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Abstract
This work aims to show how prior knowledge about the structure of a heteroge-
neous animal population can be leveraged to improve the abundance estimation
from capture–recapture survey data. We combine the Open Jolly-Seber model
with finite mixtures and propose a parsimonious specification tailored to the
residency patterns of the common bottlenose dolphin. We employ a Bayesian
framework for our inference, discussing the appropriate choice of priors to mit-
igate label-switching and nonidentifiability issues, commonly associated with
finite mixture models. We conduct a series of simulation experiments to illus-
trate the competitive advantage of our proposal over less specific alternatives.
The proposed approach is applied to data collected on the common bottlenose
dolphin population inhabiting the Tiber River estuary (Mediterranean Sea). Our
results provide novel insights into this population’s size and structure, shedding
light on some of the ecological processes governing its dynamics.
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1 INTRODUCTION

Capture–Recapture (CR) methods are statistical techniques widely employed to estimate the size of an elusive popula-
tion for which it is impossible to get a complete enumeration. This task, applied initially to ecology for the study of fish
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and wildlife populations (Matechou & Argiento, 2023; Otis et al., 1978; Wu & Holan, 2017), is now common to many
other application fields such as epidemiology (Böhning et al., 2020; Chao et al., 2001; Maruotti et al., 2023) and social
sciences (Böhning et al., 2018; Böhning & van der Heijden, 2009; Brittain & Böhning, 2009; Di Cecco et al., 2020; Far-
comeni, 2022; Silverman, 2020). The term capture is inherited from the traditional way wild animals have been identified
for decades—namely, through capture, marking, and release—but it is not necessarily intended for its physical sense any-
more. Researchers increasingly adopt noninvasive methods for monitoring wild populations to minimize the costs and
impact on the population of interest. Among those, photo-identification (Pace et al., 2021; Royle et al., 2009) andDNA sam-
pling (Bravington et al., 2016;Morin et al., 2016) are becoming increasingly popular as theyminimize behavioral responses
that may bias the final estimates (see Alunni Fegatelli & Tardella, 2013, and references therein).
Original applications of such methods date back to the beginning of the 20th century and were based on standard

homogeneity assumptions on the population structure and the identification process (Amstrup et al., 2010; Le Cren, 1965).
The literature is now rich in alternatives that can address a large variety of deviations from such basic model assumptions
and suit situations where, for example, individuals exhibit heterogeneous behaviors (Pledger, 2000), sampling occurs in
continuous time (Altieri et al., 2023), stop-over sites are present (Matechou et al., 2013; Worthington et al., 2019; Wu et al.,
2021), temporary emigration is allowed (Zhou et al., 2019), and so on. For an exhaustive review, see King and McCrea
(2019) and references therein.
Our work concentrates on the abundance estimation of a common bottlenose dolphin population inhabiting a delimited

area over multiple years. Such population is known to be open and calls for using the Open Jolly-Seber (JS) model, a
standard CR framework for open populations (Amstrup et al., 2010). Furthermore, the established ecological literature
affirms that it comprises individuals with different residency patterns and results in a population clustered into groups
with different levels of site fidelity. Hence, the homogeneity assumption of the standard CR framework cannot hold, and
the behavior of individuals belonging to different groups (i.e., entrance, capture, and survival) must be described by differ-
ent parameters. Accurate estimation of the clustering structure and parameters is of utmost interest to ecologists whowant
to describe the population’s dynamics and inform conservation policies. A widespread practice in such a heterogeneous
setting is to consider the inclusion of individual covariates that can help explain the differences among the population’s
members. However, informative covariates are often unavailable and the heterogeneity is entirely latent, as it is in the case
study under consideration.
Finite mixture models (FMMs) represent the natural solution to this impasse. Each individual is assigned to a different

mixture component with its own set of common and distinct parameter values. FMM approaches to CRmodels have been
successfully employed in a likelihood-based framework both in closed population (Dorazio & Royle, 2003; Pledger, 2000,
2005) and open population (Guéry et al., 2017; Pledger et al., 2010) settings. From the Bayesian perspective, attempts have
been made to model heterogeneity in detection and behavioral effects in closed populations by Ghosh and Norris (2005).
More recently, Turek et al. (2021) proposed a nonparametric FMMwith an unknown number of components and different
capture probabilities.
We build on Pledger et al. (2003, 2010)’s FMM extension to the Open JS model to account for latent heterogeneity. We

embed this finite mixture approach in Royle and Dorazio (2008, 2012)’s parameter-expanded data-augmentation (PX-DA)
framework, which turns out to be particularly convenient to fit Bayesian CR models via standard Markov chain Monte
Carlo (MCMC) algorithms. We discuss its implementation challenges and introduce suitable prior specifications that
mitigate the label switching and non-identifiability issues of FMM. The model is tested through an extended simulation
study and applied to photo-identification CR survey data of the common bottlenose dolphins (tursiops truncatus) pop-
ulation inhabiting the area of the Tiber River estuary in the Mediterranean Sea. In particular, we show how the prior
scientific knowledge on the population of interest can be leveraged to specify a parsimonious FMM tailored to its sup-
posed structure and check its validity. When this is the case, we show that it can sensibly improve the performances of
more comprehensive specifications.
The remainder of the paper is organized as follows: Section 2 describes the motivation and intuitions behind our work,

with a brief description of the data that will be considered later on; Section 3 illustrates a Bayesian hierarchical formulation
of the Pledger et al. (2003, 2010)’s JS class of mixture models within the Royle and Dorazio (2008), Royle and Dorazio
(2012)’s DA framework and introduces ourmodeling proposal as a parsimonious alternative; Section 4 reports a simulation
experiment to investigate different aspects of themodel and its estimation; Section 5 provides themodel choice and results
on the set of data originally introduced as the motivating example.
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F IGURE 1 (a) Cumulative number of individual identifications with size proportional to the number of newly identified individuals. (b)
Total number of captures by individual.

2 MOTIVATING EXAMPLE

This work is motivated by the need to get an abundance estimate of the population of the common bottlenose dolphins
inhabiting the area of the Tiber River estuary in the Mediterranean Sea. Boat-based daily surveys have been conducted
between 2018 and 2020 under favorable weather conditions to collect photographic and acoustic data of the specimens
encountered in the study area during the search (Pace et al., 2022a, 2022b, 2022c; Papale et al., 2021). The photoidentifi-
cation technique was used to identify unique individuals over multiple sampling occasions and to build single capture
histories. For this analysis, we focus on the so-called well-marked individuals because the probability of their misidenti-
fication can be assumed to be negligible.1 As a consequence, the final estimates are related to the subset of well-marked
individuals only, representing a portion of the population visiting the study area. Figure 1(a) shows the cumulative num-
ber of identified individuals across the different sampling occasions, where the size of each point is proportional to the
number of newly identified individuals. Its trend is known as the discovery rate, which is maximum during the first year
(notice that 50% of new identifications occurred in 2018, with a maximum of 25 newly identified individuals registered in
August) and slowly decreases over time. Further details about the study area, the data collection process, and the analysis
are available in Pace et al. (2021).
Most of the recent literature about common bottlenose dolphins converges toward the identification of three groups

characterized by different levels of site fidelity to a specific area: from the most to the least frequently present (Dinis et al.,
2016; Haughey et al., 2020; Hunt et al., 2017; La Manna et al., 2022). This feature is of utter interest to biologists interested
in disentangling the permanent or semipermanent population from the transient one. Generally speaking, one group is
composed of individuals who (almost) never leave the study area; these are usually referred to as resident individuals,
observable on many occasions and for long periods of time, and expected to have the largest number of captures (see
Figure 1b). The other group includes individuals who are not continuously present in the study area but regularly visit it;
these are called part-time individuals, observable throughout a wide time window but usually encountered at occasions
far apart in time. The last group comprises individuals who enter the study area only once in their lifetime for a short time
window and whose captures are rare; these are transient individuals who are observable only on occasions occurring on
close dates.
This inherent heterogeneity cannot be neglected without hindering the reliability of the final abundance estimates

(Gimenez et al., 2018). To this end, Pace et al. (2021) apply a hierarchical clustering and include the group labels in the
POPAN-JS framework (Schwarz & Arnason, 1996) to model heterogeneity in the entrance, capture, and survival probabil-
ities. They find signs of the expected structure and estimate significant differences in most components of the JS model.
While practical for understanding the underlying structure of the population of interest, this two-step approach has some
relevant issues. First of all, there is neither quantification nor propagation of the uncertainty of the classification step onto
the modeling step; this can bias the final estimates and yield overconfident conclusions. Second, the same information

1 Photoidentification is based onmatching the samemarks across different pictures; the level of the mark (poor, fair, well) is an index of how identifiable
a dolphin is.
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set is used twice in two different statistical procedures, where the latter is performed after conditioning on the first; this
can lead to a confirmation bias in favor of the original hypothesis.
This paper proposes to unify the two steps into a joint statistical procedure. We embed FMM into the Open-JS frame-

work in a Bayesian hierarchical setting, allowing for the estimation of cluster labels and population size altogether while
properly propagating the uncertainty at all levels (Clark & Gelfand, 2006).

3 STATE OF THE ART AND PROPOSEDMODEL

Let𝐷 be the number of distinct individuals observed at least once during 𝑇 distinct sampling occasions. Data are collected
in a (𝐷 × 𝑇)matrix, say𝐘, with the generic element recordingwhether individual 𝑖 = 1, … , 𝐷 individual has been observed
(𝑦𝑖𝑡 = 1) or not (𝑦𝑖𝑡 = 0) at occasion 𝑡 = 1, … , 𝑇. Hence, the rows of 𝐘 contain the capture histories of all the encountered
individuals. The open-population JS model (Schwarz & Arnason, 1996) envisions individuals entering (i.e., via birth or
immigration) and exiting (i.e., via death or emigration) the population during the sampling occasions. The emigration
is assumed to be permanent for identifiability purposes, that is, once an individual has left the population, it cannot
return to it. Furthermore, the JS models assume that all captures are independent across individuals and over time. The
latter is achieved by considering the existence of a superpopulation of unknown size, say 𝑁𝑠𝑢𝑝𝑒𝑟, accounting for all the
individuals potentially available (encountered or not) in the study area between the first and the last sampling period. The
superpopulation size is the main parameter of interest and determines the dimension of the model parameter space. Its
typical estimation in the Bayesian framework involves jumping between spaces of different dimensions, hence requiring
the implementation ofReversible JumpMCMCalgorithms (Brooks et al., 2000).Here,we adopt theDAapproach proposed
by Royle and Dorazio (2008) to keep the dimension of the parameter space fixed throughout the iterations, thus bypassing
the need for the Reversible Jump MCMC (Arnold et al., 2010).

3.1 Parameter expanded data-augmentation formalization

The PX-DA approach by Royle and Dorazio (2008) sets the dimension of the parameter space equal to a fixed value𝑀 ≫

𝑁𝑠𝑢𝑝𝑒𝑟 ≥ 𝐷. In this way, the varying dimension issue is converted into a more manageable missing data problem in the
multistate processes context (see Section A of the Appendix). The rows of the observed data matrix 𝐘 are augmented to
𝑀, hence defining 𝐘aug = {𝐘, 𝟎𝑀−𝐷}, where 𝟎𝑀−𝐷 is an (𝑀 − 𝐷) × 𝑇 matrix of zeroes.𝑀 must be set such that 𝑁𝑠𝑢𝑝𝑒𝑟 ∈

{𝐷, 𝐷 + 1,… ,𝑀}, and consequently,𝑁𝑠𝑢𝑝𝑒𝑟 − 𝐷 among the𝑀 −𝐷 rows of zeroes correspond to individuals who belong to
the superpopulation but have never been encountered. The remaining𝑀 −𝑁𝑠𝑢𝑝𝑒𝑟 correspond to pseudo-individuals who
have never been part of the population during the observation window and hence do not belong to the superpopulation.
The data generation process assumes that an individual can be recruited into the population at the beginning of each
sampling period only if it has never been recruited on previous occasions. On the other hand, individuals who have already
been recruited can leave the population between two subsequent sampling periods. All the 𝐷 observed individuals will
eventually be recruited in the population between the first and the last capture occasions, as they have been captured at
least once. This dynamic is controlled through two time-varying latent binary variables: the first one, 𝑟𝑖𝑡, is equal to 1 if
and only if individual 𝑖 is recruitable at time 𝑡 (0, otherwise); the second one, 𝑧𝑖𝑡, is equal to 1 if and only if individual 𝑖
belongs to the population at time 𝑡 (0, otherwise).
All 𝑀 individuals are recruitable at the first occasion (i.e., 𝑟𝑖1 = 1, 𝑖 = 1, … ,𝑀), whereas they become permanently

nonrecruitable once they have entered the population. Let 𝜌𝑡, 𝑡 = 1, … , 𝑇 be the recruitment probabilities, that is, the
probability that an available (not yet entered) individual in the augmented dataset is recruited in the population at time
𝑡. Let 𝜙𝑡, 𝑡 = 2, … , 𝑇, be the apparent survival probability,2 that is, the probability that a recruited individual is in the
population at the following sampling occasion. The following rules govern the latent label process: 𝑧𝑖1 ∼ 𝐵𝑒𝑟𝑛(𝜌1), 𝑖 =

1, … ,𝑀, 𝑟𝑖𝑡 = min{𝑟𝑖,𝑡−1, 1 − 𝑧𝑖,𝑡−1} and 𝑧𝑖𝑡 | 𝑧𝑖,𝑡−1, 𝑟𝑖𝑡 ∼ 𝐵𝑒𝑟𝑛(𝜙𝑡 ⋅ 𝑧𝑖,𝑡−1 + 𝜌𝑡 ⋅ 𝑟𝑖𝑡), 𝑡 = 2, … , 𝑇. Thus, the distribution of the
generic element of the augmented data matrix can be expressed conditionally on 𝑧𝑖𝑡 as:

𝑦𝑖𝑡|𝑧𝑖𝑡 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑡 ⋅ 𝑧𝑖𝑡) , (1)

2 The term apparent is included as permanent emigration and mortality are indistinguishable, and thus, treated as the same phenomenon in
JS-type models.
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where 𝑝𝑡 is the capture probability at occasion 𝑡. Since 𝑦𝑖𝑡 = 0 almost surely when 𝑧𝑖𝑡 = 0, (1) is a zero-inflated binomial
model. Notice that, given𝑀, the marginal likelihood of the capture histories can be expressed as:

𝑀(𝒚 | 𝜽) = ∫
𝑀∏
𝑖=1

𝑇∏
𝑡=1

𝑝(𝑦𝑖𝑡 | 𝑧𝑖𝑡) ⋅ 𝑝(𝑧𝑖𝑡 | 𝑧𝑖,𝑡−1, 𝑟𝑖𝑡) 𝑝(𝑑𝑧𝑖𝑡), (2)

where  ⊂ {0, 1}𝑀×𝑇 contains all possible 𝑧𝑖𝑡 configurations and 𝜽 is the full set of model parameters 𝜽 = {𝑝𝑡, 𝜙𝑡, 𝜌𝑡}
𝑇
𝑡=1

.
The integral in the likelihood expression has no general closed-form solution and numericallymarginalizing out the latent
components can be computationally intensive. This problem is common to the hiddenMarkovmodels (HMMs) literature,
in which some efficient techniques based on the forward algorithm have been proposed to efficiently solve the integration
problem Worthington et al. (2019). Alternatively, MCMC algorithms provide a viable solution to work, iteration after
iteration, with the conditional likelihood:

𝑐
𝑀
(𝒚 | 𝜽, 𝒛) = 𝑀∏

𝑖=1

𝑇∏
𝑡=1

𝑝(𝑦𝑖𝑡 | 𝑧𝑖𝑡),
and approximate the posterior distribution of all the quantities of interests in a Bayesian setting that provides full uncer-
tainty quantification. Furthermore, standard MCMC methods are now relatively easy to implement by practitioners due
to the availability of software like JAGS (Plummer, 2003) or NIMBLE (de Valpine et al., 2017).
Marginally, the hierarchical model specification resulting fromEquation (1) implies that𝑁𝑠𝑢𝑝𝑒𝑟 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑀, 𝜓), where

𝜓 is the overall inclusion probability (throughout all occasions) of any individual in the superpopulation. Royle and
Dorazio (2008) show that 𝜓 is linked to the recruitment probabilities through the following equation:

𝜓 = 1 −

𝑇∏
𝑡=1

(1 − 𝜌𝑡). (3)

In particular, (3) implies that 𝔼[𝑁𝑠𝑢𝑝𝑒𝑟 |𝑀,𝜌1, … , 𝜌𝑇] = 𝑀 [1 −
∏𝑇

𝑡=1
(1 − 𝜌𝑡)] = 𝑀 𝜓. Hence, choosing the prior distribu-

tion for 𝜌1, … , 𝜌𝑇 is crucial to determining the prior on 𝑁𝑠𝑢𝑝𝑒𝑟. Dorazio (2020) demonstrates that the prior:

𝜌𝑡 ∼ 𝐵𝑒𝑡𝑎

(
1

𝑇
, 2 −

𝑡

𝑇

)
, 𝑡 = 1, … , 𝑇, (4)

induces an objective prior on 𝑁𝑠𝑢𝑝𝑒𝑟. In terms of practical inference, the estimated population size at each time 𝑡 and
the overall superpopulation size can be derived through the latent variables 𝑧’s, namely, 𝑁𝑡 =

∑𝑀

𝑖=1
𝑧𝑖𝑡 and 𝑁𝑠𝑢𝑝𝑒𝑟 =∑𝑀

𝑖=1
𝟙
{
∑𝑇

𝑡=1 𝑧𝑖𝑡>0}
.

3.2 Jolly–Seber finite mixture modeling for open populations

Most populations are composed of individuals with heterogeneous behaviors. In some cases, the heterogeneity can be
assumed to be well described by a finite number (say 𝐺) of different patterns. These depend on the individual’s latent
traits, and their consideration requires complex modeling tools, such as FMM. The underlying assumption of FMM is
that each unit can belong to only one group 𝑔 = 1,… , 𝐺, with unknown prior probabilities 𝑤𝑔 (

∑
𝑔
𝑤𝑔 = 1). The individ-

uals belonging to different groups in open population CR studies may have different capture, recruitment, or survival
parameters. In the most general specification, the relative order among the parameters of different groups can change at
each time 𝑡 (e.g., group one could have the highest detection rate at the first sampling occasion but the lowest at the second
one). This JS-type mixture model is known as the interactive heterogeneous model (IHM) and its very rich specification
depends on too many parameters for successful model fitting (see Pledger et al., 2010, for further discussion). Pledger
et al. (2003, 2010) explore simpler specifications that could adequately represent the population structure and introduce a
convenient notation to navigate through all possible submodels. Let 𝑡 and ℎ be the time and group heterogeneity effects,
respectively. Different expressions correspond to different modeling structures: constant in time and homogeneous across

 15214036, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200350 by C
ochraneItalia, W

iley O
nline L

ibrary on [16/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 24 CARUSO et al.

groups (⋅); time-varying but homogeneous across groups (𝑡); constant in time but heterogeneous across groups (ℎ); time-
varying and heterogeneous across groups with separable interaction (𝑡 + ℎ); and time-varying and heterogeneous across
groupwith nonseparable interaction (𝑡 × ℎ). For example, the IHM corresponds to {[𝜌𝑡×ℎ, 𝜙𝑡×ℎ, 𝑝𝑡×ℎ]𝐺}, where the under-
lying population is supposed to be composed by𝐺 classes. If we want to specify amodel whose heterogeneous group effect
lies in the capture probabilities only, we write {[𝜌𝑡, 𝜙𝑡, 𝑝𝑡×ℎ𝐺

]}. The subscript is moved to highlight that the mixture of 𝐺
components is related only to detection. We will take advantage of this notation in the sequel of the paper.

3.3 Modeling class heterogeneity using finite mixtures within the PX-DA approach

We embed the PX-DA formalization of the open JS model into FMM by adding one layer of hierarchy in the original
hierarchical specification.
Now, let 𝑐𝑖 ∈ {1, … , 𝐺} be the latent membership label of each individual 𝑖 = 1, … ,𝑀 in 𝐘𝐚𝐮𝐠. The full hierarchical

specification is as follows:

𝑦𝑖𝑡 | 𝑧𝑖𝑡, 𝑐𝑖 = 𝑔 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑔𝑡 ⋅ 𝑧𝑖𝑡),

𝑧𝑖𝑡 | 𝑧𝑖,𝑡−1, 𝑟𝑖𝑡, 𝑐𝑖 = 𝑔 ∼ 𝐵𝑒𝑟𝑛(𝜙𝑔𝑡 ⋅ 𝑧𝑖,𝑡−1 + 𝜌𝑔𝑡 ⋅ 𝑟𝑖𝑡), 𝑟𝑖𝑡 = min{𝑟𝑖,𝑡−1, 1 − 𝑧𝑖,𝑡−1},

𝑝𝑔𝑡 ∼ 𝜋𝑝𝑔
(⋅), 𝜙𝑔𝑡 ∼ 𝜋𝜙𝑔

(⋅), 𝜌𝑔𝑡 ∼ 𝜋𝜌𝑔
(⋅), 𝑐𝑖 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚(1, (𝑤1, … ,𝑤𝐺)),

(𝑤1, … ,𝑤𝐺) ∼ 𝜋𝐰(⋅)

(5)

where 𝜋.(⋅) refers to a generic prior distribution for the parameter. The hierarchical formulation of (5) further complicates
the likelihood expression of Equation (2) to:

𝑀(𝒚 | 𝜽) = 𝐺∑
𝑔=1

𝑤𝑔 ⋅ ∫
𝑀∏
𝑖=1

𝑇∏
𝑡=1

𝑝𝑔(𝑦𝑖𝑡 | 𝑧𝑖𝑡) ⋅ 𝑝𝑔(𝑧𝑖𝑡 | 𝑧𝑖,𝑡−1, 𝑟𝑖𝑡)𝑑𝑧𝑖𝑡, ,
where 𝜽 = {𝐰, {𝜽𝑔}

𝐺
𝑔=1

} includes the prior weights of the cluster components and the component-specific sets of parame-
ters. Its evaluation needs further marginalization with respect to the latent group labels, and, once again, MCMCmethods
are a viable solution to achieve Bayesian estimation of all quantities of interest.
This modeling framework includes many possible specifications, according to what varies with time and across groups.

We further generalize the model specification by adapting the survival mechanism to describe not equally spaced capture
occasions. Indeed, the assumption of constant survival across identical time scales does not transfer to the not equally
spaced scenario. When this is the case, that is, 𝑙𝑡 = (𝜏𝑡 − 𝜏𝑡−1), 𝑡 = 2, … , 𝑇 are the time differences between subsequent
occasions—the survival probabilities should be appropriately compounded. Once the time scale is set (e.g., days, weeks,
months, years, etc.), we have 𝜙𝑔𝑡 = 𝜙

𝑙𝑡
𝑔 , where 𝜙𝑔 represents the survival probability across a single time unit on the chosen

scale. In addition, following Pledger et al. (2003), a convenient and parsimonious way to express the time-varying capture
probabilities is through the logit link, that is, logit(𝑝𝑔𝑡) = 𝜇𝑔 + 𝜏𝑡 , 𝑡 = 1, … , 𝑇 , where 𝜇𝑔 determines the overall average
capture probability of each group and 𝜏𝑡 is an occasion-specific differential effect.
The last step of the Bayesian model specification involves the choice of prior distributions for all parameters and their

hyperparameters. The natural prior for the mixture weights in FMMs is the Dirichlet distribution 𝐷𝑖𝑟𝐺(𝛼1, … , 𝛼𝐺). It
corresponds to a uniform distribution over the 𝐺-dimensional simplex when 𝛼𝑔 = 1, ∀𝑔, x is usually adopted as weakly
informative prior. For 𝜌𝑔𝑡, 𝑡 = 1, … , 𝑇, we follow Dorazio (2020) and use the prior in (4). General-purpose and weakly
informative priors can be ascribed to 𝜇𝑔. At the same time, we suggest considering a𝑁(0, 𝜎2) on each parameter 𝜏𝑡, with
𝜎2 small, to induce only small time variations (in the logit-scale) on the capture probabilities. We further impose that∑

𝑡
𝜏𝑡 = 0 to favor the otherwise weak identifiability of the 𝜇𝑔 and the 𝜏’s (Pledger et al., 2003). Nevertheless, such choices

do not defend themodel from the label-switching problem of the class-specific parameters typical of the FMM framework
because of the likelihood invariance under permutations of the components’ labels.
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Choosing priors on class-specific parameters
The choice of the prior distribution on component-specific parameters of FMMs can be seen as a challenge and an opportu-
nity. This class ofmodels suffers from several sources of nonidentifiability. In our setting, themost affected are recruitment
and survival probabilities. However, the final inference on the population size is usually robust with respect to their proper
identification (see Mena &Walker, 2015, and references therein). The recruitment probabilities 𝜌𝑔𝑡 are model devices that
allow the entrance of new individuals in the population, accounting for the openness of the population (Royle & Dorazio,
2008). They can be treated as nuisance parameters without a solid biological meaning and their identifiability is not of
great concern. On the other hand, the capture and survival probabilities are of biological interest. They can be seen as
indicators of how long and how often units of different types visits the sampling area.
Aweakly informative or regularizing choice of their prior distributions can favor identifying these components. In turn,

this can ease the identification of the membership labels already affected by the well-known label-switching problem.
Among the different solutions that have been proposed in the literature, one relies on imposing an ordering constraint
among the component-specific parameters, that is, 𝑢1 < ⋯ < 𝑢𝐺 (Chung et al., 2004; Diebolt & Robert, 1994; Richardson
& Green, 1997). This task is trivial in the context of parameters belonging to the whole real domain, where truncating or
shiftingGaussian distributions allows full control of the position and scale of the priors. The latter is a reasonable choice for
the 𝜇𝑔, 𝑔 = 1,… , 𝐺 parameters. However, when 𝑢𝑔 ∈ (0, 1), ∀ 𝑔 as in the case of the survival probabilities, the conditional
prior specificationmust account for their bounded domains. The standard solutionwould consider conditionally specified
Uniform distributions. However, we exploit the alternative proposal of Alaimo Di Loro et al. (2022) that allows for more
flexibility. It is based on the Beta distribution and its generalizations (truncated or restricted), and it is both effective in
imposing the constraint and controlling for the shape and first moments of the induced marginal priors. In other words,
one may set 𝑢1 ∼ 𝐵𝑒𝑡𝑎(𝛼1, 𝛽1) and

𝑢𝑔|𝑢𝑔−1 ∼ 𝑡𝐵𝑒𝑡𝑎(𝛼𝑔, 𝛽𝑔; 𝑢𝑔−1, 1), or 𝑢𝑔|𝑢𝑔−1 ∼ 𝑟𝐵𝑒𝑡𝑎(𝛼𝑔, 𝛽𝑔; 𝑢𝑔−1, 1) 𝑔 = 2,… , 𝐺, (6)

where tBeta and rBeta represent the Truncated Beta and Restricted Beta, respectively, and it is possible to derive closed-
form expressions for the marginal prior distribution of 𝑢𝑔, 𝑔 ≥ 2, or at least its first and second moments. Further
computational details are given in Section B of the Appendix, along with formal proofs of the original results.

3.4 The RPTmodel for the common bottlenose dolphin population

The population structure illustrated in Section 2 can be translated to reflect variations in the parameters of the JS-type
PX-DA framework. We have that the resident (R) individuals, showing high site fidelity, should be characterized by high
survival and capture probabilities; the part-time resident (P) individuals, with average site fidelity, should be characterized
by high survival probabilities but eventually undetectable on some occasions; the transient individuals (T) only shortly
visit the study area and hence should have very low survival. We want to build a suitably flexible encompassing model
such that it is possible to establish the amount of evidence in favor of this assumption. In other words, we shall not
enforce this exact structure in our model, but we can make it so that it is recognizable if present. For instance, we could
allow the three groups to have group-specific survival and capture probabilities as in the full specification of (5). That
might be a too flexible model with a huge number of parameters, therefore yielding highly uncertain estimates because of
weak identifiability. Alternatively, we can propose a more parsimonious specification tailored to the supposed behavioral
differences among individuals from different groups. In this way, some components can be assumed to be common to
different groups, reducing the model’s complexity and favoring its identifiability.
First of all, we model the population recruitment dynamic, assuming that each group is characterized by its own set of

time-varying recruitability parameters, that is, 𝜌𝑅, 𝑡, 𝜌𝑃, 𝑡, 𝜌𝑇, 𝑡. This setting naturally induces a clustering in the relation-
ship between the recruitment process and the superpopulation size 𝑁𝑠𝑢𝑝𝑒𝑟, yielding group-specific inflation parameters
that express the total population as the sumof three subpopulations. Thismodifies the analytical expression of the expected
superpopulation size as follows:

𝔼
[
𝑁𝑠𝑢𝑝𝑒𝑟|𝜓𝑅, 𝜓𝑃, 𝜓𝑇, 𝑤𝑅, 𝑤𝑃, 𝑤𝑇

]
= 𝑀 ⋅

∑
𝑔=𝑅,𝑃,𝑇

𝑤𝑔𝜓𝑔 ,

where 𝑤𝑔 and 𝜓𝑔 (𝑔 = 𝑅, 𝑃, 𝑇) are, respectively, the 𝑔th component-specific mixture weight and inflation parameter.

 15214036, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200350 by C
ochraneItalia, W

iley O
nline L

ibrary on [16/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 24 CARUSO et al.

Second, we separate the three subpopulations into two distinct classes, characterized by different tendencies to stay
in the study area. We can distinguish between short-term survivors, that is, transient individuals who visit the area for
narrow time windows, and long-term survivors, that is, nontransient individuals (resident or part-time) who visit the area
for wide time windows. To model such behavioral heterogeneity, we assume that one group (T, transient) has a smaller
survival probability (𝜙𝑇) than the other two groups (𝜙𝑁𝑇): 𝜙𝑇 < 𝜙𝑁𝑇 . Notice that these two parameters represent the
survival probabilities across a single time unit on the chosen scale. When the capture occasions are not equally spaced,
the survival probabilities should be appropriately compounded along different lengths (cf. Section 3.3). In practice, given
the two base survival probabilities 𝜙𝑇 and 𝜙𝑁𝑇 , the actual survival probabilities at time 𝑡 are:

𝜙𝑇, 𝑡 = 𝜙
𝑙𝑡
𝑇, 𝜙𝑁𝑇, 𝑡 = 𝜙

𝑙𝑡
𝑁𝑇,

where 𝑙𝑡 = |𝑡 − 𝑡′|, 𝑡 = 1, … , 𝑇 are the time lags between the 𝑇 subsequent occasions. Finally, the proposed model retains
the time-varying structure of the detectability, as already introduced in Section 3.3, but discriminates between part-time (P)
and non-part-time (NP) individuals introducing a partial undetectability component in the latter group. Loosely speaking,
part-time individuals are allowed to be undetectable while alive (because temporarily not present in the study area) on
some occasions chosen at random with probability 𝛿 ∈ (0, 1). This corresponds to modeling the capture probability on
occasion 𝑡 as:

𝑝𝑁𝑃, 𝑡 = logit−1(𝜇 + 𝜏𝑡) and 𝑝𝑃, 𝑡 = (1 − 𝛿) ⋅ 𝑝𝑁𝑃, 𝑡, 𝑡 = 1, … , 𝑇,

for the NP and P individuals, respectively; of course, 𝑝𝑃, 𝑡 < 𝑝𝑁𝑃, 𝑡, ∀𝑡. Notice that the larger 𝛿 is, the more the part-time
group is separated from the resident group. This parameter plays a similar role to the completely random emigration
parameter of Kendall et al. (1997) and it is needed to control the temporary emigration pattern of part-time individuals
discussed in Section 2. Appendix C shows that such parametrization is indeed equivalent to temporary emigration under
the simplifying assumption of emigration occurring at random.We name this model RPT as it encompasses three specific
types of behavior. However, we would like to point out how the model does not enforce this interpretation. For instance,
both survivals could be estimated to be high, or the undetectability parameter could be estimated as approximately equal
to 1, and so on.

4 SIMULATION EXPERIMENTS

We conduct a simulation experiment to assess the performances of the RPT model whenever it is well specified, that is,
the data are generated according to the structure described in Section 3.4.We generatemultiple sets of artificial data under
alternative scenarios from the RPTwith fixed parameters and then estimate a pool of models on them. Ourmain objective
is twofold: (i) to evaluate the ability to recover the true values of the parameters, with a particular focus on 𝑁𝑠𝑢𝑝𝑒𝑟; (ii) to
verify whether the RPT is chosen as the best among other alternatives based on some model selection criterion.
We consider four scenarios characterized by an increasing number of sampling occasions, that is, 𝑇 ∈ {10, 20, 30, 40},

to verify the model performances for different time horizons. We suppose that in the first scenario (i.e., 𝑇 = 10), all the
captures are recorded within a relatively short period (e.g., within a year). Longer time horizons are included in the other
scenarios, where a larger time gap (year gap) is assumed to occur every 10 occasions. Further details about the time lags
are available in Section D of the Appendix. The month (and portion of months) is taken as the basic time unit to avoid
the possible numerical instability related to the large values of the lags in terms of days. Note that this affects the inter-
pretation of the survival probability parameter as it must be interpreted as the probability of surviving 1 month. We adopt
the following parameters’ values in all the scenarios. The survival probabilities are set to 𝜙𝑇 = 0.01 and 𝜙𝑁𝑇 = 0.997.
These two values may seem quite extreme at first glance. However, they guarantee that the short-time survivors (transient
individuals) almost surely stay in the population for less than a year and that the long-term survivors (nontransient indi-
viduals) stay in the population for more than 3 months with a very high probability (> 0.99). Furthermore, notice that a
monthly survival probability equal to 0.01 corresponds to a survival probability equal to 0.86 on a daily scale and equal to
0.34 on a weekly scale. On the other hand, a monthly survival probability equal to 0.997 corresponds to a probability of
0.87 on a 4-years scale. Therefore, the monthly scale appears as a good compromise to avoid a value that is too low for 𝜙𝑇

and a value that is too high for 𝜙𝑁𝑇 . The capture probabilities are obtained by setting 𝜇 = 0 and 𝛿 = 0.7, and generating
𝜏𝑡 ∼ 𝑁(0, 0.25) in each scenario. The recruitment parameter for transient individuals is fixed to 𝜌𝑇, 𝑡 = 0.02 for all capture
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CARUSO et al. 9 of 24

occasions (assuming a negligible temporal variation for this group). At the same time, we consider the following structure
for resident and part-time individuals:

𝜌𝑅, 𝑡 =

⎧⎪⎨⎪⎩
0.4 , 𝑡 = 1

0.02 , 𝑡 = 10𝑘 + 1 , 𝑘 = 1, 2, 3

0.0025 , otherwise
and 𝜌𝑃, 𝑡 =

⎧⎪⎨⎪⎩
0.4 , 𝑡 = 1

0.04 , 𝑡 = 10𝑘 + 1 , 𝑘 = 1, 2, 3

0.005 , otherwise.
.

The mixture weights for the three groups are set to 𝑤𝑅 = 0.2, 𝑤𝑃 = 0.45, and 𝑤𝑇 = 0.35. We envision an augmented
superpopulation of 𝑀∗ = 500, which yields an expected superpopulation size 𝔼[𝑁𝑠𝑢𝑝𝑒𝑟] ∈ {170, 209, 243, 271} for 𝑇 =

10, 20, 30, 40, respectively. Notice that𝑁𝑠𝑢𝑝𝑒𝑟 increases with 𝑇 as more individuals can visit the study area during a longer
time horizon.
We simulate independent encounter histories for 𝐾 = 50 pseudopopulations. Along with the RPT model, we consider

10 different alternatives in the class of JS-type models described in Sections 3.2 and 3.3, all having time-varying recruit-
ment parameters. In the simplest case, we consider a model with homogeneous capture and survival probability (M1:
{𝜌𝑡, 𝜙, 𝑝𝑡}). When the population is supposed to be structured in 𝐺 groups, we suppose that each group has its own time-
varying recruitment probability and that mixture components may vary by capture probability (M2–M4: {𝜌𝑡×ℎ𝐺 , 𝜙, 𝑝𝑡+ℎ𝐺

},
for𝐺 = 2, 3, 4), by survival probability (M5–M7: {𝜌𝑡×ℎ𝐺 , 𝜙ℎ𝐺

, 𝑝𝑡}, for𝐺 = 2, 3, 4) or by both (M8–M10: {[𝜌𝑡×ℎ𝐺 , 𝜙ℎ, 𝑝𝑡+ℎ]𝐺},
for𝐺 = 2, 3, 4). Each simulated dataset was augmented by 500 all-zero capture histories to implement the PX-DAapproach
so that𝐷𝑘 + 500 = 𝑀𝑘 ≠ 𝑀∗ for all simulated sets.We consider the prior setting described in Section 3. Notably, we specify
an𝑁(0, 10) for the intercept𝜇.When the survival probability is the same for all the individuals, a standardUniformprior is
placed on that parameter. When two survival probabilities are considered (generically, 𝜙1 and 𝜙2), we use 𝜙1 ∼ 𝐵𝑒𝑡𝑎(1, 2)

and 𝜙2|𝜙𝑇 ∼ 𝑡𝐵𝑒𝑡𝑎(1, 1, 𝜙𝑇, 1), with the latter marginally yielding 𝜙2 ∼ 𝐵𝑒𝑡𝑎(2, 1). Then enforcing 𝜙1 < 𝜙2 induces a
slight repulsion between the two parameters. When one considers more than two survival parameters, constrained Uni-
form priors are instead chosen. These different prior choices for the models do not substantially affect the model selection
criterion associated with each model but—conversely—are useful to induce a better separation between couples of sur-
vival parameters. Estimation is carried out using JAGS, inwhichwe run two chainswith 20,000 iterations each, discarding
5000 as burn-in and thinning by 2 the remainder to save storage space (Brooks et al., 2004).
We chose median posterior estimates instead of simple averages, mitigating the effect of anomalies that can result in

occasionally low-informative datasets. In the same spirit, we rely on themean absolute error (MAE) as an accuracy mea-
sure instead of the widely employed root mean squared Error. Interval estimation is assessed through the percentage of
times the 95% credible intervals contain the true value of the parameter (i.e., the coverage) and the average 95% credible
interval width (CIW). The overall goodness-of-fit is measured via the Watanabe–Akaike information criterion (WAIC,
Watanabe & Opper, 2010), following the good practice of Gelman et al. (2014) whenever finite mixtures are fitted. We also
report the overlapping index (𝑂𝑉, Pastore, 2018; Pastore & Calcagnì, 2019) between the posterior distributions of the two
survival parameters, averaged over the𝐾 = 50 replicas. If𝑂𝑉 = 0, the two distributions are completely separated, while if
𝑂𝑉 = 1, the two distributions perfectly overlap. This metric is particularly appealing to understand whether the posterior
distributions of the group-specific parameters are well separated or not, justifying the related model parameterization.
Finally, we investigate the fuzzy classification ability of the RPTmodel using multiclass area under the receiver operating
characteristics Curve (mAUC) (Hand & Till, 2001). Let us remark that the classification performances can only be eval-
uated in the simulation setting and for the RPT model, as the true group labels are known and are consistent with the
estimated ones. Notice that individuals who have not been observed are not provided with a capture history; thus, it is
impossible to infer the group they belong to. Therefore, the estimated mixture weights (referred to as the full 𝑀𝑘-sized
pseudopopulation) are not expected to align with the mixture weights employed in the data generation process. Indeed,
the latter was used to generate the cluster labels of the whole pseudopopulation, of which some individuals (i.e., the
pseudo-individuals) never become part of the real population.
Figure 2 shows the differences between the estimated (𝑁̂𝑠𝑢𝑝𝑒𝑟) and true (𝑁𝑠𝑢𝑝𝑒𝑟) superpopulation size for each of the

𝐾 = 50 replicas. The error is divided by the expected value of𝑁super in the corresponding scenario to allow for a meaning-
ful comparison between scenarios having expected superpopulation sizes of different magnitudes. We notice that the RPT
uniformly provides the best results overall. On the contrary, its competing models consistently underestimate or overesti-
mate the superpopulation size. Notably, as 𝑇 increases, the underestimation is more evident for those models that do not
account for heterogeneity in survival probabilities (i.e., M1–M4)—cf. Pledger et al. (2003, 2010)—while the overestima-
tion is substantial for those that consider an excessive number of parameters (i.e., M8–M10). Intuitively, a greater number
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10 of 24 CARUSO et al.

F IGURE 2 Relative estimation error of the superpopulation (𝑁𝑠𝑢𝑝𝑒𝑟) abundance for increasing number of sampling occasions (𝑇),
calculated for each of the 𝐾 = 50 independent replicas, by the RPT and the 10 alternative Pledger et al. (2010)’s mixture models.

of parameters controlling the capture probabilities tend to infer an excessive number of uncaught individuals from the
zero histories.
Table 1 reports useful summaries to assess the models’ performances in estimating 𝑁super. The MAE and CIW are

scale-dependent measures and do not allow for scenario comparisons. Therefore, we consider relative versions of these
measures by dividing both by the corresponding expected value of 𝑁super.
The RPT model returns the lowest relative MAEs in all the scenarios that involve more than 1 year of observation,

whereas its competitors are associatedwith larger errors,whichmostly increasewith𝑇. TheWAIC seems to fail in selecting
the RPT model when the number of sampling occasions is rather small (i.e., 𝑇 = 10) by attaining the lowest values in
correspondence of models that do not account for capture heterogeneity (i.e., M1, M5–M7 in 52% of the replicas). The
inability to identify the RPT structure in such a short-term scenario is not surprising, as it would be extremely complicated
(if not impossible) to discern the effect of survival and capture probability when the occasions span only 1 year. However,
as 𝑇 increases, the WAIC tends to favor the true model, yielding the lowest median score and selecting it (i.e., returning
the lowest WAIC) in most replicas. The classification performances of the RPT model are quite good in all the scenarios,
with the mAUC improving as 𝑇 increases. Notably, the resulting median mAUC is always ≥ 0.82 and above 0.95 when
a year change occurs. Furthermore, by assigning the labels to each encountered individual according to the maximum
a posteriori (MAP) rule, the median accuracy (across replicas) lies between 75% and 95% in all scenarios (once again
improving as 𝑇 increases).
Table 2 shows the RPT model performance in estimating some time-constant parameters. The estimates of the unde-

tectability and the survival parameters have a very small MAE, although they fail to attain the nominal credible interval
coverage of 95% in most scenarios. This indicates a good accuracy of the point estimates associated with over-confidence
(visible in the low average CIWs), thus reducing the nominal coverage. Nonetheless, it settles to a fair and acceptable level.
The result is not particularly surprising because these component-specific parameters govern latent ecological processes
and are potentially mutually confounded.
Finally, we observe that the two survival probabilities (i.e., 𝜙𝑇 and 𝜙𝑁𝑇) are well separated in all scenarios, with an 𝑂𝑉

equal to 0.078 when 𝑇 = 10 and equal to 0 for larger 𝑇.

5 REAL DATA ANALYSIS

We apply the RPT model to estimate the total population size of the common bottlenose dolphins inhabiting the Tiber
River estuary, as introduced in Section 2. The data are the detection histories of 𝐷 = 195 well-marked dolphins that have
been sighted in the area between June 2018 and November 2020, for a total of 𝑇 = 87 occasions. After some preliminary
runs with different values of𝑀, we finally set𝑀 −𝐷 = 500 rows of pseudoindividuals (i.e., with null capture histories),
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TABLE 2 Estimates of MAE, coverage (Cov.), and average width of the 95% credible intervals (CIW) for some time-constant parameters
of model RPT. All these summaries have been obtained when data are simulated from the RPT model.

𝝓𝑻 𝝓𝑵𝑻 𝜹 𝝁

𝑻 MAE Cov. CIW MAE Cov. CIW MAE Cov. CIW MAE Cov. CIW
10 0.32 0.82 0.86 0.05 0.62 0.09 0.05 0.94 0.28 0.25 0.94 0.97
20 0.10 0.88 0.35 0.01 0.68 0.01 0.03 0.82 0.11 0.13 0.82 0.44
30 0.08 0.80 0.25 0.002 0.76 0.007 0.03 0.62 0.08 0.08 0.90 0.32
40 0.07 0.82 0.20 0.002 0.80 0.01 0.02 0.74 0.06 0.06 0.96 0.27

TABLE 3 WAIC, estimated total superpopulation abundance and by group (95% credible intervals).

Model WAIC 𝑵̂𝒔𝒖𝒑𝒆𝒓

RPT 4725.1 311 (266, 373)
{[𝜌𝑡×ℎ, 𝜙𝑡×ℎ, 𝑝𝑡×ℎ]3} 4801.7 600 (467, 669)
{[𝜌𝑡×ℎ, 𝜙𝑡×ℎ, 𝑝𝑡×ℎ]4} 4811.9 594 (409, 664)
{𝜌𝑡×ℎ2

, 𝜙ℎ2
, 𝑝𝑡} 4844.6 341 (287, 418)

{𝜌𝑡×ℎ3
, 𝜙, 𝑝𝑡+ℎ3

} 4870.3 274 (243, 299)
{𝜌𝑡×ℎ2

, 𝜙, 𝑝𝑡+ℎ2
} 4877.9 276 (240, 307)

{𝜌𝑡×ℎ4
, 𝜙ℎ4

, 𝑝𝑡} 4893.1 352 (281, 458)
{𝜌𝑡×ℎ4

, 𝜙, 𝑝𝑡+ℎ4
} 4903.8 271 (244, 306)

{𝜌𝑡×ℎ3
, 𝜙ℎ3

, 𝑝𝑡} 4932.2 334 (269, 441)
{[𝜌𝑡×ℎ, 𝜙𝑡×ℎ, 𝑝𝑡×ℎ]2} 5088.5 356 (267, 628)
{𝜌𝑡, 𝜙, 𝑝𝑡} 5108.7 230 (216, 242)

thus yielding𝑀 = 695. Other choices of𝑀 led to similar results, with larger values of𝑀 only straining the computational
burden, in terms of runtime and storage.
We run two parallel chains, each with 20,000 iterations with a burn-in of 5000 iterations and no thinning. We compare

the performances of the RPT model with the wide range of alternative models illustrated in Section 4, using the same
prior setting specified in the simulation study for all the considered models. Table 3 reports the results on abundance
estimation along with the WAIC associated with each competing model. We notice that the RPT model does yield the
lowest WAIC score. Interestingly, the second best choice according to the WAIC is model {[𝜌𝑡×ℎ, 𝜙𝑡×ℎ, 𝑝𝑡×ℎ]3}, which
indeed resembles the same structure as the RPT model but without allowing for mixture components sharing common
parameters. This lack of parsimony results in an overestimation of the individuals in the superpopulation, similar to
what has been observed in the simulation study (cf. Section 4). Thus, these results suggest the presence of unobserved
heterogeneity in the population, which seems to be better described by themore parsimonious structure of the RPTmodel
than by a generic three-group specification.
The two annual survival probabilities are well separated with an 𝑂𝑉 = 0 and posterior estimates are 𝜙̂𝑇 = 1.06 × 10−8

(𝐶𝐼0.95 = [0, 2.8 × 10−6]) for the group of transient individuals and 𝜙̂𝑁𝑇 = 0.71 (𝐶𝐼0.95 = [0.62, 0.80]) for the resident and
part-time individuals. Notice that the estimated survival parameter 𝜙̂𝑇 is of little interpretability on the annual scale.
However, it corresponds to a probability of 0.73 on the weekly scale and 0.26 on the monthly scale. The average capture
probability of the resident and transient individuals is 𝑝̂𝑁𝑃 = logit−1(𝜇̂) ≈ 0.19; the corresponding temporal variations,
captured by 𝜏𝑡, result in the time-dependent posterior distributions of 𝑝𝑁𝑃, 𝑡 reported in Figure F1 in the Appendix.
The parameter 𝛿 regulating the undetectability of the part-time individuals is estimated to be 𝛿̂ ≈ 0.74. This means

that individuals in that group are present in the area approximately for the 26% of their lifetime. Although the estimates
of the recruitment parameters have little interpretation in the Royle and Dorazio (2008)’s considered framework, it is
worth noticing that, on average, the recruitment probabilities are higher during the first year for the resident individu-
als, while approximately constant for part-time and transient individuals (cf. Figure F2 in the Appendix). This is a model
artifact motivated by all the individuals already present in the population before the start of the survey (i.e., mostly resi-
dents) and that are virtually recruited on the first occasion. If we consider the second year only (most reliable in terms of
recruitment probability estimation and individual classification), the average recruitment probabilities are approximately
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CARUSO et al. 13 of 24

F IGURE 3 Point estimates and posterior 95% credible intervals of the yearly superpopulation size (a) and by group (b).

7 × 10−4, 1 × 10−3, and 6 × 10−3 for the three groups, respectively. This aligns with our expectations, as recruiting more
stable individuals is a slower process than recruiting less stable ones.
The final abundance estimate of the superpopulation in the whole observation window is of 𝑁̂𝑠𝑢𝑝𝑒𝑟 = 311 (𝐶𝐼0.95 =

[266, 373]), with yearly variations 𝑁̂𝑦 (𝑦 = 2018, 2019, 2020) that show a peak in 2019 and a decrease in the last year
of observation (see Figure 3a). It is, however, interesting to look at Figure 3(b), where we report the yearly abundance
estimates by group to better understand the behavior of the aggregated yearly pattern in Figure 3a).
Indeed, it seems that transients’ abundance (𝑁̂𝑇 = 174 (𝐶𝐼0.95 = [123, 236]) is themain factor affecting the overall yearly

counts, especially in 2019 and 2020. They show a substantial decrease in 2020, whereas the abundances of residents (𝑁̂𝑅 =

57 (𝐶𝐼0.95 = [48, 65]) and part-time (𝑁̂𝑃 = 81 (𝐶𝐼0.95 = [55, 101]) group tend to remain stable across years. Recall that these
estimates only refer to well-marked individuals, who represent only a proportion of the whole population (≈ 60% of all
sighted individuals across the 3 years).3 The posterior distributions of the yearly sizes of the three groups were obtained
by counting all the individuals present in the population at each iteration by year and group.
By assigning the 195 well-marked individuals observed between June 2018 and November 2020 to a single group accord-

ing to theMAP allocation, we have that 51 are assigned to the group of residents, 54 to the group of part-time, and 90 to the
group of transients. Notice that theMAP is a straightforward and well-establishedmethod to attain classification in finite-
mixture modeling. However, it is known to be suboptimal in some contexts (McLachlan et al., 2019; Stephens, 2000) and
other appealing methods have been proposed in the recent literature (e.g., Wade & Ghahramani, 2018). The problem of
summarizingmembership probabilities into a crisp classification is a challenging and long-debated issue onwhich there is
no general agreement. Nevertheless, results from the simulation study (see Section 4) showed that the MAP is sufficiently
reliable in the proposed framework. On the other hand, we are aware that any procedure deriving a crisp classification
from membership probabilities oversimplifies the complexity of the inferred results as it does not give any information
about the strength each individual is assigned to a specific group. The latter is one of the main advantages of the soft
clustering returned by FMMs, and we wish to exploit its fuzziness to quantify how decisively each individual is assigned
to one group or the other. For instance, 90% of the individuals classified into the Resident group have been assigned to it
with a probability greater than 0.9. This probability is greater than 0.54 for the Part-Times and 0.53 for the Transient.
In this regard, it is possible to visualize the classification results in Figure 4 using a ternary diagram, which allows

quantifying the probability that each individual belongs to each group. The figure highlights three well-distinguishable
capture history patterns that again comply with the typical RPT behavior. Residents are available in the area for the whole
study period and are spotted very frequently in subsequent sampling occasions; their capture histories are very informa-
tive. Hence, their identification is clear-cut (intense color) in most cases. Part-time individuals are available in the area
for most of the study period and are frequently spotted, but not as often as residents. Their classification is crisp if they
have been encountered for the first time toward the beginning of the study period, while it is dicey when they have been
encountered toward the end for the first time. Finally, the transients show short capture histories with few captures that
never cross 2 years; this reflects that they are spotted only a few times and do not visit (survive) the area for long. Given the
little information provided by their capture histories, their classification is slightly vaguer compared to the other groups,
especially for individuals only observed in the last sampling occasions.
Finally, it is important to remark that the proportions of the three groups do not align with the estimated weights

𝑤̂ = (0.09, 0.39, 0.52). This is because the prior weights are not a good indicator of the true impact of each component

3 Inferring the overall size from the well-marked abundance estimate is not the focus of this paper. For details on this passage, see Wilson et al. (1999).
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14 of 24 CARUSO et al.

F IGURE 4 Individual cumulative frequencies of capture for all the encountered individuals divided into the three groups defined by the
RPT model. Posterior allocation was based on MAP.

in the superpopulation, but only of their impact on the augmented dataset (as mentioned in Section 4). However, we
can infer the composition of the 𝑁 − 𝐷 uncaught individuals, namely, those individuals that were recruited (i.e., not
pseudoindividuals) but were never captured. The model allocates (on average) the uncaught individuals to the resident
group for the 2%, the part-time group for the 15%, and the transient group for the 83%. This result complies with the
short-term survival of the transient individuals and the more elusive nature of the part-time ones. On the other hand, the
residents are always present in the area, and therefore, more susceptible to capture in a broad sense. The results suggest
that most of the resident individuals (98%) have already been observed and documented, a result that is in line with the
progressive decrease of the discovery rate highlighted in Section 2 (cf. Figure 1a).

6 DISCUSSION

Estimating the abundance of marine wildlife species is a challenging but critical activity that can tell much about the
undergoing ecological processes. Thus, combining high-quality data with solid analytical approaches is essential to
improve our knowledge of these dynamics and increase the potential for management actions (Lin et al., 2022; Vella et al.,
2021). In this work, we pursued a Bayesian estimation of the size of a common bottlenose dolphin population, which is
organized into three groups with different residency and site-fidelity patterns. Accounting for such unobserved hetero-
geneity is a very common problem in the environmental literature. However, few papers approach the problem from the
Bayesian perspective and develop ad-hoc solutions based on prior scientific knowledge of the population of interest.
We proposed a parsimonious specification of an FMMwithin the PX-DA setting for CR analysis, which we named RPT.

This specification reflects the typical bottlenose dolphin residency pattern, with individuals showing high, partial, or low
site fidelity (Dinis et al., 2016; Haughey et al., 2020; Hunt et al., 2017; La Manna et al., 2022). Its adoption, characterized by
fewer free parameters, simplifies the identification of all the model components compared to more generic and flexible
alternatives. Furthermore, while the application of FMMs to bring evidence about the true existence of different popu-
lation groups has sometimes been discouraged (Pledger, 2000; Pledger et al., 2003), here we have shown how they can
be exploited to identify classes of individuals sharing similar profiles whenever strong scientific evidence of population
groups’ existence is available.
We devoted part of the model description to the discussion of a suitable prior elicitation preventing the label-switching

issue of FMM. Formal derivations have enriched the results on constrained Beta priors from Alaimo Di Loro et al. (2022).
The performances of our proposal have been assessed through a simulation study that considered scenarios with the
increasing length of the observation window and, hence, of the capture histories (i.e., mimicking continuous monitor-
ing of a population of interest over time). When data were generated from the RPT model, we evaluated the influence of
the number of sampling occasions on the estimates’ quality. As expected, yielded better accuracy and coverage thanks to
the larger sample size. Comparison with alternative model versions over many replicas showed that the model estima-
tion exhibited satisfying and robust performances when the observation window was long enough (more than 1 year of
monitoring).
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We estimated the RPT model and other alternatives on the data that motivated our work. The results showed that,
in terms of the WAIC score, our model outplays several well-established competitors in the class of JS-type models. The
results correspond to biologicallymeaningful findings and alignwith previous researchwork. The estimated abundance is
of 𝑁̂∗

𝑠𝑢𝑝𝑒𝑟 = 311, ofwhich 51 are estimated to be residentmembers of the population. This quantity is particularly important
as it is a proxy of the breeding population in the area. The yearly trend shows an increase between 2018 and 2019 and a
decrease between 2019 and 2020. While the estimated overall abundances are close to the ones obtained by Pace et al.
(2021), the trend is slightly in contrast with their results (nonsignificant increasing trend between 2019 and 2020). This
differencemust be due to the better quantification of the overall uncertainty in our analysis. This is particularly important
in this context as the major interest lies in estimating a reasonable range that accounts for both the worst and best case
scenario. Indeed, we estimate that the driving factor of the variations in the population size across the years is due to
the abundance variation of the transient individuals, the proportion of which is dynamic and not static. Changes in the
presence of such dolphins in an area may reflect changes in driving features such as habitat quality, prey distribution, or
anthropogenic disturbance. The year 2020was the COVID-19 pandemic, with changes in ecological conditions and human
pressures on coastal marine waters (Carome et al., 2022). Although difficult to assess, the influence of these factors on the
number of transient individuals cannot be ruled out, as several dolphins may have been induced to reduce their mobility
toward the study area by improved conditions in their native habitat.
One basic assumption of CR experiments that we do not drop is that captures of different individuals are independent.

However, it is well known that bottlenose dolphin populations can form structured societies with complex social networks
(Pace et al., 2022a). In future studies, we would like to drop the independence assumption and include information on
the population’s social structure and the consequent statistical dependence in the capture histories. Including the effect
of external or individual covariates would also be interesting. For instance, it is possible to recognize the gender and age
class in high-quality pictures. This partial information may be incorporated in the Bayesian framework and could help
for a better assessment, for example, of the membership of different individuals in different groups or of their marking
probability (Wu et al., 2021). As kindly suggested by a reviewer, the CRmodel to estimate the abundance of the bottlenose
dolphins could be extended by adopting a stopover model (Pledger et al., 2009; Worthington et al., 2019), which allows
capture and survival probabilities to depend both on time and time since arrival in the population. In that case, the model
could be formulated as amultistate HMM (Worthington et al., 2019), where the different states refer to the different groups
of individuals in the population. Last but not least, it would be extremely interesting to conduct the survey on a larger
spatial scale and include external information to account for the spatial heterogeneity (Wu & Holan, 2017).
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SUPPORT ING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.
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G. (2024). Finite mixtures in capture–recapture surveys for modeling residency patterns in marine wildlife
populations. Biometrical Journal, 66, 2200350. https://doi.org/10.1002/bimj.202200350

APPENDIX A: MULTISTATE INTERPRETATION OF THE ECOLOGICAL PROCESS
The ecological model described by Royle and Dorazio (2008) can be also seen as a multistate process. At each occasion 𝑡,
each individual in the augmented matrix can be in one and only one of the following three states:

1. It has never been part of the population.
2. It is part of the population.
3. It was part of the population, but now it is not.

We first notice that when an individual becomes part of the population, it cannot be recruited any more: following the
notation introduced in Section 3.1, this implies that for 𝑡 > 1, 𝑟𝑖𝑡 and 𝑧𝑖𝑡 cannot be simultaneously equal to 1.
In the JS modeling framework, individuals who leave the population cannot return to it. Hence, state 3 is an absorbing

state. Let us momentarily ignore the population heterogeneity (clustering structure) for the sake of clarity. If we allow
temporal heterogeneity, then the transition probability matrix associated with the three states at times 𝑡 = 2, … , 𝑇 is:
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F IGURE B1 (a) Marginal priors induced on 𝑢1 (solid red) and 𝑢2 (dashed orange) by the conditional specification
𝑢1 ∼ 𝐵𝑒𝑡𝑎(.5, 1.5), 𝑢2|𝑢1 ∼ 𝑡𝐵𝑒𝑡𝑎(1, .5, 𝑢1, 1). (b) Marginal priors induced on 𝑢1 (solid red) and 𝑢2 (dashed orange) with 𝔼[𝑢1] = 0.2,
𝔼[𝑢2] = 0.4 with 𝕍[𝑢1] = 0.02 and 𝕍[𝑢2] = 0.04 by the conditional prior specification 𝑢1 ∼ 𝐵𝑒𝑡𝑎(1.4, 5.6), 𝑢2|𝑢1 ∼ 𝑟𝐵𝑒𝑡𝑎(0.826, 2.478, 𝑢1, 1).

where rows and columns represent the states at time 𝑡 and 𝑡 + 1, respectively. At period 𝑡 = 1, all individuals can be
recruited in the population. As 𝑡 increases, more and more individuals enter the population or, equivalently, are removed
from state 1. All the observed individuals will eventually be recruited in the population before time 𝑇, but not all of them
will leave it (may have survived to future, unobserved, periods). Remember that individuals are exposed to capture, with
probability 𝑝𝑡, only during their transitory stay in state 2. Hence, also a portion of never observed individuals may have
been recruited into the population at some point without ever being captured. They represent the unknown part we aim
to estimate.

APPENDIX B: MORE DETAILS ON THE PRIOR SPECIFICATION
The standard solution is that of concatenating conditionally specified Uniform distributions as follows:

𝑢1 ∼ 𝑈𝑛𝑖𝑓(0, 1), 𝑢𝑗|𝑢𝑗−1 ∼ 𝑈𝑛𝑖𝑓(𝑢𝑗−1, 1) 𝑗 = 2,… , 𝐺, (B1)

where the 𝑢𝑗 ’s are, for instance, the survival probabilities (Turek et al., 2021). While effective in imposing the constraint,
the priors in (B1) do not allow for the inclusion of previous information that can ease parameters’ identification. Alaimo
Di Loro et al. (2022) explore alternative conditional prior specification that, while implementing the ordering constraint,
allows to control for the shape and first moments of the induced marginal prior distributions:

𝜋𝑢𝑔
(𝑢𝑔) = ∫𝑔−1

𝜋𝑢1
(𝑢1)

𝑔∏
𝑗=2

𝜋𝑢𝑗|𝑢𝑗−1(𝑢𝑗 |𝑢𝑗−1) 𝑑𝑢1, … , 𝑢𝑔−1 ,

where 𝑔−1 is a simplex of order 𝑔 − 1. Possible choices are the Beta and Truncated Beta distributions. The latter
corresponds to the following set of prior distributions:

𝑢1 ∼ 𝐵𝑒𝑡𝑎(𝛼1, 𝛽1), 𝑢𝑔|𝑢𝑔−1 ∼ 𝑡𝐵𝑒𝑡𝑎(𝛼𝑔, 𝛽𝑔; 𝑢𝑔−1, 1) 𝑔 = 2,… , 𝐺, (B2)

where 𝑡𝐵𝑒𝑡𝑎(𝛼𝑔, 𝛽𝑔; 𝑙, 1) denotes the Truncated Beta distribution in (𝑙, 1). Note that for 𝛼𝑔 = 𝛽𝑔 = 1, we obtain (B1). When
𝐺 = 2 and 𝛼2 = 1, the prior specification in (B2) induces the following marginal prior density on 𝑢2:

𝜋𝑢2
(𝑢2) =

𝐵(𝛼1, 𝛽1 − 𝛽2)

𝐵(𝛼1, 𝛽1)
𝛽2(1 − 𝑢2)

𝛽2−1 𝐹𝐵𝑒𝑡𝑎(𝛼1,𝛽1−𝛽2)
(𝑢2) , with 𝛽1 > 𝛽2 , (B3)

where 𝐹𝐵𝑒𝑡𝑎(𝛼1,𝛽1−𝛽2)
(⋅) is the cdf of a 𝐵𝑒𝑡𝑎(𝛼1, 𝛽1 − 𝛽2). See Section B.1 for the formal proof. When 𝛼1 = 𝛽2 = 𝑘 and 𝛽1 =

𝑘 + 1, we have that 𝜋𝑢1
(𝑢1) = 𝐵𝑒𝑡𝑎(𝑢1 | 𝑘, 𝑘 + 1) and the density in (B3) is a 𝐵𝑒𝑡𝑎(𝑘 + 1, 𝑘). The two distributions are

mirrored with respect to the vertical line 𝑣 = 0.5 (see Figure B1a of the Appendix as an example). Hence, we have 𝔼[𝑢2] =
1 − 𝔼[𝑢1], for all 𝑘 > 0; if 𝑘 > 1, we also have𝑀𝑜𝑑𝑒(𝑢2) = 1 −𝑀𝑜𝑑𝑒(𝑢1). The low-parametrized structure induces well-
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separated prior means or prior modes for 𝑢1, 𝑢2 marginal distributions, favoring the mixture components’ separation.
Alternative settings inducing well-separated modes in beta-type priors are reported in Section B.2 of the Appendix.

B.1 The beta and truncated beta distribution
The density of a Beta random variable with shape 𝛼 and rate 𝛽 is:

𝐵𝑒𝑡𝑎(𝑧 |𝛼, 𝛽) = Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
⋅ 𝑧𝛼−1 ⋅ (1 − 𝑧)𝛽−1, 𝑧 ∈ (0, 1),

where Γ(⋅) is the Euler gamma function. The truncation requires normalizing the same distribution over the truncated
domain. We say that 𝑢2|𝑢1 is a truncated beta in (𝑢1, 1) when:

𝜋(𝑢2|𝑢1) = 𝑡𝐵𝑒𝑡𝑎(𝛼2, 𝛽2, 𝑢1, 1) =
1

𝐵(𝛼2, 𝛽2)

𝑢
𝛼2−1
2

(1 − 𝑢2)
𝛽2−1

1 − 𝐹𝐵𝑒𝑡𝑎(𝛼2,𝛽2)
(𝑢1)

𝟙{𝑢1,1}(𝑢2) ,

with 𝐹𝐵𝑒𝑡𝑎(𝛼2,𝛽2)
(⋅) being the cdf of a 𝐵𝑒𝑡𝑎(𝛼2, 𝛽2). Now, suppose that 𝑢1 ∼ 𝐵𝑒𝑡𝑎(𝛼1, 𝛽1) and 𝑢2|𝑢1 ∼ 𝑡𝐵𝑒𝑡𝑎(𝛼2, 𝛽2, 𝑢1, 1),

then if 𝛼2 = 1, the marginal prior distribution induced on 𝑢2 is given by:

𝜋(𝑢2) = ∫
1

0

𝜋(𝑢2|𝑢1)𝜋(𝑢1) 𝑑𝑢1
= ∫

1

0

𝛽2 (1 − 𝑢2)
𝛽2−1

1 − 𝐹𝐵𝑒𝑡𝑎(1,𝛽2)
(𝑢1)

𝟙{𝑢1,1}(𝑢2)
1

𝐵(𝛼1, 𝛽1)
× 𝑢

𝛼1−1
1

(1 − 𝑢1)
𝛽1−1 𝑑𝑢1

=
𝛽2 (1 − 𝑢2)

𝛽2−1

𝐵(𝛼1, 𝛽1) ∫
𝑢2

0

𝑢
𝛼1−1
1

(1 − 𝑢1)
𝛽1−1

1 − 𝐹𝐵𝑒𝑡𝑎(1,𝛽2)
(𝑢1)

𝑑𝑢1

=
𝛽2 (1 − 𝑢2)

𝛽2−1

𝐵(𝛼1, 𝛽1) ∫
𝑢2

0

𝑢
𝛼1−1
1

(1 − 𝑢1)
(𝛽1−𝛽2)−1 𝑑𝑢1

=
𝐵(𝛼1, 𝛽1 − 𝛽2)

𝐵(𝛼1, 𝛽1)
𝛽2 (1 − 𝑢2)

𝛽2−1 ∫
𝑢2

0

𝑢
𝛼1−1
1

(1 − 𝑢1)
(𝛽1−𝛽2)−1

𝐵(𝛼1, 𝛽1 − 𝛽2)
𝑑𝑢1

=
𝐵(𝛼1, 𝛽1 − 𝛽2)

𝐵(𝛼1, 𝛽1)
𝛽2(1 − 𝑢2)

𝛽2−1 𝐹𝐵𝑒𝑡𝑎(𝛼1,𝛽1−𝛽2)
(𝑢2) , 𝑤𝑖𝑡ℎ 𝛽1 > 𝛽2,

where we exploited the fact that 𝐹𝐵𝑒𝑡𝑎(1,𝑏)(𝑧) = ∫ 𝑧

0
(1 − 𝑡)𝑏−1 𝑑𝑡 = 1 − (1 − 𝑧)𝑏. Observe that the constraint 𝛽1 > 𝛽2 is

essential to avoid the divergence of the beta function.
In particular, it is straightforward to show that if 𝛼1 = 𝛽2 = 𝑘 and 𝛽1 = 𝑘 + 1, that is, 𝑢1 ∼ 𝐵𝑒𝑡𝑎(𝑘, 𝑘 + 1) and 𝑢2|𝑢1 ∼

𝑡𝐵𝑒𝑡𝑎(1, 𝑘, 𝑢1, 1), then 𝑢2 ∼ 𝐵𝑒𝑡𝑎(𝑘 + 1, 𝑘). Notice that, in this particular case, the marginal distribution induced on 𝑢2 is
symmetrical with respect to the distribution of 𝑢1 around the vertical line 𝑣 = 0.5; equivalently, 𝑢2

𝑑
= 1 − 𝑢1.

B.2 The beta and restricted beta
Analternative conditional specification that allows for a properly informedmarginal prior can be obtained using restricted
beta distribution. Also known as 4-parameters Beta, it is a Beta r.v. that has been shifted and scaled to reside on the domain
(𝑙, 𝑢):

𝑟𝐵𝑒𝑡𝑎(𝑧 |𝛼, 𝛽, 𝑙, 𝑢) = Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
⋅
(𝑧 − 𝑙)𝛼−1 ⋅ (𝑢 − 𝑧)𝛽−1

(𝑢 − 𝑙)𝛼+𝛽−1
𝟙{𝑙,𝑢}(𝑧).

We can use it to specify recursively a set of 𝐺 conditional priors as:

𝑢1 ∼ 𝐵𝑒𝑡𝑎(𝛼1, 𝛽1), 𝑢𝑔|𝑢𝑔−1 ∼ 𝑟𝐵𝑒𝑡𝑎(𝛼𝑔, 𝛽𝑔; 𝑢𝑔−1, 1) 𝑔 = 2,… , 𝐺,
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CARUSO et al. 21 of 24

where 𝑟𝐵𝑒𝑡𝑎(𝛼𝑔, 𝛽𝑔; 𝑢𝑔−1, 1) denotes the Beta restricted to (𝑢𝑔−1, 1). The corresponding joint prior is:

𝜋(𝑢1, 𝑢2) =
Γ(𝛼1 + 𝛽1)Γ(𝛼2 + 𝛽2)

Γ(𝛼1)Γ(𝛽1)Γ(𝛼2)Γ(𝛽2)
⋅ 𝑢

𝛼1−1
1

(1 − 𝑢1)
𝛽1−𝛽2−𝛼2(𝑢2 − 𝑢1)

𝛼2−1(1 − 𝑢2)
𝛽2−1 𝟙{𝑢1,1}(𝑢2),

which does not allow for an analytical marginalization to get 𝜋(𝑢2) in the general scenario. However, the 𝑟𝐵𝑒𝑡𝑎 expected
value and variance are available in closed form, and hence, we can use the law of total expectation to derive the marginal
expected value and variance of all the components. For 𝑔 = 2,… , 𝐺:

𝔼
[
𝑢𝑔

]
=

𝛼𝑔

𝛼𝑔 + 𝛽𝑔
+ 𝜇𝑔−1

𝛽𝑔

𝛼𝑔 + 𝛽𝑔

𝕍
[
𝑢𝑔

]
= 𝜎2

𝑔−1
⋅

𝛽2
𝑔

(𝛼𝑔 + 𝛽𝑔)2

(
1 +

𝛼𝑔

𝛽𝑔(𝛼𝑔 + 𝛽𝑔 + 1)

)
+
(
1 − 𝜇𝑔−1

)2
⋅

𝛼𝑔𝛽𝑔

(𝛼𝑔 + 𝛽𝑔)2(𝛼𝑔 + 𝛽𝑔 + 1)
,

where 𝜇𝑔−1 = 𝔼[𝑢𝑔−1] and 𝜎2
𝑔−1

= 𝕍[𝑢𝑔−1]. Therefore, one can define a system of equations to find the combination of
𝛼𝑔, 𝛽𝑔 that complies with a prior knowledge on the moments of the parameters (see Figure B1b as an example).

Aconvenient parameter setting. Aconvenient parameter setting ariseswhen𝐺 = 2 and if we fix𝛼1 = 𝛼,𝛼2 = 1, 𝛽1 = 𝛽 + 1,
and 𝛽2 = 𝛽. Indeed, if 𝑢1 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽 + 1) and 𝑢2 |𝑢1 ∼ 𝑟𝐵𝑒𝑡𝑎(1, 𝛽, 𝑢1, 1), then the joint distribution of (𝑢1, 𝑢2) is:

𝜋(𝑢1, 𝑢1) =
(𝛼 + 𝛽)Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
⋅ 𝑢𝛼−1

1
(1 − 𝑢2)

𝛽.

Marginalizing with respect to 𝑢1, we get:

𝜋(𝑢2) = ∫
1

0

𝜋(𝑢1, 𝑢2) 𝟙{𝑢1,1}(𝑢2) 𝑑𝑢1 = ∫
1

0

𝜋(𝑢1, 𝑢2) 𝟙{0,𝑢2}(𝑢1) 𝑑𝑢1 = ∫
𝑢2

0

𝜋(𝑢1, 𝑢2) 𝑑𝑢1 =

=
(𝛼 + 𝛽)Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
⋅ (1 − 𝑢2)

𝛽−1 ⋅ ∫
𝑢2

0

𝑢𝛼−1
1

𝑑𝑢1 =

=
Γ(𝛼 + 𝛽 + 1)

Γ(𝛼)Γ(𝛽)
⋅ (1 − 𝑢2)

𝛽−1 ⋅
𝑢𝛼
2

𝛼
=

=
Γ(𝛼 + 𝛽 + 1)

Γ(𝛼 + 1)Γ(𝛽)
⋅ 𝑢

(𝛼+1)−1
2

(1 − 𝑢2)
𝛽−1,

which is a standard Beta density 𝜋(𝑢2) = 𝐵𝑒𝑡𝑎(𝑢2 |𝛼 + 1, 𝛽). Expected value and variance can then be derived from basic
properties of the Beta distribution.

APPENDIX C: MODELING THE TEMPORARY EMIGRATION
Here, we show that the introduction of the undetectability parameter 𝛿 on the part-time individuals is equivalent to allow-
ing for random temporary emigration. We focus on the higher hierarchy level of the part-time model specification, as all
other components are not affected. For the sake of clarity, we drop the 𝑔-subscript and let the reference to the part-time
group be implied.
The proposed model specification for the part-time group is as follows:

𝑦𝑖𝑡 | 𝑧𝑖𝑡 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑡 ⋅ (1 − 𝛿) ⋅ 𝑧𝑖𝑡),

𝑧𝑖𝑡 | 𝑧𝑖,𝑡−1, 𝑟𝑖𝑡 ∼ 𝐵𝑒𝑟𝑛(𝜙𝑡 ⋅ 𝑧𝑖,𝑡−1 + 𝜌𝑡 ⋅ 𝑟𝑖𝑡), 𝑟𝑖𝑡 = min{𝑟𝑖,𝑡−1, 1 − 𝑧𝑖,𝑡−1},
(C1)

which is different from the other groups only through the introduction of the parameter 𝛿 ∈ (0, 1) in the detection process.
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22 of 24 CARUSO et al.

Let us recall that 𝑧𝑖𝑡 is a latent variable indicating whether individual 𝑖 is “alive” at time 𝑡. This is generally confounded
with permanent emigration, but it cannot account for temporary emigration as exited individuals cannot ever reenter the
study area and return susceptible to captures. Therefore, this first latent variable is only able to model the time at which
individual 𝑖 starts visiting the area (is born) and the time at which it stops visiting it for good (dies). The explicit modeling
of temporary emigration within this time window requires the introduction of an additional latent variable 𝑣𝑖𝑡 denoting
whether individual 𝑖 is present given that 𝑧𝑖𝑡 = 1. The specification of Equation (C1) arises if we assume that temporary
emigration occurs randomly and with equal probability 𝛿 while individual 𝑖 is alive. This corresponds to the following
hierarchical specification:

𝑦𝑖𝑡 | 𝑣𝑖𝑡 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑡 ⋅ 𝑣𝑖𝑡),

𝑣𝑖𝑡 | 𝑧𝑖,𝑡 ∼ 𝐵𝑒𝑟𝑛((1 − 𝛿) ⋅ 𝑧𝑖,𝑡),

𝑧𝑖𝑡 | 𝑧𝑖,𝑡−1, 𝑟𝑖𝑡 ∼ 𝐵𝑒𝑟𝑛(𝜙𝑡 ⋅ 𝑧𝑖,𝑡−1 + 𝜌𝑡 ⋅ 𝑟𝑖𝑡), 𝑟𝑖𝑡 = min{𝑟𝑖,𝑡−1, 1 − 𝑧𝑖,𝑡−1},

(C2)

where 𝑦𝑖𝑡 ⟂ 𝑧𝑖𝑡 if 𝑣𝑖𝑡 is known. We can easily marginalize 𝑣𝑖𝑡 out of Equation (C2) by noting that each 𝑦𝑖𝑡|𝑧𝑖𝑡 is a Bernoulli
random variable with probability of success:

𝑝̃𝑡 = 𝔼[𝑦𝑖𝑡 | 𝑧𝑖𝑡] = 𝔼[𝔼[𝑦𝑖𝑡 | 𝑣𝑖𝑡] | 𝑧𝑖𝑡] =
= 𝔼[𝑝𝑡 ⋅ 𝑣𝑖𝑡 | 𝑧𝑖𝑡] = 𝑝𝑡 ⋅ 𝔼[𝑣𝑖𝑡 | 𝑧𝑖𝑡] = 𝑝𝑡 ⋅ (1 − 𝛿) ⋅ 𝑧𝑖𝑡,

from which:

𝑦𝑖𝑡 | 𝑧𝑖𝑡 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑡 ⋅ (1 − 𝛿) ⋅ 𝑧𝑖𝑡).

This equivalence and the corresponding interpretation are what motivates the use of a multiplicative parametrization
on the capture probability at the invlogit scale in place of a more straightforward group-specific intercept within the
logit specification.

APPENDIX D: DETAILS ABOUT TIME LAGS USED IN THE SIMULATION STUDY
The number of days between two consecutive capture occasions (daily time lags, henceforth) within a single year has
been simulated from a shifted geometric distribution with probability 0.05, which has an expected value equal to 20 and a
standard deviation equal to 19.5. The resulting random sequence of time lags is

(20, 1, 12, 15, 56, 9, 9, 12, 10),

and, for scenarios that contemplate more than 1 year of study, the same sequence is repeated during each new year. The
shift of year occurring each 10 occasions is achieved by using a higher constant time lag (i.e., 240 days) between the
(10𝑘)th occasion and the (10𝑘 + 1)th occasion, with 𝑘 = 1, 2, 3. This results in a scenario 𝑘 composed by 𝑘 years of study,
for 𝑘 = 1, 2, 3, 4. For example, scenario 2 (𝑇 = 20) is composed of the following sequence of time lags, resulting in 2 years
of capture occasions:

(20, 1, 12, 15, 56, 9, 9, 12, 10, 240, 20, 1, 12, 15, 56, 9, 9, 12, 10).

APPENDIX E: CONVERGENCE OF RELEVANT PARAMETERS ESTIMATED ON REAL DATA
We checked the convergence of the parameter chains in the real data application through the general-purpose Gelman
diagnostic. All potential-scale reduction factors 𝑅̂ are below 1.01, which suggests a good mixing of all parameter chains.
In Figure E1, we show the behavior of the traceplots of the most relevant parameters. We can observe how the two chains
explore the same parameters space in all cases and produce a well-shaped posterior distribution, with no bad behavior.
The corresponding density estimates are shown in Figure E2.
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F IGURE E1 Traceplots of posterior samples for the main parameters of interest of model RPT.

F IGURE E2 Densities of posterior samples for the main parameters of interest of model RPT.

APPENDIX F: ESTIMATED TIME-VARYING PARAMETERS OF THE RPTMODEL ON THE REAL DATA
APPLICATION

FIGURE F1 Posterior estimates and 95% credible intervals for capture probabilities of resident and transient individuals at each
sampling occasion.
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24 of 24 CARUSO et al.

F IGURE F2 Estimated recruitment probabilities (a) 𝜌𝑅,𝑡 , (b) 𝜌𝑃,𝑡 , and (c) 𝜌𝑇,𝑡 .
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