
Mathematical Programming
https://doi.org/10.1007/s10107-023-02021-8

FULL LENGTH PAPER

Series B

Global optimization for cardinality-constrainedminimum
sum-of-squares clustering via semidefinite programming

Veronica Piccialli1 · Antonio M. Sudoso1

Received: 28 December 2022 / Accepted: 6 September 2023
© The Author(s) 2023

Abstract
The minimum sum-of-squares clustering (MSSC), or k-means type clustering, has
been recently extended to exploit prior knowledge on the cardinality of each cluster.
Such knowledge is used to increase performance as well as solution quality. In this
paper, we propose a global optimization approach based on the branch-and-cut tech-
nique to solve the cardinality-constrained MSSC. For the lower bound routine, we use
the semidefinite programming (SDP) relaxation recently proposed by Rujeerapaiboon
et al. (SIAM J Optim 29(2):1211–1239, 2019). However, this relaxation can be used
in a branch-and-cut method only for small-size instances. Therefore, we derive a new
SDP relaxation that scales better with the instance size and the number of clusters.
In both cases, we strengthen the bound by adding polyhedral cuts. Benefiting from a
tailored branching strategy which enforces pairwise constraints, we reduce the com-
plexity of the problems arising in the children nodes. For the upper bound, instead,
we present a local search procedure that exploits the solution of the SDP relaxation
solved at each node. Computational results show that the proposed algorithm globally
solves, for the first time, real-world instances of size 10 times larger than those solved
by state-of-the-art exact methods.

Keywords Global optimization · Constrained clustering · Semidefinite
programming · Branch-and-cut · Distance geometry

Mathematics Subject Classification 90C26 · 90C22 · 62H30

B Veronica Piccialli
veronica.piccialli@uniroma1.it

Antonio M. Sudoso
antoniomaria.sudoso@uniroma1.it

1 Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via
Ariosto 25, 00185 Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-02021-8&domain=pdf
http://orcid.org/0000-0002-3357-9608
http://orcid.org/0000-0002-2936-9931

V. Piccialli, A. M. Sudoso

1 Introduction

Cluster analysis or clustering is the task of partitioning similar objects into different
groups according to some defined distance measure [1]. Clustering is a fundamen-
tal technique for data analysis that belongs to a subclass of unsupervised learning
algorithms in machine learning and statistics. Its relevance is supported by a large
number of algorithms and applications such as customer segmentation, medical imag-
ing, recommendation systems, social network analysis, and image processing [2]. The
complexity of finding a suitable clustering significantly depends on the fitnessmeasure
of a proposed partition. Amongmany criteria used in cluster analysis, the most studied
and frequently adopted criterion is the minimum sum-of-squares clustering (MSSC).
Given a set of n data points {pi }ni=1 in the d-dimensional Euclidean space, the MSSC
problem aims to partition them into k clusters {C j }kj=1, so that the total sum of squared

Euclidean distances between the data points and the cluster centers {m j }kj=1 is mini-
mized. The MSSC problem is known to be NP-hard [3], since it leads to a non-convex
mixed-integer nonlinear optimization problem (MINLP) that is challenging to solve
in practice [4]. This is why the MSSC is frequently addressed by means of heuristic
algorithms in comparison with exact methods.

In recent years, researchers have started to focus on clustering with user con-
straints, i.e., instance-level and cluster-level constraints, tomake the clustering process
more accurate [5]. Instance-level constraints, typically must-link and cannot-link con-
straints, indicate that two points must or cannot be assigned to the same cluster [6,
7]. Cluster-level constraints, instead, exploit prior knowledge on the structure of the
clusters by imposing fixed cluster sizes or lower and upper bounds on the capacity
of each cluster [8–10]. Cardinality constraints find relevant applications in demand
planning and segmentation [11], electric power systems research [12], document clus-
tering [13]. Both in unconstrained and constrained clustering, the presence of outliers
can deteriorate the quality of the solution and should be carefully considered. Strict
cardinality constraints offer a framework to keep into account the presence of outliers,
improving the quality of the solution of the clustering problem [4]. This is achieved
in [4] by allocating an extra cluster to accomodate outliers. For a detailed overview
of constrained clustering applications see the survey in [14] and references therein.
In this paper, we focus on the MSSC problem with strict cardinality constraints, in
short ccMSSC. Adding constraints to an existing clustering formulation maymake the
resulting problem harder, both empirically and in terms of worst-case analysis [15].
However, if clustering problems are only solved by means of heuristic algorithms,
unsatisfactory results may be obtained [16]. For this reason, global algorithms play a
fundamental role in two different aspects. First, a certified globally optimal solution
is fundamental for evaluating, improving, and developing heuristics and approxima-
tion algorithms, and second, as an unsupervised machine learning task, results usually
require interpretation from domain experts. Since themajority of algorithms can locate
only local minimizers, this interpretation may be completely erroneous in case the
obtained clustering solution is far from the global optimum.

Our motivation for studying ccMSSC is twofold. First, constrained clustering with
instance-level constraints is a well-covered topic in the literature with both heuristic

123

Global optimization for cardinality-constrained minimum sum…

and global optimization algorithms. Clustering with cardinality constraints, instead,
is less studied and the existing methods are only capable of solving instances with a
very limited number of data points, i.e., less than n = 150. Second, clustering with
cardinality constraints is robust with respect to unfair solutions containing very few
or even no data points.

In this paper, we propose a global optimization algorithm for constrained MSSC
where the prior knowledge is incorporated in the form of strict cardinality constraints.
This method is based on the branch-and-cut technique and exploits semidefinite pro-
gramming (SDP) tools to obtain tight lower and upper bounds. The main original
contributions of this paper are:

1. We derive a new SDP relaxation for ccMSSC and we compare it theoretically and
numerically with the SDP relaxation recently proposed in [4]. The new bound can
be weaker than the one in [4], but is solved significantly faster as n and k increase.

2. We strengthen the new SDP bound and the one in [4] by adding polyhedral cuts
and we attack the resulting SDP relaxations bymeans of a cutting-plane algorithm.

3. We design a deterministic rounding procedure providing an upper bound on the
optimum value of ccMSSC. We use a variant of the k-means algorithm in con-
junction with the solution of the SDP relaxation to initialize the cluster centers.

4. We propose an SDP-based branch-and-cut algorithm producing certifiably optimal
solutions for ccMSSC. We use both SDP relaxations for computing the lower
bound, exploiting the strength of the one in [4] for small instances and the efficiency
of the new one for larger instances.

5. Benefiting from a tailored branching strategy, we manage to reduce the size of the
problem in the children nodes by solving equivalent SDPs over lower dimensional
positive semidefinite cones.

6. Our exact algorithm solves for the first time to global optimality real-world
instances of size 10 times larger than those solved by exact algorithms proposed
in the literature.

The rest of this paper is organized as follows. Section2 reviews the literature related
to the ccMSSC problem. In Sect. 3, the existing SDP relaxation of ccMSSC and the
new SDP bound are described. In Sect. 4, problem-specific post-processing techniques
yielding valid lower bounds are described. In Sect. 5, the cutting-plane algorithm used
for computing the bound is proposed. A problem-specific branching rule is shown
in Sect. 6, and a primal heuristic is introduced in Sect. 7. Computational results are
reported in Sect. 8 and some directions for future work conclude the paper in Sect. 9.

2 Related work

To the best of our knowledge, the first heuristic algorithm for ccMSSC can be found
in [17]. They use the classical Lloyd’s algorithm [18] in conjunction with the solution
of a linear assignment problem requiring that each cluster contains at least a mini-
mum number of points. Since then, not many heuristics have been proposed in the
literature. In [8, 19, 20], different heuristic algorithms are proposed to solve the bal-
anced version of ccMSSCwhere the clusters have the same number of data points, i.e.,

123

V. Piccialli, A. M. Sudoso

|C1| = |C2| = · · · = |Ck | = n/k. Although these heuristics tend to produce feasible
solutions in a reasonable amount of time, their quality highly depends on the choice
of the initial solution and, more importantly, they do not provide optimality guaran-
tees. In the literature, several global optimization algorithms have been proposed for
both unconstrained and constrained MSSC problems. In this direction, there are two
main methodological approaches: (a) mathematical programming techniques based
on branch-and-bound (B&B) or column generation and (b) constraint programming
(CP) techniques. The first class of methods is predominant in the unconstrained liter-
ature [21–24] with some extensions designed to solve the MSSC with instance-level
constraints [25–27]. However, most of the recent contributions to constrained variants
come from the CP community. Among the exact methods for constrained MSSC, the
method presented in [28] is the first attempt at using CP for MSSC. Other successful
approaches based on the CP paradigm can be found in [29, 30]. Turning now to the
MSSCwith cardinality constraints, all the CP approaches proposed for theMSSCwith
instance-level constraints can be extended to solve the ccMSSC by simply adding a
global cardinality constraint over a set of variables. However, as described in [31], a
tailored approach consisting of specialized global constraints coupled with filtering
algorithms and search heuristics can quickly reduce the search space and achieve better
performance. Despite the improvement with respect to previous CP approaches, the
algorithm in [31] exhibits high computational times on small instances, and for some
of them, it does not succeed in certifying the optimality of the produced clustering.
To the best of our knowledge, this CP approach is the current state-of-the-art global
optimization algorithm of ccMSSC.

In recent years, several conic optimization approaches have been proposed in the
literature. In particular, due to their effectiveness and strong theoretical properties,
there is a large branch of literature toward the application of techniques from semidef-
inite programming (SDP) [32]. Peng and Wei [33] prove the equivalence between the
MSSC problem and a nonlinear SDP reformulation, the so-called 0–1 SDP, and they
provide an SDP relaxation. Since then, the Peng-Wei model has been studied from
the theoretical point of view developing recovery guarantees and conditions under
which the relaxation recovers the underlying clusters with high probability [34–37].
Recently, it has been successfully embedded in B&B algorithms to globally solve
unconstrained MSSC [24] and its variant with pairwise constraints [27]. To the best of
our knowledge, the only conic optimization scheme for ccMSSC has been proposed
in [4]. Although the focus is not on exact methods, the authors propose lower bounds
based on semidefinite and linear programming relaxations and a rounding heuristic to
find a feasible clustering satisfying the constraints.

The LP and SDP relaxations in [4] are proven to recover the globally optimal
solution whenever a cluster separation condition is met, but only in the balanced case.
The separation condition requires all cluster diameters to be smaller than the distance
between any two distinct clusters. In other words, for datasets whose hidden classes
are balanced and well separated, they succeed in recovering the provably optimal
clustering.However,when this condition is notmet, they are unable to prove optimality
since the upper bound produced by the rounding procedure does not coincide with the
lower bound obtained via the relaxations. Furthermore, in real-world applications, data
maynot be generated according to a distribution that yieldswell-separated clusters, and

123

Global optimization for cardinality-constrained minimum sum…

thismay result in unbalanced and overlapping clusters, implying that the theory behind
cluster recovery does not apply. For this reason, in this paper, we certify the globally
optimal solution by using global optimization tools that do not require assumptions
on the data distribution and/or on the clusters’ structure. In this paper we build on the
work in [4] and we design the first SDP-based branch-and-cut algorithm for solving
ccMSSC.

Notation

Throughout this paper, [n] denotes the set {1, . . . , n} of indices of the data points, and
[k] denotes the set {1, . . . , k} of indices of the clusters. Let Sn be the set of all n × n
real symmetric matrices. We denote by M � 0 a positive semidefinite matrix M and
by Sn+ be the set of all positive semidefinite matrices of size n × n. Analogously, we
denote by M � 0 a positive definite matrix M and let Sn++ be the set of all positive
definite matrices of size n × n. We denote by 〈·, ·〉 the trace inner product. That is, for
any A, B ∈ R

n×n , we define 〈A, B〉 := tr(B�A). Given a matrix A, we denote by
Ai,: and A:, j the i-th row and the j-th column of A, respectively. Finally, we denote
by 1n the vector of all ones of size n and by In the identity matrix of size n × n.

3 SDP relaxations for ccMSSC

We study the ccMSSC problem, which is defined as the task of partitioning n data
points p1, . . . , pn , where pi ∈ R

d , into k clusters of known sizes c1, . . . , ck , with∑k
j=1 c j = n and c j ∈ Z+, such that the total sum-of-squared intra-cluster distances

is minimized. It can be formulated as the following discrete optimization problem:

min
1

2

k∑

j=1

1

c j

n∑

s=1

n∑

t=1

dst (π j)s(π j)t (ccMSSC)

s.t.
k∑

j=1

(π j)i = 1 ∀i ∈ [n], (1a)

n∑

i=1

(π j)i = c j ∀ j ∈ [k], (1b)

π j ∈ {0, 1}n ∀ j ∈ [k]. (1c)

Here, dst is the squared Euclidean distance between ps and pt computed as ‖ps − pt‖22
and π j = [(π j)1, . . . , (π j)n]� is the indicator variable of cluster j , i.e., the i-th
component of π j is set to 1 is the i-th data point is assigned to cluster j and 0
otherwise. Constraints (1a) ensure that each data point is assigned to exactly one
cluster and constraints (1b) ensure that the cluster j contains exactly c j data points.
For general n and k, it is known that the MSSC problem with cardinality constraints
is NP-hard [4]. In this paper we are interested in exact solutions that we generate by

123

V. Piccialli, A. M. Sudoso

means of a branch-and-cut algorithm. Therefore, we need efficiently computable lower
and upper bounds on the original problem. For the ccMSSC problem, lower bounds
obtained by solving the LP relaxation are weak in practice [4]. On the contrary, the
bound provided by SDP relaxations strengthened through valid inequalities we will
introduce next is much stronger. This motivates us to study SDPs that can be efficiently
used within a branch-and-cut framework.

3.1 Vector lifting SDP relaxation

In this section we review the relaxation technique presented in [4] for problem
(ccMSSC). We present the formulation introduced in [4], where we shift the deci-
sion variables from {−1, 1} to {0, 1}. This change of variables allows us to better
relate the relaxation in [4] to the new one introduced in this paper. Let� j be the n×n
symmetric matrix given by � j = π j (π j)

� for π j ∈ {0, 1}n and j ∈ [k]. This implies
� j � π j (π j)

�, diag(� j) = π j and rank(� j) = 1.Conversely, for anymatrix� j sat-
isfying � j � 0, diag(� j) = π j and rank(� j) = 1 we have � j = π j (π j)

� for some
π j ∈ {0, 1}n [32]. Denote by D the Euclidean distance matrix, i.e., Di j = ‖pi − p j‖22.
Problem (ccMSSC) can be exactly rewritten as

min
1

2

〈

D,

k∑

j=1

1

c j
� j

〉

s.t.
k∑

j=1

π j= 1n

1�
n π j= c j ∀ j ∈ [k] (2)

� j� π j (π j)
� ∀ j ∈ [k]

rank(� j)= 1 ∀ j ∈ [k]
diag(� j)= π j ∀ j ∈ [k].

Because of the rank-one constraints, this is not a semidefinite program. Constraint
� j − π j (π j)

� � 0 can be reformulated, by the Schur’s complement, as the lifted
constraints

Y j =
[
1 (π j)

�
π j � j

]

∈ Sn+1+ ∀ j ∈ [k].
Furthermore, looking at the structure of � j additional constraints can be added to

strengthen the formulation. It easily follows that � j1n = c jπ j and � j ≥ 0n×n for
all j ∈ [k].

LetW ∈ Sn+ be thematrix of the inner products of the data points, i.e.,Wi j = p�
i p j .

We now rewrite the objective function using the Lindenstrauss mapping between the
Euclidean distance matrix D and the Gram matrix W on the clustering feasible set
[38, 39]:

D = diag(W)1�
n + 1ndiag(W)� − 2W .

123

Global optimization for cardinality-constrained minimum sum…

The objective function of problem (2) can be rewritten as

1

2

〈

D,

k∑

j=1

1

c j
� j

〉

= 1

2

〈

diag(W)1�
n ,

k∑

j=1

1

c j
� j

〉

+ 1

2

〈

1ndiag(W)�,

k∑

j=1

1

c j
� j

〉

−
〈

W ,

k∑

j=1

1

c j
� j

〉

= 1

2

〈

diag(W),

k∑

j=1

1

c j
� j1n

〉

+ 1

2

〈

diag(W),

k∑

j=1

1

c j
(� j)

�1n

〉

−
〈

W ,

k∑

j=1

1

c j
� j

〉

= 1

2
diag(W)�1n + 1

2
1�
n diag(W) −

〈

W ,

k∑

j=1

1

c j
� j

〉

= tr(W)

−
〈

W ,

k∑

j=1

1

c j
� j

〉

,

where the last equality derives from the constraints linking � j and π j , i.e., � j1n =
c jπ j and

∑k
j=1 π j = 1n . Therefore, the resulting SDP relaxation is the convex pro-

gram

f �
VL = min

〈

W , In −
k∑

j=1

1

c j
� j

〉

(VL-SDP)

s.t.
k∑

j=1

π j = 1n

(π j ,� j) ∈ SVL(c j) ∀ j ∈ [k]

where, for any c ∈ Z+, the set SVL(c) ⊂ R
n × Sn is defined as

SVL(c) =
{

(π,�) ∈ R
n × Sn : 1

�
n π = c, diag(�) = π, �1n = cπ,

� � π(π)�, � ≥ 0n×n

}

.

From now on, we refer to the relaxed problem as “vector lifting” SDP relaxation.
This kind of SDP is a doubly nonnegative program (DNN) since the matrix variable is
both positive semidefinite and elementwise nonnegative. Problem (VL-SDP) provides
a lower bound on the optimal objective value of problem (ccMSSC). Moreover, if
the optimal solution {(π�

j ,�
�
j)}kj=1 of problem (VL-SDP) satisfies � j = π j (π j)

�

123

V. Piccialli, A. M. Sudoso

for all j ∈ [k], then we can conclude that {(π�
j ,�

�
j)}kj=1 is an optimal solution of

problem (ccMSSC). Note that, this SDP relaxation has k matrix variables of size
(n + 1) × (n + 1), thus requires O(kn2) variables and constraints. Although the
number of clusters k is much smaller than n, the relaxation becomes impractical for
branch-and-bound algorithms as n and k grow. In the following, we substantially
reduce the number of variables by introducing a new SDP bound. This relaxation is
based on the “matrix lifting” technique [40, 41] and only has one matrix variable of
size (n+k)×(n+k). Wewill show that this reduction in the number of variables leads
to a significant computational efficiency compared to the vector lifting SDP relaxation.
Note that, the matrix lifting technique has been also successfully employed in graph
partitioning [42, 43], where the nodes of a graph have to be partitioned into clusters
in such a way to minimize the weights of the edges among different clusters.

3.2 Matrix lifting SDP relaxation

We now describe the new bound obtained from our matrix lifting SDP relaxation. This
relaxation uses only O

(
(n + k)2

)
variables and constraints. Since the computational

complexity of solving SDPs is a polynomial function of the number of variables, we
can expect a significant complexity reduction with respect to the vector lifting SDP
relaxation. In the following, we briefly review the well-known discrete optimization
model for unconstrained MSSC and the SDP relaxation proposed in [33]. Let X be
the n × k assignment matrix, i.e., Xi j = 1 if the i-th data point is assigned to the j-th
cluster and 0 otherwise. The Peng-Wei MSSC discrete model in matrix notation is

min tr(W − WX(X�X)−1X�)

s.t. X1k = 1n, X�1n ≥ 0k, X ∈ {0, 1}n×k .
(3)

and setting Z = X(X�X)−1X�, the following SDP relaxation can be derived

f �
PW = min tr(W − WZ)

s.t. Z1n = 1n, tr(Z) = k, Z ∈ Sn+, Z ≥ 0n×n .
(4)

Note that constraints Z ≥ 0n×n and Z1n = 1n ensure that Z is a stochastic matrix, and
hence all of its eigenvalues lie between 0 and 1. We now extend the above setting to
incorporate cardinality constraints. Let C = Diag(c1, . . . , ck), be the diagonal matrix
containing the cluster sizes. An exact reformulation of ccMSSC in matrix notation is

min tr(W − WXC−1X�)

s.t. X1k = 1n, X�1n = diag(C), X ∈ {0, 1}n×k
(5)

where X is the assignmentmatrix. Clearly, problem (ccMSSC) is equivalent to problem
(5). To see this, note that the j-th column of X is the characteristic vector of the cluster
j , i.e, π j = X :, j for all j ∈ [k], and the k clusters are in one-to-one correspondence

123

Global optimization for cardinality-constrained minimum sum…

with the set of partition matrices

F =
{
X ∈ {0, 1}n×k : X1k = 1n, X�1n = diag(C)

}
. (6)

To obtain the matrix lifting SDP relaxation of problem (5), we first linearize the
objective function by introducing a new matrix variable Z = XC−1X�. This yields
the feasible set

F̄ = conv
{
Z ∈ Sn+k : Z = XC−1X�, X ∈ F

}
. (7)

Therefore, we can rewrite the problem as

min
Z∈F̄

tr(W − WZ) (8)

In order to approximate the set F̄ , we relax the integrality constraint on X and we
set X ≥ 0n×k . Next, we replace the non-convex constraint Z = XC−1X� by Z �
XC−1X� and by using the Schur’s complement we obtain the equivalent linear matrix
inequality

Y =
[
C X�
X Z

]

∈ Sn+k+ . (9)

Although constraint Z = XC−1X� is relaxed, we can still consider some additional
linear constraints to further improve the quality of the solution. Since Z approximates
XC−1X� and X ≥ 0n×k , we have Z ≥ 0n×n , diag(Z) = Xdiag(C−1) and

Z1n = XC−1X�1n = XC−1diag(C) = X1k = 1n . (10)

By collecting all the mentioned constraints, the matrix lifting SDP relaxation is given
by

f �
ML = min

(X ,Z)∈SML

tr(W − WZ) (ML-SDP)

where the convex set SML ⊂ R
n×k × Sn is defined as

SML =
⎧
⎨

⎩
(X , Z) ∈ R

n×k × Sn :
X1k = 1n , X�1n = diag(C),

Z1n = 1n , diag(Z) = Xdiag(C−1),

X ≥ 0n×k , Z ≥ 0n×n , Z � XC−1X�

⎫
⎬

⎭
. (11)

Similarly to (VL-SDP), problem (ML-SDP) is a DNN program whose optimal
value yields a lower bound on the optimal value of problem (ccMSSC). Moreover, if
the optimal solution (X�, Z�) is an extreme point of F̄ , then we can conclude that
X�:, j = π�

j for all j ∈ [k] is an optimal solution of problem (ccMSSC).

123

V. Piccialli, A. M. Sudoso

It is interesting to compare problem (ML-SDP) with the Peng-Wei SDP relaxation
of unconstrained MSSC in (4). The matrix Z in problem (ML-SDP) shares the same
structure of the one in (4). This implies that valid inequalities used in [21] and [24]
for strengthening the Peng-Wei bound can also be exploited to tighten our relaxation.
Finally, we point out that, in contrast to our relaxation, the Peng-Wei SDP does not
have access to either the cluster size or the assignment matrix. We will discuss how to
exploit the SDP solution to recover feasible clustering solutions in Sect. 7.

One special case of interest is the balanced ccMSSCwhere each cluster contains the
same number of data points, i.e., c j = n

k for all j ∈ [k]. This leads to theAmini–Levina
SDP relaxation, which is presented in [44] and takes the form

f �
AL = min tr(W − WZ)

s.t. Z1n = 1n, diag(Z) = k

n
1n, Z ∈ Sn+, Z ≥ 0n×n .

(12)

Our (ML-SDP) generalizes the Amini–Levina SDP to the case of unbalanced cluster
sizes and it can be shown to be equivalent to problem (12) when the cardinalities of
all clusters are the same. In order to prove this result, we need the following lemma.

Proposition 1 LetC = Diag(nk , . . . , n
k), thenProblems (ML-SDP) and (12) are equiv-

alent.

Proof We show that any feasible solution of problem (ML-SDP) gives rise to a feasible
solution of problem (12) with the same objective value and vice versa. Let (X , Z) be
feasible for (ML-SDP) then it immediately follows that Z̄ = Z is feasible for (12) and
achieves the same objective value. Conversely, let Z be feasible for problem (12) then
we construct a solution (X̄ , Z̄) of problem (ML-SDP) with Z̄ = Z and X̄ = 1

k 1n1
�
k .

Then, we have X̄1k = 1n , X̄�1n = diag(C) and diag(Z̄) = X̄diag(C−1) = X̄ k
n 1k =

k
n 1n . Let M = Z̄ − X̄C−1 X̄� = Z̄ − 1

n 1n1
�
n . It remains to show that M � 0. From

Z̄1n = 1n we have that 1 is an eigenvalue of Z̄ with corresponding eigenvector 1n .
The positive semidefiniteness of M follows from Z̄ being positive semidefinite and
M = Z̄ − 1

n 1n1
�
n being a deflation matrix of Z̄ � 0 with respect to the eigenvalue-

normalized eigenvector pair
(
1, 1√

n
1n
)
. �

We now prove that our relaxation (ML-SDP) is dominated by (VL-SDP), the best-
known relaxation of the ccMSSC problem. Then, we compare the SDPs numerically
on some instances from the literature. We show that the bound provided by problem
(ML-SDP) is competitive and the computational effort to compute it is much smaller
than the one required to solve problem (VL-SDP).

Proposition 2 We have f �
VL ≥ f �

ML ≥ f �
PW.

Proof We first show f �
VL ≥ f �

ML. For any feasible solution {(π j ,� j)}kj=1 of problem
(VL-SDP), we can construct a solution (Z , X) with

Z =
k∑

j=1

1

c j
� j and X = [π1, . . . , πk], (13)

123

Global optimization for cardinality-constrained minimum sum…

that is feasible for problem (ML-SDP) and achieves the same objective value. By
construction we have X ≥ 0n×n and Z ≥ 0n×n since π j is nonnegative due to � j ≥
0n×n and diag(� j) = π j for j = 1, . . . , k. Similarly, X1k = 1n and X�1n = diag(C)

hold by construction. Then, we have

Z1n =
k∑

j=1

1

c j
� j1n =

k∑

j=1

1

c j
c jπ j =

k∑

j=1

π j = 1n, (14)

diag(Z) = diag

(k∑

j=1

1

c j
� j

)

=
k∑

j=1

1

c j
diag(� j) =

k∑

j=1

1

c j
π j = Xdiag(C−1).

(15)

Using the positive semidefiniteness of � j − π j (π j)
� we have

Z − XC−1X� =
k∑

j=1

1

c j
� j − [π1, . . . , πk]C−1[π1, . . . , πk]� (16)

=
k∑

j=1

1

c j
� j −

k∑

j=1

1

c j
π j (π j)

� =
k∑

j=1

1

c j
(� j − π j (π j)

�) � 0.

(17)

Clearly, the objective function values coincide. Finally, we have to show that f �
ML ≥

f �
PW. For any feasible solution (Z , X) of problem (ML-SDP) we obtain a feasible

solution Z̄ of problem (4) by setting Z̄ = Z . Clearly, Z̄ ≥ 0n×n and Z̄1n = 1n
hold by construction. Then, Z̄ � 0 since Z � XC−1X�. Furthermore, constraints
diag(Z) = Xdiag(C−1) and X�1n = diag(C) imply

tr(Z̄) = 1�
n diag(Z) = 1�

n Xdiag(C
−1) = diag(C)diag(C−1) = k (18)

and hence Z̄ is feasible for problem (4). �
To compare the performance of the two relaxations, we select small-scale bench-

mark instances from the constrained clustering literature [4, 31] that are described in
Sect. 8 (see Table 2). We solve both the SDP relaxations by using MOSEK interior-
point optimizer [45]. We set a default tolerance of 10−8 for primal feasibility, dual
feasibility, and relative gap. In Table 1, along with the number of data points n and the
target number of cluster k, we report the lower bound (LB) provided by the relaxation
(VL-SDP), the relaxation (ML-SDP) and the computational time in seconds.

The results show that ourmatrix lifting SDP relaxation provides competitive bounds
and is solved significantly faster than the existing vector liftingSDP relaxation.Besides
this, the results show that, on some instances, the relaxations provide bounds that are
close, and for some problems even equal. Due to the mentioned quality of the new
relaxation, we believe that it is suitable for implementation within a branch-and-cut
framework. Since SDP solvers can be inaccurate, we describe how to derive valid

123

V. Piccialli, A. M. Sudoso

Table 1 Comparison between VL-SDP and ML-SDP bounds on small-scale instances using MOSEK. The
cluster sizes are set according to the ground-truth class labels

Dataset n k VL-SDP ML-SDP

LB Time (s) LB Time (s)

Ruspini 75 4 1.2881e+04 8.09 1.2881e+04 2.92

BreastTissue 106 6 2.3710e+10 240.86 2.3709e+10 49.67

Hierarchical 118 4 7.3973e+06 194.13 7.3668e+06 49.84

Iris 150 3 8.1278e+01 499.51 8.1278e+01 145.09

HapticsSmall 155 5 1.7759e+04 1176.5 1.7622e+04 225.77

UrbanLand 168 9 3.4317e+09 4226.19 3.4185e+09 495.64

Wine 178 3 2.3983e+06 1202.17 2.3853e+06 438.14

Parkinson 195 2 1.3641e+06 3286.55 1.3399e+06 723.83

lower bounds for both SDPs so that they can be safely used within a branch-and-cut
framework.

4 Valid lower bounds

Current successful solution techniques basedonB&Bmethods rely onobtaining strong
and inexpensive bounds. Computational results in Table 1 show that, regardless of the
relaxation, off-the-shelf interior-point methods (IPMs) are inefficient even for small-
sized clustering instances. Thus, for the efficiency of the B&Bwe need algorithms that
can solve large-scale SDPs. Compared to IPMs [46], first-order SDP solvers based on
augmented Lagrangian method (ALM) or alternating direction method of multipliers
(ADMM) can scale to significantly larger problem sizes, while trading off the accuracy
of the resulting output [47–49]. When using first-order methods, it is hard to reach a
solution to high precision in a reasonable amount of time. To safely use the proposed
lower bounds within the B&B algorithm, we need a certificate that the optimal value
of the primal SDP is indeed a valid lower bound for the discrete optimization problem.
However, since we only approximately solve the primal-dual pair of SDPs to some
precision, feasibility is not necessarily reached when the algorithm terminates. In the
following, we consider post-processing methods to guarantee safe lower bounds for
our SDPs. Following the ideas developed in [50, 51], we use two methods: one adding
a negative perturbation to the dual objective function value (error bounds) and one that
generates a dual feasible solution, and hence a bound, by solving a linear program.
Both methods are computationally cheap and produce bounds close to the optimal
objective function value. However, since in our experiments there is no method that
systematically outperforms the other on all the considered instances, we choose to run
both of them and we use the best (largest) bound.

123

Global optimization for cardinality-constrained minimum sum…

Consider Lagrange multipliers y ∈ R
n , α j , v j ∈ R, β j , γ j , u j ∈ R

n , Vj ∈ Sn ,
Vj ≥ 0, Uj ∈ Sn+1 ∀ j ∈ [k]. The dual of problem (VL-SDP) is

max y�1n +
k∑

j=1

α j c j −
k∑

j=1

v j + 〈W , In〉

s.t. −y − α j1n + β j + c jγ j − 2u j= 0n ∀ j ∈ [k]
− 1

c j
W − Diag(β j) − 1

2
1n(γ j)

� − 1

2
γ j1

�
n − S j= Vj ∀ j ∈ [k] (19)

Uj =
[
v j (u j)

�
u j S j

]

∈ Sn+1+ , Vj ≥ 0n×n ∀ j ∈ [k]

Consider Lagrange multipliers y1, α1, α2 ∈ R
n , y2 ∈ R

k , U ∈ R
n×k , U ≥ 0,

V ∈ Sn , V ≥ 0, S ∈ Sn+k . The dual of problem (ML-SDP) is

max y�
1 1n + y�

2 diag(C) + α�
1 1n − 〈C, S11〉 + 〈W , In〉

s.t. −y11
�
k − 1n y

�
2 + α2diag(C

−1)� − 2S12= U

−W − 1

2
α11

�
n − 1

2
1nα

�
1 − Diag(α2) − S22= V

S =
[
S11 S�

12
S12 S22

]

∈ Sn+k+ , U ≥ 0n×k, V ≥ 0n×n .

(20)

We use the dual problems in both post-processing techniques described in the next
subsections. The idea of post-processing via error bounds is the following. If the
dual feasibility is reached within machine accuracy, then the dual objective function
is already a valid lower bound. Otherwise, the dual objective value is perturbed by
adding a negative term to keep into account the infeasibility. This perturbation should
be as small as possible. Theorems 3 and 5 compute the tailored safe underestimate of
the dual objective function for problems (VL-SDP) and (ML-SDP), respectively. The
following lemma is needed for proving the validity of the error bounds.

Lemma 1 (Lemma3.1 in ref. [50])Let S, X ∈ Sn bematrices that satisfy 0 ≤ λmin(X)

and λmax(X) ≤ x̄ for some x̄ ∈ R. Then the following inequality holds:

〈S, X〉 ≥ x̄
∑

i : λi (S)<0

λi (S).

Theorem 3 Let p∗ be the optimal objective function value of (VL-SDP). Given the
dual variables y ∈ R

n, α j , v j ∈ R, β j , γ j ∈ R
n, Vj ∈ Sn, Vj ≥ 0, set

U j =
[
v j (u j)

�
u j S j

]

, u j = 1

2

(−y − α j1n + β j + c jγ j
)
,

S j = − 1

c j
W − Diag(β j) − 1

2
1n(γ j)

� − 1

2
γ j1

�
n − Vj ,

123

V. Piccialli, A. M. Sudoso

for all j ∈ [k]. A safe lower bound for p� is given by

lb = 〈W , In〉 + y�1n +
k∑

j=1

α j c j −
k∑

j=1

v j +
k∑

j=1

⎛

⎝
(
c j + 1

) ∑

i : λi (Uj)<0

λi (Uj)

⎞

⎠ .

Proof Let Y �
j =

[
1 (π�

j)
�

π�
j ��

j

]

for all j ∈ [k] be an optimal solution of (VL-SDP) with

objective function value p�. In order to show that p� ≥ lb, consider the equation

〈

W , In −
k∑

j=1

1

c j
��

j

〉

−
⎛

⎝y�1n +
k∑

j=1

α j c j +
k∑

j=1

(β j)
�0n +

k∑

j=1

(γ j)
�0n −

k∑

j=1

v j + 〈W , In〉
⎞

⎠

= −
〈

W ,

k∑

j=1

1

c j
��

j

〉

− y�
⎛

⎝
k∑

j=1

π�
j

⎞

⎠−
k∑

j=1

α j (1
�
n π�

j) −
k∑

j=1

(β j)
�(diag(��

j) − π�
j)

−
k∑

j=1

(γ j)
�
(
1

2
(��

j + (��
j)

�)1n − c jπ
�
j

)

+
k∑

j=1

v j

=
k∑

j=1

− 1

c j

〈
W , ��

j

〉
−

k∑

j=1

y�π�
j −

k∑

j=1

α j1
�
n π�

j −
〈 k∑

j=1

Diag(β j), �
�
j

〉

+
k∑

j=1

(β j)
�π�

j

−
〈
1

2

k∑

j=1

1n(γ j)
�, ��

j

〉

−
〈
1

2

k∑

j=1

γ j1
�
n , ��

j

〉

+
k∑

j=1

(γ j)
�c jπ

�
j +

k∑

j=1

v j

=
k∑

j=1

〈

− 1

c j
W − Diag(β j) − 1

2
1n(γ j)

� − 1

2
γ j1

�
n , ��

j

〉

+
k∑

j=1

(−y − α j1n + β j + γ j c j
)�

π�
j +

k∑

j=1

v j

=
k∑

j=1

〈
Vj , �

�
j

〉
+

k∑

j=1

〈
S j ,�

�
j

〉
+ 2

k∑

j=1

(u j)
�π�

j +
k∑

j=1

v j =
k∑

j=1

〈
Vj , �

�
j

〉
+

k∑

j=1

〈
Uj , Y

�
j

〉
.

The last term can be bounded by means of Lemma 1 applied on matrix Y �
j , so that we

need an upper bound ȳ j on λmax(Y �
j). The largest eigenvalue of � j is lower or equal

than its largest row sum, which is the cardinality of cluster j . Due to � j1n = c jπ j
and π j ∈ [0, 1]n we set ȳ j = c j + 1. Therefore, using Lemma 1 with ȳ j = c j + 1,
and the nonnegativity of Vj for all j ∈ [k], we obtain

k∑

j=1

〈
Vj , �

�
j

〉
+

k∑

j=1

〈
Uj , Y

�
j

〉
≥

k∑

j=1

⎛

⎜
⎝
(
c j + 1

) ∑

i : λi (U j)<0

λi (Uj)

⎞

⎟
⎠ .

�
In order to state an analogous result for problem (ML-SDP), we need an intermediate
result, bounding the eigenvalues of its feasible solutions.

123

Global optimization for cardinality-constrained minimum sum…

Lemma 2 (ref. [52]) For every block matrix M =
[
M11 M�

12
M12 M22

]

� 0 we have the

decomposition

M = U

[
M11 0
0 0

]

U� + V

[
0 0
0 M22

]

V�

for some orthogonal matrices U , V .

Theorem 4 Let Y =
[
C X�
X Z

]

be a feasible solution of problem (ML-SDP), then

max
i=1,...,k

Cii ≤ λmax(Y) ≤ max
i=1,...,k

Cii + 1

Proof Let C0 =
[
C 0
0 0

]

and Z0 =
[
0 0
0 Z

]

. From Lemma 2 we have

Y = UC0U
� + V Z0V

�,

where U and V are orthogonal. Therefore

λmax(Y) = max‖v‖=1
v�Yv = max‖v‖=1

v�(UC0U
� + V Z0V

�)v

≤ max‖v‖=1
v�(UC0U

�)v + max‖v‖=1
v�(V Z0V

�)v

= λmax
(
UC0U

�)+ λmax
(
V Z0V

�)

= λmax
(
C0
)+ λmax

(
Z0
)

= λmax(C) + λmax(Z) = max
i=1,...,k

Cii + 1,

where the last two equations derive from the orthogonality of U and V and Z being a
stochastic matrix. Finally,

λmax(Y) = max‖v‖=1
v�Yv ≥ e�

i Y ei = yii ∀i ∈ {1, . . . , n + k},

where ei is the i-th basis vector. Therefore, λmax(Y) ≥ maxi=1,...,k Cii . �

Similarly to the vector lifting relaxation, once the SDP has been solved approximately,
the following theorem gives a lower bound on the optimal value of the matrix lifting
SDP relaxation.

Theorem 5 Let p� be the optimal objective function value of problem (ML-SDP).Given
the dual variables y1, α1, α2 ∈ R

n, y2 ∈ R
k , U ∈ R

n×k , U ≥ 0, V ∈ Sn, V ≥ 0,

123

V. Piccialli, A. M. Sudoso

S11 ∈ R
k×k set

S =
[
S11 S�

12
S12 S22

]

, S12 = 1

2

(
−y11

�
k − 1n y

�
2 + α2diag(C

−1)� −U
)

,

S22 = −W − 1

2
α11

�
n − 1

2
1nα

�
1 − Diag(α2) − V .

A safe lower bound for the optimal value p� is given by

lb = 〈W , In〉 + y�
1 1n + y�

2 diag(C) + α�
1 1n − 〈C, S11〉

+
(

max
i=1,...,k

Cii + 1

) ∑

i : λi (S)<0

λi (S).

Proof Let Y � =
[
C (X�)�
X� Z�

]

be an optimal solution of problem (ML-SDP) with

objective function value p�. In order to show that p� ≥ lb, consider the equation

− 〈W , Z�
〉+ 〈W , In〉 − (y�

1 1n + y�
2 diag(C) + α�

1 1n + α�
2 0n − 〈C, S11〉 + 〈W , In〉

)

= − 〈W , Z�
〉− y�

1 X�1k − y�
2 (X�)�1n − 1

2
α�
1 (Z� + (Z�)�)1n

− α�
2 (diag(Z�) − X�diag(C−1)) + 〈C, S11〉

= − 〈W , Z�
〉−
〈
y11

�
k , X�

〉
−
〈
1n y

�
2 , X�

〉
− 1

2

〈
1nα

�
1 , Z�

〉

− 1

2

〈
α11

�
n , Z�

〉
− 〈Diag(α2), Z

�
〉+
〈
α2diag(C

−1)�, X�
〉
+ 〈C, S11〉

=
〈

−W − 1

2
1nα

�
1 − 1

2
α11

�
n − Diag(α2), Z

�

〉

+
〈
−y11

�
k − 1n y

�
2 + α2diag(C

−1)�, X�
〉
+ 〈C, S11〉

= 〈V , Z�
〉+ 〈U , X�

〉+ 〈S11,C〉 + 2
〈
S12, X

�
〉+ 〈S22, Z�

〉

= 〈V , Z�
〉+ 〈U , X�

〉+ 〈S,Y �
〉
.

The last term can be bounded by using Lemma 1 applied on Y �, with ȳ ≥ λmax(Y �).
Here, a suitable bound ȳ for the maximum eigenvalue of any feasible solution Y can
be obtained by applying Theorem 4. Therefore, we set ȳ = maxi=1,...,k Cii + 1, and
applying Lemma 1 we get

〈
V , Z�

〉+ 〈U , X�
〉+ 〈S,Y �

〉

≥ 〈V , Z�
〉+ 〈U , X�

〉+
(

max
i=1,...,k

Cii + 1

) ∑

i : λi (S)<0

λi (S)

≥
(

max
i=1,...,k

Cii + 1

) ∑

i : λi (S)<0

λi (S),

123

Global optimization for cardinality-constrained minimum sum…

where the last inequality holds because U and V are nonnegative. �

Another way to get valid lower bounds for problems (VL-SDP) and (ML-SDP)
is to tune the output results to get a feasible solution for the dual SDP problem.
More in detail, from an approximate dual solution, that is not positive semidefinite, a
partial dual feasibile solution is obtained by computing its projection onto the positive
semidefinite cone. Then, the remaining dual variables are computed by solving an
auxiliary LP. If the LP is feasible, we can construct a feasible solution, obtaining a
valid dual bound. If it is infeasible, then we are neither able to construct a feasible
dual solution nor to construct a dual bound. In this case, we set lb = −∞ and we use
the valid bound provided by Theorems 3 and 5, respectively.

5 Cutting-plane algorithm

The bounds given by relaxations (VL-SDP) and (ML-SDP) are not strong enough to
be successfully used within a B&B framework to solve large ccMSSC problems to
optimality. We propose to strengthen the SDP bounds by using polyhedral cuts and
solve the resulting SDPs by means of a cutting-plane algorithm. As mentioned in [4],
trivial inequalities for the vector lifting relaxation are obtained via the reformulation–
linearization technique (RLT). In [4], all RLT inequalities are included at once. We
did some experiments adding all the RLT constraints (for small instances) or adding
only the violated ones in a cutting-plane fashion. However, the improvement of the
bound was marginal and came at a high computational cost. This motivated us to look
for more effective valid inequalities. To this end, one may add any inequality that is
valid for the so-called boolean quadric polytope, which is defined in [53] as the convex
hull of pairs (� j , π j) satisfying � j = π j (π j)

� with π j ∈ {0, 1}n for j ∈ [k]. One
important class of these cuts are the triangle inequalities, defined as

(π j)r + (π j)s + (π j)t ≤ (� j)rs + (� j)r t + (� j)st + 1 ∀ j ∈ [k],
(� j)rs + (� j)r t ≤ (π j)r + (� j)st ∀ j ∈ [k] (21)

which hold for all distinct triplets (r , s, t). Note that there are O(k
(n
3

)
) inequalities

of type (21). Triangle inequalities explore the following property of the clustering
problem: if data points pr , ps and pr , pt belong to the cluster j , then ps and pt must
be in the cluster j as well. For the matrix lifting SDP, we consider triangle inequalities
of the form

Zi j ≤ Zii ,

Zi j + Zih ≤ Zii + Z jh
(22)

which hold for all distinct triplets (i, j, h). Constraints (22) are also used to strengthen
the LP relaxation in [21] and the SDP relaxation in [24] for the unconstrained MSSC.
Note that there are O(

(n
3

)
) inequalities of type (22). Similarly to (21), these inequalities

123

V. Piccialli, A. M. Sudoso

ensure that if pi , p j and pi , ph are in the same cluster, then Zii = Zi j = Zih = Z jh

must hold.
The enumeration of all triangle inequalities is computationally inexpensive, even

for large instances. However, adding all of themwould make the relaxation intractable
even for moderate values of n. To keep both the SDPs for the bounding routine and
the auxiliary LPs for post-processing to a modest size, we limit the number of triangle
inequalities that we can add at each cutting-plane iteration. The triangle inequalities
are then sorted by violation magnitude and added starting with the most violated ones.
Once the SDP minimizer is obtained, we remove all inactive constraints and add new
violated inequalities. Next, the problem with an updated set of inequalities is solved
and the process is iterated as long as the increase of the lower bound is sufficiently
large. Indeed, we terminate the bounding routine if the relative difference between
consecutive bounds is less than a fixed threshold. If the gap cannot be closed after
some cutting plane iterations, we terminate the bounding routine, branch the current
node, and start solving new subproblems as described in Sect. 6. Note that, to improve
the efficiency of the overall B&B algorithm, we pass cutting planes from parent to
children nodes. This allows us to save a significant number of cutting-plane iterations,
and therefore computational time, when processing children nodes. We also point out
that, when an SDP is solved with a new set of inequalities, the post-processing phase
yielding valid lower bounds is performed by adapting the results in Sect. 4.

6 Branching

Using cutting planes to tighten the SDP relaxations may not be sufficient to prove the
optimality of the best clustering solution found so far. If there are no violated cuts
or the bound does not improve significantly when adding valid inequalities, then we
stop the generation of cutting planes and we branch, i.e., we split the current problem
into more problems of smaller dimensions by fixing some variables. An appropriate
branching strategy can help limit the branching decisions and prevent unnecessary
bound computations. In the notation of problem (ccMSSC), one may selects a variable
(π j)i having a nonbinary value and produce two subproblems: one with (π j)i = 1
(i.e., the i-th data point is assigned to the cluster j) and the other with (π j)i = 0
(i.e., the i-th data point is not in the cluster j). If a subproblem contains additional
cluster indicator variables with nonbinary values then this process can be continued
to produce a branching tree that will eventually enforce all binary conditions. Despite
the existence of many branching rules that perform well for generic problems, there
also exist branching rules tailored to the specific MSSC problem. Following [27], we
adopt a branching logic aimed at enforcing pairwise constraints, namely must-link
and cannot-link constraints. More in detail, a must-link constraint is used to specify
that the two data points are in the same cluster, whereas a cannot-link constraint
states that they can not be placed together. Both types of constraints can be added to
the SDP relaxations through linear equality and inequality constraints. To this end, let
[l=] ⊂ [n]×[n] and [l �=] ⊂ [n]×[n] be the set ofmust-link and cannot-link constraints,

123

Global optimization for cardinality-constrained minimum sum…

respectively. Consider the vector lifting relaxation and define the following sets

MLVL = {(π,�) ∈ R
n × Sn : ∀(i, j) ∈ [l=] πi = π j , �i t = � j t ∀t ∈ [n] } ,

CLVL = {(π,�) ∈ R
n × Sn : ∀(i, j) ∈ [l �=] πi + π j ≤ 1, �i j = 0

}
.

At any level of the search tree, the vector lifting relaxation with pairwise constraints
becomes

min

〈

W , In −
k∑

j=1

1

c j
� j

〉

s.t.
k∑

j=1

π j= 1n ∀ j ∈ [k] (23)

(π j ,� j)∈ SVL(c j) ∩ MLVL ∩ CLVL ∀ j ∈ [k]

Similarly, consider the matrix lifting relaxation and define the analogues sets

MLML =
{
(X , Z) ∈ R

n×k × S
n : ∀(i, j) ∈ [l=] Xih = X jh ∀h ∈ [k], Zih = Z jh ∀h ∈ [n]

}
,

CLML =
{
(X , Z) ∈ R

n×k × S
n : ∀(i, j) ∈ [l �=] Xih + X jh ≤ 1 ∀h ∈ [k], Zi j = 0

}
.

Therefore, at any level of the tree, the problem takes the form

min tr (W − WZ)

s.t. (X , Z)∈ SML ∩ MLML ∩ CLML. (24)

Pairwise constraints partition the set of feasible solutions associated to the parent node
into two disjoint subsets. Hence, our algorithm generates a binary enumeration tree:
every time a parent node is split into two children, a pair of indices (i�, j�) is chosen
and amust-link and a cannot-link constraint are imposed on their associated problems.
Depending on the relaxation, we use the following rules for selecting the branching
pair:

(i�, j�)VL = arg max
i, j=1,...n

{

min
h=1,...,k

{
(�h)i j , ‖(�h)i,: − (�h) j,:‖22

}}

,

(i�, j�)ML = arg max
i, j=1,...,n

{
min

{
Zi j , ‖Zi,: − Z j,:‖22

}}
.

In other words, we choose indices i� and j� with the least tendency to assign data
points pi� and p j� to the same cluster, or to different ones.

Remark 1 A branching rule based on pairwise constraints becomes relevant in our
context under three different aspects. First, it allows to constrain multiple variables
involving twodata points at the same time.This yields tighter relaxations in the children

123

V. Piccialli, A. M. Sudoso

compared to the strategy of enforcing integrality on the variable of a single data point.
Second, it allows to exploit symmetry reduction techniques that can significantly
reduce the size of the SDPs. Third, it leads to the natural extension of SDP relaxations
for ccMSSC to a general class ofMSSCwith both pairwise and cardinality constraints.
To the best of our knowledge, this is the first time that tractable conic formulations
are proposed for the MSSC problem with side constraints [15].

The number of pairwise constraints grows exponentially in the number of B&B
nodes. As a result, the bounding problems may become expensive to solve. However,
must-link constraints can be exploited to reduce the size of the subproblems. To this
end, by introducing a suitable transformation matrix that maps the data points onto
the so-called “super points”, problems (23) and (24) can be reformulated as programs
on lower dimensional positive semidefinite cones. In the next section, we show that
the cardinality constraints can be mapped onto the set of super points.

6.1 Size reduction

We consider the undirected graph G = (V , E) where the vertices are the data points
and the edges are the must-link constraints, i.e., V = [n] and E = [l=]. We find
the connected components of G and we assume that there are m ≤ n components
[B1], . . . , [Bm]. Let T s be them×n transformation matrix having T s

i j = 1 if j ∈ [Bi]
and 0 otherwise, for each i ∈ {1, . . . ,m}. Matrix T s encodes the data points belonging
to the same connected component and vector es = T s1n contains the number of data
points in each component. Observe that T sW (T s)� reduces the size ofW . As a result,
instead of clustering the initial set of data points p1, . . . , pn , we find a k-partition of
the super points s1, . . . , sm . In addition to removing must-link constraints, we are able
to reduce the number of cannot-link constraints. To see this, we denote by [ls�=] the
set of cannot-link constraints between super points. A cannot-link is defined on two
super points si and s j if there exists a cannot-link on two data points p and q such
that p ∈ [Bi] and q ∈ [Bj]. It is easy to verify that, after this process, cannot-link
constraints between data points in different connected components are mapped to the
same pair of super points. Hence, we can reduce the size of problem (23) at any level
of the tree reformulating it as

min tr

⎛

⎝W − T sW (T s)�
k∑

j=1

1

c j
�s

j

⎞

⎠ (25a)

s.t.
k∑

j=1

π s
j= 1m (25b)

(es)�π s
j= c j ∀ j ∈ [k] (25c)

(π s
h)i + (π s

h) j≤ 1 ∀h ∈ [k], ∀(i, j) ∈ [ls�=] (25d)
[
1 (π s

j)
�

π s
j �s

j

]

∈ Sm+1+ ∀ j ∈ [k] (25e)

123

Global optimization for cardinality-constrained minimum sum…

(�s
h)i j= 0 ∀h ∈ [k], ∀(i, j) ∈ [ls�=] (25f)

diag(�s
j)= π s

j ∀ j ∈ [k] (25g)

�s
j e

s= c jπ
s
j ∀ j ∈ [k] (25h)

�s
j≥ 0m×m ∀ j ∈ [k]. (25i)

Theorem 6 Problems (23) and (25) are equivalent.

Proof Let {(π s
j ,�

s
j)}kj=1 be a feasible solution of problem (25). For all j ∈ [k] define

� j = (T s)��s
j T

s and π j = (T s)�π s
j . This is equivalent to expanding matrices

{�s
j }kj=1 and vectors {π s

j }kj=1 by replicating the rows according to the indices of data
points involved in must-link constraints. Therefore, for all (s, t) ∈ [l]=, constraints
(π j)s = (π j)t and (� j)sh = (� j)th ∀h ∈ [n] hold by construction. From the
definition of T s , � j ≥ 0n×n holds for all j ∈ [k]. Likewise, from (25g) constraints
diag(� j) = π j hold as well. Moreover, for all j ∈ [k] we have

k∑

j=1

π j =
k∑

j=1

(T s)�π s
j = (T s)�

k∑

j=1

π s
j = (T s)�1m = 1n,

1�
n π j = 1�

n (T s)�π s
j = (es)�π s

j = c j ,

� j1n = (T s)��s
j T

s1n = (T s)��s
j e

s = (T s)�π s
j c j = c jπ j ,

and

� j − π jπ
�
j � 0 ⇔ 〈

� j u, u
〉−
〈
π jπ

�
j u, u

〉

=
〈
(T s)��s

j T
su, u

〉
−
〈
(T s)�π s

j (π
s
j)

�T su, u
〉

=
〈
�s

j ū, ū
〉
−
〈
π s
j (π

s
j)

�ū, ū
〉
≥ 0 ∀ū = T su, u �= 0n .

⇔ �s
j − π s

j (π
s
j)

� � 0.

Finally, we have

〈

W , In −
k∑

j=1

1

c j
� j

〉

=
〈

W , In − (T s)�
k∑

j=1

1

c j
�s

j T
s

〉

= tr

⎛

⎝W − T sW (T s)�
k∑

j=1

1

c j
�s

j

⎞

⎠

and thus {(� j , π j)}kj=1 is a feasible solution of problem (23) and the values of the
objective functions coincide.

123

V. Piccialli, A. M. Sudoso

Now assume that {(� j , π j)}kj=1 is a feasible solution of problem (23). For all j ∈
[k] define �s

j = Diag(1m/es)T s� j (T s)�Diag(1m/es) and π s
j = Diag(1m/es)T sπ j .

Constraints (25g) hold by construction since �s
j and π s

j are lower dimensional vari-
ables obtained from � j and π j . If � j is nonnegative, then so is �s

j . Furthermore, we
have

k∑

j=1

π s
j =

k∑

j=1

Diag(1m/es)T sπ j = Diag(1m/es)T s1n = Diag(1m/es)es = 1m,

(es)�π s
j = (es)�Diag(1m/es)T sπ j = π�

j (T s)�Diag(1m/es)es = π�
j 1n = c j ,

�s
j e

s = Diag(1m/es)T s� j (T
s)�Diag(1m/es)es = Diag(1m/es)T s� j (T

s)�1m
= Diag(1m/es)T s� j1n = Diag(1m/es)T sπ j c j = π s

j c j ,

and

�s
J − π s

j (π
s
j)

� � 0 ⇔
〈
�s

j u, u
〉
−
〈
π s
j (π

s
j)

�u, u
〉

=
〈
Diag(1m/es)T s� j (T

s)�Diag(1m/es)u, u
〉

−
〈
Diag(1m/es)T sπ jπ

�
j (T s)�Diag(1m/es)u, u

〉

= 〈� j ū, ū
〉−
〈
π jπ

�
j ū, ū

〉
≥ 0 ∀ū = (T s)�Diag(1m/es)u

⇔ � j − π jπ
�
j � 0.

It remains to show that the objective function values coincide:

tr(W) −
〈

T sW (T s)�,

k∑

j=1

1

c j
�s

j

〉

= tr(W) −
〈

T sW (T s)�,Diag(1m/es)T s
k∑

j=1

1

c j
� j (T

s)�Diag(1m/es)

〉

= tr(W) −
〈

W , (T s)�Diag(1m/es)T s
k∑

j=1

1

c j
� j (T

s)�Diag(1m/es)T s

〉

= tr(W) −
〈

W ,

k∑

j=1

1

c j
� j

〉

=
〈

W , I −
k∑

j=1

1

c j
� j

〉

.

Note that (T s)�Diag(1m/es)T s∑k
j=1

1
c j

� j (T s)�Diag(1m/es)T s “averages” over

the rows of matrix
∑k

j=1
1
c j

� j . Since these rows are identical due to must-link con-
straints, the last equation holds. �

123

Global optimization for cardinality-constrained minimum sum…

Similarly, we can reduce the size of problem (24) at any level of the tree reformu-
lating it as

min tr(W − T sW (T s)�Zs) (26a)

s.t. Xs1k= 1m (26b)

(Xs)�es= diag(C) (26c)

Xs
ih + Xs

jh≤ 1 ∀h ∈ [k], ∀(i, j) ∈ [ls�=] (26d)

Zses= 1m (26e)

diag(Zs)= Xsdiag(C−1) (26f)

Zs
i j= 0 ∀(i, j) ∈ [ls�=] (26g)
[
C (Xs)�
Xs Zs

]

∈ Sm+k+ (26h)

Xs ≥ 0m×k, Zs ≥ 0m×m (26i)

Theorem 7 Problems (24) and (26) are equivalent.

Proof Let (Zs, Xs) a feasible solution of problem (26). Define Z = (T s)�ZsT s and
X = (T s)�Xs . This is equivalent to expanding matrices Zs and Xs by replicating
the rows according to the indices of data points involved in must-link constraints.
Therefore, Xih = X jh for all h ∈ [k] and Zih = Z jh for all h ∈ [n] hold
by construction. Clearly, Z ≥ 0n×n and X ≥ 0n×k hold as well. Likewise, from
diag(Zs) = Xsdiag(C−1) it is easy to verify that diag(Z) = Xdiag(C−1) holds.
Moreover, we have that

X1k = (T s)�Xs1k = (T s)�1m = 1n,

X�1n = (Xs)�T s1n = (Xs)�es = diag(C),

Z1n = (T s)�ZsT s1n = (T s)�Zses = (T s)�1m = 1n .

Constraint (26h) can be rewritten as 〈Zsv, v〉−〈XsC−1(Xs)�v, v
〉 ≥ 0 for all v �= 0m .

Therefore, we have

Z − XC−1X� � 0 ⇔ 〈Zu, u〉 −
〈
XC−1X�u, u

〉

=
〈
(T s)�ZsT su, u

〉
−
〈
(T s)�XsC−1(Xs)�T su, u

〉

= 〈Zsū, ū
〉−
〈
XsC−1(Xs)�ū, ū

〉
≥ 0 ∀ū = T su, u �= 0n .

⇔ Zs − XsC−1(Xs)� � 0.

Furthermore, 〈W , Z〉 = 〈
W , (T s)�ZsT s

〉 = 〈
(T s)W (T s)�, Zs

〉
and thus (Z , X) is a

feasible solution of problem (24) and the values of the objective functions coincide.
Assume that (Z , X) is a feasible solution of problem (24), set Xs = Diag(1m/es)T s X
and Zs = Diag(1m/es)T s Z(T s)�Diag(1m/es). Constraint (26f) follows by construc-

123

V. Piccialli, A. M. Sudoso

tion since Zs and Xs are the “shrunk” matrices of Z and X . If (Z , X) is nonnegative,
then so is (Zs, Xs). Furthermore, we can derive

Xs1k = Diag(1m/es)T s X1k = Diag(1m/es)T s1n = Diag(1m/es)es = 1m,

(Xs)�es = X�(T s)�Diag(1m/es)es = (Xs)�es = X�(T s)�1m = X�1n = diag(C),

Zses = Diag(1m/es)T s Z(T s)�Diag(1m/es)es = Diag(1m/es)T s Z(T s)�1m
= Diag(1m/es)T s Z1n = Diag(1m/es)T s1n = Diag(1m/es)es = 1m .

Then, we have

Zs − XsC−1(Xs)� � 0 ⇔ 〈
Zsu, u

〉−
〈
XsC−1(Xs)�u, u

〉

=
〈
Diag(1m/es)T s Z(T s)�Diag(1m/es)u, u

〉
+

−
〈
Diag(1m/es)T s XC−1X�(T s)�Diag(1m/es)u, u

〉

= 〈Zū, ū〉 −
〈
XC−1X�ū, ū

〉
≥ 0 ∀ū = (T s)�Diag(1m/es)u

⇔ Z − XC−1X� � 0.

It remains to show that the objective function values coincide:

〈
T sW (T s)�, Zs

〉
=
〈
T sW (T s)�,Diag(1m/es)T s Z(T s)�Diag(1m/es)

〉

=
〈
W , (T s)�Diag(1m/es)T s Z(T s)�Diag(1m/es)T s

〉
= 〈W , Z〉 .

In the latter equation, note that (T s)�Diag(1m/es)T s Z(T s)�Diag(1m/es)T s “aver-
ages” over selected rows of matrix Z . Since these rows are identical due to must-link
constraints, the last equation holds. �

7 Heuristic

In the previous sections we discussed how to obtain strong and inexpensive lower
bounds for ccMSSC by using semidefinite programming tools. In this section, we
develop a rounding algorithm that recovers a feasible clustering (and thus an upper
bound on the ccMSSC problem) from the solution of the SDP relaxation. By far,
the most popular heuristic solving the unconstrained MSSC problem is the k-means
algorithm [18]. Given the initial cluster centers, k-means proceeds by alternating two
steps until convergence. In the first step, each observation is assigned to the closest
cluster center, whereas in the second step, each center is updated by taking the mean
of all the data points assigned to it. The algorithm terminates when the centers no
longer change. Like other local search heuristics, the quality of the clustering found
by k-means highly depends on the choice of the initial cluster centers [54, 55].

123

Global optimization for cardinality-constrained minimum sum…

To generate high-quality solutions, we propose a two-phase rounding procedure.
In the first phase, we extract the initial cluster centers from the solution of the SDP
relaxation solved at each node. Therefore, we exploit the quality of the SDP solution
by solving a sequence of relaxations where the underlying clusters become more
clearly defined in each cutting-plane iteration. In the second phase, by using integer
programming tools, we design a local search procedure inspired by k-means that
improves the initial clustering while satisfying the cardinality constraints. We run this
procedure at each node and we incorporate pairwise constraints described in Sect. 6
whenever branching decisions are taken.

Consider the ccMSSC formulation and recall that π j = X :, j is the indicator vector
of cluster j . In general, the solution X̃ of problem (ML-SDP) represents a soft assign-
ment matrix since its elements are between 0 and 1. To build a soft assignment from a
solution {(�̃ j , π̃ j)}kj=1 of problem (VL-SDP), we stack the cluster indicator variables

as columns of the matrix X̃ = [π̃1, . . . , π̃k]. Recall thatF is the set of all assignments
with known cluster sizes as defined in equation (6). Furthermore, denote byML and
CL the sets of assignment variables satisfying must-link and cannot-link constraints,
respectively. In order to obtain a feasibile clustering, we find the closest assignment
matrix X̄0 to X̃ with respect to the Frobenius norm by solving

min
X

{
‖X − X̃‖2F : X ∈ F ∩ ML ∩ CL

}

= max
X

{〈
X , X̃

〉
: X ∈ F ∩ ML ∩ CL

}
.

(27)

At the root node, that is when [l=] = [l �=] = ∅, problem (27) can be solved in poly-
nomial time because its constraint matrix is totally unimodular, implying that its LP
relaxation is exact. When pairwise constraints are added at each node, the unimodu-
larity does not hold anymore. However, in practice the problem can be quickly solved
to global optimality by using off-the-shelf integer programming solvers. The solution
X̄0 is a feasible clustering and thus the corresponding centroids m̄ j = 1

c j

∑n
i=1 X̄

0
i j pi

for all j ∈ [k] can be used to initialize the local search procedure illustrated in Algo-
rithm 1.

Note that in principle, if the solver would fail in solving problem (27), we could
use the same initialization found at the root node or any other random initialization.
However, in all our experiments, off-the-shelf software always solved problem (27)
in negligible time.

Algorithm 1 Find a feasible clustering via the SDP solution
Input: Data points p1, . . . , pn , cluster sizes c1, . . . , ck , initial centers m̄1, . . . , m̄k extracted from the
SDP solution, branching decisions as must-link [l=] and cannot-link [l �=] constraints.
while there are changes in m̄1, . . . , m̄k do

X̄ = argminX
{∑n

i=1
∑k

j=1 Xi j‖pi − m̄ j‖22 : X ∈ F ∩ ML ∩ CL
}
.

m̄ j = argminm j

{∑n
i=1

∑k
j=1 X̄i j‖pi − m j‖22

}
= 1

c j

∑n
i=1 X̄i j pi ∀ j .

end while
Output: X̄

123

V. Piccialli, A. M. Sudoso

Steps 1 and 2 of Algorithm 1 are reminiscent of a single iteration of k-means
algorithm for unconstrained clustering. Specifically, Step 1 computes the optimal
assignment of each point to the nearest cluster center while adhering to both car-
dinality and pairwise constraints. The feasible set of the ILP is the same of problem
(27), and the same considerations hold on the total unimodularity property at the root
node, and on the practical behaviour of off-the-shelf solvers. The minimization in Step
2, instead, admits a closed form solution, and like k-means, is given by the sample
average of data points assigned to each cluster. Similarly to the k-means algorithm,
there is no guarantee that the iterates generated from our heuristic will converge to the
global minimizer. Differently from the heuristic proposed in [4], our algorithm finds
the initial cluster centers by exploiting SDP relaxations strengthened through cutting
planes and improves the quality of the initial clustering by appending some iterations
of the k-means algorithm with both cardinality and pairwise constraints. Numerical
experiments show that proposed heuristic is able to find the optimal solution at the
root or in the first few nodes.

The overall branch-and-cut algorithm is shown in Algorithm 2. Algorithm 2 con-
verges to a global minimum with precision ε, thanks to the binary branching that
performs an implicit enumeration of all the possible cluster assignments. In practice, a
small number of nodes is required thanks to the strength of the lower bounding routine
and to the effectiveness of the heuristic, as we will show in the next section.

Algorithm 2 Branch-and-cut algorithm for ccMSSC
Input: Gram matrix W , number of clusters k, matrix of cardinalities C , optimality tolerance ε.

1. Let P0 be the initial ccMMSC problem and set Q = {P0}.
2. Set X� = null with objective function value v� = ∞.
3. While Q is not empty:

3.1. Select and remove problem P fromQ.
3.2. Compute a lower bound (either by VL-SDP or by ML-SDP) for problem P .
3.3. Apply the post-processing via error bounds and the LP-based post-processing and select the highest

valid lower bound LB.
3.4. If v� < ∞ and (v� − LB)/v� ≤ ε, go to Step 3.
3.5. Search for violated triangle inequalities. If any are found, add them to the current SDP relaxation

and go to Step 3.2.
3.6. Extract the initial cluster centers from the solution of the SDP relaxation and run the heuristic in

Algorithm 1 to get an assignment X and an upper bound UB. If UB < v� then set v� ← UB,
X� ← X .

3.7. Select the branching pair (i, j) and partition problem P into must-link and cannot-link subprob-
lems. For each problem update T s , es and [ls�=] accordingly, add them to Q and go to Step 3.

Output: Optimal assignment matrix X� with objective value v�

8 Computational results

In this section, we describe the implementation details and we show numerical results
on real-world instances.

123

Global optimization for cardinality-constrained minimum sum…

8.1 Implementation details

Our B&B algorithm is implemented in C++ with some routines written in MATLAB.
TheSDP relaxations are solvedwith SDPNAL+, aMATLABsoftware that implements
an augmented Lagrangian method to solve semidefinite programming problems with
bound constraints [56]. We set the accuracy tolerance of SDPNAL+ to 10−4 in the
relative KKT residual and we post-process the output of the solver by using the tec-
niques described in Sect. 4. We use Gurobi [57] for the LP-based post-processing and
for solving the integer problems in Algorithm 1. We run the experiments on a laptop
with Intel(R) i7-12700H CPU @ 3.50GHz having 14 cores, 16 GB of RAM and
Ubuntu operating system. To improve the efficiency of the B&B search we concur-
rently explore multiple nodes of the tree. As for the cutting-plane procedure, at each
iteration, we separate at most 100,000 triangle inequalities, we sort them in decreasing
order with respect to the violation and we add the first 10%. In our numerical tests, the
tolerance for checking the violation is set to 10−4. Furthermore, we use the same tol-
erance for removing inactive inequalities. We stop the cutting-plane procedure when
there are no violated inequalities or the relative difference between consecutive lower
bounds is less than 10−4. Finally, we explore the B&B tree with the best-first search
strategy. The source code is available at https://github.com/antoniosudoso/cc-sos-sdp.

8.2 Results on real-world instances

In Table 2, we report 29 real-world datasets for classification problems with number
of data points n ∈ [75, 1000], number of features d ∈ [2, 20531], number of clusters
k ∈ [2, 9], and fOPT that is the optimal value certified by our methodology. They can
all be downloaded at UCI1 andUCR2 websites. Following the related literature [4, 31],
the number of clusters is assumed to be equal to the number of classes. Furthermore,
we set the cluster cardinalities c1, . . . , ck to the numbers of true class occurrences
in each dataset. We implement two versions of the B&B algorithm where the only
difference is the adopted SDP relaxation: in B&BVL-SDPwe use problem (VL-SDP),
whereas in B&B ML-SDP we use problem (ML-SDP). We add triangle inequalities
in a cutting-plane fashion as described in Sect. 5. We require the optimality tolerance
on the percentage gap of ε = 0.01% for instances with n < 500 and ε = 0.1% for
instances with n ≥ 500, i.e., we terminate each method when 100 · UB−LB

U B ≤ ε,
where UB and LB denote the best upper and lower bounds, respectively. In all our
experiments, we set a time limit of 12h of computing time.

In Table 3, we compare the two versions of our B&B algorithm. Here, we report
the instance id and for each method some statistics relative to the root node, the total
number of processed nodes and the computational time in seconds. As for the root
node, we report the percentage gap after solving the SDP without adding triangle
inequalities (Gap0), the number of cutting-plane iterations (CP), and the percentage
gap at the end of the cutting-plane procedure (Gapr). Whenever the time limit is
reached, we set the time to “-” and we report in brackets in the “Nodes” column the

1 http://archive.ics.uci.edu/ml.
2 http://www.cs.ucr.edu/~eamonn/time_series_data_2018.

123

https://github.com/antoniosudoso/cc-sos-sdp
http://archive.ics.uci.edu/ml
http://www.cs.ucr.edu/~eamonn/time_series_data_2018

V. Piccialli, A. M. Sudoso

Table 2 Real-world instances

ID Dataset n d k c1, . . . , ck fOPT

01 Ruspini 75 2 4 15, 20, 17, 23 1.288e+04

02 BreastTissue 106 9 6 18. 17, 17, 18, 18, 18 2.371e+10

03 Hierarchical 118 1798 4 42, 45, 21, 10 7.424e+06

04 Iris 150 4 3 50, 50, 50 8.127e+01

05 HapticsSmall 155 1092 5 18, 34, 34, 36, 33 1.794e+04

06 UrbanLand 168 147 9 23, 29, 14, 15, 17, 25, 16, 14, 15 3.498e+09

07 Wine 178 13 3 59, 71, 48 2.398e+06

08 Parkinson 195 22 2 147, 48 1.364e+06

09 Connectionist 208 60 2 111, 97 2.805e+02

10 Seeds 210 7 3 70, 70, 70 6.056e+02

11 Plane 210 144 7 30, 30, 30, 30, 30, 30, 30 1.693e+03

12 InsectEPG 249 601 3 89, 118, 42 1.360e+03

13 VertebralCol 310 6 3 100, 60, 150 3.471e+05

14 Fish 350 463 7 50, 50, 50, 50, 50, 50, 50 4.152e+03

15 PowerCons 360 144 2 180, 180 3.663e+04

16 MusicEmotion 400 50 4 100, 100, 100, 100 5.229e+08

17 GunPointAge 451 150 2 228, 223 2.110e+09

18 Computers 500 720 2 250, 250 3.077e+05

19 EthanolLevel 500 1751 4 126, 124, 126, 124 6.223e+03

20 SyntheticCon 600 60 6 100, 100, 100, 100, 100, 100 1.771e+04

21 AbnormalHea 606 3053 5 40, 40, 46, 129, 351 2.853e+04

22 ElectricDev 624 256 2 543, 81 2.916e+13

23 ScreenType 750 720 3 250, 250, 250 4.090e+05

24 Gene 801 20, 531 5 300, 78, 146, 141, 136 1.781e+07

25 ECGFiveDays 884 136 2 442, 442 3.528e+04

26 UWaweGest 896 945 8 122, 108, 106, 110, 127, 111, 112, 100 4.505e+05

27 Raisin 900 7 2 450, 450 1.293e+12

28 CBF 930 128 3 310, 310, 310 5.209e+04

29 TwoPatterns 1000 128 4 271, 237, 250, 242 1.033e+05

gap when the algorithm stops. It turns out that B&B ML-SDP solves to the required
precision all the instances within the time limit. One the other hand, B&B VL-SDP
outperforms B&B ML-SDP when n and k are small. We also stress that when B&B
VL-SDP stops for the time limit, the optimality gap is always smaller than 2%.Looking
at the table, the results confirm that the bound produced by the vector lifting relaxation
is stronger (the number of nodes is always smaller than the one of B&BML-SDP) and
computationally tractable for small n and k. When n and k increase, the efficiency of
the matrix lifting relaxation allows to process a larger number of nodes in a smaller
amount of time. Note that the reduction in size of the SDP described in Sect. 6 helps
to limit the computational time when the number of nodes increases. Therefore, the

123

Global optimization for cardinality-constrained minimum sum…

Table 3 The “–” signs indicate that the problem instance could not be solved within a time limit of 12h
(43200s).The times are in seconds and all the reported gaps are in percentage

B&B VL-SDP B&B ML-SDP

ID Gap0 CP Gapr Nodes Time Gap0 CP Gapr Nodes Time

01 0.00 0 0.00 1 3 0.00 0 0.00 1 3

02 0.04 1 0.00 1 10 0.09 1 0.00 1 8

03 0.42 1 0.00 1 98 8.72 5 0.29 19 465

04 0.00 0 0.00 1 5 0.03 1 0.00 1 9

05 1.55 6 0.03 3 1276 2.14 4 0.20 31 1662

06 3.02 7 1.29 49 16,422 5.69 3 2.21 165 11, 471

07 0.00 0 0.00 1 41 4.38 2 0.75 7 291

08 0.03 1 0.00 1 61 1.99 5 0.00 1 274

09 0.41 1 0.00 1 245 6.83 3 0.05 3 650

10 0.21 1 0.00 1 54 0.61 1 0.00 1 47

11 0.65 2 0.45 13 3834 0.79 2 0.64 87 1006

12 0.04 1 0.00 1 21 0.53 2 0.00 1 52

13 0.10 1 0.00 1 583 1.01 4 0.04 3 471

14 0.65 6 0.02 5 7885 1.31 5 0.07 45 1837

15 0.02 1 0.00 1 466 0.32 2 0.00 1 203

16 0.69 5 0.04 7 8374 1.15 3 0.06 23 2297

17 0.00 0 0.00 1 212 0.08 2 0.00 1 460

18 0.59 12 0.00 1 2654 0.87 10 0.00 1 1086

19 3.29 17 0.41 1 (0.41%) – 6.33 14 0.39 75 21, 988

20 0.92 18 0.09 1 28,511 0.96 7 0.05 3 727

21 0.85 4 0.65 9 (0.54%) – 0.88 5 0.74 89 27, 013

22 0.00 0 0.00 1 432 1.27 3 0.04 1 584

23 0.75 14 0.66 3 (0.65%) – 0.77 15 0.08 5 8643

24 0.00 0 0.00 1 7109 1.16 2 0.01 3 2046

25 0.04 0 0.04 1 348 0.84 2 0.05 1 431

26 2.39 6 1.53 1 (1.53%) – 2.85 16 0.72 35 38, 171

27 0.01 0 0.01 1 1027 0.70 1 0.01 1 402

28 0.69 10 0.51 5 (0.49%) – 0.91 9 0.09 1 4352

29 1.77 15 1.12 1 (1.12%) – 2.67 19 0.32 27 34, 396

influence of the size reduction is stronger for B&B ML-SDP where the number of
nodes is larger and hence the branching decisions are more frequent.

Many instances are solved at the root node (especially with B&BVL-SDP), and this
depends both on the strength of the lower bound (thanks to the cutting-plane procedure)
and on the excellent upper bound produced by the heuristic. The statistics on the root
node confirm that the vector lifting relaxation is stronger: in 8 of 29 instances it is
tight (no cutting-plane iterations are performed), and in general the number of cutting-
plane iterations is much smaller than the one needed for the matrix lifting relaxation.

123

V. Piccialli, A. M. Sudoso

However, at the end of the root node, the difference in gap between the two relaxations
becomes almost negligible, thanks to the cutting-plane procedure. Results confirm that
adding inequalities significantly reduces the gap, and allows in many cases to close
the gap at the root node: with B&B VL-SDP it happens on 19 out of 29 instances, and
with B&B ML-SDP on 13 instances out of 29. In general, the gap at the end of the
root node is always below 2% for B&B VL-SDP and 3% for B&B ML-SDP. When
k increases, the gap increases, and also finding the global minimum by the heuristic
becomes harder. Indeed, the only instances where the global minimum is not found at
the root node are: UrbanLand, Plane, EthanolLevel, AbnormalHeart, UWaweGesture.
A significant example is UrbanLand, where k = 9. This is the instance where the gap
at root node is higher, and also the optimal solution is not found at the root, but it is
found after 16 and 85 nodes in B&B VL-SDP and B&B ML-SDP, respectively. To
get a better understanding of the cutting-plane contribution at the root node, in Figs. 1
and 2 we plot for VL-B&B and ML-B&B the relative gap versus the number of CP
iterations whenever CP ≥ 3. The “x” marker indicates that the global upper bound
has been updated at the corresponding CP iteration. These plots reveal two insights.
First, during the initial iterations, the gap diminishes at a faster rate. However, it’s
noteworthy that the subsequent iterations are still valuable, as they lead to further gap
reduction and frequently result in UB updates due to the improved SDP solution.

Although the method in [4] does not guarantee globally optimal solutions, the SDP
bound and the rounding heuristic are able to prove the optimality of Iris, Parkinson
and Seeds: problem (VL-SDP) is tight for Iris and one cutting-plane iteration is suf-
ficient for solving Parkinsons and Seeds. Despite the relevance of ccMSSC problem
the constraint programming solver in [31] is the only computational study on exact
approaches appeared in the literature, and the code is available. Thus, we run their code
on our machine considering all the small-scale instances, i.e., n ≤ 210, and compare
the performance of our B&B algorithms against it. The algorithm in [31] is able to
find the globally optimal solution of BreastTissue, Iris, Parkinsons, Ruspini and Wine
in 14, 9, 29,397, 8, and 8224s, respectively. Hence the method is competitive with our
approaches apart from Wine and Parkinsons, where we show vastly improved results
in terms of computational time. For the remaining small-scale instances, we report the
relative gap after the time limit of 12h: Hierarchical 27.32%, HapticsSmall 56.01%,
UrbanLand 34.73%,Connectionist 19.03%, Seeds 1.49%.Given the large gap on these
small-scale instances, we did not run their method on the large-scale ones.

Summarizing, we are able to solve for the first time instances having sizes approx-
imately 10 times larger than those solved by previous exact approaches. The cutting
plane procedure is fundamental for closing the gap, combined with the effectiveness
of the heuristic, that allows to find the global minimum at the root node or in a few
nodes. When the size is small, the vector lifting relaxation is preferable thanks to the
strength of the bound, but when n and k increase, the matrix lifting relaxation allows
to get a more tractable node in terms of computational time, and the cutting plane
procedure makes the bound still competitive with respect to the vector lifting.

123

Global optimization for cardinality-constrained minimum sum…

Fig. 1 Gap versus cutting-plane iterations at the root node. The “x” marker indicates that the global upper
bound has been updated at the corresponding iteration

9 Conclusions

In this paper, we proposed an SDP-based branch-and-cut algorithm for solvingMSSC
with strict cardinality constraints. For computing the lower bound, we used the SDP
relaxation recently proposed in [4] for small-scale instances, whereas for large-scale
ones we derived a new SDP relaxation. We implemented a cutting-plane algorithm to
strengthen the bounds provided by both relaxation by adding polyhedral cuts. For the
upper bound computation, we designed a constrained variant of k-means algorithm
and we initialized it with the solution of the SDP relaxation solved at each node.
Numerical results impressively exhibit the efficiency of our solver: when using the
new SDP bound, we can solve real-world instances up to 1000 data points, whereas
when using the bound in [4] we can only solve small-size problems and guarantee

123

V. Piccialli, A. M. Sudoso

Fig. 2 Gap versus cutting-plane iterations at the root node. The “x” marker indicates that the global upper
bound has been updated at the corresponding iteration

an optimality gap smaller than 2% on larger instances. To the best of our knowledge,
no other exact solution methods can handle real-world instances of that size. An
interesting research direction to improve our methodology is to study facial reduction
for both the VL-SDP and ML-SDP relaxations, following [43]. This should make the
solution of the SDPs faster and more robust, leading to a more efficient branch-and-
cut algorithm. Furthermore, an immediate future research direction is to design global
algorithms for clustering problems with fairness constraints. As introduced in [58],
the goal of fair clustering is to find a partition where all the clusters are balanced with
respect to some protected attributes such as gender or religion.

Acknowledgements Veronica Piccialli has been supported by PNRR MUR project PE0000013-FAIR.

123

Global optimization for cardinality-constrained minimum sum…

Funding Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Rao,M.: Cluster analysis andmathematical programming. J.Am. Stat. Assoc. 66(335), 622–626 (1971)
2. Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications, 2nd edn. Society for

Industrial and Applied Mathematics, Philadelphia (2020)
3. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering.

Mach. Learn. 75, 245–248 (2009)
4. Rujeerapaiboon, N., Schindler, K., Kuhn, D., Wiesemann, W.: Size matters: Cardinality-constrained

clustering and outlier detection via conic optimization. SIAM J. Optim. 29(2), 1211–1239 (2019)
5. Davidson, I., Basu, S.: A survey of clustering with instance level constraints. ACM Trans. Knowl.

Discov. Data. 1(1–41), 2–42 (2007)
6. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S., et al.: Constrained k-means clustering with back-

ground knowledge. In: ICML, vol. 1, pp. 577–584 (2001)
7. Baumann, P.: A binary linear programming-based k-means algorithm for clustering with must-link

and cannot-link constraints. In: 2020 IEEE international conference on industrial engineering and
engineering management (IEEM), pp. 324–328. IEEE (2020)

8. Banerjee, A., Ghosh, J.: Scalable clustering algorithms with balancing constraints. Data Min. Knowl.
Discov. 13(3), 365–395 (2006)

9. Zhu, S., Wang, D., Li, T.: Data clustering with size constraints. Knowl.-Based Syst. 23(8), 883–889
(2010)

10. Gnägi, M., Baumann, P.: A matheuristic for large-scale capacitated clustering. Comput. Oper. Res.
132, 105304 (2021)

11. Mancuso, P., Piccialli, V., Sudoso, A.M.: A machine learning approach for forecasting hierarchical
time series. Expert Syst. Appl. 182, 115102 (2021)

12. Balletti, M., Piccialli, V., Sudoso, A.M.: Mixed-integer nonlinear programming for state-based non-
intrusive load monitoring. IEEE Trans. Smart Grid 13(4), 3301–3314 (2022)

13. Hu, G., Zhou, S., Guan, J., Hu, X.: Towards effective document clustering: A constrained k-means
based approach. Inf. Process. Manag. 44(4), 1397–1409 (2008)

14. Gançarski, P.,Dao,T.-B.-H.,Crémilleux,B., Forestier,G., Lampert, T.:ConstrainedClustering:Current
and New Trends, pp. 447–484. Springer, Cham (2020)

15. Liberti, L., Manca, B.: Side-constrained minimum sum-of-squares clustering: mathematical program-
ming and random projections. J. Global Optim. 83, 83–118 (2022)

16. Randel, R., Aloise, D., Blanchard, S.J., Hertz, A.: A Lagrangian-based score for assessing the quality
of pairwise constraints in semi-supervised clustering. Data Min. Knowl. Discov. 35(6), 2341–2368
(2021)

17. Bradley, P.S., Bennett, K.P., Demiriz, A.: Constrained k-means clustering. Microsoft Res. Redmond
20, 0 (2000)

18. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

123

http://creativecommons.org/licenses/by/4.0/

V. Piccialli, A. M. Sudoso

19. Malinen,M.I., Fränti, P.: Balanced k-means for clustering. In: Fränti, P., Brown,G., Loog,M., Escolano,
F., Pelillo, M. (eds.) Structural, Syntactic, and Statistical Pattern Recognition, pp. 32–41. Springer,
Berlin, Heidelberg (2014)

20. Costa, L.R., Aloise, D., Mladenović, N.: Less is more: basic variable neighborhood search heuristic
for balanced minimum sum-of-squares clustering. Inf. Sci. 415, 247–253 (2017)

21. Aloise,D.,Hansen, P.:Abranch-and-cut SDP-based algorithm forminimumsum-of-squares clustering.
Pesqui. Oper. 29(3), 503–516 (2009)

22. Aloise, D., Hansen, P., Liberti, L.: An improved column generation algorithm for minimum sum-of-
squares clustering. Math. Program. 131(1), 195–220 (2012)

23. Krislock, N., Malick, J., Roupin, F.: Computational results of a semidefinite branch-and-bound algo-
rithm for k-cluster. Comput. Oper. Res. 66, 153–159 (2016)

24. Piccialli, V., Sudoso, A.M., Wiegele, A.: SOS-SDP: an exact solver for minimum sum-of-squares
clustering. INFORMS J. Comput. 34(4), 2144–2162 (2022)

25. Xia, Y.: A global optimizationmethod for semi-supervised clustering. DataMin. Knowl. Discov. 18(2),
214–256 (2009)

26. Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column generation. In: International
conference on AI and OR techniques in constriant programming for combinatorial optimization prob-
lems, pp. 438–454 (2014). Springer

27. Piccialli, V., Russo Russo, A., Sudoso, A.M.: An exact algorithm for semi-supervised minimum sum-
of-squares clustering. Comput. Oper. Res. 147, 105958 (2022)

28. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained clustering. In: Joint
European conference on machine learning and knowledge discovery in databases, pp. 419–434 (2013).
Springer

29. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: Constrained clustering by constraint programming. Artif.
Intell. 244, 70–94 (2017)

30. Guns, T., Dao, T.-B.-H., Vrain, C., Duong, K.-C.: Repetitive branch-and-bound using constraint pro-
gramming for constrained minimum sum-of-squares clustering. In: Proceedings of the Twenty-second
european conference on artificial intelligence. ECAI’16, pp. 462–470. IOS Press, NLD (2016)

31. Haouas, M.N., Aloise, D., Pesant, G.: An exact CP approach for the cardinality-constrained Euclidean
minimum sum-of-squares clustering problem. In: International conference on integration of constraint
programming, artificial intelligence, and operations research, pp. 256–272 (2020). Springer

32. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
33. Peng, J., Wei, Y.: Approximating k-means-type clustering via semidefinite programming. SIAM J.

Optim. 18(1), 186–205 (2007)
34. Awasthi, P., Bandeira, A.S., Charikar, M., Krishnaswamy, R., Villar, S., Ward, R.: Relax, no need to

round: integrality of clustering formulations. In: Proceedings of the 2015 conference on innovations
in theoretical computer science, pp. 191–200 (2015)

35. Iguchi, T., Mixon, D.G., Peterson, J., Villar, S.: Probably certifiably correct k-means clustering. Math.
Program. 165(2), 605–642 (2017)

36. Li, X., Li, Y., Ling, S., Strohmer, T., Wei, K.: When do birds of a feather flock together? k-means,
proximity, and conic programming. Math. Program. 179(1), 295–341 (2020)

37. De Rosa, A., Khajavirad, A.: The ratio-cut polytope and k-means clustering. SIAM J. Optim. 32(1),
173–203 (2022)

38. Krislock, N., Wolkowicz, H.: In: Anjos, M.F., Lasserre, J.B. (eds.) Euclidean Distance Matrices and
Applications, pp. 879–914. Springer, New York, NY (2012). https://doi.org/10.1007/978-1-4614-
0769-0_30

39. Alfakih, A.Y.: Euclidean Distance Matrices and Their Applications in Rigidity Theory. Springer,
NewYork (2018). https://doi.org/10.1007/978-3-319-97846-8

40. Mittelmann, H., Peng, J.: Estimating bounds for quadratic assignment problems associated with ham-
ming and manhattan distance matrices based on semidefinite programming. SIAM J. Optim. 20(6),
3408–3426 (2010)

41. Ding, Y., Ge, D., Wolkowicz, H.: On equivalence of semidefinite relaxations for quadratic matrix
programming. Math. Oper. Res. 36(1), 88–104 (2011)

42. Wolkowicz, H., Zhao, Q.: Semidefinite programming relaxations for the graph partitioning problem.
Discrete Appl. Math. 96, 461–479 (1999)

123

https://doi.org/10.1007/978-1-4614-0769-0_30
https://doi.org/10.1007/978-1-4614-0769-0_30
https://doi.org/10.1007/978-3-319-97846-8

Global optimization for cardinality-constrained minimum sum…

43. Li, X., Pong, T.K., Sun, H.,Wolkowicz, H.: A strictly contractive Peaceman–Rachford splittingmethod
for the doubly nonnegative relaxation of the minimum cut problem. Comput. Optim. Appl. 78(3), 853–
891 (2021)

44. Amini, A.A., Levina, E.: On semidefinite relaxations for the block model. Ann. Statist. 46(1), 149–179
(2018)

45. MOSEK: The MOSEK Optimization Toolbox for MATLAB Manual. Version 9.3.21. (2022). http://
docs.mosek.com/9.3/toolbox/index.html

46. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial
optimization. SIAM J. Optim. 5(1), 13–51 (1995)

47. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite
programming. Math. Program. Comput. 2(3), 203–230 (2010)

48. Sun, D., Toh, K.-C., Yang, L.: A convergent 3-block semiproximal alternating direction method of
multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25(2), 882–915 (2015)

49. Yang, L., Sun,D., Toh,K.-C.: SDPNAL+: amajorized semismoothNewton-CGaugmentedLagrangian
method for semidefinite programming with nonnegative constraints. Math. Program. Comput. 7(3),
331–366 (2015)

50. Jansson, C., Chaykin, D., Keil, C.: Rigorous error bounds for the optimal value in semidefinite pro-
gramming. SIAM J. Numer. Anal. 46(1), 180–200 (2008)

51. Cerulli, M., De Santis, M., Gaar, E., Wiegele, A.: Improving ADMMs for solving doubly nonnegative
programs through dual factorization. 4OR 19(3), 415–448 (2021)

52. Bourin, J.-C., Lee, E.-Y., Lin,M.: On a decomposition lemma for positive semi-definite block-matrices.
Linear Algebra Appl. 437(7), 1906–1912 (2012)

53. Padberg, M.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program.
45(1), 139–172 (1989)

54. Pena, J.M., Lozano, J.A., Larranaga, P.: An empirical comparison of four initialization methods for
the k-means algorithm. Pattern Recognit. Lett. 20(10), 1027–1040 (1999)

55. Fränti, P., Sieranoja, S.: Howmuch can k-means be improved by using better initialization and repeats?
Pattern Recognit. 93, 95–112 (2019)

56. Sun,D., Toh,K.-C.,Yuan,Y., Zhao,X.-Y.: SDPNAL+: aMatlab software for semidefinite programming
with bound constraints (version 1.0). Optim. Methods Softw. 35(1), 87–115 (2020)

57. Gurobi: Gurobi Optimizer Reference Manual (2021). http://www.gurobi.com
58. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. Adv. Neural

Inf. Process. Syst. 30 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://docs.mosek.com/9.3/toolbox/index.html
http://docs.mosek.com/9.3/toolbox/index.html
http://www.gurobi.com

	Global optimization for cardinality-constrained minimum sum-of-squares clustering via semidefinite programming
	Abstract
	1 Introduction
	2 Related work
	Notation

	3 SDP relaxations for ccMSSC
	3.1 Vector lifting SDP relaxation
	3.2 Matrix lifting SDP relaxation

	4 Valid lower bounds
	5 Cutting-plane algorithm
	6 Branching
	6.1 Size reduction

	7 Heuristic
	8 Computational results
	8.1 Implementation details
	8.2 Results on real-world instances

	9 Conclusions
	Acknowledgements
	References

