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Abstract: The Central Limit Theorem stands as a milestone in probability theory and statistical
physics, as the privileged, if not the unique, universal route to normal distributions. This article
addresses and describes several other alternative routes to Gaussianity, stemming from physical
interactions, related to particle-particle and radiative particle–photon elementary processes. The
concept of conservative mixing transformations of random ensembles is addressed, as it represents
the other main universal distributional route to Gaussianity in classical low-energy physics. Monadic
ensemble transformations are introduced, accounting for radiative particle–photon interactions,
and are intimately connected with the theory of random Iterated Function Systems. For Monadic
transformations, possessing a thermodynamic constraint, Gaussianity represents the equilibrium
condition in two limiting cases: in the low radiative-friction limit in any space dimension, and in the
high radiative-friction limit, when the dimension of the physical space tends to infinity.

Keywords: Central Limit Theorem; Gaussian distributions; stochastic processes; iterated function
systems

1. Introduction

The Central Limit Theorem (CLT) represents a fundamental mathematical result in
probability theory, indicating a simple and universal route to Gaussian distributions. More
than a mere technical result, the CLT constitutes a paradigm in probability theory that
can be declined in a manifold of slightly different variants of increasing generality and
mathematical subtlety [1,2]. The theory of classical CLTs involves the limit properties of
sums of random variables, under two main conditions: (i) independence, and (ii) finite
values of the first and second order moments of the random variables involved in the
summation procedure. If the latter condition is removed, the work by Lévy on α-stable
distributions, complements the classical CLT paradigm, and this extension is usually
referred to as the generalized CLT [3,4].

What is remarkable in CLT is that it provides the natural bridge connecting probability
theory and statistical physics, intimately linking one to the other in such a way that it is
hard to define a sharp boundary separating the mathematical reasoning from the physical
interpretation of the phenomenological reality. This sense of astounding associated with
CLT and the emergence of Gaussian distributions has been precisely formulated by Marc
Kac, “. . . to quote a statement of Poincaré, who said (partly in jest no doubt) that there must
be something mysterious about the normal law since mathematicians think it is a law of
nature whereas physicists are convinced that it is a mathematical theorem” (p. 52 in [5]).

In point of fact, the entire conceptual apparatus of classical statistical physics rests
upon Gaussian distributions, and the CLT is often invoked as the mathematical route
leading to it [6,7]. However, in some cases, the reference to CLT is not appropriate in order
to support, on mathematical grounds, the emergence of normal distributions in physical
problems, as the physical mechanism leading to normality is not based on the additivity
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of random contributions, but rather on distributional mechanisms as outlined in [8], and
thoroughly addressed in the remainder.

While in the case of diffusion, possessing a long-term linear scaling of the mean
square displacement with time (henceforth referred to as Einsteinian diffusion), CLT can be
properly invoked to justify probabilistically the functional form of the resulting Green’s
function, this is not the case of the Maxwellian velocity distribution of molecules and
particles in diluted fluids at thermal equilibrium [9].

The aim of the present article is to introduce and discuss other physical routes to the
emergence of Gaussian distributions, alternative to CLT, deriving from simple physical
mechanisms of interaction between particles, and between particles and energy quanta.
We believe that this analysis is not only interesting in a statistical physical perspective,
but it could provide a stimulus for mathematicians to elaborate further the origin of
normal distributions, and to use the physical routes to Gaussianity, deriving from physical
principles, for extending and generalizing the stochastic mathematical apparatus with new
structures and new theories.

For some scientists, mutuating and extending the Galilean approach to the role of
mathematics in physics, the whole physical universe is a mathematical object [10]. For
other scientists, the observation of the dynamics of natural phenomena is the principal
source of intuition in the development of new mathematical stuctures. Independently of
any personal epistemological conviction on the mutual relationships between physical
interpretation of the reality and mathematical invention, we strongly believe that natural
phenomena, in their incredible variety of dynamic manifestations, provide a invaluble
hint in the construction of new mathematical structures and theories. In this framework,
the analysis of the emergent origin of Gaussianity in physical problems falls in the latter
category, and this article is aimed at presenting to mathematicians the physical evidence
that other approaches to Gaussianity, alternative to CLT, are possible, stemming from
elementary physical interaction processes. These routes possess a universal character, in
the meaning that they apply to particle–photon interactions in the presence of equilibrium
thermal radiation, the energy distribution of which is given by the Planck distribution. This
represents a fundamental, non-strictly mechanical, example of emergence of Gaussianity
deriving from quantum structure and interactions.

The article is organized as follows. Section 2 reviews briefly some prototypical phys-
ical problems in which Gaussian distributions arise (mostly in statistical physics [11]).
Section 3 addresses the concept of unbounded additivity that characterizes one of the
main requirements of CLT, representing a necessary condition for its application, as for-
malized by the Lyapunov condition [2,12]. Section 4 analyzes the distributional routes to
normality, introduced in [8], physically corresponding to the momentum exchange in a
particle–particle collision, assuming it to be elastic. Section 5 addresses the phenomenon of
particle–photon radiative interaction, and its mathematical description. This mechanism
leads to two other “physical” routes to Gaussianity, either in the limit of radiative friction
tending to zero, and this could be viewed as a limit case conceptually analogous to CLT
(Section 5) or in the limit of extremely high radiative friction. The first problem leads to
the concept of monadic random transformations, and of thermodynamic monadic tran-
formations, which correspond to the physical counterpart of Iterated Function Systems
(IFS) [13,14], generalized to allow a uncountable number of contractive transformations.
The latter problem is addressed in Section 6, and it is conceptually worth of attention as
it provides a “Gedankenexperiment” for determining the dimensionality of the physical
space from the measurements of particle fluctuational properties, in which Gaussianity
emerges for the number of dimensions tending to infinity.
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2. Gaussian Distributions in Physics

In this paragraph, the occurrence of Gaussian distributions in physics is briefly re-
viewed, mostly focusing on statistical physical problems. The prototypical example is
represented by the phenomenology of molecular diffusion, corresponding in a Lagrangian
perspective to the phenomenon of Brownian motion [15], described mathematically by a
parabolic diffusion equation on the real line [16]

∂p(x, t)
∂t

= D
∂2 p(x, t)

∂x2 (1)

where x ∈ R is the spatial coordinate, t > 0 is the time variable, p(x, t) represents the
concentration (density) of the diffusing species and D its diffusion coefficient.

Thanks to the fundamental contribution by Einstein on Brownian motion [15], it
became clear that Equation (1) represents the long-term statistical description of the motion
of particles subjected to a random stationary velocity field v(t), the kinematics of which is
expressed by

dx(t)
dt

= v(t) (2)

where v(t) is a stochastic process possessing zero mean for any t > 0, i.e., 〈v(t)〉 = 0
(throughout this article we use the symbol 〈·〉 to indicate the expected value E[·] of a
random variable, so that if ξ is a random variable, and f (ξ) a generic function of it,
〈 f (ξ)〉 = E[ f (ξ)]). Therefore, if x(0) = x0,

x(t) = x0 +
∫ t

0
v(τ) dτ (3)

and if v(t) possesses a correlation function Cv(t) = 〈v(t) v(0)〉 decaying rapidly enough
with time t for t→ ∞ (i.e., there exist constants a > 0, and ζ > 1, such that Cv(t) ≤ a t−ζ),
the statistical characterization of the Brownian motion Equation (2) satisfies asymptotically
(in the long-time limit) the diffusion Equation (1), where D =

∫ ∞
0 Cv(t) dt, as follows from

the Green–Kubo theory [17].
Brownian motion is the typical example of application of CLT to a physical problem

due to the fact that the position x(t) at time t can be viewed as the superposition of “almost
uncorrelated displacements”. More precisely, we can always express x(t) as a summation
of discrete displacements ∆x(τh),

x(t) = x0 +
n(t)

∑
h=1

∆x(τh) (4)

where ∑
n(t)
h=1 τh = t, τh � 1, ∆x(τh) = x(th + τh)− x(th), th = ∑h−1

k=1 τk. Therefore, if one
chooses the τh’s large enough such that subsequent displacements ∆x(τh) and ∆x(τh+1)
are practically uncorrelated, CLT can be invoked, justifying the long-term mathematical
structure of Brownian motion. In this case, probabilistic arguments based on the CLT
support and explain the analytical properties associated with the solutions of Equation (1).
The diffusional Green function G(x− x0, t), i.e., the solution of Equation (1) in the presence
of an impulsive initial condition, G(x− x0, 0) = δ(x− x0), is a Gaussian distribution

G(x− x0, t) =
1√

4 π D t
e−(x−x0)

2/4 D t (5)

since 〈x(t)〉 = x0, and 〈(x(t)− x0)
2〉 = 2 D t. The fingerprint of CLT in the parabolic descrip-

tion of Brownian motion and diffusion emerges clearly from the fact that Equation (1) represents
a long-term approximation of the phenomenon, deriving from a limit process (identical to
the formulation of CLT), that fails at very short time scales, and, more importantly, that
violates the fundamental principles of physics, namely the bounded propagation of any
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physical process [18]. Hyperbolic extensions of the parabolic diffusion model, respectful of
the principles of relativity, have been proposed by Cattaneo [19], interpreted stochastically
by Kac [20], see also [21–24]. Hyperbolic transport models are interesting as Gaussianity
emerges in the limit of diverging velocities and transition rates, i.e., when the support
of the probability measure becomes unbounded. This is usually referred to as the Kac
limit [21,22,25,26]. In the presence of external potentials and forces the resulting probabil-
ity densities may significantly differ from the corresponding parabolic models for finite
velocities [27–30].

The other archetypal example of emergent Gaussianity in statistical physics arises
in the study of the velocity distribution of gas particles at thermal equilibrium, corre-
sponding to the Maxwellian distribution. Let v = (v1, . . . , vn) be the velocity vector in Rn,
n = 1, 2, . . . , and p∗v(v) the equilibrium velocity probability density function at temperature
T for particles of mass m. Equilibrium kinetic theory provides for p∗v(v) the expression [31]

p∗v(v) =
n

∏
h=1

g(vh) , g(vh) =

√
m

2 π kB T
e−m v2

h/2 kB T (6)

where kB = 1.38× 1023 J K−1 is the Boltzmann constant.
The Maxwellian velocity distribution plays an even more central role in statistical

physical, as it represents the kinetic backbone of the equilibrium theory based on the Gibbs’
ensembles [32,33]. Considering a closed thermodynamic system at thermal equilibrium
composed by N particles, the mechanics of which is specified by the Hamiltonian function
H(Q, P), where Q = (q1, . . . , qN) represents the vector of the vector-valued generalized
coordinates qh, h = 1, . . . , N of the particles, qh = (qh,1, . . . , qh,n), and P = (p1, . . . , pN)
the associated generalized momenta, ph = (ph,1, . . . , ph,n), the equilibrium phase-space
distribution p∗(Q, P) is given by the canonical distribution

p∗(Q, P) = A e−H(Q,P)/kB T (7)

where A is a normalization constant. Specifically, if H(Q, P) = U(Q) + ∑N
h=1

|ph |2
2 m , where

U(Q) is the potential energy, then

p∗(Q, P) = A e−U(Q)/kB T
N

∏
h=1

e−|ph |2/2 m kB T (8)

(here we assume that
∫

e−U(Q)/kB T dQ < ∞, otherwise an equilibrium distribution does
not exist). Consequently, it is a generic property of thermodynamic equilibrium systems to
display a Gaussian distribution of the kinetic (momentum or velocity) degrees of freedom,
and any violation of this property contradicts the purely mechanical foundation of classical
statistical physics.

In the case of the Maxwellian distribution, CLT cannot be invoked as discussed in
Section 4. In point of fact, the original derivation due to Maxwell of Equation (6) relies on
purely symmetry arguments: (i) the isotropy of motion, and (ii) the mutual independence
of the velocity entries vh, h = 1, . . . , n [34].

These two prototypical examples, namely the Einsteinian theory of Brownian motion,
and the Maxwellian theory of velocity fluctuations at thermal equilibrium, opened up an
era in mathematical and statistical physics that can be called “the Gaussian era”, leading to
a manifold of fundamental contributions, and mathematical inventions:
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• the introduction of Wiener processes W(t) [35,36], often referred to as mathematical
Brownian motion, mimicking the long-term proprerties of the kinematics of micro-
metric particles in quiescent fluids. In the definition of Wiener process, Gaussianity
is built-in from the beginning, as the increments y(t) = w(t + τ)− w(t), with t > 0,
τ > 0, are distributed in a Gaussian way with zero mean 〈y〉 = 0 and squared variance
〈y2〉 = τ (we use the convention of indicating with upper case letters the process, such
as W(t), and with lower-case letters, say w(t), a realization of it);

• the Ito formulation of stochastic calculus on Wiener processes, leading to the theory of
stochastic integration, the definition of stochastic differential equations [37,38], i.e., to
the theory of Langevin equations driven by the increments of Wiener processes [39],
representing another fundamental chapter in modern statistical physics;

• the Malliavin calculus on Wiener measures [40,41].

In this framework it is also important to mention the important contribution by
Jona-Lasinio on the relationships between CLT and Renormalization Group theory in
particle physics [42–45] (see also [46]), the connection between Wiener processes and scale-
invariant transformations [47,48], and the fact that, even if the CLT applies, its distributional
convergence does not ensure that higher-order moments (higher than the second one) may
display anomalous properties [49].

The above analysis permits to appreciate the central role of Gaussianity, as the mathe-
matical paradigmatic distribution emerging from CLT, and finding a ubiquitous application
in equilibrium statistical physics, extensible in many cases to out-of-equilibrium conditions.
The Onsager–Machlup theory of non-equilibrium thermodynamics is based on a Gaussian
ansatz [50,51].

This is also the reason why, whenever deviations from Gaussianity occur in transport
theory, they are referred to as anomalous diffusion (this case falls under the conceptual juris-
diction of α-stable distributions and of the generalized CLT) [52,53] or, in thermodynamics,
as athermal systems [54,55].

It would be natural to conclude from this succinct review that the occurrence of Gaus-
sianity in statistical physics in nothing but an emergent property in normal thermodynamic
and/or transport conditions, where, here, “normal” means essentially that the basic assump-
tions of CLT are met, see also the next section). However, a more refined interpretation of
the two basic examples discussed above (Einsteinian Brownian motion, and Maxwellian
velocity distribution) suggests the possibility of a strictly physical route to Gaussianity (in
the Maxwellian case). This is analyzed in Section 4. Before proceding in this analysis, it
is convenient to focus on a simple but important property underlying the applicability
of CLT.

3. Unbounded Additivity

For most physical applications CLT can be formulated in one of its simplest versions
(the Lindenberg-Lévy theorem) for independent and identically distributed (iid) random
variables [1,2].

Given a sequence {Xh}∞
h=1 of iid random variables possessing bounded first and

second order moments 〈xh〉 = a < ∞, 〈(xh − a)2〉 = σ2 < ∞, the random variable ZN ,

ZN =
∑N

h=1(Xh − a)√
N σ

(9)

converges, in a distributional sense, to a normal random variable (i.e., to a Gaussian
random variable with zero mean and unit variance). In this case, σ2

ZN
= 〈z2

N〉 = N σ2, and
consequently σZN diverges for N → ∞.
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In order to analyze more deeply the mathematical-physical origin of the emergent
Gaussianity in sums of independent random variables it is useful to remove the assumption
of identical distribution. For generic, i.e., not identically distributed, but still independent
random variables {Xh}∞

h=1, with 〈xh〉 = ah, 〈(xh − ah)
2〉 = σ2

h , where both ah and σ2
h are

finite for any h = 1, 2, . . . , the Lyapunov version of CLT states that ZN converges to a
normally distributed random variable provided that, setting S2

N = ∑N
h=1 σ2

h , there exists
δ > 0 such that the relation

lim
N→∞

1
S2+δ

N

N

∑
h=1
〈|xh − ah|2+δ〉 = 0 (10)

is fulfilled [1,2]. Equation (10), usually referred to as the Lyapunov condition, necessarily
implies that

lim
N→∞

S2
N = lim

N→∞

N

∑
h=1

σ2
h = ∞ (11)

i.e., that the additive process Equation (9) in the definition of ZN should be characterized
by an unbounded variance for ∑N

h=1 Xh in the limit for N → ∞. This condition is trivially
satisfied in the case of iid random variables. Equation (11), that is a necessary consequence
of the Lyapunov condition, can be referred to as the condition of unbounded additivity. In
order to observe an emergent Gaussian behavior, the sum of the variances of the random
contributions should be unbounded. Physically, this corresponds to the fact that the random
perturbations should provide an “infinite energy” to the system. Conversely, if SN attains
for N → ∞ a limit value, the statistical properties of ZN cannot achieve an emergent
universal behavior and the asymptotic statistics (for N → ∞) of ZN depends on the fine
statistical properties of the random variables {Xh}∞

h=1. In order to make a simple example,
consider the case where

Xh =
Rh
hα

(12)

with α > 0, and {Rh} are iid random variables uniformly distributed in the interval [−1, 1].
It follows from Equation (11) that unbounded additivity is verified if α ≤ 1/2. Conversely, if
α > 1, SN approaches, for N → ∞, a limit value and the Lyapunov condition is not fulfilled.
Let p(z; N) the probability density function (pdf) for ZN , parametrized with respect to N.
Figure 1, panels (a) to (c), depicts the pdf p(z; N) for α = 1/2 panel (a), at which unbounded
additivity is satisfied, and for α = 1, 2, panels (b) and (c), at which SN attains a constant
limit value. The simulations are performed by considering 108 realizations.

The concept of “infinite energy” underlying unbounded additivity is physically sig-
nificant in the case the variable ZN correspond to a velocity variable and the summation
process is a consequence of the momentum exchange with other particles or with a heat
bath. In a physical perspective, this condition is not realistic, and this indicates further that
the occurrence of a Maxwellian velocity distribution cannot be attributed to any superposi-
tion of independent random perturbations, but should be interpreted within a completely
different physical mechanism and probabilistic route.



Axioms 2023, 12, 278 7 of 19

10
-6

10
-4

10
-2

10
0

-6 -4 -2  0  2  4  6

a
p

(z
;N

)

z

10
-6

10
-4

10
-2

10
0

-6 -4 -2  0  2  4  6

a

p
(z

;N
)

z

10
-6

10
-4

10
-2

10
0

-6 -4 -2  0  2  4  6

a

p
(z

;N
)

z

(a)

(b)

(c)

Figure 1. Probability density function p(z; N) for ZN associated with the independent random
variables defined by Equation (12). Solid line (a) represents the normal pdf g(z) = e−z2/2/

√
2 π,

symbols correspond to the results of Monte Carlo simulations: (�) N = 100, (◦) N = 1000. Panel (a)
refers to α = 1/2, panel (b) to α = 1, panel (c) to α = 2.

4. The Distributional Route to Gaussianity

Unbounded additivity is the necessarity requisite for the route to Gaussianity, as an
emergent property, expressed by the CLT. Physically, it finds a direct application in the
asymptotics of random walks and Brownian motion, but it cannot be invoked to recover
the Maxwellian velocity distribution in a particle gas. It is certainly true that the statistics
of molecular and particle velocities in a fluid is the superposition of arbitrarily many
elementary events (binary particle–particle collisions), but in each collision the squared
norm of the velocity is conserved (for a gas of identical molecules). Since the mean velocity
is vanishing, the squared variances of the velocity do not fulfil an additive summation
process of independent increments, but are simply conserved at each collisional event.
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Therefore, the probabilistic mechanism underlying the emergence of a Gaussian
velocity distribution is altogether different from the additive CLT route. This leads to
introduce the concept of Mixing Transformations and Conservative Mixing Transformations
in an ensemble of random variables, which formalizes the dynamics of binary collisional
events [8].

Consider an ensemble E = {zh}N
h=1 of vector-valued random variables

zh = (z1,h, . . . zn,h) ∈ Rn, where n > 1 is the dimensionality. A Mixing Transforma-
tion (MT, for short) M of the ensemble E , is a mapping E ′ = M(E), transforming the
ensemble E into a new ensemble E ′ according to the following rules:

• two elements, say zi∗ and zj∗ , with j∗ 6= i∗ ar randomly selected from E ;
• two random functions ϕ(z, w; r), ψ(z, w; r), z, w ∈ Rn are defined, such that the

mapping M transforms zi∗ and zj∗ into the new values z′i∗ , z′j∗ , according to the
random laws {

z′i∗ = ϕ(zi∗ , zj∗ ; r)
z′j∗ = ψ(zi∗ , zj∗ ; r) (13)

depending on the unit n-dimensional random vector r, |r| = 1, defined statistically by
the density function pr(r).

• the values of all the other zh of the ensemble with h 6= i∗, j∗ are left unchanged.

A Conservative Mixing Transformation (CMT) is a MT of an ensemble E in which Nc
functions hα : Rn → R, α = 1, . . . , Nc are defined, such that the random functions ϕ and ψ
satisfy the Nc constraints

hα(zi∗) + hα(zj∗) = hα(ϕ(zi∗ , zj∗ ; r)) + hα(ψ(zi∗ , zj∗ ; r)) (14)

MT’s of vector-valued ensembles correspond to the stochastic representation of el-
ementary binary collisional events. CMTs describe collisional events satisfying physical
conservation principles, in particular the conservation of momentum and energy (in elastic
collisions). In the latter case, Nc = n + 1, and if z = (z1, . . . , zn) we have

hα(z) = zα , α = 1, . . . , n (15)

and
hn+1(z) = |z|2 (16)

Specifically, a CMT on a random ensemble corresponds to the mathematical description of
elementary collisional events in a low-velocity (non-relativistic) gas of identical particles.
As discussed in [8], CMTs represent the simplest and most generic distributive route to
Gaussianity, in the meaning that for almost all the distributions of the elements of the
initial ensemble E , and for almost all the choices of the random transformations ϕ and ψ,
satisfying Equations (15) and (16), an asymptotic Gaussian ensemble distribution for the
entries of the elements zh of Em =Mm(E) occurs in the limit for m→ ∞ and N → ∞.

For instance, the transformations ϕ and ψ can be chosen as follows{
ϕ(z1, z2; r) = z1 − [(z1 − z2) · r] r
ψ(z1, z2; r) = z2 + [(z1 − z2) · r] r

(17)

where z · r = ∑n
i=1 zi ri indicates the Euclidean scalar product. In this case, for almost all the

distributions pr(r), a limit ensemble Gaussian distribution for the entries of zh is observed
for m→ ∞ and N → ∞.

Consider n = 2, so that r can be expressed as r = (cos φ, sin φ), where φ ∈ [0, 2π)
is characterized by the density pφ(φ). The isotropic case corresponds to the uniform an-
gular density pφ(φ) = 1/2 π, for which 〈r〉 = 0. In point of fact, the random variable
r does not need neither to be uniformly distributed nor to be isotropic in order to ob-
serve a limit Gaussian behavior for the elements ofMm(E), as the linear constraints of
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Equation (15) ensure for any random distribution, that, if the initial ensemble is unbiased,
i.e., if 〈z〉 = limN→∞

1
N ∑N

h=1 zh = 0, then the images of the ensemble under a CMT possess
the same property. In this sense, the emergence of Gaussianity lies entirely on the quadratic
nature of the energy constraint Equation (16).

To make an example, consider a highly biased and anisotropic distribution of the
angular variable φ defining r, expressed by the atomic and dichotomic distribution

pφ(φ) =
1
2

δ(φ− φ1) +
1
2

δ(φ− φ2) (18)

where the values φ1 and φ2 are chosen arbitrarily, say φ1 = 0.017345 p, and φ2 = π/2 +
0.037345 p, with p = 1, 2, . . . . The initial ensemble E , assuming N = 108, is characterized by
independent zh, the entries of which are randomly chosen from a uniform distribution in
[−
√

3,
√

3], thus possessing zero mean and unit variance. Figure 2 depicts the evolution of
the kurtosis κ associated with the distribution of the first entry zh,1 of the ensemble variables
as a function of the normalized operational time m∗ = m/N, where m is the overall number
of CMT performed in the ensemble, considering the transformations Equation (17), with
the random variable r defined statistically by Equation (18) with p = 1, 2, 3. In all the
cases, the CMT determines a limit Gaussian ensemble distribution for the entries of zh,
corresponding to the asymptotic value of the kurtosis κ = 3, as depicted in Figures 2 and 3.

 1.8

 2.2

 2.6

 3

 0  2000  4000  6000  8000

κ

m* = m/N

Figure 2. Kurtosis κ vs. m∗ = m/N associated with the ensemble distribution of the first entry zh,1

of zh iterating a CMT (n = 2) with the dichotomic random perturbation Equations (17) and (18),
discussed in the main text. The arrow indicates decreasing values of p = 3, 2, 1.

It is also interesting to observe that the CMT defined by Equation (17) determines a
progressive decorrelation in the entries of zh. Still considering n = 2, the latter property
can be appreciated by considering the evolution of the covariance of the entries z = (z1, z2)

σ12 = 〈(z1 − 〈z1〉) (z2 − 〈z2〉)〉 (19)

starting from the highly correlated initial conditions

zh,1 = zh,2 =

{
1 Prob. 1

2
−1 Prob. 1

2
(20)

so that initially σ12 = 1. The decay of correlations amongst the two entries of the variables
zh is depicted in Figure 4, using for r = (cos φ, sin φ) a uniform angular distribution.
The dynamics of σ12(m∗) parametrized with respect to the normalized number of CMT
operations m∗, smoothly relaxes to zero, following an exponential decorrelation decay.
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Figure 3. Stationary density p∗(z) vs. z, where z = zh,2 is the second entry of the ensemble ele-
ments obtained from Monte Carlo simulations of the CMT at n = 2 with the dichotomic random
perturbation (17) and (18). Symbols ((�) refer to p = 3, (◦) to p = 2, (•) to p = 1) represent the stochas-
tic simulation results of the asymptotic CMT dynamics, solid line represents the normal distribution.
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Figure 4. σ12(m∗) vs. m∗ = m/N for a two-dimensional CMT, with uniformly distributed random
perturbations, starting from highly correlated initial conditions Equation (20). Symbols are the results
of stochastic simulations, the solid line represents the curve σ12(m∗) = e−m∗ .

As discussed in [8], the emergence of Gaussian distributions in CMT enforcing the
constraints Equations (15) and (16), for almost all the choices of the functions ϕ and φ, is a
consequence of the conservation laws assumed. If the linear conservation laws Equation (15)
are assumed, physically corresponding to momentum conservation, the functional nature of
the remaining conservation law, namely Equation (16), is crucial in assessing the emergence
of Gaussian distributions. For this reason, it is convenient to consider a subclass of CMT,
referred to as Strongly Unbiased CMT (SUCMT).

A SUCMT is a CMT, characterized by the existence of n + 1 conservation laws, the
first n of which are expressed by Equation (15), while the (n + 1)-th constraint, referred to
as the energy conservation, takes the form

hn+1(z) = e(|z|) (21)

where e(|z|) is a function solely of the norm |z| of the ensemble variable z. The emergent
Gaussian nature of the ensemble variables in a SUCMT stems exclusively from a quadratic
choice for the energy conservation, i.e., from Equation (16). As shown in [8], if e(|z|) is
chosen otherwise, e.g., from relativistic principles (in this case the variable z does not repre-
sent a velocity, but the spatial entries of the 4-momentum of a molecule), deviations from
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Gaussianity occur, determining the emergence of other classes of statistical distributions
(specifically, the Jüttner distributions [56]). In this sense, the occurrence of Gaussianity in
SUCMT, is the result of physical assumptions/approximations (approximating relativistic
mechanics with low-velocity Newtonian models), and not of mathematical principles.

5. Particle–Photon Radiative Processes and Limit Gaussianity

At the molecular level, another physical mechanism, related to photon–particle ra-
diative processes, controls the velocity distribution of the massive entities [57–59]. Elec-
tromagnetic radiation carries momentum [60], and this is responsible from the radiative
pressure determining the possibility for electromagnetic radiation to perform mechanical
work. This is a well known result, and the development of optical tweezers and of other
electromagnetic micromanipulation procedures is based on this property [61,62].

This problem has been considered at a molecular level by Einstein in 1916 [57], in
connection with the statistical characterization of equilibrium thermal radiation, and its
interaction with matter (molecules) via absorption and emission of energy quanta. The
occurrence of emission and absorption events determines a modification of the molecular
momentum, inducing the emergence of friction (dissipation) in particle dynamics: if v
is the velocity of a molecule, the friction term is proportional to v with a reverse sign,
corresponding to a dissipative contribution. Specifically, if the radiation is in equilibrium at
temperature T, the average of the squared velocity norm of a molecule deriving from the
dynamics of purely radiative events is given by [57],

〈|v|2〉 = 3 kB T
m

(22)

where m is the mass of the molecule, consistenty with the Maxwellian theory of equilibrium
velocity fluctuations. This fundamental quantum mechanism leads to other routes to
Gaussianity, and for this reason it is addressed below.

The dynamics of emission/absorption processes has been analyzed in [59]. With
respect to the operational time k, corresponding to the number of radiative events occurred,
the evolution of the velocity vk ∈ Rn of a generic molecule can be written as

vk+1 = α vk + β rk+1 (23)

k = 0, 1, . . . , where α ∈ (0, 1) accounts for this discrete-time setting of the radiative friction,
and β = h ν/c m is the ratio of the photon momentum h ν/c (h: the Planck constant, ν:
the resonant frequency of the radiative process, and c: the light velocity in vacuo) to
the particle mass m. In Equation (23) rk, is a system of independent vector-valued n-
dimensional unit random variables, |rk| = 1, uniformly distributed on the surface of the
n-dimensional unit sphere ∂Sn. This hypothesis is fulfilled by thermal radiation, but not
necessarily in non-equilibrium conditions, e.g., in the presence of a laser source. If the
velocity entries are rescaled to unit variance, i.e., 〈|v|2〉 = n, the relation between α and β
in this nondimensional setting becomes is

β =
√

n
√

1− α2 (24)

Monadic Transformations, Thermodynamic Constraints and IFS

The physics of momentum exchange between matter and radiation at the molecular
level leads to the concept of Monadic Transformations of random ensembles. Consider an
ensemble E = {zh}N

h=1 of vector-valued random variables. A Monadic Transformation
(MoT, for short) T of the ensemble E , is a mapping E ′ = T (E), transforming the ensemble
E into a new ensemble E ′ according to the following rules:
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• an element, say zi∗ is randomly selected from E ;
• a random function φ(z; r) is defined such that the mapping T transforms zi∗ into the

new value z′i∗ according to the random law

z′i∗ = ξ(zi∗ ; r) (25)

where r is a random n-dimensional unit vector uniformly distributed on ∂Sn;
• the values of all the other zh of the ensemble with h 6= i∗ are left unchanged.

MT’s for which the asymptotic moments of the random map ξ are bounded, are
referred to as Thermodynamic Monadic Transformations (acronym TMoT). Therefore a
TMoT is a MoT, for which a a constant C > 0 can be defined, such that

lim
m→∞

〈|ξm(z; r)|2〉 = C (26)

for almost all z, where ξm = ξ ◦ · · · ◦ ξ︸ ︷︷ ︸
m times

, represents the m-th iterates of the random map

ξ. This means that the iterations of the transformation ξ possess asymptotically bounded
squared norm, once statistically averaged over the probability measures of r. Without loss
of generality, we can always rescale the z-variables so that C = 1.

With reference to the radiative interactions discussed above, we can consider the class
of linear transformations,

ξ(z; r) = α z + β r = ξr(z) (27)

where α ∈ (0, 1), and r is uniformly distributed in ∂Sn, where pr(r) represents its probability
density function,

∫
∂Sn

pr(r) dΩn(r) = 1, and dΩn(r) is the infinitesimal n-dimensional solid
angle. The thermodynamic behavior of Equation (27) is ensured by the bounds 0 < α < 1,
physically associated with dissipative character of the interaction.

Equation (27) corresponds to a linear Iterated Function System (IFS), defined, in the
general case, by an uncountable number of contractive transformations. Correspondingly,
its limit measure µ∗z is defined by the relation [13,14]

µ∗z =
∫

∂Sn
pr(r) µ∗z ◦ ξ−1

r dΩn(r) (28)

where ξ−1
r is the inverse of ξr. Expressed in terms of the invariant density p∗z (z), dµ∗z (z) =

p∗z (z) dz, if it exists, Equation (29) implies

p∗z (z) =
1

αn

∫
∂Sn

p∗z

(
z− β r

α

)
pr(r) dΩn(r) (29)

The emergence of Gaussianity from TMoT occurs in two limit cases: (i) if α→ 1, and
(ii) if α→ 0, but n→ ∞. The first case corresponds to the limit for negligigle dissipation,
so that the TMoT acts as the summation of independent random variables, and thus it
approaches the additive route defined by CLT, see [59]. The second case is analyzed in full
length in the next section.

It is interesting to stress further the connection of TMoT with IFS theory, and the
emergence of fractal structures and measures. To this end, consider the simple but mathe-
matically interesting case n = 1, i.e., the one-dimensional spatial case, setting r = r as this
is scalar quantity. Since |r| = 1, it follows that r = ±1, and from the uniformity condition
〈r〉 = 0, the density function pr(r) should take the atomic form

pr(r) =
1
2

δ(r + 1) +
1
2

δ(r− 1) (30)
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In this case, the TMoT reduces to a 2-map IFS over the real line, parametrized by α

z′ =

{
α z +

√
1− α2 Prob. 1

2
α z−

√
1− α2 Prob. 1

2
(31)

For α < 1/2, this IFS is non-overlapping, and it gives rise to a limit set A∗, support of the
invariant measure µ∗z , that is, a Cantor dust possessing Hausdorff dimension dH given
by [14,47]

dH =
log 2

log
(

1
α

) (32)

At α = 1/2, the IFS is just-touching, and A∗ corresponds to the interval [−
√

3,
√

3],
equipped with a uniform invariant density. This is depicted in Figures 5 and 6.

For α > 1/2 the IFS is overlapping, and an approximation for its limit density p∗z (z),
using a discretization of the support into 104 equal boxes and considering 1010 realizations
of the process, is depicted in Figures 5b–d and 6a,b. The transition towards Gaussianity,
occurring in the limit for α→ 1, resembles a phase transition, using α as the parameter, and
any quantification of the fractality of the support and of the measure as the order parameter.
Increasing α one passes from Cantor-dust supports to invariant measures defined on an
interval and possessing multifractal character (albeit this property should be checked and
mathematically proved), to smooth Lebesgue measures close to α = 1, where the limit
density is Gaussian. This transition is depicted in Figures 5 and 6. Whether a critical value
αc < 1 – associated with the multifractal/Lebesgue-absolutely continuous transition in the
properties of the invariant measure – exists is an interesting question left open to further
mathematical investigation.
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Figure 5. p∗(z) vs. z obtained from Monte Carlo simulations of the IFS Equation (31) at different
values of α. Panel (a) refers to α = 0.3, panel (b) to α = 0.6, panel (c) to α = 0.7, panel (d) to a zoom-in
of the density at α = 0.7, depicted in panel (c) close to z = 0.

In any case, the above analysis has shown that the theory of IFS is not only a
beautiful mathematical invention, used in signal processing for data compression of im-
ages [14], as it finds an important physical counterpart in the study of photon–particle
momentum exchange.
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Figure 6. p∗(z) vs. z obtained from Monte Carlo simulations of the IFS Equation (31) at different
values of α. Panel (a): line (a) refers to α = 1/2, line (b) to α = 0.8, line (c) to α = 0.9. Panel (b):
symbols (◦) to α = 0.99. The solid line represents the normal distribution.

6. The High-Friction Limit and the Dimension of the Physical Space

The analysis of Brownian motion due to Einstein, and the measurement of the Avo-
gadro number from the pure random thermal motion of a micrometric colloidal particle
in a quiescent fluid has shown, beside its specific physical relevance, that it is possible to
infer the macroscopic and emerging features of the physical reality from the analysis of
fluctuational properties of simple physical systems.

In connection with the TMoT’s introduced in the preceding section, we discuss below a
“Gedankenexperiment” for estimating the dimension of the physical space, as it corresponds
to another route to Gaussianity. First of all, we have to agree on a suitable definition of
the physical space. The geometric physical space (excluding the time coordinate) is the
space in which inertial particles travel in the absence of interactions at constant speed. The
classical probe for constant-velocity motion is given by a ray of light (photons, if viewed as
particles) and therefore, a suitable definition for the physical space is the space in which
photons travel.

Let us consider a photon gas at thermal equilibrium and its interaction with a probe
molecule as discussed in Section 5. Let us assume that the temperature T is so low that the
velocity of the molecule after any photon kick can be approximated with sufficient accuracy
by Equation (23) with α = 0, corresponding to the condition in which the momentum
dynamics of the molecule has no memory of its past history, resetting its momentum, after
any radiative kick, to that of the incoming photon. This physically corresponds to the low
temperature limit, order of a microKelvin (cold-matter conditions). Consider the random
vector rk+1 in Equation (23), henceforth indicated with r, that is unformly distributed in
∂Sn. In two dimensions, ∂S2 is parametrized by an angle φ1 ∈ [0, 2π) possessing a uniform
distribution p(2)(φ1) dφ1 = dφ1/2π, and its entries are given by{

r1 = cos φ1
r2 = sin φ1

(33)

For n = 3, ∂S3 is parametrized by the angles φ1 ∈ [0, π), φ2 ∈ [0, 2π), and the uniform
distribution in ∂S3 is given by p(3)(φ1, φ2) dφ1 dφ2 = A3 sin φ1 dφ1 dφ2, where A3 is the
reciprocal of the area of ∂S3 that equals 4 π, and

r1 = cos φ1
r2 = sin φ1 cos φ2
r3 = sin φ1 sin φ2

(34)

In n = 4, three angles are needed, φ1 and φ2 ranging in [0, π) and the last one, φ3 in [0, 2π).
The uniform density in ∂S4 is p(4)(φ1, φ2, φ3) = A4 sin2 φ1 sin φ2 dφ1 dφ2 dφ3, where A4 is
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the normalization constant, and a generic vector in ∂S4 can be expressed in terms of these
angles as 

r1 = cos φ1
r2 = sin φ1 cos φ2
r3 = sin φ1 sin φ2 cos φ3
r4 = sin φ1 sin φ2 sin φ3

(35)

Inductively, in the n-dimensional case, n− 1 angles are needed with φ1, . . . , φn−2 ranging
in [0, π), and the last one, φn−1 in [0, 2π). The uniform density in ∂Sn is given by

p(n)(φ1, . . . , φn−1) = An sinn−2 φ1 sinn−3 φ2 · · · sin φn−2 dφ1 · · · dφn−1 (36)

where An is the normalization constant, and a generic unit vector belonging to ∂Sn can be
represented as 

r1 = cos φ1
r2 = sin φ1 cos φ2
· · · · · ·
rn−1 = sin φ1 sin φ2 · · · sin φn−2 cos φn−1
rn = sin φ1 sin φ2 · · · sin φn−2 sin φn−1

(37)

In order to calculate p∗(v), any entry of r can be considered, owing to isotropy. It is therefore
more convenient to choose the first one, i.e., v = v1 =

√
n r1. While the generation of r1

as a random variable defined by the density Equation (36) is not trivial, the density p∗(v)
can be calculated enforcing a Monte Carlo approach, since its distribution function F∗(v) is
expressed by

F∗(v) =

∫
{cos θ<v/

√
n} sinn−2 θ dθ∫ π

0 sinn−2 θ dθ
(38)

The Monte Carlo approach to F∗(v) reads as follows: (i) consider an ensemble of indepen-
dent random variables {θi}

Np
i=1 uniformly distributed in [0, π), (ii) the distribution function

F∗(v) is the limit, for Np → ∞, of the sum

F∗(v) =
∑

Np
i=1 sinn−2 θi η

(
v−
√

n cos θi
)

∑
Np
i=1 sinn−2 θi

(39)

where η(ξ) is the Heaviside step function, η = 1 for ξ > 0, and η = 0 otherwise. Given
F∗(v), the density p∗(v) follows by differentiation, p∗(v) = dF∗(v)/dv. Figure 7 depicts
the shape of p∗(v) vs. v for dimensions ranging from n = 2 to n = 5, obtained via the
Monte Carlo algorithm described above, using Np = 107. A qualitatively different shape
is obtained as n varies, and this support the original observation, that the pure random
motion associated with the recoil effect in quantum transition permits to have a direct
indication of n (in the low temperature limit), just by measuring the statistics of a generic
Cartesian entry of the particle velocity vector.

The interesting part of this analysis, as regards the emergence of Gaussianity, involves
the behaviour of p∗(v) for large n. This is depicted in Figure 8. As n→ ∞, p∗(v) approaches
a normal distribution. The rigorous proof of this results is left to mathematicians.

This provides another intriguing definition of the normal distribution, as it corre-
sponds to the distribution of any entries of a unit random vector, uniformly distributed
in ∂Sn in the limit for n→ ∞. Therefore, Gaussianity is “simply” the emergent statistical
feature of uniform random fluctuations of normalized vectors in an infinite dimensional
(countable) space.
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Figure 7. p∗(v) vs. v at different values of n obtained from Monte Carlo simulations. Panel (a): n = 2,
panel (b): n = 3, panel (c): n = 4, panel (d) n = 5.
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Figure 8. p∗(v) vs. v obtained from Monte Carlo simulations for large n. The arrows indicate
increasing values of n = 10, 30, 100, 1000. Symbols (•) represent the normal distribution (with zero
mean and unit variance).

7. Concluding Remarks

We have tried in this article to stress another view of Gaussianity, emerging from phys-
ical principles, and different from CLT, with the hope of furnishing hints and suggestions
for new mathematical formulations and theories.

The main message is that there are several generic routes to Gaussian distributions
emerging from the dynamics in ensembles of independent random variables, and these
routes can be grouped in three major classes, as summarized in Table 1, namely: (i) Additive,
(ii) Distributional, and (iii) Thermodynamic routes.
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Table 1. Reviews of the routes to Gaussianity, from physical principles.

Route Mechanism Conditions

CLT Additive Unbounded additivity
Lyapunov condition

CMT Distributional Quadratic nature of
the energy condition

TMoT Thermodynamic (a) α→ 1 , ∀n = 1, 2, . . .
(b) α→ 0 , n→ ∞

The additive route is just the summation procedure, formalized mathematically by
CLT. The fundamental requisite for its occurrence is unbounded additivity coupled with the
Lyapunov condition, as addressed in Section 3. The convergence to the normal distribution.
is generic for arbitrary distributions of independent random variables. The other principal
physical route to Gaussianity is a distributional dynamics within a stochastic ensemble,
and it is described by the Conservative Mixing Transformations (CMT), the basic properties
of which have been addressed in [8]. In the strongly unbiased case, the only condition
to Gaussianity is the nature of the energy condition, and specifically its quadratic nature.
Physically, this corresponds to the classical definition of the kinetic energy that is a quadratic
function of the velocity norm (or of the momentum norm). Energy constraints different from
the quadratic one, determine emergent properties deviating from the normal distribution.

It is important to stress, that the emergence of Gaussianity in CMT is “supergeneric” in
the meaning that it is independent of the initial ensemble distribution, and independent of
the nature of the random transformations φ and ψ [8]. This is also another important point
left to a more scrupoulous mathematical investigation.

Finally, the last mechanism is represented by Thermodynamic Monadic Transforma-
tions (TMoT) of a random ensemble. Physically TMoT’s arises in the description of the
interaction of a physical system with an external environment, represented by a photon
bath. TMoT can be viewed as Iterated Function Systems in Rn, possibly defined by an
uncountable system of contractive transformations. The route to Gaussianity in TMoT is
“thermodynamic”, in the meaning that the basic requirement is their dissipative nature,
corresponding mathematically to the contractivity of the transformations.

The emergence of Gaussian distributions from TMoT is “less generic” than in the case
of CLT and CMT, as it requires the interaction of a molecular system with equilibrium
radiation, and it occurs in two limit cases: (a) for α→ 1, i.e., when the dissipation tends to
zero, and (b) for α = 0, if the dimensions of the physical space are unbounded (technically
n → ∞). The first case is substantially a limit process approaching the additive route of
CLT. The second one occurs in even more specific conditions, assuming isotropic properties
of the TMoT transformations. What is intriguing in the last result, is that, conceptually, the
analysis of fluctuations permits to derive general and fundamental qualitative properties
of the physical reality.

In a mathematical perspective, there are several interesting suggestions emerging
from this analysis, that are left to further formal investigation. Monadic and Mixing
transformations are just the first two elementary interaction mechanisms with constraints
(conservation laws), involving monadic and binary processes, that can be defined in random
ensembles. This can be generalized to m-ary mixing transformations with m > 2, and
this could be a way, for m → ∞, to model interactions in the liquid state. Also more
specific mathematical problems are left open, such as the occurrence of a phase-transition
in linear TMoT’s as regards the Lebesgue absolute continuity of the resulting invariant
measures. This is strictly related to the properties of overlapping IFS’s [63–65], the statistical
(measure-theoretical) characterization of which is still to be fully developed.

Author Contributions: The authors have contributed to the ideation, formulation, simulation and
writing on equal footing. All authors have read and agreed to the published version of the manuscript.



Axioms 2023, 12, 278 18 of 19

Funding: This research received no external funding.

Data Availability Statement: The data are available upon request to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gnedenko, B.V.; Kolmogorov, A.N. Limit Distributions for Sums of Independent Random Variables; Addison-Wesley: Reading, MA,

USA, 1954.
2. Petrov, V.V. Sums of Independent Random Variables; Springer: New York, NY, USA, 1975.
3. Lévy, P. Calcul dés Probabilités; Gautier-Villars: Paris, France, 1925.
4. Zolotarev, V.M. One-Dimensional Stable Distributions; American Mathematical Society: Providence, RI, USA, 1986.
5. Kac, M. Statistical Independence in Probability, Analysis & Number Theory; Dover Publications: Mineola, NY, USA, 2018.
6. Green, M.S. Markoff Random processes and the Statistical Mechanics of Time-Dependent Phenomena. J. Chem. Phys. 1952, 20,

1281–1295. [CrossRef]
7. Kirkwood, J.G. Selected Topics in Statistical Mechanics; Gordon and Breach: New York, NY, USA, 1967.
8. Giona, M.; Pezzotti, C.; Procopio, G. Another normality is possible: Distributive transformations and emergent Gaussianity.

arXiv 2023, arXiv:2301.03925.
9. Krapivsky, P.L.; Redner, S.; Ben-Naim, E. A Kinetic View to Statistical Physics; Cambridge University Press: Cambridge, UK, 2010.
10. Tegmark, M. Our Mathematical Universe; Penguin: London, UK, 2015.
11. Fox, R.F. Gaussian Stochastic Processes in Physics. Phys. Rep. 1978, 48, 179–283. [CrossRef]
12. Billingsley, P. Probability and Measure; John Wiley & Sons: New York, NY, USA, 1995.
13. Hutchinson, J. Fractals and Self-similarity. Indiana Univ. J. Appl. Math. 1981, 30, 713–747. [CrossRef]
14. Barnsley, M. Fractals Everywhere; Academic Press: Boston, MA, USA, 1988.
15. Einstein, A. Investigations on the Theory of Brownian Movement; Dover Publications: Mineola, NY, USA, 1956.
16. Venerus, D.C.; Öttinger, H.C. A Modern Course in Transport Phenomena; Cambridge University Press: Cambridge, UK, 2018.
17. Kubo, R.; Toda, M.; Hashitsume, N. Statistical Physics II—Nonequilibrium Statistical Mechanics; Springer: Berlin/Heidelberg,

Germany, 1991.
18. Pauli, W. Theory of Relativity; Dover Publication: Mineola, NY, USA, 1981.
19. Cattaneo, C. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 1948, 3, 83–101.
20. Kac, M. A stochastic model related to the telegrapher’s equation. Rocky Mt. J. Math. 1974, 4, 497–509. [CrossRef]
21. Bena, I. Dichotomous Markov noise: Exact results for out-of-equilibrium systems. Int. J. Mod. Phys. B 2006, 20, 2825–2888.

[CrossRef]
22. Giona, M.; Brasiello, A.; Crescitelli, S. Stochastic foundations of undulatory transport phenomena: Generalized Poisson–Kac

processes—Part I basic theory. J. Phys. A 2017, 50, 335002. [CrossRef]
23. Giona, M.; Brasiello, A.; Crescitelli, S. Stochastic foundations of undulatory transport phenomena: Generalized Poisson–Kac

processes—Part III extensions and applications to kinetic theory and transport. J. Phys. A 2017, 50, 335004. [CrossRef]
24. Giona, M. Covariance and spinorial statistical description of simple relativistic stochastic kinematics. Fluct. Noise Lett. 2020,

19, 2050042. [CrossRef]
25. Caceres, M.O. Computing a non-Maxwellian velocity distribution from first principles. Phys. Rev. E 2003, 67, 016102. [CrossRef]
26. Giona, M.; Cairoli, A.; Klages, R. Extended Poisson-Kac theory: A unifying framework for stochastic processes with finite

propagation velocity. Phys. Rev. X 2022, 12, 021004. [CrossRef]
27. Kitahara, K.; Horsthemke, W.; Lefever, R. Coloured-noise-induced transitions: Exact results for external dichotomous Markovian

noise. Phys. Lett. A 1979, 70, 377–380. [CrossRef]
28. Horsthemke, W.; Lefever, R. Noise-Induced Transitions; Springer: Berlin, Germany, 2006.
29. Giona, M.; Brasiello, A.; Crescitelli, S. Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models. Europhys.

Lett. 2015, 112, 30001. [CrossRef]
30. Caceres, M.O. Finite-velocity diffusion in the presence of a force. J. Phys. A 2021, 54, 115002. [CrossRef]
31. Livi, R.; Politi, P. Nonequilibrium Statistical Physics—A Modern Perspective; Cambridge University Press: Cambridge, UK, 2017.
32. Gibbs, J.W. Elementary Principles in Statistical Mechanics; Dover Publication: Mineola, NY, USA, 2014.
33. Ehrenfest, P.; Ehrenfest, T. The Conceptual Foundations of the Statistical Approach in Mechanics; Dover Publication: Mineola, NY,

USA, 2014.
34. Maxwell, J.C. Illustrations of the Dynamical Theory of Gases. Phil. Mag. 1860, 19, 19–32. [CrossRef]
35. van Kampen, N.G. Stochastic Processes in Physics and Chemistry; North-Holland: Amsterdam, The Netherlands, 1981.
36. Gardiner, C. Handbook of Stochastic Processes; Springer: Berlin, Germany, 1990.
37. Ito, K. On stochastic processes. Jpn. J. Math 1942, 18, 261–301.
38. Ito, K.; McKean, H.P., Jr. Diffusion Processes and Their Sample Paths; Springer: Berlin, Germany, 1996.
39. Kloeden, P.E.; Platen, E. Numerical Solution of Stochatsic Differential Equations; Springer: Berlin, Germany, 1992.
40. Bell, D.R. The Malliavin Calculus; Dover Publication: Mineola, NY, USA, 2006.
41. Nualart, D. The Malliavin Calculus and Related Topics; Springer: Berlin, Germany, 2006.

http://doi.org/10.1063/1.1700722
http://dx.doi.org/10.1016/0370-1573(78)90145-X
http://dx.doi.org/10.1512/iumj.1981.30.30055
http://dx.doi.org/10.1216/RMJ-1974-4-3-497
http://dx.doi.org/10.1142/S0217979206034881
http://dx.doi.org/10.1088/1751-8121/aa79d4
http://dx.doi.org/10.1088/1751-8121/aa79d6
http://dx.doi.org/10.1142/S021947752050042X
http://dx.doi.org/10.1103/PhysRevE.67.016102
http://dx.doi.org/10.1103/PhysRevX.12.021004
http://dx.doi.org/10.1016/0375-9601(79)90336-0
http://dx.doi.org/10.1209/0295-5075/112/30001
http://dx.doi.org/10.1088/1751-8121/abdef3
http://dx.doi.org/10.1080/14786446008642818


Axioms 2023, 12, 278 19 of 19

42. Jona-Lasinio, G. The Renormalization Group: A Probabilistie View. Nuovo C. B 1975, 26, 99–119. [CrossRef]
43. Cassandro, M.; Jona-Lasinio, G. Critical point behavior and probability theory. Adv. Phys. 1978, 27, 913–941. [CrossRef]
44. Jona-Lasinio, G. Renormalization group and probability theory. Phys. Rep. 2001, 352, 439–458. [CrossRef]
45. Calvo, I.; Cuchi, J.C.; Esteve, J.G.; Falceto, F. Generalized central limit theorem and renormalization group. J. Stat. Phys. 2010, 141,

409–421. [CrossRef]
46. Kline, A.G.; Palmer, S.E. Gaussian information bottleneck and the non-perturbative renormalization group. New J. Phys. 2022,

24, 033007. [CrossRef] [PubMed]
47. Falconer, K. Fractal Geometry—Mathematical Foundations and Applications; John Wiley & Sons: New York, NY, USA, 1990.
48. Sornette, D. Discrete-scale invariance and complex dimensions. Phys. Rep. 1998, 297, 239–270. [CrossRef]
49. Giona, M.; Cairoli, A.; Klages, R. In the folds of the central limit theorem: Lévy walks, large deviations and higher-order

anomalous diffusion. J. Phys. A 2022, 55, 475002. [CrossRef]
50. Onsager, L.; Machlup, S. Fluctuations and Irreversible Processes. Phys. Rev. 1953, 91, 1505–1512. [CrossRef]
51. Onsager, L.; Machlup, S. Fluctuations and Irreversible Processes. II. Systems with Kinetic Energy. Phys. Rev. 1953, 91, 1512–1515.

[CrossRef]
52. Klafter, J.; Blumen, A.; Shlesinger, M.F. Stochastic pathway to anomalous diffusion. Phys. Rev. A 1987, 35, 3081–3085. [CrossRef]
53. Sokolov, I.M.; Klafter, J. From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion. Chaos 2005,

15, 026103. [CrossRef]
54. Kanazawa, K.; Sano, T.G.; Sagawa, T.; Hayakawa, H. Minimal model of stochastic athermal systems: Origin of non-Gaussian

noise. Phys. Rev. Lett. 2015, 114, 090601. [CrossRef]
55. Kanazawa, K. Statistical Mechanics for Athermal Fluctuation: Non-Gaussian Noise in Physics; Springer: Berlin, Germany, 2017.
56. Dunkel, J.; Hänggi, P. Relativistic brownian motion. Phys. Rep. 2009, 471, 1–73. [CrossRef]
57. Einstein, A. On the quantum theory of radiation. In Sources of Quantum Mechanics; Van der Waerden, B.L., Ed.; Dover Publication:

Mineola, NY, USA, 1968; pp. 63–77.
58. Oxenius, J. Kinetic Theory of Particles and Photons; Springer: Berlin, Germany, 1986.
59. Pezzotti, C.; Giona, M. Particle-photon radiative interactions and thermalization. arXiv 2023, arXiv:2301.03903.
60. Wachter, A.; Hoeber, H. Compendium of Theoretical Physics; Springer: New York, NY, USA, 2006.
61. Phillips, W.D. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 1998, 70, 721–741. [CrossRef]
62. Ashkin, A. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 1997, 94, 4853–4860.

[CrossRef] [PubMed]
63. Ngai, S.M.; Wang, Y. Hausdorff dimension of self-similar sets with overlaps. J. Lond. Math. Soc. 2001, 63, 655–672. [CrossRef]
64. Barnsley, M.; Igudesman, K.B. Overlapping iterated function systems on a segment. Russ. Math. 2012, 56, 1–12. [CrossRef]
65. Shimomura, K. The Hausdorff dimension of the region of multiplicity one of overlapping iterated function systems on the

interval. Osaka J. Math. 2021, 58, 331–350.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF02755540
http://dx.doi.org/10.1080/00018737800101504
http://dx.doi.org/10.1016/S0370-1573(01)00042-4
http://dx.doi.org/10.1007/s10955-010-0065-y
http://dx.doi.org/10.1088/1367-2630/ac395d
http://www.ncbi.nlm.nih.gov/pubmed/35368649
http://dx.doi.org/10.1016/S0370-1573(97)00076-8
http://dx.doi.org/10.1088/1751-8121/aca3e0
http://dx.doi.org/10.1103/PhysRev.91.1505
http://dx.doi.org/10.1103/PhysRev.91.1505
http://dx.doi.org/10.1103/PhysRevA.35.3081
http://dx.doi.org/10.1063/1.1860472
http://dx.doi.org/10.1103/PhysRevLett.114.090601
http://dx.doi.org/10.1016/j.physrep.2008.12.001
http://dx.doi.org/10.1103/RevModPhys.70.721
http://dx.doi.org/10.1073/pnas.94.10.4853
http://www.ncbi.nlm.nih.gov/pubmed/9144154
http://dx.doi.org/10.1017/S0024610701001946
http://dx.doi.org/10.3103/S1066369X12120018

	Introduction
	Gaussian Distributions in Physics
	Unbounded Additivity
	The Distributional Route to Gaussianity
	Particle–Photon Radiative Processes and Limit Gaussianity
	The High-Friction Limit and the Dimension of the Physical Space
	Concluding Remarks
	References

