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Abstract—The environmental monitoring task has greatly benefited
from the improvements achieved in the robotics field. The enhance-
ment of navigation and control algorithms, together with the use of
performing, small and low-cost sensors, allows in fact to reduce the
implementation costs while improving the system reliability. This is
strongly supported by the developments of embedded hardware, smart
computing devices able to collect and process data in real-time and
in low-resource settings. Following the results obtained by DOES, this
work aims at putting another step towards its deployment in live
scenarios: we propose a study on the performances of DOES tested
on embedded systems, using lighter backbone architectures and model
optimization techniques.

Index Terms—Deep Learning, Deep architecture optimization, En-
vironmental monitoring, Embedded systems, Orientation Estimation.

I. INTRODUCTION

In the last decades, particular emphasis has been placed upon
the sustainable and effective monitoring of the environment. In this
context, research strategies and technological improvements assume
an essential role and are greatly benefiting from the enhancements
of robotic systems. Autonomous and Remotely Operated Vehicles
allow in fact for a complete understanding of the environment,
thanks to the different sensors mounted onboard, and can assist
or replace the operators depending on the mission objective and
risk level as in the case of anti-mine operations or, especially
underwater, surveys characterized by long execution times. For
this reason, researchers continue to deepen their study towards
more advanced solutions with the aim of maximizing the missions
productivity whilst keeping low operational costs. In this regards,
recent studies and applications proved the robustness of low-cost
technologies, confirming their potential in the development of
sensing systems able to provide accurate spatial and temporally

disperse data. Among the others, the orientation estimation task
(at the core of a correct positioning of the vehicles) is now
exploited through the Attitude and Heading Reference System
(AHRS), which is a cost-effective device integrating the measures
of gyroscopes, accelerometers and magnetometers to output the
vehicle orientation. The attitude estimation techniques based on
low-cost sensors are in continuous development, leveraging on the
combined use of inertial and visual data to improve the final system
accuracy. In this context, the impressive results obtained by Deep
Learning (DL) with its Deep Neural Networks are contributing to
enforce these integrated systems, thanks to their great robustness to
camera parameters and challenging environments. Moreover, in this
era of smart devices, further importance is being given to embedded
technologies, electronic or electro-mechanical systems on which
microprocessors and microcontrollers are mounted: they can be
properly be considered as small computers, as they can perform
real-time tasks on the basis of sensors and output actuators [1].
In particular, the former typically examines the behavior of the
environment it is placed within and sends the information to an
embedded microcontroller system. The actuator then responds to
this input performing the required task on its basis and can thus
be considered as the output device. can be categorized on the basis
of their processing power, cost, architecture and functionality. The
small-scale devices, with their 8- or 16- bit architecture and 5V
battery power, are successfully employed as the core systems of
small-scale robots; in the last years, sensible improvements have
been reached on their technology, and these embedded systems are
now able to run Deep Learning algorithms in real-time. This work
follows the project of DOES [2], a DL based model which aims
at improving the attitude estimation at sea and further providing a
smart, light-weight and low-cost embedded system to support real-



time orientation determination and different monitoring operations
of vehicles and robots at sea. In particular, this paper presents:
(i) the results of a survey made on the backbone architecture of
DOES in view of the recent models developments, searching for
enhancements in its structure and weights to improve the inference
speed and accuracy; (ii) the study of performance modifications
while applying speed-up techniques on the backbone architecture;
(iii) the analysis of inference speed on Nvidia embedded devices,
with the final aim to deploy DOES on a vehicle in real-time.
Section II presents a brief overview of the current literature, with an
emphasis on the current DL solutions like DOES and on the state
of the art devices capable of DL inference. Section III contains
the methodologies at the basis of the model enhancements, and
discusses the characteristics of the embedded devices. Section IV
shows the experiments and some preliminary results with Section
V concluding with some final considerations.

II. RELATED WORKS

With the aim of providing a supportive visual-based, low-cost
technique for attitude estimation, DOES has been developed as a
new DL model which outputs the angle of roll and pitch through the
processing of the sea horizon view recorded by a low-cost camera.
DOES can be combined to a low-cost IMU-based configuration
and does not need to take into account camera models or related
calibration issues [3].

However, one of the main challenges of DL is the need of huge
computation resources: the Graphical Processing Unit (GPU) has
been always considered as the best choice by virtue of its high
parallelism processing, large integrated memory and bandwidth
[4]. The demand for low-consumption, small and inexpensive
devices capable of running deep methods drove the development
of embedded processing units suitable for mobile robotics and in
general small- and medium-scale applications. Some examples of
those devices are the Raspberry Pi [5], the Google Coral TPU [6]
and the NVIDIA Jetson™ platforms [7].

Researchers in [8] compared the performances of different single-
board computers/embedded devices, obtaining that Raspberry Pi
generally provides low power and energy saving performance, but
the NVIDIA Jetson platforms get higher performance thanks to
their higher speed GPUs.

Several studies have been conducted on these platforms; for ex-
ample, Basulto-Lantsova et al. [9] performed a comparison between
the Jetson Nano and TX2 development kits, when implementing
the Template Matching method, in order to get an evaluation
criterion to select one of them in image processing projects. The
Jetson Nano showed two times lower performance, with the TX2

Fig. 1. DOES development workflow [2].

obtaining higher efficiency also on other CNN (Convolutional
Neural Network) architectures. The Nvidia Jetson TX2 and the
Intel Movidius [10] single- board computers have been tested with
some of the most popular DL architectures for object detection
(i.e., YOLO, SSD, RCNN, R-FCN and SqueezeNet) using both
the CPU and the GPU [11]. Researchers in [12] evaluated the
parallel computing performance on Jetson TX1 and Raspberry Pi:
the TX1 has been observed to be more effective with a low energy
consumption, while the Pi long execution times make it unsuitable
for high performance processes.

III. METHOD

DOES is a deep model for orientation estimation which takes as
input an RGB image containing the horizon line at sea and produces
as output an estimation of the device roll and pitch angles (Fig. 1).

The main component of DOES is a deep neural network, trained
on Pytorch framework, which produces a set of visual features
taken as input by two fully connected layers (FC) for the angles
regression task. The ResNet18 deep model has been chosen among
the others as the default DOES backbone since it produced the
best accuracy while keeping a fast inference speed. The backbone
has been trained using a standard fine-tuning procedure: the model
convolutional kernels were pre-trained on ImageNet dataset while
the FC layers have been trained from scratch. Both convolutional
and FC layers have been trained using the Adam optimizer [13] and
a fixed learning rate set to 0.001 using a standard Mean Square Error
Loss (squared L2 norm). The ROPIS dataset [2] has been used for
the training: it contains 22173 images of the sea horizon acquired
in different locations and environmental conditions.

Starting from the DOES default architecture as baseline model,
we performed an optimization for its deployment on the Nvidia
Jetson TX1 and Jetson Nano embedded systems. This has the aim
of assessing their suitability for being mounted on a robotic vehicle



as operative supporting system for different monitoring operations
at sea.

A. Nvidia Jetson embedded systems

DOES has been originally tested on a traditional workstation
equipped with an i7 core CPU and a Nvidia Titan X GPU,
characterized by plenty of computational power and GPU memory.

The Nvidia Jetson TX1 is an embedded system-on-module built
around the NVIDIA Maxwell™ GPU architecture with 256 CUDA
cores delivering over 1 TeraFLOPs of performance. The CPU is a
Quad-Core ARM Cortex-A57 MPCore, with 4GB 64-bit memory.
The Nvidia Jetson Nano is a more recent, entry-level board of
the NVIDIA Jetson ecosystem: a small, unexpensive and powerful
single-board with the same characteristics of the TX1 except for the
GPU, which has instead 128 CUDA cores. For both the hardwares
a development kit supported by NVIDIA gives support for many
common APIs and Deep Learning frameworks and runtime (e.g.
Pytorch, Tensorflow, ONNX).

B. Fast-inference backbones

As previously mentioned, DOES model is composed of a pre-
trained CNN backbone and two additional FC layers to output the
roll and pitch estimates. The ResNet18 model has been originally
chosen as the default DOES backbone by virtue of its good
performances over a lower number of trainable parameters (11M ).
However, to further improve both the inference speed and the power
complexity requirements, two more lightweight models have been
tested: the MobileNetV3 [14] and the EfficientNet b0 [15].

ResNet [16] is a family of deep models based on the residual
architecture. It is made of a series of residual blocks in which
the feature maps calculated by the convolutional layers are added
to the input, so that each residual block calculates an update
(hence residual) of the input feature maps. This approach makes the
network resilient to the vanish gradient problem [17], improving
both the convergence speed and the final accuracy. Moreover,
all the ResNet models avoid the use of the FC layers after
the convolutional blocks, reducing the total number of trainable
parameters and thus lessening the overfitting effect on training
data. MobileNets introduced the depthwise separable convolutions,
which can effectively factorize traditional convolutions by sep-
arating spatial filtering from the feature generation mechanism.
Depthwise separable convolutions are defined by two different
layers: a light weight depthwise convolution for spatial filtering and
a heavier 1x1 pointwise convolutions for feature generation. The
MobileNetV3, in particular, uses a combination of these layers with
those introduced by the MobileNetV2 [18] and the MnasNet [19] as

building blocks to improve the effectiveness of the model. More in
detail, the MobileNetV2 uses linear bottleneck and inverted residual
structure to define the structure with a 1x1 expansion convolution
followed by depthwise convolutions and a 1x1 projection layer.
Moreover, the input and output are connected with a residual
connection if and only if they have the same number of channels.
This structure maintains a compact representation at the input and
the output while expanding to a higher-dimensional feature space
internally to increase the expressiveness of nonlinear perchannel
transformations. The MnasNet takes inspiration by the previous
model and further introduces lightweight attention modules based
on squeeze and excitation into the bottleneck structure. In the
expansion, this module follows the depthwise filters to apply the
attention on the largest representation.

The EfficientNet family achieves great performances by uni-
formly shaping depth, width, and resolution while scaling down the
model. This allows to balance all the dimensions of the network
with respect to the available resources, thus effectively improving
the overall performance. We tested the b0 version as it is the
smallest model w.r.t. the number of parameters.

The main building block of this architecture is the inverted
bottleneck MBConv, which was first introduced in the MobileNetV2
as it noticeable increases the FLOPS (floating point operations per
second) budget. Moreover, EfficientNet is much smaller than the
other models: there is a total of 8 models between B0 and B7, in
which the number of parameters slightly increases with the model
number but does not affects the performances. For example, the
ResNet50 model with its 23.5M parameters still underperforms the
smallest EfficientNet (the EffecientNet-B0, which will be used in
this work), which only has 5.3M parameters in total, when testing
on standard benchmark datasets like ImageNet [20].

In the experiments presented in this work, all the networks have
been fine-tuned on the proposed ROPIS dataset starting from the
ImageNet [21] pre-trained weights. The ResNet18 has been chosen
among the others as the default DOES backbone since it produced
the best accuracy while keeping at the same time a fast inference
speed. Fig. 1 reports the DOES network with the default ResNet18
backbone.

C. Model modification and conversion

The Open Neural Network Exchange (ONNX) is an open format
created for deep models interoperability. Most of the available Deep
Learning frameworks (e.g. Pytorch, Tensorflow, Mxnet) allow to
export to the ONNX format, which performs a series of neural
network graph optimization in order to get a compact, fast model
representation which can be run on heterogeneous devices. Among



the ONNX optimizations, the fusion of convolutional, activation
and batch normalization layers into a single integrated layer is
the one which can provide the major speed-up in the inference
phase. As several ONNX runtime backends are available for the
inference execution, we have chosen the CUDA Provider and the
CPU Provider to be run the GPU and the CPU respectively.

The Pruning technique is a simple approach for model param-
eters reduction. It consists in removing the convolutional and FC
weights which show the minimum output variance. This usually
has a small impact on the overall network performances, but
produces a sparse matrix which further requires an optimized
sparse calculation framework to fasten the inference. Among all the
possible methods developed in the scientific literature, we exploited
a simple unstructured Pruning technique [22], with a Pruning factor
of 0.5 for a 50% reduction of the number of parameters.

Model Compression tries to reduce the model number of pa-
rameters by changing the network shape and structure. One of the
most promising techniques is based on the low rank tensor approx-
imation, consisting in the layer weights decomposition through a
Tucker function and a further substitution with a block of smaller
layers obtained by minimizing a Frobenius norm [23] [24].

IV. EXPERIMENTS AND RESULTS

Table I reports the performances of the ResNet18, MobileNetV3
end EfficientNet b0 backbones of DOES both with Pytorch and
ONNX frameworks. The three networks produce good accuracy
estimations, with a Mean Absolute Error (MAE) around 2.0; the
ResNet18 performs slightly better than the others, with a difference
in the MAE of 0.1− 0.2 points.

The inference speed is measured as processed frames per second
(fps), and does not consider the data loading phase. Both the
error and the speed results are the mean values calculated over
ten runs. The ResNet18 obtains the best inference speed on the
Nvidia GPU workstation, with a fps that is 2.5x and 3.3x faster than
the MobileNet and the EfficientNet respectively. This speeding up
could have benefited from the small number of convolutional layers
and the high number of convolutional features per layer, which
positively impact on the parallelism. Similar considerations can be
made on the embedded platforms (for brevity, we here report the
Jetson TX1 results), where the default ResNet18 is sensibly faster
both on the GPU and the CPU, with the MobileNet and EfficientNet
unable to reach one frame per second on the ARM CPU. However,
a different scenario is obtained when taking into account the model
conversion to ONNX format. In this optimized representation, the
models get an average speed-up of 100x-1000x which enables fast
inference for all the considered hardwares. For this reason we highly

recommended the ONNX conversion before the model deployment
on embedded systems.

TABLE I
DOES RESULTS ON THE TESTED BACKBONES, IN TERMS OF MEAN ABSOLUTE
ERROR(MAE) ON ROLL AND PITCH ANGLES AND FRAMES PER SECOND (FPS).

(O) INDICATES THE RUN ON THE ONNX FRAMEWORK.

Backbone
MAE Workstation Jetson TX1

Roll Pitch GPU fps GPU fps CPU fps

Resnet18 1.73 1.89 184.77 29.95 3.01

MobileNet 1.93 2.01 87.71 13.01 0.30

EfficientNet 1.80 2.21 58.51 9.02 0.09

(O) Resnet18 1.73 1.89 22727.26 2881.84 334.56

(O) MobileNet 1.93 2.01 22026.43 3436.42 1626.01

(O) EfficientNet 1.80 2.21 20000.19 1904.76 431.03

Table II shows the results of the different modifications applied
to the backbone models after ONNX conversion. The Pruning has
a negative impact on the evaluation metrics (especially on the pitch
angle), without introducing any improvement in the inference phase.
This is probably due to the inefficient sparse tensor calculations of
both the deep learning frameworks and the current hardware, which
are developed around the concept of dense matrix operations. The
Compression approach is able to significantly reduce the number of
matrices operations by splitting the original layers in an increased
number of smaller layers. This technique produces a remarkable
speed improvement when applied on the ResNet/CPU combination,
while it fails to converge on the MobileNet. In general this
modification comes with a small increase of error. Unfortunately,
the EfficientNet powerful pretrained features do not correspond
to a consistent decrease of the MAE produced by DOES, and
its smart structure is not reflected into faster estimations: for this
reason, the EfficientNet b0 is not the suggested choice for the real-
time orientation estimation of DOES. Finally, all the tested models
require a memory allocation ranging between 2GB and 3GB, which
makes them able to run on the considered 4GB embedded systems.

V. CONCLUSIONS

This work presents the preliminary results of a number of exper-
iments made to enhance DOES in its deployment on embedded de-
vices, in particular those of the NVIDIA Jetson series. DOES has in
fact been developed as a supportive low-cost technology to improve
the vehicle attitude estimation and the related monitoring operations
at sea, thus requiring affordable and robust embedded platforms. In
the light of the obtained results we strongly recommend the use



TABLE II
DOES RESULTS ON THE UNMODIFIED BACKBONES, REPRESENTED BY THEIR

FIRST LETTER NAME (R,M,E), COMPARED WITH THE CORRESPONDING MODEL
AFTER PRUNING OR COMPRESSION ENHANCEMENT. ALL THE RUNS ARE

PERFORMED ON THE ONNX FRAMEWORK.

Method
MAE Workstation Jetson TX1

Roll Pitch GPU fps GPU fps CPU fps

(R) Original 1.73 1.89 22727.26 2881.84 334.56

(R) Pruning 2.10 7.16 22727.18 2881.84 332.22

(R) Compression 2.13 2.61 22222.24 3039.51 698.81

(M) Original 1.93 2.01 22026.43 3436.42 1626.01

(M) Pruning 4.94 5.34 22727.27 3436.42 1579.77

(M) Compression - - - - -

(E) Original 1.80 2.21 20000.19 1904.76 431.03

(E) Pruning 3.19 9.80 20120.72 1904.76 431.03

(E) Compression 3.11 3.68 19417.47 1953.12 536.19

of the ONNX format for any of the proposed backbones; in this
context, the ResNet18 produces the lowest estimation error while
the MobileNetV3 shows the fastest inference speed. The latter has
a high-speed estimation throughput even on the low powered ARM
CPU of the Jetson modules, making it a valuable candidate also for
other embedded devices (e.g., smartphones, Raspberry systems).

At the same time, the other model enhancements produce mixed
results, with the compression technique being able to improve the
inference speed only on sequential computation hardware such as
the Jetson TX1 and Nano ARM CPU, while failing to produce
a stable model on the MobileNet. Finally, the Pruning technique,
despite being easy to use, does not provide any speed improvement
due to the lack of sparse tensors calculations support. Future works
will focus on the development of new model reduction techniques
compatible with the MobileNet and ResNet architectures. The quan-
tization approach will also be deepened as it could provide similar
estimation accuracy at a fraction of the memory consumption:
this will give the possibility to simultaneously run DOES with
different cameras on the same device, thus improving the reliability
of the estimations. Moreover, the high framerate obtained in the
experiments unlocks the future development of deeper and more
complex models, with a further increase in the estimation accuracy.
These modifications will positively impact the robustness of DOES
towards its deployment as a low-cost supportive technology for an
advanced environmental monitoring system.
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