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A B S T R A C T

The main objective of this study is to implement extended finite element method (XFEM) to two-
dimensional (2D) micropolar structures in order to extract basic fracture parameters required in
linear elastic fracture mechanics (LEFM) in a computationally efficient manner, and thus to
provide basis to explore the crack propagation phenomenon within this framework. The stress
and couple-stress intensity factors (SIF and CSIF) are detected with the aid of interaction integral,
I-integral, and compared with the ones in the literature for validation purposes while an engi-
neering problem of practical importance; plate with an oblique edge crack, is investigated to
demonstrate the applicability of the developed methodology. The approach presents considerable
simplification in modeling process owing to ability of XFEM to treat discontinuities and singu-
larities appeared in the cracked domains, and offers a new, and different perspective to available
methods (e.g. phase field method and peridynamics), each with their own advantages and limi-
tations, extended to deal with crack and its growth in micropolar structures.

1. Introduction

1.1. Background

The deteriorating effect of cracks in materials, particularly pronounced in brittle case (Gdoutos, 2006; Inglis, 1913), attracts many
researchers to investigate the fracture characteristics of composites, which are notorious for being prone to flaws (Kachanov, 2022;
Kachanov & Argatov, 2023; Kanaun et al., 2023; Kushch et al., 2009; Markov & Kanaun, 2014; Markov et al., 2024; Ponnusami et al.,
2015). As such materials with comparable internal (e.g. size of heterogeneity) and external (e.g. sample dimension) length scales, calls
for the consideration of size-effects through non-classical (non-local) theories (Capriz, 1989; Eringen, 1999; Gurtin, 1999; Kunin, 1984;
Maugin, 1993; Mindlin, 1964), it is crucial to examine the fracture characteristics within this framework.

Since it is a common practice to use non-local models in pursuit of investigating the behavior of size-dependent structures (e.g.
Barretta et al., 2024; Farajpour et al., 2020; Ghayesh & Farajpour, 2019; Karami et al., 2019; Stempin et al., 2023), micropolar theory
of elasticity forms the basis of this work following its ability to account for the micro-rotation of individual material points by including
internal length scales in the field equations (Altenbach& Eremeyev, 2012; Cosserat& Cosserat, 1909; Eringen, 1999; Nowacki, 1986).
This theory belongs to a group of generalized (multifield) continua with additional degrees of freedom (DOFs) which integrates size
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effects through non-standard kinematic (i.e. curvature) and work-conjugated dynamic (i.e. couple-stress) descriptors.
Although micropolar theory has been exploited widely to investigate the undamaged/uncracked state of materials with presence of

particle rotations; as in ceramics, particulate, fibre-reinforced or granular composites (Colatosti et al., 2021; Forest& Sab, 1998; Jasiuk
& Ostoja-Starzewski, 2004; Masiani & Trovalusci, 1996; Trovalusci &Masiani, 2003; Tuna & Trovalusci, 2020, 2021), the number of
works that deals with fracture characteristics (damaged/cracked state) of such structures are somehow limited with the majority
considering the case of stationary (non-propagating) cracks. Nonetheless, recently, the topic has started to gain a considerable
attention, by specifically concentrating on the crack propagation phenomenon via extending methodologies such as phase field
(Behera et al., 2024; Riad et al., 2022; Suh et al., 2020), and peridynamics (Chen et al., 2024; Diana et al., 2024; Guo et al., 2024; Lei
et al., 2024; Wan et al., 2022; Zhou et al., 2023) to micropolar continuum. On the other hand, in spite of its potential and extensive
application to domains with stationary cracks (detailed in the subsequent subsection), linear elastic fracture mechanics (LEFM) has not
been exploited to explore the crack propagation phenomenon in micropolar structures. This can be attributed to;

(i) the absence of a numerically versatile approach offering the propagation phenomenon to be modeled in a computationally
efficient manner,

(ii) the absence of a valid fracture criterion providing the propagation (kinking) angle forming the crack path,

while, in this study, we aimed at addressing the former (i) issue, which inherently contributes to the latter (ii) one, as discussed later.

1.2. Literature on micropolar/LEFM approach

The foundation of LEFM dates back to Griffth’s study on scratched glass specimens (Griffith, 1921), and following the landmark
works of Barenblatt, 1962, Cherepanov 1967, Eshelby, 1974, Irwin, 1948, 1957, 1968, Orowan 1949, Rice, 1968, Stern et al. 1976, it
has gained a considerable attention. The damage characteristics of a brittle/quasi-brittle structure is described by means of basic
fracture parameters, such as crack-tip fields, energy release rate (ERR), stress intensity factors (SIFs), and crack mouth opening
displacement by treating any loading state as a combination of Mode I (opening), Mode II (shearing) and Mode III (tearing) cases.

In literature, the first study that associates LEFM with micropolar continua was conducted by Sternberg & Muki, 1967 in the
framework of couple-stress (constrained micropolar) theory, and later generalized for the micropolar solids by Atkinson& Leppington
1977. In these studies, non-locality was proved to reduce the effect of cracks as stress concentrators by showing the decreasing trend of
energy release rate (ERR), while the stress and couple stress fields were demonstrated to be asymptotic as in classical elastic case, and a
new physical quantity, called as couple stress intensity factor (CSIF), was introduced to describe the amplitude of couple stress sin-
gularity at the crack tip. Similar observations were also made by Paul & Sridharan 1981, in which the stiffening effect of increased
micropolarity was highlighted by tabulating the values of ERR, SIF, CSIF and crack opening displacement for various material
properties. These pioneering studies are followed by the works of Jaric (1990), Lubarda&Markenscoff (2003), Mühlhaus & Pasternak
(2002), Niktitin & Zubov (1998), Pucci & Saccomandi (1990), on the derivation of the conservation integrals (e.g. J-integral and
I-integral), which allows adoption of remote quantities in prediction of fracture parameters. Meanwhile, Garajeu & Soós (2003) and
Diegele et al. (2004) independently obtained the near crack-tip stress/couple-stress and displacement/rotation fields in an explicit
manner under combined loading conditions. The latter study also conducted standard finite element method (FEM) to reveal the
influence of non-locality on the trend of SIFs and CSIF, a point that was highlighted later again in the parametric study by Li & Lee
(2009). The derivation of analytical expressions and conversation integrals has promoted the use of numerical approaches in studying
the correspondence betweenmicropolarity and the basic fracture parameters (Atroshchenko& Bordas 2015; Kapiturova et al. 2016; Yu
et al. 2014). For instance; Yu et al. (2014) has successfully implemented the interaction integral concept (I-integral) into enriched FE
model and has generalized the formulation for non-homogeneous case. The modeling process is eased with the aid of Heaviside-step
function that permits finite elements to be cut by the crack, nevertheless the discretization around the crack tip still needed to be
adjusted and refined for high precision. Similarly, Atroshchenko & Bordas (2015) generalized boundary element method (BEM) to
micropolar solids, and obtained fracture parameters in agreement with the literature with the expense of gradually refining the ele-
ments towards the crack tip. All these efforts have paved the way to works that concentrated on the fracture analysis of actual
structures established in the framework of micropolar theory, such as planar lattices (Berkache et al. 2022) and fiber-reinforced
biocomposites (Dong et al., 2022).

1.3. Motivation

The strong correspondence between the level of non-locality (micropolarity) and the basic fracture parameters: SIFs, CSIF, ERR,
that must be determined to identify the state of the structure considering brittle case, is evident. With the motivation to have a nu-
merical approach allowing these parameters to be obtained in a computationally efficient manner, the Authors have implemented
extended finite element method (XFEM) to micropolar continuum, which forms the basis to analyze the damage process within the
framework of LEFM. The formulation is presented considering two-dimensional, homogeneous linear-elastic, isotropic materials that
follows plane strain assumption, and linearized kinematical framework. As the work is focused on brittle/quasi-brittle static fracture
analysis, dynamical effects and localization phenomenon are beyond the scope, hence not included herein. The XFEM, which was
initially established by Belytschko & Black (1999), Daux et al. (2000), Dolbow (1999), Moes, Dolbow & Belytschko (1999), and
utilized in modeling the crack growth (Huang et al., 2003; Sukumar & Prevost, 2003) for classical materials, allows the finite element
mesh to be completely independent of the discontinuities and singularities appeared in the domain with the aid of enrichment
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functions. Following its development, the accuracy and convergence rate of the methodology has been constantly improved by pro-
posing new enrichment types, blending strategies, and preconditioners (Béchet et al., 2005; Chessa et al., 2003; Deng et al., 2023; Fries
2008; Gracie et al., 2008; Gupta et al., 2013; Laborde et al., 2005; Tarancon et al., 2009; Tian&Wen 2015; Wen et al., 2023), via which
the solution of many problems including domains with multiple cracks, delamination, dislocation, multi-materials, and so on, have
been investigated (Belytschko et al., 2009; Benvenuti et al., 2016; Chroni et al., 2024; Deng et al., 2022; Fries & Belytschko 2010). In
the present study, micropolar/XFEM model is achieved with locally enriching the nodes located in the influence domain of discon-
tinuity and singularity through Heaviside-step and crack-tip branch functions considering both translational and micro-rotational
DOFs, similar to Kapiturova et al., 2016. Keeping in mind that, the first noteworthy attempt in this sense (combining XFEM with
micropolar theory) was made by Kapiturova et al., 2016, the proposed methodology did not account for distinguishing the contri-
butions of Mode I and Mode II and the contributions of stress and couple-stress intensity factors from each other. The trend of energy
release rate reported only for Mode I case seems to have an increasing trend with non-locality, which is in disagreement with the
literature (Atkinson & Leppington, 1977; Paul & Sridharan, 1981).

Accordingly, in Section 2, the basic field equations of micropolar theory and generalized LEFM are revisited. The J and I-integrals,
required for extraction of the fracture parameters within micropolar solids are re-derived and the corresponding micropolar/XFEM
model is presented. In Section 3, the in-house code (micropolar/XFEM model), that is built in the environment of Wolfram Mathe-
matica©, is validated through various benchmark problems under Mode I and Mode II, and a parametric study is performed on an
uniaxially loaded finite domain with an inclined edge crack to examine the effect of non-locality on mixed mode (Mode I + Mode II)
case. In Section 4, the potential of micropolar/XFEM model for brittle fracture analysis of size-dependent plates is discussed alongside
with capability and limitations of other available approaches. Finally, in Section 5, the study is summarized with suggesting future
developments.

2. Micropolar theory of elasticity

In this section, the field equations of the two-dimensional (2D) micropolar medium is presented under plane strain assumption by
using Cartesian coordinate system Ox1x2 as reference since it is a very common practice to model a thick plate with no (or negligible)
strain along the longitudinal axis as a 2D body under plane strain assumption, whether it is intact or defected. Then, the crack-tip
asymptotic fields that are derived within the framework of linear elastic fracture mechanics (LEFM) (Diegele et al., 2004 and Gara-
jeu & Soós, 2003) are used to obtain the explicit expressions of path-independent J and I-integrals, required for extraction of stress
intensity (SIF) and couple-stress intensity (CSIF) factors. Finally, extended finite element method (XFEM) is implemented to micro-
polar structures considering both Heaviside and crack-tip enrichment functions, which eliminates the need to have a mesh conforming
with crack geometry. In the formulation, adopting the deformation fields and constitutive relations that are in line with plane strain
state allows us to perform validation studies by comparing our results with the ones available in literature all of which are derived
based on plane strain assumption within the linearized kinematical framework by considering the domain as linear-elastic, homo-
geneous and isotropic. For calculations an in-house code is developed using Wolfram Mathematica ©.

2.1. Field equations

In case of micropolar theory of elasticity, the material domain includes additional micro-rotational DOFs, leading to the incor-
poration of new strain and work-conjugated stress measures, known as curvature, χ , and couple-stress, μ, whereas the classical strain
and stress tensors, ε, σ, are not symmetrical.

For planar case, u1, u2 and ϕ3 are the independent variables representing the displacement components along axial, x1, and vertical,
x2, directions andmicro-rotation about x3 axis, respectively. Accordingly, following kinematic relations are recovered under linearized
framework;

εij = uj,i − ϵkijϕk, χij = ϕj,i

In2D :

ε11 = u1,1, ε22 = u2,2
ε12 = u2,1 − ϕ3, ε21 = u1,2 + ϕ3,

χ13 = ϕ3,1, χ23 = ϕ3,2

(1)

where comma indicating the partial derivative operation, and ϵ is the permutation symbol. In the special case, where micro-rotations
are constrained to follow macro-rotations; ϕk = 1/2ϵkmnun,m, the classical kinematic relations; εij = 1/2

(
ui,j + uj,i

)
, are recovered,

resulting in couple-stress theory (Sokolowski, 1972). As for the balance consideration, following equations are obtained in the absence
of body loads:

σji,j = 0, μji,j + ϵijkσjk = 0
In2D :

σ11,1 + σ21,2 = 0,
σ12,1 + σ22,2 = 0,
σ12 − σ21 + μ13,1 + μ23,2 = 0

(2)

M. Tuna et al. International Journal of Engineering Science 206 (2025) 104168 

3 



Finally, for a linear elastic isotropic solid, the relations between strain and stress, curvature and couple-stress fields are:

σij = λδijεkk + (μ + κ)εij + (μ − κ)εji
μij = βδijχkk + (γ + ε)χij + (γ − ε)χji

(3)

Here κ, γ, β and ε are micropolar parameters, whereas μ and λ are the classical Lame’s constants that can be used to represent
Young’s modulus, E, and Poisson’s ratio, ν:

E =
μ(3λ + 2μ)

λ + 2μ , ν =
λ

2(λ + μ) (4)

When the general form of the constitutive equations, Eq. (3), is simplified for the case of plane-strain, we have:
⎧
⎪⎪⎨

⎪⎪⎩

σ11
σ22
σ12
σ21

⎫
⎪⎪⎬

⎪⎪⎭

=

⎡

⎢
⎢
⎣

2μ + λ λ 0 0
λ 2μ + λ 0 0
0 0 μ + κ μ − κ
0 0 μ − κ μ + κ

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Dε

⎧
⎪⎪⎨

⎪⎪⎩

ε11
ε22
ε12
ε21

⎫
⎪⎪⎬

⎪⎪⎭

,

{
μ13
μ23

}

=

[
γ 0
0 γ

]

⏟̅̅̅̅̅⏞⏞̅̅̅̅̅⏟
Dχ

{
χ13
χ23

}

(5)

Here (γ +ε) appeared in Eq. (3) is considered as a single parameter symbolized with γ. Hence, the contribution of size effects and
relative rotations are included through γ, κ parameters which can alternatively represented in terms of internal characteristic length, lc,
and coupling number, N(Lakes, 1995):

l2c =
γ
4μ, lc > 0 & N2 =

κ
μ + κ

, N ∈ [0,1] (6)

The latter limit for N indicates couple-stress theory, while in case the values of N and lc approach to the zero, the micropolar model
reduces to Cauchy for the case of isotropy (Trovalusci & Masiani, 1999).

2.2. Linear elastic fracture mechanics

2.2.1. Crack-tip asymptotic fields
For a micropolar elastic medium with a pre-existing crack, the near tip stress and couple-stress fields, that are derived by Diegele

et al., 2004 and Garajeu& Soós, 2003, takes the following form considering a local Cartesian coordinate system. Here the symbol tilde
appears over the stress and couple-stress fields refers to the components in local coordinates, x̃1, x̃2, while the x1, x2 are global co-
ordinates, and the angle in-between is symbolized by α as shown in Fig. 1.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ̃11
σ̃22
σ̃12
σ̃21

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=
KI
̅̅̅̅̅̅̅̅
2πr

√

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
4

(

3Cos
θ
2
+ Cos

5θ
2

)

S
4

(

Cos
θ
2
− Cos

5θ
2

)

+ Cos
θ
2

S
4

(

3Sin
θ
2
+ Sin

5θ
2

)

− Sin
θ
2

S
4

(

Sin
5θ
2

− Sin
θ
2

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
KII
̅̅̅̅̅̅̅̅
2πr

√

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
S
4

(

3Sin
θ
2
+ Sin

5θ
2

)

− Sin
θ
2

S
4

(

Sin
5θ
2

− Sin
θ
2

)

S
4

(

3Cos
θ
2
+ Cos

5θ
2

)

S
4

(

Cos
5θ
2

− Cos
θ
2

)

+ Cos
θ
2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ ...

{
μ̃13
μ̃23

}

=
LI
̅̅̅̅̅̅̅̅
2πr

√

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− Sin
θ
2

Cos
θ
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ lII

{
1

0

}

(7)

where

S =
1 − 2(1 − ν)N2

1+ 2(1 − ν)N2 (8)

with r and θ being the radial distance from crack tip and counter-clockwise angle from x̃1 axis, respectively. Here the SIFs; KI, KII, CSIF;
LI, and constant couple-stress factor, lII, are defined following the definition in Diegele et al., 2004 and Yu et al., 2014:

KI := lim
r→0

{ ̅̅̅̅̅̅̅̅
2πr

√
σ̃22(r, θ)|θ=0

}
, KII := lim

r→0

{ ̅̅̅̅̅̅̅̅
2πr

√
σ̃21(r, θ)|θ=0

}

LI := lim
r→0

{ ̅̅̅̅̅̅̅̅
2πr

√
μ̃23(r, θ)|θ=0

}
, lII := lim

r→0

{
μ̃13(r, θ)|θ=0

} (9)

where subscripts I and II are referring to Mode I (crack opening) and Mode II (crack shearing) loading conditions, respectively. In a
similar manner, the displacement and micro-rotation can be reported as:

M. Tuna et al. International Journal of Engineering Science 206 (2025) 104168 

4 



{
ũ1
ũ2

}

=
KI
2μ

̅̅̅̅̅̅
r
2π

√

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((3 − 2ν − Cosθ)S − 2ν)Cos θ
2

((1 − 2ν − Cosθ)S + 2(1 − ν))Sin θ
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+
KII
2μ

̅̅̅̅̅̅
r
2π

√

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

((3 − 2ν + Cosθ)S + 2(1 − ν))Sin θ
2

((2ν − 1 − Cosθ)S + 2ν)Cos θ
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ ⋯

ϕ̃3 =
LI
γ

̅̅̅̅̅
2r
π

√

Sin
θ
2
+
lII
γ
rCosθ + ...

(10)

2.2.2. The concept of J and I integrals
J-integral is a path independent line integral, proposed independently by Cherepanov (1967), and Rice (1968), that equals to the

strain energy release rate, G, for linear elastic materials. For a crack with flat surfaces parallel to the x̃1-axis, the J-integral of a
micropolar medium takes the following form considering 2D case (Mühlhaus & Pasternak, 2002; Lubarda & Markenscoff, 2003):

J =
∫

Γ

(
1
2
(σ̃mnε̃mn + μ̃m3χ̃m3)δi1 − σ̃ijũj,1̃ − μ̃i3ϕ̃3,1̃

)

nids, i= 1,2 (11)

where Γ is singularity free path surrounding the crack tip with a unit normal vector ni. The integration is performed in counter-
clockwise direction starting from any arbitrary point on lower crack face and ending at the upper one. Since J-integral is path inde-
pendent, any singularity-free contour can be used for calculations. Here, for simplicity, the integration operations are performed on a
vanishingly thin rectangle having a length of 2b and height of 2a such that a << b and a→0. This allows the integrals over vertical lines
to be ignored (Sun& Jin, 2011), and leads to following expression regarding the symmetric and antisymmetric boundary conditions for
Mode I and Mode II:

J = 2lim
b→0

∫− b

+b

(
σ̃21ũ1,1̃ + σ̃22ũ2,1̃ + μ̃23ϕ̃3,1̃

)
dx̃1

⃒
⃒
⃒
⃒
⃒
⃒
x̃2=b+

(12)

Substituting the corresponding expressions of stress, couple stress, displacement and rotation fields, Eqs. (7), (8) and (10), into Eq.
(12) with exploiting the chain rule gives;

J =
(1+ S)(1 − ν)

4μ
(
K2
I +K

2
II
)
+
L2I
2γ

(13)

It should be noted that, this is the exact expression reported in Yu et al. (2014) (see Eq. (32)) as well as Atkinson & Leppington
(1977) (see Eq. (3.42)). As the main aim is to extract the value of SIFs and CSIF, one needs to calculate the integral in Eq. (11) along any
singularity free contour near the crack tip, and equate it to Eq. (13). However, in order to distinguish the contribution of each SIFs and
CSIF under mixed mode case, the concept of two state integral must be utilized (Chen& Shield, 1977; Stern et al., 1976). Accordingly,

Fig. 1. Infinitesimal stress/couple-stress element at the crack tip.

M. Tuna et al. International Journal of Engineering Science 206 (2025) 104168 

5 



by superimposing an admissible auxiliary field, denoted by superscript (a), on the actual/real state, a new form of J-integral is obtained:

J(a+r) =
∫

Γ

⎛

⎜
⎜
⎝

1
2
( (

σ̃amn + σ̃mn
)(

ε̃amn + ε̃mn
)
+
(
μ̃am3 + μ̃m3

)(
χ̃am3 + χ̃m3

))
δi1

−
(

σ̃aij + σ̃ij
)(
ũaj,1̃ + ũj,1̃

)
−
(
μ̃ai3 + μ̃i3

)(
ϕ̃
a
3,1̃ + ϕ̃3,1̃

)

⎞

⎟
⎟
⎠nids

J(a+r) =
(1+ S)(1 − ν)

4μ

((
KaI + KI

)2
+
(
KaII + KII

))
+

(
LaI + LI

)2

2γ

(14)

where the displacement, ũai , rotation, ϕ̃
a
3, stress, σ̃aij, and couple-stress, μ̃ai3, fields are expressed in terms of auxiliary SIFs, KaI ,KaII, and

CSIF, LaI , by replacing those with the actual ones in Eqs. (7), (8) and (10) (Yau et al., 1980). The fact that the equilibrium equations and
traction free boundary conditions should be satisfied for each individual case separately;

Case1 : KaI = 1,KaII = LaI = 0, Case2 : KaII = 1,KaI = LaI = 0, Case3 : LaI = 1,KaI = KaII = 0 (15)

allowing us to manipulate the kinematic relations as follows:

ε̃aij = ũaj,̃i, χ̃aj3 = ϕ̃
a
3,̃j (16)

which leads following equilibrium equations:

σ̃aji,̃j = 0, μ̃aj3,̃j = 0 (17)

Accordingly, Eq. (14) results in

J(a+r) = J(a) + J(r) + I(a,r) (18)

Here J(a) and J(r) stand for J-integrals that consist of terms related only to auxiliary and real fields, respectively, whereas I(a,r) is
formed by the contribution of both and called as interaction (I-integral) integral:

I(a,r) =
∫

P(a,r)i1 nidΓ =
1+ S
E

1 − ν2

(
KIKaI + KIIKaII

)
+
LILaI

γ (19)

with

P(a,r)i1 =
(
σ̃amnε̃mn + μ̃am3χ̃m3

)
δi1 − σ̃aijũj,1̃ − σ̃ijũaj,1̃ − μ̃ai3ϕ̃3,1̃ − μ̃i3ϕ̃

a
3,1̃ (20)

Utilizing the equality in Eq. (19), SIFs and CSIF can be decoupled easily for each mode with the aid of interaction integral, I(a,r), also
evident from Yu et al. (2014) (see Eqs. (35) and (36)):

KI =
I(a,r)Case1E

(1 − ν2)(1+ S)
, KII =

I(a,r)Case2E
(1 − ν2)(1+ S)

, LI = I(a,r)Case3γ (21)

As contour (line) is not optimal for calculation of I(a,r), it is more convenient to use the equivalent domain form of the integral that
minimizes the local errors of contour integral (Qian et al., 2016; Yu & Kuna, 2021):

I(a,r) =
∫

Γ

P(a,r)i1 nidΓ = −

∫

A

(
P(a,r)
i1,̃i

q+P(a,r)i1 q
,̃i

)
dx̃1dx̃2 (22)

where q is the weight function. Following the detailed derivations presented in Appendix A, the final version of I(a,r) takes the form of;

I(a,r) =
∫

A

{ εij3
(

σ̃aijϕ̃3,1̃ − σ̃ijϕ̃
a
3,1̃

)
q+

(
σ̃aijũj,1̃ + σ̃ijũaj,1̃ + μ̃ai3ϕ̃3,1̃ + μ̃i3ϕ̃

a
3,1̃ −

(
σ̃amnε̃mn + μ̃am3χ̃m3

)
δi1
)
q
,̃i

}

dx̃1dx̃2 (23)

2.3. Micropolar/XFEM model

Extended finite element method (XFEM) is developed by Belytschko& Black (1999); Daux et al. (2000); Dolbow (1999); Moes et al.,
(1999) as an extension of partition of unity approach (Melenk& Babuska, 1996) to model the discontinuities without the need to have
conforming mesh with crack geometry and/or material interface (Huang et al., 2003; Sukumar & Prevost, 2003). This is achieved by
locally enriching the nodes located in the influence domain of discontinuity and/or singularity through adding special functions in the
standard FE approximation field(s). For a homogeneous isotropic micropolar medium with a pre-existing crack, as illustrated in Fig. 2,
the nodes of element(s), that entirely split by crack and containing crack tip(s), are endowed with Heaviside and crack-tip related
degrees of freedom (DOFs), respectively, considering both translational and rotational fields, denoted by superscripts, u and ϕ.
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Heaviside step function, Hu(x),Hϕ(x), is used in modeling the strong discontinuity across the element that is caused by the crack split
(Moes et al., 1999), and defined by the signed distance function, ψ(x):

Hu(x) = Hϕ(x) =
{
+1 ifψ(x) > 0
− 1 ifψ(x) < 0

}

, ψ(x) = ‖ x − x∗ ‖sign(n.(x − x∗)) (24)

where x is the global Cartesian coordinate of the point under investigation {x1, x2} (node or Gauss sampling point) and x∗ is the
coordinate of closest point to x that lies on the crack face with a unit normal vector n (see Fig. 3). Accordingly, for points above and
below the crack, Heaviside function takes the values of +1 and -1, respectively with having a discontinuity at the interface, via which
the crack partition is successfully simulated. Meanwhile, crack tip enrichment functions, Φu(r), Φϕ(r), are used to model the singu-
larity around the crack tip in an efficient manner by mimicking the asymptotic behavior of displacement and rotation fields with r
referring to the local polar coordinates of the point {r,θ}(see Fig. 3). This is achieved with the aid of radial and angular basis functions
extracted from the analytical solutions of micropolar/LEFM problem under 2D case. For displacement field, same branch functions
used in the classical case are employed (Fleming et al., 1997), while for rotation field, the singularity is covered by the first tip
enrichment function following Eqs. (7) and (10) (Kapiturova et al., 2016):

Φu(r) =
{

Φ1,Φ2,Φ3,Φ4} =

{
̅̅
r

√
Sin

θ
2
,
̅̅
r

√
Cos

θ
2
,
̅̅
r

√
Sin

θ
2
Sinθ,

̅̅
r

√
Cos

θ
2
Sinθ

}

Φϕ(r) =
{

Φ1} =

{
̅̅
r

√
Sin

θ
2

} (25)

As the current form of Heaviside step and crack-tip functions violate the Kronecker-δ property, the corresponding formulation is
modified through the shifting functions; H(xi),Φ(ri):

H(x) − H(xi) Φ(r) − Φ(ri) , i = 1,…,4 (26)

At this point, the formation of the lists including the node sets for enrichment should be explained:

(i) First, the nodes of the element(s) that contains the crack tip(s) are enriched by crack-tip related DOFs. This is known as to-
pological type enrichment in which the size of branch function enriched area varies depending on the discretization. For such a
case, although the convergence rate can be further improved via adopting the fixed enrichment area scheme (geometrical
enrichment) (Laborde et al., 2005 and Béchet et al., 2005), it is not considered in the present study following the fact that
increasing the number of enriched nodes has an adverse influence on the conditioning properties of the resulting linear system,
which seeks remedies (e.g. special blending strategies, higher order shape functions, preconditioning) to guarantee better
convergence rates and higher accuracy (Belytschko et al., 2009; Deng et al., 2023; Fries 2008; Fries & Belytschko 2010; Gracie
et al., 2008; Gupta et al., 2013; Tarancon et al., 2009; Tian & Wen 2015; Wen et al., 2023). Accordingly, no special blending
treatment is considered herein as the error that is caused by the parasitic terms in the presence of partially crack-tip enriched
elements are negligible in topological enrichment owing to their fewness in number, compared to geometrical one. Moreover,
the existence of partially Heaviside enriched elements does not lead to any alterations in the approximation field due to shifting
operation.

Fig. 2. The element and node types in extended finite element method (XFEM).
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(ii) Secondly, the nodes of element(s) that is intersected by the crack is enriched with the step function while following exceptions
must be kept in mind. For instance, the node(s) that belong to the element(s) containing the crack-tip(s) must be excluded as the
discontinuity has already been accounted for through the first branch function. Moreover, one needs to pay attention to the ratio
between partitioned areas, A−

i , A
+
i , and support domain, Ai = A−

i + A+
i , of the Heaviside enriched node (See Fig. 2), as lower

values result in ill-conditioned stiffness matrices (Daux et al., 2000; Moes et al., 1999).

Before any further progress, it should be noted that the solution of this problem is looked for in the standard Sobolev functional
space for which the existence and uniqueness has already been pointed out (Chahine et al., 2006).

2.3.1. Formulation of un-cracked (Standard) element
Standard stiffness matrix is required for elements that do not contain any enriched node or for those partially enriched by Heaviside

related DOFs but not split by the crack as illustrated in Fig. 2. The latter case can be justified through the fact thatH(x) − H(xi) equals to
zero hence vanishes when the element is located above or below the crack. Accordingly, the nodal unknown vector of a standard first-
order element m, dm, is represented in terms of nodal displacement and rotation vectors, dum,d

ϕ
m, containing standard translational; dux,

duy , and rotational; dϕ
z , DOFs per each node (Fig. 4(a)):

dm =

{
dum
dϕ
m

}

=
{
dux1 duy1 … duy4 dϕ

z1 … dϕ
z4

}T

m
(27)

Fig. 3. The signed distance function and coordinate systems.

Fig. 4. (a) Standard element, (b) Formation of corresponding element stiffness matrix.
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where subscripts refer to the node number, and T denotes transpose operator. The corresponding displacement and rotation fields um,
ϕm are calculated with the aid of shape function matrices; Nu− std, and Nϕ− std:

um =

{ u1
u2

}

m
= N(ξ)u− std dum, ϕm = {ϕ3}m = N(ξ)ϕ− stddϕ

m

N(ξ)u− std =
[N1(ξ)

0
0

N1(ξ)
⋯
N4(ξ) 0
0 N4(ξ)

]

2×8
,N(ξ)ϕ− std

= [N1(ξ) ⋯ N4(ξ) ]1×4

(28)

having components represented in terms of natural coordinate system, ξ = {ξ,η} ∈ [ − 1, + 1]:

N1 =
(1 − ξ)(1 − η)

4
, N2 =

(1+ ξ)(1 − η)
4

, N3 =
(1+ ξ)(1+ η)

4
, N4 =

(1 − ξ)(1+ η)
4

(29)

To obtain the corresponding strain and curvature fields of the element m; εstdm , χ stdm the usual FE procedure is followed:

εstdm =
[
LmNu− std MNϕ− std]dm = Bε− std

m dm, χ stdm =
[
0 ∇mNϕ− std]dm = Bχ− std

m dm (30)

where differential operator matrix, Lm, permutation vector,M, and gradient operator vector,∇m, takes the following form with the aid
of well-known inverse Jacobian matrix, JGNm :

Lm =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x1

0

0
∂

∂x2

0
∂

∂x1
∂

∂x2
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂ξ
JGN11 +

∂
∂ηJ

GN
21 0

0
∂
∂ξ
JGN12 +

∂
∂ηJ

GN
22

0
∂
∂ξ
JGN11 +

∂
∂ηJ

GN
21

∂
∂ξ
JGN12 +

∂
∂ηJ

GN
22 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

m

,

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

− 1

+1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∇m =

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂x1
∂

∂x2

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

∂
∂ξ
JGN11 +

∂
∂ηJ

GN
21

∂
∂ξ
JGN12 +

∂
∂ηJ

GN
22

⎤

⎥
⎥
⎥
⎥
⎦

m

(31)

where, JGNm = JNG
− 1

m , with JNGm giving the direct mapping between global (G) and natural (N) coordinates. Eventually, for such a case,
the element formulation is represented in terms of standard load, standard nodal unknown vectors, fstdm , dm, and standard stiffness
matrix, kstdm (Fig. 4):

fstdm = kstdm dm (32)

with

kstdm = h
∫ +1

− 1

∫ +1

− 1

(
Bε− stdT
m DεBε− std

m +Bχ− stdT
m DχBχ− std

m

)⃒
⃒JNGm

⃒
⃒dξdη (33)

where h is the thickness of the element, and |JNGm | is the determinant of the Jacobian matrix.

2.3.2. Formulation of cracked (Enriched) element
Heaviside step function enriched part of stiffness matrix, khvsm , is required for element(s) that are completely split by the crack (see

Fig. 2), while crack-tip enriched part of stiffness matrix, kctpm , is derived for element(s) having at least one crack-tip enriched node. In
such cases, following nodal unknown vectors, hm, cm, are emerged in addition to the standard one dm:

hm =

⎧
⎨

⎩

hum
hϕ
m

⎫
⎬

⎭
=
{
hux1 huy1 … huy4 hϕ

z1 … hϕ
z4

}T

m

cm =

{
cum
cϕ
m

}

=
{

cu1x1 cu1y1 … cu4y1 … cu1x4 cu1y4 … cu4y4 cϕ1

z1 … cϕ1

z4

}T

m

(34)

In the most general case, with all nodes endowed, the former has the same dimensions as the standard nodal unknown vector; 12×

1, while the latter is a 36× 1 vector regarding four functions per each translational DOF (4× 2) and 1 function per rotational DOF (1×

1), indicated by superscripts u1, u2, u3, u4 and ϕ1, respectively. As in the usual case without fixed enrichment area approach, a node can
be endowed with either Heaviside or crack-tip related DOFs as can be seen from Fig. 2, it is more convenient to represent the related
shape functions as follows:
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N(ξ)u− hvsm =

[
NI(ξ)(H(x) − H(x1)) 0

0 NI(ξ)(H(x) − H(x1))
⋯
]

2×2H
I ∈ N

H
m

N(ξ)ϕ− hvs
m = [NI(ξ)(H(x) − H(x1)) ⋯]1×H

(35)

and

N(ξ, r)u− ctpm =

[
NJ(ξ)

(
Φ1(r) − Φ

... 1
(rJ)
)

0
⋯

0
NJ(ξ)

(
Φ4(r) − Φ

... 4
(rJ)
) ⋯

]

2×8C

N(ξ, r)ϕ− ctp
m =

[
NJ(ξ)

(
Φ1(r) − Φ

... 1
(rJ)
)

⋯
]

1×C

J ∈ N
C
m (36)

where N H
m and N C

m gives the lists of nodes in an element m that are associated with the Heaviside and crack-tip enrichments,
respectively, while H, C are the number of nodes in those sets. Accordingly, the approximate displacement andmicro-rotation fields are
written as;

um = N(ξ)u− stddum + N(ξ)u− hvsm hum + N(ξ, r)u− ctpm cum
ϕm = N(ξ)ϕ− stddϕ

m +N(ξ)ϕ− hvs
m hϕ

m +N(ξ, r)ϕ− ctp
m cϕ

m

(37)

for which the explicit expressions of second and third terms are

N(ξ)u− hvsm hum =
∑

I∈N H
m

NI(ξ)(H(x) − H(xI))
{
huxI huyI

}T
m

N(ξ, r)u− ctpm cum =
∑

J∈N C
m

∑4

f=1
NJ(ξ)

(
Φf (r) − Φf

(rJ)
){

cufxJ cufyJ
}T

m

N(ξ)ϕ− hvs
m hϕ

m =
∑

I∈N H
m

NI(ξ)(H(x) − H(xI))
{
hϕ
zI

}

m

N(ξ, r)ϕ− ctp
m cϕ

m =
∑

J∈N C
m

NJ(ξ)
(
Φ1(r) − Φ1

(rJ)
){
cϕ1

zJ

}

m

(38)

Here H(xI) is the value of Heaviside function at node I, which equals to either +1 or -1 depending on the signed distance function
while Φf

(rJ) is the value of corresponding branch function at node J. As the contribution of standard part has already been discussed in
a detailed way in the previous section, we focus our attention to the latter ones, i.e. Heaviside and crack-tip enriched parts, leading to
corresponding strain/curvature matrices:

Bε− hvs
m⏟̅̅ ⏞⏞̅̅ ⏟
4×3H

=

⎡

⎢
⎣ Lm⏟⏞⏞⏟

4×2

Nu− hvs
m⏟̅̅̅⏞⏞̅̅̅⏟
2×2H

M⏟⏞⏞⏟
4×1

Nϕ− hvs
m⏟̅̅̅⏞⏞̅̅̅⏟
1×H

⎤

⎥
⎦, Bχ− std

m⏟̅̅⏞⏞̅̅⏟
2×3H

=

⎡

⎢
⎣ 0⏟⏞⏞⏟
2×2H

∇m⏟⏞⏞⏟
2×1

Nϕ− hvs
m⏟̅̅̅⏞⏞̅̅̅⏟
1×H

⎤

⎥
⎦

Bε− ctp
m⏟̅̅⏞⏞̅̅⏟
4×9C

=

⎡

⎢
⎣ Lm⏟⏞⏞⏟

4×2

Nu− ctp
m⏟̅̅ ⏞⏞̅̅ ⏟
2×8C

M⏟⏞⏞⏟
4×1

Nϕ− ctp
m⏟̅̅⏞⏞̅̅⏟
1×C

⎤

⎥
⎦, Bχ− ctp

m⏟̅̅⏞⏞̅̅ ⏟
2×9C

=

⎡

⎢
⎣ 0⏟⏞⏞⏟
2×8C

∇m⏟⏞⏞⏟
2×1

Nϕ− ctp
m⏟̅̅⏞⏞̅̅⏟
1×C

⎤

⎥
⎦

(39)

which includes the derivative of Heaviside and branch functions due to the differentiation operations in L and ∇;

∂NI(ξ)
∂xj

(
H(x) − H

...

(xI)
)
+

∂H(x)
∂xj

NI(ξ)

∂NJ(ξ)
∂xj

(
Φf (r) − Φ

... f
(rJ)
)
+

∂Φf (r)
∂xj

NJ(ξ)

j = 1, 2 (40)

Owing to the fact that the derivative of Heaviside function, Dirac delta; δ(x), is zero everywhere except for the interface, this part
vanishes;

∂H(x)
∂xj

= δ(x) =
{
0 if ψ(x) ∕= 0
∞ if ψ(x) = 0

}

(41)

while for the rest, chain rule must be employed. Here the derivative of interpolation function has already been given explicitly in Eq.
(31), hence for branch functions;

∂Φf (r)
∂xj

=

(
∂Φf (r)

∂r JLP11 +
∂Φf (r)

∂θ
JLP21

)

JGL1j +
(

∂Φf (r)
∂r JLP12 +

∂Φf (r)
∂θ

JLP22

)

JGL2j (42)
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where JLP and JGLare the well-known matrices, used for transformation between global Cartesian (G) – local Cartesian (L) and local
Cartesian (L) – local polar (P) coordinate systems, respectively:

JGL =
[
cosα sinα
− sinα cosα

]

, JLP =

[
cosθ − rsinθ
sinθ rcosθ

]− 1

(43)

where α refers to counter clock-wise angle from global horizontal to local horizontal axes. Consequently, for an element m, the
formulation includes six sub-matrices in the most general case:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fstdm
fhvsm

fctpm

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎣

kstd− stdm kstd− hvsm kstd− ctpm

khvs− stdm khvs− hvsm khvs− ctpm

kstd− hvsm kctp− hvsm kctp− ctpm

⎤

⎥
⎥
⎥
⎦

⎧
⎨

⎩

dm
hm
cm

⎫
⎬

⎭
(44)

with

ka− bm = h
∫ +1

− 1

∫ +1

− 1

(
Bε− aT
m DεBε− b

m +Bχ− aT
m DχBχ− b

m

)⃒
⃒JNGm

⃒
⃒dξdη, a, b : std,hvs, ctp (45)

while it is clear that; ka− bm = kb− a
T

m . In Fig. 5, the construction of endowed stiffness matrices is given for a coupled crack-tip Heaviside
enriched element.

2.3.3. Numerical integration
One of the main challenges in XFEM arises during calculation of stiffness matrices and equivalent domain form of I-integral due to

discontinuous and singular nature of bases functions. In such cases, the integrands are no longer continuous polynomials, which leads

Fig. 5. (a) Coupled enriched element, (b) Formation of endowed element stiffness matrices.
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to loss in accuracy when conventional Gauss quadrature approach is employed over the whole element. One can avoid this by dividing
element into sub-quads or sub-triangles to handle numerical integrations separately as suggested by Dolbow 1999. Herein the former
approach is conducted regarding its ease in implementation and efficiency in computation, whereas the latter one requires the use of
computational geometry algorithms. Nevertheless, it should be realized that, the integrations performed on sub-quads containing the
crack interface (highlighted by yellow in Fig. 6) will be inexact as it features a jump in approximate field, yet the accuracy can be
increased by increasing the number of sub-quads. Accordingly, for an enriched element that is divided into nsubx × nsuby sub-quads,
each denoted by q as illustrated in Fig. 6, one can calculate stiffness matrix as follows with considering 2 Gauss sampling point
along each direction:

ka− bm =
∑nsubx×nsuby

q=1

∑2

p=1

∑2

r=1
Ka− b
m
(
ξqp, ηqr

)
wqpwqr, a, b : std, hvs, ctp

Ka− b
m
(
ξqp, ηqr

)
= h
(
Bε− aT
m DεBε− b

m + Bχ− aT
m DχBχ− b

m

)⃒
⃒JNGm

⃒
⃒

(46)

with ξqp,ηqr,wqp,wqrbeing the components of ξq,ηq,wqvectors, that includes natural coordinates and weights of Gauss sampling points in
the sub-quad q:

ξq =
ξql2 − ξql1

2

{
+1
/ ̅̅̅

3
√

− 1
/ ̅̅̅

3
√

}

+
ξql2 + ξql1

2
, ηq =

ηql2 − ηql1
2

{
+1
/ ̅̅̅

3
√

− 1
/ ̅̅̅

3
√

}

+
ηql2 + ηql1

2

wq =
ξql2 − ξql1

2
ηql2 − ηql1

2

{
1

1

}
(47)

It should be noted that, as strain and curvature matrices of enriched elements might contain terms in cylindrical coordinates due to
branch functions, necessary transformation between natural and local cylindrical coordinate systems should be performed when
necessary.

2.3.4. Extraction of SIFs and CSIF
As previously mentioned, SIFs and CSIF are extracted using equivalent domain form of I-integral, which can be re-written as follows

considering XFEM discretization and numerical integration scheme discussed above:

I(a,r) =
∑

s∈NI

(
∑nsubx×nsuby

q=1

∑2

p=1

∑2

r=1
Fs
(
ξqp, ηqr

)⃒
⃒JGL

⃒
⃒
⃒
⃒JNGs

⃒
⃒wqpwqr

)

(48)

HereN I is a set including the elements residing and intersecting the circle centred at crack tip and having a radius rI (Fig. 6) while Fs
can be expressed as follows according to Eq. (23):

Fig. 6. Sub-quads used in integration of enriched linear elements and illustration of I/J-integral domain defined by radius rI.
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Fs =

⎡

⎢
⎢
⎣

(
σ̃21ϕ̃

a
3,1̃ − σ̃12ϕ̃

a
3,1̃ + σ̃a12ϕ̃3,1̃ − σ̃a21ϕ̃3,1̃

)
q+

(
− U+ σ̃a11ũ1,1̃ + σ̃a12ũ2,1̃ + σ̃11ũa1,1̃ + σ̃12ũa2,1̃ + μ̃a13ϕ̃3,1̃ + μ̃13ϕ̃

a
3,1̃

)
q
,1̃+

+
(

σ̃a21ũ1,1̃ + σ̃a22ũ2,1̃ + σ̃21ũ
a
1,1̃ + σ̃22ũ

a
2,1̃ + μ̃a23ϕ̃3,1̃ + μ̃23ϕ̃

a
3,1̃

)
q
,2̃

⎤

⎥
⎥
⎦

s

(49)

The weight function, q, defined as below, has a smooth nature such that it equals to unity and zero for points inside and outside of
the circle, respectively.

q(ξ) =
∑4

i=1
Ni(ξ)qi

qi = 1 for nodes inside the circle
qi = 0 for odes outside the circle (50)

It should be noted that, attention has to be paid for proper calculation of derivatives of weight function, and approximate
displacement and rotation fields of both auxiliary and real states, following the fact that; ũs = JGLus, ϕ̃s = ϕs.

3. Numerical simulations

In this section, the results obtained from combined micropolar/XFEM model are compared with the ones available in the literature
(Atroshchenko & Bordas, 2015; Diegele et al., 2004; Paul & Sridharan, 1981; Yu et al., 2014) to demonstrate the accuracy and
versatility of the approach, and a case study is performed on an oblique edge crack specimen via focusing on the effect of non-locality.

3.1. Validation with literature case studies

The validation of the micropolar/XFEM model is attained through three benchmark problems for which the basic fracture pa-
rameters, obtained for Mode I and Mode II cases considering low, moderate and high non-localities, are commented on for various
mesh configurations and I/J-integral radius. In all examples, the domain is uniformly discretized and the numerical integration pro-
cedure is performed by dividing enriched elements into 4 × 4 sub-quads, each with 2 × 2 Gauss sampling points.

Fig. 7. (a) Schematic of the Griffith Problem considering whole model, and (b) corresponding discretization at the vicinity of the crack tip with lx
referring to element length.
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3.1.1. Infinite plate with a central crack under tension (Griffith problem)
As the first validation test, SIF; KI, CSIF; LI, and crack opening displacement, u0 = u2(H,L /2), of an infinite micropolar plate with a

central crack under tension, leading to Mode I case (also known as Griffith Problem), is investigated. The dimensions of the XFEM
model is arranged to mimic an almost infinite domain (Huang et al., 2003):

H = 10 (mm), L = 3H, a = 0.1H (51)

where the geometric quantities H, L and a refer to half width, vertical length and half crack size, respectively (Fig. 7(a)). With
exploiting the symmetric nature of the problem, only one-half of the structure needs to be modeled via imposing necessary loading and
boundary conditions:

σ22(x1, L) = − σ22(x1,0) = σ0 = 100 (MPa)
u1(H, x2) = 0, ϕ3(H, x2) = 0 (52)

For all mesh configurations, the number of elements along both directions are selected to be odd to ensure that the crack tip lies
inside the element, and crack surface cut through them (Fig. 7(b)). Here, the material properties are chosen in accordance with the
literature (Atroshchenko & Bordas, 2015; Paul & Sridharan, 1981; Yu et al., 2014), indicating a relatively low level of
micropolarity/non-locality:

E = 2100(MPa), v = 0.25, lc = 0.353553(mm)
lc/a = 0.353553 , N = 0.353553 (53)

The results in the reference studies are listed in Table 1, after non-dimensionalization:

u0 = u0
2μ
σ0a

, KI =
KI

σ0
̅̅̅̅̅̅
πa

√ , LI =
LI

σ0a
̅̅̅̅̅̅
πa

√ (54)

The literature (see Table 1) clearly shows the stiffening effect of micropolarity: the maximum opening between crack faces is
decreased by 13 % compared to the classical case, u0 = 1.5(Tada et al., 2000); whereas KI, seems to have an increasing trend for the
considered parameter set since for local case, Klocal

I = 1.0 (Tada et al., 2000). As an interesting point, LI, being negative can be
explained through the inverse relation between positive direction of the couple stress component, μ23, (see Fig. 2) and crack opening
mechanism, such that the bond bending between material particles, located at the opposite sides of crack tip, promotes crack opening
only if μ23< 0 (see Fig. 7 in Dyskin & Pasternak 2015), leading LI < 0 (Eq. (9)3).

After the interpretation of the results in literature, the effectiveness of the proposed model is investigated by reporting the fracture
parameters obtained through developed micropolar/XFEM model in Table 2 considering four different mesh configurations, and
various I/J-integral radii. The relative error is calculated as follows using the values in Paul & Sridharan 1981 as reference.

%err =

⃒
⃒
⃒
⃒
⃒

(u0,KI, LI)|XFEM − (u0,KI, LI)|ref
(u0,KI, LI)|ref

⃒
⃒
⃒
⃒
⃒
× 100 (55)

From Table 2, we can conclude that KI becomes independent of the integral domain as rI increases, such that rI≥ 1.75 lx, rI≥ 2.25 lx
and rI≥ 3.0 lx gave converged results for mesh 1–2, 3 and 4, respectively, with only 1.06 %, 0.24 %, 0.40 % and 0.27 % error, where lx
refers to element length along x1-axis as an indicator of mesh refinement. The highest error for KI, that is obtained for the smallest rI
radius (rI= 0.2a gave 3.13 % and 3.40 % error for mesh 3 and mesh 4, respectively) is attributed to the characteristics of the real stress
field, σ̃, (substituted into interaction integral) which tends to approach infinity as getting closer to the crack tip (Eq. (7)), and causing
higher error rates.

For LI, on the other hand, the errors have a more profound characteristic and a different trend. Although mesh refinement increases
the accuracy for the converged values of LI, such that rI = 0.9a resulted in 6.37 %, 6.17 %, 4.56 % and 2.85 % errors, respectively for
meshes 1 to 4, smaller rI yields better results. This higher dependency of LI on the mesh configuration can be associated with the
pronounced variation of micro-rotation field along the crack faces, which changes drastically compared to the displacement field (see
Figs. 15 and 16 in Atroshchenko& Bordas, 2015), hence requires a finer discretization. Secondly, ρ; the size of the region dominated by
the asymptotic part of micro-rotation field, is very small compared to internal characteristic length (ρ << lc) (see Fig. 16 in Atrosh-
chenko & Bordas, 2015), suggesting that auxiliary rotation field, ϕ̃

a
, (substituted into interaction integral) is valid for small rI.

At this point, it should be noted that, although the errors in Atroshchenko& Bordas, 2015 and Yu et al. 2014 (see Table 1) are lower
than the ones reported herein, in the corresponding studies, the discretization at the crack tip and along the crack faces are sub-
stantially refined. For instance; in Yu et al. 2014, 12 singular elements are located at each crack tip as opposed to only 1 element

Table 1
Fracture parameters reported in literature for Griffith problem of Cauchy and micropolar plates.

Reference Method u0 KI LI

Cauchy Tada et al., 2000 Analytical 1.5000 1.0000 –
Micropolar Paul & Sridharan, 1981 Analytical expressions solved numerically 1.3022 1.0150 -0.0676

Yu et al., 2014 Finite element model enriched for discontinuity with Heaviside-step function – 1.0149 -0.0674
Atroshchenko & Bordas, 2015 Standard boundary element method 1.3022 1.0222 -0.0676
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considered herein. Similarly, in Atroshchenko & Bordas, 2015, each crack face contains 193 elements that are gradually refined to-
wards the tip, whereas here along the crack geometry there exists 3 to 8 elements for different meshes.

In overall, it can be concluded that, for KI, even a model with a coarse mesh and few elements along the crack (e.g. mesh 2) provides
converged results with a very high accuracy (0.24 % error), whereas for LI, one should pay attention to the right choice of integral
radius, rI. Nevertheless, the capability and versatility of the presented XFEM model for low level of non-locality under Mode I is
highlighted.

3.1.2. Finite plate with an edge crack under tension
As the second validation test, the SIF and CSIF (KI, LI) of a finite plate with an edge crack under tension is examined considering

following geometric dimensions and loading conditions (Fig. 8(a)) (Atroshchenko & Bordas, 2015; Diegele et al., 2004):

H = 11 (mm), L = 20 (mm), a = 1 (mm)

σ22(x1, L) = − σ22(x1,0) = σ0 = 100 (MPa)
(56)

Although in the reference studies; Atroshchenko& Bordas, 2015, Diegele et al. 2004, the uniform stress is applied to the crack faces
rather than horizontal edges, same values for KI and LI should emerge following the principles of superposition (Sun& Jin 2011). In this
case, the non-locality is more pronounced compared to previous example as a result of increased characteristic length, lc, and coupling
number, N, allowing us to investigate its effect on the error:

E = 100× 103 (MPa), v = 0.3, lc = 0.806226 (mm)
lc/a = 0.806226 , N = 0.849837 (57)

Table 2
Non-dimensional fracture parameters obtained by the present micropolar/XFEM model for Griffith problem regarding various element size (lx) and
integral radius (rI / a) with the relative errors calculated with respect to Paul & Sridharan, 1981.

mesh 1
(lx = a/2.5)

mesh 2
(lx = a/2.5)

mesh 3
(lx = a/4.5)

mesh 4
(lx = a/7.5)

u0 1.2490 (4.09 %) 1.2676 (2.66 %) 1.2787 (1.80 %) 1.2910 (0.86 %)
KI (rI = 0.2a) – – 1.0467 (3.13 %) 1.0495 (3.40 %)
KI (rI = 0.4a) 1.0398 (2.44 %) 1.0411 (2.57 %) 1.0305 (1.53 %) 1.0178 (0.27 %)
KI (rI = 0.5a) 1.0398 (2.44 %) 1.0279 (1.27 %) 1.0191 (0.40 %) 1.0184 (0.34 %)
KI (rI = 0.7a) 1.0257 (1.06 %) 1.0126 (0.24 %) 1.0158 (0.08 %) 1.0184 (0.33 %)
KI (rI = 0.9a) 1.0257 (1.06 %) 1.0146 (0.04 %) 1.0166 (0.15 %) 1.0185 (0.35 %)
LI (rI = 0.2a) – – -0.06544 (3.20 %) -0.06693 (0.98 %)
LI (rI = 0.4a) -0.06315 (6.58 %) -0.06409 (5.20 %) -0.06496 (3.91 %) -0.06547 (3.15 %)
LI (rI = 0.5a) -0.06315 (6.58 %) -0.06359 (5.93 %) -0.06421 (5.02 %) -0.06559 (2.98 %)
LI (rI = 0.7a) -0.06330 (6.37 %) -0.06322 (6.58 %) -0.06436 (4.79 %) -0.06559 (2.97 %)
LI (rI = 0.9a) -0.06330 (6.37 %) -0.06343 (6.17 %) -0.06452 (4.56 %) -0.06567 (2.85 %)

Fig. 8. (a) Schematic of the edge crack model under tension, and (b) corresponding discretization with lx referring to element length.
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As different from previous example, the discretization is arranged to ensure that crack tip lies at the element edge (Fig. 8(b)) which
allows us to check the contribution of increased number of crack-tip enriched nodes on the accuracy while the edge crack is located at
the middle of left surface to perform the calculations with an altered orientation of local crack tip coordinate system.

The intensity factors are non-dimensionalized as follows where KlocalI equals to 208.1 MPa.mm1/2 (Tada et al., 2000):

KI =
KI
Klocal
I

, LI =
LI

σ0a
̅̅̅̅̅̅
πa

√ (58)

The results reported in literature for low, moderate and high non-localities are tabulated in Table 3 while for calculation of relative
error (Eq. (55)) the values in Atroshchenko & Bordas, 2015 is utilized as reference since the ones in Diegele et al. 2004 are extracted
from the graphs.

From Table 3, it is evident that, the internal characteristic length, lc, and KI has an adverse relation: KI decreases with increasing lc
for a fixed coupling number, N= 0.849837. However, the magnitude of KI being larger or smaller than the one in the classical theory
depends on the ratio between crack size and characteristic length (Li & Lee, 2009), such that for a low level non-locality, lc /a→0,
micropolar theory yields higher values; KI > KlocalI , whereas for moderate or high level of nonlocalities, we obtain an opposite trend; lc
/a→1, lc/a ≥ 1; KI < KlocalI .

With this knowledge, the effect of discretization and integral domain radius are studied regarding the case of moderate non-
locality; lc/a= 0.806226 for which the variation of intensity factors and relative differences are demonstrated in Fig. 9. The results
clearly show the error reducing effect of increased number of crack-tip enriched nodes and elevated non-locality, which is particularly
pronounced for CSIF. For instance; compared to LI of previous example with lc/a= 0.353553, N= 0.353553, the minimum error, that
are attained for the smallest integral radius, is decreased from 5.20 %, 3.20 %, 0.98 % to 1.78 %, 0.08 % and 0.02 % for different
meshes. Moreover, in parallel with the previous findings, LI has higher dependency on the discretization compared to the KI for which
no significant difference in terms of accuracy is attained compared to Griffith problem. Nevertheless, for both parameters, the results
tend to approach to ones in reference study as the mesh becomes more refined, such that the error is reduced from 0.60 % to 0.00 % for
KI, and from 1.78 % to 0.02 % for LI. Consequently, the trend of the errors, once again verifies the capability of combined micropolar/
XFEM model which ensures precise results that are achievable even with a coarse mesh configuration.

3.1.3. Finite plate with an edge crack under shear
As the last step of validation test, a finite micropolar crack with an edge crack under shear is studied (Fig. 10). The dimensions and

material properties are the same as previous example examined in Section 3.1.2, while following loading and boundary conditions are
applied to mimic the Mode II case:

τ12(x1, L) = − τ12(x1, 0) = τ21(H, x2) = − τ21(0, x2) = τ0 = 100 (MPa)
u1(0, 0) = u2(0,0) = 0 (59)

As the couple-stress field does not contain any singular term (LII: non-exist see Eq. (7)2), only the value of SIF for Mode II; KII, that is
obtained for different non-localities are non-dimensionalized by dividing it with the local case:

KII =
KII
Klocal
II

, Klocal
II = 199.3MPamm1/2 (60)

The KII values reported in literature for low, moderate and high non-localities are listed in Table 4. From the results, it can be
deduced that, an increase in non-locality through characteristic length for a fixed coupling number always reduces the KII, while its
value being higher or lower than the classical case depends on the ratio between crack and the characteristic length, similar to Mode I
case. Nevertheless, the KII turn out to be higher than the ones obtained for Mode I case considering same material parameters.

In the light of these information, the KII values, that are obtained by the developed micropolar/XFEMmodel regarding various non-
localities and I/J-integral radius (see Table 5) are commented on. Once again, for comparison, the values in Atroshchenko & Bordas,
2015 are utilized as reference, since the ones in Diegele et al. 2004 are extracted from the graphs.

Table 5 shows that as rI, increases, KII converges to a fixed value, the error of which decreases with pronounced non-locality in
accordance with Mode I case. For instance; a difference of 3.31 %, 1.08 % and 0.87 % with reference study is obtained for low,
moderate and high non-localities. Nevertheless, the trend and level of error are slightly different from the ones in Mode I case for
increased rI. This variation can be attributed to the differences in loading and boundary conditions between reference and present
studies; in Atroshchenko& Bordas, 2015, the shear stress is applied at the crack surfaces with fixing the node at the right edge, whereas

Table 3
Fracture parameters reported in literature for a finite micropolar plate with an edge crack under tension.

Reference Method lc (mm) KI LI

Diegele et al., 2004 Standard finite element method 0.254951 1.0796 -0.2211
0.806226 0.9582 -0.3850
2.549510 0.8834 -0.4845

Atroshchenko & Bordas, 2015 Standard boundary element method 0.254951 1.0803 -0.2120
0.806226 0.9542 -0.3689
2.549510 0.8836 -0.4644
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Fig. 9. Variation of fracture parameters obtained by the present micropolar/XFEM model for edge crack problem under uniform tension with
moderate non-locality (lc = 0.806226, N= 0.849837) regarding various element size, lx, and domain radius (rI/lx), with the relative errors calculated
with respect to Atroshchenko & Bordas, 2015.

Fig. 10. Schematic of the edge crack model under shear and corresponding discretization with lx referring to element length.
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here the configuration is arranged as shown in Fig. 10.
Before any further progress, it should be noted that, up to now, the versatility of the XFEM is investigated through plates containing

a straight crack that is parallel to horizontal edges of the domain for which a very high accuracy is obtained without the need to
increase the number of sub-quads. Nevertheless, one should realize that in case of oblique cracks, the level of error might increase due
to inevitable splitting of some sub-quads containing the crack as highlighted in yellow in Fig. 6.

In overall, from the results of validation studies, we believe that, our claim on proposing a numerical methodology that enables
researchers to obtain basic fracture parameters of micropolar continuum with sufficient accuracy in a computationally efficient
manner (compared to existing approaches in the literature, especially standard FEM) has been actualized through topological
enrichment. Although the convergence rate is open to improvement via geometric enrichment, the peculiar character of XFEM, which
eliminates the need to have conforming mesh with crack geometry, substantially decreases the number of required elements along and
ahead of the crack-tip.

3.2. Case study: Finite micropolar and cauchy plates with an oblique edge crack under uniform tension

Present sub-section is devoted on demonstrating the variation of fracture parameters on non-locality. For this purpose, we consider
a finite plate under uniform tension having dimensions ofH× Lwith an edge crack of length a= 0.4H that is located at the middle of left
vertical edge making an angle of β = 30◦ with x1-axis, as illustrated in Fig. 11(a).

H = 10 (mm), L = 20 (mm), a = 4 (mm)

σ22(x1, L) = − σ22(x1,0) = σ0 = 100 (MPa)
(61)

This is the second example in literature that focuses on the effect of oblique cracks in a micropolar mediumwithin the framework of
LEFM (Yu et al., 2014).

As the first step, various sensitivity analyzes are performed considering different mesh configurations (mesh 1: 31× 63, mesh 2: 39
× 77, mesh 3: 47 × 91 elements, (see Fig. 11(b))), and number of sub-quads (2 × 2, 4 × 4, 8 × 8). In all, the fracture parameters are
extracted for various J/I-integral domain radii (rI/lx = 1.5, 1.8, 2.0, 2.5, 3.0, 3.5, 4.0 with lx referring to element length along x1-axis),
while non-locality is kept constant at a moderate value:

E = 100× 103 (MPa), ν= 0.3, lc/a = 0.75 (lc = 3mm), N = 0.75 (62)

The resulting parameters are non-dimensionalized as follows similar to literature:

KI =
KI

σ0
̅̅̅̅̅̅
πa

√ , KII =
KII

σ0
̅̅̅̅̅̅
πa

√ , LI =
LI

σ0a
̅̅̅̅̅̅
πa

√ , u0 = u0
2μ
σ0a

, G =
2G

πa(σ0)
2
(1 − ν)/μ

(63)

The mesh insensitivity is evident from the left column of graphs in Fig. 12, as the maximum difference between coarsest and finest
meshes (mesh 1 vs mesh 3) are 0.15 % (KI), 0.06 % (KII) and 0.30 % (LI), for which the number of sub-quads required for numerical
integrations of enhanced elements are taken as 4× 4 and comparison is made through converged values; rI/lx> 2.0. Similarly, from the
sensitivity analyzes of altered number of sub-quads for the model with mesh 2, dividing elements into 2× 2 or 8× 8 parts does not lead
to any noticeable change with a relative discrepancy of 0.26 % (KI), 0.22 % (KII) and 0.75 % (LI).

As the next step, a parametric study is performed to display the influence of non-locality on basic fracture parameters such as; SIFs
(KI, KII), CSIF (LI), crack opening displacement and ERR (G), in a comprehensive manner. This is achieved by altering the micropolarity

Table 4
Fracture parameter reported in literature for edge crack problem under shear.

Reference Method lc (mm) KII

Diegele et al., 2004 Standard FEM 0.254951 1.2272
0.806226 1.0154
2.549510 0.9222

Atroshchenko & Bordas, 2015 Standard BEM 0.254951 1.2241
0.806226 1.0175
2.549510 0.9194

Table 5
Variation of SIF for Mode II; KII, obtained by micropolar/XFEMmodel for edge crack problem under shear for low, moderate and high non-localities
regarding various domain radius (rI/lx), reported alongside with the relative errors calculated with respect to Atroshchenko & Bordas, 2015.

lc = 0.254951 (mm) lc = 0.806226 (mm) lc = 2.54951 (mm)

r = 1.5lx 1.2123 (1.21 %) 1.0255 (1.00 %) 0.9332 (1.19 %)
r = 2.0lx 1.2067 (1.67 %) 1.0196 (0.41 %) 0.9275 (0.58 %)
r = 2.5lx 1.1902 (3.01 %) 1.0071 (0.82 %) 0.9165 (0.62 %)
r = 3.0lx 1.1874 (3.24 %) 1.0050 (1.02 %) 0.9147 (0.82 %)
r = 3.5lx 1.1870 (3.27 %) 1.0046 (1.07 %) 0.9143 (0.86 %)
r = 4.0lx 1.1865 (3.31 %) 1.0044 (1.08 %) 0.9142 (0.87 %)
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related material parameters; internal characteristic length, lc, and coupling number, N, as follows:

lc/a = 0.10a,0.375a,0.75a,1.25a, N = 0.0001,0.05,0.15,0.30,0.45,0.60,0.75,0.9 (64)

All the subsequent simulations are performed for a model discretized by 39× 77 elements (mesh 2) while for numerical simulation
4 × 4 sub-quads are used following the sensitivity analysis. The opening displacement at crack mouth alongside with SIFs, CSIF, ERR
that are extracted for a domain radius of rI / lx = 2.5 are shown graphically in Fig. 13.

Here the coupling number approaching to zero, N→0, refers to limiting case of classical elasticity, hence the results should coincide
with the ones of Cauchy continuum. This allows us to check the XFEM algorithm for oblique cracks by comparing the SIFs obtained
from the in-house code (mesh 2, 4× 4 sub-quads, rI / lx= 2.5) by the ones available in literature (Fayed 2016). The data extracted from
the plots of reference study for a domain with same geometric dimensions are KI = 1.54, KII = 0.47 according to which the level of
error is calculated as 1.09 % and 0.17 %, respectively (Eq. (62)), proving the versatility and accuracy of the presented method once
again.

From Fig. 13(a) and (b), it can be deduced that increasing characteristic length, lc, decreases the SIF(s) for a fixed coupling number,
N, while whether the values will be larger or smaller than those obtained for Cauchy continuum depends on the ratio between lc and a.
For non-pronounced non-locality; lc/a→0, SIFs of micropolar continuum turns out to be higher than classical ones; K > Klocal, as
coupling number approaches to the upper bound; (N→1), whereas an opposite trend; K < Klocal, is obtained for high level non-locality;
lc/a→1, lc/a ≥ 1. Accordingly, we can conclude that, for a micropolar continuum under mixed mode loading, SIF(s) varies depending
on not only micropolarity related material parameters (lc, N), but also the ratio between internal and crack lengths (lc/a), as previously
pointed out by Diegele et al. 2004 and Li& Lee 2009 for Mode I and II cases, separately. The variation of CSIF (Fig. 13(c)), on the other
hand, indicates the singularity-enhancing feature of micropolarity as the amplitude of couple-stress singularity elevated with internal
characteristic length and coupling number.

Nevertheless, as evident from the decreasing trend of crack opening displacement (Fig. 13(d)), a defected micropolar plate (lc,N
> 0) deforms less than its Cauchy counterpart under same conditions, while the rigidity becomes even more pronounced with
increasing material parameters, lc↑, N ↑, as illustrated in Fig. 14. Finally, the case study clearly reveals the opposite correlation be-
tween non-locality and ERR (Fig. 13(e)), such that higher the non-locality, lower the driving force which is responsible for promoting
crack propagation. This finding suggests that non-locality (or presence of microrotations) reduces the effects of defects (cracks, holes)
as stress concentrator in scale-dependent plates as in accordance with the available literature (Atkinson & Leppington, 1977; Paul &
Sridharan, 1981; Shmoylova et al., 2007; Tuna et al., 2020; Tuna & Trovalusci, 2021). Note that, the ERR values reported herein are
obtained through numerical derivation of J-integral, whereas it can alternatively be calculated by substituting SIFs and CSIF in Eq. (13).
At this point, it should once again be mentioned that, in Kapiturova et al. 2016, which can be considered as an noticeable attempt in
exploiting XFEM for brittle fracture analysis of micropolar solids, the trend between ERR (driving force) and non-locality does not
agree with the present study and literature. This point is further examined by comparing the J-integral values obtained via the pre-
sented micropolar/XFEM model with the ones given in Kapiturova et al. 2016 (see Figs. 8 and 9 in the reference study) regarding the
domain with an edge crack under tensile loading. As different from the referenced study, the value of J-integral has a decreasing trend

Fig. 11. (a) Schematic of the oblique edge crack model, (b) corresponding discretization.
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with increased coupling number. For instance; for the case where crack equals to half of the width and coupling number is N≅ 0.845,
the J-integral is reduced about 6 % compared to the Cauchy case, whereas in Kapiturova et al. 2016, an increase of 16 % is obtained.

As the last step of this sub-section, the influence of crack size on the variation of fracture parameters are studied by performing
additional simulations with distinct crack lengths while material parameters are fixed:

a = 2,3, 4,5, 6 (mm)

E = 100× 103 (MPa), ν = 0.3, lc = 3 (mm), N = 0.75
(65)

The analyzes are repeated for Cauchy continuum to make a comparison with the local case, while the results, that are extracted for
mesh 2, 4 × 4 sub-quads and a domain radius of rI / lx = 2.5, are demonstrated in Fig. 15. One should realize that since the material
parameters are fixed, the ratio between internal and crack lengths is decreased from lc / a= 1.5 to lc / a= 0.5 as the size of crack is
tripled. For both continua, an increase in crack length leads the structure to become more prone to fracture type failure whereas for the
micropolar continuum this variation seems to be less dramatic than the Cauchy one.

Fig. 12. Sensitivity analyzes for micropolar plate with an oblique edge crack under uniform tension: variation of fracture parameters; mode I SIF
(first row), Mode II SIF (second row), Mode I CSIF (third row) with various domain radius (rI) considering different mesh configurations; mesh 1,
mesh 2, mesh 3 (left column) and different number of sub-quads; 2 × 2, 4 × 4, 8 × 8 (right column).
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4. Discussion

The micropolar/XFEM model, that is built for computationally efficient extraction of basic fracture parameters required within
LEFM framework, has been validated, and employed to investigate the case with an oblique edge crack. Though, the analyzes have
targeted domains with stationary (non-propagating) cracks so far, the model can be directly exploited to simulate the evolution of
damage by simply adapting an iterative loop. Owing to ability of XFEM, eliminating re-meshing process, the crack evolution can be
traced within a fixed domain discretization. However, the approach has a drawback: an explicitly defined fracture criterion should be
introduced to calculate the propagation angles forming the crack path, which is still an open issue for micropolar continuum.

Therefore, despite all its potential, the LEFM based numerical models (Atroshchenko& Bordas, 2015; Diegele et al., 2004; Yu et al.,
2014) have not been used for this purpose, and other approaches such as phase field (Behera et al., 2024; Suh et al., 2020; Riad et al.,
2022), and peridynamics (Chen et al., 2024; Diana et al., 2024; Guo et al., 2024; Lei et al., 2024; Wan et al., 2022; Zhou et al., 2023)
have been extended to simulate the crack propagation. Both methodologies provide significant insight on the topic, each with their
own advantageous: in the phase field method, propagation phenomenon is simply governed by minimizing the defined energy

Fig. 13. Parametric study for micropolar plate with an oblique edge crack under uniform tension: variation of fracture parameters; Mode I SIF (a),
Mode II SIF (b), Mode I CSIF (c), opening displacement at crack mouth (d), and ERR (e), with coupling number, N, and internal characteristic length,
lc whereas straight black line indicate the results of Cauchy continuum.
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functional in which the dissipative and dynamical effects can be easily incorporated, while in peridynamics, the interactions between
material points located within a finite neighbourhood are explicitly covered which inherently eliminates the need to have an external
failure criterion, and overcomes the shortcoming of crack-tip singularity. Though both approaches suggest realistic predictions for
fracture problems, their limitations should be recognized. For instance; in phase field method, the need to having a regularization
length smaller than the internal length parameter, and a finite element discretization smaller than the regularization parameter, in-
creases the computational cost (Riad et al., 2022). Moreover, regarding the obtained crack paths, it is highlighted that, a universal
decomposition scheme that is applicable under all loading conditions is still missing (Behera et al., 2024). As for peridynamics, the
main challenge arises in computational sense due to non-local nature of the problem for which the effect of material point density and
horizon size should be studied (Diana et al., 2024; Guo et al., 2024). Moreover, in case of bond-based peridynamics, a more realistic
criterion than critical elongation should be defined due to presence of particle rotations (Lei et al., 2024; Wan et al., 2022). Lastly, some
differences are encountered in terms of crack paths and their variation with micropolar material parameters, indicating the lack of
consensus (Behera et al., 2024; Chen et al., 2024; Suh et al., 2020).

All these above-referred facts point out that the topic is still open for further investigations. To this end, the presented micropolar/
XFEMmodel, which can be exploited in proposal and validation of a fracture criterion within LEFM approach (Tuna et al., 2024), forms
the basis to investigate crack growth phenomenon, and to simulate the corresponding damage process, in a computationally efficient
manner within the framework of LEFM.

5. Conclusions and further developments

The main aim of this paper is to build a computationally efficient numerical model by implementing extended finite element
method to two-dimensional micropolar structures (i.e. micropolar/XFEMmodel) through which the basic fracture parameters required
in linear elastic fracture mechanics (LEFM) can be extracted easily. The model provides the basis to explore the crack propagation
phenomenon within the framework of LEFM, an approach exploited only for domains with stationary cracks so far, due to numerical
challenges, and the absence of a valid fracture criterion.

The accuracy of formulation and in-house code is verified by comparing stress and couple-stress intensity factors (SIFs and CSIF)
obtained through the micropolar/XFEM model with the ones reported in literature considering Mode I (crack opening) and Mode II
(crack shearing) cases. As evident from the errors given for various discretizations, the current form of the developed formulation
provides reliable outputs in a computationally efficient manner due to the peculiar character of XFEM that eliminates the need to have

Fig. 14. Variation of deformed configurations (exaggerated 50 times) for a coupling number of N= 0.75 and various characteristic lengths.

Fig. 15. Parametric study for Cauchy and micropolar plates with an edge crack under uniform tension: Variation of Mode I SIF (a), Mode II SIF (b),
and ERR (c) for various crack lengths, a, considering a fixed domain (H× L) and constant material parameters (lc = 3 mm, N= 0.75).
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a conformingmesh with crack geometry, and substantially decreases the number of required elements along and ahead of the crack-tip.
Following its versatility, persistent even for a coarse mesh discretization, the analyzes are extended to study the contribution of

scale effects on the integrity assessment of a micropolar plate with an oblique edge crack. The results highlight the significance of
correct representation of materials with microstructure since an increase in non-locality is proved to reduce the effect of defects (e.g.
cracks, holes) as stress concentrators following the decreased trend of energy release rate and deformation state.

By considering its accuracy and efficiency for size-dependent fracture problems and great potential on numerical simulation of
damage process, the micropolar/XFEM model can be exploited in proposal and validation of a fracture criterion within LEFM
approach, which is, in fact, the scope of a forthcoming paper of the Authors, and offers a new and different perspective to available
methods (e.g. phase field, peridynamics).
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Appendix A

P(a,r)i1,i =
(
Cmnprεaprεmn + Dm3p3χap3χm3

)

,1
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

[1]

−
(

σaijuj,1 + σijuaj,1 + μai3ϕ3,1 + μi3ϕa
3,1

)

,i
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

[2]

(A.1)

Let’s start with [1]:

Cmnpr,1εaprεmn + Cmnprεapr,1εmn + σamnεmn,1 + Dm3p3,1χap3χm3 + Dm3p3χap3,1χm3 + μam3χm3,1 (A.2)

Following the homogeneity of the medium, the terms containing Cmnpr,1 and Dm3p3,1 dies out, while substitution of the kinematic
relations to the resulting expression gives:

σijuaj,i1 + σaij
(
uj,i1 − εij3ϕ3,1

)
+ μi3ϕa

3,i1 + μai3ϕ3,i1 (A.3)

Now as for the [2]:

σaij,iuj,1 + σaijuj,i1 + σij,iuaj,1 + σijuaj,i1 + μai3,iϕ3,1 + μai3ϕ3,i1 + μi3,iϕa
3,1 + μi3ϕa

3,i1 (A.4)

Here the terms including σaij,i, σij,i and μai3,i vanishes following the equilibrium equations, and the substitution of the equilibrium
equation for the real couple-stress field results in:

σaijuj,i1 + σijuaj,i1 + μai3ϕ3,i1 − ε3ijσijϕa
3,1 + μi3ϕa

3,i1 (A.5)

Finally, from Eqs. (A.1); (A.3); (A.5), we have:

P(a,r)i1,i = εij3
(

σijϕa
3,1 − σaijϕ3,1

)
(A.6)
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