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Abstract. In recent years, there has been an increase interest in using
intelligent methods to control manufacturing processes. Tens of resources
to be modeled and offered as services through Industrial APIs, may be
used in these processes and orchestrated throughout the various supply
chain companies. The orchestration must be flexible and adaptable to
disruption since the status of the various services/resources changes over
time in terms of their cost, quality, and likelihood of failure. Due to the
large amount of services involved and the complexity of their behaviors,
manually making judgments quickly becomes impractical, necessitating
the use of automated solutions to resolve the issue. By relying on the
resources information provided by proper Industrial APIs, we can make
current supply chains flexible and robust. In this work, we investigate the
potential and limitations of automated reasoning techniques to enable
adaptivity and resilience in smart manufacturing.

Keywords: Industrial APIs · Smart manufacturing · Automated rea-
soning.

1 Introduction

The concept of smart manufacturing, commonly also mentioned as Industry 4.0,
embodies a vision of industrial processes where computing devices are integrated
in most of the manufacturing steps. In particular, industrial processes are sup-
posed to be fully (or mostly) automated, adaptive to changes, flexible, evolvable,
resilient to errors and attentive to the more knowledgeable operators’ skills and
needs.

Nevertheless, processes in current manufacturing landscape, must not be con-
sidered isolated. Instead, they involve several companies along intricate supply
chains networks [3]. Such players co-operate together to accomplish various pro-
duction goals. They consist of loosely coupled, autonomous entities with equal
rights, and their organizational structure is dynamically adapted in accordance
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with the tasks to be carried out [33]. Supply Chain Design (SCD) [22] is typically
a difficult job with numerous competing objectives. Facility location planning,
allocation of customers to distribution centers or factories and suppliers selec-
tion are some of them. In addition, recovery strategies are a fundamental tactic
for dealing with disruption events caused, for instance, by broken machines or
environmental perturbation. The literature contains a variety of heading tech-
niques [31], including relational strategies such as supply chain collaboration,
communication and information exchange [6]. In this sense, it is essential for
alliances to contribute to quickly recover from disruption and to collaboratively
plan with other supply chain partners. Furthermore, a flexible supply chain net-
work structure is suitable for developing effective disruption risk recovery strate-
gies [12].

In general, a common goal in this context is the development of the triple-
A supply chain, which consists of the simultaneous implementation of agility –
responding to short-term changes in demand or supply quickly, adaptability –
adjusting supply chain design to accommodate market changes, and alignment,
establishing incentives for supply chain partners to improve performance of the
entire chain [25]. We enrich such a notion by including resilience, as the ability
to react to disruptions along the chain. It is clear that the ability of a system to
adapt to certain conditions, e.g., a rescheduling of the production process, and
the capacity to continue the work despite disruptions, such as the breakdown of a
machine, are two crucial objectives in a smart manufacturing environment. And
besides, these are particularly challenging due to the dynamism and uncertainty
of manufacturing processes. As an example, machines are subject to wear and can
show unpredictable behaviors, so they may often not perform their job properly.

The overall amount of manufacturing resources in the supply chain is substan-
tial. Also, they belong to several different categories including software systems,
machines, robots, and human workers. Each resource offers a specific collection
of capabilities and has unique qualities, e.g., speed, costs, and probability of
break. Noteworthy, the very same functionality can be offered by different re-
sources, optionally from different categories (e.g., painting a part can be done
either by a machine or by a human), and the execution of a multi-party pro-
cess requires an accurate selection of resources in order to be completed in the
most convenient way. Such a selection though, cannot be considered permanent
as characteristics of resources change over time as well as needs and conflicting
performance measures. Additionally, non-trivial constraints between resources
may exist, making the overall task of choosing actions and resources difficult to
be performed manually. In this regard, the employment of Artificial Intelligence
(AI) techniques can simplify the task. In particular, specific automated reason-
ing techniques though have their own expressiveness that, in turn, influences the
computational costs.

In this paper, we explore how automated reasoning techniques, which are a
specific type of AI, can be used to enable adaptivity and resilience to multi-party
processes in smart manufacturing. In fact, it is claimed that the use of special-
ized supporting technologies and techniques enable the advent of AI-augmented
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Business Process Management Systems (ABPMSs) [13], an emerging class of
process-aware information systems empowered by trustworthy AI technology
which enhance the execution of business processes with the aim of making them
more adaptable, proactive, explainable, and context-sensitive. To this aim, as
proposed in [5], we model the manufacturing resources as components of a Ser-
vice Oriented Architecture (SOA). Each manufacturing resource involved in the
supply chain is a service accessible through Industrial Application Programming
Interfaces (APIs). Industrial APIs provide many features like accessing the se-
lected services, enabling quick integration, monitoring the behavior and status
information, and invoking commands. In particular, with respect to the status,
an Industrial APIs allows to access peculiar information about the Remaining
Useful Life (RUL) of a resource, the cost, and the probability of failure, which
evolves over time. We embed such an approach in a framework able to support
adaptivity and propose different AI methods to assist it.

In order to show the suitability of the different approaches, we apply them
to the tricky case of integrated circuits (chip) manufacturing, analyzing the ef-
ficiency, adaptivity, and limitations of the different approaches. Although semi-
conductor design activities are concentrated in specific regions of the USA, as
well as in Europe and Japan, semiconductor manufacturing is more widely dis-
persed. The industries that provide manufacturing inputs and purchase finished
semiconductor products are often dominated by large, multinational organiza-
tions [26]. In addition, as witnessed by the recent evolution of international
political affairs, this production is strongly influenced by relationships among
countries, which may produce unpredictable effects on the supply chain.

The rest of the paper is structured as follows: Section 2 presents a frame-
work enabling adaptivity in smart manufacturing, while Section 3 presents the
motivating case study we analyze. Section 4 presents the various approaches we
investigate to compute a resilient and adaptive plan for industrial production.
Section 5 compares and discusses the presented approaches. Finally, relevant
literature and concluding remarks are presented in Section 6 and Section 7,
respectively.

2 A framework Supporting Adaptivity

We propose a service-based framework enabling adaptivity in smart manufac-
turing (see Figure 1). We identify three main components, i.e., Industrial APIs,
Enactor and Controller, each characterized by fundamental roles.

On the one hand, we enable interoperability between the manufacturing re-
sources by modeling each of them as a service. The term resource encompasses
here a wide range of actors including machines, humans, companies and provided
services. Thus, we create a service-based supply chain consisting of a composi-
tion of services. Such services are realized as Industrial APIs. We consider these
as APIs provided by the resources and employing specific industrial protocols
(e.g., MQTT, OPC-UA) rather than classical ones (e.g., REST). The Industrial
APIs are used to represent the physical actors and perfectly describe their func-
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Fig. 1. A service-based adaptive framework

tionalities (or tasks). They allow to monitor the behavior and status information
and allow to invoke commands. The core component of the Industrial APIs is
a server that allows the management of all the services involved in the process.
The server is in turn composed of a WebSocket server and an HTTP server.
Particularly, it connects to the services via WebSockets in separate communica-
tion channels, and exposes a set of APIs to manage external HTTP requests.
The defined APIs allow retrieving both the specification and the current state
of the services and request the execution of a task to be performed by a service.
Each manufacturing resource is described as a JSON file which is used by the
server to “build” the service. The JSON file contains specific elements: (i) an
id to specify the identifier of the service, e.g., name of the resource, (ii) some
attributes that contain the static characteristics of the service, e.g., actions and
costs, and (iii) some features that contains the dynamic characteristics of the
service, e.g., status, breaking and quality condition. The way attributes and fea-
tures are represented varies depending on the scenario in which the Industrial
APIs are used.

On the other hand, the enactor and controller components are responsible
both to manage and enable adaptivity in smart manufacturing. The enactor
acts as a middleware by interfacing with the Industrial APIs in order to check
whether the available services have changed (for instance, because of the wearing
out during the execution, some services may become unavailable). The controller,
which we modeled as a black box, represents the implementation of the adaptive
techniques. It takes as input the specification of the involved resources (in our
case a set of services) and the final target (in our case a manufacturing goal) and
provides as output an adaptive orchestration1. Such an orchestration contains
the specification of the identified services required to reach the final goal. Fol-
lowing the output of the controller, the enactor calls (HTTP requests through
the Industrial APIs) the designed services.

By taking into account the various possibilities for the inputs and outputs of
the controller, a conceptual classification of the potential strategies produced as

1 In a SOA, and in this paper specifically, orchestration and process can be considered
as equivalent.
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output by the controller can be specified. We can distinguish among the deter-
ministic and probabilistic behaviors of manufacturing resources and the complete
and under specification of the manufacturing goals. Three distinct categories of
strategies are described in the paragraphs that follow.
Instance repair. The process behind the supply chain is well-defined. If an
unexpected exception happens (e.g., a machine breaks), automated reasoning is
employed in order to take the states of resources back to the expected ones. In
this case, adaptivity is applied locally, but the overall forthcoming orchestration
(i.e., the remaining part after the exception) remains unchanged.
Instance planning. Every time that a new process instance is needed, auto-
mated reasoning is applied taking as input the most recent information about
resources and producing as output an entire orchestration specification. If, at a
certain point of the execution, something (e.g., a broken resource) prevents the
plan to be completed, automated reasoning is applied again.
Policy-based. Automated reasoning is employed to obtain a policy, i.e., a func-
tion that for each state proposes the next action. Differently from the instance
planning case, here, if something unexpected happens, there is no need to reapply
planning, as all the possibilities have been already computed.

The intuitions of three methods implementing (i) an instance planning ap-
proach based on deterministic services and loosely specified target, (ii) a policy-
based approach with stochastic behaviors and fully specified target, and (iii) a
policy-based approach with stochastic behaviors and a loosely specified target
are described in Section 4. We are not considering any instance repair approach
as we focused on the data perspective more than the control flow perspective,
which is fundamental as full adaptivity requires the process structure to be very
flexible. An example of a technique of this type, even if not applied in a smart
manufacturing scenario but in a ubiquitous computing one, has been proposed
and investigated in [30].

3 Motivating Case Study

In this section, we present the supply chain case study, i.e., ChipChain. It repre-
sents the chip supply chain production which involves several actors associated
with different operations2. The main goal is the production of chips and we dis-
tinguish two main phases, the raw materials and design assortment phase, and
the manufacturing process phase. The manufacturing operations involved in the
chip supply chain are outlined below:

– Raw materials and design assortment : consists of the collection of the chip
design (e.g., CAD model) and the essential raw materials, i.e., (silicon) wafer,
silicon, boron, phosphor, aluminum, resistance, plastic, copper frame, and
chemicals. The design and the raw materials constitute the objects involved
in the manufacturing process.

2 Cf. https://www.screen.co.jp/spe/en/process and https://www.asml.com/en/news/
stories/2021/semiconductor-manufacturing-process-steps.

https://www.screen.co.jp/spe/en/process
https://www.asml.com/en/news/stories/2021/semiconductor-manufacturing-process-steps
https://www.asml.com/en/news/stories/2021/semiconductor-manufacturing-process-steps
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– Manufacturing process: upon the assortment phase is completed, the manu-
facturing process begins. It represents the effective set of operations for the
manufacturing of chips. Such operations include: (i) cleaning of the silicon
wafers; (ii) deposition of thin film of conducting and isolating materials, e.g.,
silicon and aluminum; (iii) coating of the wafer surface with resistance; (iv)
exposing of the wafer with ultraviolet radiation; (v) “development” and (vi)
etching of the wafer; (vii) implantation of phosphor, boron ions or silicon;
(viii) creation of micro transistors through a heat processing; (ix) stripping
off of resistance (using chemicals); (x) separation of the wafer into individual
chips connected to a copper frame; (xi) testing phase of the chips; and (xii)
enclosing in plastic by leaving only the contact pins on the outside.

We based the manufacturing process in the United States (US), which is
home to the vast majority of the top semiconductor suppliers in the world3.
Additionally, we identified the list of states involved in the assortment phase.
In particular, we identified the countries that produced the raw materials and
considered them as the organizations part of the supply chain. In addition, we
determined the costs of carrying out each operation. The distance between the
US and the identified states is used to calculate them (if the object is made in
the US, the associated operation cost is unitary). The manufacturing process is
a different matter. Indeed, the manufacturing actors (machines and operators)
are located in a unique factory (in the US) and the cost of the operations is set
to 1. However, we take into account the possibility of more than one of the same
actor performing the same action, in which case their costs are increased by a
factor greater than 1.

4 Adaptive Supply Chain Approaches

In this section, we explain in detail how we implement the approaches used
for finding a manufacturing production plan that ensures adaptivity in the
ChipChain case study.

4.1 Instance Planning

Generally, by leveraging automated planning techniques, it is possible to auto-
matically orchestrate the supply chain in order to fulfill specific manufacturing
goals while respecting expected Key Performance Indicators (KPIs) [5]. Auto-
mated planning and scheduling (AI planning) has already proven its potential
and could have a huge impact on industrial manufacturing too. It concerns the
automated synthesis of autonomous behaviors (i.e., plans) from a model that
describes the behavior of the environment in a mathematical and compact form.

Classical planning is one of the most basic models in planning and is con-
cerned with the selection of actions for achieving goals when the initial situation

3 Cf. https://macropolo.org/digital-projects/supply-chain/ai-chips/
ai-chips-supply-chain-mapping.

https://macropolo.org/digital-projects/supply-chain/ai-chips/ai-chips-supply-chain-mapping
https://macropolo.org/digital-projects/supply-chain/ai-chips/ai-chips-supply-chain-mapping
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is fully known and actions have deterministic effects [16]. A classical planning
problem [18] P = (A, I, γ,O) consists of a set of state variables A, a description
(i.e., a valuation over A) of the initial state of the system I, a goal γ represented
as a formula over A, and a list of operations O over A that can lead to state
transition. State variables A and actions O constitute the planning domain PD

of the planning problem. The solution for a classical planning problem is a se-
quence of operators (a plan) whose execution transforms the initial state I into
a state satisfying the goal G. The computation of the solution may not be an
easy task, however, over the years, many algorithms and heuristics have been
proposed and embedded into planning systems (known as planners) to perform
automated planning in an efficient way.

We propose a resilient and scalable approach based on classical planning for
the agile orchestration of services aiming at achieving a production goal and
adapting to failures by using the framework described in Section 2.

The manufacturing resources, represented as services with the Industrial
APIs, contain the list of actions runnable by the specific actor modeled in a
PDDL-like fashion (PDDL defined in the following). The JSON file describing
the services is structured as follows: the attributes value is actions-based and
each action contains the parameters, the requirements and the effects, both pos-
itive and negative, necessary upon the execution of such an action finally, the
features value contains the characteristics of the actors and their current status.

The controller component comprises two sub-modules, i.e., the translator and
the planner. The core module of the controller is the translator. It transforms
the service descriptions (acquired through HTTP requests) and a description of
the environmental context (i.e., the production goal and environmental context
description) into a planning problem specified in PDDL 2.2. (Planning Domain
Definition Language). PDDL [15] is a standard language to describe planning
domains and problems. There exist different versions of PDDL which provide an
increasing expressive power. The model of the planning problem is separated into
two main files: the domain and the problem descriptions. Such a division allows
for an intuitive separation of elements present in every specific problem of the
given domain (i.e., types, predicates, functions and actions), and elements that
determine the specific problem (i.e., available objects, initial state and goal). The
planner module represents a planning system able to generate a plan given the
domain and problem files. The current prototype of such an approach is based
on the FastDownward planner, which supports PDDL 2.2 [20]. The output of
the planner, i.e., a plan, contains the list of actions (or operations) needed to
reach the final goal by minimizing the total cost.

The enactor takes each action contained in the plan file produced by the
planner and makes HTTP requests to relative Industrial APIs to perform such
actions. Prior to the execution of an action, the current status (a feature) of
the service is checked. On the one hand, if the status is available, the enac-
tor dispatches the action request. On the other hand, if the status is broken

(meaning that the service is unavailable), the enactor requests the controller the
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re-calculation of the plan. Particularly, the new plan is generated starting from
the current environmental state where one or more services result broken.

4.2 Stochastic Policy

Typically, actors in industrial manufacturing can be thought of as stochastic
players. Indeed, their behaviors can be expressed as dependent on a probability
that indicates the possibility to act either as functioning or broken actors. In
this sense, the manufacturing process becomes a probabilistic planning problem.
Adaptivity in such a scenario can be achieved by employing Markov Decision
Processes (MDPs) to compose the services representing the manufacturing ac-
tors. Particularly, MDPs are able to take into account both the probability and
cost of breaking upon the execution of an action enabling a full insight of the
entire supply chain.

A MDP [32] is a discrete-time stochastic control process containing (i) a set
Σ of states which represent the status of the service, (ii) a set A of actions i.e.,
the set of tasks that the service can perform, (iii) a transition function P that
returns for every state s and action a a distribution over the next state i.e., the
probability of the service to end in a certain status performing a certain task,
(iv) a reward function R that specifies the reward when transitioning from state
s to state s′ by executing action a, and (v) a discount factor λ ∈ (0, 1) which
determines how important future rewards are to the current state. If λ = 0,
the service is “myopic” in being concerned only with maximizing immediate re-
wards. As λ approaches 1, the method becomes more “farsighted”, more strongly
considering future rewards.

By relying on the framework described in Section 2, we propose a stochastic
policy approach that employs MDPs to orchestrate services in order to produce
an adaptive process. A formal description of such an approach is presented in [10].

We define the actors as stochastic services modeled as MDPs and maintained
by the Industrial APIs. The JSON file describing the characteristic of the actors
contains the set of transitions an actor is able to perform and the informa-
tion relative to the initial, final, and current state. Each actor may represent
a complex breakable service that includes the set of states (i.e., Ready, Con-
figuration, Executing, Broken, Repairing) and actions, or may represent
a generic breakable service that includes a subset of states (i.e., Available,
Done, Broken) and a subset of actions. Moreover, each actor may represent
also human workers that can perform the same action of a machine and are
preferred when a machine becomes broken, or a warehouse. Such an approach
allows the flexibility required to model a manufacturing actor operating in its
environment. As an example, specific states can be defined to model unavail-
ability conditions (e.g., a broken machine) and the probability of ending in such
states. In addition, rewards can be used to model the costs of performing an
operation. Different actors can offer the same operation and, as a consequence,
an actor chosen for a specific process instance could be discarded for the later
instance. The characteristics of the stochastic services is combined into a com-
munity of stochastic services, i.e., a stochastic system service. Intuitively, the
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stochastic system service status includes the current status of all the composing
services, and a specific action performed on the system service changes only one
component of the current state, corresponding to the service selected to execute
that action.

Among others, we propose a model to define the manufacturing target by
using the concept of target service. Such a concept is used to denote a composite
service obtained by composing the functions of the stochastic services. Notice-
ably, the target service itself, as the stochastic services, is a particular case of
MDP. However, different from the stochastic services, in the vast majority of
cases, the target service is deterministic.

The solution technique of the proposed approach is based on finding an op-
timal policy for the composition MDP. Given the specification of the stochastic
system service and the target service, we compute the composition MDP which
contains: the cartesian product between all the states of the target service and
the stochastic system service, all the actions of the services, the probability of
ending in a certain system state performing a system action, and the reward
function that is the reward observed from doing a system action summed to the
reward coming from the target. In practice, according to a specific target (man-
ufacturing goal), the composition MDP computes all the possible executions of
the manufacturing process, i.e., by combining together the specifications of all
the actors (stochastic services) and the goal it identifies all the possible status of
the actors at any step. The optimal policy of the composition MDP is computed
through policy iteration and/or value iteration [34].

By leveraging on the optimal policy, the enactor dispatches the HTTP re-
quests to the chosen services (Industrial APIs) according to the solution. Notice
that the policy assigns the services to each action taking into account both prob-
abilities and costs. It is not straightforward indeed to determine a-priori which
service a certain action must be assigned to. Additionally, before dispatching
the request, it checks whether the current status and the transition functions
have changed (for instance because of the wearing out during the execution).
We distinguish two different adaptive scenarios. On the one hand, when only
the status of an actor changes, the enactor is able to choose the next action to
be performed by checking the result of the optimal policy from the new state
formed. On the other hand, when both the status and the transition function of
an actor change, the enactor requests the re-computation of the optimal policy
from an up-to-date composition MDP which includes the latest condition of the
service.

4.3 Stochastic Constraint-based Policy

It is quite common that the manufacturing process is represented using a struc-
tured process formalism, such as BPMN or Petri Nets [14]. We are doing more
than that, we employ the flexible formalism named declare, directly based on
ltlf , to define the manufacturing process. This permits to model the process as
a set of logical conditions, so as to more easily specify those processes in which
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human experience plays a key role or in which the rules of precedence between
operations cannot simply be modeled as a sequence.

The proposed technique is an extension of the previous approach. Note that
the definitions of both stochastic services and stochastic system service remain
the same. By contrast, the target specification of the manufacturing process is
represented as an ltlf formula φ [11] derived from the declare formalization.

The collection of services representing the actors can perform actions in P
and, moreover, to make our model richer we allow services to execute a broader
set of actions. In addition, we put each ltlf formula in conjunction in order to
compute the equivalent deterministic finite automaton (dfa) (made by Lydia

tool [9]), i.e., target dfa.

Given both the stochastic system service and the target dfa we compute
the composition MDP that in this case contains: the cartesian product between
all the states of the target dfa and the stochastic system service, the product
between the DFA action and the service that performs the action, the proba-
bility of ending in a certain system state performing a system action, and the
reward function formed by the reward observed from doing a system action. In
practice, according to a specific target (manufacturing goal), the composition
MDP computes all the possible executions of the manufacturing process, i.e., by
combining together the specifications of all the actors (stochastic services) and
the goal (ltlf formula), it identifies all the possible status of the actors at any
step.

We compute the optimal policy of the composition MDP, as in the previous
case through policy iteration and/or value iteration [34]. Such a policy contains
the specification of the optimal actions (and related services) to execute from
each possible state in order to reach the final goal. The enactor acts as a mid-
dleware that interfaces with the Industrial APIs in order to check whether the
current status and the transition functions have changed (for instance because of
the wearing out during the execution). As in the previous approach, we can dis-
tinguish two different resilience scenarios. On the one hand, when only the status
of an actor changes, the controller is able to choose the next action to be per-
formed by checking the result of the optimal policy from the new state formed.
On the other hand, when both the status and the transition function of an actor
change, the controller re-computes the optimal policy from an up-to-date com-
position MDP which includes the latest condition of the service. Through the
Industrial APIs, the enactor calls the services identified in the optimal policy
computed by the controller.

5 Discussing the Approaches

We conduct preliminary tests by applying the proposed approaches to the Chip-
Chain case study4.

4 Source codes of the implemented approaches, and tests, are available for repeatability
the instance planning approach at https://tinyurl.com/instanceplanning and the

https://tinyurl.com/instanceplanning
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We divided the case study into two phases, i.e., the collection of the necessary
raw materials and chip design and the effective production process. Additionally,
we run several experiments by increasing the number of service copies available
for the fulfillment of a specific task involved in the process and we measure
the execution time and the memory usage. In the following we highlight some
important aspects we identify in the results.

Performance values vary greatly depending on the approach used to find the
adaptive process. In the planning approach, increasing the number of services,
time and memory consumption does not change significantly. This is possible be-
cause planning solvers employ well-known heuristics able to derive, in an efficient
way, a solution. However, this approach does not consider the stochasticity typi-
cal of an industrial context. In particular, does not take into account for example
the probability for a certain machine to end in a failure situation, represented
instead in the stochastic approaches.

On the other hand, the values of the stochastic policy approaches increase
exponentially, as the number of services increases. This happens because of the
definition of the composition MDP. It consists of a cartesian product operation
that takes into account both the target and system service sets. Although the
target is static and well-defined, the system service may increase with the added
services resulting in an increment of memory consumption and execution time.
Additionally, the stochastic constraint-based policy approach is more time and
memory consuming with respect to the stochastic policy approach. This notable
difference derives from the target service concept where we define a set of log-
ical constraints between actions. Also, we consider the “auxiliary actions”, i.e.,
actions that do not concern the process being realized but are needed by the
services to get ready for the execution of main actions.

Even though planning is often a more effective strategy, it may not be the
only factor to consider when it comes to production. Depending on the situa-
tion, it is necessary to take into account not just how quickly calculations are
performed but also how the system is modeled and responds to unknown events.
As they reflect the stochasticity behaviors in the manufacturing domains, both
the stochastic techniques, which end up being much slower than planning, offer
more expressive power.

The proposed approaches are based on the definition of constraints regarding
the process execution. Depending on the used approach, such constraints are
modeled in a different way. The approach based on planning requires not to be
generic in the specification of the actions which are essential in the computation
of the plan (given a goal). On the other hand, it permits to model the involved
objects by monitoring the production progress.

The approach based on stochastic policy requires a full definition of the man-
ufacturing process (defined as an automaton). This is different in its extension
which employs ltlf . Here the process is defined by specifying constraints be-
tween the tasks. In the modeling, we do not include relationship effects possibly

two stochastic policy approaches at https://tinyurl.com/stochasticpolicy. The source
code of the Industrial APIs layer is available at https://tinyurl.com/IndustrialAPIs.

https://tinyurl.com/stochasticpolicy
https://tinyurl.com/IndustrialAPIs
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existing between the services (e.g., if the service A is used, then service B can-
not be used). In the case of planning, this type of constraint could be modeled
with the PDDL conditional effects which, however, have consequences in the
computation costs. It is not easy to model this behavior in the stochastic policy
approaches because the target service only knows manufacturing tasks and has
no idea of the services employed. A possibility could be to introduce related
constraints when the composition MDP is computed. Anyway, in this paper, we
model such constraints by increasing the services costs of affected services.

Moreover, in this paper we focus on a case study focusing on a batch pro-
duction, i.e., production of a batch of one product [19]. In this sense, we study
the adaptivity by taking into consideration the fact that a specific task of the
supply chain production is executed on a batch, thus if a decision is taken at
the beginning of a task, it is maintained until the end of it. Such an approach
influences adaptivity by discarding the possibility of adapting the production
inside a specific batch and considering only the adaptivity at the end of a task.

6 Related Works

In this paper, we focus on approaches leveraging automated reasoning tech-
niques to enable adaptation in smart manufacturing, specifically in the supply
chain context. We can contextualize our work in the broader research area that
applies automated planning techniques. We refer to automated planning as the
application of AI technologies to the problem of generating a correct and efficient
sequence of actions [28]. Furthermore, we can distinguish between classical plan-
ning, which deals with deterministic scenarios, and so-called decision-theoretic
planning [4], which deals with stochastic behavior.

Examples of classical planning in smart manufacturing are provided in sev-
eral works. The authors in [29] employ automated planning in order to cope
with exceptional and unanticipated events. In particular, planning is employed
to fix a process instance, restoring the conditions to continue with the standard,
manually defined process. In [35], the authors show how to plan the assembly
of small trucks from available components and how to assign specific produc-
tion operations to available production resources. In [27], the authors develop
an evaluation with a physical smart factory that resolves detected exceptional
situations and continues process execution. However, all the solutions based on
classical planning do not consider a crucial aspect of manufacturing production,
i.e., the uncertainty typical of the entire production process and of the manu-
facturing actors.

The application of decision-theoretic planning approaches might be a solu-
tion. An example is [8], where the authors define a set of degrading planning
domains. The planner tries to find a solution in the most restrictive, optimal
domain. If during the execution, assumptions of a plan are not verified, due for
example to failures, more and more sub-optimal domains are employed. The ap-
proach focuses on the entire process and the non-determinism of manufacturing
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actors is modeled. Furthermore, MDPs are a widely used model for decision-
making problems.

Nevertheless, the literature presents limited research on the application of
MDPs in the manufacturing domain. Authors in [21] propose a self-adaptive
Automated Guided Vehicles (AGVs) control model, depicted as an MDP, that
enables AGVs to avoid collisions efficiently, safely, and economically. The work [7]
presents a hierarchical MDP approach for adaptive multi-scale prognostics and
health management for smart manufacturing systems. The goal is to create a
policy for making sequential decisions that will maximize the expected gain
under the set of constraints. Authors in [2] use an MDP for finding an optimal
cost-effective maintenance decision based on the condition revealed at the time
of inspection on a single diesel engine. In these cases, the use of MDPs fits very
well in the manufacturing context and in particular non-deterministic domains,
because it always allows making the best choice.

Finally, in this paper, we discuss how to solve triple-A and resilience in smart
manufacturing processes by adopting a service-based approach and automated
reasoning techniques; this is not completely new, at least in the service comput-
ing literature, as seminal approaches go to [24] and more recently to [23]. An
interesting survey on how planning techniques, not including MDPs, have been
applied to service composition problems is [17].

7 Concluding Remarks

In this paper, we have proposed and discussed how automated reasoning tech-
niques can be employed with the goal of adaptivity and resilience in smart manu-
facturing supply chains. The need for these techniques emerges when the number
of resources involved and the constraints among them make a manual analysis
from human experts unfeasible. In this sense, we have outlined and discussed
the application of several techniques to a challenging use case concerning the
manufacturing of integrated circuits. Our service-based approach, and its appli-
cation to smart manufacturing, is another example of the challenges that service
composition will have to cope in the next few years, as discussed in [1].

With respect to AI, in this paper, we only consider automated reasoning,
without showing the potential of applying machine learning (especially rein-
forcement learning) techniques. If, on the one hand, machine learning approaches
do not require any manual modeling effort, they usually require datasets to be
trained, which are difficult to obtain in the smart manufacturing scenario, espe-
cially at a supply chain scale.

Also, this paper does not include approaches from classical numerical opti-
mization techniques. These techniques are available in the form of very fast im-
plementations. The main drawback is that modeling must be done in the form
of equations, which are more complex to compose and validate with respect to
formalisms employed in automated reasoning.
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