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Recent studies have shown that light propagating in a nonlinear, highly multimode system can
thermalize in a manner totally analogous to that encountered in traditional statistical mechanics. At thermal
equilibrium, the system’s entropy is at a maximum, in full accord with the second law of thermodynamics.
In such arrangements, the entropy is extremized once the statistical power allocation among modes
associated with this photon gas attains a Rayleigh-Jeans distribution that is fully characterized by an optical
temperature T and a chemical potential μ. However, it has been theoretically argued that the variables T and
μ represent actual thermodynamic forces that control the exchange of the respective conjugate quantities
between two subsystems. In this work, we report, for the first time, optical calorimetric measurements in
nonlinear multimode fibers, which unambiguously demonstrate that both the temperature T and the
chemical potential μ dictate the flow of their associated extensive quantities, i.e., the energy and the optical
power. Specifically, we study the process of light thermalization associated with two orthogonally polarized
laser beams. Our observations are enabled by recently developed techniques that allow one to judiciously
multiplex/demultiplex the optical power within various mode groups. Our results indicate that because of
photon-photon collisions, “heat” only flows from a hot to a cold photon gas subsystem—thus providing an
unequivocal demonstration of the second law in such all-optical thermodynamic arrangements. In addition
to being fundamental, our findings provide a new approach to manipulate laser beams using thermody-
namic principles.
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I. INTRODUCTION

In classical physics, optical and thermodynamic phe-
nomena are generally categorized into two distinct classes,
given that the former is ruled by Maxwell’s equations while
the latter follows the principles of statistical mechanics.
Although thermodynamic effects merge with optics when
light interacts with matter—e.g., polariton condensates in
semiconductors, dye-filled optical microcavities [1,2], and
plasmonic resonances in metallic nanostructures [3]—these
same processes are completely absent in purely linear
optical systems due to the very nature of photons.
Nevertheless, in nonlinear optical settings, photons can
interact with each other through a variety of conservative

nonlinear mechanisms, which is in great contrast to linear
environments where superposition is allowed; hence,
electromagnetic waves recover their initial state once their
interference ends. In the nonlinear domain, electromagnetic
waves do not simply interfere, but they may experience a
nontrivial, utterly complex interaction that completely alters
their state [4]. To understand such convoluted interactions in
multimode nonlinear systems, a series of attemptsweremade
to establish a statistical description of these effects [5–11].
Yet, a self-consistent thermodynamic theorywas put forward
recently to understand, explain, predict, and harness these
complex nonlinear chaotic processes in highly multimode
nonlinear environments [12].
In this theoretical framework, a multimode nonlinear

arrangement is shown to exhibit a behavior akin to that of
a gas of particles. In this respect, the photon occupancies,
assigned to eachmode, vary during nonlinear propagation—
an aspect that leads to energy exchange via particle or
“photon-photon” collisions. Eventually, the mode occu-
pancy distribution reaches thermal equilibrium, which cor-
responds to a state ofmaximumentropy (S), as expected from
the second law of thermodynamics. In this case, the dis-
tribution at equilibrium is described by the Rayleigh-Jeans
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(RJ) law, once themodes are sorted through their propagation
constants. The resulting RJ distribution is completely char-
acterized by a temperature (T) and a chemical potential (μ),
which specify the state at thermal equilibrium. In general, the
two intensive parametersT andμ can be uniquely determined
from initial conditions [13,14], through an equation of state
in a way analogous to thermodynamic gases [15], where T
and μ are linked to the extensive invariant parameters of the
system. They are as follows: (i) the optical Hamiltonian,
which is related to conserved linearmomentumof the system
and is hereafter called internal energy (U); (ii) the optical
power (P) in the system (which is also conserved in a lossless
arrangement),which plays the role of the number of particles;
and (iii) the number of modes supported by the systems,
which corresponds to the volume that is accessible to the
photon gas (M). This overarching equation of state is given
by [12]

U − μP ¼ MT: ð1Þ

We note that this theoretical framework is universal and
applies to any type of nonlinear multimode system in the
weakly nonlinear regime [13,16,17]. Recently, its validity
has been experimentally confirmed in multimode optical
fibers (MMFs) [18,19]. When applied to the relevant case
of graded-index MMFs, this thermodynamic description
allows one to explain and understand the intricacies behind
the so-called beam self-cleaning effect, whereby a highly
speckled beam morphs into a bell-shaped wavefront
because of nonlinearity [20,21]. In recent years, this
phenomenon has attracted much attention, owing to its
potential relevance for applications, e.g., for developing
high-energy fiber lasers [22,23] and high-resolution imaging
devices [24].
It is in this context that the new thermodynamic

framework displays its true potential, given that one can
predict the final modal composition at the fiber output from
the mere knowledge of the input beam state, without
resorting to heavy numerical simulations that are computa-
tionally both time- and energy-consuming. In this regard, it
is important to note that the values of T and μ are fully
determined by the input launching conditions, i.e., when
the laser source excites the MMF. Therefore, in practical
settings, the temperature and the chemical potential of a
beam can be varied by simply introducing a small angle
between the direction of the laser beam and the fiber axis
[25], as well as by appropriately modifying the laser
wavefront [26]. Generally speaking, the lower one sets the
beam temperature, the “cleaner” and brighter the ther-
malized beam will appear at the output. In other words, if
the optical temperature is low enough, only the funda-
mental mode, i.e., the mode having the highest propaga-
tion constant, will be macroscopically populated at
equilibrium—a phenomenon corresponding to classical
wave condensation [27,28].

Here, we focus on demonstrating a crucial prediction of
optical thermodynamics [12]. Specifically, in analogy with
other thermodynamic quantum systems [29], we extend the
theoretical study of classical nonlinear optical gases by
deploying calorimetric methods. At variance with Ref. [29],
which uses a single gas of photons whose temperature is
varied by an external source of heat, in this work, we
examine the process of heat transfer between two photon
(of orthogonal polarization) gases when propagating in an
MMF, which is thermally insulated. We find that the
interaction between the gases leads to a new state of
thermal equilibrium, whose parameters (temperature and
chemical potential) are fully determined by the initial
conditions (T1, μ1; T2, μ2) of the two gases, when
considered separately. In this regime, the two subsystems
thermodynamically interact in a grand-canonical-like man-
ner; i.e., they are allowed to exchange both power and
energy (momentum). This process has never been observed
experimentally in any study so far, partly due to the fact
that, for many years, no physical significance was attributed
to the intensive variables T and μ, and the respective optical
entropy S. In particular, it is only because of entropy
maximization that the heat flows from hot to cold systems,
in full accord with the second law. Indeed, the second law
of thermodynamics dictates that entropy maximization can
only allow energy flow from hot to cold, while it prohibits a
converse scenario. In this sense, the calorimetric study of
photon gases allows one to unambiguously demonstrate
that the optical entropy associated with multimode non-
linear systems is not only physical but also fully analogous
to the entropy in standard thermodynamic formalisms. We
show that our theoretical predictions are fully confirmed by
experiments that rely on the holographic mode decom-
position technique [30].
Indeed, our findings imply that it is possible to modify

the quality or brightness of a laser beam by exploiting the
nonlinear interaction with another beam in an MMF that
happens to have either a higher or lower temperature. In this
sense, our results pave the way for developing a new
generation of photonic tools for all-optically controlling the
spatial profile of intense laser beams.

II. THEORETICAL FRAMEWORK

Thermodynamics rules the properties of gases at thermal
equilibrium and permits their description in terms of
macroscopic parameters such as M, P, μ, and T [12,31].
The study of thermodynamic processes under quasi- or
nonequilibrium conditions by, e.g., the exposition of a
given object to an external heat source, or via a phase
transition, is the key topic of calorimetry. Temperature is
one of the first quantities that is introduced in a thermo-
dynamic theory: In statistical mechanics, it is defined in
purely mathematical terms—it describes the microscopic
distribution of particles among various kinetic energy
levels, or, in the case of a photon gas, its modal occupancy.
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On the other hand, when placed in the context of calorim-
etry, temperature acquires a physical connotation. Indeed,
when nonequilibrium processes are considered, temper-
ature becomes the physical parameter that governs the
exchange of heat (i.e., of energy) between two objects.
Specifically, heat can only flow from an object with a
higher temperature towards an object with a lower temper-
ature [31]. The heat flow will only stop when a new
equilibrium is established, i.e., when both objects have
reached the same temperature (Teq).
It is important to underline that such a principle is

associated with the maximization of entropy S, i.e., the
second law of thermodynamics, whereas the equilibrium
statistics of a gas in thermodynamics is only determined by
imposing the stationarity of S. Therefore, experimentally
demonstrating the establishment of an equilibrium as a
consequence of the interaction (heat exchange) between
two photon gases is a key for proving that the thermody-
namic temperature associated with the RJ mode distribution
indeed has a true physical meaning.
In this work, we consider the simplest case of two optical

beams (labeled as A and B), which are prepared with
different temperatures (TA and TB) and chemical potentials
(μA and μB), simultaneously propagating in an MMF. Note
that here, by T and μ, we indicate the values of temperature
and chemical potential that each gas would reach at thermal
equilibrium in the absence of the other gas. In fact, the
initial state of both gases is out of equilibrium (see the
paragraph below). These results are in accord with previous
theoretical predictions where the internal energy U and
power P are allowed to resettle between two subsystems
[12]. Here, we prepared the two beams with orthogonal
vertical and horizontal linear states of polarization, respec-
tively. In this way, the initial state of the system can be

depicted as that of two gases that occupy two comple-
mentary portions of the total available mode volume [see
Fig. 1(a)], corresponding to horizontally and vertically
polarized modes. On each side of the box, the color of the
beams indicates their temperature. Specifically, the colder
gas, depicted in blue, corresponds to the horizontally
polarized beam (A), whereas the hotter gas, depicted by
red particles, is associated with the vertically polarized
beam (B). We note that the use of colors is meant to help
visualizing the phenomenon, given that photons belonging
to the same mode and polarization are, by nature, fully
indistinguishable.
Moreover, note that under sufficiently adiabatic con-

ditions, it is possible to associate a photon gas with a
temperature even when the gas is in a nonequilibrium state;
i.e., its associated mode occupancy distribution does not yet
follow the RJ law, as depicted at the bottom of Fig. 1(a).
Indeed, one can compute the value of the temperature on
each side of the box in Fig. 1(a) from its corresponding
mode occupancy distribution. In fact, although T and μ are
defined at thermal equilibrium, their values are not calcu-
lated by fitting the RJ distribution at thermal equilibrium.
By assuming the presence of negligible linear disorder on
short fiber spans, and that T and μ are defined by an RJ
modal distribution at thermal equilibrium, their values can
be predicted by the mere knowledge of the mode occu-
pancy of the beam at any point of its propagation [19,32]
(see Appendix A). Even though the temperature and
chemical potential do not possess rigorous physical mean-
ing in exact nonequilibrium processes, they provide general
guidelines for the directions of energy and power flows
under quasi-equilibrium approximations. Experimentally,
we have to measure the power of the laser beam and
the mode occupancy at the fiber output. A laser beam

FIG. 1. Sketch of the thermalization process of two photon gases. (a) Initial state: Two orthogonally polarized beams are prepared with
different temperatures, chemical potentials, and mode distributions. (b) Nonequilibrium transient state: The difference in temperature
and chemical potential among the left and right sides of the box progressively quenches, until their associated mode occupancy
progressively approaches the RJ distribution, as a consequence of nonlinear beam propagation, i.e., of heat exchange between the two
gases. (c) Equilibrium state: The two gases reach the same values of temperature and chemical potential, and their mode distribution
obeys the RJ law.
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propagating in the MMF core is isolated since the energy
losses into the cladding are negligible in the absence of
fiber bending [33]. As a consequence, in the presence of a
single beam, the nonlinear beam dynamics in an MMF can
be described as the free expansion of a gas. This aspect will
be of interest in the next sections.
We will use the superscript letters H and V when

referring to the parameters of the left and right sides of
the box, respectively. On the other hand, when referring
to the initial temperature of each gas, we will use as
subscripts the letters A and B, respectively. Therefore, the
initial state in Fig. 1(a) is defined by TH ¼ TA, μH ¼ μA,
TV ¼ TB, and μV ¼ μB.
Once the photon system evolves, the two gases interact,

until progressively reaching the same equilibrium param-
eters. In our picture, the system evolution is enabled by the
removal of the barrier between the left and right sides of the
box. In particular, it must be noted that removing the barrier
allows for the mixing of particles that originally belonged
to either the A or the B photon gases. Therefore, it is
convenient to describe the thermalization process in terms
of the grand canonical ensemble. The chemical potential of
each gas will vary: Eventually, as it occurs for the temper-
ature, the chemical potential of the two gases will be the
same (μeq). On the contrary, if the exchange of particles
between A and B gases is not allowed, e.g., by means of a
barrier that is only permeable to heat, the two gases would
remain distinguishable during the whole thermalization
process, which would need to be described in terms of the
canonical statistical ensemble. In the canonical ensemble
regime, each gas subsystem conserves its number of
particles during the heat exchange process, and μH and
μV do not converge to the same value at the occurrence of
thermalization. In this work, we consider the former case in
our experiments. However, we will provide scenarios for
possible experimental demonstrations of beam heating and
cooling in the framework of a canonical ensemble. We note
that, for logistical purposes, we treated the system in a
grand canonical ensemble. It is also possible to study
the same arrangement in a microcanonical sense, where
the total linear momentum and number of photons are
conserved.
It is reasonable to assume that the equilibrium value of

the temperature and chemical potential [which are asso-
ciated with violet particles in Figs. 1(b) and 1(c)] is first
reached in the center of the box, where the first interactions
between the two gases take place [see Fig. 1(b)]. Later, a
thermal equilibrium is reached at the box periphery [see
Fig. 1(c)]. In its nonequilibrium transient state, each side of
the box is associated with a mode distribution that pro-
gressively approaches the RJ law [see the histograms at the
bottom of Figs. 1(b) and 1(c)]. Of course, as the color map
shows, before reaching an equilibrium, the temperatures on
the two sides of the box are different. Indeed, in the left part
of the box, the coldest gas is still present. As a result, the

temperature of the horizontally polarized photon gas will be
higher than that of the photons in vertically polarized
modes because its associated gas still contains more
energetic (red) particles (i.e., TA < TH ≤ TV < TB and
μA > μH ≥ μV > μB). The temperature difference between
the left and right sides of the box progressively quenches as
the input power grows larger and eventually vanishes when a
thermal equilibrium is reached (i.e., TH ¼ TV ¼ Teq and
μH ¼ μV ¼ μeq). Note that the volume of the box in Fig. 1
must not be confused with that of a classical gas system.
Here, in fact, the particles are contained in a “mode” volume,
which is not identified by spatial coordinates. In this sense, it
is not possible to establish a regime of spatially local
equilibrium as is done in nonhomogeneous systems, e.g.,
when defining the temperature of the surface of the Sun.
The values of Teq and μeq can be easily calculated. In

fact, when a gas of mass P increases its temperature from
T > 0 to T þ dT, it absorbs a quantity of heat δQ, which is
given by

δQ ¼ P · c · dT; ð2Þ

where c is the heat capacity of each gas, which depends on
T [34]. However, as it has been demonstrated for an MMF
in Ref. [26], when the temperature is sufficiently low, the
heat capacity can be treated as a constant, which is the case
for our experiments. We underline that the exact values of
Teq and μeq as a result of heat exchange between two gases
like in Fig. 1 can be determined by using the same
procedure as for a single gas, which is described in
Appendix B. In essence, in accordance with the require-
ment of extensivity, the total energy U, power P, and
volumeM of the combined system can be obtained through
a direct summation of those associated with individual
subsystems, i.e., U ¼ UA þ UB, P ¼ PA þ PB, and
M ¼ MA þMB. In the case of two gases interacting in
an isolated system, we can impose that QA ¼ −QB, i.e., all
of the heat absorbed by A is provided by B, which leads to

Teq ¼
PATA þ PBTB

PA þ PB
; ð3Þ

where we have reasonably assumed that the two gases
have the same heat capacity. Note that Eq. (3) holds as
long as both TA > 0 and TB > 0. An exact methodology to
predict the final temperature in this composite system is
presented in Appendix B. This approach implicitly
accounts for the temperature dependence of the optical
heat capacities involved. In fact, in the thermodynamic
description of multimode optical systems, thermal equi-
librium can be reached even at negative temperatures
[35,36], which is not within the scope of this study.
In addition, it is convenient to define the relative
power of the B beam as R ¼ PB=ðPA þ PBÞ, so that
the equilibrium temperature more easily reads as
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Teq ¼ ð1 − RÞTA þ RTB. Finally, the value of μeq can be
easily determined by substituting expression (3) in the
equation of state (1).

III. EXPERIMENTAL METHODS

Short spans of a graded-index MMF turn out to be the
perfect test bed for the verification of the process of heat
exchange between two photon gases. In fact, at near-infrared
wavelengths, MMFs are an adiabatic system since their
optical losses are practically negligible, as long as their length
is of the order of a few meters [37] and the beam optical
power is far from the catastrophic self-focusing regime [38].
As such, MMFs have been employed for the demonstration
of classical wave thermalization [18,19].
Here, we use a 2-m-long span of a standard graded-

index MMF (GIF50E from Thorlabs), whose core diam-
eter is 50 μm. Such a fiber supports about 110 modes at
the wavelength of our laser (1030 nm, Pharos from Light
Conversion, emitting 2-ps pulses with peak powers of the
order of tens of kW).
Two laser beams with a transverse diameter of 30 μm are

simultaneously injected into the fiber core. The two beams
form different small angles (less than 2°) with respect to the
fiber axis, in order to be associated with different temper-
atures. Both beams are injected at the core center. In fact,
the presence of both a nonzero injection angle and offset
with respect to the fiber axis leads to the impression of an
orbital angular momentum, owing to the cylindrical shape
of the optical fiber [25], which is responsible for a
modification of the equilibrium distribution [32]. In addi-
tion, the temperature of beam B is varied by introducing an
aperture along the laser path (see Appendix C). The two
beams are orthogonally polarized so that any interference at
the fiber input facet is avoided: The total power injected
into the fiber is simply given by the sum of powers in each
of the two beams (PAB ¼ PA þ PB).
At the fiber output, we employed the holographic mode

decomposition tool as described in Ref. [30]. This allowed
us to retrieve the values of the mode occupancy at the fiber
output, permitting us to determine the temperature and
chemical potential associated with each photon gas [12].
Finally, let us underline that the propagation distance

plays the role of time here. Now, the fiber length is fixed in
our experiments, whereas the beam power determines the
strength of nonlinear mode mixing, leading to mode energy
exchanges within the same beam, or among modes of
different beams. Therefore, we may track the “temporal”
evolution of the optical temperature in the box as a function
of input power [20]. It must be underlined that, as
mentioned above, input power also defines the number
of photons in a beam. Therefore, in order to emphasize the
role of input power in the interaction between different
beams (or photon gases), in the following we will refer to
the temperature as the ratio between T andP. In this regard,
one may notice that this operation does not invalidate the

theoretical expectation value of the equilibrium temper-
ature, which only depends on the power ratio between A
and B [see Eq. (3)], whose value is fixed in all of our
experiments.

IV. SIMPLE CASE OF FREE EXPANSION
OF A PHOTON GAS

Let us first consider the simplest case when just a single
photon gas is present, which freely expands into a box
while doubling its volume [Figs. 2(a) and 2(b)]. This
picture corresponds to the injection of a beam that has a
horizontal linear polarization at the fiber input, whereas the
fiber supports both polarizations. In this case, initially, the
gas only occupies half of the whole modal volume, whereas
the other half remains empty [Fig. 2(a)]. As a consequence
of its nonlinear propagation into the MMF, the beam
eventually loses its linear degree of polarization at the
fiber output: Modes with vertical polarization also get
populated, and the gas uniformly occupies the whole box
volume [cf. Fig. 2(b)].
The free expansion of the photon gas can be exper-

imentally demonstrated by projecting the beam at the fiber
output onto a given polarization direction by means of a
polarizing beam splitter. In particular, as shown in Fig. 2,
here we illustrate two significant cases, i.e., corresponding
to the insertion of either a vertical or a horizontal barrier in
the box. In analogy with Fig. 2(a), a vertical barrier
separates the mode volume into horizontally and vertically
polarized modes, which are highlighted in Fig. 2(c) by gray
and light green colors, respectively, whereas the horizontal
barrier projects the modes onto the 45° and the 135°
polarization directions, as highlighted in Fig. 2(d) by light
blue and yellow colors, respectively.
The intensity profile of the output beam for the four

polarization directions is reported in Fig. 2(e). Specifically,
these results were obtained when injecting laser pulses of
14 kWof peak power. As can be seen, a bell shape (which is
associated with a state of thermal equilibrium) is found
along all polarization directions, owing to the occurrence of
the beam self-cleaning effect. This finding is in agreement
with former studies of the nonlinear polarization dynamics
of beam self-cleaning [39]. For the sake of completeness, in
Fig. 2(f), we also show the mode distributions associated
with the images in Fig. 2(e). Notice that the differences
between all of these mode distributions are practically
negligible. Thus, they are associated with virtually identical
values ofT andμ. This result is shownby the data inFig. 2(g),
where we report the values of temperature and chemical
potential, which are calculated by starting from the exper-
imental mode decomposition for different projection direc-
tions of the output state of polarization. Indeed, the
temperature and the chemical potential maintain constant
values, within the experimental error.
It is worth noticing that, as mentioned above, one may

formally calculate the temperature associated with a
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speckled beam from its associated mode occupancy values,
even if the beam has not yet reached thermal equilibrium. In
fact, the thermodynamic parameters are fully defined by the
coupling conditions of the laser beam at the fiber input and
do not vary as a consequence of the nonlinear propagation
of the beam, which is confirmed by the results in Figs. 2(h)
and 2(i). These results correspond to a value of the input
peak power of 7 kW, which is not high enough for achieving
beam self-cleaning along all states of polarization. Indeed, as
can be seen in Fig. 2(h), rather different intensity profiles of
the output beam are obtained for the four polarization
directions. Specifically, the beam only has a bell shape in
the horizontal state of polarization, whereas a speckled
pattern is found when selecting other polarization directions.
As a result, different mode occupancy distributions are found
for each output intensity pattern [see Fig. 2(g)]. However, the
thermodynamic parameters corresponding to all of these
distributions turn out to be exactly the same, in agreement
with theoretical expectations.

V. REACHING THERMAL EQUILIBRIUM
WHEN MIXING TWO PHOTON GASES

WITH THE SAME “MASS”

In this section, we consider the thermalization process of
two beams carrying the same power (i.e., R ¼ 1=2).
Correspondingly, the two gases are formed by the same
number of particles; i.e., they have the same “mass.”
Aiming at emphasizing the role of heat exchange between

the two gases, we compare three different injection con-
ditions. Specifically, we consider the injection of the sole A
beam, the injection of the sole B beam, and the injection of
both beams. In order to distinguish the corresponding
thermodynamic parameters, in the following, these three
cases will be associated with the subscript symbols A, B,
and AB, respectively (e.g., the temperature of the left side
of the box when only the A beam is present will be referred
to as TH

A ).
The experimental results, in this case, are shown in

Fig. 3. At first, we inserted a horizontal-vertical beam
splitter at the fiber output, which is analogous to inserting a
vertical barrier into the box, as depicted in Fig. 3(a). The
corresponding values of the temperature and the chemical
potential at both sides of the box are shown in Figs. 3(b)
and 3(c) (see Appendix A for details about the calculation
of thermodynamic parameters). In agreement with theo-
retical expectations, we found that, in the presence of both
beams, the temperature at the left side of the box is always
higher than the temperature measured in the presence of the
sole A beam, for all values of the input power, i.e.,
TH
A ≥ TH

AB. On the contrary, symmetrically, we have that
TV
B ≥ TV

AB (μVB ≤ μVAB). In particular, at low input powers,
i.e., in the quasilinear regime, the temperature at the left
side of the box remains the same, within the experimental
error, independently of whether we inject the sole A beam,
or both the A and B beams (TH

A ≃ TH
AB). On the contrary, as

the input power grows larger, the TH
AB curve progressively

FIG. 2. Free expansion of a photon gas. (a) Input condition associated with a horizontally polarized laser beam. (b) Result of the gas-
free expansion. (c),(d) Output polarization analysis corresponding to either horizontal-vertical (c) or 45° − 135° (d) polarization
splitting. (e) Output beam profiles and (f) their associated normalized mode occupancy (mode power fraction) at an input peak power of
14 kW along different output polarization directions. (g) Temperature and chemical potential associated with the RJ distributions in
panel (f). For the error bars, we used the average value of the mode occupancy and its standard deviation, when repeating the same
reconstruction algorithm by moving the center of the output beam of�1 pixel in each direction with respect to the center position of the
CCD camera (see Appendix C for more details). (h),(i) Same as panels (e) and (f) at the input peak power of 7 kW.
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drops down until it reaches a plateau value, which coincides
with that of TV

AB, i.e., the temperature at the right side of the
box, that is obtained when both the A and B beams
copropagate into the MMF. This finding indicates that
an equilibrium temperature is reached, whose value is in
good agreement with the theoretical expectation of Eq. (3)
[dashed black line in Fig. 3(b)].
It is worth noting that the temperature at both sides of the

box does not vary with input power in the case where only
one beam is present; i.e., both the TH

A and TV
B curves are flat

in Fig. 3(b). This finding confirms that the nonlinear beam
dynamics in an MMF can indeed be described as the free
expansion of a gas, as discussed in the previous section. In
order to clarify the connection with the mode occupancy
distribution shown in Fig. 2, we report in Appendix D the
mode occupancy distributions relative to the experiments in
Figs. 3(a)–3(c).
The evolution of the chemical potential follows the same

trend of the gas temperature. In Fig. 3(c), we can see that
μHAB and μVAB both reach the same value at high input
powers, whereas at low input powers, their values are close
to that of μHA and μVB , respectively. This further proves that a
thermalization phenomenon between two indistinguishable

gases is observed. In this regard, it is worth mentioning that
distinguishing the beams through their polarization state
was the easiest solution that could be adopted with our
experimental setup. Nevertheless, the theoretical principle
behind beam cooling and heating goes beyond this specific
case. For example, one may think of using two beams
emitted by laser sources that differ in their wavelength or
pulse duration, thus enabling the observation of thermal-
ization within the canonical ensemble. In this sense, it is
worth mentioning that studies of wave thermalization of
orthogonally polarized beams have been carried out in
Refs. [40,41], albeit in the frequency domain with either
highly birefringent or polarization-maintaining single-
mode fibers, respectively.
In order to further confirm the validity of the represen-

tation in Fig. 1, we analyzed the output beam projections
along the 45° − 135° polarization directions. Indeed, if the
representations in Fig. 3(a) are valid, one would expect to
observe a temperature in the upper and lower sides of the
box which does not depend on input power. The average
temperature of the top and bottom sides of the box in
Fig. 3(d) is expected to be the same, since both sides
contain the same amount of hot, cold, and thermalized
particles, although the system is clearly not yet at equilib-
rium. This is in agreement with the experimental results
reported in Figs. 3(e) and 3(f), where we show that both
temperature and chemical potential obtained when simul-
taneously injecting A and B beams maintain nearly constant
values as the input power is varied. Such behavior is the
opposite of what is observed in Figs. 3(b) and 3(c), thus
validating our model of gas thermalization, which is
illustrated in Fig. 1. As a final note, we highlight that
the values of T and μ in Figs. 3(b)–3(c) and Figs. 3(e)–3(f)
are different, simply because the experimental results
reported therein were carried out on different days, i.e.,
with different experimental input laser-fiber coupling
conditions.

VI. ENTROPY GROWTH

One may notice that in Fig. 3(a), we are neglecting the
spreading of the red gas into the right side of the box [as
depicted in Figs. 2(a) and 2(b)]. In this regard, it must be
emphasized that the results in Figs. 3(b) and 3(c) demon-
strate that, even if present, the spreading of the gases into
opposite sides of the box is a slower process when
compared with the change of temperature of their particles.
In other words, the energy exchange between modes is a
more efficient process than nonlinear depolarization.
Moreover, the possible spreading of nonthermalized par-
ticles on the opposite side of the box, e.g., that given by
linear depolarization, would not invalidate the theory of
photon beam calorimetry. Indeed, the establishment of the
equilibrium is not only determined by the measurement of
one and the same temperature. Thermal equilibrium is
properly reached if and only if the mode occupancy

FIG. 3. Thermal equilibrium in the presence of two photon
gases with the same mass (R ¼ 1=2). (a)–(c) Schematic repre-
sentation of polarization analysis corresponding to horizontal-
vertical polarization splitting (a), and corresponding measured
values of temperature (b) and chemical potential (c), either in the
presence of the sole A and B beams or when simultaneously
injecting A and B beams into the MMF core. (d)–(f) Same as
panels (a)–(c) for 45° − 135° polarization splitting. The solid
lines in panels (b), (c), (e), and (f) are guides for the eye. For the
error bars, we used the average value of the mode occupancy and
its standard deviation when repeating the same reconstruction
algorithm by moving the center of the output beam of�1 pixel in
each direction with respect to the center position of the CCD
camera (see Appendix C for more details).
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distribution on the left and right sides of the box is identical,
and it follows the RJ law, i.e., only if the entropy has
reached a maximum. This result has been experimentally
verified (see Appendix D). Indeed, we found that only at
the highest value of the input power (i.e., 16 kW) the
distribution associated with both horizontally and vertically
polarized modes properly obeys the RJ law.
At the same time, we verified the crucial condition that

entropy grows larger when the input power grows larger. In
particular, in Figs. 4(a) and 4(b), we illustrate the measured
variation of entropy with input laser power, corresponding
to experimental results in Figs. 3(b) and 3(c) and Figs. 3(e)
and 3(f), respectively. Following the methods of Ref. [12],
the entropy can be calculated as

S ¼
XM
i¼1

ln ni; ð4Þ

where the index i runs over all modes, whose occupancy is
indicated as ni. Further details on the method for computing
the entropy are reported in Appendix A. We note that the
entropy provided by Eq. (4) can be formally derived from
the Gibbs-Shannon entropy when the modal occupancies
are very high [16] and is therefore compatible with the
H-theorem of entropy growth [42]. Moreover, being an
extensive variable, the entropy explicitly depends on the
power. In order to evaluate the contribution to the entropy
given by the mode power variation during propagation, we
will consider the entropy per particle S̃, which is defined as

S̃ ¼
XN
i¼1

ln jcij2; ð5Þ

where jcij2 is the normalized power fraction of the ith mode.
Note that if S̃ grows with the power, so does the entropy S.

Therefore, verifying the growth of S̃with power is sufficient
to demonstrate the increase of entropy as a consequence of
the thermalization process upon propagation.
As can be seen in Figs. 4(a) and 4(b), in all cases the

entropy per particle clearly experiences growth when
moving from low to high input powers, i.e., from an
out-of-equilibrium state to a state of full thermal equilib-
rium. In particular, the green curve in Fig. 4(b) indicates
that, although its temperature is equal to Teq [cf. Fig. 3(e)],
thermal equilibrium in the top side of the box in Fig. 3(d) is
not reached at low powers since its associated entropy is not
maximized yet. This finding further confirms that, even if
present, effects responsible for the diffusion of a gas into
the whole modal volume, i.e., linear or nonlinear depo-
larization, cannot force the system to reach thermal
equilibrium: It can only be reached thanks to heat exchange
between the two gases.

VII. HOW TO TUNE EQUILIBRIUM
TEMPERATURE

Finally, let us demonstrate how it is possible to
control the equilibrium temperature of the gas mixture.

FIG. 4. Experimental demonstration of the entropy growth. (a),
(b) Values of the entropy calculated from the data in Figs. 3(b)
and 3(c) and Figs. 3(e) and 3(f), respectively, either in the
presence of the sole A or B beam or when simultaneously
injecting both A and B beams into the fiber, taking the projection
on the horizontal direction (a) and on the direction at 45° with the
fiber axes (b), respectively. The curves are simply guides for the
eye. For the error bars, we used the average value of the mode
occupancy and its standard deviation when repeating the same
reconstruction algorithm by moving the center of the output beam
of�1 pixel in each direction with respect to the center position of
the CCD camera (see Appendix C for more details).

FIG. 5. Tuning of the equilibrium temperature of interacting
photon gases. (a)–(c) Same as Fig. 3, when setting R ¼ 1=3.
(d) Sketch of the input state when varying TB with respect to
Fig. 3(a). (e),(f) Variation of the temperatures (e) and chemical
potentials (f) at the left and right sides of the box vs TB. In order
to ensure system thermalization, in panels (e) and (f), the input
power is equal to 16 kW, and R ¼ 1=2. The solid lines in panels
(b), (c), (e), and (f) are guides for the eye. For the error bars, we
used the average value of the mode occupancy and its standard
deviation, when repeating the same reconstruction algorithm by
moving the center of the output beam of �1 pixel in each
direction with respect to the center position of the CCD camera
(see Appendix C for more details).
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By recalling Eq. (3), it appears evident that there are only
two ways of tuning the equilibrium temperature, i.e., by
acting on either R or on the initial temperature of the two
gases. Here, we experimentally demonstrate both these
possibilities, as illustrated in Figs. 5(a)–5(c) and 5(d)–5(f),
respectively. In Figs. 5(b) and 5(c), we report the results of
the same experiment that was shown in Figs. 3(b) and 3(c),
but now setting R ¼ 1=3. As can be seen, even in this case,
there is good agreement between the experimental results
and the theoretical expectations (black dashed curve). The
equilibrium temperature is closer to that of the gas with the
higher mass (B), as it occurs for gases made of matter
particles. Finally, we vary the temperature of beam B (TB)
while keeping its associated number of particles constant.
In Fig. 5(e), we show that the equilibrium temperature
linearly scales with TB, as expected from theory. In particu-
lar, in the experiment reported in Fig. 5(e), we prepare the
beams so thatR ¼ 1=2: Here, the input power is high enough
to ensure full gas thermalization [as in Fig. 1(c)], except for
the point corresponding to the highest value of TB. Clearly,
the theoretical value of the thermal equilibrium temperature
of the gas mixture is always found at the midpoint between
TA and TB. Analogously, the chemical potential of the
mixture is the average of the chemical potentials of the A
and B beams [cf. Fig. 5(f)].

VIII. CONCLUSION

By employing calorimetric methods, we have experi-
mentally demonstrated the exchange of both power and
energy between the two polarization-mode groups sup-
ported by a nonlinear optical multimode fiber. These
observations confirm that the thermodynamic parameters
T and μ represent meaningful thermodynamic forces that
govern the direction of flow of their respective conjugate
parameters. Indeed, our experimental results unambigu-
ously prove that the statistical mechanics framework
previously developed to describe the utterly complex
dynamics in nonlinear optical multimode systems respects
the thermodynamics principles of energy conservation and
entropy growth. In this work, we have shown that the
“heat” transfer (ΔU) between two orthogonally polarized
beams unfolds as expected in a grand canonical ensemble.
Our work may pave the way for demonstrating similar
results in canonical-like systems where power exchange is
forbidden. It would be of interest to investigate whether
similar schemes can be used for beam-quality-improvement
applications and for developing high-power fiber lasers.
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APPENDIX A: CALCULATION OF
THERMODYNAMIC PARAMETERS FROM

EXPERIMENTAL DATA

The Boltzmann entropy is defined as

S ¼ lnW; ðA1Þ

where W for bosonic systems can be written as [12]

WðfnigÞ ¼
YM
i¼1

ðni þ gi − 1Þ!
ni!ðgi − 1Þ! : ðA2Þ

Here, the index i is used for grouping all the degenerate gi
modes, having the same propagation constant, with photon
occupancy ni. Note that, in our MD experiments, we
measured the power fraction associated with each mode,
which is directly proportional to ni. Therefore, in practice,
we consider ni to be a power fraction since the proportion-
ality constant will only provide a (superfluous) additional
term in Eq. (A1).
It is evident that the terms in Eq. (A2) for which ni ¼ 0

do not contribute to the product since they are equal to 1.
Therefore, the entropy can be written as

S ¼
X
ijni≠0

ln
ðni þ gi − 1Þ!
ni!ðgi − 1Þ! ; ðA3Þ

which, following the same derivation of Ref. [12], leads to

S ¼
X
ijni≠0

ln ni; ðA4Þ

or equivalently

S ¼
X
i

Si; ðA5Þ

where

Si ¼
�
ln ni if ni ≠ 0

0 if ni ¼ 0:
ðA6Þ
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Experimentally, we often found that some modes have a
power fraction close to zero, which makes the logarithmic
term in Eq. (A6) diverge. For instance, when dealing with
thermalized beams, high-order modes are associated with
power fractions that are quickly damped when the index i
grows larger, as predicted by the RJ distribution. Therefore,
in order to meaningfully evaluate the entropy, it is neces-
sary to take into account the tolerances that are imposed by
the limited accuracy of our MD. In particular, we call Δn
the experimental error of our MD method for the estimate
of the mode occupancy, and we consider

Si ¼
�
ln ni if ni ≳ Δn
0 if ni ≲ Δn:

ðA7Þ

Specifically, in the plots of Fig. 4 of the main text, we have
set Δn ¼ 0.08, whereas the experimental results shown in
all other figures take into account the occupancy of all
modes. This is because the condition ni ¼ 0 is not
detrimental for the accurate estimation of any thermody-
namic parameter, except for S.
The values of T and μ were calculated as described in

Ref. [12]: The definition of the total optical power, i.e.,

P ¼
X
i

ni; ðA8Þ

and that of the internal energy, i.e.,

U ¼
X
i

βini; ðA9Þ

where βi is the propagation constant of the ith mode, are
used in the equation of state [i.e., Eq. (1) in the main text]
U − μP ¼ MT. This result provides an equation with two
unknowns (T and μ), which, combined with the RJ law, i.e.,

ni
gi

¼ −
T

μþ βi
; ðA10Þ

leads to a nonlinear system of equations that has a unique
solution for T and μ, as long as the physical condition ni ≥ 0
is imposed [12].

APPENDIX B: RIGOROUS PREDICTION OF
EQUILIBRIUM TEMPERATURE

In a grand-canonical-like system, from the initial con-
ditions, the final temperature and chemical potential can be
rigorously predicted by treating the whole system as a
microcanonical-like system. In doing so, the energy levels
β, power P, and optical energy U of the subsystems A and
B are combined into the total energy levels βT ¼ βA ⊎ βB,
the total power PT ¼ PA þ PB, and the total optical energy
UT ¼ UA þ UB. The final temperature is obtained by
matching the conservation laws [13]. The temperature

obtained by this method implicitly accounts for the temper-
ature dependence of the heat capacities involved, and
Eq. (3) in the main text is a valid approximation of the
rigorous method as long as the two optical temperatures are
relatively close to each other, as shown in Fig. 6.

APPENDIX C: PREPARATION OF THE GAS
INITIAL STATE

Our experimental setup is shown in Fig. 7. Experiments
were carried out by means of a Yb-based laser system
(Light Conversion PHAROS-SP-HP), generating pulses of
2 ps with a 100-kHz repetition rate, at 1030 nm. The
temporal profile of the laser pulses is averaged by the mode
decomposition tool. Such an average operation lies at the
base of the statistical mechanics approach. As has been
demonstrated by Leventoux et al., in fact, at the occurrence
of self-cleaning, the beam spatial profile strongly differs
when considering the peak and the tails of the pulse [43].
The cleaning effect is the result of an average process; thus,
it can be described as a process of wave thermalization. In
this regard, it has to be mentioned that other demonstrations

FIG. 6. Ratio of the temperature obtained rigorously to the
temperature obtained by Eq. (3) under various initial TA and TB
of the subsystems. This plot is obtained when PA ¼ PB ¼ 1.

FIG. 7. Sketch of the experimental setup. λ=2: half-wave plate;
λ=4: quarter-wave plate; PBS: polarizing beam splitter; BPF
1030: band pass filter at 1030 nm; LP: linear polarizer; SLM:
spatial light modulator.
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of beam self-cleaning exploited, instead, the average over
several input conditions corresponding to nearly the same
values of P and U [26]. By means of a polarizing beam
splitter, we separate the laser beam into an interferometer-
like path, where each arm corresponds to a photon gas, as
depicted in Fig. 1 of the main text. The setup is built in
order to ensure that, once recombined, the two beams are
temporally synchronized and with orthogonal linear states
of polarization. The mirrors of one of the two arms is
slightly tilted. In this way, we can prepare the two beams
with different photon gas temperatures. The tilting angle is
about 2°. We verified that introducing such an angle does
not alter the transmitted power; i.e., the injection efficiency
remains virtually the same. However, the intensity profile
(at low powers) at the output of the fiber, as well as its
associated value of temperature, can be significantly
modified.
The power ratio R between the two beams at the fiber

input is determined by the orientation of a half-wave plate,
which is placed upstream of the beam splitter, whereas the
variation of TB, which we describe in Figs. 5(d)–5(f) in the
main text, is possible by means of an iris placed in arm B
(see Fig. 7). The iris distorts the wavefront of the B beam,
thus varying its associated temperature. Indeed, acting on
the wavefront shape permits us to modify the mode
distribution (and, consequently, the thermodynamic param-
eters) associated with the initial state. However, the iris is
also responsible for a loss of beam power, i.e., for the
reduction of the mass of gas B. In order to ensure that the
value of R remains the same in the experiments of Fig. 5 of
the main text, we compensate the power lost because of the
iris by means of a quarter-wave plate, inserted in cascade
with the iris (see Fig. 7). Note that another quarter-wave
plate was placed in arm A. This is because, in the absence of
the quarter-wave plates, no light would reach the input tip
of the MMF, since both arms would maintain their state of
polarization, thus would be reflected back towards the laser
source by the polarizing beam splitter.
At the fiber output, the beam was collected by means of a

lens and analyzed by means of a MD setup, consisting of a
bandpass filter, a polarizer (or, equivalently, a polarizing
beam splitter), a half-wave plate, two lenses, a spatial light
modulator (Hamamatsu LCOS- X15213), and a CCD
camera (Gentec Beamage-4M-IR). The working mecha-
nism of the MD setup has been discussed in full detail
elsewhere; see, for example, Ref. [30]. Here, we limit
ourselves to recalling that the main source of error of our
MD is due to the association between the center of the beam
at the fiber output with that of the spatial light modulator.
This is at the origin of the error bars that are associated with
the thermodynamic parameters in the figures of the main
text. Specifically, for each experiment at given input power
and injection conditions, we identify the center of the beam
with a certain pixel of the CCD camera. Then, we run the
same reconstruction algorithm by moving the center of the

beam by �1 pixel in each direction. This process provides
us with a set of nine different values of the mode
occupancy, which are used to estimate the error on T
and μ. Further details on the estimation of the error can be
found in Ref. [19].

APPENDIX D: MODE EQUILIBRIUM
DISTRIBUTION

In Fig. 8, we report the experimental mode distribution
that corresponds to the data shown in Figs. 3(a)–3(c) of
the main text. For the sake of simplicity, we only show
results obtained for the lowest (left column) and for the
highest (right column) values of input power, i.e., corre-
sponding to either a nonequilibrium or to a thermal
equilibrium state, respectively. In each subfigure, we
plot as a colored histogram the experimental mode power
distribution, whereas the dashed black lines illustrate their
associated equilibrium RJ distribution. As can be seen, at
the highest powers, the histogram bars are well fitted by
the RJ law. On the contrary, at low powers, when thermal
equilibrium has not yet been reached, there is a clear
discrepancy between the experimental data and the RJ law.
We underline that the y axis of the plots in Fig. 8 represents
the power fraction in each mode within a group with
degeneracy gi, whereas in our former work (Ref. [19]),

FIG. 8. MD of the output beam corresponding to the experi-
ments in Figs. 3(a)–3(c) (main text), when operating either in the
linear (left column) or in the nonlinear (right column) beam
propagation regime, i.e., at 2.8 kW and 15.4 kW, respectively.
The inset pictures show the measured intensity of the near field
(left) and the holographic reconstructions (right). The four rows
represent different input conditions, i.e., either in the presence of
the sole A (blue bars) and B (red bars) beams, or when
simultaneously injecting both A and B beams (azure and purple
bars) into the MMF core, respectively.
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we used it to plot the total power of each mode group.
Finally, in order to highlight the good quantitative agree-
ment between theory and experiments, we computed the
root-mean-square error (RMSE) between the experimental
data and the theoretical RJ distribution. The RMSE
values associated with the plots in Fig. 8 are reported in
Table I.
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