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Abstract 

The paper investigates the capability of modeling the car following behavior by training shallow and deep recurrent neural networks 
to reproduce observed driving profiles, collected in several experiments with pairs of GPS-equipped vehicles running in typical 
urban traffic conditions. The input variables are relative speed, spacing, and vehicle speed. In the model, we assume that the reaction 
is not instantaneous. However, it may occur during a time interval of the order of a few tenth of seconds because of both the 
psychophysical driver’s reaction process and the mechanical activation of braking or dispensing the traction power to the wheels. 
Experimental results confirm the reliability of this assumption and highlight that the deep recurrent neural network outperforms 
the simpler feed-forward neural network. 
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1. Introduction  

Studies on car-following models started more than 60 years ago, with the first experiments conducted almost 
simultaneously in the late 50s at General Motors in the USA (Chandler et al., 1958) and Japan (Kometani and Sasaki, 
1961). Twenty years later and more, the use in simulation software stimulated the introduction of complex models 
that are harder to study theoretically but are effective in a simulation framework (Gipps, 1981; Wiedemann, 1975). 
More recently, artificial intelligence was recognized as an effective paradigm to reproduce complex driver behavior. 
A recent systematic literature review on the different applications of modeling driver-vehicle-environment systems 
has proved the capability of machine learning methods to accurately reproduce the driving behavior (Elamrani Abou 
Elassad et al., 2020). 

In an earlier paper (Colombaroni and Fusco, 2014), the authors developed a car-following model based on a 
traditional feed-forward Neural Network trained by a swarm algorithm over a set of driving data collected during a 
specifically settled experiment. That model introduced a static relationship between the acceleration of the follower 
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and the relative speed and spacing from the leader, after a time lag. Big computational advances and new technologies 
made it possible to collect big amounts of traffic data useful for purposes of traffic state monitoring and modeling 
(Felice et al., 2014; Isaenko et al., 2017). After the earliest applications of simple neural networks for modeling car-
following behavior (Fusco and Gori, 1995), deep neural networks are becoming popular to relate variables of a highly 
non-linear nature. Transferring information by multiple layers enables modeling of complex data relations and 
capturing different patterns. Several deep learning models have been introduced in the literature to derive the car-
following mechanism. In particular, NGSIM data were used to model speed profile of the following vehicle by a 
recurrent neural network (Wang et al., 2018); a long-short term memory network (Huang et al., 2018), and a 
combination of autoencoder and long-short term memory networks (Fan et al., 2019). 

In this paper, we introduce several conceptual enhancements concerning the static model. We assume that the 
driver’s perception is a continuous process that undergoes the speed variation of the leading vehicle. So, the driver’s 
reaction starts after a reaction time and, after that, develops depending on the stimuli perceived during a time interval 
of the order of a few tenth of seconds. In addition to the psychophysical driver’s reaction process, the duration of the 
stimulus-reaction process is due to the mechanical activation of braking or dispensing the traction power to the wheels. 

In addition to the typical car-following model, formulated in terms of the follower’s acceleration, we investigate 
the features of an alternative modeling formulation based on the follower’s speed, which is frequently used in machine-
learning models. Unlike other studies in literature, we perform a comparison of different models formulated in terms 
of speed or acceleration on the same dataset.  

Finally, we perform an analysis of different deep learning structures to compare performance for car-following 
modeling. The main goal is to assess the capability of deep learning models to generalize different behavioral patterns 
to analyze the impact of the input variables on the model performance. 

2. Model Formulation 

Car-following behavior is formalized as a data-driven model considering different kinematic features of the couple 
of vehicles, the leader vehicle n, and the follower vehicle n+1, to describe the response of the follower. 

The reaction of the following vehicle occurs after a certain number of reaction lags from the perceived stimulus. 
Traditionally, the explanatory variables used in the data-driven car following models include spacing and relative 
speed. In this study, also the speed of the following vehicle is included in the model, according to the most general 
form of the GHR model (Gazis et al., 1961). Also, instead of considering only one constant lag between a reaction 
and a stimulus, as in most papers in literature, we assume that the follower’s reaction starts after a lag , and develops 
during a time interval . 

Two alternative formulations are introduced for the car-following model. 
 1( ) ( ), ( 1), , ( )na t f t t t           u u u  (1) 

 1( ) ( ), ( 1), , ( )nv t f t t t           u u u  (2) 

where:  1 , 1 , 1( ) ( ), ( ), ( )n n n n nt v t v t x t    u  

1( )nv t : Speed of the follower at time interval t; 

1( )na t : Acceleration of the follower at time interval t; 

, 1( )n nv t : Relative speed between the leader and the follower at time interval t; 

, 1( )n nx t : speed between the leader and the follower at time interval t. 
: Reaction lag, i.e., the time interval during which the stimulus is not yet perceived; 
: Reaction duration; i.e., the time interval during which the stimulus is perceived. 
Model (1) corresponds to a behavioral representation of stimulus-response mechanism and models the possible 

actions the driver can do: acting either on the accelerator of the brake pedal depending on its own speed and the 
relative speed and the spacing from the leading vehicle.  

Model (2) corresponds to a phenomenological representation of the vehicle speed variation process depending on 
the kinematic variables of the leader and the follower vehicles, expressed as in Model (1). In this case, the car-
following problem can be seen as a time series modeling, since the speed itself is an input element of the model, with 
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exogenous variables defined by the relative speed and the relative spacing. This model specification corresponds to 
the concept that the vehicle speed is the realization of a stochastic process affected by external variables that represent 
the way the driver interacts with the external environment. 

The time diagram structure for the data of the proposed models is illustrated in Fig. 1. Instead of considering only 
one lagged value for the stimulus perceived, a time sequence is introduced for the three input variables vn+1, x n,n+1, 
vn,n+1   during an interval . Coherently to the driving behavior, the response at the beginning of the stimulus occurs 
after a time interval , depending on the driver’s reaction time, during which no stimulus is perceived.  

 

Fig. 1. Structure of input data for the proposed models 
 

3. Model specification 

Feed-Forward Neural Network (FF) 
Feed-Forward Neural Network (FF) is a static non-linear vector multivariate function that derives the value of the 

forecasted variable as a complex non-linear combination of independent input variables. The feed-forward structure 
implies that the inputs of each neuron propagate in one direction, are taken from a previous layer, and do not depend 
on the internal state of the neuron. The structure of the FF model applied for the car following is reported in Fig. 2. 
Each of the components of the vector u is modeled as an independent input of the model. Thus, the total number of 
input neurons is 3×number of the time intervals used for the stimulus perception. 

The complexity of the non-linear relationship is typically ensured by the number of hidden units and the hidden 
layers, which change accordingly with the number of independent variables. In this study, one hidden layer was 
adopted; the number of hidden units was taken as twice the number of input variables.  

Long Short Term Memory Network (LSTM) 
Long Short Term Memory Network (LSTM) is a particular kind of recurrent neural network, especially suitable for 
working with sequences of data. Thanks to a particular memory mechanism, LSTM works as a feedback network. The 
output of the model depends not only on the inputs in each time interval but as well on the induced internal state of 
the network, represented by a memory cell. The structure of the LSTM model used for the car-following is reported 
in Fig. 3, where solid lines indicate interactions with the current state of the gates while dashed lines are used in case 
the state from the previous time interval is used.  

The model includes four elements: an input gate, a recurrent connection, actuated by the memory cell, a forget gate, 
and an output gate. The gates regulate interactions between the input and the final output. Firstly, the model takes into 
account both the input of the current time step and the output of the model from the previous time step. Based on these 

Stimulus perceived Stimulus not yet perceived Reaction 
Input Reaction lag Output 

xn,n+1(t –  – )  xn,n+1(t – )          
vn,n+1( t –  – )  vn,n+1(t – )        vn+1(t) or an+1(t) 

v n( t –  – ) … vn (t – )         
 

   t 

Fig. 2. Feed-Forward neural Network (FF) structure 

Inputs:
u(t   )
u(t   1 )
…
u(t  )

Output:
an+1(t) or vn+1(t)

…
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data, the input gate, the forget gate, performs some transformations of the data and compute values of the relative 
functions. Based on these values, the new state of the cell is computed: it can either stay unchanged with respect to 
the previous time interval or assume a new value computed based on the input gate value. Once the new state of the 
memory cell has been computed, the new value of the output gate and the output itself can be obtained. Thus, while 
FF is a memoryless system, whose current output does not depend on the output in the previous time interval, LSTM 
model propagates the state of the system and the output values obtained in the previous time intervals over time.   

In this study, after a preliminary analysis of model performance, the structure including two sequential LSTM, with 
16 hidden neurons each, was adopted. 

4. Experiments 

4.1. Dataset 

The dataset is composed of measures of car positions collected by high precision GPS devices mounted on different 
cars running in usual traffic conditions on different urban roads in the town of Rome. Position data were collected at 
10 Hz frequency and were post-processed to eliminate systematic errors by using the GPS reference station at Sapienza 
University of Rome. After this process, the average errors resulted in 2 mm in stillness and ranged from 0.2 to 17 cm 
in motion. Speed and accelerations were computed through numerical derivation. Several experiments were conducted 
under typical traffic conditions, including stopping and starting at signals, as well as approaching and moving on 
roundabouts. As a whole, the experiments covered about 8 km and lasted 16 minutes.  
It is worth mentioning that the only directly measured variable is the position of the vehicles. Thus, both the speed 
and the acceleration of the vehicles are obtained by numeric derivation of the trajectories. Model (2) directly considers 
the speed of the vehicle, computed as the first derivative of the measured trajectory. Speed values were directly used 
in the model without applying any filter; acceleration data were processed by a median filter with 21 windows size, 
meaning that each value is substituted with a median of 21 neighboring values. After that, the first 60% of the data 
collected is used in the training phase; the remaining 40% of the data is used for validation. 

4.2. Performance analysis 

In order to identify the most suitable structure of the model inputs, a test for evaluating the model performances 
was carried out.  

Specifically, the reaction duration  was changed along with the reaction lag , which represents a shift window 
for the input data. The results of the test for the speed model are reported in Fig. 4. The performances of the models 
are compared in terms of root mean square error (RMSE). The graphs referring to the acceleration model were very 
similar and are not reported here for the limited space of the paper.  Three different values for are tested: 0.1 s, 0.4 s, 
0.8 s. By assuming a discrete formulation of the model with a time step of 0.1 s, the extension of the perceived stimulus 
from 0.4 s to 0.8 s implies an increase of the input size from a 4×3 to an 8×3 vector. The reaction lag , during which 
the stimulus is not yet perceived, is varied from 0.6 s to 1 s, coherently with other studies on the car following behavior. 

Fig. 3. Long  Short Term Memory Network (LSTM) structure 

Inputs:
u(t   )
u(t   1 )
…
u(t  )

Cell

Forget gate

Input gate

Output gate

Output:
an+1(t) or vn+1(t)



	 Chiara Colombaroni  et al. / Transportation Research Procedia 52 (2021) 195–202� 199
 Chiara Colombaroni, Gaetano Fusco, Natalia Isaenko / EWGT 2020 5 

In the literature, indeed, even values slightly longer than 1 s are considered; these values are not in contrast with our 
model that assumes the reaction starts after a reaction lag varying from a minimum of 0.6 s to a maximum of 
1.0 s and ends after a time interval varying from a minimum of 0.7 s (0.6 s;  0.1 s) and a maximum of 1.8 s 
(1.0 s;  0.8 s). The case  0.1 s corresponds to the usual car-following model with a lagged and instantaneous 
reaction. 

The results obtained for the FF and the LSTM models are represented in Fig. 4-a and Fig. 4-b, respectively. For 
the FF model, a gain in accuracy by using more than one time lag as input is achieved for all the values of the reaction 
lags, except for  = 0.9 s, more frequently for = 0.4 s. For the LSTM model, the relative gain is lower. For what 
concerns the selection between the other two structures, both models provide the best performances for a reaction 
duration of 0.4 s; that is, a four-interval structure, although the gain is more evident for the LSTM model.  

Fig. 5 reports a scatterplot of the results obtained for the NN and LSTM acceleration models with a reaction lag of 
0.6 s and different values of reaction duration. Fig. 5–a relates to the simplest case of the model, with a stimulus 
duration  0.1 s. The FF model generally underestimates the values of acceleration while the LSTM model provides 
a better fit to the data but underestimates the highest values of both acceleration and deceleration. The introduction of 
an extended duration of the stimulus (Fig. 5-b and Fig. 5-c) increases the accuracy of the model, reduces the general 
underestimation of the acceleration values, and fits the estimated values closer to the bisector line of the plot in the 
whole interval of the observed acceleration. Both models report an unavoidable dispersion of the results, almost 
uniform around the bisect line, with a limited systematic underestimation of deceleration values lower than –1 ms–2. 
This result can likely be attributed to an abrupter process than the regular deceleration corresponding to the car-
following model.  

 

Fig. 4. Analysis of model performances based on the duration of reaction lag () and stimulus duration (): a) FF model, b) LSTM model.   

   

Fig. 5. Examples of observed acceleration values and simulated acceleration values provided by FF model (blue) and LSTM model (orange) with 
reaction lag  0.6 s and different values of stimulus duration : a)  0.1 s; b)  0.4 s; c)   0.8 s.  
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4.3. Validation  

In the validation phase, the models are applied to a set of data that were not used during the calibration phase. The 
performance analysis has permitted to individuate the most suitable structure for both models, corresponding to a 
structure based on the stimulus perceived during a time interval of 0.4 s. While this number is maintained constant, a 
further test was made on the reaction lags, which was varied from 0.6 s to 1 s with a step of 0.1 s. The determined 
structures were then tested in both speed and acceleration car-following models. The corresponding results are 
summarized by the main error indicators: Mean Absolute Error (MAE), Mean Absolute Relative Error (MARE), Root 
Mean Square Error (RMSE), Root Mean Square Error Relative (RMSER).  

Table 1 and Table 2 report the results obtained by the application of FF and LSTM for the car-following model 
based on speed and acceleration, respectively. In both forms, LSTM model outperformed FF model for all the values 
of reaction lags. For the speed model, the gain of the accuracy of LSTM compared to FF, computed for different 
values of the reaction lags, is, on average, around 20% in terms of MAE and around 40% in terms of RMSE. For the 
acceleration model, the accuracy gain is around 24% in terms of MAE and around 40% in terms of RMSE.  

In Fig. 6, the speed profiles provided by the LSTM and FF speed car-following models. Both models show a good 
approximation of the observed speed values. However, the LSTM model exhibits a better capability to capture the 
peaks of the data. The simulated acceleration profiles are reported in Fig. 7. The obtained curves do not fit the data as 
precisely as the profiles obtained by the application of the models on the speed data.   

For both models, the accuracy generally decreases as the reaction lag increases. This trend is more evident for the 
speed model, and this result can likely be attributed to the autoregressive feature of this model, where traditionally, 
the prediction for longer horizons becomes a more challenging task. The speed-based LSTM model with  = 0.6 s and 
 = 0.4s provides the best accuracy (MARE = 0.05 and RMSER = 0.01). 

In the case of the acceleration model, unlike the speed-based model, the dependent variable is formulated as a 
function of its primitive instead of its previous values. Thus, the acceleration-based LSTM model does not exploit the 
simulated variable as an input variable, and the simulation is not corrected every time based on the most recent data. 
However, also in this application, the LSTM model approximates data peaks better than FF for both acceleration and 
deceleration phases. Higher errors are experienced in this case (MARE = 0.39 and RMSER = 0.23). 

It is worth noting that by applying a numerical derivation of the speed profile to estimate the acceleration, we obtain 
a noisier profile than that of the acceleration-based LSTM and FF models with higher error indicators.  

Table 1. Error indicators (Mean Absolute Error, Mean Absolute Percentage Error, Root Mean Square Error, Root Mean Square 
Error Percentage) for the feed-forward neural network (FF) and the long short-term memory (LSTM) neural network, and 
different values of the initial instant of reaction () and the duration of the stimulus-reaction () of the speed car-following model. 

Reaction Lag () Stimulus-Reaction 
duration ( = 4) LSTM FF 

  MAE MARE RMSE RMSER MAE MARE RMSE RMSER 
  (m/s) adim. (m/s) adim. (m/s) adim. (m/s) adim. 

 (0.0s  0.6s) (0.7s  1.1s) 0.37 0.05 0.22 0.01 0.53 0.07 0.46 0.02 
 (0.0s  0.7s) (0.8s  1.2s) 0.42 0.06 0.27 0.01 0.52 0.07 0.43 0.02 
(0.0s  0.8s) (0.9s  1.3s) 0.48 0.07 0.35 0.02 0.61 0.08 0.59 0.03 
 (0.0s  0.9s) (1s  1.4s) 0.48 0.06 0.35 0.01 0.58 0.08 0.51 0.02 
 (0.0s  1.0s) (1.1s  1.5s) 0.50 0.07 0.38 0.02 0.62 0.08 0.62 0.02 
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Table 2. Error  indicators (Mean Absolute Error, Mean Absolute Percentage Error, Root Mean Square Error, Root Mean Square Error 
Percentage) for the feedforward neural network (FF) and the long short-term memory (LSTM) neural network, and for different values 
of the initial instant of reaction () and the duration of the stimulus-reaction () of the acceleration car-following model. 

Reaction Lags () Stimulus-Reaction 
duration ( = 4) LSTM FF 

  MAE MARE RMSE RMSER MAE MARE RMSE RMSER 
  (m/s2) adim. (m/s2) adim. (m/s2) adim. (m/s2) adim. 

(0.0s  0.6s) (0.7s  1.1s) 0.36 0.39 0.18 0.23 0.49 0.53 0.32 0.37 
(0.0s  0.7s) (0.8s  1.2s) 0.37 0.41 0.20 0.25 0.54 0.59 0.36 0.43 
(0.0s  0.8s) (0.9s  1.3s) 0.37 0.41 0.20 0.25 0.45 0.50 0.28 0.34 
(0.0s  0.9s) (1.0s  1.4s) 0.36 0.40 0.19 0.25 0.51 0.56 0.34 0.41 
 (0.0s  1.0s) (1.1s  1.5s) 0.40 0.43 0.22 0.27 0.48 0.52 0.31 0.37 

 

 

Fig. 6. Car-following models performances obtained by the application of FF and LSTM models for speed modeling 

 

Fig. 7. Car-following models performances obtained by the application of FF and LSTM for acceleration models. 
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5. Conclusions 

This study dealt with the modeling of car-following behavior by the application of machine learning methods. Two 
alternative formulations of the car-following model were proposed: the traditional formulation concerning the 
follower’s acceleration and an alternative formulation based directly on the follower’s speed. Two models, namely a 
traditional feed-forward neural network and a more recent long short-term memory neural network, were then applied 
to reproduce the behavior of the following vehicle. Both models were based on kinematic features of the movement 
of two vehicles: that are the speed of the vehicles itself, and the relative speed and the spacing from the leading vehicle. 
Different tests on the performances of the models analyzed different extensions for the stimulus perception and 
different values of reaction time for the driver. 

The models were trained and tested on a real dataset of highly precise GPS data collected with 10 Hz frequency 
during 16 minutes on an 8 km path. 

  The obtained results demonstrated that both models were suitable for car-following modeling. Specific analysis 
of the models’ sensitivity to the number of stimulus intervals included in the model showed that including additional 
intervals significantly improved the predictions, especially for the feed-forward network.  Long short term memory 
model outperformed the traditional feed-forward network for both formulations: the accuracy increased by 20% and 
by 24% in terms of mean absolute error, respectively, for the speed and the acceleration model. 

The car following modeling in terms of the speed variable showed, in general, better performance respect to the 
modeling of the acceleration variable. Indeed, in case of the speed model, the simulated variable is formulated as a 
function of its previous values, and can, therefore, be seen as a time series modeling, while in case of the acceleration 
model is formulated as a function of its primitive, a more difficult task for the prediction. Nevertheless, modeling of 
the acceleration of the following vehicle must be seen as an essential task, since it represents the directly executed 
changes of the behavior, made by the driver. A further analysis based on the derivation of the acceleration profile from 
the speed profile suggested a possible improvement of the model by the implementation of data filtering techniques 
in order to smooth the obtained profile. 

The undergoing research is, therefore, concentrated on the analysis of the models applied to multiple couples of 
the vehicles and the derivation of the acceleration profile based on the speed model. 
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