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AlphaFold and similar groundbreaking, AI-based tools, have revolution-

ized the field of structural bioinformatics, with their remarkable accuracy

in ab-initio protein structure prediction. This success has catalyzed the

development of new software and pipelines aimed at incorporating Alpha-

Fold’s predictions, often focusing on addressing the algorithm’s remaining

challenges. Here, we present the current landscape of structural bioinfor-

matics shaped by AlphaFold, and discuss how the field is dynamically

responding to this revolution, with new software, methods, and pipelines.

While the excitement around AI-based tools led to their widespread appli-

cation, it is essential to acknowledge that their practical success hinges on

their integration into established protocols within structural bioinformatics,

often neglected in the context of AI-driven advancements. Indeed,

user-driven intervention is still as pivotal in the structure prediction process

as in complementing state-of-the-art algorithms with functional and biolog-

ical knowledge.

The advent of AlphaFold2 (AF) and its landmark per-

formance at the 14th edition of the Critical Assessment

of Protein Structure Prediction (CASP) marked a sub-

stantial shift in biomedical research, with the newfound

ability to easily access millions of 3D-structures of pro-

teins, for which only their sequence was previously

known [1,2]. Within a year from AF’s debut, a collabo-

rative effort with EMBL-EBI led to the creation of the

UniProt-indexed AF database (AFDB) [3,4]. By releas-

ing more than 200 million AF-predicted structures,

AFDB significantly enhanced the accessibility to this

groundbreaking tool for the global research community.

Overall, these advancements have significantly enhanced

the structural coverage of the human proteome. Initially

limited to just 10% when relying solely on experimental

structures, this coverage has now expanded to 58%

with the incorporation of high-accuracy AF models

(predicted Local Distance Difference Test, plDDT,

scores above 70) [5–7]. However, this “Big Bang” of the

protein structures universe, ignited by AF, also

prompted critical examination regarding the accessibil-

ity, accuracy, reliability, and potential biases inherent in

the data produced. Therefore, to avoid the potential

risk of relying too much on readily available

3D-structures without critical thinking and judgment, it

is important to ask: “How do people from various
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academic backgrounds or research settings make use of

this wealth of new structural information?”

CASP—CAtalyzing a shift in the paradigm

From its foundation in 1994, to the groundbreaking

achievements at CASP14, the evolution of CASP mir-

rors the progress in Computational Biology and the

growing intersection with Artificial Intelligence (AI)

(Fig. 1) [9,10]. In the first decade of the CASP compe-

titions, the division into categories—Comparative

Modeling, Fold Recognition, and Ab-Initio Prediction

—accompanied the birth of the first template-based

modeling algorithms [11–13], such as MODELLER

[14], and algorithms for ab-Initio folding, primarily

governed by fragment-based algorithms, notably

Rosetta [15,16] and I-Tasser [17,18].

The concept of coevolution, which is utilized in the

AF algorithm, has been proposed since the early 1990s

[19]. It suggests that detecting co-evolutionary signals

within multiple sequence alignments (MSAs) could indi-

cate potential physical interactions between molecules.

Clearly, even before the advancements of CASP14,

leading-edge methods already utilized the analysis of

co-evolutionary patterns through MSAs. Over the

years, these methods have been refined to effectively dis-

tinguish between direct correlations, signifying actual

physical contact, and indirect correlations. The latter

may not denote direct interaction but still reveal a rela-

tionship, possibly due to other influencing factors

[20,21]. However, at that time, identifying accurate sig-

nals required extensive MSAs and computational

resources, which were not readily available, leading to a

diminished focus on this methodology.

The decade from 2010 to 2020 witnessed a signifi-

cant shift as traditional bioinformatics began to inte-

grate more effectively with advanced AI techniques.

This period saw the resurgence of interest in the con-

cept of co-evolutionary signals [22–24], which were

then combined with deep learning models to better

predict protein contact patterns [25,26]. This approach

was based on the understanding that protein contacts

are not randomly distributed, but they have a biologi-

cal sense, given by domains and structural motifs of

the category of proteins. Subsequently, in CASP 13,

the use of the contact predictions concept was replaced

in the first version of AlphaFold by neural-network

based distance probabilities [27], employing the stee-

pest descent method as an optimization algorithm—a

strategy that, although not yet fully successful, will

later be crucial for enhancing accuracy. However, it

was the revised neural network model proposed in

CASP14 [1,2], utilizing MSA transformers to extract

co-evolutionary signals directly from raw MSAs [28],

which proved to be pivotal for enhancing accuracy.

After the milestone of CASP14, predicting single

protein domains with accuracy has become signifi-

cantly less challenging. Interestingly, this milestone

coincides with an important accomplishment: the con-

vergence of the domain structural knowledge

(Fig. 1A). Throughout its history, CASP has dynami-

cally evolved with a balance between retiring and mod-

ulating specific categories, while maintaining the core

principles underlying the assessment process of the

CASP competition largely unchanged (Fig. 1B). This

evolution persisted up to CASP14, which saw signifi-

cant changes, including the discontinuation of catego-

ries such as contact prediction and refinement for

single protein models, alongside the introduction of

novel challenges toward universal modeling [29,30].

Building on the outcomes of
AlphaFold

Immediately after AF’s performance at CASP14, and

further propelled by the open-source availability of the

AF code, researchers in the field became aware of

the vast potential inherent to the huge amount of avail-

able structural information and moved accordingly to

ensure an optimal integration of AF into their specific

areas of research. In this sense, a dual approach has

been undertaken by the scientific community, mainly

with the aim of addressing some of the limitations of

AF, for example, the lack of physico-chemical

Fig. 1. CASP: CAtalyzing a Shift in the Paradigm. In analyzing the events in the field of protein structure prediction, a shifting trend emerges

in recent years according to various metrics. (A) The data from domain annotation in SCOP (Structural Classification of Proteins), as reported

by the Protein Data Bank Statistics (RCSB PDB – Growth in Domain SCOP [8]), is plotted to show the number of known domains available

each year from 1994 to 2024 (light blue). The orange highlights indicate the newly annotated domains each year. This visualization reveals,

for the first time in 2022, an absence of newly annotated domains. This suggests that as experimental information on domain structures

has increased, methods for accurately predicting structural domains have become more prominent. The table (B) reports on the prediction

categories independently assessed at the Critical Assessment of protein Structure Prediction (CASP) over the years, mirroring the progress

in the field and highlighting the most significant conceptual changes observed at CASP15. The plot illustrates the progression of the median

GDTTS (Global Distance Test Total Score) values across different CASP editions from 2008 till now.
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interpretation of proteins and their folding process. On

the one hand, some efforts led to the development of

platforms and tools that not only incorporate the algo-

rithm’s capabilities but also ensure they complement

and enhance traditional physics-based protocols

(Table 1). On the other hand, a different set of initia-

tives has taken a more exploratory approach, capitaliz-

ing on the novel capabilities and insights provided by

AF, and using them as a catalyst for expanding the

application of AI to the biochemical and biological

fields.

AlphaFold integration in new databases

The establishment of a database derived from AF, that

is AFDB, has significantly enhanced the efficiency of

information sharing, emerging as an essential compo-

nent for methodologies that depend on structural data-

bases [51]. The AFDB contains predictions for all

protein sequences annotated in the UniProt reference

proteome, of length between 6 and 2700 amino acids,

with the maximum limit decreasing to 1280 for noncu-

rated sequences. A minimum length is required for hav-

ing an informative MSA, while the maximum limits are

set because of computational capacity. The integration

of AFDB into pre-existing databases represents a natu-

ral progression in response to AFDB’s utility and rele-

vance in the field. Indeed, key protein family databases

such as InterPro and Pfam, as many others in the field

[52–55], have introduced dedicated pages for visualizing

AF models. Additionally, the 2023 version of Ensembl

[56] has incorporated AF models’ visualization to map

Table 1. Databases development and integrations after AlphaFold. The table organizes into categories the development of new databases

and the integration of existing ones, following the release of the AlphaFold Database (AFDB).

Category Tool Description Ref.

Development of new

databases

AlphaFold Database Initially comprising 360 000 predicted structures, the AFDB has expanded

to over 214 million structures, providing a comprehensive resource for

structural biologists

[3,4]

ESM Metagenomic

Atlas

Offers structural predictions for 600 million metagenomic sequences,

complementing the AFDB by extending coverage to environmental and

microbiome samples

[31]

AlphaFill Enhances AF predictions by adding ligands from similar PDB structures,

providing functional context to the predicted models

[32]

TmAlphaFold Incorporate predicted membrane planes into AF models, aiding in the

study of membrane proteins

[33]

AFTM Leverages AF models to identify candidate human TMPs [34]

Integration into

software packages

and existing

data-resources

CCP4 Suite In crystallography, automatically fetch predicted structures from the AFDB

to solve crystal structures by molecular replacement without user

intervention

[35]

MrBUMP and MrPARSE Can automatically fetch AF predictions, integrating them seamlessly into

existing crystallographic analysis pipelines

[36,37]

ISOLDE It leverages AF predictions to refine models based on experimental data,

such as cryo-EM or X-ray crystallography density maps

[38]

CCP-EM Imports structures directly from the AFDB for electron microscopy

applications

[39]

ChimeraX Uses ColabFold for modeling, retrieves structures from the AFDB, and

provides interactive visualization of predicted aligned error (PAE) plots

[40]

COOT Imports AF models for detailed molecular modeling and refinement [41]

DALI Server and

Foldseek Search Server

Perform structure-based searches over the AFDB, enabling researchers to

find structurally similar proteins

[42,43]

Jalview and Mol*

Viewer

These tools import AF structures for sequence alignment and interactive

3D visualization, respectively

[44,45]

PHENIX Integrates AF into molecular replacement pipelines, facilitating the

incorporation of predicted structures into crystallographic workflows

[38,46,47]

DeepTracer-ID Combines DeepTracer and AF to identify proteins in cryo-EM maps by

searching the AF library and iteratively refining the atomic model

[48]

DeepProLigand Uses DeepTracer and AF to predict protein-ligand interactions by

leveraging known structures available in the AlphaFold library or the

RCSB PDB

[49]

EMBUILD Integrates U-Net and AF to construct main chain maps and fit AlphaFold2

predicted chains into the maps for cryo-EM applications

[50]
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variant predictor effects onto the structure. Platforms

such as PDB [8] and UniProt [57] are revolutionizing

the management of predicted protein models within

widely acknowledged databases, now incorporating AF

predictions alongside experimental ones. The escalating

volume of structures managed by these platforms has

intensified the demand for scalability, a challenge effi-

ciently met by renowned conformational search proto-

cols, FoldSeek [42] and DALI [43], as well as newly

developed ones [58]. Finally, new databases have been

developed conveying newly available information to

specific topics, for example, transmembrane proteins

[33,34]. It is important to note that this list is not

exhaustive, and the landscape of AF integration is con-

stantly evolving. Researchers are continuously finding

new ways to incorporate AF into existing databases and

cater to specific needs. These may include specialized

databases for protein families, disease-related proteins,

or other specific fields. For instance, specialized proto-

cols have emerged for analyzing kinases [59] and intrin-

sically disordered proteins [60]. The availability of such

comprehensive data has significantly advanced

high-throughput and -omics research and has facilitated

benchmarks of existing protocols, providing insights

into their performance with predicted models [61,62].

AlphaFold for experimental structure

determination

The advent of AF, with its remarkable accuracy in pre-

dicting protein structures, has ushered in a transforma-

tive era for experimental structural biology, opening new

avenues for investigating complex biological systems.

One of the most significant contributions of AF lies in its

application to Molecular Replacement (MR) in X-ray

crystallography. Traditionally, MR has relied on experi-

mentally determined structures from the PDB, posing

limitations when suitable homologs were not available.

However, AF has revolutionized MR by offering

high-quality predicted protein structures as alternative

search models [63,64]. This breakthrough has signifi-

cantly expanded the scope of MR, making it applicable

to a broader range of proteins, including those with no

known homologs in the PDB [65]. The integration of AF

predictions into established software [36–38,46,47] under-
scores its rapid adoption and widespread impact across

various macromolecular structure determination meth-

odologies. In PHENIX, AF models can be utilized

through a dedicated set of functions [38,46], including a

PHENIX-AF webservice to run predictions remotely

from the GUI [47], their import from ColabFold [66],

their trimming and splitting into single domains, and

finally their positioning in unit cells. The resulting models

can be examined with PHENIX validation tools to iden-

tify and manually fix any problematic areas. Similarly,

CCP4 provides seamless integration of AF models for

MR [35,39,41], interacting with the AFDB.

AF has been also integrated into various Cryo-

electron microscopy (cryo-EM) pipelines, streamlining

the workflow and improving both speed and accuracy

[67]. Traditionally, building atomic models from

cryo-EM density maps has been a laborious and

error-prone process. AF predictions provide researchers

with a high-quality starting point. Software tools such

as MrParse [36] and UCSF ChimeraX [40] can seam-

lessly access the AFDB, allowing researchers to achieve

precise protein positioning within the cryo-EM map by

superimposing the AF model, which significantly

improves the final model’s quality, while substantially

reducing manual building time. ISOLDE is another tool

incorporating AF models during the refinement process

[38]. This allows ISOLDE to utilize the predicted infor-

mation alongside the cryo-EM data, potentially leading

to a more refined and accurate final structure in agree-

ment with experimental data.

In particular, AF predictions can significantly

improve the quality of cryo-EM reconstructions, espe-

cially when dealing with data with low resolution and

can be used as accurate starting models to fit compo-

nents into cryo-EM densities [67–71]. This is particularly
helpful for determining the structures of large protein

assemblies, such as the nucleopore complex [72]. Here,

the authors utilized AF to enhance the structural deter-

mination of the nuclear pore complex’s (NPC) cytoplas-

mic ring using integrative cryo-EM. The high-accuracy

predictions of AF were crucial in providing detailed

atomic models, accurately positioning proteins within

the cryo-EM density maps, and bridging gaps in incom-

plete experimental data. This integrative approach led

to a more comprehensive and accurate model, revealing

intricate protein interactions and conformations.

In another recent study, researchers working to solve

the structure of the mycobacterial lipid transporter Mce1

were able to assign density to a previously unknown sub-

unit of the complex, LucB protein. They were able to per-

form a structural search of a density-derived poly-Ala

model against a large number of predictions in AFDB,

which returned LucB as a hit. The assignment was subse-

quently experimentally validated [73].

Unleashing the potential of AI in protein

structure prediction

As the creation of AFDB streamlined the integration

of AF into commonly utilized databases and tools

[44,45,48–50], in a similar vein, releasing the source
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code of AF fostered the development of other

AI-based tools for protein structure prediction

(Table 2). Consequently, AF promoted the idea that,

as in other fields, AI was progressing exponentially,

and promising results could also be achieved in struc-

tural biology. Although neural networks have long

been applied to structural prediction, the point at

which AI-based predictions began to significantly out-

perform traditional methods coincided with the intro-

duction of Transformer models [88], exemplified by the

model used in AF.

Almost in parallel with AF, the RosettaFold [84]

neural network for protein structure prediction has

emerged. The “two-track” version of the network was

outperforming trRosetta [2]. However, a performance

improvement, approaching that of AF, has been

observed with the development of a “three-track” neu-

ral network. This latter was inspired by the features

that contributed to the performance of AF, reworking

them to operate in 3D coordinate space in order to

establish a closer relationship between sequence,

residue–residue distances and orientations, and atomic

coordinates.

Methods such as AF, which rely on co-evolution

information extracted from MSA, inevitably hinder

the possibility of prediction when an accurate MSA is

lacking, as is the case of orphan proteins. The optimi-

zation and broader application of language models in

different areas have paved a new direction in protein

modeling too. These advancements have led to the

development of MSA-free approaches that are both

computationally efficient and highly accurate. By

leveraging the contextual understanding of protein

sequences provided by language models, these tools

can generate accurate predictions even in the absence

of extensive sequence homology. Notable examples of

these advancements include ESMFold [31], Omega-

Fold [83], and AminoBERT [89]. A significant achieve-

ment has been made with the large-scale application of

ESMFold, whose training data retrieval has been

inspired by AF, culminating in the creation of their

Metagenomic Atlas, comprising over 700 million pre-

dicted structures.

Building on the limits of AlphaFold

With the AF exploit at CASP14 as a turning point,

focus also shifted to exploring other essential aspects

of structural prediction. This trajectory of progress

transitioned into CASP15, which embraced “universal

modeling” by expanding into RNA structure and

protein–ligand complex prediction (Fig. 1B) [29].

CASP15 aimed to refine the evaluation metrics for

RNA and protein–ligand complexes, underscoring the

complexities in accurately predicting these structures.

Unfortunately, the outcomes of CASP15 fell short

of expectations. In the case of RNA, none of the

models presented managed to surpass the performance

of methods evaluated in other competitions. For both

RNA [90] and protein–ligand complexes [91], adapta-

tions of algorithms typically applied to proteins were

explored, but these adaptations achieved only limited

success, potentially due to a lack of comprehensive

training data. This suggests that, unlike with protein

Table 2. Deep-learning-based tools for protein structure and complex prediction. Summary of the deep-learning-based tools developed and/

or improved after CASP14. The ‘Method’ column highlights the key distinguishing feature or unique aspect of each model. The aim is

categorized as follows: MDM, multidomain modeling; PLC, protein–ligand complexes; PNC, protein–nucleic-acids complexes; PPC, protein

–protein complex; PSP, protein structure prediction.

Tool Method Release year Aim Ref.

AFSample Stochastic perturbation of AF 2023 PPC [74]

AlphaFold 3 Adapted AF + diffusion 2024 PPC; PNC; PLC [75]

CombFold AF + deterministic combinatorial assembly algorithm 2024 PPC [76]

DeepAssembly Population-based evolutionary algorithm 2023 MDM [77]

DMFold-Multimer DeepMSA 2024 PPC [78]

EMBER3D Protein language model 2022 PSP [79]

EquiFold SE(3)-equivariant 2022 PSP [80]

ESMFold Protein language model 2023 PSP [31]

HelixFold Large-scale protein language model 2023 PSP [81]

MoLPC AF + Monte Carlo tree search 2022 PPC [82]

OmegaFold Deep transformer-based protein language model 2022 PSP [83]

RosettaFold Three-track neural Network 2021 PSP [84]

RosettaFold-All-Atom Adapted RosettaFold + diffusion 2024 PPC; PNC; PLC [85]

RosettaFoldNA Adapted RosettaFold 2023 PNC [86]

Umol Evoformer + Structural module 2024 PLC [87]
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structure prediction, deep learning methods may find it

challenging to leverage evolutionary data effectively in

these specific areas. Regardless of whether the tools

are directly inspired by the architecture of AF or push

toward alternative methods, it is evident that the fol-

lowing AF unresolved issues are now central to the

ongoing efforts in structural biology.

Protein ligands and cofactors

The precise prediction of protein–ligand complexes

plays a crucial role in overcoming various challenges

in targeted therapies. As anticipated, after CASP14,

several AI-based methods for the universal modeling

of proteins in combination with small molecules have

been developed [87,92]. While the performance of such

methods is still not outperforming classical, physico-

chemical-based approaches, it is expected that the par-

allel growth of both protein structure prediction and

protein–ligand docking will lead to mutual benefits in

the accurate prediction of protein–ligand complexes.

The inability to predict proteins in complex with

ligands and cofactors, which is one of the main pin-

pointed limitations of AF, has been partially addressed

by AlphaFill [32], which builds on AFDB. With this

protocol, AF models can be enriched by tapping into

the extensive resources of the PDB-REDO [93] and

CoFactor databases [94]. The protocol, validated for

correlation in terms of root mean square deviation

(RMSD) with the experimental structure both globally

and locally, involves transplanting the most common

ligands and cofactors from a sequence homologous to

the AF model. This is achieved through a local struc-

tural superimposition of the model and the homolo-

gous experimental structure.

Multidomain modeling

Homology modeling tools have emerged as an effective

complement in scenarios where AF may not provide

complete solutions. Structure prediction of GPCRs make

up a paradigmatic case for the quality assessment of the

predictions for a specific protein family, for which

the structure determination has been critical so far. A

comparative study involving AF, RoseTTAFold and

MODELLER [95], confirmed the expected higher

performance of MODELLER, whenever a high-quality

structural homolog is used as a template. Since this higher

performance is evident when assessing interdomain

positioning, a combined approach, utilizing both

template-based and template-free methods, can yield

effective results. Indeed, on this concept, recent pipelines

have been developed to leverage the strengths of both

approaches. One such example is AlphaMod [96], an

automated pipeline that fuses AF with MODELLER, a

well-established template-based modeling software. In a

similar fashion, MoDAFold [97], combines AF with MD

simulations to predict the structure of missense proteins

with higher accuracy.

To address the problem of ab-initio multidomain

protein modeling, DeepAssembly, a new computational

protocol for assembling multidomain proteins and

complexes, was recently developed [77]. DeepAssembly

uses a deep learning network to predict interdomain inter-

actions, and then employs a population-based evolution-

ary algorithm to assemble domains into complete

structures. This approach outperforms AF in predicting

interdomain distances in multidomain proteins and

improves accuracy for low-confidence structures in

the AFDB.

Protein–protein complexes

The “Assembly” category in CASP competitions has

shown a notable upward trajectory since its introduction

in CASP12 [98]. Even though it saw limited participation,

it presented a significant opportunity for progress and

quickly captured the interest of the scientific community,

witnessing a surge in engagement in the subsequent years

[99], and has now become one of the most hyped catego-

ries. Notably, Deepmind group did not take part in this

competition, as their AF multimer version was not com-

petitive enough [100]. However, building on the limits of

AF, the quality of predictions within this category had

improved substantially in CASP15 [101], with the first-

ranked DMFold-Multimer [78], heavily influenced by the

AF structural module. AlphaFold-predicted pairwise sub-

unit interactions can also be exploited for assembly pre-

diction, as shown in new advancements that focused on

MSA sampling, for example, AFsample and MULTI-

COM [74,76,102].

PROTAC modeling can be considered another perti-

nent example of the importance of protein complex

prediction, even for nonphysiological interactions, in

which AF fails to obtain accurate predictions [103].

Historically centered around a limited set of E3 ligases,

the field is witnessing a shift with the discovery of new

E3 ligase structures, opening avenues for their utiliza-

tion and the rational design of ligands [104]. Yet, a

notable gap remains in predicting the proper orienta-

tion of the E3–ligase complex concerning the target

protein, which is essential for establishing a solid foun-

dation for the design of ligands and linkers. Thus far,

addressing such a challenge has involved utilizing a

combination of tools for protein structure prediction,

such as RosettaFold, along with protein docking
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techniques [105]. However the shift toward universal

modeling is expected to provide a method to consider

the orientation of the E3 Ligase–Target protein com-

plex and the design of an appropriate bivalent ligand,

at once.

Protein–nucleic acids complexes

Understanding protein–nucleic acid interactions is par-

ticularly vital for decoding complex biological pro-

cesses such as gene expression and genome repair, but

accurate prediction presents significant computational

hurdles due to the complexity of biomolecular interac-

tions [106]. This knowledge is also pivotal for precision

applications in genome editing, such as the engineering

of Cas proteins, which are integral to technologies

such as CRISPR-Cas editing [107].

On the wave of universal modeling, the concepts and

techniques underlying AF and RoseTTAFold have been

extended to the prediction of the structures of nucleic

acids and protein–nucleic acid complexes, leading to the

development of AlphaFold3 (AF3) [75] and Rosetta-

FoldNA [86], followed by RoseTTAFold All-Atom [85].

Based on the RosettaFold three-track neural networks

for molecule representation, RoseTTAFold All-Atom

enhances this framework by incorporating atomic-level

details and chemical representations across various

dimensions into a diffusion model. As input representa-

tion, the first track of RoseTTAFold All-Atom encodes

the sequence information of proteins and nucleic acids,

including amino acid types and nucleotide bases. For

nonpolymer atoms, it encodes their chemical element

type. The second track represents pairwise information

between atoms, including chemical bonds and distances.

The last track includes the 3D coordinates of atoms or

residues, along with information about chirality. The net-

work of RoseTTAFold All-Atom employs attention

mechanisms to weigh the importance of different input

features, allowing for dynamic and context-dependent

learning, and iteratively refines the predicted structure by

updating the 3D coordinates based on the information

from all three tracks. This integration significantly boosts

the resolution and accuracy of the predicted molecular

structures.

The AF3 architecture builds upon its predecessor by

incorporating diffusion models as a generative module

specifically designed for 3D structure generation [75].

Input data need additional preprocessing given the dif-

ferent molecular types the model has to handle. To do

so, the raw inputs, the MSA, and the ligand con-

formers are converted into three different embeddings,

namely the “Input,” “Pair,” and “Single” representa-

tions. The “Input” representation includes basic

atomic and residue information such as type, position,

and charge. The “Single” representation groups atoms

by their amino acids or nucleotides, adding contextual

information. The “Pair” representation captures spatial

relationships in protein and DNA/RNA sequences,

enriched with template and co-evolutionary data. The

“Pairformer,” which receives the enriched “Pair” rep-

resentation, refines single and pair representations

through recycling steps to produce a structural hypoth-

esis, which then conditions the diffusion module for

generating 3D coordinates. Despite the significance of

AF’s universal modeling generalization, the release

of AF3 was notably different. The absence of source

code and server constraints make it difficult to under-

stand how AF3 generalizes and prevent its verification

and replication.

Of note, such advancements boosted the research

toward the application of deep learning methods also

for predicting the secondary structures of DNA and

RNA alone [108–111].

Protein dynamics

Exploring the dynamics of proteins has consistently

presented a complex challenge, not just within the

realm of computational predictions but also in experi-

mental approaches. This challenge is linked to the

prediction of protein complexes, as the interaction

with other molecules often induces significant confor-

mational changes in proteins [112]. The issue has

gained renewed attention with the advent of AF,

which, despite its advancements, tends to favor pre-

dictions biased toward more commonly represented

conformations in its training data [113,114]. In scenar-

ios where conformational changes are subtle, imple-

menting postprediction processing techniques and

enhancing the accuracy of preliminary models (i.e.,

“refinement”) emerges as a viable strategy to mitigate

this limitation. CASP10 assessment of the refinement

category [115] has highlighted the effectiveness of

refinement methods, especially those employing molec-

ular dynamics, in producing conformations that in

their highest accuracy find also suited application

in MR.

In the era following CASP-15, the endeavor to encom-

pass the vast diversity of protein structural conformations

can be expanded to most difficult and generalizable tasks.

The approaches proposed leverage on tuning the MSA,

that is, masking some positions, to guide the AF algo-

rithm toward various conformational states [116–120].
The adoption of the flow-matching method has signifi-

cantly enhanced the accuracy of predicting protein con-

formational ensembles. This approach involves training
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generative models to closely replicate the distribution of

protein conformations observed in experimental data or

simulations [121,122]. Another recent study showed that

machine learning models can be trained on simulation

data to directly create realistic protein structures without

the need for extensive sampling, which significantly

reduces computational cost [123]. The authors demon-

strated this with a model called idpGAN, trained on

coarse-grained simulations of intrinsically disordered pep-

tides. The model can predict new structures for sequences

it has not seen before, proving its ability to generalize

beyond the training data.

This evolution in strategy underscores the ongoing

effort to refine computational tools for protein struc-

ture prediction, aiming for a more comprehensive and

accurate representation of protein behavior.

Orphan proteins

Methods such as AF, which rely on co-evolution infor-

mation extracted from Multiple Sequence Alignments

(MSA), face challenges when predicting the structure

of orphan proteins that lack accurate MSAs. This limi-

tation has spurred the development of MSA-free

approaches that offer computationally efficient and

highly accurate alternatives for predicting orphan pro-

tein structures. Notable examples of these advance-

ments include ESM-Fold [31] and OmegaFold [83],

which leverage language models to bypass the limita-

tions of MSA dependence. These models have shown

promising results in predicting orphan protein struc-

tures, providing a valuable tool for understanding

these previously enigmatic proteins.

A significant breakthrough in this field has been

achieved with the large-scale application of ESMFold,

whose training data retrieval was inspired by AF. This

effort culminated in the creation of their Metagenomic

Atlas, a comprehensive repository of over 700 million

predicted structures, including numerous orphan pro-

teins. This atlas represents a major step forward in our

understanding of the vast and diverse world of orphan

proteins, offering valuable insights into their structures

and potential functions.

Furthermore, the success of ESMFold and Omega-

Fold in predicting orphan protein structures has paved

the way for further research and development in this

area. Ongoing efforts are focused on refining these

models, exploring novel MSA-free approaches, and

expanding the Metagenomic Atlas to include an even

wider range of orphan proteins. Notable examples of

these approaches are represented by HelixFold-Single

[81] and RGN [89]. The ultimate goal is to develop

robust and reliable tools that can accurately predict

the structures of all orphan proteins, unlocking their

structural/functional peculiarities and contributing to

our understanding of the complex biological processes

they are involved in [124].

Paths for the new era in structural
biology

The advent of AF has ushered in a transformative era

in structural biology, shifting the focus from merely

predicting existing protein structures to the exploration

and design of novel biomolecules. Indeed, while the

interest in protein design and early successes can be

dated back to several decades ago [125], with AI’s

unprecedented accuracy in predicting protein struc-

tures, researchers are now entering the era that the

early work envisaged—where new proteins beyond

the confines of known structures can be designed for

practical applications and uses. This newfound capa-

bility opens exciting avenues, for example, engineering

proteins with therapeutic potential, and crafting anti-

bodies with enhanced specificity. The fusion of compu-

tational prediction and experimental validation is

poised to revolutionize drug discovery, protein engi-

neering, and synthetic biology, ultimately leading to

the development of innovative therapeutics and bioma-

terials [126–128].

De novo protein design

With 20 naturally occurring amino acids, a protein

consisting of 100 amino acids could theoretically

manifest in 20^100 different sequence variations.

Given the diversity of protein sizes, the theoretical

number of possible proteins far exceeds the number

of proteins identified by nature [129]. De novo protein

design leverages computational algorithms and bio-

physical principles to engineer novel proteins with tai-

lored functions that, in billions of years of tinkering,

Nature has never produced. Computational tools,

often grounded in physics-based energy functions and

machine learning models, enable the exploration of

vast sequence spaces and the prediction of protein

structures. Recently, several protein design tools have

been introduced by researchers (Table 3), which

showcase substantial progress in the field. For a

detailed review of de novo protein design, see Ref.

[145]. Here, we will focus on two very recent and

state-of-the-art advancements in all-atoms approaches,

that is, RFdiffusion All-Atom [85,144] and ESM3

[135].

Recently, diffusion models have started to be used in

protein and peptide design [146,147]. These models,
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originally popularized in the field of generative art for

their ability to create detailed and high-fidelity

images [148,149], offer several advantages that make

them suitable for protein modeling. Diffusion models

work by iteratively refining an initial random structure

into a coherent final one through a process that simu-

lates the gradual “denoising” of a protein’s atomic coor-

dinates [150]. This iterative refinement allows for

capturing the nuanced details of protein structures that

are crucial for understanding their functions and inter-

actions. While it is generally true that most neural net-

works are adept at capturing the global properties of

protein structures [151], diffusion models offer an edge

in generating high-diversity folds, which in turn can be

conditioned through a wide variety of inputs or design

objectives [136]. In this field, the enhanced RFdiffusion

All-Atom model incorporates diverse biological build-

ing blocks such as DNA, RNA, ions, and small mole-

cules, expanding the scope of protein design

possibilities. When coupled to other tools such as

ProteinMPNN [152], LigandMPNN [153], and AF (see,

e.g., a design pipeline of heme-binding proteins,

available at: https://github.com/ikalvet/heme_binder_

diffusion), it opens avenues for designing proteins with

unprecedented sequences, structures, and functions.

ESM3 [135] is another cutting-edge AI model that can

understand and design protein sequences, structures,

and functions, using a frontier multimodal generative

language model. The latter has been trained on a mas-

sive dataset of entries and can be prompted with any

combination of sequence, structure, or function infor-

mation to generate new proteins. Notably, it can

generate proteins with characteristics not seen in nature,

demonstrating its creativity in problem-solving. As an

example of its capabilities, ESM3 generated a new green

fluorescent protein (esmGFP), which is significantly dif-

ferent from any known natural protein. This level of

novelty is comparable to the amount of change that

occurs in natural proteins over hundreds of millions of

years of evolution. This demonstrates the potential of

ESM3 as a powerful tool in protein engineering.

These techniques are revolutionizing protein engi-

neering by enabling the rapid design of novel proteins

with desired properties and, most importantly, have

been experimentally validated, which in the end serves

as the ultimate benchmark for the efficacy of predic-

tive tools.

Antibody design

Structure prediction of antibodies could be considered

as a specialized area of protein structure prediction. In

developing therapeutic antibodies, vaccines, and treat-

ments for autoimmune disorders, the structural predic-

tion of antibodies has historically depended on

homology modeling, due to their highly evolutionarily

conserved Y-shaped scaffold [102]. However, predict-

ing antibody structures, especially the highly variable

complementary determining regions (CDR)-H3 loop

[154], remains challenging. Several methods have been

developed to address this, utilizing both ab initio pro-

tocols and machine learning techniques. Ab initio

protocols such as OptCDR [155], RosettaAntibody

[156], and AbDesign [157] tackle this problem by

Table 3. Deep-learning-based tools for the de novo protein and peptide design. Summary of the deep-learning-based tools developed for

protein/peptide design. The “Method” column highlights the key distinguishing feature or unique aspect of each model. The aim is

categorized as follows: AD, antibody design; PD, protein design; PepD, peptide design.

Tool Method Release year Aim Ref.

ABlooper Equivariant graph neural networks 2022 AD [130]

Chroma ChromaBackbone 2023 PD [131]

DeepAb Deep residual network 2022 AD [132]

DeepH3 Deep residual network 2020 AD [133]

EigenFold Harmonic diffusion 2023 PD; PepD [134]

ESM3 Generative language model 2024 PD; PepD [135]

EvoDiff Diffusion model 2023 PD [136]

FoldingDiff Transformer 2022 PD; PepD [137]

FrameDiPT SE(3) graph-based diffusion model 2024 PD, PepD [138]

GENIE IPA, Evoformer 2022 PD [139]

GRU-based VAE Variational autoencoders 2024 PepD [140]

HelixDiff Diffusion model 2024 PepD [141]

HelixGAN Generative adversarial network 2023 PepD [142]

IgFold AntiBERTy language model 2023 AD [132]

MaSIF-Seed Geometric deep-learning 2023 PepD [143]

RFdiffusion RosettaFold2 2023 PD; PepD [144]
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redesigning CDRs to enhance antibody stability and

affinity by optimizing conformational and free energy

changes in specific residues. RosettaAntibody, for

example, can perform de novo antibody design or affin-

ity maturation of existing antibodies by classifying the

antibody into regions, including the framework,

canonical loops, and HCDR3 loop.

For more complex tasks, innovative antibody design

protocols have emerged, including DeepH3, DeepAb,

IgFold, and ABlooper, showcasing the power of

machine learning techniques in antibody structural

predictions [130,132,133,158]. DeepH3, a deep residual

neural network, identifies near-native CDR-H3 loops

and improves the average RMSD of prediction com-

pared to the standard Rosetta energy function.

AbLooper employs Equivariant Graph Neural Net-

works to predict CDR structures, producing accurate

antibody models efficiently.

Furthermore, pretrained language models have

proven effective in inferring full atomic-level protein

structures. DeepAb leverages an antibody pretrained

language model with recurrent neural network to

reconstruct the entire antibody variable region, gener-

ating more precise structures compared with alterna-

tives. IgFold, inspired by DeepAb, utilizes a pretrained

language model trained on natural antibody sequences

and graph networks to directly predict backbone atom

coordinates, offering high speed, accuracy, and nano-

body modeling capabilities.

While the remarkable advancements in domain pre-

diction contribute to highly accurate models of

immunoglobulin domains or target epitopes, the pre-

cise orientation and interaction between the CDR

loops and the target epitope are areas that require

further refinement [159–161]. These aspects of

antibody–antigen interaction are more likely to bene-

fit from the latest breakthroughs in predicting multi-

meric complexes, highlighting a crucial direction for

future advancements in antibody design [130,162,163].

Sculptor is a new algorithm that addresses this chal-

lenge using deep generative design to create anti-

bodies that bind to specific epitopes [164]. It does

this by jointly searching for the best positions, inter-

actions, and shapes of the protein scaffold. It then

designs a protein backbone that complements the

target.

In summary, while accurately predicting antibody

structures, especially CDR-H3, remains a challenge,

significant progress has been made through the devel-

opment of various computational methods and the

integration of machine learning techniques and pre-

trained language models. These advancements hold

promise for accelerating antibody design and

engineering efforts, ultimately contributing to the

development of more effective therapeutic antibodies.

Peptide design

The development of therapeutic peptides hinges on the

ability to design peptidic binders that target specific

proteins of interest. Traditionally, peptide design has

relied on a combination of rational design, simulation,

and screening techniques [165]. Similarly, early AI-

based approaches to peptide design, which were

adapted from protein design methods, employed vari-

ous techniques such as inverse design (e.g., Pro-

teinMPNN [152]), peptide-specific methods (e.g.,

PepMLM [166]), and generative models (e.g., MaSIF-

Seed [143]). These approaches all aimed to design new

peptide binders starting from the target protein. By

leveraging different architectures, it is now possible to

focus on the de-novo design of peptide sequences.

These approaches are particularly valuable for their

ability to capture the distribution of amino acids that

confer a set of functionalities and activities, such as

antimicrobial, anticancer, immunogenic properties, or

signal peptide functions. Variational autoencoders

(VAEs), generative adversarial networks (GANs), and

diffusion models have emerged as viable options. As

an example, a recent multistep sequence generation

algorithm was proposed [140]. The deep learning-based

generative model Gated Recurrent Unit based varia-

tional autoencoder (GRU-based VAE) and the

Metropolis Hasting (MH) sampling algorithm effi-

ciently generate new peptide sequences. The binding

affinity of generated peptides is then evaluated using

physics-based methods, such as molecular dynamics

(MD) simulations. Several GANs have been trained

for peptide design, tailored to specific use cases such

as immunogenic, antimicrobial [167–169], and antiviral

peptides [170]. Other examples of GANs, such as

HelixGAN [142], have been specifically trained to

focus on the design of helical peptides, and similarly, a

diffusion model called HelixDiff [141] has been devel-

oped with the same objective. In a recent work [137], a

diffusion-based model (FoldingDiff) generating high-

quality backbone peptides (up to 128 residues) via a

procedure inspired by the natural folding process, is

presented. FoldingDiff uses a sequence of dihedral

angles capturing the relative orientation of the constit-

uent backbone atoms and generates stable folded pep-

tides by denoising from an unfolded structure.

Moreover, the development of combined and fine-

tuned approaches is becoming increasingly common.

Latent space diffusion models, in particular, are gain-

ing traction, and AMP-Diffusion [171] exemplifies
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their application by harnessing the power of latent rep-

resentations and the flexibility of diffusion processes to

enhance the generation of antimicrobial peptides.

Accessible software and hardware in
protein structure prediction

With the widespread adoption and success of AI and

computer science techniques in biology, it has become

crucial to enable access to such prediction tools and tech-

nologies for a broad audience with limited familiarity

with bioinformatics and software engineering. Ensuring

easy access of AF and related tools to researchers from

diverse backgrounds can permit new and diverse complex

biological questions to be asked, and a fruitful connubium

of AI and human expertise to be reached. Lowering such

barriers and identifying the pivotal key factors essential

for ensuring the success of a software release for scien-

tists, clinicians, and students alike revolves around acces-

sibility, user-friendliness, and comprehensibility

[172,173]. For example, factors such as Graphical User

Interfaces (GUIs) significantly reduce the barrier to soft-

ware use, especially when coupled with User

Experience/User Interface (UX/UI) studies and tutorials

covering all aspects of user interaction [174,175].

Analyzing the features of the other tools developed

in the realm of protein structure prediction [176], the

distribution of tool types reveals a strong inclination

toward Web Application (Fig. 2). These are noted for

their accessibility, yet they come with drawbacks such

as server-side dependence and limited control.

Command-Line Tools also feature prominently, show-

casing their utility for batch processing. It emerges

that Desktop Applications, which would offer

unmatched control and independence from server con-

straints, are very limited as they face significant hur-

dles in cross-platform compatibility. Widely used

molecular graphics viewers constitute an exception.

Indeed, the integration of AF has been promptly pur-

sued in tools such as ChimeraX [40].

An example of a free interface for AF is seen with

ColabFold [66] that, other than featuring an easy-to-

use Colab notebook, implemented a faster MSA step

and a way to customize the MSA. Delving into struc-

ture prediction interfaces, we can find some widely

used web servers, that is, Phyre2 [177] and SwissModel

[178], along with some Desktop Applications, like

PyMod [179].

Now that AI models have become predominant in

this field, the issue of accessibility is no longer solely

related to the concept of GUIs and similar interfaces.

The “black box” factor also comes into play, referring

to the inability to explain what occurs during the pro-

cess. Therefore, there is a growing need to develop

Explainable AI (XAI) solutions that provide transpar-

ent insights into the decision-making processes of these

models, fostering trust, accountability, and under-

standing among users. Even if some attempts are

ongoing [180], transparent AI solutions still need some

time to become predominant in this domain.

Fig. 2. Overview of tools categorized

under the “Structure Analysis” EDAM

(Ontology of bioscientific Data Analysis

and Management) “topic” tag in the

Bio.Tools database; ([81], accessed on

February, 2024). For each tool type, the

plot displays the number of occurrences,

along with the count of tools that are

cross-platform.
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While there is little room for improvement in increas-

ing the modularity of environments that implement

algorithms akin to AF, or similar “black box” models,

there is potential in harnessing software development

that facilitates a unified application of structural bioin-

formatics protocols, fostering a user-driven methodol-

ogy. However, there is a trend toward developing

“blind” software—applications that take inputs and

produce outputs without requiring users to understand

the underlying processes. While this approach promotes

efficiency and caters to users of different expertise levels,

it risks discouraging deep understanding of the method-

ological principles. In structural bioinformatics, this

may lead to insufficient appreciation of physico-

chemical principles such as protein folding and interac-

tions, essential for accurate interpretation of results.

When examining the process of predicting 3D struc-

tures and its various stages, it becomes clear that an

insufficient understanding and interaction between the

user and the algorithm often results in suboptimal pre-

dictions [181]. A key aspect of this process is the selec-

tion of a structural template. This decision should be

predominantly influenced by the user’s expertise and

judgment, rather than relying solely on sequence iden-

tity percentage metrics. Factors other than sequence

similarity are functional characteristics, unique struc-

tural motifs or conformations, solvent composition,

pH values, and the interaction with additional binding

entities.

Another fundamental yet often overlooked and non-

optimized step is the quality of the MSA prior to the

modeling step. A well-built MSA can effectively link

sequence information with the structural elements of

the proteins, increasing the accuracy of the final

model. As a remark of the importance of such a step,

still in the post-AF era, there are witnesses of effort in

developing tools for facilitating the manipulation of

multiple sequence alignments [182]. Manipulation here

refers to refining the alignment, correcting gaps, and

mis-alignments, to ensure that it accurately reflects the

evolutionary and functional relationships among

the sequences. This consideration becomes particularly

pertinent when addressing processes such as the pre-

diction of multidomain and/or multimeric structures.

As highlighted earlier, a significant challenge persists

in realizing ab-initio predictions of protein complexes.

In addressing this challenge, a fusion of ab-initio and

homology modeling protocols, approached with a

user-driven perspective, can be a potential alternative

by leveraging the possibility to integrate a variety of

information sources.

In order to translate these objectives into reality, the

figure of the Research Software Engineer (RSE) surges

as central, a hybrid professional embodying the conflu-

ence of software engineering and scientific inquiry

[183].

As software may become more accessible, computa-

tional resources must do so too. Protein structure

prediction and design are recognized as Nondetermi-

nistic Polynomial-hard problems [184], necessitating

exponential computational efforts with traditional

techniques. High-Performance Computing (HPC) sig-

nificantly influences this field, as many prediction

algorithms benefit from parallelization across HPC’s

multiple processors [185]. Similarly, the rapid advance-

ment in Graphical Processing Units (GPUs) enables

efficient execution of these complex tasks, especially

with deep learning algorithms [186]. Consequently,

adapting existing tools for both parallel and GPU

computing has become widespread.

Conclusions and future perspectives

As extensively discussed in previous papers [187–193],
the arrival of AF has fundamentally transformed our

approach to structural biology. In this review, we have

focused on the aspects most significantly influenced by

the release of AF, examining limits and new opportu-

nities, changes from the methodological perspectives,

some state-of-the-art applications of particular interest,

and software development viewpoints. Until 2021,

efforts have primarily been directed toward accurately

predicting naturally occurring proteins, the imminent

solution to this issue now shifts focus toward a variety

of distinctly different domains: protein design, syn-

thetic biology, AI-driven drugs and antibodies design,

integrative structural biology.

Each of these areas has had to adapt to the sudden

availability of advanced structural information, now

made readily accessible to a broad audience. This

accessibility has not only democratized the field but

also spurred a wave of innovation, necessitating a ree-

valuation of existing practices and the development of

completely new methodologies to fully leverage the

potential of this groundbreaking tool. A promising

future direction is to integrate AI with quantum com-

puting frameworks [185]. The development of hybrid

quantum-classical solvers, such as QPacker in Rosetta

software [186], exemplifies this innovative approach,

reshaping our understanding of complex energy land-

scapes in protein structures.
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