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Abstract: In the case of tunneling of relativistic particles, differently from the nonrelativistic case, a limit of

“transparent” barrier can also lead to an apparent “superluminal” behavior when considering the phase time.

In this limit, the restricting condition of ”opaque” barrier of the nonrelativistic case is avoided, nevertheless, the

very thin width of a single barrier to obtain this “transparent” limit can result in a problem itself, for probing

the effect. A combination of two successive transparent barriers can show an apparent “superluminal” behavior

along a macroscopic arbitrary distance “L”. Two solutions for energy E above and below the potential square

barrier V are found, for both solutions there the apparent superluminal behavior is possible above a threshold

of free travelling group velocity (energy) and dependent on the ratio barriers length free path as function of the

ratio group velocity - speed of light.

Keywords: Tunneling, relativistic, traversal time

1. Introduction

The traversal time of a particle or a wave packet through a forbidden potential barrier [1–4] has not a

unique definition both in nonrelativistic [5] and relativistic case [6]. Different definitions of traversal

times have been introduced in the literature [7], each definition could be grouped in four classes, each

class has its own peculiarity, unvelling some aspect of the phenomenon but still rising problems on

other different facets. No definition of traversal time is universally accepted as unique, anyway some

seem more fundamental than others, and one of those, the so called phase time is the subject of this

article and it will be shown why, in this case, it is specially preferible.

One of the approaches is to use some degree of freedom of the system to define an “internal clock”

i.e. some varying physical quantity related to the time spent by a particle inside the barrier. In this

class, for example falls the so called Büttiker-Landauer time [2] that considers the energy exchanged

with a barrier having time-varying height and the Larmor time considering the spin flipping inside a

magnetic field [8–10]. These times, even if highlighting some interesting physical phenomena, have the

problems to be different, depending of ”clocks”, and invasive while changing some degree of freedom

of the phenomenon and not clearly related to the effective traversal time or reflection time.

A second class contains the approaches by means of a set of semiclassical trajectories with the

calculation of an average tunneling time. Paths can be built through the Feynman path-integrals [11],

the Bohm mechanics [12] or the Wigner distribution [13], for example. The inconvenience of such
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approaches is that they have a distribution of complex times even if anyway some real features such

as magnitude or real and imaginary parts are related to other definitions of times.

Another approach is the so called dwell time that is the ratio between the probability density

in the tunneling region and the incoming flux entering the barrier. The problem is that it does not

distinguish very well between the transmission and reflection times [14].

Finally, there is the class of times that follow a feature of the wave packet crossing the barrier

as a central pick, or a sharp wavefront, etc., relating in time, the ingoing and the outgoing packet.

The basic time of this class is the so called phase time that uses the definition of group velocity in the

stationary-phase approximation.

The stationary phase method was at first introduced by Lord Kelvin [15] and related to group

velocity also in the works of Sommerfeld and Brillouin [16] and applied in numerous fields. In our

case it can be employed to describe a free wave packet solution of the monodimensional Schrödinger
equation

ψ(x, t) =

∫ +∞

−∞

dk

2π
G(k, k0)e

−ı(E(k)t+kx−kx0 (1)

with ℏ = 1 and G(k, k0) that physically represents a narrow momentum distribution centered around

k0 . This integral can be estimated by finding the value for which the phase has a vanishing derivative,

evaluating the integral in the neighborhood of this point since outside of this point the phase is rapidly

oscillating giving a null contribute to the integral itself. The movement of the peak coordinate of the

wave packet can be obtained by imposing the stationary phase condition d/dk[Et−k(x−x0)]|k=k0 = 0

so that xpeak = x0+k0/mt and the peak velocity coincides with the velocity of the particle v = k0/m .

This approximation has a limit linked to how much the barrier distorts the wave packet and this

distortion is greater for a long ”opaque” barrier than for a short ”transparent” barrier like in the case

of the article. His main positive feature is that it appears to agree rather well to experimental data,

more than other times of a different class, including the so called Hartman effect [1], an apparent

experimental superluminal velocity of a wave packet feature not in contrast with special relativity

because not carrying information.

The phase time is defined, in the stationary-phase approximation, as the energy derivative of

the transmission phase shifts: τp = ℏdα/dE given the transmission coefficient as T (k) =
√
Teıα

[5]. Applying this definition, in the nonrelativistic case, to tunneling through a rectangular potential

barrier of height V0 > E and width ”a” the phase time for a wave packet tends, in the limit of ”opaque”

barrier (qa ≫ 1 where q is the momentum inside the barrier) to a constant value independent from

the width ”a” (Hartman effect [1]) so that it could lead to apparent superluminal velocities. Altough

the interpretation of this apparent superluminal effect, is not a subject of the present article, it can be

demonstrated that this does not violate Einstein’s relativity [17]. There are two main problems with

the use of phase time with an ”opaque” barrier case, the first is that it is a very restricting condition for

experimental testing, considering the exponential decay of the amplitude through a tunneling process

and the low signal to noise ratio after the barrier, the second is that the shape of the wave packet is

deeply deformed after the passage through an opaque barrier so that the causality relation between

identical feature of the packet can be questioned [18].

The importance of the phase time is also related to the wave packet analogy of tunneling quantum

particles and different kind of guided waves, propagating through a forbidden region, of optical,

microwave and acoustic nature, and their experimental results [19–22]. In the case of relativistic
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particles [23] through a barrier of width ”a” the phase time has a different expression but it may be

still recognized, in this case, a generalized Hartman effect. For example, in the case of two successive

barriers [24], the phase time becomes independent, in the limit of ”opaque” barrier, both from the

width ”a” and from the distance L between the barriers. The limit of opaque barrier gives, by

definition, strong constraints for experimental probes, because the wave function amplitude decreases

exponentially and this is more effective when more than one barrier is considered. For relativistic

particles indeed, differently from the case of nonrelativistic particles, it is possible to consider the

opposite limit of ”transparent” barrier qa≪ 1 that leads, as well, to an apparent superluminal result

for the phase time [25]. In this article this limit of ”transparent” barrier for relativistic particles is

applied to a double barrier configuration. The presence of two barriers of width a and distance L ,

in some conditions, leads to a more evident apparent superluminal behavior where the ratio a/L is a

key factor.

2. Phase time in the approximations of “transparent barriers” and relativistic particles

The equations of the momentum outside (ℏk ) and inside (ℏq ) a potential barrier of height V0 of a

particle of mass m and energy E , are

ℏkc =
√
E2 −m2c4 (2)

ℏqc =
√
m2c4 − (V0 − E)2. (3)

To have a proper tunneling, V0 must be in the range E − mc2 < V0 < E + mc2 , because below

the lower limit the particle has enough energy to propagate over the potential barrier while, above

the upper limit, the barrier can become supercritical and spontaneously emit positrons and electrons

in the so called Klein tunneling [26]. In the limit of ”transparent” barriers (qa ≪ 1), the potential

satisfies two solutions: for V0 greater than the total energy E we have solution (a)

V0 ≈ E +mc2 − (ℏq)2

2m
for V0 > E (4)

and for V0 lesser than the total energy E we have solution (b)

V0 ≈ E −mc2 +
(ℏq)2

2m
for V0 < E. (5)

The expression for the phase time across two potential barriers of width a separated by a vacuum

path of length L is, from Lunardi et al. [24]

τp =
1

ℏc2

{
(kL)

E

k2
− 1

k2q2
h1

Γ2 +∆2

}
. (6)

The expressions for h1 , Γ and ∆ are given in Appendix A. The approximation for ”transparent”

barriers (qa≪ 1), at first order, is given by

h1
Γ2 +∆2

≈
{[

(V0 − E)k2
(
1

α
− α

)]
+ (7)[

−mc2(k2 + q2)

(
1

α
+ α

)]}
qa+O[qa]2,
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where α ≡ k
q
(E−V0+mc2)
(E+mc2)

. This formula has a nonrelativistic counterpart if we slow down the particle

setting E = Ek + mc2 , where the kinetic energy Ek ≪ mc2 . In this case α = k/q . Inserting

these substitutions in Equation (6) and eliminating the terms containing 1/c2 , the expression for the

nonrelativistic limit of the phase time τnr , trough two ”transparent” barriers of width a at distance
L is

τnr =
m

ℏk

[
L+ a

(
3 +

q2

k2

)]
. (8)

This is consistent with the method to obtain nonrelativistic transit across two barriers [27] if the

”transparent barrier” limit is applied. Considering instead the approximation of relativistic particles

(E ≫ mc2 ) and ”transparent” barriers (qa ≪ 1) solutions (a) (4) and (b) (5) are given in the

following:

2.1. Solution (a) for E < V0 < E +mc2

For this solution with V0 greater than E , α ≈ ℏ2kq
2mE ≪ 1. Substituting V0 (4) into (7)

h1
Γ2 +∆2

≈
[(

−ℏ2k2q2

2m
−mc2q2

)
1

α

]
qa (9)

that, substituting α ≈ ℏ2kq
2mE ≪ 1 becomes

h1
Γ2 +∆2

≈
(
−Ekq − 2m2c2E

ℏ2
q

k

)
qa; (10)

so, the phase time τp (6) for this solution becomes

τp ≈
(
L

c2
+
a

c2
+

2m2

ℏ2k2
a

)
E

ℏk
. (11)

Since the usual phase velocity of the free particle is Vϕ = E/(ℏk) the final expression for the phase

time for this solution is

τp ≈
Vϕ
c2

[
L+ a

(
1 +

2m2c2

ℏ2k2

)]
. (12)

2.2. Solution (b) for E −mc2 < V0 < E

For this solution with E greater than V0 , α ≈ 2mc2

E
k
q ≫ 1. Substituting V0 (5) and α into (7)

h1
Γ2 +∆2

≈
(
−c

2qℏ2k3

E
− 2m2c4qk

E

)
qa, (13)

finally the expression of the phase time for this solution is

τp ≈
Vϕ
c2

[
L+

c2

V 2
ϕ

a

(
1 +

2m2c2

ℏ2k2

)]
(14)

that is very similar to (12) considering that, for relativistic particles, Vϕ ≃ c .
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3. Conditions for traversal time superluminal behavior

For a free relativistic particle, c2/Vϕ = Vg , where Vg is the group velocity or the so called classical

velocity of the particle; then, τf could be assumed as the time it would take a free relativistic particle

to travel the same path of the example, i.e.

τf =
Vϕ
c2

(L+ 2a) . (15)

3.1. Conditions for solution (a)

So a free particle takes a longer time to travel the distance L+2a , than the phase time, by an amount
∆t

∆t ≡ τf − τp =
Vϕ
c2
a

[
1− 2m2c2

ℏ2k2

]
=

a

Vg

[
3− 2

c2

V 2
g

]
(16)

because c2/V 2
g = (ℏ2k2 +m2c2)/ℏ2k2 . The tunneling thus is a kind of accelerator of the motion. It

must be recalled that Equation (16) is valid for a relativistic particle with Vg ≃ c and it can be seen

from (16) that the time gain of a tunneling relativistic particle with respect to a free particle begins

when the velocity is Vg >
√

2
3 c = 0.82c and reaches the limit of a/Vg as Vg grows toward the limiting

value c .

The time gain could be such that the motion could be defined superluminal in the sense

considered by the Hartman effect: defining the traversal velocity VT as the traveled path L + 2a

divided by the phase time τp , then

VT =
L+ 2a

τp
=

L+ 2a

τf −∆t
≃ L+ 2a

τf
+
L+ 2a

τ2f
∆t (17)

that, in terms of free propagating group velocity Vg and of barriers length a , becomes

VT = Vg + Vg
a

L+ 2a

[
3− 2

c2

V 2
g

]
. (18)

Let us now consider the conditions on Vg and a such that the traversal velocity VT tends toward the

speed of light in vacuum c . Setting VT → c , Vg = βc and a = δL , the (18) becomes

δ =
β2 − β

2 + 2β − 5β2
. (19)

In Figure 1, δ vs β is plotted. The curve (a) shows the values for which VT → c . The region on the

right of the curve is the region of superluminality. There is no solution for β = (1 +
√
11)/5 = 0.8633

so there is no superluminal effect for Vg ≤ 0.8633c , whatever be the barrier length a . Conversely, for

Vg ≥ 0.8633c there are values of δ ≡ a/L for which VT ≥ c .
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(a)(b)

0.75 0.80 0.85 0.90 0.95 1.00
β0.0

0.5

1.0

1.5

2.0

δ

Figure 1. The curves show values of δ ≡ a/L and β ≡ Vg/c for which the traversal velocity VT → c . The
region on the right of the curves is superluminal while on the left is subluminal. The curve (a) is for the energy
E lower than the potential barrier V0 (case a), while the curve (b) is for the case where the energy E is greater
than the potential barrier V0 (case b). The two vertical asymptotes for curves (b) and (a) are at positions
β = 0.7709 and β = 0.8633, respectively.

3.2. Conditions for solution (b)

In the case in which E > V0 > E −mc2 , the gain in time is

△t ≡ tf − tp =
aVg
c2

(20)

so the traversal velocity becomes

VT = Vg +
a

L+ 2a

V 3
g

c2
, (21)

and, differently from the previous case, the traversal velocity VT is always greater than the group

velocity Vg . Proceeding then like in the case (a), defining the ratios δ ≡ a/L and β ≡ Vg/c and

setting the limit VT → c , the corresponding of Equation (19) is, in this case,

δ =
1− β

β3 + 2β − 2
. (22)
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There is not a possible apparent superluminal behavior of the traversal velocity for δ ≤ 0 thus for

β ≤ [(9 +
√
105)2/3 − 2 · 31/3]/[32/3(9 +

√
105)1/3] i.e. for Vg ≤ 0.7709c while for values above this

limit, the apparent superluminal behavior is represented by the space on the right of the curve (b) in

Figure. 1.

The meaning of the curves is this: if, for example, we consider the energetic situation of curve

(b) and set up δ = 1 and, it is sent against the barriers, a particle with speed such that β = 0.8, the

curve is not matched so the resulting traversal velocity VT is below c . At about β = 0.8177 (solution

of Equation (22) with δ = 1) the curve (b) is matched and VT = c . So, finally, in the condition of

curve (b), for values δ = 1 and β > 0.8177 the traversal velocity becomes superluminal VT > c . Thus

the curves must be seen as a guide to set parameters to obtain superluminal behavior.

4. Conclusion

Considering the phase time of relativistic particles passing through a two forbidden barriers of width

a and distance L in regime of ”transparent” barrier approximation, qa≪ 1 an apparent superluminal

behavior is found defining the traversal velocity as path divided by phase time. In the two cases of

energy slightly above and under the barrier potential height, thresholds and conditions for superluminal

behavior are found with the former case more favorable than the latter, with equivalent conditions,

depending, the gain in time, on the energy of the particle and proportional to the width a of the

barriers.

Appendix A

In this appendix the symbols Γ, ∆ and h1 inserted in the expression (6) for the phase time, are

explicitly defined.

Γ ≡ 8α2 cosh(2qa)− 4(1 + α2)2 sin2(kL) sinh2(qa). (23)

∆ ≡ 4α(1− α2) sinh(2qa) + 2(1 + α2)2 sin(2kL) sinh2(qa). (24)

h1 ≡ ∆{2(1 + α2)[(1 + α2)Eq2(2kL) sin(2kL) + (25)

−4α2mc2(k2 + q2) cos(2kL)] sinh2(qa)− 4α2mc2(k2 + q2)

[(1 + α2) + (3− α2) cosh(2qa)] + k2(2qa)E − V0)

[(1 + α2)2 cos(2kl)− (1− 6α2 + α4)] sinh(2qa))}+

+Γ{−4α(1− α2)k2(2qa)(E − V0) cosh(2qa) + 2(1 + α2)

[(1 + α2)Eq2(2kL) cos(2kL) + 4α2mc2(k2 + q2) sin(2kL)]

sinh2(qa) + [4α(1− 3α2)mc2(k2 + q2)− (1 + α2)2

k2(2qa)(E − V0) sin(2kL)] sinh(2qa)}.
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[10] M. Büttiker, “Larmor precession and the traversal time for tunneling,” Phys. Rev. B 27 (1983) 6178.

[11] D. Sokolovski and L. Baskin, “Traversal time in quantum scattering,” Phys. Rev. A.36 (1987) 4604.

[12] D. Bohm, “Quantum theory,” Prentice-Hall, New York, (1951).

[13] E. P. Wigner, “Lower Limit for the Energy Derivative of the Scattering Phase Shift,” Phys. Rev. 98 (1955)

145.

[14] H.G. Winful, “Delay Time and the Hartman Effect in Quantum Tunneling,” Phys. Rev. Lett. 91 (2003)

260401.

[15] L. Kelvin (W. Thompson), “On the wave produced by a single impulse in water of any depth or in a

dispersive medium” Phil. Mag. 23 (1887) 252.

[16] L. Brillouin, “Wave propagation and group velocity,” Academic Press, New York, (1960).

[17] J. Jakiel, V.S. Olkhovsky and E. Recami, “On superluminal motions in photon and particle tunnellings,”

Phys. Lett. A. 248 (1998) 156.

[18] J. R. Fletcher, “Time delay in tunnelling through a potential barrier,” J. Phys. C: Solid State Phys. 18

(1985) L55.
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