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A B S T R A C T

Dynamic traffic models require dynamic inputs, one of the main ones being the Dynamic Origin–
Destinations (OD) matrices describing the variability over time of the trip patterns across the
network. The Dynamic OD Matrix Estimation (DODME) is a challenging problem since no direct
observations are available, and therefore one should resort to indirect estimation approaches.
Among the most efficient approaches, the one that formulates the problem in terms of a bi-
level optimization problem has been widely used. This formulation solves at the upper level a
nonlinear optimization problem that minimizes some distance measures between observed and
estimated link flow counts at certain counting stations located in a subset of links in the network,
and at the lower level a traffic assignment that estimates these link flow counts assigning the
current estimated matrix. The variants of this formulation differ in the analytical approaches
that estimate the link flows in terms of the traffic assignment and their time dependencies.
Since these estimations are based on a traffic assignment at the lower level, these analytical
approaches, although numerically efficient, imply a high computational cost. The advent of
ICT applications has made available new sets of traffic-related measurements enabling new
approaches; under certain conditions, the data collected allows to estimate the most likely
used paths, from which a de facto assignment matrix can be computed. This allows extracting
empirically similar information to that provided by the dynamic traffic assignment that is used
in the analytical approaches. This paper explores how to extract such information from the
recorded commercial data, proposes a new constrained non-linear optimization model to solve
the DODME problem, with a reduced number of variables linearly depending on network size
instead of quadratically. Moreover, the bilevel iterative process and the traffic assignment need
are avoided. Validation and computational results on its performance are presented.

1. Introduction

Trip patterns in terms of origin-to-destination (OD) traffic flows are a key input to traffic assignment models, namely to dynamic
traffic assignment models. The trip patterns must also be dynamic – or at least time discretized – to properly approximate the time
variability of the demand. However, OD matrices are not yet observable; in the best case, the measurements from Information and
Communications Technologies (ICT) such as GPS vehicle tracking or mobile phone call detail records (CDR) can be used to collect
samples that must then be used to infer or estimate the whole population. In order to perform this estimation, indirect processes
that are usually based on mathematical models that take as input traffic counts are most commonly used.
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The problem of OD matrix estimation has been interesting for both researchers and practitioners for decades, (Van Zuylen and
illumsen, 1980). Furthermore, the aim of capturing the congestion effects of the changing OD flows during the OD estimation

rocess conducted the research to an appealing mathematical formulation as a bi-level optimization problem. Moreover, in the
ecent years, the dynamic traffic assignments arise in order to capture the evolution of the traffic system according its dynamicity,
eading to the dynamic OD matrix estimation problem.

.1. The OD matrix estimation problem

The OD estimation problem in terms of the bi-level optimization problem is shown in Eq. (1), aimed at adjusting an initial target
D, X𝐻 , so that it could explain the observed link flow counts Y at counting stations in the network. Lundgren and Peterson (2008)
ive the followed formulation for the static situation.

min𝑍(𝐗) = 𝑤1𝐹1(𝐗,𝐗𝐻 ) +𝑤2𝐹2(𝐘, �̂�) (1)
𝑠.𝑡𝑜 𝐘 = 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝐗)

𝐗 ≥ 0

where 𝐹1 and 𝐹2 are suitable distance functions between estimated and observed values; while 𝑤1 and 𝑤2 are weighting factors
reflecting the uncertainty of the information contained in X𝐻 and 𝐘, respectively. The underlying hypothesis is that 𝐘 =
𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡(𝐗) are the link flows predicted by assigning the demand matrix 𝐗 onto the network, that will be notated as 𝐘(𝐗).
This mathematical model is highly undetermined since the number of variables of the problem, the OD flows, is much larger than
the number of the available link traffic counts. Therefore, the resolution of the optimization problem can lead to different solutions,
even in the case when the seed OD matrix is proper to the solution, (Yang et al., 1992). It is well known that even a full covered
network with traffic sensors on each link does not ensure a determined problem, (Bierlaire, 2002), therefore, an appealing research
topic has been to explore new approaches including further information, such as link speeds or travel times (Cantelmo et al., 2014a;
Nigro et al., 2018; Kostic and Gentile, 2019; Behara et al., 2020b), aimed at reducing such underdetermination.

Traffic modelling for transportation analysis has evolved to the dynamic traffic assignment (DTA) models, which are able to
include the time dependencies on the traffic system, overcoming in this way the main drawbacks of static assignment of not
accounting for the congestion generation and its dynamic propagation across the network. Dynamic models require then dynamic
inputs, which means dynamic OD matrices that are represented as a time series of sequentially OD matrices. Therefore, the dynamic
OD matrix estimation problem (DODME) becomes more complex, with more variables and time dependencies across the time periods
of the traffic simulation, (Frederix et al., 2011b,a).

Cantelmo et al. (2014b) have considered DODME problem based on the bi-level approach and include a utility-based DTA models
in the lower level relying on activity location and trip duration information. They demonstrate that, extending the bi-level approach
by taking into account such information, the number of free parameters in the DODME problem systematically decreases, improving
the reliability of the estimated dynamic OD matrices by reducing the underdetermination of the solution.

The relevant question of reliability is also addressed by other authors as (Yang et al., 1992) for the static OD matrix estimation
problem. In this context, the analysis in Djukic (2014) can be taken as a reference, where it is proven that traditional distances are
not able to capture the structural similarity between two matrices. Behara et al. (2020a) adopt Levenshtein distance, traditionally
used to compare sequences of strings, and extends it to quantify the structural comparison of OD matrices and Ruiz de Villa et al.
(2014) use Wasserstein distance to quantify structural similarity and address matrix estimation reliability. Djukic et al. (2013),
Behara et al. (2018) use the Mean Structural Similarity Index (MSSIM), which is also adopted and enhanced by the authors on this
paper.

Many different techniques have been used in the literature to solve the bi-level OD estimation problem on the offline context. On
the one hand, the simultaneous perturbation stochastic approximation (SPSA) (Antoniou et al., 2015; Balakrishna, 2006; Kostic and
Gentile, 2019; Cantelmo et al., 2014a) among others) and Osorio (2019) and her consequent research on the use of metamodels in
simulation optimization-based methods that aim to find a derivative-free estimated descent direction of the objective function with
a low number of evaluations, each of which requiring a full assignment. On the other hand, other approaches use an analytical form
of the objective function and apply different methods to solve the problem, for instance GLS approaches for the offline problem
(Cascetta et al., 2013) or Kalman filter for the dynamic online problem (Ashok and Ben-Akiva, 2002; Barceló et al., 2013).

Recent literature is addressed to include ICT measures into the DODME problem to reduce the underdetermination of the
underlying problem. Mo et al. (2020) propose a two-step ordinary least squares (OLS) OD estimation model, which incorporates the
output from a Bayesian path reconstruction model developed to cope with insufficient coverage rate of ICT data from Licence Plate
Recognition and coestimates the dynamic OD demand and assignment matrix without any historical matrix need. Finally, Yang et al.
(2017) and Krishnakumari et al. (2019) use the geopositioning data of probe vehicles from an ad hoc experiment designed by the
authors to obtain an a priori dynamic OD matrix and the reconstructed paths are included into the OD estimation process.

1.2. Motivation

The linearization of the relationship between traffic counts and OD flows is one way of solving these problems in a more
computationally efficient way. This can be achieved by using the proportion of the OD demand flows passing through the count
location at a certain link. In these terms, the dynamic assignment matrix 𝐀(𝐗) is the result of the mapping and can be rewritten as:

𝑦𝑙𝑡 =
∑∑∑

𝑎𝑙𝑡𝑖𝑗𝑟𝑥𝑖𝑗𝑟 → 𝐘 = 𝐀(𝐗)𝐗 (2)
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where 𝑎𝑙𝑡𝑖𝑗𝑟 represents the proportion of the OD flow that departs from origin 𝑖 at time period 𝑟 and goes to destination 𝑗 that crosses
link 𝑙 ∈ �̂� ⊆ 𝐿 at time period 𝑡 ≥ 𝑟. 𝐼, 𝐽 and  stands for the set of origin zones, destination zones and the simulation time periods,
respectively.

However, this linearization cannot properly account for the impacts of the traffic dynamics, time dependencies and route choice
alternatives induced by congestions, because, as (Frederix et al., 2011a, 2013) highlight, in this case, counts in or downstream of
congestion are not informative of demand, but of (discharge) capacity. Indeed, this linear mapping between the link flows and the
OD flows is the first term in the Taylor expansion of the relationship between link flows and OD flows, at an OD matrix in the
neighbourhood of 𝐗, (Toledo and Kolechkina, 2013). The additional terms of its Taylor expansion would capture the assignment
matrix’s sensitivity to such mentioned changes and its effects. However, how this paper proposes to calculate 𝑎𝑙𝑡𝑖𝑗𝑟 accounts implicitly
for these effects as far as the time-dependent link travel times are obtained from the actual traffic conditions and therefore the
estimation of a time-dependent assignment matrix is addressed. OD path proportion use is not constant across the optimization
since OD time-depending travel costs are considered to derive OD path proportions and thus, OD path flows.

Then, the resulting bi-level optimization problem solves (at the upper level) the nonlinear optimization problem by substituting
the estimated flows 𝐘 in the objective function of (1) with the relationship (2):

min𝑍(𝐗) = 𝑤1𝐹1(𝐗,𝐗𝐻 ) +𝑤2𝐹2(𝐀(𝐗)𝐗, �̂�) (3)
𝑠.𝑡𝑜 𝐗 ≥ 0

If 𝐹1 and 𝐹2 are quadratic distances, the problem stated on Eq. (3) has an analytical and differentiable objective function, which
makes it possible to use iterative optimization methods that present nice properties of convergence and stability. One example is
applying the maximum descent method, which leads to the dynamic version of Spiess (1990). Details of its implementation can
be found in Ros-Roca et al. (2020a). However, a DTA at the lower level to calculate the dynamic assignment matrix 𝐀(𝐗) is still
required for the evaluation of the objective function.

These analytical approaches to DODME problem show that all of them rely on the availability of the Assignment Matrix 𝐀 =
[

𝑎𝑙𝑡𝑖𝑗𝑟
]

for the various time intervals, calculated at the lower level of (3) by the Dynamic Traffic Assignment at each time interval.
The availability of the GPS generated data enables us to assume that, after a suitable data processing to find the empirical paths

and the inference of path choice proportions, it is possible to estimate a dynamic assignment matrix that relies on the information
regarding traffic conditions. Since it would play a similar role to that of the analytical assignment matrix obtained by a Dynamic
Traffic Assignment (DTA), we focus our attention on how to efficiently estimate that assignment matrix, in practical terms, from
available commercial data as discussed above.

1.3. Article’s structure

Regarding the use of empirical data for the intended purpose, a key aspect is whether one can control the data collection process
or, on the contrary, one depends on the commercial GPS traces as supplied by data providers. The first situation ensures the quality
and reliability of the data collected and also its adequacy to make the necessary estimations in terms of complete reliable trajectories
from origins to destinations (Yang et al., 2017; Krishnakumari et al., 2019).

In the second case, data are usually of two types, either non-processed waypoints or in-house processed information as, for
instance, speed profiles. Non-processed waypoints are not directly useable for transportation analysis, and they must be processed
before: they must be filtered, cleansed to remove outliers and correct errors, and suitably map matched to fit the transport network.
Alternatively, data supplier companies also provide references to tools to extract additional information like speed profiles at link
level from the waypoints, which can be used for transportation analysis to infer OD travel times among other applications. An
example of such a tool would be OpenLR, (OpenLR, 2020).

The paper is organized in three sections, after this introductory section. The first one, Section 2, defines the methodological
framework designed for the data-driven OD estimation method: Section 2.1 describes the basic estimation of most likely used paths
from estimated travel times at link level followed by the process of obtaining the estimated dynamic assignment matrix estimation;
and Section 2.2 resumes the statement of the optimization problem for DODME. Section 2.3 proposes an enhanced MSSIM structural
similarity indicator to assess goodness of fit of DODME results

In Section 3, we outline the synthetic experimental design that aims to validate the proposed methodology in terms of consistency,
robustness and sensitivity. We do this by discussing the experimental design on Section 3.1 and outline the data collection process
to select synthetic GPS data that it is detailed in Appendix B. We validate the Methodological Approach and assess the observed
assignment matrix properties for the synthetic experiment in Section 3.2 and Sections 3.3 and 3.4 discuss the quality of DODME
results and their relationship to GPS penetration rate.

Section 4 presents a real data experiment; Section 4.1 illustrates the data-driven procedure to estimate an observed assignment
matrix based from GPS traces on a larger and real network (Turin) and obtained DODME results are discussed in Section 4.2. We
offer conclusions and a discussion on further research avenues in Section 5.

The type of information we assume in this paper is either available from the proposed processing, or generated by the analyst
using other available tools. The estimation of link speeds, or equivalently link travel times, from the recorded data, is a common
requirement to most of the data-driven approaches, as for Krishnakumari et al. (2019). Therefore, unless the already mentioned
data collection hypothesis are satisfied (e.g., (Yang et al., 2017)), they are not directly measured but can be inferred from the
available data (e.g., Lopez et al. (2017a,b)), where the assumption is that path travel times are obtained by license plate recognition
3
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Fig. 1. The Data-driven Assignment-free DODME methodology.

and are available from shortest paths between origins and destinations by a simple heuristic approach. In our case, as path travel
times could not be reliable for the mentioned reasons, a different approach is proposed based on the waypoints and the map-
matching process, either with professional tools, like OpenLR, or those provided by transport planning platforms, like the ones that
for practical purposes provide the utilities of software platforms for transportation analysis (as for instance the GPX matching utility
in PTV Visum, (PTV Vissim, 2020b)). These practical details are addressed in Appendix A. In all cases, this paper assumes that the
available data have already been filtered, cleansed and processed, and therefore, we focus the work on what can be done with the
available link travel times estimations.

2. Methodological approach: A data-driven assignment-free DODME

Therefore, assuming that a set of estimated link travel times – obtained either from ICT providers, or processed by the user
according to the process explained in Appendix A – and a set of traffic counts are available for a selected period of time; a specific
purpose designed process produces route choice paths and proportions for generating an estimated assignment matrix. Then, the
research question addressed in the following sections is to investigate whether it is possible to use such information to state a
different formulation of the DODME problem, in terms of an optimization model, not requiring the execution of any dynamic
traffic assignment procedure. The conceptual computational scheme of the proposed data-driven assignment-free DODME approach,
powered by the ICT applications capturing GPS data trajectories and providing estimated link travel times, is summarized in Fig. 1.

2.1. Calculation of the dynamic assignment matrix

According to assignment-based methods, the paths used to travel between origins and destinations are provided by a user
equilibrium assignment. In an assignment-free approach, we propose an alternative method relying on the available estimated link
travel times to generate a plausible Route Choice Set,  =

{

𝐾 ,∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 ,∀𝑟 ∈ 
}

, specifically from among the most likely
4
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used paths between each origin and each destination at each departure time. As already mentioned, when these estimated link travel
times are not available, we suggest to obtain them from GPS tracking data, using the specific tools from providers for cleaning and
filtering and obtaining the travel times at link level, or by using the described methodology in Appendix A.

The estimated link travel times for each link of the network 𝑙 at each time period 𝑡, 𝑡𝑡𝑙𝑡 are the main inputs for generating the
oute choice set. That is the set of most likely alternatives. This is usually done through a selective approach that identifies the
outes based on some previously mentioned criteria (k shortest paths, path flows computation, etc.).

Many alternative approaches can be used for this, and all them are essentially based on variants of 𝑘 shortest paths. Alternatives
ased on iteratively applying Dijkstra-based algorithms for similar purposes while explicitly accounting for overlapping penalties
ave been analysed by Janmyr and Wadell (2018) and Nassir et al. (2014). Other alternative procedures based on Chabini (1998)
ime dependent shortest paths or path search algorithms can be found in the literature. The option implemented in this paper is
iscussed in Section 3.1.

Once the candidate routes in the route choice set are specified, a key question in the route choice model is how to address
he problem that the alternatives are usually not independent but correlated due to overlapping paths. From a theoretical point
f view, Probit models are likely those who better account for these correlations, but the difficulties in practically implementing
hem led to search for other approaches. Cascetta et al. (1996), Ben Akiva and Bierlaire (1999) propose alternative models for
apturing the correlation among alternatives by modifying the logit-based choice, specifically by measuring the degree of similarity
etween the alternatives and adding it to the utility’s deterministic component in the corresponding discrete choice model. This
erm is usually called the ‘‘commonality factor ’’, and its main role, (Cascetta, 2001), is to overcome the problems deriving from the
asic hypothesis of independence of irrelevant alternatives, which discrete choice logit models assume and could otherwise lead to
nrealistic results. This term reduces the systematic utility of a path in proportion to its level of overlapping with other alternative
aths. The formulation adopted in this paper is Janmyr and Wadell (2018)’s proposed modification of the formulation of Bovy et al.
2008).

The paths in 𝐾𝑖𝑗𝑟 are denoted by 𝑘(𝑖, 𝑗, 𝑟) ∈ 𝐾𝑖𝑗𝑟 in order to explicitly show the dependence on (𝑖, 𝑗, 𝑟). For a certain path 𝑘(𝑖, 𝑗, 𝑟),
he sequence of links that compound it is the set 𝛤𝑘(𝑖,𝑗,𝑟) = {𝑒1,… , 𝑒𝑚𝑘

}. Then, the proportion of path choice for each path in the
et 𝐾𝑖𝑗𝑟 is calculated as a modified discrete logit-based choice model that uses the commonality factor within the OD pair and time
eriod, 𝐶𝐹𝑘. It further acts as an additive penalization factor on current travel times (Bovy et al., 2008). That is:

𝐶𝐹𝑘(𝑖.𝑗.𝑟) =
1

𝜇𝐶𝐹

∑

𝑎∈𝛤𝑘(,𝑖,𝑗,𝑟)

⎛

⎜

⎜

⎝

𝑙𝑎
𝐿𝑘(𝑖,𝑗,𝑟)

log
⎛

⎜

⎜

⎝

∑

ℎ∈𝐾𝑖𝑗𝑟

(𝛿𝑎ℎ𝑟 + 1)
⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

(4)

𝑃𝑘(𝑖,𝑗,𝑟) =
exp[𝜇𝑃𝑘 (−𝑡𝑡𝑘(𝑖,𝑗,𝑟) − 𝐶𝐹𝑘(𝑖,𝑗,𝑟))]

∑

ℎ∈𝐾𝑖𝑗𝑟
exp[𝜇𝑃𝑘 (−𝑡𝑡ℎ(𝑖,𝑗,𝑟) − 𝐶𝐹ℎ(𝑖,𝑗,𝑟))]

(5)

here 𝛿𝑎ℎ indicates whether path ℎ ∈ 𝐾𝑖𝑗𝑟 uses link 𝑎; 𝑙𝑎 is the length of link 𝑎; and 𝐿𝑘(𝑖,𝑗,𝑟) is the total length of path 𝑘 ∈ 𝐾𝑖𝑗𝑟. In
order to be unit’s consistent, to adapt magnitudes for the discrete choice summation and permit more variability between paths in
the case of short travel times, 𝜇𝑃𝑘 and 𝜇𝐶𝐹𝑘 are parameters that were fixed as follows:

𝜇𝑃𝑘 = 𝜇𝐶𝐹𝑘 = 1
𝑚𝑒𝑎𝑛𝑘∈𝐾𝑖𝑗𝑟

(

𝑡𝑡𝑘(𝑖,𝑗,𝑟)
) (6)

These calculations obtain the flow distribution for each path on the basis of observed path travel times, which are the summation
f the observed time-dependent link travel times, that as long as they are estimated from the actual traffic conditions from GPS data,
hey satisfy the conditions for Eq. (2). This implies that the arrival time, 𝑡(𝑘), at each link 𝑎, included in the path 𝑘(𝑖, 𝑗, 𝑟):

𝑡𝑡𝑘(𝑖,𝑗,𝑟) =
∑

𝑎∈𝛤𝑘(𝑖,𝑗,𝑟)

𝑡𝑡𝑎𝑡(𝑘) (7)

Once 𝐏𝑘 =
[

𝑃𝑘(𝑖,𝑗,𝑟)
]

is determined from the 𝑘 shortest paths that were obtained from the travel times, which themselves were
stimated from the GPS data for all OD pairs, we can then calculate the estimated time-dependent assignment matrix �̄� =

[

�̄�𝑙𝑡𝑖𝑗𝑟
]

:

�̄�𝑙𝑡𝑖𝑗𝑟 =
∑

𝑘∈𝐾𝑖𝑗𝑟

𝛿𝑙𝑡𝑘(𝑖,𝑗,𝑟)𝑃𝑘(𝑖,𝑗,𝑟) , ∀𝑖, 𝑗, 𝑟, 𝑙, 𝑡 (8)

here 𝛿𝑙𝑡𝑘(𝑖,𝑗,𝑟) is the estimated incidence indicator:

𝛿𝑙𝑡𝑘(𝑖,𝑗,𝑟) =
{

1 if path 𝑘(𝑖, 𝑗, 𝑟) uses link 𝑙 at time 𝑡
0 otherwise (9)

This estimated assignment matrix is the outcome of Dynamic Assignment Matrix Calculation box included in Fig. 1 and constitutes
n estimate of the dynamic assignment matrix that would be obtained by a DTA assignment based on the ground truth matrix. As
consequence, the estimated assignment matrix derived by the proposed process does not depend on a perfect calibrated model
5
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2.2. Optimization procedure

The possibility of estimating an assignment matrix (8) allows reformulating DODME by replacing (2) (the assignment matrix
rovided by the DTA) with the estimated matrix. Then, (2) can be rewritten as:

�̄�𝑙𝑡 =
∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑡
∑

𝑟=1
�̄�𝑙𝑡𝑖𝑗𝑟𝑥𝑖𝑗𝑟 (10)

where �̄�𝑙𝑡 is the estimated flow in link 𝑙 at time period 𝑡; 𝑥𝑖𝑗𝑟 is the flow departing origin 𝑖 ∈ 𝐼 , with destination 𝑗 ∈ 𝐽 , at time
interval 𝑟 ∈  ; and �̄�𝑙𝑡𝑖𝑗𝑟 is the estimated assignment matrix, which is the fraction of trips from origin 𝑖 with destination 𝑗, departing
at time 𝑟 reaching link 𝑙 at time 𝑡.

As in all optimization methods that aim to find a solution, a seed OD matrix must be provided to the OD estimation process as
a feasible starting point. In this described methodology, many alternatives arise. One common option is to use a reliable historical
OD matrix as a suitable seed for the optimization algorithm (Cascetta et al., 2013; Kostic and Gentile, 2019; Cantelmo et al., 2014a;
Nigro et al., 2018), specially, in those cases in which DODME is applied to not very long time periods to support dynamic traffic
models in conditions where surveillance systems likely provide reliable historical OD estimates containing a wealth of structural
information (Ashok and Ben-Akiva, 1993; Ben Akiva et al., 2001). In real life applications of these approaches for traffic management,
the assumption of having a reliable reference OD matrix also holds, (Djukic et al., 2018; Aimsun, 2017). Another alternative, if data
collected from a sample of GPS-tracked vehicles is available, is to create a discrete time estimate of the target OD matrix from it,
which is the observed OD matrix, �̂� = [�̂�𝑖𝑗𝑟]. In both cases, the target OD matrix can be expanded to estimate the OD matrix in
terms of the scaling factors per origins, 𝛼𝑖, 𝑖 ∈ 𝐼 , and per destinations 𝛽𝑗 , 𝑗 ∈ 𝐽 , such that:

𝑥𝑖𝑗𝑟 = 𝛼𝑖𝛽𝑗 �̂�𝑖𝑗𝑟 , ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 ,∀𝑟 ∈  (11)

The decoupling into independent scaling factors for origins and destinations is a simplifying assumption that will require a further
analysis in more complex scenarios. The proposal is inspired by gravity models that set bi-dimensional constraints for rows and
columns, as in the double-constrained models that are common for updating gravity distribution models, (Ortúzar and Willumsen,
2011). The inclusion of a third scaling factor 𝛾𝑟, depending on the sliding time windows, could make sense for larger time periods,
when the time variability of the demand can be influenced by other structural aspects, but not in the short term investigated in this
paper.

However, when a historical OD is available from other sources, then a seed matrix 𝑥0𝑖𝑗𝑟 can be generated combining the Historical
D matrix 𝑥𝐻𝑖𝑗𝑟 with the observed OD matrix �̂�𝑖𝑗𝑟, which is obtained from GPS tracked trips. The seed OD matrix is denoted as
0 = [𝑥0𝑖𝑗𝑟]. This possibility consists of generating a proper seed OD matrix as a combination of the two different sources, Eq. (12).
specific proposal for fusing both OD matrices, discussing the functional form, is made in Section 3.3.

𝑥0𝑖𝑗𝑟 =

⎧

⎪

⎨

⎪

⎩

�̂�𝑖𝑗𝑟 when only �̂�𝑖𝑗𝑟 is available
𝑓 (�̂�𝑖𝑗𝑟, 𝑥𝐻𝑖𝑗𝑟) when both matrices are available
𝑥𝐻𝑖𝑗𝑟 when only 𝑥𝐻𝑖𝑗𝑟 is available

(12)

If �̂�𝑙𝑡, 𝑙 ∈ �̂� ⊆ 𝐿, 𝑡 ∈  are the link flows measured at the counting stations, in a subset �̂� ⊆ 𝐿 of the network links, the dynamic
ata-driven assignment-free OD matrix estimation problem can be formulated as an optimization problem for finding the values of
he scaling factors 𝛼𝑖, 𝑖 ∈ 𝐼 and 𝛽𝑗 , 𝑗 ∈ 𝐽 , without any need to conduct the traffic assignment at the lower level of (1). This is done
y exploiting the estimated assignment matrix �̄�𝑙𝑡𝑖𝑗𝑟.

From (10), (11) and (12), the proposed new formulation of the DODME problem including the estimated assignment matrix is:

min
𝛼𝑖 ,𝛽𝑗

⎡

⎢

⎢

⎣

𝑤

(

∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑡
∑

𝑟=1

(

𝑥𝐻𝑖𝑗𝑟 − 𝛼𝑖𝛽𝑗𝑥
0
𝑖𝑗𝑟

)2
)

+
∑

𝑙∈�̂�

∑

𝑡∈

(

�̂�𝑙𝑡 −
∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑡
∑

𝑟=1
𝛼𝑖𝛽𝑗 �̄�

𝑙𝑡
𝑖𝑗𝑟𝑥

0
𝑖𝑗𝑟

)2
⎤

⎥

⎥

⎦

(13)

𝑠.𝑡𝑜 𝛼𝑖, 𝛽𝑗 ≥ 𝐿𝐵

The problem variables are multiplicative scaling factors for each origin 𝛼𝑖 and destination 𝛽𝑗 , that have been chosen to drastically
educe the number of variables from |𝐼| ⋅ |𝐽 | ⋅ | | to |𝐼| + |𝐽 |. Moreover, using the scaling factors as variables aims to preserve the
tructure of the seed OD matrix, as gravity models do. In this situation, the objective function is a quartic polynomic function with
espect to the scaling factors, and it is convex as it is the sum of convex functions. The minimization problem is solved iteratively
y means of the L-BFGS-B method, (Morales and Nocedal, 2011). It is a quasi-Newton method solved for constrained non-linear
roblems with a high number of variables that efficiently reduces the memory requirements and the computational burden. The
vailable version in python package scipy.optimize has been used in this case.

Theoretically, 𝐿𝐵 should be a non-negativity constraint for all the scaling factors 𝛼𝑖, 𝛽𝑗 . However, from a practical point of view,
𝑖 = 0 or 𝛽𝑗 = 0 implies that a positive OD flow of the seed OD matrix from a certain origin or certain destination must be converted
o 0. Therefore, considering that the seed OD matrix, in Eq. (12), comes from reliable information on mobility, the scaling factors
annot be 0 and the lower bound should therefore be 𝐿𝐵 > 0.

By the end of the optimization procedure, an estimation of the OD matrix, X∗ = [𝑥∗𝑖𝑗𝑟], is obtained. Therefore, as shown in Fig. 1,
̂ ∗ ∗
6

dynamic traffic assignment is launched to obtain the corresponding simulated values for traffic counts, that are 𝐘 = [𝑦𝑙𝑡].
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2.3. MSSIM to measure OD matrix similarity

In a previous paper Ros-Roca et al. (2020a) that follows the trends of Djukic (2014) or Behara et al. (2018), we showed that
he conventional indicators for measuring DODME quality are insufficient. Although they provide information on the DODME
ptimization problem’s convergence of the objective function and how well the simulated flows fit the observed flows in terms
f 𝑅2, they do not pay any attention to the quality of the results from a structural point of view. From a traffic point of view, classic
easures between OD matrices (MSE, MAE. . . ) do not identify whether traffic OD patterns resulting from their adjustment approach

xhibit an acceptable degree of structural similarity to the target matrix or, alternatively, if the approach provides a perturbed matrix
hat is structurally different.

The SSIM – the structural similarity index –, for a matrix of pixels that is the product of three different comparison components:
uminance, contrast and structure, is a suitable measure to take into account the similarity in terms of magnitude, dispersion and
tructure. It is defined as follows:

𝑆𝑆𝐼𝑀(𝐚,𝐛) = 𝐿(𝐚,𝐛)𝛼𝐶(𝐚,𝐛)𝛽𝑆(𝐚,𝐛)𝛾 (14)

where

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐿(𝐚,𝐛) =
2𝜇𝑎𝜇𝑏 + 𝐶1

𝜇2
𝑎 + 𝜇2

𝑏 + 𝐶1

𝐶(𝐚,𝐛) =
2𝜎𝑎𝜎𝑏 + 𝐶2

𝜎2𝑎 + 𝜎2𝑏 + 𝐶2

𝑆(𝐚,𝐛) =
𝜎𝑎𝑏 + 𝐶3
𝜎𝑎𝜎𝑏 + 𝐶3

(15)

Here, 𝜇𝑎, 𝜎𝑎, 𝜇𝑏, 𝜎𝑏, 𝜎𝑎𝑏 are the mean, standard deviation and covariance of the vectors 𝐚 and 𝐛, while 𝐶1 = 𝐶2 = 2 ⋅𝐶3 = 10−6 are
mall stability constants for avoiding numerical problems. 𝛼, 𝛽, 𝛾 are weighting coefficients typically set to 1.

The idea, borrowed from Wang et al. (2004), applies 𝑀𝑆𝑆𝐼𝑀 (averaged 𝑆𝑆𝐼𝑀 index for sliding windows covering the whole
atrix) to measure the structural similarity between an OD matrix, 𝐗, and an adjusted OD matrix 𝐗∗. In Ros-Roca et al. (2020a),

verages according to rows and columns are proposed, that is, by using rectangular sliding rules that correspond to either rows or
olumns in the OD matrix, which correspond to the trip distribution structure and therefore have a straightforward interpretation
n terms of the underlying transportation system. Thus, SSIM will capture the similarity between these distributions by considering
he mean, the variance and the structure of departing and arriving distributions, all of which correspond to the structural property
f the trip patterns described by the OD matrix.

Furthermore, let us assume that there are 𝑁𝑆 defined submatrices in 𝐀 and 𝐁. Then, if 𝑀𝑆𝑆𝐼𝑀 is 𝑆𝑆𝐼𝑀(𝐚,𝐛) is averaged over
𝑁𝑆 sliding windows, a key question arises in regard to whether all windows have the same weight or their role in the total demand
requires having different weights. In the case of OD matrices, it is obvious that not all origins or destinations are equivalent in a
transport network. Therefore, a weighted MSSIM (as in Wang and Simoncelli (2008)) prioritizes those origins and destinations with
more impact on the network. This proposed weighting average is defined as follows:

𝑀𝑆𝑆𝐼𝑀(𝐀,𝐁) =
∑𝑁𝑠

𝑖=1 𝑊 (𝐚𝑖,𝐛𝑖)𝑆𝑆𝐼𝑀(𝐚𝑖,𝐛𝑖)
∑𝑁𝑠

𝑖=1 𝑊 (𝐚𝑖,𝐛𝑖)
(16)

here 𝐚𝑖,𝐛𝑖 are respectively the 𝑖th windows of 𝐀,𝐁, while the weight 𝑊 (𝐚𝑖,𝐛𝑖) is given by:

𝑊 (𝐚𝑖,𝐛𝑖) = log
⎡

⎢

⎢

⎣

(

1 +
𝜎2𝑎𝑖
𝐶2

)

⎛

⎜

⎜

⎝

1 +
𝜎2𝑏𝑖
𝐶2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

(17)

Weighting factors for the sliding windows, in the case of OD matrices, account for variances of the selected windows that, given
ow they are defined, represent the variance of trips from an origin (or to a destination) to all destinations (from all origins).

. Synthetic experiment

Antoniou et al. (2016) established a framework for synthetic experiments for OD estimation algorithm, based on the synthetic
eneration of traffic counts and a historical OD matrix. This framework aims to test and validate any proposed methodology using
ontrolled data sets that enable the evaluation of its consistency and performance. In this sense, the following section performs a
ynthetic data generation for the selected network that is used to evaluate the robustness of the presented method and validate its
ffectiveness on a potential real case under certain goodness conditions of the available data.

In Appendix B, the details of the data generation process are available. A framework is defined, which generates not only traffic
ounts and a historical OD matrix, but also a sampled GPS data base with independent trajectories from which travel times can
e estimated, whether using commercial tools or using Appendix A as mentioned above. It should be highlighted that, since the
ynthetic generation allows to control the traffic conditions and data gathering, the final GPS data set is a data set without biases,
iltered and cleansed to obtain reliable estimations of travel times at link level.

Regarding the testing of the methodology, the network used is shown in Fig. 2 and its characteristics are in Table 1. This
etwork model is suitable for the test computational experiments, since all intersections are signed-controlled and the dynamic traffic
7
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Fig. 2. The network used with the detection layout.

Table 1
Network and OD characteristics.
Time periods 4
Zones 114
Detectors 40
OD pairs X time ≈52k
Ground truth trips 8300
Ground truth positive OD ≈41k (78.49%)
Average number of paths per OD 7.27

assignment accounts specifically for queuing dynamics at controlled intersections. The model has been calibrated and the ground
truth assignment shows the dynamics of the congestion spill backs through the network. Moreover, the time periods considered in
the computational experiment is in the middle of a warm-up prior to the data collection and a discharging process to ensure that the
corresponding trips have crossed the network. The simulation time interval is from 07:30AM to 08:30AM sliced into 15-minutes time
periods. The detection layout was generated as explained in Appendix A. A total of 40 sensors were placed according to a certain
level of desired coverage. They cover 97.27% of the total ground truth flow, which is 69.64% of the OD pairs totally captured and
13.07% of those partially captured. The traffic counts for each time interval at each sensor are produced. As shown in Table 1, the
average number of alternative meaningful paths for each OD pair is approximately 7, which makes it a suitable network to study the
assignment matrix calculation methodology. Further than the size of the network, what is relevant is its structure and the average
number of meaningful routes between each OD pair.

3.1. Specific implementation of a proof of concept

Consequently with the identified drawbacks of using commercial data in Section 1.3, synthetic data sets have been generated by
following the methodological framework defined in Appendix B, in order to test the assignment-free DODME described in Section 2
and its sensitivity and robustness. This is similar to some of the most current final tests of validation of different approaches,
for example (Krishnakumari et al., 2019; Antoniou et al., 2015), etc. The mesoscopic model used is Visum-SBA (simulation based
assignment) (PTV Vissim, 2020b), while PTV Vissim (PTV Vissim, 2020a) is the microscopic software used.

Finally, the historical OD matrix is generated from the ground truth OD matrix by following Antoniou et al. (2016)’s procedure,
that is:

𝑥𝐻𝑖𝑗𝑟 = 𝑥𝐺𝑇
𝑖𝑗𝑟 (𝑝 + 𝑞 ⋅ 𝜀) , 𝑝 = 0.75 , 𝑞 = 0.15 , 𝜀 ∼ 𝑁(0, 1∕3) , ∀𝑖, 𝑗, 𝑟 (18)

The historical OD matrix is on average decremented by 25% with a random perturbation. This perturbation tries to emulate a
realistic historical OD matrix from surveys and past projects that represent similar traffic conditions.

In the case of the estimated link travel times, they are calculated after generating the GPS traces of different vehicles of the
network. In this case, we emulated a controlled data collection, which consists of recording the waypoints sequences of vehicles on
different days but on similar traffic conditions. We collected data during 200 days in similar conditions (independent replications by
microsimulation, Appendix B), equivalent to an annual average working days, and fixed different penetration rates, which represent
the number of random vehicles (among the total) that are recorded each day. In this study, a uniform penetration rate has been
used for every day and also for all the OD pairs. Depending on the selected penetration rate, 5, 10 or 15%, these samples contain
between 4.7 M and 14 M waypoints, which represent between 106 k and 318 k different vehicle trips circulating on the network.
8
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Table 2
MSSIM values for the observed OD matrix.

pen_rate 𝐿 𝐶 𝑆 𝑀𝑆𝑆𝐼𝑀

GT
5% 0.9753 0.9595 0.9046 0.8654
10% 0.9856 0.9773 0.9357 0.9113
15% 0.9894 0.9844 0.9548 0.9355

Hist
5% 0.9396 0.9059 0.9047 0.7884
10% 0.9472 0.9284 0.9351 0.8320
15% 0.9501 0.9375 0.9537 0.8550

The frequency of recording waypoints has been assigned differently to each vehicle, following an empirical distribution of latencies
from an INRIX real GPS data set of another network. Improvements would be expected as penetration rates increase, since a higher
penetration rate provides better information about the traffic conditions.

For processing the simulated GPS data generated by Vissim, we used the tool Import GPX file, which transforms the GPS data set
s in Table 8 into paths using Visum links and interpolating travel times at the link level, as explained in Appendix A.

The estimated time-dependent link travel times are used to generate a route choice set (see Section 2.1) by using an independent
ool, namely a path search algorithm available in Visum (PTV Vissim, 2020b, 6.18) that calculates specified sets of 𝑘 shortest paths
y perturbing the link’s impedances with a normal distribution perturbation. The initial link costs are the estimated link travel
imes, and the maximum number of paths between connectors for each OD pair are set to 𝑁𝑚𝑎𝑥 = 5. This parameter must be stated
ifferently according to the network characteristics in order to generate sufficient number of paths but limiting the number of
rrelevant paths.

The optimization procedure in Eq. (13) is set with two different stopping criteria: a maximum of 100 iterations; and a threshold
or the relative error of the objective function, which is 𝑡ℎ𝑟𝑠ℎ = 0.005.

.2. Validation of the methodological approach

In order to computationally test the consistency and quality of the algorithmic framework that is defined conceptually in Fig. 1
nd to analyse the quality of the partial results at each step, we have conducted a set of computational experiments based on the
ynthetic data generated by simulation. This allows further analysis of the quality of the methodology described above. Following
ig. 1, all the different sub-results of the steps of the algorithm are analysed.

.2.1. Observed OD matrix analysis
The observed OD matrix is the mere counting of how many trips departs from each origin and arrive to each destination at each

ime period on the synthetic generated data according to the corresponding penetration rate, fully detailed on Appendix B. Based
n the building process of the GPS tracking data, it is expected to obtain an observed OD matrix similar in the OD pattern structure
o the ground truth OD matrix, given that the penetration rate of the GPS technology has been set homogeneous to all the OD pairs.

Instead of using the conventional 𝑀𝑆𝐸 or similar indicators to compare OD matrices the 𝑀𝑆𝑆𝐼𝑀 and related metrics described
n Section 2.3 are used.

The measure used to compare both OD matrices is the MSSIM and its components 𝐿, 𝐶 and 𝑆 (see Eq. (15)) that have been
eight-averaged once calculated for each sliding window. In order to use 𝐿 and 𝐶, the observed OD matrix must be scaled in order

o have the same magnitude for both matrices in terms of total OD trips.
Table 2 shows the MSSIM values for the observed OD matrix with respect to the ground truth and historical OD matrices. The

values, which correspond to magnitude, are very high because of the previously mentioned scaling; therefore, no further analysis
as to be made. High 𝐶 values indicate similar dispersion of the values, and high 𝑆 means that the observed OD matrix has a similar
attern, thus indicating that the GPS sample is not biased and the penetration rate is homogeneous for origins and destinations, as
xpected. Globally, MSSIM values are high, and they increase as the penetration rate increases, meaning that the built sample of
PS data presents the appropriate goodness to be used to estimate the link travel times. Furthermore, these results validate the use
f the observed OD matrix as a seed OD matrix for the DODME method’s optimization procedure.

.2.2. The effect of the commonality factor
As mentioned in Section 2.1, the term 𝐶𝐹𝑘 acts as a penalization for the discrete choice. 𝐶𝐹𝑘, 𝑃𝑘 and �̄�𝑙𝑡𝑖𝑗𝑟 are calculated by

pplying (4), (5) and (8). The commonality factor, 𝐶𝐹𝑘, penalizes those paths that are similar to others in the same set 𝐾𝑖𝑗𝑟. Then,
it reallocates the flows accordingly by increasing or decreasing the corresponding flow. In order to visualize the effect of 𝐶𝐹𝑘 on
he path flow distribution, a positive OD flow is selected. Its corresponding route choice set is depicted in Fig. 3, where eight paths
esulted from the route choice set calculations. Since there are three paths that are very similar, they were clustered by similarity
nto three sets (I, II, III) in order to better understand the role played by the commonality factor. Although link lengths are not large,
etwork complexity in terms of number of OD paths per OD pair is high making the network suitable to address the consistency of
he estimated assignment matrix appearing in the methodological proposal.

As shown in Fig. 3, Tables 3 and 4, set I is compounded by four very similar paths and without the penalization (using only
ravel times) results in more than one-half of the flow being assigned to I. On the other hand, when the penalization is applied,
9
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Fig. 3. Path set (𝐾𝑖𝑗𝑟) for a selected origin and destination in the network.

Table 3
Results of path distribution for a selected OD pair in the network.
Path Length Observed time 𝑃𝑘 without 𝐶𝐹𝑘 𝑃𝑘 with 𝐶𝐹𝑘 % of gain Set

1 1.20 km 2 min 11 s 15.21% 15.18% −0.03% I
2 1.61 km 2 min 57 s 12.64% 11.63% −1.01% I
3 1.55 km 3 min 13 s 11.68% 13.33% +1.65% II
4 1.52 km 2 min 59 s 12.45% 13.29% +0.84% III
5 1.38 km 3 min 02 s 12.24% 11.15% −1.09% I
6 1.26 km 3 min 06 s 12.02% 10.54% −1.48% I
7 1.32 km 3 min 18 s 11.54% 12.69% +1.15% II
8 1.29 km 3 min 03 s 12.22% 12.19% −0.03% III

Table 4
Results of path distribution by sets for a selected OD pair in the network.
Set Mean length Mean Obs time 𝑃𝑘 without 𝐶𝐹𝑘 𝑃𝑘 with 𝐶𝐹𝑘 % of gain

I 1.36 km 2 min 49 s 52.11% 48.50% −3.61%
II 1.43 km 3 min 15 s 23.22% 26.02% +2.80%
III 1.41 km 3 min 01 s 24.67% 25.48% +0.81%

48.50% of the flow is assigned to these four paths. This is because the four paths are very similar and capture the majority of the
flow from the beginning.

On the other hand, this flow is assigned to the other sets, which are different and do not share very much with the other sets
in Table 4. For instance, set II receives more flow after the commonality factor penalization, because it is the one that shares less
with the other sets.

3.2.3. Qualitative analysis of the estimated assignment matrix
The estimated assignment matrix resulting from this methodology is used to capture the real mobility of the network, doing so

by processing a large amount of GPS waypoints. While solving the optimization problem, in which an objective function minimizes
the traffic flow differences detected by sensors, this assignment matrix remains invariant for each time interval, thus confirming the
stability hypothesis formulated by Cascetta et al. (2013). Therefore, it is important to check the consistency between paths in the
SBA (which is used to generate the reference data) and to identify the paths used to analyse the route choice set of paths (which are
generated from the empirical data). Stated briefly, one should confirm that the theoretical assignment matrix from SBA is consistent
with the estimated assignment matrix. Our qualitative proposal is to use the most relevant link in the network to compare OD flows.

The left-hand side of Fig. 4 shows the OD flows using a singular link (the most used link) in the network, according to the ground
truth SBA assignment. On the right, the same picture is plotted by means of the estimated assignment matrix and the historical OD
values. Both graphs are qualitatively similar, such that the downstream and upstream propagation of the flows circulating on this
link indicate a similar assignment matrix.
10



Transportation Research Part C 134 (2022) 103477X. Ros-Roca et al.
Fig. 4. OD flows for the most used link using SBA assignment (left) and using estimated OD matrix for a selected experiment (right).

Fig. 5. Objective function and relative error for a selected experiment.

Fig. 6. 𝑅2 improvement in a selected experiment.

3.2.4. Optimization procedure

As seen in Fig. 5, the convergence of the method is clear and fast. Moreover, in all of the 24 experiments we performed, the
maximum number of iterations (𝑁max = 100) was never reached.

Fig. 6 shows two versions of the linear regression between the traffic counts measured by sensors and their corresponding
simulated values. On the left is the regression before optimization, when the estimated assignment matrix is already calculated
but the OD values are not yet calibrated. On the right is the linear regression after computing the convergence of the minimization
method and using Visum-SBA to incorporate the resulting assignment matrix from the assignment of the estimated OD matrix, X∗.
11
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The evolution shown in the figure validates the optimization method, which uses scaling factors instead of OD values as variables.
he estimated scaling factors correctly adjust the flows in order to replicate the traffic counts measured in the network.

Finally, the use of scaling factors as optimization variables has also been studied. It has been done by comparing the estimated
D matrix with the one obtained by using the OD variables as variables on Eq. (13). That is, firstly scaling the OD flows to the
istorical magnitude and then using a maximum descent method to solve the optimization problem. Concretely, the experiment
erformed used the historical OD matrix as seed, with a penetration rate of 10% and 𝑤 = 0. The results of convergence and fitting
re high, presenting a final 𝑅2 = 0.974. However, and as expected, the MSSIM values with respect the ground truth OD matrix is
𝑆𝑆𝐼𝑀(X𝐺𝑇 ,X∗) = 0.5479, significantly lower than the ones obtained by using the scaling factors, 𝑀𝑆𝑆𝐼𝑀(X𝐺𝑇 ,X∗) = 0.7980.

herefore, we consider that the use of scaling factors not only reduces the number of variables but also permits to obtain a more
table solution in terms of similarity to the given seed.

.3. Experimental design

Finally, a set of experiments using the synthetic network and data generated is used to assess the robustness and the sensitivity
f the methodology described with regard to some factors. This design factors were:

• The penetration rate of the GPS technology, as a percentage of vehicles that are captured by the GPS sample: 5%, 10% and
15%

• The initial OD matrix for the minimization procedure
(

𝐗0 = [𝑥0𝑖𝑗𝑟]
)

: As stated in Eq. (12), the seed OD matrix can be the
historical (𝐗0 = 𝐗𝐻 ), the observed (𝐗0 = �̂�), or both OD matrices combined. In this case, the combination tries to fill in the
empty cells of the observed OD matrix with information from a reliable historical OD matrix. The two tested combinations
are the following:

𝑥0𝑖𝑗𝑟 = 𝑓 (�̂�𝑖𝑗𝑟, 𝑥𝐻𝑖𝑗𝑟) =

{

𝑘 ⋅ �̂�𝑖𝑗𝑟 when �̂�𝑖𝑗𝑟 > 0
𝑥𝐻𝑖𝑗𝑟 otherwise (19)

𝑥0𝑖𝑗𝑟 = 𝑓 (�̂�𝑖𝑗𝑟, 𝑥𝐻𝑖𝑗𝑟) =

{

�̂�𝑖𝑗𝑟 when �̂�𝑖𝑗𝑟 > 0
𝑥𝐻𝑖𝑗𝑟∕𝑘 otherwise (20)

where 𝑘 is a factor that increases or reduces the number of trips in the seed OD matrix in order to approximate both magnitudes:

𝑘 =
𝑁𝑇 (𝐗𝐻 (�̂� > 0))
𝑁𝑇 (�̂�(�̂� > 0))

=
𝑁𝑇 (𝐗𝐻 (�̂� > 0))

𝑁𝑇 (�̂�)
(21)

These four matrices are named, respectively, Hist, Obs, Comb1 and Comb2.
• The objective function for the minimization procedure. By using 𝑤 = 0 or 𝑤 = 1 in Eq. (13), the objective function may or

may not include the discrepancy term regarding the historical OD matrix.

.4. Results

The results of the full DODME procedure are summarized using different KPIs in Table 5. These four indicators are:

• 𝑅2: The coefficient of determination of the regression line between traffic counts and the corresponding assigned traffic flows,
after launching a DTA with the estimated OD matrix, X∗.

• NT: The total number of trips in the estimated OD matrices.
• 𝑀𝑆𝑆𝐼𝑀 to GT: Measure of similarity between the ground truth OD matrix and the estimated OD matrix, calculated using

Eq. (16).
• 𝑀𝑆𝑆𝐼𝑀 to Hist: Measure of similarity between the historical OD matrix and the estimated OD matrix, calculated using

Eq. (16).

𝑅2 reaches very high values in all experiments, which means that the DODME procedure works very well as an optimization
problem for adjusting traffic count measurements. 𝑅2 is higher when 𝑤 = 1 and as the penetration rate increases. However,
depending on the seed OD matrix, there are no significant changes when 𝑤 = 1.

The total number of trips (NT) in the estimated OD matrices is always near the ground truth total number of trips, which is
𝑁𝑇𝐺𝑇 = 8, 300 vehicles (see Table 1). Setting the seed OD matrix process seems to have no effect on the final number, so the scaling
factors are able to adapt to the initial situation. What is more, the value of 𝑤 has a negative impact on reducing the total number
of trips when it is set to 𝑤 = 1.

In terms of similarity, the contribution of 𝑤 = 1 in obtaining better 𝑀𝑆𝑆𝐼𝑀 results is well known. Additionally, the seed OD
matrix also impacts the final result. The best choice is the historical OD matrix, since it is the OD matrix with the largest MSSIM
compared to the ground truth. However, Comb1 and Comb2 do not significantly improve these indicators. Generally, the estimated
OD matrix presents a higher 𝑀𝑆𝑆𝐼𝑀 when comparing to the ground truth OD matrix, than when comparing to the historical. That
means, especially when the seed is the historical OD matrix, that the resulting OD matrix has adapted its structure to the ground
truth traffic conditions, by using the proposed methodology.
12



Transportation Research Part C 134 (2022) 103477X. Ros-Roca et al.

a
c
u
o

o
w
r

3

a
T
l

t
s
m

p
v
i

4

w
t
i
I

Table 5
Results of the experimental design.

Seed OD Penetration
rate

𝑤 = 0 𝑤 = 1 𝑤 = 0 𝑤 = 1 𝑤 = 0 𝑤 = 1 𝑤 = 0 𝑤 = 1

𝑅2 𝑅2 NT NT 𝑀𝑆𝑆𝐼𝑀
to GT

𝑀𝑆𝑆𝐼𝑀
to GT

𝑀𝑆𝑆𝐼𝑀
to Hist

𝑀𝑆𝑆𝐼𝑀
to Hist

Hist
5 0.9594 0.9870 8,601 8,037 0.7048 0.9521 0.7283 0.9114
10 0.9808 0.9862 8,365 8,085 0.7980 0.9140 0.7928 0.8705
15 0.9739 0.9867 8,280 8,005 0.8165 0.9397 0.8125 0.9032

Obs
5 0.9495 0.9846 8,446 8,019 0.5716 0.8318 0.5339 0.7802
10 0.9734 0.9840 8,132 7,941 0.5974 0.8646 0.5671 0.8171
15 0.9478 0.9866 8,302 8,027 0.5985 0.8461 0.5761 0.7926

Comb1
5 0.9401 0.9842 8,847 8,118 0.5940 0.8672 0.5859 0.8027
10 0.9658 0.9810 8,407 8,100 0.6695 0.8694 0.6652 0.8096
15 0.9658 0.9873 8,339 7,969 0.7605 0.9171 0.7474 0.8648

Comb2
5 0.9712 0.9845 8,257 8,117 0.7398 0.8712 0.6844 0.8066
10 0.9741 0.9815 8,210 8,167 0.6122 0.8500 0.5747 0.7854
15 0.9495 0.9855 8,230 8,001 0.7257 0.8877 0.6884 0.8275

Table 6
Results of dynamic Spiess and DDM algorithm.

𝑅2 NT 𝑀𝑆𝑆𝐼𝑀 Comp time

𝑤 = 0
DynSpiess 0.9992 8,380 0.8237 1 h 40 min
DDAF 10% 0.9808 8,365 0.7980 1 h 15 min

𝑤 = 1
DynSpiess 0.9993 8,152 0.7658 1 h 30 min
DDAF 10% 0.9862 8,085 0.9140 1 h 10 min

Globally, the 24 experiments summarized in this work show that the DODME procedure is able to calibrate the demand for
middle-sized network model in different situations. This new method requires combining two sources of data: traffic counts on

ertain links and GPS processed data, as estimated link travel times. However, in order to achieve better results, it is desirable to
se a historical OD matrix as a seed OD matrix in the optimization step. The historical OD matrix should also be compared in the
bjective function by using the second term weighted with 𝑤 = 1.

Moreover, when a reliable historical OD matrix is available, using it improves the results. It can be included as the seed OD matrix
f the model; in the corresponding term can be added in the objective function; or both of these can be done. This is consistent
ith the hypothesis formulated by Ashok and Ben-Akiva (1993, 2002). They assume that when the historical OD matrix is at least

eliable with respect to the structure of the mobility patterns, then it is worth information that it incorporates into the models.

.4.1. Comparison to DODME analytical models
In Ros-Roca et al. (2020a), a dynamic version of the Spiess method was built and studied by the authors. This method is also

pplied to the currently discussed network, using the same historical OD matrix as the seed OD matrix in the optimization procedure.
he main difference is that Dynamic Spiess requires a dynamic traffic assignment at each iteration, while the supplementary data,

ink travel times, is not needed. The quality of the results is compared to those obtained by DDAF.
The results of dynamic Spiess and DDAF at 10% of penetration rate are provided in Table 6:
While dynamic Spiess outperforms in 𝑅2 and in the number of trips in the resulting OD matrices, the DDAF method improves

he similarity of KPIs when 𝑤 = 1, a situation where dynamic Spiess presents its worse results. Moreover, all the procedures have
imilar computational times, although DDAF takes advantage of available data while dynamic Spiess cannot include it in the OD
atrix estimation.

Furthermore, it has not been taken into account that the main requirement to use a dynamic Spiess is that the network must be
reviously calibrated for launching a dynamic traffic assignment, from which the assignment matrix is calculated and is always a
ery time-consuming task. In contrast, the proposed DDAF methodology does not require a fully calibrated model since the necessary
nformation, link travel times, can be estimated from the data.

. Real experiment

Despite the already mentioned drawbacks of the available physical measurements in Section 1.3 and considering our experience
ith the synthetic data, we – for the sake of completeness – conducted a further test on a real network using commercial GPS data

o infer estimated link travel times. The selected exercise is useful for practitioner’s point of view since a ground truth OD matrix
s not available, but only traffic counts, a historical OD matrix and estimated link travel times obtained from GPS commercial data.
13
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Fig. 7. The Turin network used with the detection layout.

Table 7
Turin network and OD characteristics.
Time periods 4
Zones 221
Detectors 302
OD pairs X time ≈195k
Historical trips 129k
Historical positive OD ≈40k (39.71%)

4.1. Turin’s network

The network used is shown in Fig. 7, with its characteristics presented in Table 7. The detection layout comprises 302 counting
stations, situated in the network as shown and prioritizes traffic counts over main streets. Furthermore, there is a historical OD
matrix with high level of confidence, since it is the estimated OD matrix of a previous study.

The available mobility data for this network is a sample of GPS tracking data provided by INRIX that contains one year of
indistinguishable private and fleet vehicles circulating on labour days during the peak period in the morning. The sample contains
3.76M waypoints, which represents 232k different trips (partially) circulating on the network. The penetration rate is 1.32% if
we compare yearly GPS trips to the historical OD matrix’s for the selected period in terms of the number of trips. Moreover, this
incompleteness reflects a mobility pattern that does not correspond to the network’s OD pattern, as shown by further analysis of
the matrix structure.

Since the data set does not provide information regarding the vehicle types, we cannot distinguish between fleet and regular
vehicles nor filtering and cleansing the sample to obtain estimations of the link travel times with a controlled degree of confidence.
However, an estimation of link travel times for each time period of study has been made using the methodology described in
Appendix A.

4.2. Results

Because this is a real network experiment, the ground truth conditions are unknown and it is therefore impossible to compare
the resulting OD matrix to the ground truth OD matrix. The reference OD matrix in this case is the available historical OD matrix,
as it is a reliable OD matrix from a previous study.

The observed OD matrix is built from the GPS data set by aggregating the trips according to their origin and destination zones, as
well as their departure times. The obtained OD matrix, �̂�, has 35k positive OD values, which are 17.76% of the OD values. The term
𝑆 of the 𝑀𝑆𝑆𝐼𝑀 index of Eq. (15) between the observed and the historical OD matrices is an appropriated indicator of whether
14
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Fig. 8. 𝑅2 improvement after DDAF method.

the observed OD matrix is a good seed choice for the optimization procedure, since it indicates how similar these matrices are. In
this case, the term 𝑆(�̂�,𝐗𝐻 ) = 0.0287, thus indicating it is not suitable as a seed OD matrix, since the captured mobility pattern is
not similar to that of the more reliable historical OD matrix. The presence of fleet vehicles and the unknown percentage of them is
the main cause for discarding this observed OD matrix as a seed, since fleet vehicles have neither a fixed origin nor destination.

The DDAF method converged after 45 iterations, and the linear regression between the traffic counts of sensors and the
corresponding simulated values is included in Fig. 8. The corresponding simulated traffic counts have been obtained by launching
a DTA with the resulting estimated OD matrix. As shown, the optimization procedure increases the fitting of these measurements,
from 𝑅2

0 = 0.3261 to 𝑅2
𝑓 = 0.7266.

The total number of trips resulting from the estimated OD matrix are 𝑁𝑇 = 112931 and the positive OD values are 71983
(36.85%). The similarity between the historical and the estimated OD matrix measured with 𝑀𝑆𝑆𝐼𝑀 is 𝑀𝑆𝑆𝐼𝑀

(

𝐗∗,𝐗𝐻)

=
0.5167.

These figures show a real-life application of the proposed methodology when GPS data and traffic counts are available and
produces an improved estimated OD matrix consistent to the historical matrix and satisfying observed counts. Observed OD
matrices from commercial providers does not directly reflects OD pattern and direct use for transportation analysis after a DODME
Spiess-based adjustment should be avoided.

5. Conclusions

The components shared by most of the DODME approaches are: an assignment matrix 𝐀 = [𝑎𝑙𝑡𝑖𝑗𝑟] whose elements represent
the proportion of the OD demand 𝑥𝑖𝑗𝑟 travelling from origin 𝑖 to destination 𝑗, departing the trip at time period 𝑟 and reaching
the counting station on link 𝑙 at time 𝑡; a historical OD matrix 𝐗𝐻 that provides additional information on the mobility patterns,
namely their space–time structure; and link flow counts, �̂�𝑙𝑡, for a subset of links 𝑙 ∈ �̂� ⊆ 𝐿 where counting stations are located. The
assignment matrix describing the dynamic structure of the temporal use of the network is usually costly to obtain using dynamic
assignment procedures that depend on an initial OD matrix. This initial matrix is not always reliable and in addition, the DODME
applications are limited by the significant computational effort that they require to rely on a good network calibration.

This paper is driven by a desire to investigate whether the data provided by new ICT sources (namely GPS data) could empirically
provide better estimates in DODME practical applications. In other words, our general hypothesis assumes that the data contain
information about the generating phenomenon, by which we aim to specifically find a suitable mean to process the data and
incorporate the information into the DODME process.

Despite the results using a real network of the Turin downtown are very promising, there is still margin to improve. The
exploratory analysis of the GPS tracking from the professional providers reveals that data collection methods are tailored to
commercial goals and that nowadays this data is not able to generate a reliable initial OD matrix for a traditional DODME process.
However, after the synthetic experiments, with a synthetic data generation process, exposed that validate the procedure, the authors
think that a well-designed data collection from on-board GPS for the specific DODME purpose could generate a waypoints database
that add enhanced information about the real mobility pattern by adding reliable estimated link travel times and an estimated
dynamic assignment matrix.

The computational results prove that the proposed methodology is reliable for estimating the key component: the assignment
matrix. The estimated assignment matrix is consistent, as well as the empirical route choice set approach to identify the most likely
used paths, their travel times, and the path flow proportions from which the assignment matrix is derived.

The experimental design based on synthetic data allows conducting a sensitivity analysis of the equipped vehicles’ penetration
rate. Furthermore, this analysis could be difficult to perform when using only pure empirical data. The sensitivity analysis shows
15
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the robustness of the assignment-free approach, and, as expected, an increase in the quality of the results when the percentage of
equipped vehicles increases.

The computational performance is very good, converging very quickly in few iterations to achieve good results. A relevant point
o highlight is the consistent performance regarding the total number of trips and the structure of the final estimated matrix. Although
jukic (2014) and Behara et al. (2018) provide a remarkable improvement including the analysis of the structural similarity, we

ound that the number of trips should also be considered since in some cases, as the computational results show, the increase or
ecrease to fit the measured flows could be consistent with the underlying transportation phenomenon.

Quite frequently, 𝑅2 is very good indicator for a simply meta-regression model, but at the price of increasing or decreasing
the number of trips or destroying historical OD trip matrix pattern. In order to fit the observed flow count in a link, it pulls
forwards to and backwards from the OD pairs whose paths use that link. However, considering the underlying physical system
(i.e., the transportation system), the resulting estimated OD matrix may not be very realistic because some affected OD pairs are
forced to generate or attract an unrealistic number of trips. The developed assignment-free DODME outperforms on matrix similarly,
nevertheless is also based on obtaining a good quality of the 𝑅2 that explains the link flows, but it exhibits remarkable stability in
total number of vehicles when comparing the ground truth OD to the resulting estimated OD. A high degree of structural similarity
also exists between both matrices. Therefore, we can conclude that the estimated OD is more reliable than those obtained by other
approaches.

As with all data-driven approaches, the quality of the results strongly depends on the quality of the data used. The computational
results reported in Table 5 lead us to conclude that the GPS-observed OD may be unreliable due to the flaws in and drawbacks of the
empirical data. On the other hand, when the estimated link travel times are reliable (which is frequently the case, in practice, with
professional data), then the quality of the estimated assignment matrix is good enough for the DDAF DODME approach to be applied
soundly. Using only measured data is recommended when the data quality ensures observed OD matrices, which could perhaps be
achieved when using purpose-oriented commercial data (per agreement with the data providers). This would thus overcome the
mentioned drawbacks.

5.1. Future research

Data-driven approaches open the door to many new alternatives that can be explored, such as when penetration rates are not
uniform for all TAZ may instead depend on socioeconomic characteristics. However, the designed methodology to estimate the
assignment matrix use information from the vehicles circulating through the network, without an interest about their origin or
destination.

Other formulations of DODME in an assignment-free approach can be applied where assignment matrices are still necessary, as
in the case of Kalman Filtering, which may provide short-term real time estimates of the OD matrix based on observed data useful
for traffic management purposes.
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Table 8
GPS waypoints data sample.
ID Date Timestamp Latitude Longitude

4261353 2019-11–30 22:43:58 45.445988 9.1244048
4261353 2019-11–30 22:44:27 45.445496 9.1241952
.............. .................. .............. ................. .................
4261353 2019-11–30 22:50:57 45.444767 9.1192517
4261355 2019-11–30 22:43:58 45.445980 9.1247048
4261355 2019-11–30 22:44:27 45.445574 9.1192821
.............. .................. .............. ................. .................
4261355 2019-11–30 22:50:57 45.444767 9.1197541
.............. .................. .............. ................. .................

Fig. 9. Example of the interpolation of travel times according to the waypoint sequence.

Appendix A. Map matching for estimation of link travel times

When tracking the trajectories of GPS equipped vehicles across a network, the data collected by GPS devices are usually
formatted as sets of trips, as shown in Table 8. They are detailed by recorded information for an ordered sequence of waypoints,
(𝐼𝐷𝑘, 𝑡𝑠𝑘𝑙 , 𝑙𝑎𝑡𝑘𝑙 , 𝑙𝑜𝑛𝑔𝑘𝑙), in which each trip 𝑘 has a trip identity 𝐼𝐷𝑘; the date is the time tag 𝑡𝑠(𝑘,𝑙) for the 𝑙th observation; and the
latitude and longitude of the current position are indicated.

This data as it is cannot be used for transportation analysis and should be map-matched onto the network of the scenario being
analysed. The map-matching process transforms sequences of waypoints to paths onto the network, (PTV Vissim, 2020b). Firstly,
each trajectory is map-matched using a Viterbi approach, (Viterbi, 1967), where each waypoint is assigned to a certain point on
the nearest link of the network. Fig. 9 shows how this works, using an example in which the red stars are the waypoints and the
red numbers near the links are the relative position of the waypoint projection onto the target link. Timestamps for waypoints are
depicted in green. The first and last link are not fully covered by time information and are thus dropped from the link sequence
resulting from the GPX trajectory mapping.

Next, link travel times are estimated from waypoint timestamps according to their sequence. For all the links in the sequence,
the interpolated travel time for a link is the sum of the timestamp differences of two consecutive waypoints mapped in the target
link. In the case of two consecutive waypoints that are not wholly projected within one link, the distance-based fraction within the
link is taken (𝑙𝑘 is the length of link 𝑘 in Fig. 9).

For instance, the travel time for link 𝑙3 can be estimated taking into account that the travel time for trip between the 3rd and
4th waypoints is 20 s, and this time is the estimated travel time of the whole link 𝑙3 plus a 0.2 fraction of 𝑙2 and a 0.7 fraction of 𝑙4
(equation (a) in Fig. 9). The estimated travel time of link 𝑙4 is obtained by adding two parts, equation (b). The first part is the travel
time proportion between the 3rd and 4th timestamps in link 𝑙4 (adding 0.7 of 𝑙4 to 0.2 of the length of link 𝑙2 plus the entire length
of link 𝑙3). The second part is estimated directly from the proportion of link 𝑙4 lying between 4th and 5th timestamps (a fraction of
7 s calculated as 0.3 of the 𝑙4 distance within the total distance between 4th and 5th waypoints: 0.3𝑙4 + 0.2𝑙5).

Finally, once all the waypoint sequences are converted to several paths with full details at the link level, the link travel times
are averaged. The outcome of this process is the set of observed link travel times at each time period 𝑡: 𝑡𝑡𝑙𝑡,∀𝑙 ∈ 𝐿,∀𝑡 ∈ 𝑇 for all
links in the network that are used by the GPS tracking. This is the data set of observed link travel times.

Despite the huge quantity of trajectories introduced into the network, depending on the GPS data’s penetration rate among the
population, the GPS sample may uncover links. Moreover, the procedure that infers link travel times can produce non-feasible values
when link travel times are below free-flow link travel time. In these situations, scaled travel time is used:

𝑡𝑡𝑙′𝑡 = 𝑅 ⋅ 𝑡𝑡0𝑙′ , 𝑅 = 𝑚𝑒𝑎𝑛𝑙∈𝐺𝑃𝑆

(

𝑡𝑡𝑙𝑡
)

(22)
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Fig. 10. Conceptual methodological approach to importing waypoints into a Visum model and using them to estimate link travel times.

Fig. 11. Comparison of observed OD travel times with ground truth OD travel times.

where 𝑡𝑡0𝑙 is the free-flow travel time at each link and 𝑅 is computed using all observed link travel times and their corresponding
free-flow travel times. 𝑅 is then the arithmetic mean of the expanding factors found for each link, which can be understood as a
global expanding factor by the congestion effect.

The methodological process for generating the observed link travel times data set is summarized in Fig. 10.
Once the GPS tracking data collection process has gathered the waypoints and they are matched to paths in the target network

through a suitable map-matching procedure, the results provide the input for the heuristic calculation of the time-dependent link
travel times.

As a validation of the estimation of link travel times, the synthetic network used on the paper has also been used as a test site
for this appendix. In this sense, once the GPS sample is map matched, the heuristic obtains estimations of link travel times at each
time period.

As stated before, a large amount of data should ensure reliable estimations by averaging those travel times at each link and time
interval.

In order to check their reliability, they must be compared with the path travel times obtained from the ground truth OD matrix.
All the path travel times for each OD pair at each different time interval are collected and the mean by OD pair and time interval
has been done, obtaining the OD travel times. The comparison is shown in Fig. 11.

The correspondence of both measurements is high, because the fit is 𝑅2 = 0.9445 after removing some outliers that represent only
0.31% of total OD flow. These results ensure that, when the GPS sample is appropriately filtered, cleansed and does not present bias
regarding the OD pairs, the proposed methodology to estimate link travel times is reliable, since using them to construct different
OD paths present similar travel times as in ground truth conditions.
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𝑦

Fig. 12. Methodological scheme of the synthetic data generation for computational testing.

Appendix B. Data generation

In this appendix, the synthetic data generation for an OD estimation process with GPS data is detailed. Following the framework
of Antoniou et al. (2016), this algorithmic methodology permit to obtain a set of traffic counts on determined points of the network,
̂𝑙𝑡, 𝑙 ∈ �̂� ⊆ 𝐿, ∀𝑡 ∈  , a reference OD matrix, 𝐗𝐻 = [𝑥𝐻𝑖𝑗𝑟], and filtered and cleansed GPS data, as formatted in Table 8, that using
Appendix A or other tools, can be transformed to estimations of link travel times.

The methodology proposed is supported by a combined mesoscopic and microscopic model of the selected test network. A
properly calibrated dynamic assignment model for a given OD matrix is used as a ground truth OD matrix, 𝐗𝐺𝑇 , which generates
the link flow counts that emulate the physical counting. The set of equilibrium paths that are imported into the microscopic model
will enable tracking individual vehicles and the GPS data collection in terms of waypoints.

Counting stations that are suitably located in the network collect the observed traffic counts; therefore, the detection layout is
another aspect that must be considered when generating the synthetic data. For the synthetic experiments conducted in this paper,
the detection layout (where detectors are placed) adapts the first phase of Barceló et al. (2012)’s detection layout procedure, which
consists of a greedy algorithm whose suboptimal solution identifies the detection layout while maximizing coverage of the OD
demand in terms of link and path flows.

The methodological process for generating the synthetic data is conceptually summarized in Fig. 12. A microsimulation model of
the selected site is run along with a vehicle tracking procedure for generating vehicle-tracking data that is similar to those physically
collected from GPS devices, with the same format shown in Table 8.

Traffic counts are commonly obtained in practice from averaging traffic counts from several days showing the same traffic
conditions: a short sample of days is necessary since they are fairly stable. GPS data has to be representative of the same traffic
conditions accounting for a larger number of days to cope with low representativeness of GPS equipped data with respect the
whole population of drivers. This process generates a waypoints database that is large enough to emulate reality (i.e., data collected
for the average number of working days in a year). These data are collected for the whole population over very short time periods
(i.e., 0.1 s), and they enable defining the sampling processes with a variety of design factors such as the GPS technology’s penetration
rate percentage and the recording latency for each vehicle, depending on the time distribution between successive draws that
determines the sample size. The frequency of recording waypoints has been assigned differently to each vehicle, following an
empirical distribution of latencies from an INRIX real GPS data set of another network.

Once these factors are set, the data set is reduced to a sample of waypoints for each computational experiment, which emulates
the GPS data that is received from the GPS data provider.

Finally, the historical OD matrix is generated from the ground truth OD matrix by following Antoniou et al. (2016)’s procedure,
that is:

𝑥𝐻 = 𝑥𝐺𝑇 (𝑝 + 𝑞 ⋅ 𝜀) , 𝑝 = 0.75 , 𝑞 = 0.15 , 𝜀 ∼ 𝑁(0, 1∕3) , ∀𝑖, 𝑗, 𝑟 (23)
19
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The historical OD matrix is on average decremented by 25% with a random perturbation. This perturbation tries to emulate a
ealistic historical OD matrix from surveys and past projects that represent similar traffic conditions.
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