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Abstract: It is well known that membrane reactors are inherently two-dimensional systems in
which species concentrations vary as a consequence of both the reaction and permeation across the
membrane, which occurs in the direction perpendicular to that of the main gas flow. Recently, an
expression for an enhanced Sherwood number was developed to describe the hydrogen concentration
gradients arising in methane steam-reforming membrane reactors as a consequence of the combined
effect of hydrogen production, dispersion, and permeation. Here, the analysis is developed in further
detail with the aim of (i) assessing the validity of the simplifying assumptions made when developing
the 1D model and (ii) identifying the operating conditions under which it is possible to employ the
1D model with the enhanced Sherwood number.

Keywords: concentration gradients; 2D model; membrane reactors; hydrogen

1. Introduction

The use of membrane reactors has been attracting significant interest as a technology
capable of allowing decentralized hydrogen production and coupling with solar heating
technologies [1,2]. The description of such systems is made complicated by two funda-
mental aspects: the first is the interplay between the transport of mass and energy by
convection and diffusion within the reactor, the effects of the reaction itself, and mass and
energy transport through the hydrogen-permeable membrane; the second characteristic is
that in these systems, hydrogen flows across the membrane in a direction perpendicular
to that of the main gas flow, making the system inherently two-dimensional. In the past,
many authors have resorted to 1D models to describe the behaviour of membrane reactors,
effectively neglecting the presence of radial gradients [3–5]; however, it has been shown
that such a solution often leads to results that are very different from those obtained in
reality in terms of integral variables, such as the total amount of hydrogen permeating
from the membrane per unit of time [6–8]. These observations have led to a tendency in
recent years to resort to two- or three-dimensional models for membrane reactors [9,10]
and only more rarely to one-dimensional models [11]. An extensive review of modelling
approaches for packed bed membrane reactors, for the specific case of methane reforming
may be found in [12].

To develop an accurate one-dimensional model without incurring in the difficulties
of fully coupled two-dimensional models, it is therefore necessary to develop adequate
correlations for the heat and mass transfer coefficients in order to account for the effect of
resistances in the radial direction. In what follows, an isothermal reactor will be considered,
and therefore, only the mass transfer coefficient will be discussed. It is well known that
the mass transfer coefficient may be generally obtained from the Sherwood number, Sh,
which is, in turn, correlated to the Reynolds and Schmidt numbers, describing, respectively,
the momentum transport of the fluid and the ratio between mass and momentum diffusiv-
ity; however, when membrane reactors are involved, the mass transfer coefficient should
also quantify the resistance to transport across the membrane and the effect of the reaction
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on concentration gradients. It is therefore evident that the need arises for correlations that
differ from those commonly employed. To the best of our knowledge, at the moment, the
attempt to obtain a novel expression for the enhanced Sherwood number has been made a
few times for membrane separators [13,14], but only once, by some of the same authors of
the present work, for membrane reactors [15].

The main objective of the present work has been to identify the operating conditions
under which the prediction of the behaviour of membrane reactors for the steam reform-
ing of methane through a 1D model with an enhanced Sherwood number equivalent to
that obtained when employing a 2D model explicitly accounting for radial concentration
gradients. The manuscript is divided as follows. In Section 2, the problem is detailed
in its context. In Section 3, the modelling approach is described, and the main model
equations are reported, including the expression of the enhanced Sherwood number. A dis-
cussion of the simplifying assumptions and their range of validity is reported in Section 4,
while Section 5 presents the comparison between hydrogen recovery evaluated from the
fully coupled 2D model and the 1D model making use of the enhanced Sherwood number.

2. Statement of the Problem

The problem has been studied through the following procedure:

1. An isothermal 2D model, in which mass and momentum transport in both the
axial and radial directions were considered, described in detail in [16], was used
as benchmark;

2. A simplified 2D model, derived in [17], was employed to derive an expression for the
enhanced Sherwood number, valid when the performance of the system is not limited
by hydrogen permeation across the membrane;

3. The range of operating conditions in which the expression of the Sherwood number
is meaningful was identified;

4. A 1D model making use of the Sherwood number was employed to assess the perfor-
mance of membrane reactors.

With regards to point (2), it is worth emphasizing that the operating conditions
under which hydrogen transport across the membrane is not the limiting mass transport
mechanism are the only ones for which it makes sense to employ a parameter that accounts
for radial concentration gradients. When the membrane permeability is sufficiently low as
to become the limiting factor, no radial concentration gradients are established within the
packed bed, and a traditional 1D model is sufficient. It should be noted that this scenario is
becoming of increasing interest as membranes characterized by significantly high hydrogen
permeability are being developed [18].

The model was developed for a tube-in-tube reactor configuration, in which the total
reforming reaction

CH4 + 2H2O 
 CO2 + 4H2 (1)

takes place. The catalyst is considered to be placed in the annular volume between the two
concentric tubes. The outer wall is impermeable to all components, whereas a hydrogen-
permeable membrane is placed on the outer wall of the innermost tube. In Pd-based
membrane reactors, hydrogen selectivity is infinite, and permeation is described through
Sieverts’ law

Jh|membrane = Pm

(√
pr

H2
−
√

pp
H2

)
(2)

where Pm is the membrane permeability, and pr
H2

and pp
H2

are the partial pressures of
hydrogen in the retentate and permeate side, respectively. The latter quantity has been
set equal to zero, a condition that can be achieved in practice either by using high rates of
sweep gas or by creating vacuum conditions in the permeate side. The radii of the inner
and outer walls of the annular volume will be indicated by R1 and R2, respectively, from
here on. The main equations of the full 2D model are reported in Table 1, along with the
relevant boundary conditions, in both the dimensional and dimensionless forms.
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Table 1. Main equations and boundary conditions

Dimensional Formulation

Continuity, Momentum, and Mass
∇ · (ρv) = 0

v = − κ
µ∇P

∇ ·
(
− κ

µ f P ωi∇P− f PD · ∇ωi

)
= ri

Boundary conditions
z = 0 vz = U ωi = ω0

i

z = L P = PL
∂ωi
∂z = 0

r = R1
1
RT

(
− κ

µ∇P
)
· n1 = Pm

(√
ωh

Wh f P

)
1
RT

(
− κ

µ ωh∇P−D · ∇ωh

)
· n1 = Pm

(√
ωh

Wh f P

)
1
RT

(
− κ

µ ωi∇P−D · ∇ωi

)
· n1 = 0 , i 6= h

r = R2 ∇P · n2 = 0

1
RT

(
− κ

µ ωi∇P−D · ∇ωi

)
· n2 = 0

Dimensionless Formulation
Continuity, Momentum, and Mass

∇̃ ·
(

f̃ P̃∇̃P̃
)
= 0

ṽ = −Uc∇̃P̃

∇̃
(
− 1

β f̃ P̃ωh∇̃P̃− 1
Pe f̃ P̃D̃∇̃ωh

)
= r̃i

Boundary Conditions
z̃ = 0 ṽz = 1 ωi = ω0

i

z̃ = L/R1 P̃ = PL/Patm
∂ωh
∂z̃ = 0

r̃ = 1 1
β ∇̃P̃ · n1 = −γ

(√
ωh
f̃ P̃

)
(

1
β ωh∇̃P̃ + 1

Pe D̃ · ∇̃ωh

)
· n1 = −γ

(√
ωh
f̃ P̃

)
(

1
β ωi∇̃P̃ + 1

Pe D̃ · ∇̃ωi

)
· n1 = 0 i 6= h

r̃ = R2/R1 ∇̃P̃ · n2 = 0(
1
β ωi∇̃P̃ + 1

Pe D̃ · ∇̃ωi

)
· n2 = 0

n1 and n2 are local unit vectors normal to the surface and oriented outward the reaction volume.

The rate of methane consumption through the steam-reforming reaction may be
described through the expression proposed by Wei and Iglesia [19]:

rm = kpm(1− η) (3)
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where k is the reaction rate constant, pm is the partial pressure of methane, and the term
(1− η) quantifies the distance of the gas composition from the conditions of chemical
equilibrium so that η takes on the form

η =
P

Keq

y4
hyc

ymy2
w

(4)

It is worth noting that the mass and momentum balance equations are fully coupled
because velocity, as described by Darcy’s law for flow in porous media, is proportional to
pressure gradients, and the dependence on gas composition and the total pressure of the
mixture density have been considered.

The performance of these systems may be described through several parameters,
such as the permeate flow rate and hydrogen recovery. The latter parameter, defined in
Equation (5), is used here

Rh =
H2 permeate flow rate

H2 inlet flow rate
(5)

The maximum value of this parameter depends on the stoichiometry of the reaction
considered. In the present case, Rh would reach its maximum theoretical value if all
the methane fed to the system were to be converted to hydrogen and the latter were to
permeate completely

Rh,max = 1 + 4
FCH4,in

FH2,in

(6)

The main characteristic groups that derive from the dimensionless formulation of the
problem are the Peclet number

Pe =
Ulc
D (7)

which represents the ratio between the characteristic times of diffusion and convection; the
Damkholer number

Da =
RTklc

U
(8)

which gives the ratio between the characteristic times of convection and reaction and the
parameters γ and β that account for membrane permeability and pressure drops in the
packed bed, respectively,

γ =
PmRTP−1/2

atm
Wh

1
U

(9)

β =
κ

µ

Patm

lc
1
U

(10)

The value of β is usually in the order of 10−3, which indicates that under the commonly
adopted operating conditions, pressure drops are negligible. For this reason, the effect of β
is not investigated in the remaining part of this work. The dimensionless pressure at the
outlet will be referred to as α = PL/Patm from now on and will be taken as the reference
operating pressure.

For the purposes of this work, it is worth noting that D is the generally non-isotropic
dispersion tensor

D =

(
Drr 0
0 Dzz

)
(11)

whose terms account for the interaction between diffusion and the small-scale convective
flux related to the presence of the granular packing in the reactor. The effective Pe numbers
in the axial and radial directions are defined, respectively, as

Pee f f ,z =
lcDz

U
(12a)
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Pee f f ,r =
lcDr

U
(12b)

Based on the consideration reported in [20], the following relationship exists between the
effective and molecular Pe numbers

1
Pee f f ,z

=
1

τPe
+

δ

2
(13a)

1
Pee f f ,r

=
1

τPe
+

δ

12
(13b)

where τ is the tortuosity factor, usually set to
√

2, and δ is the ratio between the characteristic
dimension of the reactor, here chosen to be the difference between the outer and inner
reactor radii, lc = R2 − R1, and the dimension of the packed bed particles.

The fully coupled 2D model described has been validated against experimental data
available in the literature and has been found to be accurate over a wide range of operating
conditions. The advantages of a complex modelling approach of this kind are those of
providing interesting and useful insight on the mechanisms governing the performance
of membrane reactors and of allowing the correct prediction of the behaviour of these
systems, regardless of the values of the operating parameters. On the other hand, a high
computational effort is required. In this context, it is useful to develop simplified models
that nonetheless provide accurate information, at least in terms of integral quantities, such
as the overall rate of hydrogen production. In a previous work [15], an expression for an
enhanced Sherwood number, accounting not only for mass transfer by diffusion but also for
the effect of the hydrogen-producing reaction and hydrogen permeation, was developed.
The main assumptions made when developing such an expression were

1. Negligible axial dispersion;
2. Negligible radial convection;
3. Gas density independent of composition;
4. Excess steam in feed;
5. Local equilibrium conditions;
6. Infinite membrane permeability.

The assumptions that are most worthy of attention are those of infinite membrane
permeability and negligible radial convection and will be discussed in detail in the follow-
ing paragraphs.

3. Modelling Approach

The problem has been solved by considering that the ratio beetween the outer and
inner reactor radii is sufficiently low as to allow the use of Cartesian coordinates. The radial
coordinate has been rescaled as

x =
r− R1

R2 − R1
(14)

The first observation to be made is that, under the assumptions of uniform gas density,
i.e., independent of gas composition, and of constant pressure, along with the observation
that pressure drops in the reactor are negligible, the mass-average and molar-average
velocities are the same, and mass balance equations may be written in terms of molar
fractions. The mass balance equations for hydrogen and methane therefore read

∂yh
∂z
− ε

∂2yh
∂x2 = νhrm (15a)

∂ym

∂z
− ε

∂2ym

∂x2 = νmrm (15b)
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where ε = Drr
Pe , rm is the dimensionless rate of methane consumption, νh and νm are the

stoichiometric coefficients of hydrogen and methane and are equal to 4 and−1, respectively.
By defining the variable Y as the linear combination of the two molar fractions

Y = νhym − νmyh (16)

the problem can be reduced to
∂Y
∂z
− ε

∂2Y
∂x2 = 0 (17)

to be solved with the boundary conditions

Y|z=0 = Y0 = νhy0
m − νmy0

h (18a)

∂Y
∂x

∣∣∣∣
x=1

= 0 (18b)

Y|x=0 = 0 (18c)

Equation (18c) is derived from the combination of four of the assumptions made, namely
those of pp

h = 0, infinite membrane permeability, excess steam, and equilibrium conditions.
The first two assumptions allow us to say that the partial pressure of hydrogen on the
retentate side of the membrane must be zero. The latter two lead to the condition that
any time the hydrogen concentration goes to zero, so should that of the limiting reactant,
i.e., methane. The problem admits the following solution

Y = 2Y0
∞

∑
l=0

1
λl

exp
(
−λ2

l εz
)

sin(λl x) (19)

where λl =
π
2 (2l + 1).

3.1. Sherwood Number

The Sherwood number is the dimensionless parameter commonly used to determine
mass transport coefficients

Sh =

∂yh
∂r

∣∣∣
membrane

yh − yM
h

lc =
kclc
Der,H

(20)

where Der,H is the effective radial diffusion coefficient of hydrogen, yH is the average value
of the hydrogen molar fraction along the reactor’s cross-section, and yM

H is the value on the
membrane. In the present case, the hydrogen concentration profile in the reactor depends
on the combined effects of reaction, dispersion, convection, and permeation and therefore
cannot be derived from common expressions proposed in the literature, which generally
refer to situations in which there is neither reaction nor permeation.

It is possible to determine the expression of the Sherwood number from
Equations (19) and (20), while keeping in mind that the problem is being studied with
the assumption that yM

H = 0, as

Sh(z) = −2Y0 ∑∞
l=0 exp

(
−λ2

l εz
)

yh

1
νm

fin
Wh

(21)

The need to evaluate the average hydrogen concentration on the reaction cross-section,
< yh >, to obtain the Sherwood number would make the use of the latter meaningless.
It is, therefore, necessary to develop a simplified expression of the Sherwood number
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that is dependent only on the operating parameters. In [15], the following expression
was proposed

Sh(z) = Sh0

( z
z∗

)−0.45
(22)

Sh0 can be evaluated as

Sh0 = −2Y0 ∑∞
l=0 exp

(
−λ2

l εz∗
)

y0
h

1
νm

fin
Wh

(23)

where z∗ can be any value z > 0, and the approximation has been made that yh(z∗) = y0
h.

3.2. 1D Model

The expression for the Sherwood number reported in Equation (22) may be used in
the following 1D model

dF̃h
dz̃

= 4DaPym(1− η)− 1
σ− 1

Sh(z̃)
Pee f f ,r

yh (24a)

dF̃m

dz̃
= − DaPym(1− η) (24b)

dF̃w

dz̃
= −2DaPym(1− η) (24c)

dF̃c

dz̃
= DaPym(1− η) (24d)

where Fi is the molar flux of the i-th components, and the molar fractions appearing in
Equation (24a–d) are evaluated as

yi =
Fi

∑nc
j=1 Fj

(25)

and σ is the ratio between the outer and inner radii of the reactor, i.e., σ = R2/R1.

4. Discussion of Simplifying Assumptions
4.1. Infinite Membrane Permeability

In a previous work by some of the same authors [17], it was found that the behaviour
of membrane reactors for the production of pure hydrogen can be divided into two main
regimes: one in which the transport of hydrogen in the radial direction is limited by the
membrane itself and one in which the resistance to mass transport within the packed bed is
limiting. The existence of such regimes can be easily identified by examining the change in
the slope of the curves of the hydrogen permeate flow rate vs. pressure under conditions of
constant inlet velocity. The range of operating conditions for which it is possible to say that
the behaviour of the system is limited by transport within the packed bed was identified
in the previously cited work. When these conditions are met, it is possible to say that the
membrane permeability is “infinite”, meaning that it offers no appreciable resistance and
that the hydrogen concentration on the membrane wall always goes to zero. Generally
speaking, the resistance to mass transport across the membrane becomes negligible in
comparison to that of mass transport in the packed bed when the characteristic time of
permeation is significantly lower than that of dispersion, i.e., when the product

Pee f f ,r × γ =
Pm

Dr

lcRTP1/2
atm

Wh
(26)

is significantly greater than unity. To precisely identify the range of operating conditions
in which membrane permeability may be considered virtually “infinite”, the behaviour



Membranes 2021, 11, 805 8 of 14

of the reactor was studied under a wide range of operating conditions in [17]. The space
of operating parameters for which membrane resistance could be neglected is reported
in Figure 1 of the same work and is summarized here in Table 2. Under realistic operating
conditions, the product Pee f f ,r × γ takes on values between 20 and 50. It is clear that as
the value of this parameter increases, the range of pressures in which the performance
of the reactor is limited by transport within the packed bed becomes wider. Note that
the Damkholer number is not reported because local equilibrium conditions are always
assumed. In any case, for this latter assumption to be valid, the value of Da should always
be greater than unity.

Table 2. Range of operating conditions in which the membrane reactor operates in a transport-
controlled regime.

Pee f f ,r × γ P (atm)

6 <1.2
13 <3.5
26 <10
50 <11

Figure 1 shows the hydrogen recovery, Rh, as a function of operating pressure.
The curves have been evaluated for two different values of γ, namely 1 and 3, and for Da
and Pe numbers equal to 1 and 100, respectively. With these sets of operating parameters,
the product Pee f f ,r × γ is greater than 50; therefore, it should be possible to neglect the
resistance offered by the membrane for pressure values lower than 11 atm. This assump-
tion is supported by the fact that the two curves show little to no difference for pressures
varying between 1 and 10 bar and that the difference is lowest for the lower values of
pressure considered.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

 1  2  3  4  5  6  7  8  9  10

R
h

P [atm]

Figure 1. Hydrogen recovery, Rh, vs. pressure for a reactor operating with Da = 1, Pe = 100, and
γ values of 1 (triangles) and 3 (circles).

4.2. Effect of Radial Convection

If one were to consider a one-dimensional problem, the mass balance equations of
hydrogen and methane would read

∇ · Nh = νhrm (27a)

∇ · Nm = νmrm (27b)

where Nh and Nm are the total fluxes of hydrogen and methane, respectively. Once again, it
is possible to analyse the problem in terms of the linear combination of the molar fractions
of hydrogen and methane

Y = νhym − νmyh (28)



Membranes 2021, 11, 805 9 of 14

thus obtaining
∇ · NY = 0 (29)

For the generic i-th component, the total mass flux can be expanded as

Ni = −DimcTOT
dyi
dx

+ yi

nc

∑
j=1

Nj (30)

where cTOT is the overall molar concentration of the mixture, which is assumed to be
uniform, and Dim is the dispersion coefficient of the i-th component in the mixture, which
is considered to be the same for all the components present. The sum of the radial flux for
all components, ∑nc

j Nj, is equal to the radial velocity and may be rewritten as

nc

∑
j=1

Nj = (1 + r)NY (31)

where r is the ratio between the sum of radial mass fluxes of all components and NY
and can be considered to be constant. Rewriting Equation (30) for the variable Y, taking
into account Equation (31), yields

NY[1− (1 + r)Y] = −DYcTOT
dY
dx

(32)

which can be easily integrated between x = 0 and x = δ, resulting in the following
expression for the concentration profile

Y = Y0 + (Yδ −Y0)
eφx/δ − 1

eφ − 1
(33)

where Y0 and Yδ are the values of Y in x = 0 and x = δ, respectively, and

φ =
NY(1 + r)δ
DYcTOT

(34)

The diffusive flux in x = 0 is given by

−DYcTOT
dY
dx

∣∣∣∣
x=0

= −DYcTOT
δ

(Yδ −Y0)
φ

eφ − 1
(35)

meaning that the Sherwood number, defined in Equation (20), is corrected by a factor

f (φ) =
φ

eφ − 1
(36)

It is worth noting that
lim
φ→0

f (φ) = 1 (37)

which returns the expected result that when the radial velocity is low, the flux is purely
diffusive.

The final expression of the Sherwood number should therefore be

Sh(z) = Sh0

( z
z∗

)−0.45 φ

eφ − 1
(38)

where Sh0 is unchanged with respect to the expression reported in Equation (23). From
Equation (34), it is possible to see that φ is none other than a radial Peclet number, i.e., de-
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fined based on the radial velocity. The Peclet number used in the previous sections of this
work is defined with respect to the axial velocity; therefore, it is possible to define φ as

φ = Pe
vr

vz
(39)

Figure 2 shows the ratio between radial and axial components of velocity within the
reactor under different operating conditions. It can be seen that the radial component
of velocity is most significant in the region close to the reactor inlet, where it weighs
about 10% of the axial velocity. Past the first 10% of the reactor length, the importance of
radial convection drops significantly. Considering values of Pe ranging between 10 and
50, the maximum value of φ can vary between 0.1 and 0.5, and the correction factor varies
between 0.95 and 0.78, suggesting that, under such range of operating conditions, radial
convection may be neglected without committing significant errors in the evaluation of Sh
and, consequently, of the flow rate of permeating hydrogen.

(a)

-0.25
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-0.15

-0.10

-0.05

0.00

 1  1.2  1.4  1.6  1.8  2

z

v
r/

v
z

R
2
/R

1

(b)

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

 1  1.2  1.4  1.6  1.8  2

z

v
r/

v
z

R
2
/R

1

(c)

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

 1  1.2  1.4  1.6  1.8  2

z

v
r/

v
z

R
2
/R

1

(d)

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

 1  1.2  1.4  1.6  1.8  2

z

v
r/

v
z

R
2
/R

1

(e)

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

 1  1.2  1.4  1.6  1.8  2

z

v
r/

v
z

R
2
/R

1

(f)

-0.25

-0.20
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-0.10

-0.05
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z

v
r/

v
z

R
2
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1

Figure 2. Ratio between the radial and axial components of velocity at 0.1, 10, 20, 30, 40, 50, 60, 70, 80,
and 90% of the reactor length evaluated for γ = 5, Da = 1, and (a) Pe = 20, P = 1 atm (b) Pe = 20, P
= 10 atm, (c) Pe = 50, P = 1 atm, (d) Pe = 50, P = 10 atm, (e) Pe = 100, P = 1 atm, and (f) Pe = 100,
P = 10 atm.
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5. Results

The 1D described in the previous paragraph was employed to evaluate the hydrogen
recovery, defined in Equation (5), for values of Pe ranging from 20 to 100 and Da = 5.
In Figure 3, these results were compared with those obtained from the fully coupled 2D
under the same operating conditions and with γ = 5. It should be noted that lowering the
value of γ to 1 does not lead to noticeable changes in the recovery predicted from the 2D
model, as discussed in Section 4.1. For the 1D model, the flow rate of hydrogen permeating
across the entire length of the reactor was evaluated as

H2 permeate flow rate = H2,in − H2,out + 4(CH4,in − CH4,out)︸ ︷︷ ︸
H2 produced

(40)
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Figure 3. Hydrogen recovery vs. pressure evaluated through the full 2D model (solid lines) and 1D
model with enhanced Sherwood number (dashed lines) at Da = 5, γ = 5, and Pe values of 20, 30, 40,
50, 70, and 100.

It can be clearly seen that the recovery predicted from the simplified one-dimensional
model is very close to that obtained from the two-dimensional model in which the different
mass transport mechanisms were explicitly accounted for. As expected, the agreement is
best for higher values of Pe and lower values of operating pressure, when dispersion signif-
icantly limits the transport of hydrogen in the radial direction. For instance, the deviation
between the predicted recovery values is always lower than 5% at Pe = 100. In any case,
even for the worst-case scenario, i.e., low Pe and high pressures, the error in the recovery is
l always lower than 10%. When considering the entity of this deviation, it is important to
remember the significantly reduced computational cost of the 1D model with respect to its
2D counterpart and, most importantly, of the effort required to develop an accurate fully
coupled 2D dimensional model.

To appreciate the effect of evaluating the enhanced Sherwood number as conducted
in the present work, i.e., accounting for the effect of a reaction and of a permeable
membrane, Figure 4 shows a comparison of the recovery predicted with the full 2D model,
the 1D model with the enhanced Sherwood number, and a 1D model in which the Sher-
wood number is set to fixed values of 3.66 and 7.75, as suggested in [21]. For the sake of
clarity, the comparison has only been shown for a Pe value of 50, and all other conditions
have been set to be equal to those of the results reported in Figure 3. It is clear that the
enhanced Sherwood number obtained in the present work allows for a better prediction of
hydrogen recovery in the steam-reforming reactor. In addition, it is evident that the effect
of pressure needs to be taken into account explicitly.
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Figure 4. Comparison of hydrogen recovery vs. pressure evaluated through the full 2D model (solid
line) and 1D model (dashed lines) with the enhanced Sherwood number (dashed lines) and the 1D
model with fixed values of Sh of 3.66 and 7.75 at Da = 5, γ = 5, and Pe = 50.

6. Conclusions

Membrane reactors are inherently two-dimensional systems due to the transport of the
permeating species in the direction perpendicular to that of the main gas flow. At the same
time, the simultaneous presence of different transport mechanisms, namely convection,
dispersion, reaction, and permeation, does not allow the use of traditional correlations
for mass transfer coefficients. The description of membrane reactors, therefore, requires
the use of 2D models or 1D models making use of mass transfer coefficients evaluated
specifically for these systems. The present work presents the development of one such
correlation, along with a discussion of the simplifying assumptions made, and of the
operating conditions under which they are valid. The work was developed for the case of
methane steam reforming but may be extended to other reacting systems. It was shown that
the behaviour predicted by the 1D model with the proposed expression for the Sherwood
number follows that of the 2D model closely, in which the different transport mechanisms
are explicitly accounted for. Under the same operating conditions, the use of Sherwood
numbers proposed for packed bed reactors leads to significant deviations between the
results predicted with 2D and 1D models. A useful tool is therefore developed to assess
the performance of membrane reactors with a high precision and low computational cost.
Future research should be directed in the development of a model that also accounts for
the thermal effects of the reaction and reactor heating.
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Abbreviations
al

M membrane area per unit length of reactor (m)
D diffusion coefficient (m2/s)
D effective dispersion tensor (m2/s)
f average molar weight (kg/mol)
Ih inlet flow rate of hydrogen (kgH2 /s)
Jh hydrogen mass flux (kgH2 /(m2· s))
k rate constant of the methane reforming reaction (mol/(m3 · s ·Pa))
Keq equilibrium constant of the methane reforming reaction (Pa2)

L reactor length (m)
n unit vector normal to the membrane surface (−)
Ni total molar flux of the i-the component (mol/m2s)
P pressure (Pa)
Pi partial pressure of the i-th component (Pa)
PL outlet pressure (Pa)
Pm membrane permeability (kgH2 /(m2 · s· Pa0.5))
r radial coordinate (m)
ri volume-specific mass rate of production of the i-th component (kg/(m3· s · Pa))
R gas constant (J/(mol · K))
Rh hdyrogen recovery
R1 inner reactor radius (m)
R2 outer reactor radius (m)
rm volume-specific molar rate of methane consumption (mol/(m3 · s· Pa))
S reactor cross-section (m2)

Sh Sherwood number [−)
T temperature (K)
U inlet gas velocity (m/s)
v mass average velocity (m/s)
Wi molar weight of the i-th component (kg/mol)
x re-scaled radial coordinate x = (r− R1)/(R2 − R2)
y molar fraction (−)
Y linear combination of hydrogen and methane molar fractions (−)
z axial coordinate
Greek Symbols
β ratio between characteristic and inlet velocities(κPatm/(µR1U)) (−)
ε D̃rr

Pe
η proximity to reaction equilibrium (−)
κ packed bed permeability (m2)

µ gas viscosity (Pa · s)
ρ gas density (kg/m3)
ρi density of the i-th component (kg/m3)
σ geometric ratio, R2/R1
νi stoichiometric coefficient of the i-th component (−)
ωi mass fraction of the i-th component (−)
Ω linear combination of hydrogen and methane mass fractions (−)
Dimensionless Parameters
Da Damkholer number (RTkR1/U)
D̃rr dimensionless radial dispersion (Drr/D)
D̃ dimensionless dispersion (D/D)
Pe Peclet number (UR1/D)
α dimensionless outlet pressure (PL/PU)

γ dimensionless permeability parameter
(
PmRTP−1/2

atm /WhU
)

Subscripts and Superscripts
c carbon dioxide
h hydrogen
m methane
w water
M membrane
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