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Abstract
1.	 Camera-traps are valuable tools for estimating wildlife population density, and 

recently developed models enable density estimation without the need for in-
dividual recognition. Still, processing and analysis of camera-trap data are ex-
tremely time-consuming. While algorithms for automated species classification 
are becoming more common, they have only served as supporting tools, limiting 
their true potential in being implemented in ecological analyses without human 
supervision. Here, we assessed the capability of two camera-trap based models 
to provide robust density estimates when image classification is carried out by 
machine learning algorithms.

2.	 We simulated density estimation with Camera-Trap Distance Sampling (CT-DS) 
and Random Encounter Model (REM) under different scenarios of automated 
image classification. We then applied the two models to obtain density estimates 
of three focal species (roe deer Capreolus capreolus, red fox Vulpes vulpes and 
Eurasian badger Meles meles) in a reserve in central Italy. Species detection and 
classification was carried out both by the user and machine learning algorithms 
(respectively, MegaDetector and Wildlife Insights), and all outputs were used to 
estimate density and ultimately compared.

3.	 Simulation results suggested that the CT-DS model could provide robust density 
estimates even at poor algorithm performances (down to 50% of correctly classi-
fied images), while the REM model is more unpredictable and depends on multiple 
factors. Density estimates obtained from the MegaDetector output were highly 
consistent for both models with the manually labelled images. While Wildlife 
Insights' performance differed greatly between species (recall: badger = 0.15; roe 
deer = 0.56; fox = 0.75), CT-DS estimates did not vary significantly; on the con-
trary, REM systematically overestimated density, with little overlap in standard 
errors.

4.	 We conclude that CT-DS and REM models can be robust to the loss of images 
when machine learning algorithms are used to identify animals, with the CT-DS 
being an ideal candidate for applications in a fully unsupervised framework. We 
propose guidelines to evaluate when and how to integrate machine learning in 
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1  |  INTRODUC TION

Population abundance is a key parameter in ecology and conserva-
tion (Callaghan et al., 2024). In the last decades, the need for exten-
sive and continuative monitoring across space and time has led to 
a growing employment of camera-traps as a surveying tool (Delisle 
et al., 2021). These devices are a non-invasive, cost-effective solu-
tion for monitoring mammals in a wide variety of habitats, land-
scapes and conditions, and near-continuously over long periods of 
time (Kucera & Barrett, 2011). A key advantage of camera-traps is 
the possibility of simultaneously collecting data over a wide range 
of species including nocturnal and elusive mammals, enabling multi-
species surveying programs which are particularly relevant for pop-
ulation and community ecology studies and management efforts 
(Ahumada et al., 2013; O’Brien et al., 2010). Initially, camera-traps 
applications for estimating population density were limited to spe-
cies that could be individually recognized, with the initial deploy-
ment of capture-recapture models (Karanth & Nichols,  1998), and 
later spatially explicit capture-recapture models (Royle et al., 2009). 
Those models required either to actively mark animal, which would 
increase the human effort and costs necessary to estimate abun-
dance and compromise the non-invasive potential of camera-
trapping. Alternatively, individual identity could be obtained by 
exploiting natural markings such as fur patterns, hence limiting the 
applications of those models to a small subset of species (mostly fe-
lids; Foster & Harmsen, 2011). Recently, however, there has been a 
surge of statistical models for estimating population density with-
out the need for individual recognition, such as Random Encounter 
Model (REM; Rowcliffe et  al.,  2008), Spatial Counts (Chandler & 
Royle,  2013; Evans & Rittenhouse,  2018), Camera-Trap Distance 
Sampling (CT-DS; Howe et  al.,  2017), Random Encounter and 
Staying Time (Nakashima et  al.,  2018), Time-To-Event and Space-
To-Event (Moeller et al., 2018), Time In Front of the Camera model 
(Huggard, 2018; Warbington & Boyce, 2020) and species' space use 
model (Luo et al., 2020).

Yet, applying these approaches requires intensive manual labour. 
Camera-trapping produces substantial volume of data, which re-
quires a considerable amount of manual work to filter relevant mate-
rial and extract all key parameters for population density estimation. 
Consequently, much attention has been directed towards the devel-
opment of machine learning algorithms (specifically, deep learning; 
Wäldchen & Mäder, 2018) for automated image processing (Vélez 
et  al.,  2023). These algorithms are trained on vast pre-processed 

datasets to perform specific tasks that would otherwise be per-
formed manually (Green et al., 2020). Examples include the removal 
of images not containing animals (Beery et  al.,  2019), counting 
the number of individuals (Norouzzadeh et  al.,  2018) and species 
(Rigoudy et al., 2023; Tabak et al., 2020) or individual animal iden-
tification (Cheema & Anand, 2017). Despite the variety of machine 
learning models developed to support data processing in camera-
trapping studies, their implementation in real monitoring contexts 
remains largely unexplored. Most published studies have evaluated 
their performance in different ecological contexts to assess their 
transferability (Tabak et al., 2020; Vélez et al., 2023). Several studies 
showed suboptimal precision parameters in out-of-sample images 
or videos (Vélez et al., 2023), concluding that a fully automated ap-
proach is currently beyond the capabilities of most algorithms. A mi-
nority of studies have compared estimates of ecological parameters 
obtained from data processed by operators and machine learning al-
gorithms (Gimenez et al., 2021; Mitterwallner et al., 2024; Whytock 
et  al.,  2021), but the bias resulting from suboptimal performance 
of these algorithms in density estimation models has not yet been 
quantified.

Many of these models are based on the estimation of detect-
ability and the encounter rate between animals and camera-traps 
(Palencia, Rowcliffe, et al., 2021). Assessing how the imperfect de-
tection of machine learning algorithms (i.e. animals captured by cam-
eras but not identified by the algorithm) interacts with the intrinsic 
imperfect detection of camera-traps (i.e. animals present in cameras' 
field of view [FOV] but not captured) can provide important insights 
on the implications of an automated image classification approach 
for animal population density estimation. A number of factors can 
influence how automated image classification errors can propagate 
into the final density estimates. For example, missing animals due to 
misclassification can result in a lower capture rate and in an underes-
timation of density. On the other hand, if faster moving animals are 
more likely missed due to motion blur, movement speed extracted 
from images can be underestimated and, consequently, inflate den-
sity estimation in models reliant on accurate movement parameters, 
such as the REM (Rowcliffe et al., 2008). Thus, an assessment of how 
these parameters concurrently change and interact under an auto-
mated image classification scenario is needed.

In this paper, we test the robustness of a semi-automated ap-
proach for density estimation through camera-traps. We focus on 
CT-DS and REM models as they are the most commonly used and 
best described frameworks for density estimation with camera-traps 

the analysis of camera-trap data for density estimation, further strengthening the 
applicability of camera-traps as a cost-effective method for density estimation in 
(spatially and temporally) extensive multi-species monitoring programmes.
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(Gilbert et al., 2021). First, we present a simulation to explore the 
interaction between different parameters and sources of errors on 
CT-DS and REM performance. Then, we present a real case study 
on three focal species in central Italy (roe deer C. capreolus, Eurasian 
badger M. meles and red fox V. vulpes). We evaluate machine learning 
performance in an automated species detection and classification 
framework, and assess the effect of data loss due to suboptimal al-
gorithms performance on the reliability of final density estimates.

2  |  MATERIAL S AND METHODS

2.1  |  Simulations

A number of factors can influence how the error of automated image 
classification can propagate into the final density estimates causing 
underestimation or overestimation of the parameter, thus hamper-
ing our understanding of the underlying mechanism. To unveil actual 
operating mechanisms, we simulated the whole process by varying 
parameters to assess their effect on the results. We simulated a fic-
tional study area consisting of 20 camera-traps, which we set to be 
operational for 30 days. We then simulated the detection process 
directly at camera level. Camera-trap detection ability was varied 
to account for different camera models and survey conditions: the 
distance of maximum capture probability was varied between 1 and 
5 m, and the decay of the detection function was modelled after a 
half-normal curve with 2 < σ < 5 (where σ represents the scale pa-
rameter that determines the rate at which detection probability 
decreases with distance). The extent of the camera's FOV was set 
at 0.9599 radians (55°). We constrained the maximum distance at 
which animals could be captured to 15 m. We varied animal activ-
ity rate (i.e. the proportion of the day in which animals are detect-
able by cameras; Howe et al., 2017; Nakashima et al., 2018) between 
0.20 and 0.60, and animal movement speed was extracted from a 
log-normal distribution (−0.3 < μ < 0, σ = 0.3; μ and σ represent the 
mean and standard deviation of the natural logarithm of the speed, 
respectively) to account for a broad range of target species. We did 
not consider animals moving in groups. For each successful capture 
event, we retained animal distance and angle from the camera and 
its movement speed. Then, we simulated the imperfect detection of 
a machine learning algorithm for species classification on the dataset 
produced. We considered four plausible shapes for the algorithm's 
detection function (uniform, linear, half-normal and hazard-rate) to 
simulate the missed classifications of the machine learning classifier 
at further distances (Figure  S4), and for each we varied the inter-
cept (which represents the probability of detection at zero distance 
from cameras) between 0.5 and 1, and the decay with distance to 
result in between 0.9 and 0.1 capture probability at 15 m. By vary-
ing the intercept, we accounted for misclassifications caused by 
those sequences where individuals were detected very close to the 
camera, and could consequently be confused with visually similar 
species (Tabak et al., 2018). Also, we penalized detection probability 
for faster moving animals according to a linear function with slope 

between −0.0067 and −0.0600, to simulate the loss of recognized 
animals due to motion blur (as suggested by the field study; see 
Figure  S5). The simulation produced two dataset, one reflecting 
camera-traps performance (hereby referred to as original dataset), 
and one camera-traps and machine learning algorithm performance, 
which will be later used for the two estimation methods described 
in Sections 2.1.1 and 2.1.2. Each 30-day survey was replicated for 
10,000 iterations.

2.1.1  |  Camera-Trap Distance-Sampling

CT-DS is the adaptation of the distance sampling workflow to 
camera-traps, considering cameras as observers on point tran-
sects (Howe et  al.,  2017). A detailed description of the model, its 
assumptions and the specific parameter settings can be found in 
Appendix S1. For the simulations, we varied the average encounter 
rate between 0 and 20 captures/day. We fitted distance sampling 
models on the retained animal distances of both the original and ma-
chine learning-filtered datasets to estimate the effective detection 
radius using the ‘Distance’ package (Miller & Clark-Wolf, 2022) in R 
(R Core Team, 2023). Model selection was conducted following the 
QAIC procedure indicated by Howe et al.  (2019) for overdispersed 
data, using functions from the ‘Distance’ package (Miller & Clark-
Wolf, 2022). For each iteration, we produced two separate density 
estimates: one from the original dataset and one from the dataset 
where we simulated the automated classification.

2.1.2  |  Random Encounter Model

REM is based on the modelling of animals capture rate by the cameras 
by taking into account animal movement parameters and cameras' 
detection abilities (Rowcliffe et al., 2008). A detailed description of 
the model, its assumptions and the specific parameter settings can 
be found in Appendix S1. We repeated the simulations as described 
for CT-DS, but this time for the machine learning-filtered dataset we 
also modelled random animal movement in front of the cameras: for 
simplicity, we did not consider path tortuosity and assumed that the 
animals would cross the FOV following a straight line. We varied the 
average encounter rate between 0 and 5 independent sequences/
day, then we simulated animal passes as a series of snapshots to 
which we applied the machine learning filter. We identified animal 
speed classes based on different movement behaviours using the 
‘trappingmotion’ package (Palencia, 2023) in R and we estimated day 
range following Palencia, Fernández-López, et al.  (2021). Methods, 
R packages and practical considerations about detection functions 
and truncation decisions were the same described previously for the 
CT-DS model (see Appendix S1). We finally estimated density using 
functions from the ‘camtools’ package (Rowcliffe, 2019a) in R. For 
each iteration, we produced two separate density estimates: one 
from the original dataset and another from the dataset where we 
applied automated classification.
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2.1.3  |  Analysis of simulation output

To unveil the contribution of the different parameters and their 
interaction to the estimated density from the two datasets, we 
applied a random forest algorithm to the simulated data using 
the ‘randomforest’ package (Cutler & Wiener,  2022). We used 
the relative difference in density between the user and AI esti-
mates as response variable, calculated as (densityAI − densityuser)/
densityuser, and the following AI parameters as predictor variables: 
the shape of the AI algorithm's detection function (AI_det); the in-
tercept of the AI algorithm's detection function (intercept), which 
defines the detection probability at distance = 0 m; the heaviness 
of the tail of the AI algorithm's detection function (prob_max), 
which defines the detection probability at distance = 15 m; the 
recall metric, which represent AI classification performance; and 
only for REM, the slope of the penalizing factor for animal speeds 
(speed_det_slope). For both models, we built a forest of 1000 trees, 
and we tuned the model by setting the number of variables sam-
pled at each split (mtry parameter) from 2 to 4 (Hastie et al., 2009), 
and selected the one resulting in the lowest error. We assessed 
variable importance and marginal effects using functions from the 
‘pdp’ (Greenwell, 2022) package in R.

2.2  |  Case study

We conducted the data collection in the Tenuta Sant'Egidio, a pri-
vate reserve of approximately 130 ha located on Mount Cimino near 
Viterbo in central Italy (42.417 N, 12.219 E; Figure S1). The area is 
covered by Mediterranean wood dominated by chestnut (Castanea 
sativa) and oak trees (Quercus spp.), and ranges between 450 and 
750 m altitude.

We employed a total of 20 Browning Patriot camera-traps from 
August to September 2022. Cameras were placed along the intersec-
tion of a systematic grid with random origin and 250 m spacing. We 
considered a 10 m buffer around the generated positions in order to 
mount cameras on suitable trees and avoid very unfavourable condi-
tions for animal detections (e.g. the middle of dense shrubs). For two 
cameras, the sampling points were inaccessible, so they were placed 
in the nearest available locations (approximately 100 m from the 
original spot). All camera-traps were placed at 60–80 cm from the 
ground, with the FOV starting at 1.50 m from the camera, angled to 
be parallel to the slope of the ground and facing North to avoid light 
over-exposition. Cameras were not baited. To ensure spatial move-
ment resolution for fast-moving animals, we set cameras to record 
three rapid fire burst images (0.15 s delay), and with the minimum 
delay period possible between bursts (1 s). During the installation of 
each camera, we placed markers in the FOV with 0.50–1.50 m spac-
ing (depending on the slope of the ground) that were later imported 
in the software Adobe Photoshop 2023 v.24.0.0 to layout a virtual 
grid. This was later used to estimate animal distances from cameras 
and movement parameters needed for the two population density 
estimation methods.

2.3  |  Species classification

First, we cleaned up the data with the aid of a machine learning al-
gorithm for animal detection and produced two datasets, one ac-
cepted as it is and one corrected for false positives (Section 2.3.1). 
Subsequently, we labelled photos of the corrected dataset at the 
species level manually, and those of the uncorrected dataset using 
another machine learning algorithm for species classification, thus 
producing a third dataset (Section 2.3.2). Finally, we estimated clas-
sification performance of the two algorithms (Section 2.3.3).

2.3.1  |  Manual classification with MegaDetector

We carried out the first images classification process in a semi-
automated (‘man-in-the-loop’) workflow, in which the output of a 
machine learning algorithm for animal detection was used solely as 
a visual aid for the user to speed up the process (Vélez et al., 2023). 
We used the MegaDetector algorithm (Beery et al., 2019), hosted 
at the agent​morris/​MegaD​etector GitHub repository. The model is 
trained on an extensive global dataset and can pre-process camera-
trap images in broad categories (‘animal’, ‘person’, ‘empty’ and ‘vehi-
cles’) to facilitate the sorting process by the user (Greenberg, 2020).

For this study, we used the MegaDetector v5a model through 
the EcoAssist v5.17 platform (https://​addax​datas​cience.​com/​ecoas​
sist; van Lunteren, 2023). We implemented a post-processing step 
provided in the MegaDetector GitHub repository (see agent​morris/​
MegaD​etect​or/​megad​etect​or/​postp​roces​sing/​repeat_​detec​tion_​
elimi​nation) through a Python script to reduce the number of false 
positives (e.g. logs, rocks or branches resembling parts of animals). 
We then analysed the output in the Timelapse2 v.2.3.0.0 software 
(https://​timel​apse.​ucalg​ary.​ca; Greenberg & Godin,  2012), which 
enables the display of bounding boxes around the detected ani-
mals for visual aid and lets the user filter for different confidence 
levels from the MegaDetector classification. In this study, we used 
the default threshold settings. Using this pipeline, we were able to 
first analyse the images labelled as ‘empty/person/vehicle’ by the 
algorithm, correct for eventual false positives, and quickly discard 
all these images from the dataset. Then, the images classified as ‘an-
imals’ were inspected with the help of the bounding boxes drawn 
by MegaDetector and classified at the species level directly on the 
Timelapse2 interface thanks to the built-in metadata labelling op-
tion. A separate dataset (hereafter, MD-dataset), not corrected for 
false negatives (i.e. images of a given species missed or misclassi-
fied by the algorithm), was retained to later be used directly in the 
analyses.

2.3.2  |  Unsupervised classification with Wildlife 
Insights

To evaluate the effects of a fully automated image classification 
on density estimates, we selected a second machine learning 

https://github.com/agentmorris/MegaDetector
https://addaxdatascience.com/ecoassist
https://addaxdatascience.com/ecoassist
https://github.com/agentmorris/MegaDetector/tree/main/megadetector/postprocessing/repeat_detection_elimination
https://github.com/agentmorris/MegaDetector/tree/main/megadetector/postprocessing/repeat_detection_elimination
https://github.com/agentmorris/MegaDetector/tree/main/megadetector/postprocessing/repeat_detection_elimination
https://timelapse.ucalgary.ca
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algorithm for species identification. We chose Wildlife Insights, 
a web-based platform (https://​www.​wildl​ifein​sights.​org) devel-
oped by an international partnership (Ahumada et  al.,  2020). 
The initiative serves as a data library and data-sharing platform 
in the cloud, where users can upload their camera-trap images 
for species classification, preview and correct/annotate the la-
bels on the cloud and download results and image metadata. The 
choice of the platform was motivated by the extensive training 
dataset for the algorithm, consisting of >35 million images for 
1295 species and 237 higher taxonomic classes (https://​www.​
wildl​ifein​sights.​org/​about​-​wildl​ife-​insig​hts-​ai, information up-
dated as of November 2024). The platform is open access and 
does not require informatic or coding skills to conduct automated 
species classification. Furthermore, classification results can be 
filtered based on different hierarchical taxonomic levels (i.e. spe-
cies, genus, family, order and class), thus enabling versatility in 
interpreting results.

For this study, camera-trap images were uploaded to 
the Wildlife Insights platform for taxonomic identification. 
Classification results were then downloaded and treated as an 
independent dataset with respect to the user-classified images. 
We decided to consider classification at the family level for the 
roe deer (as no other species from the Cervidae family occur in 
the study area). After an exploratory analysis, the same decision 
was made for the red fox due to the extremely low number of 
wolf images (n = 25, distributed over two capture events) that 
would have been included. The higher taxonomic levels were 
used to ensure the highest predictive ability possible from the 
algorithm. Finally, badger classifications were considered both 
at the species and genus level. The Wildlife Insights output 
(hereafter, WI-dataset) was not corrected for false negatives by 
the user and was used directly in the analyses.

2.3.3  |  Evaluation of algorithms performance

We evaluated the performance of MegaDetector for animal detec-
tion and Wildlife Insights for animal classification by comparing the 
algorithms' output with the user manual classification. We used 
functions from the ‘caret’ package (Kuhn, 2019) in R to build a con-
fusion matrix for the observed and predicted classes, and then cal-
culate model precision (1) and recall (2) as metrics of true positives 
and false negatives rates (Sokolova & Lapalme, 2009). Precision (1) 
is calculated as

and expresses the proportion of the correctly predicted classifications 
over the total predictions. Recall (2) is calculated as

and expresses the proportion of the correctly predicted classifications 
over the actual number of animals present.

2.4  |  Density estimation

We then estimated population density using CT-DS and REM mod-
els on the three datasets: the user-dataset, the MD-dataset and the 
WI-dataset.

2.4.1  |  Camera-Trap Distance Sampling

To quantify the portion of the day in which animals were active, we 
estimated activity level of each target species following Rowcliffe 
et al.  (2014) using the ‘activity’ package (Rowcliffe, 2019b) in R. 
We extracted animal distances from cameras by overlaying the 
virtual grid to images, considering all snapshots correspond-
ing to t = 1 s intervals in order to maximize sample size. We then 
followed the same procedure described for the simulations (see 
Appendix S1) to estimate density, but this time, we considered up 
to the second adjustment terms for all the combinations of the 
distance sampling detection function. We also left-truncated data 
at the 5th percentile to account for animal passing beneath the 
cameras at shorter distances (Buckland et  al.,  2001). Moreover, 
right-truncation for roe deer in the user-classified dataset caused 
failure in computing confidence intervals, so we decided not to 
right-truncate distances in that case. While methods for avoiding 
bias due to animal reactions to camera (e.g. curiosity or alarm) 
have been described (Delisle et  al.,  2023), our dataset included 
very few detections where individuals displayed attractive behav-
iour (less than 3% of the total encounters), so we did not expect 
them to cause bias. As the assumption of independency of cap-
tures is violated due to the consideration of multiple detections 
of the same animal, we estimated variance using a non-parametric 
bootstrap with replacement (n = 1000) between camera-trapping 
sites (Buckland, 1984; Buckland et al., 2001; Howe et al., 2017). 
The same process was replicated for both the user-dataset, and 
the MD- and WI-dataset to obtain separate parameters and den-
sity estimates.

2.4.2  |  Random Encounter Model

Following Rowcliffe et al. (2008), we considered an individual enter-
ing and exiting the FOV as an independent encounter. Animal ac-
tivity level was estimated with the same procedure described for 
CT-DS. We calculated average animal speed by overlaying the virtual 
grid to images, measuring distance travelled in each encounter and 
dividing by the duration of the sequence. For speed measurements, 
we discarded all the encounters where animals showed reactions 
to cameras, and we removed a single encounter of roe deer where 
the animal rested in front of the camera for more than 40 min. We 
then followed the same procedure described for the simulations (see 
Appendix S1) to estimate density, and as in CT-DS, we left-truncated 
data at the 5th percentile, and we considered up to the second 

(1)����Positive∕(����Positive + �����Positive),

(2)����Positive∕(����Positive + �����Negative),

https://www.wildlifeinsights.org
https://www.wildlifeinsights.org/about-wildlife-insights-ai
https://www.wildlifeinsights.org/about-wildlife-insights-ai
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adjustment terms for all the combinations of the distance sampling 
detection function. The same process was replicated for both the 
user-dataset, and the MD- and WI-dataset to obtain separate pa-
rameters and density estimates.

3  |  RESULTS

3.1  |  Simulations

For CT-DS, the best random forest model was obtained by 
sampling two variables at each split, and had a variance ex-
plained = 77.48%, and a mean squared error (MSE) = 0.006. The 
most important predictor was the algorithm's ability to clas-
sify animals at zero distance (intercept), followed by recall and 
the heaviness of the tail of the AI detection function (prob_max) 
(Figure S2a). Partial dependence plots showed a distinct negative 
relationship between the relative variation in density and both 
intercept and recall, and no relationship with prob_max (Figure 1). 
The interaction between intercept and recall resulted in a com-
pensating effect on the variation in density, where the underes-
timation of the parameter was minimal for high values of the two 
predictors (Figure  3a). For REM, we achieved the best random 
forest model performance with four variables sampled at each 
split, explaining 16.47% of variance and with a MSE = 0.013. The 
most important predictor was the recall, followed by the algo-
rithm's ability to classify animals at zero distance (intercept) and 
the heaviness of the tail of the AI detection function (prob_max) 
(Figure  S2b). The variation in density remained constant down 
to recall values of around 0.15, where it showed a sudden drop. 
Similar to CT-DS, intercept exhibited a negative relationship with 
the variation in density (although less pronounced), and no re-
lationship with prob_max (Figure  2). Contrarily to CT-DS, no 
interaction between intercept and recall was observed, and the 

variation in density displayed a more independent relationship 
with the two predictors (Figure 3b).

3.2  |  Case study

The field survey resulted in a total of 30,217 images from 19 
camera-traps (due to one camera being stolen) over a period of 
39 days (from 8 August 2022 to 15 September 2022; cumulative 
survey effort: 727 sampling days). These images were categorized 
into 18,626 images with animals, 6955 images with people and 
4636 empty images. For the target species of this study, 776 im-
ages of badger, 1053 images of fox and 1293 images of roe deer 
were identified.

3.3  |  Species classification

MegaDetector was comparatively more prone to omission (missed 
detections) than commission (erroneous detections) errors on animal 
images (precision = 0.98, recall = 0.90), and after the post-processing, 
a further number of false positives (113 images) was successfully re-
moved. Since the implementation of CT-DS and REM require manual 
visualization of target snapshots for the extraction of distances, an-
gles and movement speed parameters, therefore allowing for identi-
fication and elimination of false positives, we will now focus on the 
recall parameter as a metric of false negative rate. Species classifica-
tion results by Wildlife Insights varied greatly among focal species: 
the best predictions were for roe deer (recall = 0.75), followed by red 
fox (recall = 0.56), with Eurasian badger being the worst recognized 
animal by the algorithm (recall = 0.15) (Figure S6). Classifying badgers 
at the genus level did not yield better results compared to species-
level classification, as the same subset of images was identified in 
both cases.

F I G U R E  1  Marginal effects on the relative variation in density for the three most important predictors from the random forest model 
fitted on the Camera-Traps Distance Sampling (CT-DS) simulation: Intercept (AI detection probability at distance = 0 m), Recall (proportion of 
the correctly predicted classifications over the total predictions) and Prob. max. (heaviness of the tail of the AI detection function, measuring 
detection probability at distance = 15 m).
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3.4  |  Density estimation

3.4.1  |  CT-DS

Density estimations obtained from the user-classified dataset re-
sulted in 1.31 ± 0.87 ind/km2 for the Eurasian badger, 1.94 ± 0.83 
ind/km2 for the red fox and 1.09 ± 0.57 ind/km2 for the European 
roe deer. Comparatively, densities estimated from the machine 
learning outputs resulted in 1.30 ± 0.86 ind/km2 for the Eurasian 
badger, 2.08 ± 0.80 ind/km2 for the red fox and 1.13 ± 0.57 ind/
km2 for the European roe deer (MD-dataset), and 0.27 ± 0.17 ind/
km2 for the Eurasian badger, 2.64 ± 0.85 ind/km2 for the red fox 
and 1.20 ± 0.64 ind/km2 for the European roe deer (WI-dataset) 

(Figure  4). A summary of all model parameters obtained for the 
analyses can be found in Table S1.

3.4.2  |  REM

Density estimations obtained from the user-classified dataset re-
sulted in 2.11 ± 0.80 ind/km2 for the Eurasian badger, 3.37 ± 1.16 
ind/km2 for the red fox and 2.10 ± 0.66 ind/km2 for the European 
roe deer. Comparatively, densities estimated from the machine 
learning outputs resulted in 2.08 ± 0.80 ind/km2 for the Eurasian 
badger, 3.11 ± 1.00 ind/km2 for the red fox and 2.38 ± 0.77 ind/
km2 for the European roe deer (MD-dataset), and 3.12 ± 1.35 

F I G U R E  2  Marginal effects on the relative variation in density for the three most important predictors from the random forest model 
fitted on the Random Encounter Model simulation: Recall (proportion of the correctly predicted classifications over the total predictions), 
Intercept (AI detection probability at distance = 0 m) and Prob. max. (heaviness of the tail of the AI detection function, measuring detection 
probability at distance = 15 m).
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F I G U R E  3  Two-ways partial dependence plots on the variation in density of the two most important predictors in the random forest 
models for (a) Camera-Traps Distance Sampling and (b) Random Encounter Model. Regions nearer to red on the colour scale indicate 
underestimation of the density parameter, while blue indicates overestimation. Yellow regions show compensation between parameters that 
results in less biased estimates, thus better performances of the model in estimating unbiased density after the drop in images due to AI.
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ind/km2 for the Eurasian badger, 5.63 ± 2.15 ind/km2 for the 
red fox and 3.90 ± 1.93 ind/km2 for the European roe deer (WI-
dataset) (Figure 4). A summary of all model parameters obtained 
for the analyses can be found in Table S1.

4  |  DISCUSSION

Manual processing of data generated by camera-traps can hin-
der their applicability density estimates for wide-scale monitoring 
(Ahumada et al., 2020). Machine learning models for species detec-
tion and classification have the potential to alleviate this burden, 
but the effect of error propagation on the final estimates has not 
yet been explored. Our results show that both CT-DS and REM are 
relatively robust to missed detections, while CT-DS is also relatively 
robust to misclassifications.

Although it is reasonable to expect that the loss of images would 
have a clear impact on density, simulation results showed that the 
recall parameter (measuring robustness to omission errors) does 
not always yield a strong effect on the density estimates. In fact, 
the interaction between recall and other significant parameters 
can result in compensation effects that mitigate the bias. With CT-
DS, the most important predictor of density estimates was the al-
gorithm's ability to classify animals at zero distance, then followed 
by the recall. When the algorithm correctly classified all animals 
close to the camera (intercept = ~1) and the recall was higher than 
0.5, the relative change in the estimated density was contained 

between 0% and −10% (Figure 3a). This is coherent with the dis-
tance sampling assumptions that all animals on the transect line 
are detected, and deviations from this assumption result in biased 
estimates (Buckland et  al.,  2015). Even if the algorithm's perfor-
mance is suboptimal in our case, the compensating effects take 
place as long as detection probability at 0 distance approaches 1. 
We acknowledge that while this assumption may be theoretically 
sound, it is rarely met in camera-trap surveys due to small animals 
passing beneath the FOV. Further, pictures of large animals really 
close to cameras may be difficult to analyse both for expert manual 
observers and machine learning algorithms, which may confound 
similar species due to only a part of the animal being visible in the 
images (Tabak et al., 2018). However, we do not expect this latter 
violation to hinder our results, since distance data is often left-
truncated as a common practice before fitting camera-trapping 
distance sampling models to avoid bias (Howe et al., 2017). Thus, 
uncertain or wrong algorithms' predictions associated with really 
close animals would be often naturally discarded for the actual 
analyses. Furthermore, considering that the algorithm's classifica-
tion ability decreases with distance, the detection probability at 
zero distance and the recall values are closely bounded: to achieve 
relatively high values of recall, the intercept needs to be close to 
1, since most missed detections will be at higher distances. Thus, 
when evaluating algorithms' performance in a density estimation 
framework, values of recall down to a certain threshold would 
imply model's resilience to the loss of images, resulting in reliable 
density estimates. We emphasize that in a real-world scenario, this 

F I G U R E  4  Density estimations for Meles meles, Vulpes vulpes and Capreolus capreolus, plotted in pairs between the user- and AI-datasets 
(MegaDetector and Wildlife Insights), both for Camera-Trap Distance Sampling (CT-DS) and Random Encounter Model (REM). For each 
estimate, the relative standard error is shown.
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behaviour can be detected early in the exploratory analyses of the 
algorithm's performance. By assessing the recall metric on a sub-
sample of the full data, it is possible to estimate the classification 
performance of individual species, thus anticipating how the model 
will react on a case-by-case basis. The shape of the algorithm's de-
tection function also had some minor influence on the reduction 
in density (Figure S3), with the half-normal and hazard-rate curves 
resulting in a slightly higher compensating effect. This is coherent 
with our expectations, since in those cases, the algorithm would 
behave exactly as expected from a human observer with imperfect 
detection, where the drop in detections would be accounted for 
by the detection function (Buckland et  al.,  2001). In contrast, in 
REM, irrespective of the recall value, there was a consistent under-
estimation of the density parameter. The REM model's consistent 
response to image loss is reasonable because it relies on sequences 
of animal detections rather than individual capture events. This 
approach inherently makes the model more robust to suboptimal 
detection performance (Palencia, Rowcliffe, et al., 2021). However, 
no compensating effect due to parameters interaction emerged, 
and a general tendency of the model to underestimate density 
was observed. This contrasted with our findings in the field study, 
which showed the opposite trend for all three focal species (al-
though standard errors overlap; Figure 4). This mismatch could be 
caused by the relative low number of sequences retained after the 
machine learning filter, which falls below the suggested require-
ment for REM (Palencia & Barroso,  2024). We also note that in 
the field study, the algorithm missed a proportionally higher num-
ber of observations at longer distances and higher animal speeds 
(Figures S4 and S5). This could lead to underestimation of both the 
detection zone and day range, which in return would yield compar-
atively higher density estimates. Contrarily to CT-DS, a reduction 
on the number of correctly classified images do not necessarily 
translate to a proportional underestimation of encounter rate. In 
fact, even if multiple snapshots are missed but a subsequent one is 
successfully retained, the encounter rate remains unaffected while 
the detection zone can be modified based on the path taken by the 
animal. So, while it is possible to advance reasonable hypotheses 
on the CT-DS model behaviour based on the performance of the 
machine learning algorithm alone, the impact of image classifica-
tion through machine learning on the REM model outcome remains 
difficult to predict. Given the relevance of population density and 
abundance in the assessment of threatened species (IUCN Red List, 
criteria A, C, and D; IUCN, 2024) and in the application of hunting 
and culling quotas (Gortázar & Fernandez-de-Simon,  2022), we 
stress that it is particularly risky to rely on methods that could mis-
takenly yield higher estimates. We conclude that the REM model is 
robust to missed detections but not to misclassifications, hence it 
is currently unsuitable for fully automated approaches where both 
animal detection and taxonomic classification are carried out by 
machine learning algorithms.

Interestingly, we found CT-DS to produce comparatively lower 
estimates than REM in all classification scenarios, a tendency al-
ready documented in previous studies (Corlatti et al., 2020; Palencia, 

Rowcliffe, et  al.,  2021). This might originate from suboptimal per-
formance of camera-traps, where the delay time between burst of 
images and the number of actual images in a burst deviate from the 
declared manufacturer settings, thus resulting in higher missed de-
tections which lead to density underestimation (Palencia, Rowcliffe, 
et al., 2021). A recent study addressed this issue by quantifying the 
mean time interval between consecutive triggers and comparing it 
with the declared manufacturer settings, and discovered that de-
pending on the choice of the snapshot parameter (t), the resulting 
density could be underestimated by up to 96% (Kühl et al., 2023). For 
the purpose of this work, it is interesting to note that the differences 
between models were far greater than the differences between 
manually and automatically classified images, suggesting that the 
deviation from ‘true’ density derived from an automated approach is 
contained enough to obtain reliable density estimates. This was true 
both in CT-DS and REM when MegaDetector was used to detect 
animals, and in CT-DS when automated taxonomic classification was 
implemented as well.

The performance of computer vision in ecology has increased 
rapidly in recent years, with cases where algorithms matched or 
even outperformed human observers (Schneider et al., 2019; Tabak 
et  al.,  2020; Willi et  al.,  2019). We foresee that in a few years, 
technological advancements will enable machine learning tools to 
process camera-trap images as consistently and reliably as human 
operators. While the current work has focused on a tool with a wide 
geographical and taxonomic coverage such as Wildlife Insights, 
we acknowledge the existence of more geographically focused 
solutions that could yield even better classification performances 
due to their higher taxonomic specificity. For example, using the 
DeepFaune v1.1 algorithm for European fauna (Rigoudy et al., 2023) 
on an exploratory run on our data revealed considerably higher clas-
sification performance for badger (recall = 0.75), comparable perfor-
mance for red fox (recall = 0.54), and moderately higher performance 
for roe deer (recall = 0.87). Hence, we expect that the bias in den-
sity estimates would be even less than what we show in this study. 
Researchers should carefully balance the choice of which algorithm 
to use based on the knowledge of target species present in the study 
area, and carry out preliminary analyses to assess baseline perfor-
mance metrics and to evaluate the expected reduction in workload 
in case multiple candidate models are available.

Clearly, image classification only addresses one of the time 
bottlenecks of data preparation for estimating density. Models 
like REM and CT-DS require users to estimate distances, angles 
and movement parameters of captured animals. At present, two 
approaches appear promising avenues to fully automate density 
estimation. The first one leverages monocular depth estimation 
algorithms to estimate distances based on image calibration: this 
has already been proposed for camera-traps (Haucke et al., 2022), 
and it was shown that it can be a feasible implementation in CT-
DS model with minimal bias compared to manually obtained dis-
tances (Henrich et al., 2024). In conjunction with our approach and 
with little adjustment in survey design, this could already make 
the CT-DS model an ideal candidate for fully automated density 
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estimations. The REM model poses more challenges since, in ad-
dition to distances and angles, animal paths are also required to 
compute day range estimates: existing tools for depth estimation 
should be carefully adapted and tested to project and track animal 
movements with respect to the ground plane in front of the cam-
era. The second approach consists in deriving animal distances 
through a photogrammetric method. While this has already been 
described (Cui et  al.,  2020; Leorna et  al.,  2022) with successful 
integrations in CT-DS (Palencia et al., 2024; Zuleger et al., 2022) 
and REM (Palencia et al., 2023), it still implies considerable human 
effort to pre-process the images, and, in some cases, knowledge 
about the focal species' body traits (e.g. height at the withers or 
body length) that need either to be obtained from field studies or 
extracted from the literature (Cui et  al.,  2020). Future research 
avenues might explore the photogrammetry approach in relation 
to the outputs of object detection algorithms (e.g. MegaDetector): 
since those produce bounding boxes around the detected animals, 
identifying a way to reliably relate the height/width/area of the 
bounding boxes to animal distance from cameras could enable the 
extraction of the measures of interest directly from the output of 
the machine learning algorithm used to recognize animals.

This study stems from the necessity of developing new and 
efficient protocols for gathering population density data over 
large scales to address the ‘Prestonian shortfall’ (i.e. lack of knowl-
edge about the abundance of species in space and time; Hortal 
et al., 2015). Such a goal is strongly limited both by the costs related 
to obtaining accurate estimates, and by the rapid fluctuations in pop-
ulation abundances that require frequent and repeated assessments 
(Hortal et al., 2015). Implementing large-scale standardized survey 
protocols for long-term monitoring requires a sustainable trade-
off between costs and benefits. Initiatives such as TEAM (Meek 
et  al.,  2014), Wildlife Insights (Ahumada et  al.,  2020), Snapshot 
USA (Cove et al., 2021; Kays et al., 2022; Shamon et al., 2024) and 
European Observatory of Wildlife (EOW; https://​wildl​ifeob​serva​
tory.​org) are fitting examples of efforts aimed at extending camera-
trapping protocols beyond the sole purpose of local management. 
Wildlife Insights and EOW, in particular, represent cloud-based plat-
forms with a strong emphasis on storing and sharing camera-trap 
data across the globe. While both initiatives already started inte-
grating machine learning tools for automated species classification, 
ecologists are still reluctant to trust these tools enough to use their 
output directly in ecological analyses without human verification. 
Here, we show that machine learning algorithms for animal detec-
tion can be safely integrated into density estimation workflows, and 
under certain circumstances, species classification can be used as 
a further step towards automatization. We conclude that machine 
learning should be increasingly considered as a key supporting tool 
for camera-trapping networks, enabling rapid and reliable estimates 
of animal density and abundance.
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