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Abstract— Federated Learning is a distributed learning so-
lution for machine learning problems without the need of
collecting the available data in a single centralized data centre.
With the standard FL approaches, model training is performed
locally and a centralized server collects and elaborates the
trainable parameters of the local models: even if data are
not shared, the presence of the centralized server still rises
trust and security issues. In this work, we introduce the
Decentralized Federated Learning (DECFEDAVG) algorithm,
which aims at achieving complete decentralization by the lack
of a coordination server, and compare its performance against
the original federated learning algorithm Federated Averaging
(FEDAVG) over the Nonintrusive Load Monitoring problem.

Index Terms— Federated Learning, Deep Neural Networks,
Distributed Systems, Nonintrusive Load Monitoring, Demand
Side Management.

I. INTRODUCTION

In Federated Learning (FL) a federation of clients learns a
model by coordinating with a global server, without the need
to share their own local data. Thanks to its privacy-preserving
nature, it finds applications in distributed scenarios, when
data cannot be shared with a centralized entity. Given a
federation of a certain number of clients, the goal of FL is to
let them cooperate by sharing their knowledge while avoiding
any data exchange. In particular, during each communication
round, the model of the coordinating server is updated by
averaging the trainable parameters of the models of the
federated clients, which are trained on their corresponding
local data [1]. For the algorithm to work, it is required the
centralized server to be trusted by the federation; if on the
one hand this provides a communication-efficient solution
with privacy guarantees, on the other hand it may be prone
to malicious attacks and constitutes a single point of failure
because the clients of the federation cannot communicate
with one another, thus cannot verify its behaviour. A pos-
sible solution to this problem is to consider decentralized
federations with point-to-point client agreements, specifically
with sparse communication tolopogies, as depicted in Figure
1, more robust to malicious attacks; hence to study FL
algorithms able to cope with them.
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In this work, we propose the Decentralized FL algorithm,
DECFEDAVG, a decentralized extension of FEDAVG [1] able
to deal with group of federated entities characterized by
sparse and arbitrary communication agreements. DecFedAvg
was designed in the scope of the project FedMedAI and was
tailored for the privacy requirements imposed by the EU
General Data Protection Regulation (GDPR) [2] on personal
data, with particular focus on the healthcare domain. The
highlights and main contributions of this work are:

• The idea to extend FL algorithms to a fully decentral-
ized setting that does not require a coordinating server;

• The proposal of a decentralized version of the origi-
nal algorithm FEDAVG, named Decentralized Federated
Averaging DECFEDAVG;

• Validating examples are discussed, demonstrating the
applicability and performance properties of the pro-
posed algorithm on the Nonintrusive Load Monitoring
(NILM) problem.

The reminder of the paper is organized as follows: Section
II discusses the relevant works in the literature. Section
III presents the proposed algorithm. Section IV describes
the dataset used for testing. Finally, Section V reports the
results of our tests and Section VI draws the conclusions
and discusses some future works.

II. RELATED WORKS

The concept of FL and its first ever algorithm (FEDAVG)
were proposed for the first time in [1], [3] to address the
problem of smartphone cooperation without disclosing any
data from their users. The main novelty of FL was the
capability to deal with data partitioned as it is, namely close
to its sources, without the need to perform any redistribution
and coordinated split, as in standard distributed learning
solutions. For its privacy-preserving properties, FL finds
application in multiple fields [4], such as 3D connectivity-
based heterogeneous networks enabled by aerial drones [5],
Industry 4.0 [6], healthcare [7], [8], IoT/Edge Computing
setting [9], [10], power systems [11]. In particular, with
respect to the latter, it finds application in the NILM problem
[12], an approach to monitor individual appliances’ electrical
power consumption from aggregate measurements.

Starting from the original formulation, there have been
multiple versions [13]–[15], with the aim of enhance privacy
and security [16]–[18] to prevent direct or indirect data
leakage [19], [20], and on reducing the communication cost
associated to the distributed training [21], [22]. Regardless
of the particular considered algorithm, the capability to deal
with data distributed in a non-IID and imbalanced way over



Fig. 1: (a) Standard FL architecture (left); (b) Example of a decentralized federation with bi-directional point-to-point
communications (right)

the clients remains the main feature, shared with the original
formulation; the distributed nature of data sources is, most
of the time, a reflection of their geographical distribution,
which pairs with a different local data distribution and a
high variance in the numerosity of the available samples.

The main highlight of FEDAVG is the way the model of the
server is updated via an iterative procedure; after each client
of the federation has trained its model on its own locally
available data, a model averaging procedure is carried out
by the server, thus updating its model, before propagating
the latter to the clients. Even if this strategy proved to be
successful for a large number of scenarios, may be limiting
for the ones where a limited number of entities, with no
computation or communication constraints, constitute the
federation; in such a scenario, better performances could be
achieved by removing the communication-efficiency related
features of the algorithm, thus realizing also complete decen-
tralization. The removal of the centralized server has been
vastly investigated; in [23] a peer-to-peer gossip algorithm
was proposed to exchange portions of the model weights
among computing nodes with limited bandwidth and improve
the overall communication efficiency of the federation, while
in [24] an algorithm based on a partial aggregation of the
gradients produced by the training nodes is proposed.

The present work designs a decentralized version of FE-
DAVG that easily allows for the integration of any of its re-
cent privacy/communication improvements and demonstrates
it on a test scenario in power systems.

III. DECENTRALIZED FEDERATED LEARNING
(DECFEDAVG)

Let I be the set of N clients. Given client i ∈ I , let wi be
the vector of trainable parameters/weights of its model, and
let Di =

{
(αn, βn)

}
n∈{1,2,...,|Di|}

be the dataset containing
its available input-output pairs, with cardinality |Di|; the
total available data is denoted as D =

⋃
i Di. Suppose that

the clients share the same model architecture, hence the
cardinality of the weight vectors is the same, i.e., |wi| = |wj |
∀i, j ∈ I .

In the federation, each client i is trained to minimize the
loss function li

(
(αn, βn)|wi

)
over its entire dataset Di: given

the generic input αn, the loss function is used to quantify the
quality of the model, with parameters wi, against the corre-
sponding ground truth value βn, with (αn, βn) ∈ Di. The
choice of the loss function depends on the particular machine
learning problem to be addressed; in general, regression tasks
require the mean squared error, while classification ones the
categorical cross-entropy. We set:

Li(wi) =
1

|Di|
∑

(αn,βn)∈Di

li((αn, βn)|wi) (1)

as loss function of client i over its entire dataset Di. The
goal of the federation is then to find the optimal vector w∗

of parameters that, when shared by all clients, solves the
minimization problem with joint cost function defined as
[13]:

min
w
L(w) :=

∑
i∈I

piLi(w) (2)

with pi = |Di|/|D|. While in the standard machine learning
setting optimization (2) is tackled by a centralized system,
which computes the gradient ∇L(w) given the whole set D,
in a distributed one, the gradient ∇L(w) has to be estimated
starting from the gradients of the clients ∇Li(wi).

Moreover, in standard (non-federated) distributed learning,
data can be distributed arbitrarily by a centralized entity over
the clients. The typical assumption for this distribution is
that the datasets Di are IID with respect to D, implying
E [Li(w)] = L(w). In practice, under this assumption Li(w)
provides a good approximation of L(w) [1] and the locally
computed gradients ∇Li(wi) can be averaged to reconstruct
∇L(w).

On the contrary, in the federated setting such IID hypoth-
esis can not be assumed, as the training data is processed
without any re-distribution and Li(w) could provide an
arbitrarily bad approximation of L(w). For this reason, in
FEDAVG [1], [3] the author proposed a round-based iterative
procedure for model averaging.

FEDAVG is divided into two main phases, which are
repeated iteratively. In the first phase (local training), the
server selects a subset of clients that update the weights of



Algorithm 1 FedAvg

1: SERVER UPDATE:
2: for each communication round t = 1, ..., T do
3: select a subset of clients for the averaging procedure
4: for all selected client i do
5: CLIENT UPDATE
6: receive w̃i from client i
7: end for
8: set w(t) =

∑
i piw̃i(t)

9: propagate w in the federation (wi(t) = w(t),∀i)
10: end for

11: CLIENT UPDATE:
12: for each local epoch e = 1, ..., E do
13: for each mini-batch b from Di do
14: wi(t− 1)← wi(t− 1)− η∇Li(b|w(t− 1))
15: end for
16: end for
17: set w̃i(t) = wi(t− 1)
18: return w̃i(t) to the server

their models by training on their local datasets Di with a
gradient descent update rule:

w̃i(t) = wi(t− 1)− η∇Li

(
wi(t− 1)

)
(3)

where 0 < η < 1 is the learning rate and w̃i(t) is the locally
updated weight of the model of agent i at time-step t. We
mention that in the FL setting it is typically assumed that all
clients share a common initial weight vector, i.e., wi(0) = w0

∀i ∈ I [1]. Actually, the local weight update is performed
iteratively over a given number of training epochs using a
variation of gradient descent (mini-batch gradient descent)
that splits Di’s into a set of mini-batches. For the sake of
simplicity, equation (3) exemplifies the update rule with E =
1 and over the complete dataset, whereas the pseudo-code
presented below reports the mini-batch multi-epoch version
of the algorithm.

In the second phase (centralized averaging), the server
collects the w̃i’s, computes the weight vector w(t) as the
weighted average

w(t) =
∑
i∈I

piw̃i(t) (4)

and propagates the weight vector w(t) to all the clients:

wi(t) = w(t),∀i ∈ I. (5)

We report the pseudo-code for FEDAVG (see Algorithm
1), showing an implementation where the clients perform
E local training epochs using mini-batch Gradient Descent
with a batch size of B. In the code, ∇Li

(
b|wi

)
denotes the

gradient performed over the mini-batch b and it is assumed
for simplicity that all clients participate in the averaging
procedure.

Algorithm 2 DecFedAvg

1: DECENTRALIZED FEDERATED TRAINING:
2: for all communication rounds t = 1, ..., T do
3: for all clients i ∈ I do
4: for each local epoch e = 1, ..., E do
5: for each mini-batch b from Di do
6: wi(t−1)← wi(t−1)−η∇Li(b|w(t−1))
7: end for
8: end for
9: set s̃i(t) = wi(t− 1)

10: update wi(t) according to (6)
11: end for
12: end for

Although several variants of FEDAVG have been devel-
oped, [13], [25] for instance, the centralized setting and the
two-phase approach are the two main shared features.

When communication costs are negligible, the presence
of point-to-point communications among the clients and the
unavailability of the centralized server are the two main
communication constraints. Therefore, the development of
a decentralized version of FEDAVG, i.e., (3)-(5), comes in
handy. A direct decentralization of FEDAVG would consist
in using equation (3) and the following equation:

wi(t) =
1

|Di|

|Di|w̃i(t) +
∑
j∈Ni

|Dj |w̃j(t)

 ,∀i ∈ I, (6)

with |Di| = |Di| +
∑

j∈Ni
|Dj |, where Ni is the set of

the neighbours of client i, namely trusted clients of client
i with which client i communicates. If all the clients were
neighbours of each other, substituting (4) into (5) would
yield that (3), (6) are equivalent to (3)-(5). Hereafter, we
only assume that the underlying communication graph is
connected.

Equation (6) states that, at every communication round
t, the clients exchange the weights w̃i(t) of their locally
trained model with their neighbours. Each client then updates
the vector wi(t) by computing a weighted average of the
collected vectors w̃j(t), with j ∈ Ni ∪ {i} (including its
own vector), with weights set as the cardinality |Dj | of the
clients’ data. In general, arbitrary weights can be attributed to
the clients, e.g., depending on the in/out-degree of the nodes
in the federation graph or reflecting the trust level that client
i has in client j.

The pseudo-code for DECFEDAVG is reported (see Algo-
rithm 2) to improve the clarity of the presentation.

Remark 1. The proposed DECFEDAVG algorithm does
not utilize any information on the communication network
topology. Also, we note that the proposed distribution of (3)-
(5), for its simplicity, can in principle be applied to any FL
algorithm with the same structure as FEDAVG. However, the
convergence results of such algorithm typically rely on the
propagation of a common averaged model into the federation.



Hence, the convergence of the decentralized versions is not
guaranteed, as, in general, at each communication round t the
various wi(t) are different and consequently the performance
of their clients may differ.

IV. DATASET FOR NILM

The proposed approach is validated against the origi-
nal FEDAVG over the NILM problem, a technique to re-
cover source appliances from only the recorded mains in
a household [26]. It constitutes the preferred approaches to
tackle Appliance Load Monitoring (ALM); its non-intrusivity
nature makes it easy-to-use in existing buildings, without
any inconvenience to householders. Data is collected from
sensors installed in buildings which provide active power
reading, making it a crucial step towards better energy
management.

In our experiments, we used the REFIT [27] dataset; it
consists of power readings, sampled every 8 seconds, coming
from 20 households in Loughborough, England (UK) from
2013 to 2015. The dataset provides data regarding five appli-
ances for energy disaggregation purposes: kettle, microwave,
fridge, dish washer, washing machine. Data is preprocessed
by calculating the standard score of each sample, as in [26],
and is distributed in the following way: for each appliance,
one house is chosen to be the server, while all the others are
set to be the federated clients, as shown in Table I.

In this paper, we apply the sequence-to-point (seq2point)
model architecture [28]. Even if there are several state-
of-the-art NILM algorithms, which are based on different
approaches like Hidden Markov Models (HMM) [29]–[32],
Graph Signal Processing (GPS) [33], [34], deep learning
[35], [36], seq2point outperforms both HMM and deep
learning-based approaches. Differently from the sequence-to-
sequence (seq2seq) approach [35], which takes a sequence
of items as input and outputs another sequence of items, the
seq2point learning technique consists in training a model to
predict the midpoint element of an output window of appli-
ance readings, which is assumed to be a non-linear regression
of the input window (the interested reader may find more
details in [28]). The seq2point learning technique is applied
to the entirety of the federation. As described in the next
Section, the seq2point approach consists in a sliding window
approach which returns sample vectors of size W = 599.
The number of samples for each client and the server has
been set equal to (1000, 2500, 7500, 1000, 5000, 4000, 9000,
3000, 6400, 1000, 7000) and (10000), respectively.

V. TEST RESULTS

This section reports the test simulations performed to
validate the proposed approach. The goal of NILM – or
energy disaggregation approach [37] – is to measure the
energy consumption of individual appliances based on the
total electricity consumption [28].

Given a household, at each sample time k the total power
consumption reading in Watts, denoted by yk ∈ R+, k =
1, ...,K, is observed, where K is number of considered sam-
ple times. The unknown reading of the power consumption of

Clients dish
washer fridge kettle microwave washing

machine
client1 5 2 3 10 2
client2 7 5 4 12 5
client3 9 9 5 17 7
client4 13 12 6 19 9
client5 16 - 7 - 15
client6 18 - 8 - 16
client7 - - 9 - 17
client8 - - 12 - 18
client9 - - 13 - 18

client10 - - 19 - -
client11 - - 20 - -
server 20 15 2 4 8

TABLE I: Houses-to-Clients correspondence for appliances

appliance i is denoted by xik ∈ R+, i = 1, ..., I , is observed,
where I is total number of appliances. The measurements of
the mains and of the appliances are collected in two vectors,
Y =

[
y1, y2, ..., yK

]
, Xi =

[
xi1, xi2, ..., xiK

]
.

At each time step k, yk is interpreted as the sum of the real
readings of the appliances of interest, a Gaussian noise factor
ϵ with zero mean and variance σ2, and an unknown factor uk

which represents the fact we are interested in a subset A ⊆ I
of all the possible appliances: yk =

∑A
i=1 xik + uk + ϵ.

By applying the seq2point approach with window size W ,
let Y W

k =
[
yk, ..., yk+W−1

]
be th k-th input, with k ≤ K −

W + 1, let xiτ be the middle point of the corresponding
appliance window XW

ik =
[
xik, ..., xi(k+W−1)

]
, with τ =

k +
⌈
W
2

⌉
, and let f̂i be the function approximated by the

model, yielding the output

x̂iτ = f̂i
(
Y W
k

)
, (7)

where x̂iτ is the model prediction for the considered middle
point for appliance i.

We tested our algorithm on each appliance data, kettle (11
clients), microwave (4 clients), fridge (4 clients), dishwasher
(6 clients), washingmachine (8 clients), as shown in Table I,
comparing its performance with that of FEDAVG in terms of
the mean absolute error (MAE), as shown in Table II.

A. Test Setup

The model architecture used for seq2point learning con-
sists of an input of dimension W = 599, 5 convolutional lay-
ers of dimensions (30, 10, 1), (30, 8, 1), (40, 6, 1), (50, 5, 1),
(50, 5, 1) respectively, followed by a dense layer of 1024
units, all with a ReLu [38] activation function, and an output
layer of 1 unit, as depicted in Figure 2.

The optimizer chosen for training was ADAM Optimizer
[39], with learning rate 0.001, beta 1 0.9, beta 2 0.999, and
epsilon 10−8. For both DECFEDAVG and FEDAVG, we set
E = 3 (number of epochs in the clients’ update), B = 64
(local batch size), R = 20 (number of communication
rounds). In particular, for DECFEDAVG, due to the absence
of the centralized server, a circle topology was chosen, as
depicted in Figure 3.

We recall that the simulations were done using Tensorflow
and Keras. All clients used the same architecture depicted in
Figure 2 for all the testings.



Fig. 2: Neural Netowrk Architecture, as in [26]

Fig. 3: Circle federation topology, kettle

B. Simulations

DECFEDAVG is tested against FEDAVG over each appli-
ance, considering the same clients and corresponding data
distribution. Being a regression problem, the performance
metric used for a comparison is the mean absolute error
(MAE), evaluated with respect to the ground truth of clients
data. Moreover, for the sake of a fair comparison of the
two algorithms, we evaluated also the loss and MAE relative
error. Table II shows our results.

Figure 4 shows the comparison of the MAE evolution for
appliance washing machine (the DecFedAvg line is the one
observed by the first client). It can be noted how similar
the behaviour of the two approaches are, despite the absence
of a centralized entity, with DECFEDAVG even managing to
attain lower MAE values over the communication rounds.
Similar behaviours are observed for the other appliances and
hence their graphs are omitted.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents a novel decentralized Federated Learn-
ing algorithm, DECFEDAVG, obtained as a direct decen-
tralization of the original Federated Learning algorithm,
FEDAVG.
On going and future work is aimed at using the proposed
approach to tailor solutions to specific use cases, and to
modify the algorithm on the basis of consensus theory to

Appliance MAE
FedAvg

MAE
DecFedAvg

Loss
% Error

MAE
% Error

dish washer 0.0708 0.0747 5.46% 5.50%
fridge 0.0915 0.0916 0.030% 0.032%
kettle 0.0290 0.0271 0.87% 6.42%
microwave 0.0350 0.0255 10.37% 16.30%
washing machine 0.0588 0.0553 0.15% 5.96%
average 0.05702 0.0548 3.38% 6.84%

TABLE II: FEDAVG vs DECFEDAVG performance compar-
ison

Fig. 4: FedAvg vs DecFedAvg: MAE comparison for wash-
ing machine

achieve exact decentralization for arbitrary communication
topologies.
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