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Abstract

Phylogenetic relationships within the oestroid subclades Rhinophorinae (Calliphoridae) and

Polleniidae were reconstructed for the first time, applying a Sanger sequencing approach

using the two protein-coding nuclear markers CAD (carbamoyl-phosphate synthetase 2,

aspartate transcarbamylase, and dihydroorotase; 1794 bp) and MCS (molybdenum cofactor

sulfurase; 2078 bp). Three genera of Polleniidae and nineteen genera of Rhinophorinae

were analyzed together with a selection of taxa representing the major lineages of Oestroi-

dea (non-rhinophorine Calliphoridae, Oestridae, Sarcophagidae, Tachinidae). The selected

markers provide good resolution and moderate to strong support of the distal branches, but

weak support for several deeper nodes. Polleniidae (cluster flies) emerge as monophyletic

and their sister-group relationship to Tachinidae is confirmed. Morinia Robineau-Desvoidy

as currently circumscribed emerges as paraphyletic with regard to Melanodexia Williston,

and Pollenia Robineau-Desvoidy is the sister taxon of the Morinia–Melanodexia clade. We

propose a classification with two subfamilies, Moriniinae Townsend (including Morinia, Mel-

anodexia, and Alvamaja Rognes), and Polleniinae Brauer & Bergenstamm (including Polle-

nia, Dexopollenia Townsend, and Xanthotryxus Aldrich). Anthracomyza Malloch and

Nesodexia Villeneuve are considered as Oestroidea incertae sedis pending further study.

Rhinophorinae (woodlouse flies) emerge as monophyletic and sister to a clade composed of

(Ameniinae + (Ameniinae + Phumosiinae)), and a tribal classification is proposed with the

subfamily divided into Rhinophorini Robineau-Desvoidy, 1863 and Phytonini Robineau-Des-

voidy, 1863 (the Stevenia-group and the Phyto-group of authors, respectively). Oxytachina

Brauer & Bergenstamm, 1891, stat. rev. is resurrected to contain nine Afrotropical rhino-

phorine species currently assigned to genus Rhinomorinia Brauer & Bergenstamm, 1891:

Oxytachina approximata (Crosskey, 1977) comb. nov., O. atra (Bischof, 1904) comb.

nov., O. bisetosa (Crosskey, 1977) comb. nov., O. capensis (Brauer & Bergenstamm,
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1893) comb. nov., O. scutellata (Crosskey, 1977) comb. nov., O. setitibia (Crosskey,

1977) comb. nov., O. verticalis (Crosskey, 1977) comb. nov., O. vittata Brauer & Bergen-

stamm, 1891, and O. xanthocephala (Bezzi, 1908) comb. nov.

Introduction

Oestroidea comprise a diverse clade of true flies comprising some of the most familiar insects,

such as blow flies and flesh flies. The group accounts for about 15,000 known species [1], but

estimates suggest that the true number may be at least twice as many [2, 3]. As holometabolous

insects, their larval stage is morphologically and functionally entirely different from the adult

stage, and whereas adults are often flower visitors, oestroid larvae can be general scavengers;

vertebrate or invertebrate necrophages; vertebrate coprophages; vertebrate parasites; inverte-

brate parasitoids; predators of frog spawn, molluscs, earthworms, termites, grasshopper eggs

or spider eggs; and even mycophages and palynophages [2, 4, 5].

Reconstructing the phylogenetic relationships among oestroid lineages has long repre-

sented a major challenge. Morphology has provided sparse and conflicting evidence [6, 7], and

molecular studies have differed, mainly relating to gene-choice and taxon sampling [8–10].

However, consensus on the oestroid backbone is now emerging through phylogenomic and

phylotranscriptomic approaches [11–13]. In-depth phylogenetic studies aiming at the recon-

struction of relationships within particular clades have also been performed [13 (Calliphori-

dae); 14, 15 (Oestridae); 12, 16 (Sarcophagidae); 17 (Mesembrinellidae); 18 (Tachinidae)]. The

present paper focuses on two oestroid subclades for which molecular genus-level phylogenies

are still largely lacking, namely the Rhinophorinae and the Polleniidae.

Polleniidae (Fig 1)—also known as cluster flies due to the tendency of adults of some species

to cluster indoors for overwintering—is a family of earthworm parasitoids [19–23]. The

Fig 1. Polleniidae species included in the present analyses; adult habitus. A Melanodexia glabricula (Bigot, 1887). B

Melanodexia grandis (Shannon, 1926). C Melanodexia tristina (Hall, 1948). D Melanodexia tristis Williston, 1893. E

Pollenia rudis (Fabricius, 1794). F Pollenia nr. stolida Malloch. [A–D, F = male; E = female].

https://doi.org/10.1371/journal.pone.0285855.g001
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polleniids have been treated either as a subfamily (Polleniinae) or tribe (Polleniini) within the

Calliphoridae [24–27] or given family rank [28]. Polleniids have recently become well-estab-

lished as the extant sister taxon of the megadiverse parasitoid clade Tachinidae [11, 12, 18, 29–

33], even though morphology or other character systems so far have provided few clues in sup-

port of this relationship. Studies of the phylogenetic relationships among polleniid genera are

limited and include only sparse taxon sampling [28, 34, 35]. Currently the family contains

some 150 named species in eight genera, with the bulk of diversity in the Palaearctic Region

[36]. Polleniids are also widespread and abundant in the Oriental and Australasian regions,

but native species are confined to smaller areas in the Nearctic (West Coast of the USA) and

the Afrotropics (southern Africa), and are entirely absent from the Neotropics [36, 37]. A few

species have become widely distributed, possibly due to individuals diapausing in shipping

containers and with the widespread establishment of introduced populations of their host

earthworms [38].

Rhinophorinae (Calliphoridae) (Fig 2) is a small clade of woodlouse parasitoids, which, as

for the cluster flies, have also been bouncing around within the Oestroidea. The group was

long considered a subfamily, either under Calliphoridae [22, 39–42] or Tachinidae [43–48], or

treated at family rank [6, 7, 12, 49–61]. Recently, however, Yan et al. [13], based on transcrip-

tomes and a limited taxon sampling, reclassified part of the oestroids proposing woodlouse

flies as a subfamily of Calliphoridae with a sister-group relationship to the Ameniinae (includ-

ing the Helicoboscinae) [11, 13]. Regardless of taxonomic ranking, the monophyly of woo-

dlouse flies has never been questioned, although the lack of unique adult synapomorphies and

only scattered information on immature stages and natural history has caused several genera

to shift either into or out of the taxon [61]. At present, rhinophorines number 180 species in

33 genera, and their species diversity peaks in the Mediterranean area [61, 62]. Woodlouse

flies are widespread except for a notable absence from temperate North America, where they

are only represented by a few species recently introduced from the Palaearctic Region [63, 64].

This peculiar distribution may be due to the paucity of native Nearctic terrestrial isopod spe-

cies [65–68], or to low host population densities [69–71].

The present paper provides a comprehensive phylogeny of the Rhinophorinae and the Polle-

niidae, involving an extensive taxon sampling and employing two nuclear protein-coding genes,

CAD and MCS, previously evaluated as having high phylogenetic informativeness [31, 72].

Materials and methods

Ethanol-preserved material was obtained for Polleniidae (3 out of 8 currently recognized gen-

era) and Rhinophorinae (19 out of 33 currently recognized genera), with a complete bio-

geographical coverage, and a set of outgroup taxa (49 genera) representing Calliphoridae

(Ameniinae, Bengaliinae, Calliphorinae [including calliphorine taxa formerly in Melanomyi-

nae and Toxotarsinae], Chrysomyinae, Luciliinae, Phumosiinae), Mesembrinellidae, Oestri-

dae, Sarcophagidae, Tachinidae (Dexiinae, Exoristinae, Phasiinae, Tachininae) and

Ulurumyiidae (see S1 Table). GenBank sequences were included from Winkler et al. [31] and

for Musca domestica Linnaeus for outgroup rooting. Extractions and amplifications were car-

ried out at the GeoGenetics Lab at University of Copenhagen, Denmark, while sequencing was

outsourced to Macrogen Europe (Amsterdam, the Netherlands).

CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase)

and MCS (molybdenum cofactor sulfurase) were chosen for their phylogenetic information

and reliability for Mesozoic-Cenozoic-aged explosively radiated groups such as the Oestroidea

[72], as well as for ease of comparisons with results and integration of sequences from analyses

of other available datasets.
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Three legs were removed from ethanol-preserved specimens and stored in ethanol until

extraction. Extractions were performed using the DNeasy Blood and Tissue Kit (Quiagen,

Venlo, the Netherlands) with the following modifications of the manufacturer’s protocol: legs

were placed entire in the digestion buffer and Buffer ATL was replaced with a digestion buffer

as described by Gilbert et al. [73] but modified to consist of 10 mM Tris-HCl (pH 8), 10 mM

NaCl, 5 mM CaCl2, 2.5 mM EDTA, 1% sodium dodecyl sulphate (SDS), 250 μg/mL proteinase

K, and 40 mM dithiotreitol (DTT) (final concentrations).

Fig 2. Rhinophorinae species included in the present analyses; adult habitus. A Aporeomyia elaphocera Gisondi,

Pape, Shima & Cerretti, 2020. B Axinia arenaria Colless, 1994. C Baniassa pennata Gisondi, Pape, Shima & Cerretti,

2020. D Bezzimyia yepezi Pape & Arnaud, 2001. E Bixinia winkleri Cerretti, Lo Giudice & Pape, 2014. F Melanophora
roralis (Linnaeus, 1758). G Oplisa tergestina (Schiner, 1861). H Paykullia partenopea (Rondani, 1861). I Paykullia nr.

nubilipennis. L Rhinophora lepida (Meigen, 1824). M Stevenia deceptoria (Loew, 1847). N Tromodesia angustifrons
Kugler, 1978. [A–N = male].

https://doi.org/10.1371/journal.pone.0285855.g002

PLOS ONE Phylogeny of the woodlouse flies and the cluster flies

PLOS ONE | https://doi.org/10.1371/journal.pone.0285855 September 19, 2023 4 / 14

https://doi.org/10.1371/journal.pone.0285855.g002
https://doi.org/10.1371/journal.pone.0285855


PCR amplification reactions (total volume 25 μL) were composed of 18 μL deionized water,

4 μL of 5X HOT FIREPol Blend Master Mix (Solis BioDyne), 0.5 μL of each primer (final con-

centration of 0.2 μM), and 2 μL of DNA solution. The most effective program among all the

experimental variations was a PCR protocol consisting of an initial denaturation stage of 12

min at 95˚C; 35 cycles of 95˚C for 30 sec, variable annealing temperature (depending on the

primers used, see Table 1) for 1 min, 72˚C for 2 min, and a final extension time of 10 min at

72˚C. After visualization on a 2% Agarose gel, PCR products were sent to Macrogen Europe

(Amsterdam, the Netherlands) for PCR product cleanup and sequencing.

Sequencing output files were assembled and trimmed using Geneious 9.1.8 (Biomatters

Ltd., Auckland, New Zealand). FASTA files of sequences were aligned using MAFFT (v.7.017)

with the G-INS-i algorithm using the default parameters [74, 75] (see S1 Dataset). The result-

ing alignments were checked for accuracy by looking for stop codons and spurious gaps once

the alignments were translated into proteins. The single-gene alignments were then

concatenated using the “Concatenate alignments” tool in Geneious (see S1 Dataset).

PartitionFinder v2 [76, 77] was used to find the best-fitting partitioning scheme and to

select substitution models for each partition without overparameterization, evaluated by the

information-theoretic metric BIC (Bayesian Information Criterion). The initial 6 data blocks

were the first, second, and third codon positions of each of CAD and MCS, and the program

was set to perform a greedy search to compare all possible partitioning schemes. The best-fit

scheme grouped all data blocks in one single partition. The model GTR+I+G was selected as

the substitution model for this partition.

Likelihood analyses were conducted using RAxML version 8.2.12 [78] on XSEDE (Extreme

Science and Engineering Discovery Environment) through the CIPRES (Cyberinfrastructure

for Phylogenetic Research) Science Gateway [79]. The tree of highest likelihood from 100 rep-

licate runs was selected for plotting the bootstrap values from 250 ML rapid bootstrap repli-

cates obtained through a GTR+G+I approximation. Trees from all analyses were visualized

using FigTree [80].

Results

Analysis of the concatenated matrix from CAD (1794 bp) and MCS (2078 bp) resulted in a

well-resolved ML topology, although with some branches having low bootstrap support values

(henceforth b.v.) (Fig 3).

The ML tree (Fig 3) shows overall strong support for shallow nodes within families, but

somewhat lower support for many of the deeper branches representing relationships among

families and other major clades. Relationships among the genera within the target cluster flies

and woodlouse flies are generally robust and well-resolved. DNA sequence data for

Table 1. Primers used and their annealing temperatures.

Name Direction Sequence 5’-3’ Nucleotides Annealing Temperature

Rhino_CAD6_f Forward CATTTGGAGTGGTTGGAAGG 20 49 ˚C

Rhino_CAD4_r Reverse GACAACAACTGATGACCTAAAC 22

Rhino_CAD5_f Forward CGTAATTTGGTGGCCGAGTG 20 49 ˚C

Rhino_CAD7_r Reverse CCAAAAGTCAATAGCACCCC 20

Rhino_MCS8_f Forward GCTACTGCGGCCTTAAAAAC 20 50 ˚C

Rhino_MCS3_r Reverse CCCGAACATTTTGTAGAATG 20

Rhino_MCS1_f Forward GCTCAATGTAATTTTAGTGG 20 41–48 ˚C

Rhino_MCS2_r Reverse ACAATTAAAGCACCTACTCC 20

https://doi.org/10.1371/journal.pone.0285855.t001
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Aporeomyia Pape & Shima, Baniassa Kugler, Malayia Malloch, Macrotarsina longimana
(Egger), Marshallicona Cerretti & Pape, Shannoniella Townsend, Trypetidomima Townsend

and Melanodexia Williston are here obtained for the first time.

The recently recircumscribed Calliphoridae are divided into a grade of four clades as fol-

lows: Bengaliinae (including Auchmeromyiini and Bengaliini) + Rhiniinae (b.v. = 43); Lucilii-

nae + Calliphorinae (b.v. = 50); and Ameniinae + (Chrysomyinae + Phumosiinae) (b.v. = 20).

Our analysis reconstructed the clade Tachinidae + Polleniidae (b.v. = 80) nested within the cal-

liphorid grade and sister to the core Calliphoridae (i.e., excluding the Bengaliinae + Rhiniinae

clade), but overall statistical support is low. The sister group to Rhinophorinae is a clade com-

posed of [Ameniinae (b.v. = 38) + [Chrysomyinae (b.v. = 100) + Phumosiinae (b.v. = 98)]];

however, these relationships are only weakly supported.

Fig 3. ML tree with bootstrap values mapped.

https://doi.org/10.1371/journal.pone.0285855.g003
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Sarcophagidae form a low-supported clade (b.v. = 44), which is sister taxon to a low-sup-

ported Oestridae (b.v. = 38), while Mesembrinellidae are retrieved as well supported (b.v. =

100) monophyletic group sister to Ulurumyiidae (b.v. = 92).

Our analyses recover a monophyletic Polleniidae with strong support (b.v. = 100). Within

this clade, Pollenia nr. stolida Malloch from Australia is reconstructed as sister to the remain-

ing polleniids; however, the latter clade has low support (b.v. = 45). The remaining species of

Pollenia Robineau-Desvoidy form a well-supported clade (b.v. = 100), sister to the Melano-
dexia–Morinia clade composed of a monophyletic Melanodexia (b.v. = 98) reconstructed as

sister to Morinia doronici (Scopoli), and with a subordinate Morinia sp. from South African

rendering Morinia Robineau-Desvoidy paraphyletic.

Rhinophorinae are retrieved as monophyletic (b.v. = 98) as are the two subgroups, each of

which is characterized by a highly derived larval morphology and locomotory behaviour (see

further below), i.e., Phytonini (b.v. = 53) and Rhinophorini (b.v. = 75). Among the included

non-monotypic genera for which we included more than one species, Axinia Colless, Bixinia
Cerretti, Lo Giudice & Pape, Paykullia Robineau-Desvoidy, Phyto Robineau-Desvoidy and Ste-
venia Robineau-Desvoidy emerged as monophyletic with strong support (b.v. = 100), whereas

the species traditionally assigned to genus Rhinomorinia Brauer & Bergenstamm separated

into two geographically disjunct groups: an Afrotropical clade (henceforth as Oxytachina
Brauer & Bergenstamm stat. rev., b.v. = 100) and a Palaearctic clade (Rhinomorinia), both

belonging to the Rhinophorini. Oxytachina is reconstructed as sister to the remaining Rhino-

phorini. Within this tribe, the Afrotropical genus Ventrops Crosskey is reconstructed in a

nested position within a clade of Neotropical endemic taxa (Bezzimyia Townsend, Marshalli-
cona Cerretti & Pape, Shannoniella Townsend and Trypetidomima Townsend), but overall

support is weak. The clade composed of the Palaearctic Macrotarsina Schiner, Rhinomorinia,

Oplisa Rondani and Stevenia received moderate support (b.v. = 74). Within the Phytonini,

deeper branches have low or moderate support (b.v. = 38–85). Bixinia spp. emerge as sister to

the remaining Phytonini, with Baniassa pennata Gisondi, Pape, Shima & Cerretti as the next

most basal branching. Sister to Baniassa is a weakly supported clade (b.v. = 47) composed of

the Australasian Aporeomyia + Axinia clade (b.v. = 56) and the Oriental/Palaearctic [Malaya +

Phyto] (b.v. = 38) + [Paykullia + Melanophora] (b.v. = 85) clade (b.v. = 39).

Discussion

A fully resolved and well supported phylogeny of oestroid flies has proved difficult to attain

through both morphological and Sanger-generated molecular data. However, a consensus on

the topology of the backbone is now emerging through phylogenomic and phylotranscrip-

tomic approaches [11–13]. Conflicts in the deeper splits, i.e., in the position of families and

subfamilies between the present study and the more recent phylogenomic studies are here con-

sidered as most likely resulting from our use of data from only two nuclear loci. Many deep

nodes received low statistical support values, and they are not discussed further.

Despite recent study, the phylogenetic relationships among polleniid genera are still tenta-

tive. Employing a combination of morphological characters and fragments of three nuclear

markers (CAD, MCS, MAC) on a selection of Morinia species, one Pollenia and the monotypic

Alvamaja Rognes, Cerretti et al. [28], reconstructed Morinia as monophyletic and sister to

Alvamaja, this clade being sister to Pollenia. Recently, Johnston et al. [35] presented a mitoge-

nomic analysis of 21 polleniid taxa, including a broad representation of West Palaearctic Polle-
nia and one species each of Melanodexia, Morinia and Dexopollenia Townsend. The study

retrieved Dexopollenia as sister to a clade composed of Morinia and Melanodexia, with this

clade in turn sister to Pollenia. Johnston et al. [35] performed further analyses by using COI
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sequences (i.e., not the entire mitogenome) of Xanthotryxus mongol Aldrich and an additional

species of Morinia, and recovered Dexopollenia + Xanthotryxus Aldrich as sister to the remain-

ing Polleniidae, and the latter resolving as Pollenia being sister to Morinia + Melanodexia.

These relationships come with low support, which is partly obscured by Johnston et al. [35]

incorrectly using support values for particular nodes to indicate support for the basal dichot-

omy. However, the present ML topology is largely consistent with the results in Johnston et al.

[35] (except for retrieving Pollenia as paraphyletic), but the limited taxon sampling does not

allow for testing the phylogenetic position of Dexopollenia and Xanthotryxus. The sparse mor-

phological evidence tends to support a Dexopollenia–Xanthotryxus–Pollenia-clade. All species

of Xanthotryxus and most species of Dexopollenia and Pollenia share the presence of golden,

wavy, hair-like setae on parts of the body, and the morphologically very similar Pollenia and

Xanthotryxus also share a subcostal sclerite with a bundle of long, black or yellow setae among

the micropubescence. However, comparative morphology of polleniids needs much more

study, and differing phylogenetic topologies obscure interpretations of character state polari-

ties. For instance, the Australian Pollenia nr. stolida examined here differs from the Palaearctic

and New Zealand species of Pollenia by lacking the first presutural intra-alar seta and by the

three preapical setae of the hind tibia (anterodorsal, dorsal and posterodorsal) being subequal

in size; both these character states are shared with Morinia and Melanodexia and may repre-

sent plesiomorphic conditions. Interestingly, we found this species taking up the position of

sister taxon to all other polleniids included in the analyses, although with weak support (Fig 3).

The Morinia–Melanodexia clade is supported by the following putative morphological auta-

pomorphies: i) narrow, tongue-shaped, lower calypter, ii) posterior spiracle with reduced pos-

terior lappet (rhinophorine-like) and iii) node at base of R4+5 bare. Morinia is here represented

by the type species M. doronici (Scopoli) (Palaearctic) and by an undescribed species from

South Africa [19, 29]. Our phylogeny reconstructed the two included species of Morinia as

paraphyletic with respect to Melanodexia. Indeed, our careful examination of Morinia from

both Palaearctic and Afrotropical regions has not revealed any strong evidence supporting

their monophyly, except for sharing a slim, narrow, body shape, which contrasts with the stou-

ter body characterizing the other polleniids, except Alvamaja. Despite this, we consider it pre-

mature to lump species currently assigned to Morinia and Melanodexia under the same genus-

group name as long as there is inconclusive data on the phylogenetic position of Alvamaja,

Anthracomyza Malloch, Dexopollenia Townsend, Nesodexia Villeneuve and Xanthotryxus, all

of which may belong in the Polleniidae [36]. Alvamaja presents a unique combination of char-

acter states and could belong to the Morinia–Melanodexia clade based on its rhinophorine-

like (i.e., non-operculate) posterior spiracle and narrow lower calypter. This relationship is

supported by the morphological evidence presented in Cerretti et al. [28]. Dexopollenia and

Xanthotryxus share several, derived character states with Pollenia, including the golden, wavy

hair-like setae particularly abundant on the thorax, and the cluster of long black or yellow

setae on the subcostal sclerite. No progress has been made so far in resolving the phylogenetic

placement of Anthracomyza and Nesodexia. These are both monotypic genera and no molecu-

lar sequence data have been obtained from them. Although several polleniid nominal genus-

group taxa remain to be included in a phylogenetic analysis, we are here proposing to apply a

subfamily classification with the Polleniidae composed of two subfamilies, as follows:

Moriniinae Townsend: including Morinia, Melanodexia, and Alvamaja;

Polleniinae Brauer & Bergenstamm: including Pollenia, Dexopollenia, and Xanthotryxus.

We here treat Anthracomyza and Nesodexia as Oestroidea incertae sedis pending further

study.
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Our study is the first attempt at resolving the phylogenetic relationships within the woo-

dlouse flies using molecular data. Analyses support both the monophyly of the subfamily and

its division into two subclades, which we propose here as tribes: Rhinophorini and Phytonini

(i.e., the Stevenia group and the Phyto group of Pape & Arnaud [81], respectively). By integrat-

ing our results (Fig 3) with those from previous phylogenetic reconstructions, deduced from

morphological data and a larger taxon sampling [61, and literature therein], the two recog-

nized tribes are composed as follows (an asterisk indicates taxa which have not been placed

based on molecular data):

Rhinophorini: Acompomintho Townsend*, Apomorphyto Cerretti, Lo Giudice & Pape*, Azai-
sia Villeneuve*, Bezzimyia, Macrotarsina, Maurinophora Cerretti & Pape*, Melanomyiodes
Crosskey*, Marshallicona, Metoplisa Kugler*, Neotarsina Cerretti & Pape*, Oplisa, Oxyta-
china stat. rev., Queximyia Crosskey*, Rhinomorinia, Rhinophora Robineau-Desvoidy,

Shannoniella, Stevenia, Tricogena Rondani*, Tromodesia Rondani*, Trypetidomima,

Ventrops;

Phytonini: Aporeomyia, Axinia, Baniassa, Bixinia, Comoromyia Crosskey*, Kinabalumyia
Cerretti & Pape*, Malayia, Melanophora Meigen, Parazamimus Verbeke*, Paykullia, Phyto,

Rhinodonia Cerretti, Lo Giudice & Pape* and Rhinopeza Cerretti, Lo Giudice & Pape*.

Within Rhinophorini, all the included non-monotypic genera emerged as monophyletic

except for “Rhinomorinia”. This nominal genus was retrieved as polyphyletic, being divided

into two well-supported lineages, which are characterized by distinctive morphological fea-

tures [60–62; see also the key below]. One clade comprises exclusively Afrotropical species

(here placed in the resurrected nominal genus Oxytachina stat. rev., see below) and was

retrieved as sister to the remaining Rhinophorini with moderate support. The other clade com-

prises two Palaearctic/western Oriental species, of which Rhinomorinia sarcophagina (Schiner)

(type species of the genus) was included and clustered within the Rhinophorini as sister to

Oplisa with strong support. Under ML, Rhinophora lepida (Meigen) was recovered as sister to

all Rhinophoriini except Oxytachina, differing from the morphology-based phylogeny of Cer-

retti et al. [61] that retrieved Rhinophora joining a primarily Palaearctic subclade composed of

Rhinomorinia, Macrotarsina, Oplisa and Stevenia, which also contained some Afrotropical and

Oriental species for which molecular data are not available. The position of the Afrotropical

genus Ventrops within an otherwise Neotropical clade is biogeographically challenging, but

the low support indicates that this hypothesis needs further testing. Support values for the

genus-level reconstruction within this clade were weak to moderate. Interestingly, the mor-

phology-based phylogeny of Cerretti et al. [61] had Ventrops as the sister taxon of a clade con-

taining all the Neotropical taxa and the Australian genus Bixinia. Analyses of morphological

data separated the genus Bixinia widely from the other Australasian taxa [61], while the pres-

ent molecular analysis of Axinia and Bixinia places these genera within the same tribe but sep-

arated by multiple intervening genera (Fig 3).

Changes in classification

For the Polleniidae, we propose a classification into two subfamilies, Moriniinae Townsend,

1919, stat. nov., and Polleniinae Brauer & Bergenstamm, 1891, stat. nov. The genera Anthra-
comyza and Nesodexia are considered as Oestroidea incertae sedis.

For the Rhinophorinae, we propose:

i) classification into two tribes, Rhinophorini Robineau-Desvoidy 1863, stat. nov. and Phyto-

nini Robineau-Desvoidy 1863, stat. nov.
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ii) resurrection of the genus-group name Oxytachina Brauer & Bergenstamm, 1891, stat. rev.,

to accommodate nine Afrotropical rhinophorine species formerly assigned to genus Rhino-
morinia [61]: Oxytachina approximata (Crosskey, 1977) comb. nov., O. atra (Bischof,

1904) comb. nov., O. bisetosa (Crosskey, 1977) comb. nov., O. capensis (Brauer & Bergen-

stamm, 1893) comb. nov., O. scutellata (Crosskey, 1977) comb. nov., O. setitibia (Crosskey,

1977) comb. nov., O. verticalis (Crosskey, 1977) comb. nov., O. vittata Brauer & Bergen-

stamm, 1891 (type species of the genus) comb. nov., and O. xanthocephala (Bezzi, 1908)

comb. nov. The genus Rhinomorinia is redefined and now consists of only two Palaearctic

species: R. sarcophagina (type species of the genus) and R. longifacies Herting, 1966.

The following differential diagnosis helps to separate Oxytachina Brauer & Bergenstamm,

1891 from Rhinomorinia Brauer & Bergenstamm, 1889:

Rhinomorinia Brauer & Bergenstamm, 1889 [Palaearctic Region]: First postsutural supra-

alar seta present and well developed, as long as or longer than notopleural setae. Three ante-

rodorsal setae on mid tibia;

Oxytachina Brauer & Bergenstamm, 1891 [Afrotropical Region]: First postsutural supra-

alar seta absent or very short, distinctly shorter and weaker than notopleural setae. One or

two anterodorsal setae on mid tibia

Conclusions

Until recently, the taxonomic boundaries and phylogenetic affinities of Polleniidae and Rhino-

phorinae–two key groups of parasitoids of soil-dwelling organisms–remained controversial.

Our analysis, despite being limited to two protein-coding nuclear genes, confirmed previous

hypotheses on the relationships between the two groups and provided new insights into their

internal phylogenetic relationships. These results allowed us to formally propose a subfamilial

and tribal classification for the polleniids and rhinophorines, respectively, and to resurrect the

genus Oxytachina to include five Afrotropical species previously assigned to the genus Rhino-
morinia, which thereby is restricted to two Palaearctic species.
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