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A B S T R A C T   

The variability in species composition among a set of sampling sites, or beta diversity, is considered a key 
signature of the ecological processes that shape the spatial structure of species assemblages. In this paper, we 
propose to decompose this variability into three additive components: i) the standard similarity in the (relative) 
abundances of species among sites, ii) the degree of functional dissimilarity between individuals of distinct species 
among sites, and iii) the degree of functional similarity between individuals of distinct species among sites, or 
beta redundancy. These three components can be used to portray the functional resemblance among sites on a 
ternary diagram. With the resulting ternary diagram of ‘functional resemblance’ we can relate various aspects of 
taxonomic and functional variability among sites to community assembly processes more completely than just 
looking at individual components. The potential of this method is shown with real data on the functional 
turnover of Alpine species along a primary succession on glacial deposits in northern Italy.   

1. Introduction 

The amount of variation in species composition among sites, or beta 
diversity, is considered a fundamental tool for exploring the ecological 
processes that shape the spatial structure of species assemblages. Since 
the seminal work of Whittaker (1972), many different methods and 
measures have been proposed for summarizing beta diversity (Lande, 
1996; Koleff et al., 2003; Anderson, 2006; Jost, 2007; Tuomisto, 2010a, 
2010b; Anderson et al., 2011; Chao and Chiu, 2016; Legendre and De 
Cáceres, 2013; Ricotta, 2017; Chao and Ricotta, 2019). One of the most 
commonly used consists in computing beta diversity as the mean 
compositional dissimilarity between pairs of sampling units (i.e., rele
vés, quadrats, assemblages, etc. which we will now generally refer to as 
plots). The general idea behind this approach is that for a set of plots, 
compositional heterogeneity or beta diversity increases with increasing 
mean dissimilarity (i.e., dispersion) between plots (Whittaker, 1972; 
Izsak and Price, 2001; Koleff et al., 2003; Chao and Chiu, 2016). 

To compute dissimilarity-based beta diversity, standard measures, 
such as the Jaccard or the Bray-Curtis coefficients (Legendre and Leg
endre, 2012) were originally used. Such measures quantify taxonomic (i. 
e., species) differences between plots based only on species presences 

and absences or on abundance data, thus assuming that all species are 
equally and maximally distinct from each other, while neglecting in
formation on functional differences among species. In the last decades 
however, several ‘functional dissimilarity measures’ have been proposed 
(reviewed in Lengyel and Botta-Dukát, 2023). Such measures take into 
account information on functional differences among species. Therefore, 
they are expected to improve correlation between community data and 
ecosystem functioning, as the species traits directly or indirectly influ
ence these processes (Mouchet et al., 2010; Mason and de Bello, 2013). 

A neglected outcome of the idea that distinct species possess varying 
degrees of functional dissimilarity (discussed by Ricotta et al., 2023 in 
the context of within-site diversity) is that the ecological information 
associated to the functional resemblance structure among plots is much 
richer and complex than that obtained from standard taxonomic 
dissimilarity measures. Note that in this paper, the term resemblance is 
used sensu Orloci (1972) as a generic concept referring to “any type of 
distances, dissimilarities, similarities, correlation, association or prox
imity measures among the study objects” (Podani and Schmera, 2021). 

Assuming that all species are equally and maximally distinct, stan
dard similarity/dissimilarity measures in the range [0,1] are comple
mentary to each other. For example, given two plots h and k with species 

* Corresponding author at: Department of Environmental Biology, University of Rome ‘La Sapienza’, Rome, Italy. 
E-mail address: carlo.ricotta@uniroma1.it (C. Ricotta).   

1 ORCID: https://orcid.org/0000-0003-0818-3959.  
2 ORCID: https://orcid.org/0000-0003-2767-6484. 

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2024.112136 
Received 27 March 2024; Received in revised form 7 May 2024; Accepted 11 May 2024   

mailto:carlo.ricotta@uniroma1.it
https://orcid.org/0000-0003-0818-3959
https://orcid.org/0000-0003-2767-6484
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2024.112136
https://doi.org/10.1016/j.ecolind.2024.112136
https://doi.org/10.1016/j.ecolind.2024.112136
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ecological Indicators 163 (2024) 112136

2

relative abundances pjh and pjk (j = 1,2, ...,N), where N is the number of 
species with non-zero abundance in at least one of the two plots, the 
well-known Bray and Curtis (1957) dissimilarity and similarity co

efficients DBC and SBC can be expressed as DBC =
∑N

j=1

⃒
⃒
⃒pjh − pjk

⃒
⃒
⃒/

∑N
j=1

(
pjh + pjk

)
and SBC = 1 − DBC = 2×

∑N
j=1min

{
pjh, pjk

}
/

∑N
j=1

(
pjh + pjk

)
, respectively, such that SBC + DBC = 1. Hence, looking 

only at one of them is enough to capture the entire information on the 
resemblance structure of both plots (the reason for using relative 
abundances instead of absolute abundances for the calculation of DBC 
and SBC will be clear in the following sections). This is however not the 
case for functional resemblance, where the distinct species contribute to 
varying degrees to the similarity/dissimilarity structure among plots. In 
this latter case, it seems natural to decompose standard (abundance- 
based) taxonomic dissimilarity into two complementary functional 
components: the extent of functional dissimilarity among individuals of 
the species that differ between the two plots, and the extent of functional 
similarity among individuals of the species that differ between the two 
plots. For dissimilarity measures in the range [0,1] these two compo
nents, together with the standard taxonomic similarity between in
dividuals of the same species in both plots, can be used to display the 
functional resemblance structure between plots on a ternary diagram. 

An essential requirement to appropriately decompose functional 
resemblance is that, for a given pair of plots, functional dissimilarity is 
always lower than standard compositional dissimilarity. However, many 
of the existing measures of functional dissimilarity do not fulfill this 
requirement (Ricotta et al., 2020). In this paper, we will first introduce 
the proposed additive decomposition of functional beta diversity, 
together with its basic requirements. Next, the potential of this approach 
for a more comprehensive analysis of the amount of functional variation 
among sites is shown with a worked example on the functional turnover 
of Alpine species along a primary succession in northern Italy. 

2. A step by step introduction to beta diversity decomposition 

Let dij be a measure of functional dissimilarity between species i and j 
(i, j = 1,2, ...,N) in the range [0,1] and sij be the corresponding func
tional similarity sij = 1 − dij. The functional dissimilarities dij summarize 
uni- or multivariate differences in the trait values between species such 
that dij = dji and dii = 0. For two plots h and k, let DF be a measure of 
functional dissimilarity (0⩽DF⩽1) that is computed by taking into ac
count the actual functional differences dij between the species in both 
plots. Examples of such measures can be found e.g., in Rao (1982), Chao 
et al. (2014), Pavoine and Ricotta (2014), Ricotta et al., (2020, Appendix 
S1), Ricotta et al., (2021a) and in the worked example of this paper. 

Further, let DS be a corresponding measure of taxonomic dissimi
larity between h and k (0⩽DS⩽1) that is computed solely from the dif
ferences in species abundances between both plots (i.e. assuming that all 
species are maximally dissimilar from each other, such that dij = 1 for all 
i ∕= j). If DS⩾DF, which is an intuitively reasonable condition given the 
definition of DF and DS, we can decompose the resemblance structure 
between h and k into three additive components that describe distinct 
facets of the taxonomic and functional differences between both plots. 
For instance, the complements of DF and DS: 

SF = 1 − DF (1a)  

and 

SS = 1 − DS (1b)  

summarize the functional similarity SF and the corresponding taxonomic 
(i.e., species) similarity SS (SS⩽SF) between the plots h and k, respec
tively. Like for DF and DS, SF is computed by taking into account the 
actual functional (dis)similarities between the species in both plots, 
whilst SS is computed solely from the differences in species abundances 

between plots assuming that sij = 0 (dij = 1) for all species i ∕= j. 
The third component of the proposed beta diversity decomposition is 

the difference between DS and DF (i.e., the excess of taxonomic dissim
ilarity between h and k over functional dissimilarity): 

Rβ = DS − DF = SF − SS (2) 

Rβ represents the extent of functional similarity between individuals 
of the species unshared by the plots. From an ecological viewpoint, Rβ 

can be interpreted as the degree to which individuals of species un
shared by the plots support the same ecological functions. Therefore, 
Ricotta et al. (2020, 2021a) termed this quantity beta redundancy. 

According to Eq. (2), taxonomic dissimilarity between plots DS can 
be thus additively decomposed into two distinct functional fractions: the 
degree of functional dissimilarity between individuals of distinct species 
DF and the corresponding degree of functional similarity between in
dividuals of distinct species, or beta redundancy Rβ such that DS = DF +

Rβ. Hence, the overall functional resemblance structure among pairs of 
plots can be decomposed into three additive components, DF, Rβ, and SS 

each with its own ecological meaning. 
A relevant aspect of this decomposition is that for dij in the range 

[0,1] the pairwise functional dissimilarity DF, beta redundancy Rβ, and 
taxonomic similarity SS sum up to one: 

DF +Rβ + SS = 1 (3) 

This offers the opportunity to use a ternary diagram to represent the 
functional resemblance structure among plots in graphical form. A 
ternary diagram displays the values of three variables a, b, and c as point 
coordinates on an equilateral triangle. The values of the variables must 
sum to a fixed constant, usually 1 (or 100 %), such that a = 1 − (b + c). 
The corners of the triangle represent a scenario in which one variable 
has a value of one and the other two variables have a value of zero. The 
values of each variable progressively decrease with increasing distance 
from the related corner (Ricotta et al., 2023). For example, if a point falls 
close to the DF corner, this means that the corresponding pair of plots 
shows high functional dissimilarity, whereas closeness to the opposite 
side of the triangle reflects high functional similarity. Likewise, if a point 
falls close to the Rβ corner, the corresponding pair of plots shows high 
beta redundancy; if the point falls close to the opposite side of this 
corner, the plots show low beta redundancy. 

With this ‘ternary diagram of functional resemblance’ we can thus 
graphically represent the compositional structure of a given set of plots 
in terms of pairwise functional dissimilarity, beta redundancy and 
taxonomic similarity. Therefore, ternary diagrams can be used to 
explore the ecological processes that shape different facets of the 
amount of variation in species composition among plots more exhaus
tively than by looking only at differences in functional dissimilarity 
(Podani and Schmera, 2011; Ricotta et al., 2023). 

3. Worked example 

3.1. Data 

To illustrate the behavior of the proposed approach, we used the 
same data of Ricotta et al. (2021a, 2021b). The dataset is composed of a 
community composition matrix of 45 species in 59 plots of approxi
mately 25 m2 sampled by Caccianiga et al. (2006) along a primary 
succession at the foreland of the Rutor Glacier (Northern Italy). The 
abundance of each species was assessed with a five-point ordinal scale 
transformed to ranks. 

Based on the age of the glacial deposits, the plots were originally 
grouped by Caccianiga et al. (2006) into three successional stages. 
However, Ricotta et al. (2021a, 2021b) showed that in terms of func
tional beta diversity, the last two stages of the chronosequence are not 
significantly different from each other. Therefore, in this paper we 
classified all plots in the community composition matrix into two 
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distinct groups: early successional plots (17 plots) and late successional 
plots (42 plots). 

For all species, six key traits were used, which are related to the 
species global spectrum of form and function (Díaz et al., 2016): canopy 
height (CH; mm), leaf dry mass content (LDMC; %), leaf dry weight 
(LDW; mg), specific leaf area (SLA; mm2 × mg− 1), leaf nitrogen content 
(LNC; %), and leaf carbon content (LCC; %). Data on species abundances 
and functional traits are available in Ricotta et al., (2016, Appendix S2), 
and Caccianiga et al., (2006, Table 2), respectively, and in the adiv (R 
package) object ‘RutorGlacier’ (Pavoine, 2020). Note that in this paper, 
we assume that the same species in different plots have the same trait 
values. However, the proposed approach is not necessarily based on this 
assumption and can be easily extended to account for intraspecific trait 
variability. All R scripts used in this study are available in the electronic 
Supplementary Material to this paper. 

3.2. Methods 

As in Ricotta et al. (2021a, 2021b), the trait values were first stan
dardized to zero mean and unit standard deviation. Then, we used the 
Euclidean distance to compute a matrix of pairwise functional distances 
between the 45 species from the standardized functional traits. The 
functional distances were next rescaled in the unit range by dividing 
each distance by the maximum value in the distance matrix. For all pair 
of plots in both successional stages, we finally used the algorithmic 
dissimilarity coefficient of Kosman (1996) and Gregorius et al. (2003) 
DKG to calculate the three components of functional resemblance: 
functional dissimilarity, beta redundancy and taxonomic similarity. 

A necessary condition to additively decompose functional resem
blance is that, for two plots h and k, functional dissimilarity DF is always 
lower than taxonomic dissimilarity DS. This prevents negative redun
dancy values, which would obviously be meaningless. However, as 
shown by Ricotta et al., (2020, Appendix S1), none of the existing 
analytical measures of functional dissimilarity conforms to this ‘redun
dancy property’. 

In contrast to standard analytical measures of functional dissimi
larity, the algorithmic dissimilarity DKG conforms to the redundancy 
property (proof in Ricotta et al., 2021a, Appendix S1). The measure, 
which has been originally developed to measure genetic differences 
between populations, is based on the best possible match between the 
species in h and k in order to minimize the total functional differences 
between the plots. For two plots h and k, with n individuals in both plots, 
each individual in h is matched to an individual in k with the goal of 
minimizing the sum of functional differences between the individuals in 
both plots. The n pairs are formed such that all individuals in each plot 
are used only once. The functional dissimilarity DKG is then obtained as 
the mean dissimilarity between each pair of matched individuals (Kos
man and Leonard, 2007). However, since the actual number of in
dividuals in h and k is usually not the same, to get a complete association 
between the individuals in both plots, the matching procedure is per
formed on the species relative abundances pjh and pjk in h and k, 
respectively. 

Mathematically, the functional dissimilarity DKG between plots h and 
k can be formulated as (Gregorius et al., 2003): 

DKG = min
π

∑N

i=1

∑N

j=1
π(i, j) × dij (4)  

where π(i, j) is the relative abundance of species i in plot h that is 
matched with species j in plot k. 

The use of species relative abundances pjh (with 0⩽pjh⩽1 and 
∑N

j=1pjh = 1) for the calculation of functional dissimilarity is justified by 
the observation that in most cases, ecologists are interested in exploring 
how the fraction of individuals that support a given ecological function 
differ between two plots (i.e. how the functional traits are proportionally 

distributed among the species in both plots), irrespective of the species 
absolute abundances in each plot. 

Finding the optimal association between the species abundances in h 
and k is a special kind of linear optimization problem (Dantzig and 
Thapa, 1997). Since DKG is essentially a mean dissimilarity between 
pairs of individuals, if the functional dissimilarity dij ranges from 
0 (minimal dissimilarity between matched individuals) to 1 (maximal 
dissimilarity between matched individuals), DKG also ranges from 0 to 1. 
Similarly, the complement of functional dissimilarity DKG represents a 
measure of pairwise functional similarity SKG = 1 − DKG between h and k 
that can be calculated as the optimal matching between the species 
abundances in h and k so as to maximize the mean similarity sij = 1 − dij 

between the species in both plots. 
Kosman (2014) further showed that if all species in h and k are 

maximally dissimilar from each other (i.e. if dij = 1 for all species i ∕= j), 
functional dissimilarity DKG reduces to the classical Bray-Curtis dissim
ilarity computed from the species relative abundances pjk: 

DBC =
∑N

j=1

⃒
⃒
⃒pjh − pjk

⃒
⃒
⃒/
∑N

j=1

(
pjh + pjk

)
=

1
2
∑N

j=1

⃒
⃒
⃒pjh − pjk

⃒
⃒
⃒ (5)  

such that DKG⩽DBC. This allows to decompose functional similarity SKG 
into standard taxonomic similarity between the individuals of the same 
species in both plots 

SBC = 1 − DBC =
∑N

j=1
min

{
pjh, pjk

}
(6)  

and the degree of functional similarity between the individuals of 
distinct species in both plots, or beta redundancy 
Rβ = DBC − DKG = SKG − SBC such that DKG +Rβ +SBC = 1 (see Eq. (3)). An 
R function for the calculation of DBC, DKG and Rβ can be found in the R 
package adiv (Pavoine, 2020). 

To test for differences in the beta diversity of both successional stages 
using all three components of the functional resemblance structure, we 
calculated the mean values of functional dissimilarity DKG, beta redun
dancy Rβ, and taxonomic similarity SBC of each plot from all other plots 
of the same successional stage (see Ricotta et al., 2021b). The resulting 
values were then plotted on the ternary diagram of Fig. 1 with the R 
package adegraphics (Siberchicot et al., 2017). 

Once the mean values DKG, Rβ, and SBC of the two groups of plots 
have been plotted on the ternary diagram, testing for differences in 

Fig. 1. Ternary diagram of functional resemblance for the early and late suc
cessional plots of Alpine vegetation on glacial deposits in northern Italy. The 
results of db-MANOVA show that the two successional stages significantly differ 
in their overall functional resemblance structure at p < 0.001 (F = 10.23, Bray- 
Curtis dissimilarity and 10,000 randomizations). 
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functional resemblance between the two successional stages of the 
Alpine vegetation essentially reduces to testing whether the distribution 
of the two groups of plots on the ternary diagram does not overlap. 
Therefore, we tested for differences in the ternary composition of both 
groups of plots with distance-based multivariate analysis of variance 
(db-MANOVA; Anderson, 2001) and the Bray-Curtis dissimilarity with 
the R package PERMANOVA (Vicente-Gonzalez and Vicente-Villardon, 
2021). 

db-MANOVA is a multivariate extension of standard analysis of 
variance which uses any multivariate dissimilarity measure of choice to 
test for differences between two or more distinct groups of plots. The 
purpose of db-MANOVA is to contrast the within-group dissimilarities 
among plots with their between-group dissimilarities. The greater the 
between-group dissimilarities in comparison to the within-group dis
similarities, the more likely the groups of plots differ in their ternary 
composition (Anderson, 2001). First, based on the actual DKG, Rβ and SBC 

values of each plot, the within-group and between-group dissimilarities 
among plots were calculated with the Bray-Curtis dissimilarity, and a 
multivariate analogue of Fisher’s F-ratio was calculated directly from 
the dissimilarity matrix. A P-value was next calculated using 10,000 
permutations in which the single plots were randomly reassigned to the 
two successional stages while maintaining the three-dimensional vector 
of the functional resemblance values DKG, Rβ and SBC of each plot un
changed (Anderson, 2006; Ricotta et al., 2021b). 

At least for exploratory data analysis, Ricotta et al. (2023) considered 
this procedure appropriate for handling compositional data with a 
constant sum constraint. Those looking for statistical methods explicitly 
developed for the analysis of compositional data can refer to Aitchison 
(1986) or Van den Boogaart and Tolosana-Delgado (2013). 

Finally, for each single resemblance measure, DKG, Rβ and SBC, we 
separately tested for differences between the two successional stages 
with standard univariate ANOVA and 10,000 permutations of individual 
observations between both groups of plots. Since db-MANOVA does not 
identify which particular resemblance measure is significantly different 
between groups of plots, the analysis of variance of the single compo
nents DKG, Rβ and SBC can then be used as a kind of post-hoc test to 
explore differences between multiple groups using each component at a 
time. 

4. Results 

Ternary diagrams have been first used for the analysis of beta di
versity/dissimilarity by Podani and Schmera (2011). Such diagrams 
allow us to visualize the relative fractions of three variables on a two- 
dimensional graph. Aside from visual inspection, the point patterns in 
a ternary diagram can also be analyzed statistically. According to db- 
MANOVA, the successional stages in the ternary diagram of Fig. 1 
significantly differ in their overall functional resemblance structure (F =
10.23, p < 0.001). As shown in Table 1, the random dispersal 

mechanisms that drive the colonization of the glacial deposits in the 
early successional stages give rise to significantly higher values of mean 
functional dissimilarity between plots DKG, and to lower values of 
functional redundancy among individuals of different species Rβ. By 
contrast, while the taxonomic (i.e., species) turnover among plots SBC is 
approximately the same in both successional stages, in the late succes
sional stages the species in one plot tend to be replaced by functionally 
similar species in the other plots, thus leading to an increased level of 
functional beta redundancy among different sampling units (Caccianiga 
et al., 2006). 

5. Discussion 

The aim of this paper was to bring together distinct aspects of the 
analysis of functional beta diversity, redundancy, and community sim
ilarity into a coherent system. Some of these results were previously 
discussed in the context of within-site diversity, or alpha diversity (e.g., 
Ricotta et al., 2023) but can easily be extended to beta diversity. 
Resemblance measures that can be partitioned into complementary 
components are extremely valuable since the resultant elements can be 
related to a variety of distinct ecological processes that determine the 
structure of species assemblages (Baselga, 2010; Podani and Schmera, 
2011; Podani et al., 2013; Ricotta et al., 2023). In this context, the 
relevant questions are: how to decompose the pairwise functional 
resemblance between plots, how to graphically represent this decom
position and how to test for significant differences in functional 
resemblance among groups of plots. 

Unlike standard similarity/dissimilarity coefficients which possess a 
simple binary structure, the increased complexity of functional resem
blance arises from the relaxation of the constraint that all species are 
equally and maximally distinct. If species exhibit varying degrees of 
functional dissimilarity, two plots with no species in common can either 
be functionally identical or entirely functionally distinct depending on 
the degree of functional dissimilarity dij between the species in both 
plots. Accordingly, looking only at differences in functional dissimilarity 
between plots provides just a partial view of their taxonomic and 
functional variability. 

The concept of beta redundancy has been first introduced by Ricotta 
et al. (2020) as the amount of taxonomic dissimilarity between two plots 
not expressed by functional dissimilarity. Ricotta et al. (2020) used a 
relative measure of beta redundancy R*

β = (DS − DF)/DS. By contrast, 
due to the additive nature of the proposed dissimilarity decomposition, 
in this paper we used the absolute difference Rβ = DS − DF. Redundancy 
is maximal for two functionally identical plots (DF = 0) with no species 
in common (DS = 1). On the other hand, redundancy is zero when the 
species turnover between two plots is associated to a complete func
tional turnover such that DS = DF and hence Rβ = 0. 

Beta redundancy tells us to what degree the species that differ be
tween two plots are able to perform the same ecological functions: the 
higher the value of beta redundancy, the lower the association between 
species turnover and functional turnover. Accordingly, beta redundancy 
might be related to chief ecological processes, such as species dispersal, 
habitat filtering, or competitive exclusion. For instance, one might as
sume that the lower functional dissimilarity and the higher beta 
redundancy observed in the late successional plots of our worked 
example could be attributed to the role of local species interactions 
(biotic filters), which impose more intense constraints on plant species 
recruitment compared to the abiotic filters present in the early succes
sional stages (Klanderud, 2010; Meineri et al., 2020). 

From a more ‘technical’ viewpoint, in order to get a valid measure of 
beta redundancy, the functional dissimilarity DF should always be lower 
than the corresponding taxonomic dissimilarity DS. Surprisingly, Ricotta 
et al. (2020) showed that many of the existing indices of functional 
dissimilarity do not conform to this ‘redundancy property’. Therefore, 
they cannot be used to appropriately decompose functional resemblance 

Table 1 
Mean (SD) values of average functional dissimilarity DKG, beta redundancy Rβ 

and taxonomic (i.e., species) similarity SBC of each plot from all other plots of the 
same successional stage. Pairwise comparisons of index differences between 
both successional stages were performed with standard univariate ANOVA. P- 
values were obtained by randomly permuting individual plots between the 
successional stages (10,000 permutations). *** = significant at p < 0.001; NS =
not significant at p < 0.05.   

Early successional plots 
(17 plots) 

Late successional plots 
(42 plots) 

Functional dissimilarity 
DKG

*** 
0.217 (0.033) 0.165 (0.024) 

Beta redundancy Rβ
*** 0.370 (0.030) 0.440 (0.050) 

Taxonomic similarity 
SBC 

NS 
0.413 (0.054) 0.395 (0.072)  
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into non-negative additive fractions. In this view, the transition from a 
species-based ecology to a trait-based ecology has important implica
tions not only in biological terms (Díaz and Cabido, 2001), but also in 
statistical terms. 

To address this issue, Ricotta et al. (2020) introduced a tree-based 
measure of functional dissimilarity that conforms to the redundancy 
property. However, being based on a hierarchical representation which 
is the more natural way for describing the evolutionary relationships 
among species, the functional dissimilarity coefficient of Ricotta et al. 
(2020) is more adequate to represent the phylogenetic dissimilarity 
among plots rather than their functional differences. Ricotta et al. 
(2021a) thus suggested to summarize functional dissimilarity with the 
algorithmic coefficient of Kosman and Gregorius which does not depend 
on a tree-based species organization. While DKG allows for appropriately 
calculating functional dissimilarity, we hope that this is just the first in a 
series of new measures. Indeed, the search for a new class of functional 
dissimilarity measures appears to be a very promising research direc
tion, aiming to enrich the ecologist’s toolbox with new, more up-to-date 
instruments for exploring various aspects of functional resemblance and 
their ecological drivers. 
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R scripts used for the worked example of the functional beta diversity decomposition 

proposed in the main text. The scripts were written with R version 4.3.2. 

 

Disclaimer: users of this code are cautioned that, while due care has been taken and it is 

believed accurate, its use and results are solely the responsibilities of the user. 

 

 
 

# Package loading: 

 

install.packages("adiv") 

install.packages("adegraphics") 

install.packages("PERMANOVA") 

 

library(adiv) # version 2.2 

library(adegraphics)# version 1.0-21 

library("PERMANOVA") # version 0.2.0 

 

# Data loading: 

 

data(RutorGlacier) 

 

# Functional dissimilarities between species: 

 

fundis <- dist(scale(RutorGlacier$Traits2[1:6])) 

fundis <- fundis/max(fundis) 

 

# Relative abundance of species in plots: 

 

prop <- sweep(RutorGlacier$Abund, 1, rowSums(RutorGlacier$Abund), "/") 

 

# vector that indicates which plot belongs to which group (either early or 

late successional stage). Plots are in the same order as in table named 

prop above. 

 

groups <- RutorGlacier$Fac 

groups[groups == "mid"] <- "late" 

 

# Data analyses: 

 

propsplitted <- split(prop, as.factor(groups)) 

prop_Early <- propsplitted[[1]] 

prop_Late <- propsplitted[[2]] 

 

frameDKG_Early<- betaUniqueness(prop_Early, fundis) 

frameDKG_Late <- betaUniqueness(prop_Late, fundis) 

 

D_KG_Early<- frameDKG_Early$DKG  # Pairwise functional dissimilarities 

between plots of early successional stage.  

S_BC_Early<- 1-frameDKG_Early$DR # Pairwise species similarity between 

plots of early successional stage. 

R_beta_Early <- frameDKG_Early $DR- frameDKG_Early$DKG # Pairwise beta 

redundancy between plots of early successional stage. 

 

D_KG_Late <- frameDKG_Late$DKG # Pairwise functional dissimilarities 

between plots of late successional stage. 

S_BC_Late<- 1-frameDKG_Late$DR # Pairwise species similarity between plots 

of late successional stage. 

R_beta_Late <- frameDKG_Late $DR- frameDKG_Late$DKG # Pairwise beta 

redundancy between plots of late successional stage. 



 

# Below are calculated the average functional dissimilarities, beta 

redundancy and species similarity of each plot from the other plots of the 

same group. Plots are in the same order as in vector named "groups" and 

table named "prop". 

 

D_KG_bar_Early <- sapply(1:17, function(i) mean(D_KG_Early[i, -i])) 

S_BC_bar_Early<- sapply(1:17, function(i) mean(S_BC_Early[i, -i])) 

R_beta_bar_Early <- sapply(1:17, function(i) mean(R_beta_Early[i, -i])) 

D_KG_bar_Late <- sapply(1:42, function(i) mean(D_KG_Late[i, -i])) 

S_BC_bar_Late<- sapply(1:42, function(i) mean(S_BC_Late[i, -i])) 

R_beta_bar_Late <- sapply(1:42, function(i) mean(R_beta_Late[i, -i])) 

 

# Graphical display for an equivalent of Figure 1 of main text 

 

TAB_Early <- cbind.data.frame(D_KG_bar_Early, S_BC_bar_Early, 

R_beta_bar_Early) 

TAB_Late <- cbind.data.frame(D_KG_bar_Late, S_BC_bar_Late, R_beta_bar_Late) 

names(TAB_Early) <- names(TAB_Late) <- c("D_KG", "S_BC", "R_beta") 

TAB <- rbind.data.frame(TAB_Early, TAB_Late) 

 

triangle.class(TAB, as.factor(groups), starSize = 0, ellipseSize=0, 

adjust=FALSE, showposition =FALSE, col=c("green", "blue")) 

 

 



 

# Pairwise comparisons of index differences between both successional 

stages (Table 1 of main text) 

 

 

# 1. Functional dissimilarity 

 

mean(D_KG_bar_Early)  

# [1] 0.2171854 

 

sd(D_KG_bar_Early)  

# [1] 0.03259282 

 

mean(D_KG_bar_Late)  

# [1] 0.164982 

 

sd(D_KG_bar_Late)  

# [1] 0.02423698 

 

 

# 2. Beta redundancy 

 

mean(R_beta_bar_Early)  

# [1] 0.3701257 

 

sd(R_beta_bar_Early)  

# [1] 0.02989589 

 

mean(R_beta_bar_Late)  

# [1] 0.4396643 

 

sd(R_beta_bar_Late)  

# [1] 0.04991988 

 

# 3. Species (dis)similarity 

 

mean(S_BC_bar_Early)  

# [1] 0.412689 

sd(S_BC_bar_Early)  

# [1] 0.0541672 

 

mean(S_BC_bar_Late)  

# [1] 0.3953538 

 

sd(S_BC_bar_Late)  

# [1] 0.07227821 

 

# 4. Global PERMANOVA test 

 

TAB4Ptest <- DistContinuous(TAB, , "Bray_Curtis") 

 

Ptest <- PERMANOVA(TAB4Ptest, as.factor(groups), nperm=10000) 

 

Ptest 

###### PERMANOVA Analysis ####### 

# MANOVA 

#      Explained  Residual df Num df Denom    F-exp    p-value p-value adj. 

# Total 0.047524   0.26475      1       57 10.23187 0.00089991   0.0008999 
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