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Optimization of 1-D Unidirectional Leaky-Wave
Antennas Based on Partially Reflecting Surfaces

Walter Fuscaldo

Abstract—1In a previous work, we derived optimum condi-
tions for the design of finite-size 1-D unidirectional leaky-wave
antennas (LWAs) in the general case. The bandwidth and the
gain-bandwidth figure of merit are, however, structure-specific
and have not been discussed yet. A practical case that is widely
investigated in the literature is that of 1-D unidirectional LWAs
based on partially reflecting surfaces (PRSs). In this work, we not
only evaluate these features for this specific class of antennas, but
we also derive design rules for optimizing the PRS impedance
and cavity height to get maximum gain. Numerical results and
full-wave simulations are finally proposed for a realistic example
based on a metal strip-grating structure, to validate the theoret-
ical findings.

Index Terms— Bandwidth, gain, leaky-wave antennas, leaky
waves, partially reflecting surfaces, radiation patterns.

I. INTRODUCTION

ANY modern antenna applications require low-cost

solutions capable of providing high directivity with
low fabrication complexity. In this context, leaky-wave anten-
nas (LWAs) have so far represented a reference solution in
the microwave frequency range [1], [2], and more recently in
the optical [3] and terahertz (THz) regimes [4]. In particular,
unidirectional 1-D LWAs provide a simple means to achieve
a highly directive beam with a continuous beamscanning over
frequency. These features are of great interest at microwaves
for 5G applications where spatial frequency multiplexing [5] is
required, and for optical and THz applications [3], [6], where
the design of highly directive antennas with controlled beam
radiation still represents a challenging task.

In previous work [7], we derived conditions for minimizing
the beamwidth or maximizing the gain of finite-size 1-D
unidirectional LWAs. In order to evaluate the gain with a
fully analytical procedure, a “correction function” has been
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Fig. 1. Schematic representation of a PRS-based 1-D unidirectional LWA

radiating a conical beam at 6y (6 being the elevation angle of observation).
The PRS is represented with a single scalar sheet impedance Zj.

defined, which allows for accurately estimating the gain from
the knowledge of the beamwidth.

In [7], the normalized phase f = f/ko and attenuation
a0 = o/ ko constants (kg = 27 /A9 and 1y being the free-space
wavenumber and wavelength, respectively) are varied freely;
thus, the optimization procedure applies, in principle, to any
1-D unidirectional LWA. However, for the general case dis-
cussed there, it was not possible to determine either the
bandwidth performance or the gain—-bandwidth figure of
merit (FoM) as these features are structure-specific.

A practical example that we discuss here is that of 1-D
unidirectional LWAs based on a partially reflecting surface
(PRS) (see Fig. 1). Examples of such antennas include (but
are not limited to) substrate—superstrate LWAs [8], multi-
layered LWAs [9], and metasurface LWAs [4], as all these
types of antennas can be interpreted through the PRS concept
(e.g., [10]-[12] for a rigorous analysis). In practice, most
uniform and quasi-uniform LWAs [1] allow for a PRS inter-
pretation, thus making the results of this work applicable to a
broad extent.

Another relevant advantage of the PRS concept is the
existence of an approximate analytical expression for the
frequency dispersion of the leaky wavenumber which does
not depend on the TE/TM nature of the leaky wavenumber
nor on the inductive/capacitive character of the PRS (however,
the PRS has to be highly reflective for these relations to hold
true). As a result, it is possible to derive simple analytical
formulas for determining the bandwidth performance and the
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gain—bandwidth FoM. It is worthwhile to stress here that the
bandwidth performance of a PRS-based 1-D unidirectional
LWA considerably differs from that of PRS-based 1-D bidi-
rectional LWAs or 2-D LWAs, which have been investigated
in the literature with specific reference to broadside radiation
[13]-[21]. This is definitely not the case for 1-D unidirectional
LWAs that usually radiate far from broadside, and for which an
accurate bandwidth analysis was so far lacking. Interestingly,
we demonstrate here that the gain—bandwidth FoM decreases
slightly with the antenna length and increases with the scan
angle. This last result was not emphasized in previous investi-
gations on 1-D bidirectional or 2-D LWAs [16], [21] for which
the gain—bandwidth FoM is evaluated at broadside only, and
thus is constant.

Another typical feature of PRS-based structures is that 4 and
& can no longer be varied freely, but are constrained to obey
a particular relationship that depends on the PRS reflectivity.
In this regard, we recall that leaky modes in PRS-based LWAs
are often assumed to obey the hyperbolic relation fa = C,
where C is a constant [13]. The first important result derived
in this article is that this relation happens to be approximately
true only for TM modes. For TE modes, the value of C
considerably changes with frequency. Another important result
of this article is the derivation of design formulas to properly
set the cavity height and the PRS reactance in order to have
a given f and & at the design frequency for both the TM
and TE cases. Therefore, the optimum & for any given £ and
L provided in [7] translates into criteria to find the optimum
PRS reactance and cavity height. Interestingly, it turns out that
for each optimum set of / and & values, we have a fourfold
choice: an inductive/capacitive PRS for a TE/TM leaky mode.

All these findings are finally validated through numerical
and full-wave simulations. We first consider a simplified, ideal
model that matches well with the theory and then show that
no relevant differences are obtained for a more realistic model
that takes into account several practical aspects.

The manuscript is thus organized as follows. Section II
briefly reviews the main results obtained in [7] that are
exploited here. In Section III, formulas for evaluating the band-
width performance and the gain—bandwidth FoM are derived,
whereas in Section IV, it is shown that there exist four possible
ways to optimize the gain of a PRS-based 1-D unidirectional
LWA depending on whether an inductive/capacitive PRS and
a TE/TM mode are used. In Section IV, design criteria to
maximize the gain in each of these cases are reported, whereas
a full-wave validation is presented in Section V for a specific,
yet practical case: a rectangular waveguide based on a metal
strip grating (MSG). Concluding remarks are finally drawn in
Section VI.

II. FORMULAS FOR 1-D UNIDIRECTIONAL LWAS

We report here the main formulas of [7] that apply to any
1-D unidirectional LWA and that will prove to be useful
to derive the optimum conditions for those based on PRSs.
Namely: 1) the radiation pattern; 2) the half-power beamwidth;
and 3) the gain. According to the discussion in [7, Sec. II],
we limit our analysis to beams radiating not too close to
endfire.
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TABLE I
FITTING COEFFICIENTS FOR THE CORRECTION FUNCTION CF
cij j=0 j=1 j=2 j=3
i=0 0.888 -0.134 0.572 0.339
i=1 0.280 0.001 -0.392 0.155
=2 1.172 -1.008 5.952 0.479

The normalized radiation pattern P(8) is given by
sinh? a + sin” £(0)
a? +1(9)?
where @ is the elevation angle measured from the vertical
z-axis and (@) = b — Isin6, with [ = koL /2, b = ﬁl, and
a = al are normalized variables. It is worthwhile to recall here
that a is intimately related to the radiation efficiency through
e = 1 —exp(—4a), and [ to the beam angle 6, (defined as
the angle of maximum radiated power, P(6y) = max[P(0)])
through the well-known relation / = sin6; this relation has
been proved to remain exact even for truncated structures (as
shown in Fig. 1) [22].
The double-sided beamwidth is given by

O = arcsin(B + t(a)/1) —arcsin(f — t(a)/1)  (2)

where #,(a) is the value of ¢ at the (left) half-power angle and
is accurately expressed by the following formula [22]:

P©O) =

(1)

th(a) = to[1 — tanh(ua)] + a tanh(usa) 3)

with ty = 1.39156, u; = 0.021, and u, = 0.210. (Henceforth,
th(a) is referred to as f,.) We also recall that (2) holds for
,bA’ < 1 — /1, that is, for beams not too close to endfire [7].
For scanned directive beams (2) is well approximated by

O =~ 2secblpty(a)/l ~ 26 sec by 4)

where the last expression is obtained asymptotically for
L — oo, keeping a fixed. Finally, the gain is given by
4e,.CF sec b B 2¢,.CF

®On h (a) / l
where CF is a correction function that improves the
otherwise inaccurate directivity-beamwidth relation, viz.,
D >~ 4secby/Oy [7]. An accurate analytical expression for

CF has been obtained through numerical fitting in [7] and
is reported here for the sake of completeness as

G =

)

CF = ¢y + ci[sech(cra) — 1] (6)

where ¢; for i = 0,1,2 are fitting functions of
L/l and p given by the interpolation scheme
¢i = cio+ (ci1 + Cizﬁ)e_CBLMO, where Cij for j =0,...,3are
fitting parameters and are reported in Table 1. The combination
of (3), (5), and (6) yields a compact formula for the gain as
a function of a, ﬁ and L/ as

koL(l — 6’4“){c0 + cy[sech(cra) — 1]}
" to[1 — tanh(0.021a)] + a tanh(0.21a)

)

where the dependence on f and L/¢ is implicit in the
definition of ¢;, i = 0, 1, 2. (Note that the factor koL was
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mistakenly missing in [7, eq. (17)].) As L — oo, with & fixed,
(7) further simplifies, yielding the convenient formula [7]

G = 1.2/a0. (8)

‘We recall that, if material losses have to be accounted for, one
should replace (7) with [7, eq. (25)]. As extensively discussed
in [7], material losses will only lead to a slightly different value
of the optimum attenuation constant (or leakage rate), and in
turn to a different choice of the optimum design parameters.
However, the procedure described in Section IV-B will remain
the same. For this reason, in this work, we only discuss the
lossless case; the reader can find in [7] the modifications
needed for the lossy case.

III. BANDWIDTH, GAIN, AND GAIN-BANDWIDTH
FIGURE OF MERIT FOR PRS-BASED LWAS

As briefly commented in Section I, results from [7], which
we also have summarized in Section II, have general validity
and can be applied to any 1-D unidirectional LWAs. How-
ever, the bandwidth performance of a 1-D unidirectional LWA
designed to maximize gain is structure-specific, as the defin-
ition of bandwidth requires knowledge of the leaky complex
wavenumber dispersion over frequency f. In Section III-A,
we derive approximate analytical expressions for both the
fractional bandwidth (FBW) and the gain—bandwidth FoM for
PRS-based LWAs, whereas in Section III-B, we comment on
the overall performance that one can expect from the wide
class of PRS-based 1-D unidirectional LWAs.

A. Analytical Formulas

The reference structure consists of a PRS-based 1-D unidi-
rectional LWA of length L fed at one end and terminated with
an ideal absorber (see Fig. 1).

In this regard, we recall that for LWAs based on a PRS, the
optimum pair of / and & values determines the optimum cavity
height and PRS to have maximum gain at a given angle. In par-
ticular, for a highly reflective PRS, the cavity height mainly
determines f, whereas the PRS properties mainly determine
. In general, the PRS may affect both 4 and &, and the
optimization procedure needs to account for this interdepen-
dence. The entire design flow for optimizing PRS-based 1-D
unidirectional LWAs will be discussed in detail in Section I'V.

Conversely, in Section III, we are interested in obtain-
ing simple formulas for the FBW and the gain-bandwidth
FoM. In this regard, the equivalent loss tangent introduced
in [11]-[13] represents a simple, yet effective model to obtain
an analytical dispersion equation of leaky modes propagat-
ing in PRS-based LWAs (which, otherwise, would require
the numerical solution of a transcendental equation [23]).
Indeed, an LWA can be thought as a lossy parallel-plate
waveguide (PPW) where an equivalent loss tangent tan deq is
conveniently defined to model all kinds of losses (including
radiation losses) [11]-[13].

In particular, for a lossy PPW of height # and dielectric
filling &, = &:(1 — j tand), we have

b= farll = jtand) = (a/koh? ©

where a nonmagnetic material x, = 1 is tacitly assumed.
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In order to have the beam radiating at a given design
scan angle 6yq = 0y(f = fo) at the design frequency fj, the
cavity height can be set, at a first approximation (more accu-
rate formulas are not needed here, but will be discussed in
Section 1V), equal to [8], [24]

Ao

hppy = —ee—
P 2\/ Er — Sill2 90d

where the free-space wavelength 1 is here fixed at the design
frequency fy. In addition, as can be inferred from Table II,
in almost all cases, & is more than an order of magnitude
lower than / = sin#, (as long as we consider beams far from
broadside); thus by squaring both sides of (9) [using & = hppw
as given by (10)] and taking the real part, we get

(10)

Er — sir12 0()(1
72
where f = f/fy is a normalized frequency. From (11),

an expression for f as a function of 6 is easily found as

f=sinby~ [e —

(1)

& — sin? G4

f(60) ~ (12)

e — sin? 6y
Equation (12) will turn out to be useful to find an expression
for the fractional bandwidth FBW as we will readily show.
Interestingly, an expression for the scan rate, expressed as
the derivative of the beam angle with respect to the normalized
frequency, can also be derived from (11) and reads

d(90 Er — SiIl2 (90d

b 13
df sin Bpq cos Goq (13)
which for an air substrate simplifies to
do
20— cotfo. (14)
df

Both (13) and (14) clearly reveal that as the beam angle
goes from broadside to endfire the scan rate decreases and
in turn the —3 dB gain FBW is expected to increase. Interest-
ingly, (13) and (14) also provide the angular range A6y over
which the beam scans within its FBW through the rela-
tion AGy = FBWcotlyy in the air-filled case (a similar
formula is obtained from (13) for the dielectric-filled
case), according to the frequency-scanning behavior com-
mon to all LWAs. We recall that FBW is defined as
FBW = f(0oa + Abh1) — f(0oa — Abyy), where Al (Aby,)
represent the left(right)-sided —3 dB beamwidth. From the
previous definition and (12), an analytic expression for FBW
is obtained as

FBW
~ /e — sin? Opq
1 1
X

\/E,‘r — sin? (0()(1 + A(?h,l) \/f",‘r — sin? (HOd — Aﬁh,r)

\ér :B(%d Ve — ﬁ(%d

~ — 5)
\/er — (Boa + lh/l)2 \/gr — (Boa — th/l)z
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TABLE II

1-D UNIDIRECTIONAL LWA FOR DIFFERENT DESIGN SCAN ANGLES 6pg AND ANTENNA LENGTHS L /¢

Ooq = 15° Opq = 30° Opq = 45° Opq = 60°
5| s Jam | |PM] S [ | o | PN S [ ey |FM] G|y | ey | PN
5 |4.11-1072 [ 12.26| 5.24 | 0.88 | 4.14-1072 | 12.30 | 12.74 | 2.16 [ 4.21-1072 | 12.40 | 28.34 | 4.92 |4.49-1072 | 12.64 | 99.68 | 18.31
10 |2.03-1072 [ 1520 | 2.58 | 0.86 [2.03-1072 | 15.22| 6.23 | 2.07 | 2.05-1072 | 15.26 | 13.37 | 4.49 |2.10-10~2 | 15.41 | 35.05 | 12.19
20 [1.01-1072|18.17| 1.29 | 0.85 | 1.01-1072 | 18.18 | 3.10 | 2.04 | 1.01-10~2 | 18.21 | 6.59 | 4.36 | 1.03-1072 | 18.27 | 16.42 | 11.02
50 |4.01-1073 [22.13| 0.51 | 0.84 |4.01-1073 [22.14 | 1.24 | 2.02 |4.02-1073 | 22.15| 2.62 | 430 |4.04-1073 | 22.17 | 6.44 |10.62
100 | 2.00-1073 [ 25.14 | 0.26 | 0.84 [2.00-1073|25.14 | 0.62 | 2.02 |2.01-1073 |25.14| 1.31 | 428 |2.01.1073 |25.16 | 3.21 |10.53
200 | 1.00-1073 | 28.14 | 0.13 | 0.84 | 1.00-1073 | 28.14 | 0.31 | 2.01 |1.00-10~3 | 28.15| 0.66 | 4.28 | 1.00-10—3 | 28.15 | 1.61 |10.49
500 | 0.40-1073 | 32.12| 0.05 | 0.84 | 0.40-1073 [32.12| 0.12 | 2.01 [0.40-1073|32.12| 0.26 | 4.27 | 0.40-10~3 | 32.12| 0.64 |10.47
where ﬁOd = sinfy. In the last step, we used the fact that A remark is also needed about the definition of bandwidth

t = =t, is found at the lower and upper frequency edges,
respectively, and also assumed that the beam has a negligible
variation in shape as the beam scans with frequency over the
bandwidth. (Note that the first term on the right-hand side
of (15) might be singular. This singularity is related to the
discontinuity angle discussed in [7] and thus care must be
taken in using this formula for scan angles that approach
endfire.) This expression (15) further simplifies for some
particular cases of practical interest. Indeed, for directive,
scanned, symmetric beams (i.e., A6y, = Abh) <K Gpa), a first-
order Taylor approximation allows for writing (15) as

_ 2Boaltn/ D)

®h sin 90d COS 90d

FBW ~ ~ 16
& — sin® Opq & — ﬁgd (16)
which, for the infinite case, L — oo, simplifies to
2 ) A
FBW,,; ~ L“O‘z (17)
e — P

Moreover, for air-filled LWAs (i.e., & = 1), a very simple
expression is found from (16), which reads

FBW,i; >~ Oy, tan Gpq. (18)

As a result, the gain—-bandwidth FoM, which is defined as
FoM = G - FBW, is accurately obtained by multiplying (15)
and (5). For directive 1-D unidirectional LWAs based on PRSs,
an even simpler expression for FoM is found by combin-
ing (16) and (5) to obtain

in 6
FoM = 4¢,CF— (19)
&r — sin” Gy
which, in the air-filled case reduces to
FoM,;; = 4e,CF tan Oyq sec Hyq. (20)

We recall that the previous expressions (16)—(20) do not hold
for 6pg — 0°. However, broadside radiation is rather impracti-
cal for most of 1-D unidirectional LWAs (Dirac LWAs [6]
represent a peculiar case), and thus this aspect is of little
consequence here.

employed here. Indeed, FBW is meant here as a fractional
pattern bandwidth. Nonetheless, the bandwidth performance
of an antenna is established as the minimum between the
impedance bandwidth and the pattern bandwidth. Usually,
the latter is narrower than the former for an LWA, and thus
the bandwidth of an LWA is mostly determined by its pattern
bandwidth. However, as revealed by the analysis reported in
Section III-B (see Table II), there exist operating conditions
for which the pattern bandwidth can even attain an octave.
Over such a large bandwidth, it could be difficult to achieve
a good impedance matching, and a more detailed analysis of
the feeding techniques of 1-D unidirectional LWAs would be
required. This aspect, although important, requires a case-by-
case analysis that goes beyond the scope of this work and is
thus not treated here. As a result, the bandwidth performance
reported in the following results is related only to the pattern
bandwidth.

B. Optimization of LWA Performance

In Table II, we have reported the values of G, FBW, and
FoM for different antenna lengths and design scan angles
under the conditions of optimum gain derived in [7]. The val-
ues of G are obtained numerically, whereas those of FBW and
FoM result from a straight implementation of (15) and (19),
respectively; we will soon comment on the expected accuracy
of these formulas.

The values of G reported in Table II are a consequence of
the optimization carried out in [7]. This result further confirms
that the gain of a 1-D unidirectional LWA increases almost
linearly with the antenna length and is almost independent of
the design scan angle [as expected from (5)].

As concerns FBW and FoM, Table II shows that the FBW
decreases in the optimum design (optimized for maximum
gain) as the aperture length (and hence the maximum gain)
increases. The FoM approaches a limit as the aperture length
increases in the optimum design. This limit only depends on
the design scan angle and increases as the design scan angle
increases.
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3: oy = 30 5 L/Xo = 10 and foq = 30°
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Fig. 2. (a) FBW and (b) gain—bandwidth FoM as functions of the normalized attenuation constant & for Gpg = 30° for different values of L/19 =5, 10, 20, 50
(in black, blue, green, and red, respectively). In (a), FBW as calculated through (15) is compared with numerical results (in squares) from the evaluation of
the exact —3 dB points of the gain pattern. In (b), the FoM is calculated through the product of equations (5) and (15) and reported in solid lines. In (b),
colored circles identify the condition for maximum gain, which is apparently close to a local maximum for the FoM. In (c), numerical evaluations of G,
FBW, and FoM versus a/kq are reported on the same plot for 6pg = 30° and L = 104,.

If we regard the normalized attenuation constant & to be a
free variable and not constrained to optimize the gain, then
Fig. 2(a)—(c) shows the variation of FBW, FoM, and G versus
a for various aperture lengths. We also note that both FBW and
FoM increase with & [see Fig. 2(a) and (b)], and this result can
also be inferred from the formulas reported in Section III-A,
for FBW and FoM. Indeed, as concerns the FBW, for electri-
cally large apertures, we have #,// — @, thus FBW in (16) is
asymptotically proportional to &. On the other hand, the FoM,
for a fixed beam angle, only depends on CF and e;; the former
mildly depends on &, while the latter increases with a.

We should now comment on the accuracy of (15), which
is confirmed by the numerical evaluations of FBW from
the —3 dB gain pattern for L/ly = 5, 10, 20, 50 and
a =0.01, 0.05, 0.1, 0.15, 0.2 [see the colored squares
in 2(a)]. Numerical results are obtained by determining the
—3 dB points from the evaluation of the gain [calculated
through the numerical integration of (1)] over a suitable
frequency range, over which we assume the leakage rate to
be constant and the normalized phase constant to change
according to the dispersion relation in (11). These assumptions
will be demonstrated to agree well with full-wave simulations
in Section V.

As expected, the absolute error is negligible for lower values
of & and larger values of L/Ay, whereas it slightly increases
for opposite conditions, where, however, absolute differences
between the numerical values and those provided by (15)
remain lower than approximately 1%, and the percent error
is always lower than 10%. (Note that the percent error of the
FoM is the same as the FBW, since the gain is evaluated
numerically.)

Similar results are found for different beam angles and
more numerical and full-wave validations (not shown for
brevity) have been performed for different operating condi-
tions, confirming the consistency among all results. We can
also confirm that the approximate expression in (18) agrees
very well with that in (15) under the hypothesis of small
beamwidth, that is, for small &, namely & < 0.05. The error
in (18) is larger for larger values of &, but it is still small
for those values of & that would be used to maximize the
gain, viz., dop. In this regard, we should comment that the

numerical evaluation of the FBW performed here assumes
that the frequency dispersion of the normalized phase constant
(or, equivalently, the scan angle) is given by (11). In prac-
tice, the dispersion curve of a leaky mode propagating in
a PRS-based 1-D unidirectional LWA may differ from that
approximate equation, viz. (11), especially when the leak-
age rate is not small (namely for & > 0.05). This aspect
requires specific attention and thus will be treated in detail
in Sections IV-A and V-A.

Incidentally, we note that the condition for maximum gain
is very close to a local maximum for the FoM. This is clearly
manifest in Fig. 2(c), where G, FBW, and FoM versus &
are reported on a single plot for the representative case of
6pa = 30° and L/A¢p = 10. The gain and the FBW have
opposite trends except for low values of @, where they both
increase. This behavior determines the almost constant charac-
ter of the FoM for intermediate values of &. For low values of
a, the FBW is rather flat and the FoM behavior is substantially
determined by G, thus showing a mild local maximum. For
high values of &, G decreases (this is consistent with the
quasi-linear dependence of the beamwidth on &), but the
higher growth rate of FBW determines the slightly increasing
character of the FoM.

As a result, while there exists dqp that maximizes the gain
(see Table II), there is no optimum attenuation constant to
maximize the FBW: the larger the attenuation constant, the
larger the FBW. However, LWAs do not work properly for
large values of & (in practice, for & > 0.2k, the leaky-wave
contribution to the total aperture field might no longer be
dominant, see [25]) where they also exhibit poor gain. In addi-
tion, as we discussed at the end of Section III-A, the actual
bandwidth is also limited by the impedance bandwidth, thus
making ineffective the pattern bandwidth enhancement for
large values of a.

Another calculation of interest is to determine the maximum
FBW that can be achieved given a minimum gain constraint
and vice versa, that is, what is the maximum gain that can be
achieved given a minimum FBW. For this purpose, we show
in Fig. 3(a) the maximum FBW as a function of a minimum
gain constraint, and in Fig. 3(b) the maximum gain as a
function of a minimum FBW constraint for an air-filled 1-D
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unidirectional of length L = 104¢ and different design scan
angles. These plots were obtained by sweeping ¢ and finding
the optimum value that maximized the quantity of interest
while satisfying the constraint. The results are compared for
the infinite case (colored dashed lines) and show that both
the maximum FBW and the maximum gain are monotonically
decreasing functions of the minimum gain and minimum FBW
constraints, respectively.

In Fig. 3(a), the curves for L = 104y are correctly
interrupted when the minimum gain is about 15 dB: this
is indeed the maximum gain that one can get out of a
1-D unidirectional LWA of length L = 104, for any scan
angle (see Table II). Accordingly, in Fig. 3(b), the curves for
L = 10/ remain constant and equal to about 15 dB, as long
as the minimum FBW constraint is lower than the maximum
FBW obtained for the corresponding minimum gain constraint
of 15 dB [cf. Fig. 3(a)].

On the other hand, for an infinite 1-D unidirectional LWA
[dashed lines in Fig. 3(a) and (b)], the maximum FBW slowly
decreases to zero as the minimum gain constraint increases.
In both the infinite and finite cases, however, for a low
minimum gain constraint, the maximum FBW asymptotically
increases, but this usually requires unpractical values of &
as commented above. Correspondingly, for a large minimum
FBW constraint, the maximum gain slowly decreases and
eventually drops to O (not shown), but again this usually
requires unpractical values of & for which a leaky-wave analy-
sis is no longer appropriate. We finally note that the simple
relations between G (8) and FBW (16) for an infinite, air-filled
1-D unidirectional LWA allow for a simple analytic formula
to recover the dashed colored curves reported in Fig. 3(a) and
(b), and that reads

2.4
FBWair,oo ~ E tan Bpq sec Gyq. 21)
IV. DESIGN FORMULAS FOR THE CAVITY
HEIGHT AND THE PRS REACTANCE

Section IV aims at providing analytic expressions for cor-
rectly setting the cavity height and the PRS sheet reactance
to support the required leaky wavenumber to have maximum
gain at a given frequency, and to evaluate the scan performance
over a certain frequency range.

To this aim, and without loss of generality, we first consider
a dielectric-filled PPW of height 7 where the upper metallic
plate is replaced by a lossless, thin PRS characterized by a
single, scalar, purely imaginary sheet impedance Z; = jX;
(see Fig. 4, left). (Note that the transverse equivalent network
model in Fig. 4, right, assumes an infinite “baffle”; more
comments on this are given in Section V.) Typical subresonant
gratings of fishnet/cermet-like unit-cells fulfill this hypothesis
(viz., Zs = jX;) and for certain elementary topologies analyti-
cal expressions are available (e.g., [26], [27]). Nonetheless, the
results of Section IV can easily be extended to account for the
more general case of a thick PRS (as shown in Appendix A).

The results apply directly to common 1-D LWAs that
implicitly make use of the PRS concept, such as the holey and
the slitted waveguides [7], [28]. For these structures, expres-
sions are available for the complex surface impedance that
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Fig. 3. (a) Maximum FBW versus minimum gain constraint, and (b) maxi-

mum gain versus minimum FBW constraint for an air-filled 1-D unidirectional
LWA of length L = 104 (solid colored lines) and infinite length (dashed
colored lines) and different design scan angles.

accounts for both the internal and external impedances char-
acterizing the discontinuity. Therefore, one has to de-embed
the contribution due to radiation in free space to recover a
purely imaginary PRS sheet impedance: the optimum design
rules provided in Section IV-B apply to this quantity.

We first comment on the different dispersive behaviors
of TE and TM leaky modes in PRS-based unidirectional
LWAs and their effect on the bandwidth performance (see
Section IV-A). As a result, design equations for both the
PRS and the cavity height (see Section IV-B) are different
for TE and TM leaky modes. The inductive/capacitive
character of the PRS is also accounted for, and thus it is
seen that for each optimum condition, we have a four-fold
choice: inductive/capacitive PRS and TE/TM leaky mode (see
Section IV-A). The results of Sections IV-A and IV-B find
immediate application in Section I'V-C where they are used to
determine the scan performance of PRS-based unidirectional
LWAs.

A. PRS Properties

In Section I, we commented that for a PRS-based LWA ﬁ
and & are constrained to obey a particular relation. In the
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Fig. 4. Cross-sectional view of a dielectric-filled PPW of thickness &, where
the upper plate is replaced by a PRS with sheet impedance Z (left) and its
transverse equivalent network (right).

literature (see [11], [13], [16] and related works), it is assumed
that the fundamental TE/TM leaky mode pair propagating in
a PRS-based LWA obeys a hyperbolic relation of the type
pa = C, where C is a constant that depends on the PRS
reflectivity. We now show that this assumption turns out to
be accurate only close to broadside where the TE/TM leaky
wavenumbers are very similar to each other; as the scan angle
increases, C remains remarkably constant in the TM case, but
not anymore in the TE case. This aspect plays a key role in
the correct design of PRS-based LWAs as we will discuss in
more detail in Section I'V-B.

Since the dispersive properties of the leaky modes are not
affected by the antenna truncation, a simple way to obtain
an approximate expression of the PRS constant as a function
of the scan angle in the TM and the TE cases comes from
retrieving an expression for & from (4) in the infinite case
and by exploiting the expressions for the beamwidths of an
infinite-length PRS-based LWA [29, eqgs. (23) and (25)]. With
these expressions at hand, one finds that the PRS constant C
takes the following two different expressions in the TE or TM
case:

C™ = Cycosby (l — sin? Ho/er)3 = Cp cos* 6, (22a)
C™ = CysecOp/1 —sinOy/e: "= Cy (22b)

where C, = CTEI(;O:() = CTM|90=0 is the value of the PRS
constant at broadside and reads

_XWe
= 71778
with 79 =~ 1207 Q being the free-space impedance. It is
clear from (22a) and (22b) that C™® strongly depends on
the scan angle, whereas C™ jis almost independent for small
permittivities. This is even more evident in the air-filled case,
where C™E  cos* @y and C™ is indeed constant. Moreover,
(22a)—(22b) also reveal that close to broadside C™® and C™
are both approximately constant and equal to Cy. It is worth-
while noting here that Cy, only depends on X and &, that is,
the physical properties of the structure. Thus, Cy, is associated
with the PRS only.

We also note that the expression for Cy, in (23) coincides
with that in [11, eq. (18)] in the lossless case (i.e., Zs = j X
and tand = 0) and in the limit of a highly reflective thin
PRS, that is, |Xs|] < #79. The original expression, viz., [11,
eq. (18)], holds even for the lossy case and moderately
reflective thin PRS; this more general expression will turn

Cp

(23)
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to be useful to deal with thick PRSs [19], [20] as discussed
in Appendix A.

We should comment that in LWAs, the scan angle typically
changes with frequency, thus the dependence of the PRS
constant on the scan angle implies a dependence on frequency,
which may affect somehow the bandwidth properties of the
antenna. However, the PRS itself, by virtue of Foster’s reac-
tance theorem [30]-[32] will also exhibit a sheet impedance
that depends on frequency. The sheet impedance may also
exhibit spatial dispersion, that is, the dependence from the
scan angle [4], [27], [33]. Including a frequency-dispersive and
spatially dispersive model for the sheet impedance, even for
the simplest type of inductive/capacitive-like behaviors, does
not allow for straightforward analytical treatment. Neverthe-
less, we will show in Section V with full-wave results that
the formulas derived so far work remarkably well in practical
cases, since the bandwidth is fairly small when the beam is
narrow.

B. Design Formulas

Table II provides the optimum values of & to get maximum
gain at different scan angles (thus for different values of /)
from a PRS-based 1-D unidirectional LWA, as derived in [7].
However, we have not yet discussed how to obtain a given
pair of / and @ at a given frequency from this class of LWAs.
This task requires an accurate leaky-wave dispersion analysis.

With reference to the structure depicted in Fig. 4 along with
its transverse equivalent network, the dispersion equations for
the TE and TM modes are given, as is customary, through the
application of the transverse resonance technique [34] to the
TEN, and read

(TE) : jkuo + 10/ Xs + ks cot(kokah) =0 (24a)
(TB) : jky' + no/ Xs + eck,g cot(kokah) =0  (24b)

where ko = (1 — I%f)l/z and kg = (e — 12;%)1/2 are the
normalized vertical wavenumbers in the air and in the dielec-
tric, respectively. A remark is needed here about the choice
of the principal square root in the definition of the vertical
wavenumbers. As is well known, the square root for 1220
introduces a pair of branch points at k, = £1 (the dispersion
equations (24a), (24b) are even functions of k., and thus the
corresponding choice of the square root is immaterial). The
functions on the left-hand side of (24a) and (24b) are analytic
and single-valued over a two-sheeted Riemann surface whose
proper (Im[k,] < 0) and improper (Im[k,] > 0) sheets are
typically connected through the Sommerfeld branch cuts [25],
[35]. It can be shown that, when k, is in the fourth quadrant
(as we assume here), the principal square root choice that we
tacitly made for k, always gives the improper choice, and
thus a leaky mode [25], [35].

In most works dealing with LWAs, the dispersion equa-
tions (24a) and (24b) are typically solved for a fixed X and
h. Therefore, the wavenumber dispersion, that is, £ and @
versus f, of the fundamental TE-TM leaky mode pair has to
be found numerically, searching for the complex roots of (24a)
and (24b). Here, we are interested in solving the other way
around: for a fixed pair of / and & at the design frequency fp,
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TABLE III

OPTIMUM &, X, AND h/hppw FOR BOTH THE TE AND THE TM MODES (UPPER BOX: INDUCTIVE CHOICE, LOWER BOX: CAPACITIVE CHOICE), FOR AN
OPTIMIZED AIR-FILLED PRS-BASED 1-D UNIDIRECTIONAL LWA FOR DIFFERENT DESIGN SCAN ANGLES 6pg AND ANTENNA LENGTHS L /¢

(90(1 = 15° 90(1 = 30° 90(1 = 45° 90d = 60°
I . XSTE XSTM RTE |, ™™ N X;FE X;fM KTE |, T™M R XSTEXSTM RTE | T™ N XSTE X;FM KTE |, T™M
So| Qort (@) [ () [Foow | Poow | VP | () | () [Feow [homw| P [ ()| (@) |Boew [Foow | PPt [ ()| (Q) [Poow | Foow
76.2 | 67.3 |0.940(0.943 138 | 95.5 |0.907|0.916 268 | 122 |0.866 [0.884 751 | 179 (0.790(0.834
5 14.11-102 4.14-10—2 4.21-10—2 4.49-10—2
-76.5|-75.9(1.058|1.062 -141 | -116 [1.089/1.098 -288 | -163 [1.1236]1.142 -1000| -308 |1.156[1.205
52.6 | 47.2 |0.958]0.959 93.2 | 65.7 |0.935(0.939 174 | 80.1 | 0.906 |0.914 434 | 98.1 [0.854|0.875
102.03-10~2 2.03-102 2.05-1072 2.10-10—2
-52.7(-51.5(1.042|1.044 -93.9(-75.1|1.064(1.069 -178(-97.6[1.092 |1.101 477 | -137 |1.133(1.157
36.9 33.2 /0.970(0.971 64.5 | 46.1 |0.954(0.956 118 | 55.1 0.933 [0.938 278 | 63.4 |0.896|0.907
20(1.01-10—2 1.01-10~2 1.01-10—2 1.03-10~2
-37.0{-35.4{1.030/1.030 -64.7(-50.7 [1.046(1.048 -118(-63.2|1.066 1.071 -287(-79.3[1.101|1.113
123.2(21.2 [0.981]0.982 | 40.2 | 29.4 |0.971[0.972 72.5| 34.7 | 0.958 [0.959 164 | 38.6 |0.934(0.938
504.01-103 4.01-1073 4.02-1073 4.04-1073
-23.1]-22.0(1.019|1.019 -40.2{-31.0{1.029(1.030 -72.6(-37.8 | 1.042 |1.044 -166 |-44.2(1.066/1.070
16.3 | 15.0 |0.987|0.987 28.3 | 20.8 |0.980(0.980 50.8 | 24.7 | 0.970 [0.971 114 | 27.2 0.953]0.955
100/2.00-10—3 2.00-10—3 2.01-10—3 2.01-103
-16.2]-15.4(1.013|1.013 -28.2|-21.7[1.020{1.021 -50.9(-26.11.030{1.031 -114[-29.9(1.047|1.049
| 11.6 10.6 [0.991]0.991 | 19.9 | 14.8 |0.985(0.986 135.8(17.5[0.979(0.979 17951 19.2 |0.967(0.968
200(1.00-103 1.00-10~3 1.00-1073 1.00-10—3
-11.6|-10.81.009|1.009 -20.01|-15.21/11.015|1.015 -35.8(-18.2(1.021{1.022 -79.6]-20.61.033(1.034
7.35| 6.73 |0.994]0.994 12.6 | 9.48 [0.991]0.991 22.5| 11.1 {0.987 |0.987 50.0 | 12.2 0.979]0.979
500[0.40-10~3 0.40-10—3 0.40-10—3 0.40-10—3
-7.35|-6.86 |1.006|1.006 -12.6(-9.48 [1.009(1.009 -22.5(-11.5|1.013|1.014 -50.0(-12.7(1.021|1.021

we want to find the optimum X and 4. As commented above,
this would, in general, require us to numerically solve (24a)
and (24b) over the 2-D space parameter of X and #, as exact
analytical expressions of the form X(/, &) and h(f, &) cannot
be derived straightforward from (24a) to (24b).

One of the main results of this work is represented by
Table III, which reports, for different practical combinations
of antenna length and desired scan angle, the optimum values
of reactance sheet and cavity height to get the maximum
gain. The numerical values reported in Table III are obtained
through the above-mentioned 2-D numerical search (“Num.
2-D” in Table 1V) in the air-filled case, but the formulas have
been tested and proven accurate also in dielectric-filled cases
(not reported).

However, a blind 2-D numerical search over large ranges for
the two parameters might be either computationally expensive
(for a fine discretization of the intervals) or lead to inaccu-
rate results (for a rough discretization of the intervals). One
possibility is to reduce the dimensionality of the problem to
a 1-D numerical search. This approach can be performed by
taking the imaginary part of (24a) and (24b): the zeros of the
resulting equations define an implicit function of % only, thus
reducing the problem to a 1-D numerical search (“Num. 1-D”
in Table IV). The solutions for X are then found by taking
the real part of (24a) and (24b), yielding

X™E = Re| — —C— (25a)
.]kZ0,0p + kzd,op COt(277,' kzd,oph/lo)
— 1ok 0.0pk
X™ = Re 0= A0.00 2. 0p (25b)

jiézd,op + iéz(),opgr cot (znlezd,oph/lo)

where kpop = ko(f0)s kuop = kwua(fo), and Ao is at the
design frequency, and then plugging in the numerical values
for h found from the above-mentioned numerical 1-D search.

This approach can lead to very accurate results (we dis-
cuss the accuracy of all the proposed methods later in
Section IV-B), but still requires a 1-D numerical search. The
same accuracy can also be reached with a simple procedure
based on an iterative method (“Ite.” in Table 1V), provided
that a good initial guess is chosen. To this aim, we first
obtain approximate analytic expressions for the optimum sheet
reactances X'F, X™. For a given pair of £ and &, C™® and

C™ are uniquely determined, hence from (22a) and (22b) we
get
zmhasecly -1 ~Jmpa
1XTF = no =S 0, (260)
(er — sin® 00)' 0
z Ba costy =1 P
XM = o / = noympa.  (26b)

eV e — sin? 6o

However, the derivation of (26a) and (26b) does not distinguish
between the capacitive/inductive nature of the PRS, which
explains the modulus sign on the left-hand side of (26a)
and (26b). When the PRS is highly reflective, the optimum
reactance sheet values for the inductive/capacitive case are
actually symmetric with respect to the origin, and this approx-
imation is thus fairly accurate. One can easily check from the
numerical results of Table III that (26a) and (26b) yield very
accurate results close to broadside, and even at larger design
scan angles provided the antenna length is sufficiently large
to still require a highly reflective PRS to optimize the gain.
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TABLE IV

COMPARISON BETWEEN DIFFERENT METHODS FOR OBTAINING THE
OPTIMUM DESIGN PARAMETERS FOR L = 1019 AND fyg = 30°

L =10Mg, 6pa = 30° | L = 20Xg, Ogq = 60°
XTE | xTM KTE | pTM XTE | xTM RTE |, T™M
> s s s s
Method |Xs 2 01" &) |"(Q) [opw [T | (€2) | () |Fopw | Fopw
>0 |93.24|65.66(0.935[/0.939|277.99 | 63.44 {0.896|0.907
Num. 2-D
<0 [-93.91|-75.08|1.064|1.069 |-287.33(-79.21{1.101|1.113
>0 [93.22]65.73]0.935]0.939|278.09 | 63.49 [0.896|0.907
Num. 1-D
< 0 [-93.92|-75.08|1.064|1.069 |-287.24(-79.25[1.101|1.113
I >0 [93.22]65.73]0.935]0.939|278.09 | 63.49 [0.896|0.907
te.
<0 [-93.92|-75.08|1.064 | 1.069 |-287.24|-79.25|1.101|1.113
A >0 [91.33]| 64.5 [0.935]0.939|263.71 | 60.58 |0.898|0.909
na.
<0 |-91.85|-73.31(1.064|1.068|-270.46(-74.01{1.098|1.110

Now that we have expressions for the optimum reactance
sheet X, formulas for the optimum cavity heights in both the
TE and TM cases can directly be derived from (24a) to (24b),
leading to

o [ + Xk
htg = Rey — 0 1— —cot™! w
2kzd,op | T Xskzd,op

(27a)
A 1 i X, k
htm = Ref ——| 1 — —cot™! Wj—f/zo’op .
zd,op | T gTXS/kzd,op
(27b)

Note that the range of the inverse cotangent function is
assumed here to lie between —7z /2 and n /2. The values of
+XTE and £X™ provided by (26a) and (26b) can then be
used as initial guesses in (27a) and (27b) to get a first estimate
of hrg and hty; these values can then be used in (25a)
and (25b) to get a better estimation of £X1F and £X™ and
so on. Such an iterative process, based on (27a) and (27b)
and (25a) and (25b), reaches a satisfactory accuracy after few
steps. From Table 1V, it is manifest that the iterative process
fully converges to the results of the numerical 1-D method.
(The results of “Ite.” in Table IV have been obtained with
less than 40 iterations, with a convergence stop criterion set
to Ae = 0.001%, where Ae is the relative percent difference
between consecutive iterations.) Nevertheless, the X values
obtained with the numerical 2-D search are slightly different
from those obtained with the numerical 1-D and the itera-
tive method, whereas the h values coincide. This behavior
is mainly due to the different sensitivity of the dispersion
equation with respect to variations of either Xg or & from
the points of global minimum: a small change of & would
require a significant change in X to meet the resonance
condition. Conversely, significant changes in X, would require
only moderate changes in /. This sensitivity is also reflected
by (27a) and (27b), and (25a) and (25b), which reveal that &
varies with cot™!(-) and X, varies with cot(-), respectively.

7861

The general expressions in (27a) and (27b) can greatly be
simplified when specialized for scanned beams in the limit of
a highly reflective PRS, that is, X, < #o. In this case, £ > «a
and (27a) and (27b) simplify as

A 1 X
hyE" >~ — 2 |1- —cot™ __(n/X)
2\/ Er — Sill2 6()(1 L T \VEér — Sill2 90d |
(28a)
hi =~ —/10 1-— i cot™! Vér — S Pd sin® fba
2y & — sin? Ooa L T er(Xs/10) i
(28b)

where the contribution of dielectric losses has safely been
ignored. It is worth noting that the inverse cotangent is an odd
function and hence the inductive/capacitive (X, 2 0) nature
of the sheet impedance shifts downward/upward the design of
the cavity height.

We note that the first term appearing in front of the square
brackets is /ippy [cf. (10)] toward which both (28a) and (28b)
would asymptotically converge for X; — 0 (i.e., the asymp-
totic limit of a perfect electric conductor) with the TE-TM
PPW modes becoming a degenerate pair. Interestingly, in the
air-filled case &, = 1, (28a) and (28b) take a very compact
and advantageous form

A 1 0
TE air = 0 [1 - — cotl(in0 S;C 0d):| (29a)

2 cosbyq T s
I-—c

A 7
% ot~} Mo €08 Vod . (29b)
2 cosbyq T X,

We should comment that (28b) and (29b) are less accurate
than (28a) and (29a) for a beam approaching endfire, due to
the opposite dependence of the argument of the inverse cotan-
gent function with respect to the beam angle: in the TE/TM
case, the argument becomes larger/smaller with respect to 7
[see (27a) and (27b)], and this effect is more pronounced
as the PRS reflectivity diminishes (viz., Xs/7o increases).
Conversely, for a very highly reflective PRS, (28a) and (28b)
asymptotically evaluate as

i X/ — sin 0
RS ~ 0 (1— Ve T M Od) (30a)

2\ e — Sil’l2 Boa o

scan
TM, air

[

A X
hisn ~ 0 - s . (30b)
2\/ Er — Sil’l2 90d T HoV &r — Sill2 6()(1

As a side comment, we note that (27a) and (27b) reduce to [29,
eq. (32)] for f ~ & — 0 which is the condition for having a
highly directive broadside beam in either 1-D bidirectional or
2-D LWAs. Indeed, for ﬁ ~ a — 0, we have l%zo,op — 1 and
ku.0p = /%, thus (27a) and (27b) simplify as

o] Ao [, 1m0/ X+
hy = Re{2 5 [1 - cot (7& )“
~ (1_XWS‘) 31
2\/8_r T Ho

where the last expression is obtained for negligible dielectric
losses and a highly reflective PRS (i.e., Xy < #0). Equa-
tion (31) is equivalent to [29, eq. (32)].
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Another alternative method that yields analytical formulas
for X and h can be obtained from (24a) and (24b) under
some approximations. The analytical procedure (“Ana.” in
Table IV) is a bit lengthy and is thus reported in Appendix B.
All the proposed approaches are remarkably accurate as can
be inferred from the numerical results reported in Table IV
for two typical cases, namely L = 104y and 6yg = 30°, and
L= 2()}.0 and HOd = 60°.

C. Scan Performance

We apply here the considerations and results of the previous
Sections IV-A and IV-B to determine the scan performance of
a PRS-based 1-D unidirectional LWA, distinguishing between
the TE and TM cases. As commented in Section III-A, if one
is interested in the scan performance in terms of the gain at the
desired scan angle, the TE/TM distinction is not that impor-
tant: (13)—(18) are accurate enough for evaluating the FBW
and the corresponding angular range over which the gain at the
desired scan angle does not decay below —3 dB. Conversely,
if one is interested in the scan performance in terms of the peak
gain as the beam scans, the different dispersive properties of
TE and TM leaky modes in PRS-based LWAs discussed in
Section IV-A play a key role.

The different behavior of the peak gain over a finite angular
range is manifest from Fig. 5(a) to (b), where (a) the TE case
and (b) the TM case are shown for a PRS-based unidirectional
LWA of length L = 104y optimized for radiation at different
angles, using the design equations derived in Section IV-B.
These results have been obtained by solving numerically the
TE and TM dispersion equations, viz., (24a) and (24b), with
the optimum design parameters reported in Table III to get
the accurate dispersion curves (not shown for brevity) and
then evaluating the peak gain either numerically (solid lines)
or analytically through (7) (dashed lines). In all cases, the
peak gain has been evaluated over a frequency range spanning
from 0.6 fy to 1.8 fp (as highlighted by the green triangles in
Fig. 5(a) and (b) for the yg = 60° case only) and then mapped
into an angular range by means of the numerical wavenumber
dispersion curve and exploiting the relation 6y = arcsin j.

As can be inferred from Fig. 5(a), in the TE case, the peak
gain drops below —3 dB over a finite angular range which
is about 40°, 35°, 25° for Gy = 30°, 45°, 60°, respectively,
whereas it remains almost constant for f > f; in the TM case
[see Fig. 5(b)]. This different behavior is readily explained if
one looks at (22a) and (22b). Indeed, the variation of ,[3’ with
frequency is almost the same [12, see Fig. 4]), and in turn that
of & differs a lot from the TE and TM cases. In particular,
it is seen that the frequency variation of & in the TE case is
way more pronounced than that in the TM case. Since the
gain weakly depends on /4 but strongly depends on &, the
scan performance is heavily affected in the TE case, and only
slightly affected in the TM case. It is interesting to note that a
TM-polarized LWA that has its gain optimized at a particular
design scan angle will continue to exhibit a beam with a fairly
high gain as the beam is frequency-scanned, whereas for the
TE case, the gain drops more rapidly as the beam is scanned
away from the design scan angle.
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Fig. 5. Peak gain (in dB) versus the scan angle 6y for three different PRS-

based 1-D unidirectional LWAs optimized for (a) TE polarization and (b) TM
polarization and radiating at 30°, 45°, 60°, with an antenna length of 10¢.
Numerical (analytical) results in solid (dashed) lines. All curves are evaluated
over the frequency range 0.6 fo—1.8 f as shown by the triangles for the case
Ooa = 60°.

V. NUMERICAL VALIDATION AND APPLICATION EXAMPLE

In this Section V, we want to show how the overall opti-
mization workflow (i.e., Sections III and IV) can be applied
to the practical case of a PRS-based 1-D unidirectional LWA.
Section V has two main objectives that will be addressed in
Sections V-A and V-B, respectively. In Section V-A, we assess
the accuracy of the formulas for both the bandwidth perfor-
mance (results of Section III) and the optimum design rules
(results of Section IV) through full-wave simulations of an
ideal structure. By ideal structure, we mean a full-wave model
with some simplifying hypotheses so as to have an excellent
agreement with the theoretical electromagnetic model used in
this work. In Section V-B, we demonstrate that the ideal model
used in Section V-A is in very good agreement with a more
realistic structure, which accounts for both the nonidealities of
the PRS (which is no longer modeled with a sheet impedance,
but is instead geometrically designed) and the finite size of the
ground plane.
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Fig. 6. (a) Ideal electromagnetic model of the PRS-based 1-D unidirectional
LWA as implemented in CST Microwave Studio. (b) Three-dimensional view
of the radiated pattern normalized to its beam peak.

Waveguide port

For the cases analyzed in Sections V-A and V-B we con-
sider, for the sake of simplicity, an air-filled &, = 1 PPW-
like structure of length L = 104y operating at the design
frequency fy = 10 GHz, where the PRS consists of an array of
inductive metallic strips of width w with period p < 4o under
TE polarization. This last assumption is advantageous for
the PRS modeling since the sheet impedance of an array of
inductive (w <« p) metallic strips in free space and under
TE polarization is not spatially dispersive, and thus the PRS
shows the same Z for any ,[3’; the same feature holds for
capacitive strips under TM polarization, according to Babinet’s
principle [36].

In addition, we assume the frequency dispersion of the
PRS as Z; = j2xfL, where L = X(fy)/(2xm fy) to model
the inductive behavior of the narrow strips. Although the
bandwidth analysis in Section III ignores the frequency dis-
persion of the PRS, this aspect has negligible effects on the
leaky wavenumber dispersion (see [14]), as confirmed by the
numerical results of Sections V-A and V-B. It is worthwhile
to stress that we only show here one application example, but
many other cases have been considered and tested. Specif-
ically, we tested our results for both the TE and the TM
cases, for both the inductive and capacitive cases, and for scan
angles higher and lower than 30°, for antenna lengths larger
or smaller than L = 104p. Comparison between the results
obtained in these different operating conditions confirmed the
theoretical LWA performance commented on in Section III-B
(the results obtained in terms of FBW, G, and FoM were all
in good agreement with those reported in Table III). In all
cases, the agreement between the theoretical and full-wave
results was comparable with that reported for the application
example discussed in Sections V-A and V-B.

A. Ideal Model

The ideal model of the optimized structure designed in CST
Microwave Studio [37] and the simulated 3-D radiation pattern
(normalized to its beam peak) are shown in Fig. 6(a) and (b),
respectively. As shown, the structure is excited at one end with
a waveguide port operating in its fundamental TE;y mode (in
the coordinate system shown, the subscripts 1 and 0 denote
field variation in the z- and y-directions, respectively) and
terminated in a matched load (through the definition of another
waveguide port with no excitation). A sheet impedance bound-
ary condition is applied on top of the waveguide to represent
the PRS. In order to simulate an infinite ground plane, PEC
walls are applied to the lateral boundaries of the domain of
evaluation. These PEC walls extend along the z-axis with
respect to the cavity height to form a ‘baffle’ on top of which

7863

is put a perfectly matched layer (PML) boundary condition to
simulate an electromagnetic environment that matches as much
as possible the transverse equivalent network in Fig. 4. The
length of the baffle b is set to b = A9/4 = 7.5 mm, whereas
the short side of the waveguide d is set to d = 1p/3 = 10 mm
to have the antenna operating with a single mode at the
frequencies of interest. The other relevant parameters, that
is, the cavity height and the PRS sheet reactance are set
to h = 0.935h,py = 16.183 mm and X, =93.2Q to have
maximum gain at pg = 30° with L = 104, according to
the results in Table III. These settings yielded an excellent
agreement with the theoretical prediction as can be inferred
from the 3-D radiation pattern shown in Fig. 6(b), and as we
will discuss in detail below.

The first result that shows the impressive correspondence
between the ideal model implemented in CST and the theo-
retical prediction is the comparison between the wavenumber
dispersion as calculated numerically from the dispersion equa-
tion in (24a) [black solid line in Fig. 7(a)] and as retrieved
from the scan angle of the radiation pattern in CST [blue
circles in Fig. 7(a)]. In Fig. 7(a), we have also shown the
wavenumber dispersion of the equivalent lossy PPW model,
that is, (9) [green dashed line in Fig. 7(a)], and of the lossless
PPW model, that is, (11) [red dotted line in Fig. 7(a)]. The
normalized attenuation constant curves are available only for
the lossy PPW model and the numerical results, and the small
deviations between them are merely attributed to the frequency
dispersion of the PRS constant C in the TE case (commented
in Section IV-A) which is not accounted for in the lossy PPW
model. For the PPW solution the value of the effective loss
tangent was chosen based on a fixed value of C™E, chosen
at the desired scan angle of 30°, corresponding to f = fp.
The normalized phase constant curves are instead mostly
overlapped in all cases. We should note that the excellent
agreement between the lossless PPW model dispersion curve
and the full-wave results is essential for the accuracy of the
formulas provided in Section III to determine the bandwidth
performance.

In this regard, we have reported in Fig. 7(b), the variation
of the gain at 30° as the frequency changes from 9 to 11 GHz.
The gain at 30°, as evaluated from CST, reaches its maximum
at 10 GHz (highlighted with a solid green dot) as predicted
from theory, and drops off —3 dB over an FBW (the band
edges are highlighted with green dashed lines) of around
6.34%. The theoretical prediction (i.e., using (7) for the gain,
and (15) for the FBW) and numerical prediction [i.e., through
the numerical evaluation of the gain from the radiation pattern
in (1) and its corresponding —3 dB frequency points using the
numerical wavenumber dispersion reported in Fig. 7(a)] report
instead bandwidths of 6.23% and 6.24%, respectively (the
band edges are highlighted with black and red dashed lines,
respectively, and the peaks are denoted with a black square
and a red cross), thus confirming the remarkable accuracy of
both the formulas and the model. (The black, red, and green
vertical and horizontal dashed lines are almost superimposed.)
On the other hand, the gain peak at 30° is 15.37 dB from
CST (green dot), whereas it is around 15.23 and 15.22 dB
from theory (black square) and from numerical results (red
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Fig. 7. (a) Dispersion curves f and & versus f/fy for the structure investigated in Section V-A (parameters in the text): comparison between different

models. (b) Gain (in dB) versus f/fo as evaluated with a time-domain simulation of the ideal CST model. The —3 dB frequency points are highlighted with
vertical dashed lines. (c) Gain (in dB) versus X (Q) at f = 10 GHz as evaluated with a frequency-domain simulation. The maximum value is highlighted
with a green dot, whereas the theoretical prediction is highlighted with a black square. (d) Radiation pattern normalized to its beam peak P () versus 0 (°)

in the principal plane (E-plane) at f =9, 10, 11 GHz (theoretical and full-wave results are reported in solid lines and dots, respectively).

plus sign), respectively; these values lead to FoMs of 2.156,
2.071, and 2.075, for CST, theoretical, and numerical results,
respectively.

The previous results were obtained through the time-domain
solver of CST in order to get a sufficient number of frequency
points over the bandwidth 9-11 GHz with a fast broadband
simulation. However, in order to further assess the consis-
tency of our optimum design rules, we decided to use the
frequency-domain solver of CST to run a parametric analysis
of the structure at a fixed frequency, by varying the value of
the reactance sheet X from 60 Q to 120 in steps of 2 Q. The
result is shown in Fig. 7(c) and demonstrates that the gain is
indeed maximized for a value very close to the theoretical one.
More precisely, CST obtained a maximum gain of 14.94 dB
for 92Q (green dot) instead of the predicted 15.22 dB for
93.2Q (black square and dashed lines).

To complete the picture, in Fig. 7(d), the radiation pattern
normalized to its beam peak P(f) = P(0)/P () over the
principal plane (i.e., ¢ = 0°) at the center frequency (in
green) and at 9 and 11 GHz (in yellow and blue for the lower

and higher edge, respectively) obtained with CST (colored
dots) are compared with those obtained with a straightforward
implementation of (1) (note that a cos?(f) has been included
to account for polarization effects) together with the numerical
wavenumber dispersion reported in Fig. 7(a), showing again
an excellent agreement.

B. Realistic Model

The results of Section V-A assessed the accuracy of the
proposed formulas when an ideal electromagnetic model of the
optimized LWA is designed in CST. Here, we want to remove
some simplifying assumptions and show that the proposed
optimum design rules still work even for a more realistic
structure. Specifically, we refer to the structure depicted in
Fig. 8(a), where: 1) an MSG (the relevant design parameters
are provided next) replaces the sheet impedance boundary con-
dition; 2) a finite ground plane of lateral size W now appears
at both sides of the PRS; and 3) the baffle with the PML on
top and the lateral PEC boundary conditions are replaced by
radiation boundary conditions. The 3-D radiation pattern of
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Fig. 8. (a) Realistic electromagnetic model of the PRS-based 1-D unidirec-

tional LWA as implemented in CST Microwave Studio. (b) Three-dimensional
view of the radiated pattern normalized to its beam peak.

this realistic structure is shown in Fig. 8(b) and differs from
that of the ideal model [cf. Fig. 8(a)] due to the presence of
some spurious radiation below the horizon (due to the finite
size of the ground plane) and the presence of some ripples
along the cone of radiation (due to edge diffraction from the
finite-size ground plane). The slight differences between these
patterns are commented on in more detail below, by showing
the effect that each assumption made in the ideal model has
on the radiation performance.

For this purpose, the radiation patterns (normalized to their
beam peak) over the principal plane are shown in Fig. 9 for
different simulated structures. Specifically, we first reported
for comparison purposes only the patterns of the ideal model
in Fig. 6(a) (green solid line with dots). Then, we removed
the PEC lateral boundary conditions and introduced a ground
plane with different sizes W ranging from 24, and 54¢ (see
dashed gray lines) for the model in Fig. 8(a). The PRS was
represented by a sheet impedance. It is seen that the size of the
ground plane has no significant effects on the radiation pattern
but in all cases the beam peak shifts to 31° (this is better
appreciated from the inset of Fig. 9). However, we found that
the finite ground plane is not responsible for the beam peak
shift; it is rather the absence of the baffle on top of the PRS.
As a matter of fact, when we simulated the structure with a
finite size ground plane with W = 34 and a baffle extending
b = Jp/4 = 7.5 mm beyond the PRS and with a PML right
on top, we obtained a radiation pattern that points again at
exactly 30° (see the yellow solid line with dots).

It is worthwhile to stress here that a strong truncation of the
antenna length L may cause an appreciable beam peak shift
due to the element pattern, as exhaustively discussed in [38].
However, the optimum gain conditions always lead to radiation
efficiencies as high as 92% (see [7, Table II]) for which these
effects can safely be neglected for practical antenna lengths (as
can be inferred from [38, Fig. 2]) and are thus not discussed
further.

Finally, we replaced the sheet impedance boundary con-
dition with an MSG with p = J¢o/4 = 7.5 mm and
w = 1.82 mm. Such an MSG shows a reactance sheet of
about 93.13 Q (note that the optimum value of X; is 93.2Q;
cf. Table III) according to the homogenization formula for
inductive metallic strips under TE polarization [26], [27] that
we report here for the reader’s convenience as

X. P, TWw
= no-—In| csc .
= 1o 7o 2p

(32)
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Fig. 9. Radiation patterns normalized to the beam peak P(6) versusf (°) in
the principal plane at f = 10 GHz for different CST models, progressively
moving from the ideal one (in green) to the more realistic one (in red). The
inset highlights the region close to the beam peak.

Results with the actual MSG but the baffle present [to better
match with the ideal model of Fig. 6(a)] are shown with a red
dotted line.

As manifest from Fig. 9, there are negligible differences
between the ideal model with the MSG (red solid line with
dots) and that with the PRS impedance (green solid line with
dots). As expected, when we use a finite-size ground plane
with W = 3]y and the MSG, the beam peak shifts again
to 31° (see the inset of Fig. 9) because of the absence of the
baffle. Except for this small difference, the agreement between
all the models is excellent.

For the sake of brevity, we did not repeat all the simulations
we showed for the ideal model, since the gain evaluation is
a consequence of the radiation pattern that we just showed is
in very good agreement among all models. Notwithstanding,
we evaluated with full-wave simulations both the gain and the
bandwidth performance for the realistic model in Section V-B
obtaining results consistent with those shown in Fig. 9 and
thus not reported.

VI. CONCLUSION

In a previous work [7], we laid the groundwork to derive
by analytical and numerical means optimum conditions for
maximizing the gain of 1-D unidirectional LWAs assuming
that the leaky normalized phase / and attenuation é constant
can be varied freely. In this work, we specialized these results
to PRS-based 1-D unidirectional LWAs. For this class of struc-
tures, an approximate analytical wavenumber dispersion exists,
from which it has been possible to determine the bandwidth
performance and the gain—bandwidth FoM when the antenna
is designed to operate under the maximum gain conditions
described in [7]. In this case, £ and & can no longer be varied
freely but must obey the hyperbolic relation C = fa, where
C is the PRS constant. Interestingly, we found that the Sa
product does not always remain constant; this relation holds
approximately true only for TM leaky modes, whereas for TE
leaky modes, there exists a strong dependence on the scan
angle.
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One of the main objectives of this work was to link the
general optimization procedure described in [7] to a more
specific one, providing practical design rules for the general
class of PRS-based 1-D unidirectional LWAs. In particular,
we were interested in finding the optimum PRS and cav-
ity height parameters that lead to the optimum gain. These
design rules have been found with both accurate numerical
methods and approximate analytical formulas using a rigorous
dispersion analysis of the transverse equivalent network of
the structure. Interestingly, we found that there exist indeed
four different equivalent ways to maximize the gain for a
given antenna length and beam angle, depending on whether
an inductive/capacitive PRS and a TE/TM leaky mode are
considered.

We should also stress again that, as opposed to PRS-based
1-D bidirectional LWAs [16], PRS-based 1-D unidirectional
LWAs are rarely used to radiate a beam at broadside, and
the gain—bandwidth FoM depends on the design scan angle,
increasing with the design scan angle. The FoM also decreases
slightly as the aperture length increases but is almost indepen-
dent of the aperture length for larger lengths. This is another
important finding of this work.

The entire design flow, that is, from the determination of the
optimum £ and & to the determination of the optimum design
parameters, has been demonstrated for the reference case of
an air-filled PPW-like structure of length L = 104, at 10 GHz
excited in its TE fundamental leaky mode, when the PRS is a
metal strip grating. The radiating performance of this structure
has been optimized for achieving maximum gain when the
beam angle is fixed and was validated through time-domain
and frequency-domain CST full-wave simulations, as well as
an accurate numerical leaky-wave analysis. Two CST models
have been implemented: an ideal model that better matches
the theory, and a realistic model that better matches a practi-
cal realization of the structure. A remarkable agreement was
found among all techniques, thus corroborating the validity
and accuracy of the proposed analysis for the optimization
of the radiating properties of finite-size 1-D unidirectional
LWAs. Future activities are planned to derive similar optimum
conditions for the relevant cases of finite-size 1-D periodic and
1-D bidirectional LWAs.

APPENDIX A
EXTENSION TO THE THICK PRS CASE

To have a more compact notation, the results of this appen-
dix are expressed in terms of the normalized sheet (input)
admittance defined as Y, = no/Zs (f’in = 1o/ Zin).

The extension to the thick PRS case requires modifications
to the formulas for the PRS constant, that is, (23) and for
the cavity height, that is, (24a) and (24b). We start from the
modification required by (23). As shown in [19] and [20], for
a thick PRS, the normalized input admittance looking upward
171: is what is important. For a lossy, thin PRS, Yi: is related
to Y, through

V) =G+ Bl =1+Gs+ jB,. (33)
The relation between the PRS constant C}, and the reactance
of a lossless, thin PRS [viz., (23)] has been extended to the
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lossy case in [11] and reads

2./e 1+G
Cy = i(tan5+ ¢ + =) (34)
2 T (14 Gs) + B2

Hence, (34) is easily generalized to the thick PRS case upon
making the following substitutions:

14+ G, — G}
By — B

(35)

As concerns the cavity height formulas, we have a reactance
term X appearing in (24a) and (24b) that we need to gener-
alize. To this aim, we first need to distinguish between the TE
and TM cases. For the TE case, a more general form reads

G+ jBl — jkucot(2nkah/2) =0 (36)
whereas for the TM case reads
G+ jB — jeky cot(2nk,ah/ i) = 0. (37)

Comparison between (36) and (24a) reveals that the sought
generalization requires, in the TE case, the following
substitutions:

T ~+

X, — B

By the same token, comparison between (37) and (24b) pro-
vides, in the TM case, the following substitutions:
k 1/G;
0= VG (39)
Xy — —1/B;.

APPENDIX B
ACCURATE FORMULAS FOR CAVITY
HEIGHT AND PRS REACTANCE SHEET

We aim at deriving approximate closed-form expressions for
the cavity height 4 and the PRS sheet reactance X once the
/ and & of the TE or TM dominant leaky wave propagating
in a PRS-based 1-D unidirectional LWA are given a priori at
a given operating frequency.

To this aim, we start from (24a) and (24b) and note that
if we assume the PRS to be sufficiently reflective, that is,
X < 1o, the optimum cavity height Aoy should be designed
close to the first resonance, that is, 2nl€zdh /A >~ 1, so we
use the first-order Laurent approximation for the cotangent
function, viz., cot(z) >~ 1/(z — ). Under this assumption,
simple but lengthy algebraic manipulations allow for having
a closed-form expression for /gy in terms of ,[3’ and @, solely,
and for By = —10/ X, in terms of  and @, and Aoy

We show here the whole derivation for the TE case (the TM
case follows straightforward and is thus not repeated; only final
results are provided). Therefore, from (24a) we have

BT ~ jko+ — (40)
PO okesah
For the sake of simplicity, we define
BIE = jkoy BIF= d (41)

k()/%zdh — T
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such that BT® = BTE+BTE. From (40) and the definitions (41),
Bt and hgp are expressed by the following equations:

opt
Blo, =Re[BIF] +Re[BY"] (42)
how:  Im[BJF] +Im[BY’] = 0. (43)

After simple algebraic manipulations, we obtain the following
expressions for the real and imaginary parts of B;FII::Z:

Re[B[F] = an
[ ] koh (:bszzd + &;d) - ﬁzdh
(kohBa — )~ + (kohd,a)®
Im[B["] = B
(BT Tl

- . (44)
(koh P — 77)2 + (kohiza)?

Putting all the pieces together, we get an equation for B
in terms of 4, which reads

TE
s,opt

Bam — kohlkal|*
o P ohlkzal 45)

(kohfoa — ) + (kohda)?

and a second-order polynomial equation a>x> + a;x +ag = 0

pTE __
Bs,opl -

for x = hgf;pt with the following coefficients:
a = k§lkal*
a) = _2k07l',BAzd (46)
ap = 71'2[1 + &Zd/(ﬁzon')].

Plugging the two roots of AJ}; into (45), we obtain a capacitive

(Bs > 0) and an inductive solution (B, < 0) for B;[:Epl'
With similar steps, the following results are found in the

TM case. The reactance sheet is given by
sTM _ a0
s,opt — ~
ko |?

e[ koh (P2 — 03)) — Pur]
[koh (ﬁzzd - ‘ﬁd) - ,Ezd”]z‘f‘ [Zkohﬁzd&zd - &zdn']z
47)

TM . . . .
whereas h g, is given by a second-order polynomial equation

box? + bix + by = 0 for x = hST’I(\)’{)t with the following
coefficients:
by = kglkaal*
by = —2kor B[ lkn|* — eréiaalknl?/ (Par)]
by = [ lkal* — ertaalknl®/ (Bor)].

(48)
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