fields. Below I will therefore pay careful attention
when computing equal-time correlation functions.

Cole-Hopf transformation in field-theories for AIMs

The Cole-Hopf transformed action density reads

A = ρ̃+
i ∂tρ

+
i + ρ̃−

i ∂tρ
−
i + ACH

D + ACH
ϵ + ACH

flip (12.45)

where ρ̃+ and ρ+ have replaced ϕ and ϕ∗, and ρ̃− and ρ− have replaced ψ and
ψ∗. The fields ρ+ and ρ− approach the physical densities for A and B particles
respectively. The contributions to ACH are found via the change of variables (12.42);
their forms will be given as needed, below.

I first set, without loss of generality, the lattice spacing to h = 1, and then
consider the system at diffusive hydrodynamic scales, achieved by a further rescaling
of spatial coordinates, x̃ = i/L, and of time, t̃ = t/L2. This choice of rescaling
follows from requiring diffusion to be the process that fixes the hydrodynamic time
scale. Under this change of coordinates, I have∑

i

= Ld
∫

dx̃
∫

dt = L2
∫

dt̃ S =
∫

dx̃dt̃ Ã (12.46)

where Ã is the hydrodynamic action density, which absorbs all the powers of L
coming from space-time rescaling. This action density can be expanded in powers of
L−1, dropping sub-leading terms as L → ∞. I continue to split Ã into contributions
from spin-flip, diffusive and biased hopping processes, whose rates must however
be rescaled such that all three contribute to the hydrodynamic limit. Finally, the
conjugate fields must also be rescaled as ρ̃ → L−dρ̃.

12.3.2 Hydrodynamics for AIM1

For AIM1, with spin-flip rates given by (12.7), the deterministic hydrodynamic
equations are known from Ref. [120], offering an important cross-check on my
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methods. At leading order in L−1, the action terms (dropping the CH superscript)
are [MyPaper4]:

ÃD = −LdDρ̃+∇̃2ρ+ − LdDρ̃−∇̃2ρ− − LdDρ+
(
∇̃ρ̃+

)2
− LdDρ−

(
∇̃ρ̃−

)2
(12.47)

Ãϵ = Ld+1vρ̃+∂ˆ̃xρ
+ − Ld+1vρ̃−∂ˆ̃xρ

− (12.48)

Ãflip = Ld+2γ e−β
(
eρ̃

+ − eρ̃
−)×

×
(
e−ρ̃+

ρ+e(eβ−1)ρ−+(e−β−1)ρ+ − e−ρ̃−
ρ−e(e−β−1)ρ−+(eβ−1)ρ+) (12.49)

For all three to contribute to the hydrodynamic limit, as previously discussed,
then D has to be of order unity, while one must have that γ ∼ L−2 in (12.49) and
v ∼ L−1 in (12.48). These choices ensure that the number of spin flips is order
one in the time ∼ L2/D needed for a particle to diffuse a distance L, and that
propulsion likewise competes with both flipping and diffusion at this hydrodynamic
scale [MyPaper4]. After redefining the parameters to absorb their scaling with L
and rescaling ρ̃ as ρ̃ → L−dρ̃, I can look at all terms in Ã scaling as L0, including
the time derivative terms, as is required for the L → ∞ limit to now be taken. I
finally get to the hydrodynamic action density [MyPaper4]

Ã = ρ̃+
(
∂t̃ −D∇̃2 + v∂ˆ̃x

)
ρ+ + ρ̃−

(
∂t̃ −D∇̃2 − v∂ˆ̃x

)
ρ−+

+ γ e−β
(
ρ̃+ − ρ̃−

) (
ρ+e(eβ−1)ρ−+(e−β−1)ρ+ − ρ−e(e−β−1)ρ−+(eβ−1)ρ+) (12.50)

The absence of higher powers of the ρ̃ fields finally allows me to map this field
theory, via the inverse MSRJD procedure outlined in Sec. 4.2. This procedure
involves mapping the action onto the noiseless limit of a set of stochastic PDEs – the
noisy version is given in Sec. 12.3.2 below. The hydrodynamic equations governing
ρ+ and ρ− are thereby found as

∂tρ
+ = D∇2ρ+ − v∂x̂ρ

+ − F̃ (ρ+, ρ−) (12.51)
∂tρ

− = D∇2ρ− + v∂x̂ρ
− + F̃ (ρ+, ρ−) (12.52)

where

F̃ (ρ+, ρ−) = γ e−β
(
ρ+e(eβ−1)ρ−+(e−β−1)ρ+ − ρ−e(e−β−1)ρ−+(eβ−1)ρ+) (12.53)

If written in terms of magnetisation m = ρ+ − ρ− and total number of particles
ρ = ρ+ + ρ−, these equations become [MyPaper4]

∂tm = D∇2m− v∂x̂ρ− 2F (m, ρ) (12.54)
∂tρ = D∇2ρ− v∂x̂m (12.55)

where F (m, ρ) = F̃ ((ρ+m)/2, (ρ−m)/2), namely

F (m, ρ) = γ e−β−ρ+ρ coshβ(m cosh [m sinh β] − ρ sinh [m sinh β]) (12.56)

Notably, the ‘aligning force’ F is exactly as found in Ref. [120]. There, the hydrody-
namic equations were derived directly by averaging the microscopic process over a
local Poisson measure. Although the derivation is quite different, the Doi-Peliti for-
malism ultimately gives an equivalent result because it is constructed from coherent
states that also correspond to a Poisson distribution [16].
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Fluctuating hydrodynamics

An advantage of this Doi-Peliti field theory is that it provides a systematic way to
address fluctuating hydrodynamics. This can be done by keeping the next order
in L−d beyond the action (12.50). This captures for finite-size systems the leading
order (small, Gaussian) fluctuations around Equations (12.54), (12.55), by adding
to them Langevin noises scaling as L−d/2. Adding these terms to the action (12.50),
the equations for m and ρ become [MyPaper4]

∂tm = D∇2m− v∂x̂ρ− 2F (m, ρ) + 1√
Ld
θ (12.57)

∂tρ = D∇2ρ− v∂x̂m+ 1√
Ld

∇ · ζ (12.58)

where F (m, ρ) is still given by (12.56), but now we have the noise contributions θ
and ζ. The noise θ can be further split in two contributions θ = η+ ∇ · ξ, where the
latter arises from diffusion and thus conserves the total magnetisation. The statistics
of these Gaussian noises is fully determined by a covariance matrix comprising

⟨η(x, t)η(y, s)⟩ = 4 γ e−β−ρ+ρ cosh(β) δ (x− y) δ (t− s) ×
× (ρ cosh [m sinh(β)] −m sinh [m sinh(β)])

(12.59)

with other noise covariances being zero except for

⟨ξi(x, t)ξj(y, s)⟩ = 2Dρδi,jδ (x− y) δ (t− s)
⟨ζi(x, t)ζj(y, s)⟩ = 2Dρδi,jδ (x− y) δ (t− s)
⟨ξi(x, t)ζj(y, s)⟩ = 2Dmδi,jδ (x− y) δ (t− s)

Note that ξ and ζ, namely the conservative noises, are Gaussian also beyond the large
L limit. This can be seen from the fact that they arise from the action terms (12.47)
and (12.48), where no term is more than quadratic in ρ̃±. The non-conservative
noise η, on the other hand, has non-Gaussian statistics, as higher powers of ρ̃± are
present in (12.49), which becomes Gaussian only al large L in virtue of the central
limit theorem.

12.3.3 Hydrodynamics for AIM2

The same procedure as used above for flip rates obeying (12.7) can be applied
to the many-body rates (12.8)-(12.10). Spatial hopping is not affected, so all the
contributions proportional to D and ϵ will remain unchanged. But the contribution
S̃flip to the hydrodynamic action now takes the form (before rescaling parameters)

S̃flip =Ld+2γ
(
eρ̃

+ − eρ̃
−) (

e−ρ̃+
ρ+ − e−ρ̃−

ρ−
)

−

−Ld+2 λ
(
eρ̃

+ − eρ̃
−)2

e−ρ̃+−ρ̃−
ρ+ ρ−+

+Ld+2 τ

2
(
e−ρ̃+ − eρ̃

−) (
eρ̃

+
ρ+ − eρ̃

−
ρ+
)
ρ+ ρ−

(12.60)

As done previously, I now rescale the rates γ, λ and τ by L−2 such that each type
of flip competes with diffusion (and propulsion). Finally, by rescaling ρ̃ → L−dρ̃ and
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taking L → ∞, the resulting hydrodynamic action becomes equivalent to the same
partial differential equations (12.52), (12.51), but with a different choice of F (ρ+, ρ−).
Again rewriting this in terms of magnetisation m = ρ+ − ρ− and particle density
ρ = ρ+ + ρ−, I recover (12.54) and (12.55), with (12.56) replaced by [MyPaper4]

F (m, ρ) = m

(
γ + τ

m2 − ρ2

8

)
. (12.61)

Just as in Sec 12.3.2, I can compute leading-order fluctuation corrections, recovering
(12.57) and (12.58), in which F (m, ρ) obeys (12.61) and the noise correlator of η
given by

⟨η(x, t)η(y, s)⟩ = δ (x− y) δ (t− s)
[
2γρ+

(
λ+ ρ

τ

4

)
(ρ2 −m2)

]
(12.62)

while all other correlators remain the same.

12.3.4 Homogeneous solutions

Spatially homogeneous but time-dependent solutions of the noiseless hydrody-
namic equations are found by assuming m (x, t) = m(t) and ρ (x, t) = ρ(t) in
Eq.s (12.54,12.55), which become

∂tm = −2F (m, ρ) (12.63)
∂tρ = 0 (12.64)

The second of these expresses particle conservation: ρ(t) = ρ0, the initial density.
In contrast, m relaxes via the spin-flip dynamics, with an asymptotic solution
limt→+∞m(t) = m0 obeying F (m0, ρ0) = 0. For both choices of F considered above
in (12.56), (12.61), the disordered state m0 = 0 is always a solution. However, it is
unstable whenever ∂mF (m0, ρ0) < 0, giving rise to a magnetised phase.

For definiteness I will here focus on AIM2 here (though AIM1 is similar [120]),
for which the force F (m, ρ) obeys (12.61) so that

∂mF =
(
γ − τ

8ρ
2
)

− 3τ
8 m2 (12.65)

The state m0 = 0 is thus stable for ρ0 ≤ ρc, and unstable for ρ0 > ρc, where the
critical density is given by [MyPaper4]

ρc =
√

8γ
τ
. (12.66)

Above ρc, where m0 = 0 is unstable, one has a symmetric pair of stable, magnetised
states

m0 = ±m̄ m̄2 = ρ2
0 − ρ2

c . (12.67)
This resembles a standard, Ising-like spontaneous symmetry breaking where two
vanishingly magnetic states merge at the critical point ρ0 = ρc. However, in the
passive Ising model, for all ρ0 > ρc the two solutions m = ±m̄ remain stable against
inhomogeneous perturbations. For AIMs this is not the case: there is a region of
parameter space where no homogeneous solution is stable, and AIM2 makes no
exception. The AIM transition is thus better understood as a first-order transition,
akin to a liquid-gas transition [71].
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Linear stability of uniform states

To check the linear stability of homogeneous solutions m = m0, ρ = ρ0, I linearise
the equations of motion and examine small perturbations δm and δρ which then
obey [MyPaper4]:

∂tδm = D∇2δm− v ∂xδρ− 2α (ρ0) δm− 2 g (ρ0) δρ (12.68)

∂tδρ = D∇2δρ− v ∂xδm (12.69)

where

α (ρ0) = ∂mF (m0, ρ0) g (ρ0) = ∂ρF (m0, ρ0) . (12.70)

For ρ0 ≤ ρc, where m0 = 0, these two coefficients read

α (ρ0) = γ

(
1 − ρ2

0
ρ2
c

)
g (ρ0) = 0 , (12.71)

While for ρ0 > ρc, where m0 = ±
√
ρ2

0 − ρ2
c , they read

α (ρ0) = 2γ
(
ρ2

0
ρ2
c

− 1
)

g (ρ0) = ∓2γ ρ0
ρc

√
ρ2

0
ρ2
c

− 1 (12.72)

Note that for all ρ0 ̸= ρc, the coefficient α (ρ0) > 0, while it equals 0 only at ρ0 = ρc.
In Fourier space the linearised dynamics becomes

∂t

(
δm
δρ

)
= M (k)

(
δm
δρ

)
(12.73)

Here I used Fourier-transformed fields, which are obtained from the real-space fields
through the transformation

f (k, t) =
∫

ddx f (x, t) e−ix·k . (12.74)

The evolution matrix M is given by

M(k) =
(

−Dk2 − 2α(ρ0) −i v kx − 2 g(ρ0)
−i v kx −Dk2

)
(12.75)

and stability against perturbations at wave vector k requires both eigenvalues of
M(k) to have a nonpositive real part. These eigenvalues are given by

λ1/2 (k) = ±
√
α(ρ0)2 + 2i v g(ρ0)kx − v2k2

x − α(ρ0) −Dk2 (12.76)

Studying the eigenvalues at k = 0, one finds that

λ1 = −2α(ρ0) λ2 = 0 , (12.77)

confirming the analysis made above concerning stability within the subspace of
homogeneous mean-field solutions.
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What happens if instead, I perturb the system, not with a homogeneous per-
turbation, but with a slowly varying one? As long as ρ0 ≠ ρc, and hence α(ρ0) is
positive, continuity in k requires ℜ (λ1(k)) < 0 at small k. In contrast, λ2 at small
k takes the form

λ2 (k) = ±iv g (ρ0)
α (ρ0) kx −Dk2 + v2 g (ρ0)2 − α (ρ0)2

2α (ρ0)3 k2
x +O(k3) (12.78)

Let me now distinguish the two cases ρ0 < ρc and ρ0 > ρc.

1. At ρ0 < ρc, where g = 0, the eigenvalue λ2 becomes

λ2 (k) = −Dk2 − v2

2α(ρ0)k
2
x +O(k3) (12.79)

indicating stability of the uniform, nonmagnetic solution for all ρ0 < ρc, in
agreement with the predictions of mean field theory.

2. At ρ0 > ρc the homogeneous solutions that appear stable from a mean-field
argument has m2

0 = ρ2
0 − ρ2

c ̸= 0. In this case, λ2 becomes

λ2 (k) = ∓i ρ0 v√
ρ2

0 − ρ2
c

kx −Dk2 + v2 ρ4
c

4γ
(
ρ2

0 − ρ2
c

)2k2
x +O(k3) (12.80)

The linear part (in k) of λ2 (k) is always imaginary, and hence does not affect
the stability analysis. The quadratic part may, however, become positive for
values of ρ0 close to ρc. In particular, this happens when

ρ2
0 − ρ2

c <
v

2
√
γD

ρ2
c . (12.81)

As the r.h.s. is always strictly positive if v > 0, there is always an interval
[ρc, ρl], in which the homogeneous solution is unstable, with ρl given by

ρl = ρc

√
1 + v

2
√
γD

> ρc . (12.82)

For low activity v, the instability window shrinks ρl → ρc, and in particular

ρl = ρc + v

4
√
γD

ρc + O(v2) (12.83)

In this second scenario, which arises for any nonzero propulsion v, the homogeneous
magnetic phase becomes unstable to long wavelength perturbations. Only for v = 0
is the passive-Ising-like second order transition recovered; for all v ≠ 0 there is a
range of densities, ρc(γ, τ) < ρ0 < ρl(γ, τ,D), in which no homogeneous solution
is stable. In this range, the system is therefore driven towards a spatiotemporal
pattern.

Although I will not reproduce the full calculation, note that the same qualitative
behaviour arises for AIM1, in which the force F in (12.63) is replaced by (12.56):
here it is again possible to show that for any v ̸= 0 there is a finite range of densities
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ρc < ρ0 < ρl in which the ordered homogeneous solution is linearly unstable with
respect to long-wavelength spatial perturbations. Hence, the transition is not second-
order, but is better understood as a liquid-gas phase transition as in [71]. In both
cases, for the zero propulsion limit v → 0, one finds that ρl → ρc, so that the
homogeneous ordered and disordered phases are linearly stable on either side of ρc,
and a second-order transition is therefore expected in that limit.

12.4 No flocking transition in a two-body interaction
model

In the previous Section, I analysed the hydrodynamic behaviour of the AIM2, where
the spin-flipping process is given by the set of reactions (12.9,12.10). Strikingly, the
critical density ρc = (8γ/τ)1/2 depends on the AIM2.1 (random one-body flipping)
spin-flip rate γ, and the AIM2.3 (three-body flipping) rate τ , but not on the AIM2.2
(two-body flipping) rate λ. As one switches off the AIM2.3 interaction τ → 0, the
critical density diverges ρc → +∞. This means that contrary to naive expectation,
two-body collisional alignment cannot by itself lead to ordering for any amount of
random noise γ, no matter how large the rate λ at which two-body flipping occurs
[MyPaper4].

A physical interpretation of the relevant process is that two close enough particles,
i.e. sharing the same lattice site, bump into each other with some rate λ. When such
a collision occurs, if the particles have opposite spin, they align (randomly choosing
which of the two orientations to share). Since the spin sets the preferred direction of
motion of the particle, the two colliding particles move in the same direction after
the collision. This seems to capture a basic and intuitive mechanism through which
flocking might occur, yet I find no ordered phase. Something closer to a ‘majority
rule’ (which gets encoded in the three-body collision process of AIM2.3) is instead
required [MyPaper4].

Intriguingly, several recent studies have proposed that two-body interactions are
indeed not enough to sustain global alignment via a spontaneous breaking of an Ising-
like symmetry [128, 129, 130, 131]. This work confirms this prediction, which I believe
has not been given enough emphasis in the community. The advantage of the field-
theoretical approach is that its exact analysis can cleanly and unambiguously rule
out any ordered state induced by the two-body collision term in the hydrodynamic
limit addressed here. Specifically, if one retains only the one-body (randomising) and
two-body terms by setting τ = 0 in AIM2, they would obtain (12.54,12.55) with a
force term F (m, ρ) = γm. The homogeneous solution at zero magnetisation, m0 = 0,
is then stable for all γ > 0, regardless of the global density ρ0. Therefore, for any
finite amount of random spin flipping, the two-body collision process described by
the reaction (12.9) is not sufficient to induce collective motion [MyPaper4].

At γ = 0, things look slightly different. Without the two-body term (λ = 0), all
solutions can be written as a superposition of waves which travel in the ±x direction
with speed v and damping Dk2. These solutions not only conserve the total density
but also the total magnetisation; accordingly a state of uniform magnetisation cannot
emerge from an unmagnetised initial state. Remarkably, this result is sustained, at
the hydrodynamic level, even when the two-particle interaction (12.9) is switched
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on [MyPaper4]. This result seems counter-intuitive. Indeed, in the absence of
random spin-flipping but with two-body collisions (γ = 0, λ > 0) the system has two
absorbing states: whenever particles are all either of the A or B kind, no further
spin-flipping can occur. Either state would represent a permanently stable flock.

As I have shown, this physics does not emerge in the hydrodynamic limit. A
key factor is that absorbing states are reached in a finite time only in a finite-size
system. I must therefore switch attention to the fluctuating hydrodynamics of this
system arising at finite L. The finite-size behaviour of the two-particle interaction
model, at large but finite L, is given by

∂tm = D∇2m− v∂x̂ρ+ 1√
Ld

(η + ∇ · ξ) (12.84)

∂tρ = D∇2ρ− v∂x̂m+ 1√
Ld

∇ · ζ (12.85)

I have already set γ = 0, so spin-flipping is given by the ‘pure’ AIM2.2 reactions, as
defined by (12.9). As in the previous models, η, ξ and ζ are Gaussian noises whose
correlators are found by setting γ = τ = 0 in the more general results given already
for AIM2 in Sec. 12.3.3.

The noises ξ and ζ arise from the diffusive motion of particles, and hence conserve
the total magnetisation. Flocking, were it to emerge, would have to stem from the
η noise term. But, as seen from the covariance results in Sec 12.3.3, specifically
(12.62), the noise η is larger the smaller the magnetisation. When m ∼ 0, this noise
therefore pushes the system towards magnetised states with m ̸= 0. The noise then
weakens, so it is less likely for the system to return to m ∼ 0. When eventually the
system reaches the absorbing state m = ±ρ, all particles flock in the same direction
forever after. The η term therefore does push the system towards a flocking state;
but it is the only term that does so. This means that for AIM2.2 any collective
motion arises by a purely stochastic mechanism [MyPaper4], not a deterministic drift
– a fact also clear from the shape of F (m, ρ) when τ = 0. As previously discussed,
stochasticity, and hence the probability of achieving this flocked state, vanishes
in the hydrodynamic limit L → ∞. Therefore, exact conservation of the total
magnetisation at deterministic level is not because spin-flipping processes are absent
altogether, but because the probability of having a fluctuation that macroscopically
changes m vanishes when L → ∞. This peculiar scenario is of course radically
changed by the three-body collisional coupling term τ , which restores a deterministic
drift towards flocking that wins out above the critical density ρc.

12.5 The unbiased AIM critical point
The linear stability analysis performed in Sec 12.3.4 shows that AIMs generically
undergo a first-order transition, with a continuous transition recovered for unbiased
hopping rates ϵ = 0 (equivalently v = 0): this accordingly defines the unbiased AIM
critical point. Note that this critical point is unstable in the RG sense since any
infinitesimal value of v brings back first-order behaviour. An important question
concerns the universality class of this critical transition. The answer would be
obvious if this limit recovered a reversible model, which would surely lie in the
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kinetic Ising class known as Model C in Halperin and Hohenberg classification [40],
as discussed further below. Indeed, numerical simulations in 2 dimensions of the
AIM0 give results compatible with this prediction [71]. However, this outcome is
not guaranteed because, as also shown in Sec. 12.1, the dynamics of AIM0 violates
detailed balance even at v = 0, making the system out of equilibrium even in the
absence of self-propulsion [71]. This is equally true of AIM1 and AIM2, and given
their shared symmetries one can expect all these models to lie in a single universality
class, that may or may not be that of equilibrium Model C.

A major advantage of the field-theoretic approach described in the present
Chapter is that it creates a clear and unambiguous foundation for resolving this issue
via a full renormalization group (RG) analysis. Here I will derive a suitable starting
point for RG calculations on AIMs, compare it with the corresponding Model C
equations, and review what is known about the two cases. I will focus on the case of
AIM2, where spin-flipping is given by the reactions (12.8)-(12.10).

12.5.1 Relevant and irrelevant terms

The hydrodynamic methods used in Sec. 12.3 generally identify a limit in which
noiseless, mean-field critical behaviour is recovered; this approach does not capture
all relevant terms for RG purposes. To identify these, I start instead from a coarse-
grained continuous version of the microscopic theory, describing the system on
mesoscopic scales (much larger than h, the lattice spacing, and much smaller than
L, the system size). I am hence not assuming anymore the scaling with L of the
coefficients investigated in Sec. 12.3. I will instead take a continuum limit by sending
the lattice spacing h → 0. The continuum limit therefore represents a way to
investigate the dynamics on scales much larger than h, but yet much smaller than L.

The continuum limit

I will develop the continuum limit of the theory. I will do so as I am interested
in the behaviour of the system on scales l ≪ h, and therefore assume the lattice
spacing can be sent to h → 0. Attention however must be paid to the most physical
way to rescale the various parameters in this limit. Let me first change the spatial
variable used to describe the system. Instead of using the lattice number i, I will
use the continuous variable x = hi. Sums over lattice sites i are thus replaced by
integrals over x, with the prescription∫

dxf(x) = hd
∑
i

fi , f(hi) = fi . (12.86)

Second, one must carefully define the continuous-space fields. Say that I have
already performed a Cole-Hopf transformation, and have a theory that describes the
behaviour of the number of particle field ρ. In the case of more particle species, as
it is for AIMs, the same procedure described here can be easily generalised.

While I leave the tilde fields ρ̃± unchanged, it is convenient to rescale the ρ±

fields with the volume around each lattice site hd. This comes from the fact that,
when the h → 0 limit is taken at a fixed total number of particles, the expected
number of particles on each site vanishes. What remains constant is the density,
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namely the average number of particles divided by the volume occupied by a single
site hd. Hence, it is convenient to rescale the annihilation fields by hd, namely

ρ̃(hi, t) = ρ̃i(t) ρ(hi, t) = h−dρi(t) (12.87)

Moreover, by observing that that

f(x) − f(x+ hŷ) = −h ∂ŷf(x) + o(h) , (12.88)

it is straightforward to write the action contributions that describe processes involving
different sites, namely the hopping process in the case of AIMs.

The final choice to be made concerns the scaling with h of the reaction and
jump rates. For example, to keep finite the mean square displacement due to the
diffusive process, the microscopic hopping rate D must diverge as h−2. For the
case of multiple-body interactions, all the rates must be rescaled to compensate for
the vanishing probability of finding more than one particle on the same site. For
example, the rate of an n-body interaction should diverge as h−d(n−1) to guarantee
that a spin-flipping due to the n-body interaction occurs on average on the same
time-scale as the other processes.

After these rescalings, the action becomes S =
∫

(AD + Aflip) dxdt, where
[MyPaper4]

AD = −Dρ̃+∇̃2ρ+ −Dρ̃−∇̃2ρ− −Dρ+
(
∇̃ρ̃+

)2
−Dρ−

(
∇̃ρ̃−

)2
(12.89)

Aflip = γ
(
eρ̃

+ − eρ̃
−) (

e−ρ̃+
ρ+ − e−ρ̃−

ρ−
)
+τ

2
(
e−ρ̃+ − eρ̃

−) (
eρ̃

+
ρ+ − eρ̃

−
ρ+
)
ρ+ ρ−

(12.90)
I now want to change variables from ρ± to m and ρ. To do this in the field theory,
one must also transform the ρ̃± fields according to

m = ρ+ − ρ− ρ = ρ+ + ρ− (12.91)

m̃ = ρ̃+ − ρ̃−

2 ρ̃ = ρ̃+ + ρ̃−

2 (12.92)

For RG purposes, it is sufficient to work as usual in a Landau-Ginzburg expansion
in fluctuations around the homogeneous disordered state at m = 0, ρ = ρ0, as my
interest is the study of the transition as ρ0 → ρ−

c . Hence I shall write ρ = ρ0 + δρ,
and expand in powers of m and δρ. The resulting action contains an infinite set of
nonlinear terms of which only the first few are relevant, in the RG sense, near dc = 4
dimensions, which is the upper critical dimension of the model. Retaining only these
terms, the result is the sum of a Gaussian action density A0 and a non-Gaussian
interaction part AI

A0 = m̃
(
∂t −D∇2 + a

)
m− λ̃ m̃2 + ρ̃

(
∂t −D∇2

)
δρ− D̃ (∇ρ̃)2 (12.93)

AI = b m̃m3 + g m̃mδρ+ irrelevant (12.94)
with coefficients derived from microscopic parameters as follows:

a = 1
4
(
8γ − τρ2

0

)
, b = τ

4 , g = −τ ρ0
2

λ̃ = ρ0
4
(
8γ + ρ2

0τ
)
, D̃ = ρ0D
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This action can be cast in a more familiar form as a pair of Langevin equa-
tions, through the reverse MSRJD procedure illustrated in Sec. 12.3.1, which
read [MyPaper4]

∂tm = D∇2m− am− bm3 − g δρm+
√

2λ̃ η (12.95)

∂tδρ = −∇ · J ; J = −D∇δρ+
√

2D̃ ζ (12.96)

with η and ζi independent uncorrelated Gaussian white noises of unit variance.
Note that any nonlinearity of the form ∇(m2) in the current J of (12.96), or

equivalently a term ρ̃∇2(m2) in the action (12.94), if present, would also be relevant
in d < 4. However, since it is absent in the bare theory and there are no other
non-Gaussian terms linear in ρ̃, it will not be generated during an RG transformation.
More generally one expects any relevant term, even if absent in the original action,
to be generated during the RG flow, unless its absence is protected by some kind
of symmetry or conservation law. The physics that prevents the generation of this
term in our case is as follows: when v = 0, the dynamics of the mass density ρ is
independent of the state of magnetisation m [MyPaper4]. Such a condition survives
coarse-graining, and can arguably be viewed as a symmetry between A and B
particles (or up- and down-spins) at the microscopic level, stating that the diffusive
jump rates of a particle are independent of its spin state.

It is however even more interesting to note that even in the presence of v ̸= 0,
the term ∇(m2) in the current J , which would lead to Model C-like behaviour
(see Eq.(12.98) below), is not generated. This is prevented by the absence of any
deterministic non-linear coupling in the density equation so that other deterministic
non-linear couplings cannot arise under the RG flow. This mechanism is however
absent in a model with detailed balance, where the hopping rates must depend on
the energy change caused by the hop, which does depend on the spin state. Since it
is possible to construct an AIM that recovers detailed balance at v = 0 [122], one
cannot view the symmetry found here as fundamental to all AIMs, but it remains a
defining feature of all the AIMs studied in this Chapter (including AIM0).

12.5.2 Connection with Model C

The equations of motion of Model C are [40]

∂tm = λ∇2m− λrm− λum3 − λγ δρm+
√

2λ η
∂tδρ = −∇ · J (12.97)

J = −D∇δρ− Dγ

2 ∇(m2) +
√

2D ζ (12.98)

Here λ is a mobility parameter (unrelated to the previous use of the same symbol in
this Chapter), while r, u, γ are coefficients in the free energy functional

H =
∫

ddx 1
2 (∇m)2 + r

2m
2 + u

4m
4 + 1

2ρ
2 + γ

2m
2ρ , (12.99)

that underlies the model. Model C obeys detailed balance with respect to this H.
The noise terms η and ζ are independent Gaussian white noises of unit variance,
just as in (12.95,12.96).
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Strikingly, the only difference between (12.95,12.96) for the AIMs under study
and Model C is the absence in the AIM case of the term ∇(m2) in the current J .
As already discussed, this term is relevant but structurally absent in our chosen
AIMs, while in contrast, it is structurally present, with a coefficient fixed by detailed
balance, in Model C. The difference between these two cases need not be accessible
via any approach that attempts to perturbatively deform one model into the other,
for instance by considering small departures from detailed balance. The change in
parameters is not small and replaces one symmetry (time-reversal) with a different
and unrelated one (spin-independent density dynamics).

Interestingly, a generalised model that includes both AIM and Model C as special
cases has previously been introduced and studied using RG methods [132]. The
model is defined by

∂tm = λ∇2m− am− bm3 − gmmδρ+
√

2λ̃ η (12.100)
∂tδρ = −∇ · J

J = −D∇δρ− gρ
2 ∇(m2) +

√
2D̃ ζ (12.101)

The AIM2 dynamics of (12.95,12.96) is recovered as

gρ = 0 gm = g λ = D (12.102)

while equilibrium Model C corresponds to

a = λr λ = λ̃ gm = λγ (12.103)
b = λu D = D̃ gρ = Dγ (12.104)

12.5.3 RG flow

In the present Chapter, I will quickly review the perturbative RG study by Akkineni
and Taueber in [132], which in fact addresses a much larger class spanning Heisenberg
as well as Ising symmetry, and Model D as well as Model C dynamics.

Briefly, for the model governed by (12.100,12.101), various fixed points of potential
relevance to AIMs are considered in [132]. A Gaussian fixed point, stable for d > 4,
becomes unstable for ϵ = 4 − d > 0. In the absence of gm, the m dynamics is
decoupled from ρ, which is then ignorable. The unstable flow is therefore towards a
Model A fixed point. For nonzero gm, however, the Model A fixed point is unstable
towards an equilibrium-like Model C fixed point where detailed balance is restored.
The Model C fixed point is found to be perturbatively stable against detailed-balance
violations; its basin of attraction should include all models in which such violation
is weak.

Beyond this basin, in addition to the gm = 0 manifold where Model A behaviour
is recovered, lies a further unstable manifold at gρ = 0. The strongly non-equilibrium
dynamics on this manifold describes situations, like the AIMs studied here, in which
it is the dynamics of ρ that decouples from m. On this unstable manifold, a further
fixed point was found, whose strongly non-equilibrium dynamics describes a situation
in which m relaxes much faster than ρ at large scales. This fixed point is however
unstable also within the gρ = 0 manifold. Interestingly, Akkineni and Tauber also
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found another non-equilibrium fixed point at gρ = 0 for which the coupling gm
seemingly flows to infinity for d < 4. The latter caused them to conclude that no
true non-equilibrium fixed point is accessible at order ϵ [132].

AIMs are not in Model C universality class

What is important to note for the present discussion is that the gρ = 0 sub-manifold
does not contain the Model C critical point. This can be seen directly from the
following argument. As previously explained, the Model C fixed point splits off from
the Gaussian one below d = 4. Here the coupling term involving gρ is relevant. Only
if it were irrelevant could the fixed-point value of this coupling constant become
zero at the Model C fixed point. Therefore, this fixed point cannot lie on the gρ = 0
manifold to which our AIMs are confined. This strongly suggests that, whether or
not the AIM critical point is perturbatively accessible to order ϵ [132], it should
indeed lie in a different universality class from Model C [MyPaper4].

This suggestion is different from the one made concerning AIM0 in [71]. The
situation is however delicate because, as previously stated, this result depends on
a symmetry of all the AIMs considered here (including AIM0 of [71]) which might
nonetheless be broken in more general models. Specifically, I know it must be broken
in any AIM that restores detailed balance by construction at the critical point (e.g.
[122]), in which case there can be little doubt that the Model C universality class
prevails. I also note that numerical evidence favours equilibrium Ising exponents for
AIMs in d = 2 [71], which I have also confirmed for myself numerically. It is unusual
for universality classes to merge on reducing dimensionality, so this could indicate
that while the Model C and AIM classes retain distinct exponents these are hard to
distinguish numerically in two (and therefore possibly three) dimensions.

A possible new universality class for AIMs

I will now however argue that, despite the conclusions of [132], the non-equilibrium
exponents describing the unbiased AIM critical point can be still computed within
the one-loop perturbative RG approach proposed in [132]. This is caused by the fact
that, although gm flows to infinity, also the ratio w = D/λ does [132].

When w → +∞, the effective relaxation coefficient of the magnetisation λ
becomes much larger than the diffusivity λ ≪ D → λ−1 ≫ D−1, therefore meaning
that the field m relaxes on time-scales much larger than ρ. One might therefore
expect that ρ becomes a fast mode, and thus to recover Model A behaviour. However,
by looking at the one-loop β-functions of [132] as w → 0, one can see that gm diverges,
as previously mentioned. However, the ratio gm/w remains finite along the RG flow,
and quite surprisingly the one-loop critical exponents turn out to depend only on
this ratio [MyPaper5]. A detailed discussion of the issues related to this RG flow is
still in preparation [MyPaper5] and lies beyond the scope of this Chapter. However,
if these results were confirmed, one would find a critical exponent ν at first order in
ϵ given by

ν = 1
2 + ϵ

8 . (12.105)

This value of the exponent ν differs from the Ising equilibrium value of 1
2 + ϵ

12 ,
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hence suggesting that the phase transition of unbiased AIMs might fall in a different
universality class than Ising models. Some caveats must be however solved before
claiming this is the case: the presence of this non-equilibrium universality class
strongly relies on the fact that gm flows to infinity. If did was not the case, for
w → 0 Model A behaviour would be recovered. Understanding whether higher order
terms might prevent gm from flowing to infinity is therefore crucial in addressing
the question of what is the universality class of the transition in unbiased AIMs.

12.6 Summary and future perspectives
In the present Chapter, I have considered a Doi-Peliti field theoretical formalism
and exploited it to derive an exact field theory able to describe the behaviour of a
class of different Active Ising Models (AIMs). I showed that this field-theoretical
approach provides, as it so often does, a powerful framework to understand collective
behaviour in active systems. Using this approach I derived several previously known
results [MyPaper4], that include the deterministic hydrodynamic equations of AIM1
[120]; the peculiar behaviour of the two-body collisional interaction, which cannot
sustain flocking via spontaneous symmetry breaking in the presence of noise [128];
and the linear instability of the homogeneous ordered phase close to the transition,
leading to phase-separated profiles and a first order scenario [44, 36], [MyPaper3].

Thereafter I showed that the Doi-Peliti framework can take us far beyond these
results. For example, it allows one to go beyond the deterministic hydrodynamic
equations, complementing them with sub-leading fluctuation terms needed to describe
the system on finite scales. Developing this field theory also allowed me to address
the unbiased AIM critical point, defined as the second-order alignment transition
arising when the self-propulsion term is turned off. I argue that this transition,
contrary to expectation [71], is not governed by the Model C universality class
[MyPaper4]. This result follows from the lack of detailed balance, and therefore
need not hold for more general Active Ising Models, as those constructed so that
detailed balance gets restored in the zero self-propulsion limit [122].

A complete RG analysis of AIMs is still missing, and a first attempt to under-
stand their universality class is still in preparation [MyPaper5]. This represents
an interesting future research direction, as it will allow us to understand whether
coupling local alignment interactions with diffusive motion in space is enough to
turn the phase transition from an equilibrium to a non-equilibrium one.
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Conclusions and outlook

The work that has been done
Agreement between experiments on collective biological systems and renormaliza-
tion group calculations have been scarce, challenging the extension of concepts as
universality to the realm of biophysics. The central goal of my thesis has therefore
been to probe field-theoretical approaches to the study of biological systems, by
focusing on the case of natural swarms of midges in the field. Although lacking
collective order, signatures of collective behaviour in swarms have been detected by
the presence of scaling laws and scale-free correlations. These behaviours can be
explained by the proximity of the system to a critical point, therefore allowing a
theoretical treatment of collective swarming behaviour within the theory of dynamic
critical phenomena. However, the value of the dynamic critical exponent of swarms,
zexp = 1.37 ± 0.11, was not predicted by any statistical theory. Explaining why
swarms are characterised by exponent has therefore been the main goal of my work.

To approach the study of swarming behaviour within a field-theoretical framework,
I first had to develop the appropriate field theory accounting for all relevant features
observed in swarms. The collective properties of the system, as the dynamic
critical exponent, can be then inferred through the renormalization group, in which
short-wavelength details are integrated out to obtain an effective description of the
large-scale degrees of freedom only. Universality, in this context, arises thanks to the
fact that only a few effective theories describe the collective behaviour of a wider class
of systems. Within each universality class, systems typically share the same general
features as dimensionality, symmetries and conservation laws. Although universality
has been widely confirmed in the context of physical systems, its applicability to
living matter has long lacked confirmation, challenging its underlying principles
within the context of biology.

Starting from the experimental evidence, I reviewed piece by piece all the universal
features characterising swarms of midges and their collective behaviour. Here, by
universal features, I mean symmetries (or lack of them) and conservation laws.
Local effective alignment interactions between neighbouring midges are the first key
ingredient that allows for a qualitative explanation of swarming behaviour. From the
field-theoretical point of view, these interactions can be modelled within a Landau-
Ginzburg approach, which accounts for the rotational symmetry in the system. The
dynamic behaviour of a system described by the Landau-Ginzburg free energy that,
as swarms, lacks the conservation of the order parameter is known as Model A. This
statistical theory describes the behaviour of a time-dependent Landau-Ginzburg
equation and thus represents the starting point for a field-theoretical description of
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the dynamic collective behaviour of swarms. Near the critical point, however, Model
A is known to have a dynamic exponent of z ≈ 2, far from the value measured in
experiments.

The agreement with experiments can be improved by realising that midges
in swarms are inherently active, namely can use stored energy to perform self-
propelled motion, and thus violate time-reversal symmetry and detailed balance. As
a consequence of activity, the interaction network is not fixed in time, driving the
system far from equilibrium. Since the time scale over which network rearrangements
occur is compatible with those over which neighbouring midges align, activity is
indeed strong and thus represents an important feature in the description of swarm.
It is therefore possible to cast swarms into the framework of the Toner and Tu
theory, which merges the behaviour of Model A with the Navier-Stokes equations,
to account for the fact that the order parameter is the local direction of motion of
midges.

The first problem arose when studying the near-ordering phase of the Toner
and Tu theory, which is the relevant one for swarming behaviour. In particular, the
coupling between fluctuations in the density and the direction of motion turns the
phase transition, which was second-order in Model A, into a first-order one. As
a consequence, no scaling laws should be observed in this regime. This contrasts
with observations in swarms, where scaling laws have been detected. To attempt to
explain the observed scaling behaviour, I assumed swarms to be nearly incompressible.
In the incompressible limit, a renormalization group calculation of the Toner and
Tu theory at the critical point was already performed by Chen, Toner and Lee.
Their RG approach, while confirming the transition is continuous when density
fluctuations are completely suppressed, predicted a dynamic exponent of z = 1.73 in
the physical case of three dimensions. Although not filling the gap with experiments
on swarms, this RG calculation showed that activity does reduce it, lowering z from
the value z ≈ 2 of Model A. The work of Chen, Toner and Lee therefore represents a
fundamental stepping stone towards the understanding of swarming behaviour and
serves as a springboard for my calculation on swarms.

Although incompressibility might be a sound approximation in swarms, it still
lacked theoretical support. Understanding the role of density fluctuations therefore
seemed to be the next step to take, before addressing other features of swarms. To
understand the effects of weak density fluctuations in the behaviour of swarms, I
studied the so-called Malthusian Toner and Tu theory, in which – thanks to birth-
death processes – density fluctuations are partially suppressed. I showed, through a
renormalization group approach, how in the Malthusian theory density fluctuations
turn the phase transition into a first-order one. However, when the compressibility
vanishes, I do recover a second-order transition falling in the same universality class
as the incompressible theory. For finite-size systems, a crossover between these
two behaviours emerges, with sufficiently small systems exhibiting a second-order
phenomenology falling in the incompressible universality class. This suggests that
even though most active systems are not strictly incompressible, whenever scaling
laws are detected and the spatial profile is homogeneous, collective behaviour is
described by the incompressible universality class. Swarms indeed fall into this
description, as they are active and yet exhibit scaling laws, meaning that they live on
the homogeneous, second-order side of this crossover. Incompressibility is therefore
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fully justified as a tool to investigate the collective behaviour of swarms.
While my work on the effects of density fluctuations gives strong support to

the assumption of incompressibility, the value of z = 1.73 predicted for active
systems with alignment interactions is still far from the experimental result of
swarms, meaning that new physics is required. Through an inspection of the shape
of the temporal correlation functions of swarms, it turns out that they have a non-
exponential. This feature can be explained by the presence of inertial behaviour in
the orientational dynamics. Behavioural inertia can be viewed as a sort of resistance
to adapt to social forces from neighbouring individuals, in the same way as inertia,
namely the mass, is the resistance to the change of velocity when a force is applied.
The presence of inertia in the collective behaviour of swarms can be accounted for
by coupling the order parameter, namely the direction of motion, to the generator
of its rotational symmetry, which I call spin in analogy with quantum mechanics.
By Noether theorem, I expect the total spin to be conserved, as a consequence of
the presence of a rotational symmetry. This coupling between the order parameter
and its conserved spin has been already investigated in the context of equilibrium
statistical models for collective behaviour in antiferromagnets, giving rise to the
dynamic universality class of G respectively. In particular, in Model G, the presence
of a mode-coupling interaction together with the conservation of the total spin lowers
the dynamic critical exponent from the value of z ≈ 2 of Model A to z = 1.5 in three
dimensions.

After showing how inertia and activity are responsible, independently one from
the other, for lowering the value of z from the value of z = 2 of Model A to
z = 1.73 and z = 1.5 respectively, the natural attempt has been to combine these
two features into a single field theory, which I referred to as Self-Propelled Model
G. (Note that, in this terminology, the Toner and Tu theory can be identified as
Self-Propelled Model A.) Because I aimed at working under the assumption of
incompressibility, as motivated earlier, I had to understand how this constraint
affected the behaviour of the spin. From a technical point of view, enforcing
incompressibility is equivalent to requiring that the velocity field, and hence also the
direction of motion, obey a solenoidal constraint. Understanding the effects of this
constraint on the dynamics of the spin is an issue unrelated to the presence of activity,
and hence I addressed it working in a fixed-network approximation. My analysis
revealed that to be consistent with the desired static behaviour, the dynamics of
a solenoidal-constrained version of Model G required the presence of an additional
dynamic interaction, arising from the interplay of static ferromagnetic alignment
and dynamic mode-coupling. Remarkably, although the static universality class
changes in the presence of the solenoidal constraint, the dynamic universality class
does not. This further strengthens the idea that, as long as the dynamic universality
class is concerned, incompressibility should not affect critical behaviour.

Once all the required subtleties were settled, I was ready to perform the full
renormalization group calculation for Self-Propelled Model G. The results of this
calculation, which turned out to be quite hard and demanding, revealed a rich
fixed-point phenomenology. In addition to the three aforementioned universality
classes, namely that of equilibrium non-inertial systems with z = 2 (Model A),
equilibrium inertial systems with z = 1.5 (Model G), and active non-inertial systems
with z = 1.73 (Model A), a novel fixed-point at which both activity and inertia
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are essential ingredients emerged. In three dimensions, the critical exponent at
the new fixed point is z = 1.35, in very good agreement with the experimental
result zexp = 1.37 ± 0.11. Furthermore, this theoretical result is also in excellent
agreement with numerical simulations of the Inertial Spin Model, a particle-based
model for active inertial matter, in which the dynamic critical exponent was found
to be znum = 1.35 ± 0.04. This result provides one of the first successful tests of
a renormalization group prediction against experiments on living active systems,
establishing the renormalization group as a tool for the quantitative description of
collective behaviour in biological systems.

In conclusion, my work contributed to establishing the predictive power of field
theoretical techniques, above all the renormalization group, in the context of active
biological systems. In particular, my theoretical analysis provided the first successful
test of a renormalization group prediction in experiments on living systems, which
was missing since the introduction of the first models for collective behaviour in
living systems. With my research on the collective dynamics of insect swarms, I
thus found a long-sought match between experiments and theory, suggesting that
universality may play a decisive role also in strongly correlated biological systems.

Outlooks
The results attained here have an impact that perhaps goes far beyond the case
of natural swarms of insects, as they pave the way for new research prospects. A
theoretical renormalization group approach to the same theory of swarms, namely
Self-Propelled Model G, in the symmetry-broken phase might give interesting insights
into the collective behaviour of flocks of birds. Although midges and birds might not
have much in common, it turns out that inertial behaviour is also relevant in the
description of collective turns in starling flocks. The collective behaviour of flocks has,
however, a different nature from that of swarms. While swarms behave collectively
as a consequence of the proximity to a critical point, flocks do so because they live
deeply in the ordered phase, where a continuous symmetry – rotational invariance –
is spontaneously broken. This gives rise to what are known as spin-waves, massless
excitations that exhibit scale-free correlations. The presence of inertia and activity
suggests that the collective behaviour of flocks and swarms might be described by
different phases of Self-Propelled Model G. Studying Self-Propelled Model G in its
ordered phase is however not a piece of cake, and presents its peculiar technical
difficulties compared to the sturdy performed here in the near-ordering phase. Thus,
an RG approach to bird flocks is not a simple extension of the present work and
requires the proper attention. If confirmed, this picture would push the concept of
universality in biology even further, showing that different biological systems not
only exhibit collective behaviours that uniquely depend on their symmetries and
conservation laws but also share most of their universal features.

Once the behaviour of both flocks and swarms has been characterised through a
renormalization group approach, an interesting question to address is how influential
activity is at the level of the collective properties. While both midges and birds
are inherently active at the individual scale, activity might not play the same role
on the collective scale. In flocks, for example, the ordered motion of birds makes
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rearrangements in the interaction network extremely slower than rearrangements
in the orientation of neighbouring birds. Aligning dynamics therefore occurs in a
state of quasi-local-equilibrium, and experiments on flocks showed that equilibrium
inference, which assumes a fixed interaction network, gives results consistent with
dynamical inference. In swarms, on the other hand, network rearrangements and
reorientations of the direction of motion occur on the same time scale.

Within statistical mechanics, the strength of non-equilibrium features can be
measured by looking at the entropy production rate of the system. To understand
whether non-equilibrium effects are relevant at the collective scale of a system, the
entropy production rate is the quantity to watch out for. While entropy is always
produced at the individual’s scale, as a consequence of self-propelled motion, often
it is not on large scales. In this case, the system exhibits equilibrium-like collective
behaviour. Using the tools of non-equilibrium statistical mechanics, in particular
stochastic thermodynamics, it is possible to estimate the entropy production in an
active field theory. Providing such an estimate in Self-Propelled Model G, both in
the near-ordering and in the ordered phase, would allow one to compare the impact
of activity on the collective behaviour of swarms and flocks. This comparison would
help in understanding to what extent activity affects collective behaviour in flocks,
and if the observed local equilibrium can be explained by the presence of a lower
entropy-production rate.

Active matter beyond natural swarms
The last part of my PhD work has been dedicated to the broader topic of flocking
transitions. To address some of its peculiar differences with phase transitions at
equilibrium, a simplified class of models for flocking have been recently introduced.
In this class of models, flocking arises as the consequence of the spontaneous breaking
of a discrete, rather than continuous, symmetry. Because of the analogy with the
equilibrium Ising model, this class of models is known as Active Ising Models (AIMs).
My work has focused on the development of a field theoretical approach to AIMs, in
an attempt to provide a comprehensive hydrodynamic theory that describes their
emergent and collective behaviour. In particular, I used a Doi-Peliti formalism to
map exactly the microscopic dynamics onto a field-theoretical action, from which
hydrodynamic equations could be derived. To back up the validity of this approach,
I first applied it to models whose hydrodynamic behaviour is known, recovering the
correct results. Furthermore, I showed how my approach allows me to go beyond
the exact hydrodynamic level, complementing the equations with a proper Langevin
stochastic noise.

Finally, I used the resulting field theory for AIMs to address some properties
of the phase transition. In the unbiased limit, where the coupling ruling activity
is turned off, the system is still not at equilibrium. This is because the interplay
of unbiased diffusive motion and alignment interactions violates detail balance.
However, following numerical simulations showing Ising exponents in two dimensions,
it has been conjectured that the universality class might have been that of Model C,
an equilibrium model in which the order parameter (the magnetisation) is coupled
to a conserved quantity (the density of particles). Through my field-theoretical
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analysis, I could rule out this possibility and put forward the hypothesis that the
transition belongs to a new non-equilibrium universality class.

Ordering transitions out of equilibrium, such as the flocking transition, still
presents many features which have not yet been completely understood. Simple
models, like the Active Ising Models, offer a useful simplified scenario in which
some non-equilibrium features can be theoretically investigated. My analysis of
the phase transition of unbiased AIMs, for example, suggests that when particle
diffusion is added to Ising-like spin alignment, the phase transition might be ruled
by a novel, yet to be determined, universality class with non-Ising exponents. A
deeper RG analysis of this transition, currently in preparation, will shed light on
whether particle diffusion is sufficient to turn an equilibrium ordering transition into
a non-equilibrium one.

The development of a field theory that describes AIMs allows one to go even
further, addressing the role of non-equilibrium fluctuations in the emergence of
phase-separated profiles on the onset of flocking. A quantitative theoretical approach
to this question involves the evaluation of non-equilibrium effects, which can be
done by computing the entropy production rate. Furthermore, while the instability
leading to phase separation is well understood, the mechanism through which this
reflects into a first-order phase transition still lacks an unambiguous theoretical
explanation. This field-theoretical approach might therefore help to improve our
current understanding of flocking transitions.
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Appendix A

Feynman Diagrams of the
incompressible Toner and Tu
theory

At first order in ϵ = 4−d, the self-energies and vertex-functions of the incompressible
Toner and Tu theory take contributions from the following diagrams.

A.1 Self Energies

A.1.1 Self Energy Σ
The self energy Σαβ corrects the inverse bare propagator of ψ, and is given by

Σαβ : ψ̂α(−k̃) ψβ(k̃) (A.1)

with the following non-vanishing diagrams contributing to it

3 × 4 ×

A.1.2 Self Energy Σ̃
The self energy Σ̃αβ corrects the noise variance of ψ, and is given by

Σ̃αβ : ψ̂α(−k̃) ψ̂β(k̃) (A.2)

with no non-vanishing diagram contributing to it.
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A.2 Vertex functions

A.2.1 Vertex function of the advection vertex of ψ

The vertex function V ψ̂ψψ represents the corrections to the advection vertex in the
equation of ψ, and is given by

V ψ̂ψψ
αβγ (k̃, q̃) : ψ̂α(−k̃)

ψβ(q̃)

ψγ(k̃ − q̃)

(A.3)

with the following non-vanishing diagrams contributing to it

12 × 6 ×

A.2.2 Vertex function of the ferromagnetic vertex of ψ

The vertex function V ψ̂ψψψ represents the corrections to the ferromagnetic vertex in
the equation of ψ, and is given by

V ψ̂ψψψ
αβγν (k̃, q̃, h̃) : ψ̂α(−k̃)

ψβ(q̃)

ψγ(h̃)

ψγ(k̃ − q̃ − h̃)

(A.4)

with the following non-vanishing diagram contributing to it

18 ×
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Appendix B

Feynman Diagrams of the
Malthusian Toner and Tu theory

At first order in ϵ = 4 − d, the self-energies and vertex-functions of the Malthusian
Toner and Tu theory take contributions from the following diagrams.

B.1 Self Energies

B.1.1 Self Energy Σ
The self energy Σαβ corrects the inverse bare propagator of ψ, and is given by

Σαβ : ψ̂α(−k̃) ψβ(k̃) (B.1)

with the following non-vanishing diagrams contributing to it

3 × 4 ×

B.1.2 Self Energy Σ̃
The self energy Σ̃αβ corrects the noise variance of ψ, and is given by

Σ̃αβ : ψ̂α(−k̃) ψ̂β(k̃) (B.2)

with only the following non-vanishing diagram contributing to it

1 ×
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B.2 Vertex functions

B.2.1 Vertex function of the advection vertex of ψ

The vertex function V ψ̂ψψ represents the corrections to the advection vertex in the
equation of ψ, and is given by

V ψ̂ψψ
αβγ (k̃, q̃) : ψ̂α(−k̃)

ψβ(q̃)

ψγ(k̃ − q̃)

(B.3)

with the following non-vanishing diagrams contributing to it

12 × 6 × 8 × 4 ×

B.2.2 Vertex function of the ferromagnetic vertex of ψ

The vertex function V ψ̂ψψψ represents the corrections to the ferromagnetic vertex in
the equation of ψ, and is given by

V ψ̂ψψψ
αβγν (k̃, q̃, h̃) : ψ̂α(−k̃)

ψβ(q̃)

ψγ(h̃)

ψγ(k̃ − q̃ − h̃)

(B.4)

with the following non-vanishing diagrams contributing to it

18 × 24 × 12 × 16 ×

12 × 12 × 12 × 16 ×
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Appendix C

Feynman Diagrams of
Self-Propelled Model G

C.1 Self Energies

C.1.1 Self Energy Σ
The self energy Σαβ corrects the inverse bare propagator of ψ, and is given by

Σαβ : ψ̂α(−k̃) ψβ(k̃) (C.1)

with the following non-vanishing diagrams contributing to it

3× 4×

1× 2×

C.1.2 Self Energy Π
The self energy Παβγν corrects the inverse bare propagator of s, and is given by

Παβγν : ŝαβ(−k̃) sγν(k̃) (C.2)

with the following non-vanishing diagrams contributing to it

2× 1×
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C.1.3 Self Energy Σ̃
The self energy Σ̃αβ corrects the noise variance of ψ, and is given by

Σ̃αβ : ψ̂α(−k̃) ψ̂β(k̃) (C.3)

with the following non-vanishing diagram contributing to it

1
2 ×

C.1.4 Self Energy Π̃
The self energy Π̃αβγν corrects the noise variance of s, and is given by

Π̃αβγν : ŝαβ(−k̃) ŝγν(k̃) (C.4)

with the following non-vanishing diagrams contributing to it

1× 1
2 ×
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C.2 Vertex functions

C.2.1 Vertex function of the Mode-Coupling vertex of ψ

The vertex function V ψ̂ψs represents the corrections to the mode-coupling vertex in
the equation of ψ and is given by

V ψ̂ψs
αβγν(k̃, q̃) = ψ̂α(−k̃)

ψβ(k̃ − q̃)

sγν(q̃)

(C.5)

with the following non-vanishing diagrams contributing to it

1 × 2 × 2 ×
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C.2.2 Vertex function of the Mode-Coupling vertex of s

The vertex function V ŝψψ represents the corrections to the mode-coupling vertex in
the equation of s, and is given by

V ŝψψ
αβγν(k̃, q̃) = ŝαβ(−k̃)

ψγ(k̃/2 − q̃)

ψν(k̃/2 + q̃)

(C.6)

with the following non-vanishing diagrams contributing to it

4 × 1 × 8 × 4 ×

2 × 4 × 4 × 1 ×

1 × 2 × 6 × 6 ×
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C.2.3 Vertex function of the advection vertex of ψ

The vertex function V ψ̂ψψ represents the corrections to the advection vertex in the
equation of ψ, and is given by

V ψ̂ψψ
αβγ (k̃, q̃) = ψ̂α(−k̃)

ψβ(q̃)

ψγ(k̃ − q̃)

(C.7)

with the following non-vanishing diagrams contributing to it

4 × 1 × 2 × 4 ×

4 × 1 × 1 × 2 ×

12 × 6 ×
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C.2.4 Vertex function of the advection vertex of s

The vertex function V ŝsψ represents the corrections to the advection vertex in the
equation of s, and is given by

V ŝsψ
αβγνη(k̃, q̃) = ŝαβ(−k̃)

sγν(q̃)

ψη(k̃ − q̃)

(C.8)

with the following non-vanishing diagrams contributing to it

1 × 2 × 2 ×
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C.2.5 Vertex function of the ferromagnetic vertex of ψ

The vertex function V ψ̂ψψψ represents the corrections to the ferromagnetic vertex in
the equation of ψ, and is given by

V ψ̂ψψψ
αβγν (k̃, q̃, h̃) = ψ̂α(−k̃)

ψβ(q̃)

ψγ(h̃)

ψγ(k̃ − q̃ − h̃)

(C.9)

with the following non-vanishing diagrams contributing to it

18 × 4 × 12 × 3 ×

3 × 6 × 6 ×

2 × 4 × 2 × 4 ×

8 × 16 × 16 × 16 ×

1 × 1 × 1 × 2 ×

2 × 2 × 4 × 4 ×
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C.2.6 Vertex function of the DYS vertex of s

The vertex function V ŝψψψψ represents the corrections to the DYS vertex in the
equation of s, and is given by

V ŝψψψψ
αβγνστ (k̃, q̃, h̃, p̃) = ŝαβ(−k̃)

ψγ(q̃)
ψν(h̃)

ψσ(p̃)
ψτ (k̃ − q̃ − h̃− p̃)

(C.10)

with the following non-vanishing diagrams contributing to it

36 × 12 × 6 ×
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Appendix D

Field-theoretical approach to
Active Ising Models

D.1 Master Equation
Here I will give the explicit form of the Master Equation for the different AIMs
introduced in Chapter 12.

Since the Master Equation is linear in P , each different process gives an inde-
pendent contribution. For the AIMs considered here the Master Equation can be
always written in the form

∂tP = Lhop [P ] + Lflip [P ] , (D.1)

where Lhop is the contribution coming from hopping, while Lhop is the contribution
coming from spin-flipping processes.

D.1.1 Hopping

For all the AIMs introduced here, the dynamics in space is represented by the biased
hopping, described by the reactions

Ai −→ Ai±x̂ rate: D(1 ± ϵ) Bi −→ Bi±x̂ rate: D(1 ∓ ϵ) (D.2)
Ai −→ Ai±ŷ rate: D Bi −→ Bi±ŷ rate: D (D.3)

These rates for a random jump, expressed in terms of the number of Ai and Bi
particles, n+

i and n−
i respectively, then take the following form

Ai → Ai±ŷ W
(
n+
i − 1, n+

i±ŷ + 1|n+
i , n

+
i±ŷ

)
= n+

i D ∀ŷ ̸= x̂ (D.4)

Bi → Bi±ŷ W
(
n−
i − 1, n−

i±ŷ + 1|n−
i , n

−
i±ŷ

)
= n−

i D ∀ŷ ̸= x̂ (D.5)

Ai → Ai±x̂ W
(
n+
i − 1, n+

i±x̂ + 1|n+
i , n

+
i±x̂

)
= n+

i D(1 ± ϵ) (D.6)

Bi → Bi±x̂ W
(
n−
i − 1, n−

i±x̂ + 1|n−
i , n

−
i±x̂

)
= n−

i D(1 ∓ ϵ) (D.7)

The contribution of these processes to the master equation can be split as

Lhop = LD + Lϵ , (D.8)
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where LD is obtained by setting ϵ = 0 and therefore gives rise to simple, unbiased,
diffusion, while Lϵ is instead the contribution arising from active self-propulsion and
will vanish if ϵ does. Hence, LD and Lϵ always take the form

LD[P ] = D
∑
i

∑
j:|i−j|=h

(n+
i + 1)P (n+ + 1i − 1j ,n−; t) − n+

i P (n+,n−; t)+

+(n−
i + 1)P (n+,n− + 1i − 1j ; t) − n−

i P (n+,n−; t)
(D.9)

Lϵ[P ] = ϵD
∑
i

(n+
i + 1)P (n+ + 1i − 1i+hx̂,n−; t) − (n+

i + 1)P (n+ + 1i − 1i−hx̂,n−; t)−

−(n−
i + 1)P (n+,n− + 1i − 1i+hx̂; t) + (n−

i + 1)P (n+,n− + 1i − 1i−hx̂; t)
(D.10)

Here I used a compact notation, denoting by n± the vector collecting the number of
± particles on all sites i of the lattice

{
n±
i

}
, representing the state of the system.

The vector 1i has the same dimension as n±, and contains a 1 in the entry i while
all the other entries are 0. In this way, adding 1i to n+ corresponds to the addition
of one + particle to the i site.

D.1.2 Spin-flipping

AIM0 rates

In the AIM0, the spin-flipping process occurs on each site with the rates of a
fully-connected Ising model, namely

Ai −→ Bi rate: γ exp
(

−β mi

ρi

)
= γ exp

(
β
n−
i − n+

i

n+
i + n−

i

)
(D.11)

Bi −→ Ai rate: γ exp
(
β
mi

ρi

)
= γ exp

(
β
n+
i − n−

i

n+
i + n−

i

)
(D.12)

The global rates associated to this process are

Ai → Bi W
(
n+
i − 1, n−

i + 1|n+
i , n

−
i

)
= γ n+

i exp
(
β
n−
i − n+

i

n+
i + n−

i

)
(D.13)

Bi → Ai W
(
n+
i + 1, n−

i − 1|n+
i , n

−
i

)
= γ n−

i exp
(
β
n+
i − n−

i

n+
i + n−

i

)
(D.14)

which contribute to the Master Equation as

Lflip[P ] = γ
∑
i

(n+
i + 1) exp

(
β
n−
i − n+

i − 2
n+
i + n−

i

)
P (n+ + 1i ,n− − 1i ; t)−

−n+
i exp

(
β
n−
i − n+

i

n+
i + n−

i

)
P (n+,n−; t)+

+(n−
i + 1) exp

(
β
n+
i − n−

i − 2
n+
i + n−

i

)
P (n+ − 1i ,n− + 1i ; t)−

−n−
i exp

(
β
n+
i − n−

i

n+
i + n−

i

)
P (n+,n−; t)

(D.15)



D.1 Master Equation 240

AIM1 rates

In the AIM1, the spin-flipping process occurs with rates which are reminiscent of
some Ising-like behaviour, namely given by

Ai −→ Bi rate: γ exp (−β mi) = γ exp
[
β
(
n−
i − n+

i

)]
(D.16)

Bi −→ Ai rate: γ exp (β mi) = γ exp
[
β
(
n+
i − n−

i

)]
(D.17)

The global rates associated to this process are

Ai → Bi W
(
n+
i − 1, n−

i + 1|n+
i , n

−
i

)
= γ n+

i exp
(
β (n−

i − n+
i )
)

(D.18)

Bi → Ai W
(
n+
i + 1, n−

i − 1|n+
i , n

−
i

)
= γ n−

i exp
(
β (n+

i − n−
i )
)

(D.19)

which contribute to the Master Equation as

Lflip[P ] = γ
∑
i

(n+
i + 1) exp

[
β
(
n−
i − n+

i − 2
)]
P (n+ + 1i ,n− − 1i ; t)−

−n+
i exp

[
β
(
n−
i − n+

i

)]
P (n+,n−; t)+

+(n−
i + 1) exp

[
β
(
n+
i − n−

i − 2
)]
P (n+ − 1i ,n− + 1i ; t)−

−n−
i exp

[
β
(
n+
i − n−

i

)]
P (n+,n−; t)

(D.20)

AIM2

In the case of the AIM2, particles undergo multiple-particle collisions. Here, I
consider one-, two- and three-particle collision processes, with rates denoted γ, λ
and τ respectively. These three processes are what I call in the main text AIM2.1,
AIM2.2 and AIM2.3. In this case, the contribution Lflip can be further written as

Lflip = Lγ + Lλ + Lτ (D.21)

AIM2.1: one-particle collision
The one-particle collision (random) spin-flipping process is defined by the reactions

Ai −→ Bi rate: γ Bi −→ Ai rate: γ (D.22)

The rates for a random spin flipping, expressed in terms of the number of Ai and
Bi particles, n+

i and n−
i respectively, take the following form

Ai −→ Bi W (n+
i − 1, n−

i + 1|n+
i , n

−
i ) = γ n+

I (D.23)
Bi −→ Ai W (n+

i + 1, n−
i − 1|n+

i , n
−
i ) = γ n−

i (D.24)

From these rates, I can write down the contribution Lγ [P ] of the random spin-flipping
to the Master Equation, as

Lγ [P ] = γ
∑
i

(n+
i + 1)P (n+ + 1i ,n− − 1i ; t) − n+

i P (n+,n−; t)+

+(n−
i + 1)P (n+ − 1i ,n− + 1i ; t) − n−

i P (n+,n−; t)
(D.25)
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AIM2.2: two-particle collision
In terms of reactions, the two-particle collision process can be expressed as

Ai +Bi −→ 2Bi rate: λ Ai +Bi −→ 2Ai rate: λ (D.26)

Note that the two rates must be equal if one wants to preserve the symmetry by
spin inversion, which is a symmetry under exchange of A and B particles. The rates
associated to this process are

Ai −→ Bi W (n+
i − 1, n−

i + 1|n+
i , n

−
i ) = λn+

i n
−
i (D.27)

Bi −→ Ai W (n+
i + 1, n−

i − 1|n+
i , n

−
i ) = λn+

i n
−
i (D.28)

which contribute to the Master Equation as

Lλ[P ] = λ
∑
i

(n+
i + 1)(n−

i − 1)P (n+ + 1i ,n− − 1i ; t) − n+
i n

−
i P (n+,n−; t)+

+(n−
i + 1)(n+

i − 1)P (n+ − 1i ,n− + 1i ; t) − n+
i n

−
i P (n+,n−; t)

(D.29)

AIM2.2: two-particle collision
In terms of reactions, the three-particle collision process can be expressed as

2Ai +Bi −→ 3Ai rate: τ Ai + 2Bi −→ 3Bi rate: τ (D.30)

Again, if one wants the system to obey a symmetry under the exchange of A and
B species, which is a symmetry under global spin flipping, the rates with which
the two reactions take place must be the same. The global rates associated to this
process are

Ai −→ Bi W (n+
i − 1, n−

i + 1|n+
i , n

−
i ) = τ

2 n
+
i n

−
i

(
n−
i − 1

)
(D.31)

Bi −→ Ai W (n+
i + 1, n−

i − 1|n+
i , n

−
i ) = τ

2 n
+
i

(
n+
i − 1

)
n−
i (D.32)

which contributes to the Master Equation as

Lτ [P ] = τ

2
∑
i

(n+
i + 1)n+

i (n−
i − 1)P (n+ + 1i ,n− − 1i ; t) − n+

i (n+
i − 1)n−

i P (n+,n−; t)+

+(n−
i + 1)n−

i (n+
i − 1)P (n+ − 1i ,n− + 1i ; t) − n+

i n
−
i (n−

i − 1)P (n+,n−; t)
(D.33)

D.2 Doi-Peliti Action
The action of the Doi-Peliti field theory of an AIM will have a form similar to that
presented in Sec. 12.2.1. Since two particle species are present in an AIM, namely
A and B particles with +1 and −1 spin respectively, I will need to take this into
account by introducing two sets of creation and annihilation fields. The action
therefore reads

S =
∑
i

∫
dt ϕ∗

i (t)∂tϕi(t) + ψ∗
i (t)∂tψi(t) +

∫
dt ⟨ϕ∗(t),ψ∗(t)|Ĥ|ϕ(t),ψ(t)⟩

⟨ϕ∗(t),ψ∗(t)|ϕ(t),ψ(t)⟩ (D.34)
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Where Ĥ is derived from L through the procedure described in Sec. 12.2.1. Since
L = LD + Lϵ + Lflip, therefore also

Ĥ = ĤD + Ĥϵ + Ĥflip (D.35)

and in turn the action can be written as S = ∑
i

∫
dtA where

A = ϕ∗
i (t)∂tϕi(t) + ψ∗

i (t)∂tψi(t) + AD + Aϵ + Aflip (D.36)

D.2.1 Hopping

As done for the Master Equation in Appendix D.1, I split in two the contribution of
hopping also in the field-theoretical action.

Passive diffusion

Starting from the diffusive contribution to the Master Equation LD, one can derive
the second-quantised evolution operator associated with it, given by

ĤD = −D
∑
i

∑
j:|i−j|=h

a†
jai − a†

iai + b†
jbi − b†

ibi =

= D
∑
i

∑
j:|i−j|=h

(
a†
i − a†

j

)
ai +

(
b†
i − b†

j

)
bi =

= D

2
∑
i

∑
j:|i−j|=h

(
a†
i − a†

j

)
(ai − aj) +

(
b†
i − b†

j

)
(bi − bj) ,

(D.37)

Since ĤD is already normal-ordered, the contribution AD to the Doi-Peliti action
density is straightforward to compute and takes the form

AD = D

2
∑

j:|i−j|=h

[(
ϕ∗
i (t) − ϕ∗

j(t)
)

(ϕi(t) − ϕj(t)) +
(
ψ∗
i (t) − ψ∗

j (t)
)

(ψi(t) − ψj(t))
]

(D.38)
The final contribution to the total action is obtained by summing over sites i and
integrating over time.

Active self-propulsion

Starting from the active self-propulsion contribution to the Master Equation Lϵ, one
can derive the second-quantised evolution operator associated to it, given by

Ĥϵ = −ϵD
∑
i

a†
i+hx̂ ai − a†

i−hx̂ ai − b†
i+hx̂ bi + b†

i−hx̂ bi =

= −ϵD
∑
i

(
a†
i+hx̂ − a†

i−hx̂

)
ai −

(
b†
i+hx̂ − b†

i−hx̂

)
bi =

= −ϵD
∑
i

(
a†
i+hx̂ − a†

i−hx̂

)
ai −

(
b†
i+hx̂ − b†

i−hx̂

)
bi

(D.39)

Since Ĥϵ is already normal-ordered, the contribution Aϵ to the Doi-Peliti action
density is straightforward to compute, and takes the form

Aϵ = −ϵD
[(
ϕ∗
i+hx̂(t) − ϕ∗

i−hx̂(t)
)
ϕi(t) −

(
ψ∗
i+hx̂(t) − ψ∗

i−hx̂(t)
)
ψi(t)

]
(D.40)
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D.2.2 Spin-flipping

AIM0 action

For the AIM0, one can derive the second-quantised evolution operator associated to
Lflip, which is given by

Ĥflip = γ
∑
i

(
a†
i − b†

i

) [
ai exp

(
β
b†
ibi − a†

iai

a†
iai + b†

ibi

)
− bi exp

(
β
a†
iai − b†

ibi

a†
iai + b†

ibi

)]
(D.41)

In terms of Ĥ(γ) the contribution to the action will be given by

Sγ =
∑
i

∫
dt Sγ(ϕ∗

i (t), ψ∗
i (t), ϕi(t), ψi(t)) (D.42)

The main issue with this form of Ĥflip is that it is not normal-ordered. To write down
an explicit action for the field theory, normal ordering Ĥflip is a crucial step. However,
this task seems very hard, due to the presence of operators at the denominator in the
exponential. However, it is still possible to find a formal expression for the action
density Aflip.

In terms of Ĥflip, the contribution to the action density will be given by

Aflip = ⟨ϕ∗, ψ∗|Ĥflip|ϕ, ψ⟩
⟨ϕ∗, ψ∗|ϕ, ψ⟩

(D.43)

Here I dropped the subscript i to make the reading easier, as the process involves
particles on the same site. The coherent states on a single site are given by

|ϕ, ψ⟩ = eϕa
†+ψb† |0⟩ =

∑
l1,l2

ϕl1ψl2

l1!l2! (a†)l1(b†)l2 |0⟩ =
∑
l1,l2

ϕl1ψl2

l1!l2! |l1, l2⟩ (D.44)

⟨ϕ∗, ψ∗| = ⟨0|eϕ∗a+ψ∗b = ⟨0|
∑

m1,m2

(ϕ∗)m1(ψ∗)m2

m1!m2! am1bm2 =
∑

m1,m2

⟨m1,m2|(ϕ∗)m1(ψ∗)m2

(D.45)

The summation here runs from 0 to ∞, while the states |l1, l2⟩ and ⟨m1,m2| are
defined as

|l1, l2⟩ = (a†)l1(b†)l2 |0⟩ ⟨m1,m2| = ⟨0|a
m1bm2

m1!m2! . (D.46)

The slightly different definition is chosen to ensure the correct normalisation

⟨m1,m2|l1, l2⟩ = δm1,l1δm2,l2 . (D.47)
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Thus, the action density Aflip reads

Aflip =γ e−ϕ∗ϕ−ψ∗ψ
∑

l1,l2,m1,m2

[
⟨m1,m2|

(
a† − b†

)
a exp

(
β
b†b− a†a

a†a+ b†b

)
|l1, l2⟩ −

− ⟨m1,m2|
(
a† − b†

)
b exp

(
β
a†a− b†b

a†a+ b†b

)
|l1, l2⟩

]
(ϕ∗)m1(ψ∗)m2ϕl1ψl2

l1! l2! =

=γ e−ϕ∗ϕ−ψ∗ψ
∑

l1,l2,m1,m2

[
exp

(
β
l2 − l1
l1 + l2

)
⟨m1,m2|

(
a†a− b†a

)
|l1, l2⟩ −

− exp
(
β
l1 − l2
l1 + l2

)
⟨m1,m2|

(
a†b− b†b

)
|l1, l2⟩

] (ϕ∗)m1(ψ∗)m2ϕl1ψl2

l1! l2! =

=γ e−ϕ∗ϕ−ψ∗ψ
∑

l1,l2,m1,m2

[
l1 exp

(
β
l2 − l1
l1 + l2

)
(⟨m1,m2|l1, l2⟩ − ⟨m1,m2|l1 − 1, l2 + 1⟩) −

− l2 exp
(
β
l1 − l2
l1 + l2

)
(⟨m1,m2|l1 + 1, l2 − 1⟩ − ⟨m1,m2|l1, l2⟩)

] (ϕ∗)m1(ψ∗)m2ϕl1ψl2

l1! l2!
(D.48)

Hence, by reminding that ⟨m1,m2|l1, l2⟩ = δm1,l1δm2,l2 , I can write the action as:

Aflip = γ e−ϕ∗ϕ−ψ∗ψ
∑
l1,l2

ϕl1ψl2

[
l1

(ϕ∗)l1(ψ∗)l2 − (ϕ∗)l1−1(ψ∗)l2+1

l1! l2! exp
(
β
l2 − l1
l1 + l2

)
+

+ l2
(ϕ∗)l1(ψ∗)l2 − (ϕ∗)l1+1(ψ∗)l2−1

l1! l2! exp
(
β
l1 − l2
l1 + l2

)]
(D.49)

By shifting the start of the sum

Aflip = γ e−ϕ∗ϕ−ψ∗ψ
∞∑
l1=0

∞∑
l2=0

(ϕ∗ϕ)l1(ψ∗ψ)l2
l1! l2! (ϕ∗ − ψ∗)

[
ϕ exp

(
β
l2 − l1 − 1
l1 + l2 + 1

)
− ψ exp

(
β
l1 − l2 − 1
l1 + l2 + 1

)]
(D.50)

This is, of course, only a formal expression. I was not able to compute the result of
this series explicitly, and thus the problem of what the Doi-Peliti field theoretical
action for the AIM0 is remains an open question. I must, however, notice that
both series in l1 and l2 are expected to be absolute convergent since the two factors
exp

(
β l2−l1−1
l1+l2+1

)
and exp

(
β l1−l2−1
l1+l2+1

)
remain bounded for any l1 and l2 and the presence

of l1! l2! in the denominator guarantees convergence. This allows me to rewrite the
sum over l1 and l2 as follows

∑
l1,l2

f(l1, l2) =
+∞∑
k=0

k∑
l=0

f(k − l, l) (D.51)

Using this new form, I can perform the sum over l, which leads to the form of the
action density provided in the main text.
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AIM1 action

For the AIM1, one can derive the contribution to the action of spin-flipping starting
from Lflip. The second-quantised evolution operator associated with this process is
given by

Ĥflip = γ
∑
i

(
a†
i − b†

i

){
ai exp

[
β
(
b†
ibi − a†

iai
)]

− bi exp
[
β
(
a†
iai − b†

ibi
)]}

(D.52)

From Ĥflip, it is possible to derive the contribution Aflip to the Doi-Peliti action
density by averaging over coherent states, as done for the AIM0. The derivation is
quite similar to the AIM0, with the difference that the summation can be performed
exactly, and the action density takes the form

Aflip = γ (ϕ∗
i − ψ∗

i )e−β−ψ∗
i ψi−ϕ∗

i ϕi

(
ϕi e

eβψ∗
i ψi+e−βϕ∗

i ϕi − ψi e
e−βψ∗

i ψi+eβϕ∗
i ϕi

)
(D.53)

AIM2 action

In the case of the AIM2, the action Aflip can be written as
Aflip = Aγ + Aλ + Aτ (D.54)

I derive in what follows each contribution.
AIM2.1: one-particle collision

Starting from Lγ , one can derive the associated second-quantised evolution operator

Ĥγ = γ
∑
i

(
a†
i − b†

i

)
(ai − bi) (D.55)

which is already normal-ordered. Hence the contribution Sγ to the Doi-Peliti action
density is straightforward to compute and takes the form provided in the main text
in Eq. (12.37), namely

Aγ = γ (ϕ∗ − ψ∗) (ϕ− ψ) (D.56)
AIM2.2: two-particle collision

Starting from Lλ, one can derive the associated second-quantised evolution operator

Ĥλ = −λ
∑
i

(
a†
i − b†

i

)2
ai bi (D.57)

Since Ĥλ is already normal-ordered, the contribution Aλ to the Doi-Peliti action
density is straightforward to compute and takes the form provided in the main text
in Eq. (12.38), namely

Aλ = −λ (ϕ∗ − ψ∗)2 ϕψ (D.58)
AIM2.3: three-particle collision

Starting from Lτ , one can derive the associated second-quantised evolution operator

Ĥτ = −τ

2
∑
i

(
a†
i − b†

i

) [(
a†
i

)2
ai −

(
b†
i

)2
bi

]
ai bi (D.59)

Since Ĥτ is already normal-ordered, the contribution Aτ to the Doi-Peliti action
is straightforward to compute and takes the form provided in the main text in Eq.
(12.39), namely

Aτ = −τ

2 (ϕ∗ − ψ∗)
[
(ϕ∗)2 ϕ− (ψ∗)2 ψ

]
ϕψ (D.60)
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