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Achieving quantum-enhanced performances when measuring unknown quantities requires developing suitable
methodologies for practical scenarios, which include noise and the availability of a limited amount of resources.
Here, we report on the optimization of substandard quantum limit Bayesian multiparameter estimation in a
scenario where a subset of the parameters describes unavoidable noise processes in an experimental photonic
sensor. We explore how the optimization of the estimation changes depending on which parameters are either
of interest or are treated as nuisance ones. Our results show that optimizing the multiparameter approach in
noisy apparata represents a significant tool to fully exploit the potential of practical sensors operating beyond the
standard quantum limit for broad resources range.
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I. INTRODUCTION

The goal of quantum metrology is to estimate a set of
physical parameters, exploiting quantum resources to achieve
improved performances beyond those achievable by classical
methods. The use of quantum probes discloses the capability
to reach the Heisenberg limit (HL), gaining a quadratic scaling
advantage over the standard quantum limit (SQL) correspond-
ing to the use of N independent probes [1–5]. Often in a real
scenario, even if the interest relies on a single parameter, the
process is unavoidably affected by the presence of unknown
noises. For these reasons, it is usually more effective to treat
these estimations using a multiparameter approach [6–10].
Despite their importance, experimental demonstrations of
quantum enhanced estimation in the multiparameter case are
still few and limited to modest amounts of coherent quantum
resources [5,11–15]. The following two extremal scenarios
are prototypical for multiparameter metrology. In the first
case, all the unknown parameters are treated on the same
level, and thus one needs to optimize the overall amount of
information extracted. Here, the adoption of quantum probes
can provide improved performances with respect to strategies
where each parameter is estimated separately [16–19]. In the
second extremal case, only one parameter is considered to
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be of interest, but the dynamics of the metrological evolution
intrinsically involves other nuisance parameters, of which an
approximate knowledge is although necessary to retrieve a
good estimator for the desired one. For instance, we have to
deal with this scenario when different sources of noise affect
the evolution: phase and visibility [20–23], phase and phase
diffusion [24,25], magnetic field and decoherence [26] for
example. The optimal strategy in this case is very different
from the optimal one in the former scenario, since now the
interest is to maximize the information extracted on one pa-
rameter at the expense of all the others [27]. In the general
case, intermediate configurations between these two extremal
scenarios can be defined, corresponding to different choices
of the cost function. For example, a couple of parameters
could be considered of interest while the others are treated as
nuisance. For each specific scenario, different strategies may
thus turn out to be optimal. In general, the importance of the
different parameters can be weighted arbitrarily.

Another crucial aspect of quantum metrology in a prac-
tical scenario regards the availability of a finite amount of
resources N in the estimation process. The standard approach
is based on a theoretical framework dedicated to defining
bounds and strategies in the asymptotic limit of large N .
However, when only a finite number of resources is available,
any estimation strategy needs to be tailored to optimize the
convergence for low values of N [28–30]. A powerful tool
here is represented by adaptive protocols, which enable faster
convergences to the ultimate limits [31,32]. These have been
implemented both through online [23,33] and off-line [34,35]
approaches also resorting to the use of different machine
learning algorithms [15,36–38]. These techniques demon-
strated two relevant characteristics, namely fast convergence
to the ultimate bounds and performances independent of the
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particular value of the parameter of interest. Different ex-
perimental applications of adaptive techniques have been re-
ported, first in single-parameter estimation problems [37–42]
and then in a multiparameter setting [14,43]. In this sce-
nario, the versatility of the multiparameter approach allows
us to choose the optimal allocation of resources, depending
on which are the parameters of interest and which are the
ones associated to noise processes, treated instead as nui-
sances. Furthermore, the application of adaptive strategies in
the quantum metrology context is beneficial also when the
quantum probe state is in a continuous variable (CV) Gaussian
state. In particular, squeezed light has emerged as a valuable
resource as demonstrated by its use in various domains, from
gravitational wave detection [44] to recent research on dis-
tributed quantum sensing, where CV states enable enhanced
precision and sensitivity in multiparameter estimation tasks
[45,46]. However, also in the CV framework, real-world mea-
surements are often dynamic and subject to various sources
of noise and fluctuation. Adaptive strategies, such as adaptive
Bayesian estimation, allow systems to dynamically respond
to changing conditions, optimizing measurement protocols in
real-time ensuring enhanced measurement performances.

In this work, we investigate a multiparameter estimation
scenario, where the parameters of interest are a physical ro-
tation angle [47,48] together with the noise values involved
in the interferometric measurements. To this end, we employ
orbital angular momentum (OAM) of single photons, carry-
ing tunable OAM values up to 50, able to show N00N-like
sensitivities for rotation estimations [49–54]. Importantly, we
extend the single-parameter study [50] to a multiparameter
approach within a Bayesian framework [30,55–57] for all the
aforementioned scenarios by employing an adaptive strategy
ensuring the optimal allocation of resources [58]. Such an
approach allows us to extend the multiparameter estimation
problems to the regime of O(30000) number of quantumlike
resources, experimentally demonstrating sub-SQL precision
in the estimation of the rotation angle for wide resources
ranges even with nuisance parameters. In order to quantify
the quality of the reached performances, we define nontight
Bayesian bounds on the estimations in each considered sce-
nario. This work is applicable to all those cases where the
visibilities must be estimated on the fly, for example be-
cause they fluctuate from one rotation estimation to the other.
However, also if a precalibration of the visibilities before the
rotation estimation is possible, our approach will be optimal
with respect to the figures of merit and resources considered, if
the resources consumed in the precalibration are also counted.
Indeed, if a precalibration would be more efficient, our
protocol would choose it, as a first stage of the estimation.

II. PRECISION BOUNDS
FOR THE MULTIPARAMETER ESTIMATION

The goal of multiparameter quantum metrology is to iden-
tify regimes where the estimation precision outperforms the
one achievable by classical probes. A crucial aspect is to
keep such enhanced performances as the employed resources
increase. It becomes key to develop a platform able to inves-
tigate such a regime with quantum scaling of the precision.
Here, we study the simultaneous estimation, in the large

resource regime, of a rotation angle θ ∈ [0, π ) and of a collec-
tion of parameters (the fringe visibilities Vs1 , · · · , Vs4 defined
below) that affect the efficiency of the detection process [49].
More specifically, in our scheme, before each measurement
step, we select a control parameter s out of a set of four
possible values {s1 = 1, s2 = 2, s3 = 11, s4 = 51}, each cor-
responding to a device, which can be switched on at will and
produces the quantumlike resource. In the ideal (noiseless)
scenario, such choice is meant to force the interferometer to
produce a single-photon, N00N-like output state analogous
to those employed in Ref. [40] to achieve quantum limited
precision, i.e., the vector |ψs(θ )〉 := 1√

2
(|0〉 + e−2isθ |1〉), with

|0〉, |1〉 being orthogonal circular polarization states. Unfortu-
nately, the selection of high values of s also has the indirect
effect to add noise into the model, which ultimately deterio-
rates the associated visibility Vs ∈ [0, 1] of the measurements
we perform on |ψs(θ )〉 to recover θ . Our scheme relays on
two different types of detections, the first corresponding to the
projection of |ψs(θ )〉 on the basis {(|0〉 ± |1〉)/

√
2}, while the

second uses {(|0〉 ± i|1〉)/
√

2} as reference basis. Our inter-
est lies in determining how the estimation precision changes
depending on the different perspective from which the mul-
tiparameter problem is addressed. To this end, we apply the
Bayesian algorithm in Ref. [58]. This procedure identifies the
most effective adaptive strategy depending on the different
roles assigned to each parameter (θ , Vs1 , Vs2 , Vs3 , and Vs4 ),
whether they are of interest or are treated as nuisance pa-
rameters. In this protocol, the Bayesian posterior probability
distribution for all the parameters is represented by a particle
filter. For more details see Appendix B and Ref. [58]. From the
information accumulated in the reconstructed posterior distri-
bution, at each step, a greedy strategy selects the experimental
settings that minimize the future expected estimator variance
[58]. This is computed through a brute force procedure that
consists in simulating the evolution of the posterior distribu-
tion for all the possible measurements settings, and picking
the one with the smaller expected variance. We optimize both
the value s, that determines the successive probe state, and
the basis of the polarization measurement we perform on the
output state |ψs(θ )〉. The information flow in the Bayesian
algorithm is represented in Fig. 1, here the measurement
outcomes are used to update the posterior by the computer
unit that also calculates the next optimal measurement. The
parameters tuned by the optimization algorithm are the used
quantum resource and the appropriate polarization measure-
ment basis. To quantify the efficiency of the estimation, we
define a suitable figure of merit and derive bounds limiting
its minimal achievable value for the investigated metrological
task. Focusing on a generic experimental run rN composed
by a series of individual measurements, where, given i ∈
{1, · · · , 4}, the control value si is used νi times, we define
the total number of resources N = ∑4

i=1 νisi [2]. Hence, in-
dicating with θ̂ (rN ), V̂ (rN )

s1
, · · · , V̂ (rN )

s4
the estimated values of

θ,Vs1 , · · · ,Vs4 , we get from the Bayesian procedure, we gauge
the associated experimental error via the quantity �2

rN ,G(θ ) :=
G1,1|θ̂ (rN ) − θ |2 + ∑4

i=1 Gi+1,i+1|V̂ (rN )
si

− Vsi |2, where G is a
weight matrix that controls which parameters are to be treated
as nuisance and which are the parameters of interest [27]. We
repeat the whole estimation for a collection θ1, θ2, · · · , θJ of
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FIG. 1. Sketch of the experimental setup. Single photons are
sent through the apparatus consisting of a generation stage (blue
rectangle) and a measurement stage (orange rectangle). The first is
composed of a polarizing beam splitter (PBS) and three q plates with
different topological charges q = 1/2; 5; 25, respectively, followed
by a half wave plate (HWP). The measurement stage is composed
of the same elements of the preparation mounted in reverse order
in a compact and motorized cage, which can be rotated by an angle
θ . After the final PBS, the photons are measured through avalanche
photodiodes (APDs). The measurement HWP allows to set the polar-
ization measurement basis. The outcomes of the APDs are used by
a computer to update the posterior distribution and optimize, for the
next measurement, the tunable parameters consisting of the activated
q plate and the polarization basis.

J different values of θ uniformly distributed in [0, π ), and
for each θ j , we run the whole procedure M > 200 times.
Indeed, in this protocol, we can not fix the total number N of
resources, because the stochastic nature of the measurement
outcomes propagates to the online choice of the next q plate
and then to N , which is, therefore, a stochastic variable whose
exact value is only known at runtime. However, we can repeat
M � 1 times the simulation and collet the precision after
each used photon in the set of tuple {(�2

rn,G(θ j ), n)}, where
n is the total resource number used up to that point to get
to precision �2

rn,G(θ j ). We will then look at all the points
with total resources falling in the interval [n, n + �n] with
�n small, and the median error of this cluster is the error we
associate with n. We choose to cluster only the point having
n > 100, with the chosen interval being �n = 50. This finally
leads us to the identification of the error figure of merit:

M2
G := Median

⎡⎣1

J

J∑
j=1

�2
rN ,G(θ j )

⎤⎦, (1)

with the median taken on the M executions. This is the
median-square error over the different estimates, each ob-
tained, as usual in quantum metrology, as the mean of the
posterior distribution. The choice to compute the median

instead of the average is due to the fact, that the former is
much less sensitive to outliers which are always present in
such estimation protocols (see Appendix A). It is possible to
impose a theoretical lower limit on (1), which can be used to
evaluate the quality of our experiment. Specifically, we can
write:

M2
G � C̃G/N, (2)

where the constant C̃G is defined and computed in Appendix A
via nonlinear programming on the Cramér-Rao bound and
connecting the mean-square error to the median-square er-
ror. This bound is legit if we assume the local asymptotic
normality (LAN) of the estimators.

III. EXPERIMENTAL APPARATUS

In order to investigate a multiparameter metrological prob-
lem, we employ a state-of-the-art experimental apparatus,
which allows us to generate single-photon high-OAM value
states showing quantumlike sensitivities for the estimation of
a rotation angle. Importantly, we extend the result from the
single-parameter case [50] to a multiparameter one, exploring
unprecedented regimes for multiparameter quantum metrol-
ogy. The experimental setup is composed of a series of q plates
[50,59] with an increasing topological charge q arranged in a
cascade configuration as reported in Fig. 1. We test the proto-
col through single-photon states generated via a spontaneous
parametric down-conversion (SPDC) source in a Sagnac con-
figuration. Photon pairs are emitted at 808 nm pumping a
periodically poled titanyl phosphate (ppKTP) crystal with a
continuous laser with a wavelength equal to 404 nm. Once
generated, one photon is sent through the apparatus while the
other acts like a trigger allowing us to work with coincidence
events when the two photons of the pairs are detected by
avalanche photodiodes within a time window of few nanosec-
onds. Starting from single photons prepared in the horizontal
polarization state, we can generate a N00N-like state in the
OAM degree of freedom of the form: 1√

2
(|0〉|m〉 + |1〉|−m〉),

where |0, 1〉 refers to the circular polarization, while |±m〉
with m = 2q represents the OAM state and depends on the
activated q plate. The prepared state is then sent to a measure-
ment stage composed of the same set of q plates in reverse
order, allowing to reconvert the OAM state into a polarization
state. Such measurement stage can be rotated by an angle
θ ∈ [0, π ) by means of a fully motorized rotation cage, as
realized in Ref. [50]. In this way, the photon state passing
through the full setup becomes the vector |ψs(θ )〉 defined ear-
lier, where s = 2q + 1 is the total angular momentum of the
photon. By appropriately choosing the active q plate, deter-
mining m, the frequency of the oscillation interference fringes
can be tuned. Finally, through a half wave plate after the q
plate, it is possible to select also the measurement polarization
basis. Given the employed devices, we have access to states
with s = 1, 2, 11, 51. The first is obtained when no q plate is
activated, while the others are achieved activating in turn one
and only one of the three mounted q plates in the preparation
stage, and the corresponding one in the receiver. These states
generate oscillation patterns, retrieved from measurements in
polarization basis and characterized by visibilities Vs, which
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FIG. 2. (a) Median-square error of Eq. (1) for the phase only (blue line), with all the other parameters treated as nuisances. The green
line is the SQL = 1/N , and the red one is the HL = π2/N2, both converted to bound on the median-square error. The violet line is the
precision for nonadaptive measurements. In all the plots the black line is the bound of Eq. (2) computed for the appropriate weight matrix G.
(b)–(c) Median-square error for the phase and one of the visibilities, respectively Vs1 , Vs2 . For each plot, all the other three visibilities are treated
as nuisance parameters. In light red we plot the 99% confidence interval for the experimentally evaluated median error. (d)–(f) Frequency of
use of each q plates as a function of the number of resources, computed for a batch of 8 × 103 experiments with the measurement optimization
described in the main text.

depend upon the selected s, this is schematically represented
by the insert “Model” in Fig. 1.

IV. EXPERIMENTAL RESULTS

Here, we investigate the two scenarios mentioned in
Sec. I: in the first one the interest is focused only on the
rotation angle while the visibilities involved in the process are
only considered as unavoidable noises. In order to achieve a
reliable estimation of the rotation, it is indeed useful to keep
track of all the visibilities values, which are therefore treated
in such a scenario as nuisance parameters. In the second sce-
nario inspected, we consider also the visibilities as interesting
parameters. This happens, for instance, if the user is interested
in the complete characterization of an interferometer, and
therefore needs an estimation of the noise levels too. In this
context, depending on the selected configuration, the optimal
multiparameter estimation protocol can be found by assigning
positive weights to both the rotation angle and the visibilities.
Whatever the scenario, the optimization is performed in a
Bayesian framework that follows the strategy developed in
Ref. [58]. Our procedure is, however, very different when it
comes to counting the resources. A single experiment con-
sumes a single photon, however, we do not count this as the
consumption of a single resource but as the use of a number
of resources equal to the total angular momentum of the pho-
ton in that experiment. This is done to set a correspondence
between the photon states and the entangled N00N states with
sizes equal to the available total angular momentum of the
photons. Our N00N-like states can achieve quantum-limited
precision, similarly as multipass protocols do [40]. It is worth
noting that, similar to multipass protocols, which quantify
the resources invested in estimation based on the number of
interactions between the probe and the sample, it is reason-
able to consider the total angular momentum as a valuable

resource in the estimation protocol. There are several rea-
sons for this choice. Generating and measuring higher-order
orbital angular momentum requires more complex devices
such as q plates with higher topological charges or spatial
light modulators with larger effective areas. Moreover, the
propagation of these states requires us also to address their
divergence.

We start measuring the angle θ while treating the visibil-
ities as nuisance. To this end, we set the weight matrix G
in Eq. (1) to have G11 = 1 as the only non-null entry. The
online execution of the Bayesian algorithm is only simulated.
This means we first run a stage where we perform a large
number of measurements for all the possible q plates, po-
larization bases, and rotation angles θ j , and then we queue
the outcomes. In the second stage, in running the Bayesian
analysis off line, we evoke the needed measurement at each
step from the appropriate queue. We collect such outcomes for
J = 8 different rotation angles in [0, π ) (reported in Table I of
Appendix D), which is the periodicity interval of the system,

TABLE I. Values of the eight angles analyzed in the experiment
and their corresponding visibilities for each q-plate configuration.

θ V1 V2 V3 V4

0.00235 0.8776 0.9091 0.8445 0.7038
0.06145 0.9085 0.8934 0.8007 0.7611
0.38000 0.9399 0.9153 0.7936 0.7222
0.49620 0.9211 0.9315 0.7261 0.8186
1.6645 0.9331 0.8914 0.8691 0.7312
1.8750 0.9599 0.9081 0.8762 0.6618
2.5900 0.9187 0.9587 0.8775 0.6848
2.9600 0.8986 0.9321 0.8700 0.7528
– 0.9197 0.9174 0.8322 0.7295
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reporting Figs. 2(a)–2(c) the experimental median-squared
error for some of the different investigated scenarios. The opti-
mized median-square error when the rotation angle is the only
parameter of interest is reported in Fig. 2(a) where the experi-
mental data are compared with the Cramér-Rao bound on the
median of Eq. (2), the SQL and the HL [60] (both corrected
to refer to the median error). Along with the precision for
the optimized Bayesian strategy we report, as a comparison,
also the experimental precision for a nonoptimized strategy
[violet line in Fig. 2(a)] in which the activated q plate and
polarization measurement basis are randomly chosen. While
it shows for large resources an advantage with respect to the
SQL, it is in the transient much worse than the optimized
strategy.

In the Bayesian estimation the prior distributions on the
visibilities is uniform in [0, 1] and the prior on the angle is
likewise uniform in [0, π ). With the goal of minimizing the
posterior variance on the estimation of the rotation angle, the
adaptive algorithm selects at each step the most appropriate
quantumlike (q plates) resource among the available ones. The
resources that the Bayesian algorithm selects for the phase
estimation are reported in Figs. 2(d)–2(f). For N > 104 only
the q plate with larger topological charge q is used, while for
N very small only s = 1 is selected. In between, we have a
transient regime where multiple q plates are used together.
This is the region that benefits the most from the optimization.

The experimental results show that the obtained error ap-
proaches the computed bound, which proves to be a valid
reference even if nontight. Notably, for the evaluation of
the phase, even if the visibility values are completely un-
known, the implemented multiparameter protocol shows an
enhanced estimation precision compared to the SQL for a
large resources range, previously unexplored by multipa-
rameter estimation experiments. Importantly, differently from
Ref. [50] (see Appendix C for more details) where the mea-
surement strategy has been precalibrated according to the
visibility values, here we show that it is still possible to
obtain a large region showing sub-SQL performances in the
medium-large resource range (1 < N < 104), treating the four
visibilities as nuisance parameters.

We now consider the scenario where the visibilities are not
treated anymore as nuisances but count in the evaluation of
the error. This happens for instance if the user is interested
in the full characterization of the apparatus and its configu-
ration, therefore needing an estimation of the noise levels as
well as of the rotation angle. It is interesting to see how the
optimization of the available resources changes in these new
configurations. In particular, we will focus on the scenario
where one is interested in the estimation of the angle and
one of the visibilities (the i0th one), while the three remain-
ing ones are still treated as nuisance parameters. Under this
assumption, the parameters of interest are collected in the pair
(θ,Vsi0

) and the median error of Eq. (1) is computed with the
weight matrix having G1,1 = Gi0,i0 = 1 as the only nonzero
elements. As shown in Fig. 2, under these circumstances the
Bayesian protocol, although switching to higher-dimensional
OAM states to decrease the error on the rotation angle, contin-
ues to use also the q plate related to the visibility chosen: this
is necessary to obtain a good precision on the joint error. The
results of the estimation of each of the four possible couples

are reported in Figs. 2(b)–2(e). In particular, the plateaus in
Figs. 2(d) and 2(e) highlighted in green appear since, for few
resources, the q plates corresponding to s = 11 and s = 51
are not significantly used, therefore, the estimator of the cor-
responding visibilities remains the mean value of the uniform
prior distribution in [0, 1], i.e., 0.5, while the error on the
phase decreases, thereby reaching a plateau in the error de-
termined by the value of the visibility Vi0 itself. This changes
only when the algorithm starts to use the high-charge q plates,
and the error finally decreases. In Fig. 3 other scenarios
where the visibilities are not treated as nuisance parameters
but become themselves parameters of study are reported. It
is interesting to see how the optimization of the available
resources changes in these new configurations. When we are
interested in the estimation of the rotation angle and one of
the visibilities, the Bayesian protocol, although switching to
higher-dimensional OAM states to decrease the error on the
rotation angle, will continue to use the q plate related to the
visibility chosen [see Figs. 3(d) and 3(e)]. In particular, the
initial plateau appearing in Figs. 3(a) and 3(b) are due to
the fact that for few resources the q plates corresponding to
s = 11 and s = 51 are not significantly used and therefore the
estimator of the corresponding visibilities remains the mean
value of the uniform distribution in [0, 1] (the prior), i.e., 0.5,
until when the algorithm starts to use the high-charge q plates,
and the error finally decreases. Lastly, we try to estimate all
the five parameters (θ,V1,V2,V3,V4), which means setting
all the diagonal elements of the matrix G in equal to 1, ob-
taining the results reported in Figs. 3(c) and 3(f).

As a final observation, we notice that in the case where one
focuses only on the phase θ there is still a pretty large region in
which the slope of the optimized estimation error scales with
sub-SQL performances [specifically looking at Fig. 2(a), this
happens for values of N between 2000 and 5000]. The region
where sub-SQL scaling (in N) can be observed is defined by
the maximum amount of the topological charge q employed in
the apparatus. This region can be thus extended by increasing
the maximum value of q. Such behavior on the contrary is
damped (but still present) when considering the estimation of
the pairs (θ,Vsi0

). The reason for this is that the visibility is
an inherently classical parameter and cannot benefit from the
high angular momenta being our quantum resources.

V. DISCUSSIONS AND CONCLUSIONS

In summary, quantum sensing promises to be one of the
first quantum technologies exploited to enhance tasks with
respect to what is achievable with classical resources. Most
of the realistic metrological problems involve more than one
unknown parameter, which led to the birth of multiparameter
quantum metrology. In this context, a fundamental problem
is to optimally allocate the finite available resources, de-
pending on which parameters are treated as nuisance noises
and which are the parameters of interest, in order to unlock
wider regions of sub-SQL scaling. In this work, we accom-
plished both these tasks considering the scenario where the
parameter of interest is either only the rotation angle or the
angle and the fringes visibility. We experimentally showed
that this approach is able to reach sub-SQL performances on
the estimation precision even when unknown nuisance noises
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FIG. 3. (a)–(c) Median-square error for the phase and one of the visibilities, respectively Vs3 and Vs4 (blue lines). For each plot, all the other
three visibilities are instead treated as nuisance parameters. (c) Median-square error on the joint estimation of the phase and all four visibilities.
In light red, we plot the 99% confidence interval for the experimentally evaluated median error. (d)–(f) The frequency of use of each q plates
as a function of the number of resources, computed for a batch of 103 experiments with the measurement optimization described in the main
text. (d)–(e) refer to the joint estimation of the rotation angle and one visibility, respectively Vs3 and Vs4 . (f) refers to the joint estimation of the
rotation angle and all the visibilities.

are present, for a resources range O(30000). The obtained
results have shown the possibility of extending the advantages
of multiparameter quantum metrology in the large resource
domain. On the other hand, the methodology here described
can find application in large varieties of experimental plat-
forms for quantum sensing with analogous noise models, thus
representing a tool for future generations of quantum sensors,
which can be employed to boost sensing scenarios such as
the dynamical tracking of biological reactions [23], but also
for estimating the relative rotation of communicating stations
[61]. Finally, another key advantage of this approach is that
it enables the system to be adaptable and resource efficient,
tailoring the estimation process to the specific characteristics
and parameters of interest in various experimental setups, in-
cluding more complex scenarios involving multiple entangled
sensors [62]. This adaptability allows for improved accuracy
and scalability, making it a valuable tool in the pursuit of
ultraprecise sensing across diverse applications.
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APPENDIX A: DERIVATION OF MULTIPARAMETER
PRECISION BOUNDS

In this section, we derive the multiparameter precision
bound of Eq. (2) in the main text. In order to do so, we start
from the quantity that we simulate, which are the measure-
ment outcomes. The greedy algorithm selects for each photon
consumed in the experiment the best value of s among the
available ones and the polarization basis b that give us the
maximum information gain. We called rN the list of tuples
containing these choices, together with the relative measure-
ment outcome o, i.e.,

rN = {(s1, b1, o1), (s2, b2, o2), · · · , (sK , bK , oK )}. (A1)

Notice that the number of total resources used N and the
number of measurements K , i.e., the number of photons are
different. We also call this string the trajectory of the estima-
tion run. The most widely employed figure of merit for the
precision of an estimator is the squared deviation from the
true values of the parameters. Given the estimators θ̂ (rN ) and
V̂ (rN )

si
for θ and Vsi respectively, and a weight matrix G that

codifies which parameters are of interest, we have introduced
in the main text the error quantity

�2
rN ,G(θ ) := G1,1|θ̂ (rN ) − θ |2 +

4∑
i=1

Gi+1,i+1|V̂ (rN )
si

− Vsi

∣∣2
,

(A2)

its expectation value on the experimental run is �2
G(θ ) :=

ErN [�2
rN ,G(θ )]. We then take the expectation value of this

precision on the prior distribution for θ and define �2
G :=

Eθ [�2
G(θ )]. We can approximate these expressions by means

of M simulations for each of the J angle θ j . So that we can
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write

�2
G � 1

MJ

M∑
m=1

J∑
j=1

�2
rm, j

N ,G
(θ j ), (A3)

where rm, j
N is the trajectory of the mth experimental run for

the jth angle. The figure of merit in Eq. (1) of the main
text is computed by taking the median of the M quantities∑J

j=1 �2
rm, j

N ,G
(θ j ) instead of the mean. We now see how the

Cramèr-Rao (CR) bound sets a limit to �2
G and how this can

become a bound for the median error M2
G. Depending on

the measurement basis chosen, the results o1, o2 ∈ {−1,+1}
of the two polarization measurements for the ith q plate are
distributed, respectively, according to

p1(o1|s1, θ,Vsi ) := 1
2 (1 + o1 · Vsi cos 2siθ )

p2(o2|s1, θ,Vsi ) := 1
2 (1 + o2 · Vsi sin 2siθ ). (A4)

We have νi measurements for the q plate si in total that
we assume being evenly split between the two polariza-
tion bases. From these probabilities we can write the 5 × 5
Fisher information matrix I (FI matrix) for the five parameters
(θ,Vs1 ,Vs2 ,Vs3 ,Vs4 ), whose nonzero elements are

I11 =
4∑

i=1

4s2
i V 2

si
νi

(−4 + 3V 2
si

+ V 2
si

cos 4siθ
)

−8 + 8V 2
si

− V 4
si

+ V 4
si

cos 4siθ
,

Ii+1,1 = − 4siV 3
si
νi cot 2siθ(

V 2
si

− csc2 siθ
)(

V 2
si

− sec2 siθ
) ,

Ii+1,i+1 = 2νi

(
1

−V 2
si

+ csc2 siθ
+ 1

−V 2
si

+ sec2 siθ

)
,

for i = 1, 2, 3, 4, and Ii+1,1 = I1,i+1 for symmetry. The
Cramér-Rao bound, holding true for asymptotically unbi-
ased estimators, is then expressed by the following inequality
involving �2

G(θ ):

�2
G(θ ) � Tr(G · I−1), (A5)

by taking the expectation value on the prior on θ we have

�2
G = Eθ

[
�2

G(θ )
]
� Eθ [Tr(G · I−1)] � Tr(G · Eθ [I]−1).

(A6)

We now want to renormalize the uses of each q plate νi in
such a way to highlight the dependence on the total number of
resources N , i.e., νi := xiN . The FI matrix I becomes I = NĨ ,
where the entries of Ĩ are similar to that of I , only that νi is
substituted with xi. The CR bound reads now

�2
G � Tr(G · Eθ [̃I]−1)

N
� CG

N
, (A7)

where the expectation value of the matrix Ĩ is diagonal with
entries

Eθ [̃I11] = 4
4∑

i=1

xis
2
i

(
1 −

√
1 − V 2

si

)
, (A8)

Eθ [̃Ii+1,i+1] =
4xi

(
1 −

√
1 − V 2

si

)
V 2

si

√
1 − V 2

si

, for i = 1, . . . , 4,

(A9)

and CG is the solution of the following minimization problem:

CG = minxi Tr(G · Eθ [̃I]−1)

subject to
∑4

i=1 sixi = 1

xi � 0

(A10)

In order to get a reference value for the median-square error,
we suppose that the estimators θ̂ (rN ) and V̂ (rN )

si
are asymptoti-

cally normal and unbiased, we give some empirical evidence
of this later in this section. Because the square of the de-
viations |θ̂ (rN ) − θ j |2 and |V̂ (rN )

si
− Vsi |2 are left skewed and

independent variables, we observe that

Median

⎡⎣ J∑
j=1

�2
r j,m

N ,G
(θ j )

⎤⎦ �
J∑

j=1

Median
[∣∣θ̂ (rm, j

N ) − θ j

∣∣2]
+ Median

[∣∣V̂ (rm, j
N )

si − Vsi

∣∣2]
.

(A11)

The variable θ̂ (rN ) − θ j is normally distributed and centered in
zero. Under this hypothesis it is easy to show that the median
of its square is proportional to the variance

Median[|θ̂ (rN ) − θ |2] = ξErN [|θ̂ (rN ) − θ |2], (A12)

with a factor ξ � 0.4549 that can be estimated numerically.
Therefore, the bound on the median error of the estimation is

M2
G � ξCG

N
:= C̃G

N
, (A13)

with C̃G = ξCG. We will now briefly prove the relation be-
tween the median and the mean-square error. Under the
aforementioned assumptions we have θ̂ (rN ) − θ ∼ N (0, σ 2).
From the formula for the transformation of the probability
distributions we compute the probability density function for
y := |θ̂ (rN ) − θ |2, which is

f (y) = 1

σ
√

2πy
e− y

σ2 . (A14)

The mean value of y is by definition σ 2, i.e.,∫ ∞

0

y

σ
√

2πy
e− 1

2
y

σ2 dy = σ 2. (A15)

The median M := Median|θ̂ j − θ j |2 = Median(y) is defined
by the implicit formula∫ M

0

1

σ
√

2πy
e− 1

2
y

σ2 dy = 1

2
. (A16)

By introducing k = y
σ 2 and M = ξσ 2 and changing variable

in the above integral we get∫ ξ

0

1√
2πk

e− k
2 dk = 1

2
. (A17)
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FIG. 4. Probability density of the error for the rotation angle esti-
mator (blue bars), compared with a reference Gaussian distributions
(orange bars). This plot is for an estimation with N = 3000 resource
and a batch size b = 3000 (total number of runs). The outliers of
the estimator distribution (which appear even farther away from
the central peak than the ones showed) are very impactful on the
mean-square error, while not affecting at all the median-square error.

In this integral the only unknown is ξ , and it can be solved
numerically to get Eq. (A12), since by definition xi is the
proportionality factor between the median and the variance.
In Fig. 4 we report the comparison of the estimator for the
rotation angle produced by the Bayesian procedure with a
reference Gaussian. This justifies empirically the affirmation
we made in the paper that the distribution for the estimator is
asymptotically a biasless Gaussian affected by outliers. What
we measure with the median-square error is the width of
the central Gaussian-like part of the blue distribution, while
ignoring the outliers.

APPENDIX B: BAYESIAN ALGORITHM

In this section we complement the presentation of the
Bayesian algorithm that we gave in the main text with
the application to our q-plates setup in mind. With respect to
the original formulation, we made a few corrections necessary
because of the circular nature of the angular variable that
we are going to measure. In every experiment, np = 5000
particles have been used. The parameters to estimate are col-
lected in the vector x := (θ,Vs1 ,Vs2 ,Vs3 ,Vs4 ), which contains
the phase in the first entry and the four visibilities in the other
ones. The Granade’s approach [58] is based on a particle filter,
which represents on a computer the posterior probability dis-
tribution with the ensemble E := {(xk,wk )}, of np pairs com-
posed of a particle k in the position xk and with a weight wi.

The weights are updated after each measurement with the
Bayes rule, i.e.,

wk
t+1 ∝ wk

t p(ot |si, xk ), (B1)

and depend therefore on the measurement step t . The prob-
ability p(ot |si, xk ) is either p1 or p2 according to the basis
of the polarization measurement chosen. The weights wk

t+1
are renormalized after each update. In the following, we will
drop the dependence on the measurement step t except when
needed. The jth component of the kth particle of the ensem-
ble will be represented as xk

j , and could correspond to the
phase if j = 0, that is xk

0 = θ k or to one of the visibilities if

j = 1, 2, 3, 4, that is xk
j = V k

sj
. The mean of the angular values

is computed as

μ̂0 := arg

[ np∑
k=1

wk exp
(
iθ k

)]
, (B2)

while the mean values of the visibilities are

μ̂ j =
np∑

k=1

wkV k
s j
. (B3)

Together they form the vectorial mean of the posterior distri-
bution μ̂ = (μ̂0, μ̂1, μ̂2, μ̂3, μ̂4). Its components will also be
our estimators for the parameters, i.e., θ̂ := μ̂0 and V̂si := μ̂i.
The covariance matrix is defined as

Covi j :=
np∑

k=1

wkdi
(
xk

i , μ̂i
)
d j

(
xk

j , μ̂ j
)
, (B4)

where for i, j = 1 we use the circular distance, i.e.,

d1
(
xk

1, μ̂1
) = π − ∣∣(xk

1 − μ̂1
)

mod 2π − π
∣∣, (B5)

while for i, j > 4 we use the regular distance di = |xk
i − μ̂i|.

The scalar variance of the posterior distribution is

σ 2 := Tr[G · Cov] =
∑
i, j

Gi jCovi j, (B6)

by simulating each one of the possible eight experiments (four
q plates and two polarization bases among which we have
to choose) and selecting the one with the lowest expected
variance we realize the greedy optimization described in the
main text. In particular, we compute for each combination of q
plate and polarization basis the expected scalar variance, i.e.,

E[σ 2] :=
∑
o=±1

p1/2(o|si, V̂si , θ̂ j )σ
2(o), (B7)

where σ 2(o) is the variance of the posterior distribution
where the weigh update of Eq. (B1) is performed assum-
ing the outcome o for the measurement. This variance is
weighted with an estimation for the probability of getting the
outcome o. In this way the algorithm attempts to concentrate
as much as possible the distribution around its mean, without,
however, planning for more than one step ahead in the future.

The simplest possible nongreedy extension of this would
be to simulate two measurement steps, this would mean com-
puting 64 possible expected variances. Simulating many more
steps becomes quickly unfeasible, and a more refined ap-
proach, possibly involving machine learning is required. The
resampling strategy of the Granade procedure in Ref. [58]
has also undergone minor changes to adapt it to the phase
estimation problem.

APPENDIX C: NONADAPTIVE OFF-LINE STRATEGY
FOR THE SINGLE-PARAMETER ESTIMATION

For clarity we report here a very brief comparison with
the single-parameter estimation strategy of Ref. [50]. In the
previous experiment, the apparatus is the same, but there
we are doing single-parameter estimation. The visibilities are
measured beforehand and are used (together with the charges
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of the available q plates) to compute an optimal strategy, that
is the optimal use of q plates. In that situation in contrast
to this paper, the strategy is nonadaptive and computed off
line. The online strategy of this paper is useful when the
visibilities are not known in advance and can change during
the experiment.

APPENDIX D: VALUES OF THE ANGLES
AND THE VISIBILITIES

The value of the rotation angle is known from the mechan-
ical platform on which the receiving end of the apparatus is
mounted and the visibilities are computed from the estimator

V̂ =
√

ν[(2 f0 − 1)2 + (2 f+ − 1)2] − 1

ν − 1
, (D1)

where f0 and f+ are the frequencies of the outcomes
o = 0 and o = + of the two polarization measurements for
a fixed phase and q plate, and ν is the number of ex-
periments executed for each polarization. These estimators
for the visibilities are evaluated prior and independently of
the Bayesian procedure. The results will be considered the
true values of the visibilities in evaluating the precision of
the Bayesian approach, i.e., �2

rn,G(θ j ). These are shown in
Table I.

Table I contains the values of the eight angles analyzed in
the experiment and their corresponding visibilities for each
q-plate configuration. The last line reports the mean values
of the visibilities. We did not stress this point in the main
text, but for each angle we have a slightly different value of
the visibility, and this is taken into account in computing the
square error.
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