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Abstract

We study a nonlinear elliptic boundary value problem defined on a
smooth bounded domain involving the fractional Laplace operator and a
concave-convex term, together with mixed Dirichlet-Neumann boundary
conditions.

MSC 2010: Primary 35J25; Secondary 35J61, 35J20

Key Words and Phrases: fractional Laplacian; mixed boundary condi-
tions; concave-convex problem

1. Introduction

We study a nonlinear elliptic problem involving the fractional Laplace
operator and a concave-convex power term together with mixed Dirichlet-
Neumann boundary conditions. Namely,

(—A)’u = Auf +u" in Q,
u > 0 in £,
u =10 on Xp, (Py)
0
O_Z =0 on Y/,

where Q C RY is a bounded domain with smooth boundary, N > 2s,
(—A)*, with % < s < 1, denotes the spectral fractional Laplace operator,
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A > 0is areal parameter and 0 < g <1 <r < % In order to simplify
the notation we denote the mixed boundary conditions as
ou
B(u) = uXsp + 5 Xy, (1.1)

where x4 stands for the characteristic function of a set A and we assume
that the boundary manifolds YXp and Y are such that

Yp and Xz are smooth (N — 1)-dimensional submanifolds of 0€2.

Yp is a closed manifold of positive (N — 1)-dimensional Lebesgue

(°B) measure, |Yp| = a € (0, |09)).

YpNEN=0, pUXy =0Qand IpNXy =T, where I is a
smooth (N —2)-dimensional submanifold of 0€2.

\

Problems like (Py) have been studied in the last decades: with the
classical Laplace operator and Dirichlet boundary condition, c.f. [§] or [3]
for a deep study; with the Laplace operator and mixed Dirichlet-Neumann
boundary conditions, cf. [Il, 2] [16]; with the p-Laplace operator, cf. [8 20,
21]; with fully nonlinear operators, cf. [13]; and more recently with the
fractional Laplace operator and Dirichlet boundary conditions, cf. [6] [7|
9]. Up to our knowledge, this is the first work where the concave-convex
problem is analyzed with the spectral fractional Laplace operator associated
with mixed Dirichlet-Neumann boundary conditions.

The main result proven in this work is the following:

THEOREM 1.1. Assume that % <s<1l,N>2sand0<qg<l<r<

N+2s .
N—5.- Then:

(1) If g =1 there exists at least one solution to (Py) for every 0 < A <
A], where A\] denotes the first eigenvalue of the spectral fractional
Laplacian with the boundary conditions (I.II), while there is no
solution for X > A}. Even more, there is a branch of solutions to
(Py) bifurcating from (A, u) = (A;,0), which cuts the axis {\ = 0}.

(2) If 0 < ¢ < 1 there exists 0 < A < oo such that:

(a) For 0 < X\ < A there is a minimal solution to (Py). Moreover,
the family of minimal solutions is increasing with respect to .

(b) For A = A there is at least one solution to (P)).

(c) For A > A there is no solution to (B)).

(d) Problem ([Py)) admits at least two solutions for every 0 < A < A.

The following result deals with the sub-linear case 0 < ¢ < 1 and it
provides a uniform L>(2)-bound for all the solutions to problems (P,)) for
any 0 < A < A.
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THEOREM 1.2. Assume that % <s<1l,N>250<qg<l<r<

%fgz Then, there exists a constant C' = C'(N,s,,r,q) > 0 such that

supux(z) < C,
e
for any solution uy to problems (Py) with X € [0,A], and A defined in

Theorem [T.11

We also obtain uniform L°°-estimates, in the case in which we move the
boundary conditions. To be precise, we consider a family of sets {¥p(«a)},
with a € (0,]09|] and |-| denoting the Lebesgue measure in the appropriate
dimension, such that:

(B1) ¥p(«) is connected or has a finite number of connected components.
(Bg) E’D(Oél) C ED(OQ) if a1 < ao.
(B3) [Ep(a)] = o
We call Ypr(a) = 00\Xp(a) and we assume that Yp(a) N Ty (a) = I'(«)
is a (/N — 2)-dimensional smooth submanifold. For a family of this type we
consider the corresponding family of mixed boundary value problems,
(=AYu= ! +u"  inQ,
u >0 in Q, (Pa7)\)
B,(u) =0 on 012,
where B, (u) is defined as B(u) with ¥p, s replaced by Yp(a), Ya(a)
satisfying the corresponding hypotheses (8,) and (B1)-(Bs). In this sce-
nario we prove the following result.

THEOREM 1.3.  Consider the family {¥p(a)}ae(o, o0 satisfying the
hypotheses (B,) and (B1)-(Bs). For every 0 < ¢ < |0}, let us denote
I. = [¢,|09]] and let

S: = {u: Q — R| such that u is solution of (P,)]), with a € I }.
Then, there exists a constant M. > 0 such that
||u||Loo(Q) <M., Vues..

In addition, we will also prove the following behavior for the minimal
solutions as we move the boundary conditions.

THEOREM 1.4.  Consider the family {¥p(a)}ac(o, o0 Satisfying the
hypotheses (B,) and (B1)-(Bs). Then

(1) the minimal solutions {u(«)} are uniformly bounded for any o €
[0, |09|]. Moreover,

(@)l sy, Nl zoe gy = 0 as @ = 0;
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(2) the non minimal solutions (of mountain pass type) are bounded and
they converge to zero in H*(Q2) as a — 0.

The paper is organized as follows: In Section 2 we introduce the ap-
propriate functional framework for the spectral fractional Laplace operator.
In that section we also recall the extension technique due to Caffarelli and
Silvestre, see [I1], that provides an equivalent definition of the fractional
Laplace operator via an auxiliary problem. In Section B we study a half-
space problem that will be useful in the proof of the main theorem; we make
use of the moving planes method and we extend some results of [17] to the
fractional setting. Section Ml is devoted to the concave-convex problem by
means of certain limit problems, and we also prove Theorem and Theo-
rem [[.3] which are based on the blow-up method of [23]. To accomplish this
step we need some compactness properties that requires to know precise
Holder estimates for the solutions to mixed boundary problems. We use
the results of [12] where the Holder regularity of such solutions is proven.
Section Blis devoted to the proof of Theorem [I.1] and the behavior when we
move the boundary conditions of some class of solutions.

2. Functional setting and preliminaries

As far as the fractional Laplace operator is concerned, we recall its
definition given through the spectral decomposition. We closely follow the
notation and framework of [12]. Let (¢4, Ai), i € N, be the eigenfunctions
(normalized with respect to the L?(Q2)-norm) and the eigenvalues of (—A)
equipped with homogeneous mixed Dirichlet-Neumann boundary data, re-
spectively. Then the pairs (¢;, A7), ¢ € N, turn out to be the eigenfunctions
and eigenvalues of the fractional operator (—A)*. Consequently, given two
smooth functions u;(z), i = 1,2, we have that u;(z) = Z(ui,gpj>goj, and

j>1
(=A)*ur,uz) = > N1, 95) (ua, 95),
j>1
i.e., the action of the fractional operator on a function u; is given by

(—A) uy =Y Aur, 0;)0;.

j>1

thus

Hence the operator (—A)® is well defined for functions that belong to the
fractional Sobolev Space that vanish on ¥p. Indeed for any smooth function
we consider its spectral decomposition as

u= Zajgoj with  a; = (u,p;) € (2
i>1

that allows us to define the following norm
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lullfre@) = D a3A;
j>1
Thus we define the Sobolev space as
H, (@) = CF@Uzy) .
Observe that for any u € Hy, (),

L2(Q)

As already stressed in [25, Theorem 11.1], if 0 < s < & then H§(Q) = H*(Q)
and, therefore, also Hy, (Q) = H*(Q), while for 3 < s <1, HjyQ) C
H*(Q). Hence, the range 1 < s < 1, for which we have Hg, () € H*(Q),
provides the correct functional space to study the mixed boundary problem
@This definition of the fractional powers of the Laplace operator allows us
to integrate by parts in the appropriate spaces, so that a natural definition
of weak solution to problem ([Py) is the following.

lull g () = H(—A)éu‘

DEFINITION 2.1. We say that a positive function u € Hy, (2) is a
solution to ([Py)) if

/(—A)S/Qu (=) pda = / (M +u")pdr, for all Y € HE ().
Q Q

Following the previous definition, we can associate to problem (Py]) the
following energy functional,

| . A | )
I (u) :§/Q|(—A) /2u|2dx—m/ﬂ|u|q+lda:—m/g|u| g (2.1)

u € Hy, (€2), whose positive critical points correspond to solutions of (Py).

Working with the fractional operator (—A)® it is well known that some
difficulties arise when one tries to obtain explicit expressions of the action
of the fractional Laplacian on, for example, products of functions. In order
to overcome this difficulties, we use the ideas by Caffarelli and Silvestre,
see [11], together with those of [9] [10] to give an equivalent definition of the
operator(—A)® by means of an auxiliary problem that we introduce next.
Given a domain 2, we set the cylinder Co = Q2 x (0,00) € RY . We denote
by (z,y) points that belong to Cq and with 91,Cq = 9 x [0, 00) the lateral
boundary of the cylinder.

Let us also denote by ¥}, = ¥p x [0,00) and X}, = X x [0,00) as well
as I'* =T x [0, 00).

It is clear that, by construction,



SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS ... 1213

SHhN¥k =0, YpUNL=01Co and THNTR =T".

Given a function u € Hy, (§2) we define its s-extension, denoted by U =
EJu], as the solution to the problem

—div(y'™*VU) =0 in Cq,
B{U)=0 on 9rCq,
U(z,0) = u(z) on  x {y = 0},
where
ou
B({U) =UXsy, + 5 She

being v, with an abuse of notation, the exterior normal to 9;.Cq (in fact, if
v denotes the outwards normal vector to 92 and v, . the outwards normal
vector to Cq then, by construction, v(,,) = (v,y), y > 0). Following the
well known result by Caffarelli and Silvestre (see [11]), U is related to the
fractional Laplacian of the original function through the formula
aU Py—
ovs = y—s0t oy
where K, is a suitable positive constant (see [9] for its exact value). The
extension function belongs to the space

||||H1 . (Cﬂ,y1*2sdwdy)

Hg, (Co,y' **dzdy) := C&*(QUZy) x [0,00)) P :

that is a Hilbert space equipped with the norm induced by the scalar pro-
duct

(U, V>H§* (Cay' 2o dady) — KS/C yl—25 (VU,VV)dzdy.
D Q
Moreover, the following inclusions are satisfied, for % <s <1,
HY(Coyy' ™2 dady) © HY, (Co,y' 2 dudy) C H'(Ca,y' 2dady), (2:2)

with H{(Cq,y' ?*dzdy) the space of functions that belong to
H'(Cq,y'~?*dzdy) and vanish on the lateral boundary of Cq.

Consequently, we can reformulate problem (P,)) in terms of the exten-
sion problem as follows:

—div(y'7*VU) =0 in Co,
B(U)=0 on JrCq,
U>0 on Q x {y =0}, (Py)
oU

%:)\U‘I—i-UT on 2 x {y = 0}.

Hence we give a definition of energy solution of (Py]) in the following
way.
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DEFINITION 2.2.  An energy solution to problem (P5]) is a function U
belonging to Hl%(Cg,yl_zsdxdy), with U > 0 on Q x {y = 0}, such that

@/ykﬂvaw»mwz/kumam+wum»wawm
Ca Q

for all ¢ € Hl*D(CQ,yl_28dl'dy).

To any energy solution U € H 1%(Cg,y1_2sda¢dy) to problem (P5) we
can associate the function u(x) = Tr[U(z,y)] = U(z,0), that belongs to
H$, (), and solves problem ([Py)). Moreover, also the viceversa is true:

D
given a solution u € Hy, (€2) we can define its s-extension U(z,y) as a
solution of (PJ]) with U € H 1%(Cg,y1_23dm‘dy). Thus, both formulations

are equivalent and the Faxtension operator
Es: Hy () — Hé%(CQ,yl_%dxdy),

allows us to switch from (P to (P5).
According with [IT], 9], due to the choice of the constant kg, the exten-
sion operator Ey is an isometry, i.e.,

1[0 DL, conr-20deay) = lo(@)llag (@): ¥ ¥ € He, (2).
D

It has also been proved in [9] that there exists Cy = Cy(N, s, r, |Q|) such
that the trace inequality,

T

/ykﬁwmemwza(/wwmmﬁ,
Ca Q

for any z € H}(Cq,y' ?dxdy), provided 1 < r < 2%, N > 2s, where
2 = N2iV28 is the critical fractional Sobolev exponent. Such inequality
turns out to be very useful and it is in fact equivalent to the fractional

Sobolev inequality,

2
/ ((=A)2v|2dz > C (/ |v|’”daj> ' , Yve Hj(Q), 1<r <2 N >2s.
Q Q

When mixed boundary conditions are considered, the situation is quite
similar since the Dirichlet condition is imposed on a set Xp C 02 such
that |Xp| = a > 0. Hence, thanks to ([2.2]), there exists a positive constant
S(Xp) = S(N,s,Xp, ) such that

lul%s o [
‘ , H;(©)
0 < SED) = B oy Tl S el Tl gy
u uz?_é% L25(Q) u uiOO L% ()
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REMARK 2.1. Actually, S(Xp) < 2_2WSC’0(N, s), see [15]. Moreover,
taking in mind the spectral definition of the fractional operator and making
use of the Holder inequality, it follows that S(Xp) < | ¥ Aj (a), with Aj ()
the first eigenvalue of the Laplace operator with mixed boundary conditions
on the sets ¥p = Yp(a) and X nr = Xar(«r). Under geometrical assumptions
(B1)-(B3) one has that, by [16, Lemma 4.3], A1(a) — 0 as « N\, 0 which
shows that S(Xp) — 0 as o \, 0.

Then, in analogy with the Dirichlet boundary data case, the following
mixed trace inequality holds (see [12]).

LEMMA 2.1. There exists a constant C = C(N, s,r,Xp,§2) > 0 such
that,

2
[ vwekasay o ([ letworas) (2.3
Ca Q
for any ¢ € Hl%(Cg,yl_%dxdy) and 1 < r < 2% N > 2s, where 2! =

2N
N—-2s"

As a consequence,
2
/ |(—=A)2v2dz > k,C </ |v|7"dx> , Yoe HS (), 1<r <2, N> 2s.
Q Q
Note that in case r = 2%, then k;C = S(Xp).

3. Moving planes and monotonicity

In this section we establish a monotonicity result for bounded solutions
to (—A)%u =" in ]Rﬂ\rf = RN~1 x R, satisfying the boundary conditions:

eu=0o0nYp(r)={(x1,-- ,2n) ERYN :zxy = 0,27 < 7}, for some
T €R.
. (;;—ZILV =0on In(7) = {(z1,--- ,on) € RN oy = 0,21 > 7}, for

some T € R.
The principal result proven in this section is the following.

THEOREM 3.1. Assume that 1 < r < %fzs N > 2s, and 7 € R. Let

2s?
u € Hp (RY)NCO(RY) be a weak solution to
(—A)Y’u=u", u>0, in RY,
u=0 on Xp(T), (3.1)
(rfi—ljv =0 on Y(7).

Then, u is nondecreasing with respect to the xi-direction.
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REMARK 3.1. We make the proof assuming 7 = 0. For 7 # 0 the proof
is analogous through a translation with respect to the variable .

The proof of Theorem [B] is based on the moving planes method, in-
troduced by Alexandrov and first exploited in the context of Partial Differ-
ential Equations by J. Serrin [27], see also [22] for more details.

Let us introduce some notations in order to apply the moving planes
method. We denote by }Rfil = Rf x R4, i.e., the set of points X = (x,y)
with z = (21,...,2n) and zx,y > 0. For a fixed p € R, we define the sets

Y,={zeRY: 21 <p}, Yi=7T,xRy,

T,={X eRYT': 2, =p}.
For any X € ]Rfil the reflection with respect to the hyperplane T}, is
denoted by

XP = (:L.P’y) :X+2(P_$1)61 = (2P_1’171’27~'axN7y)’
Let us define the point O, = (2p,0,...,0,0) € RN+ whose reflection is
the origin, and o, = (2p,0,...,0) € RY. We also recall that the Kelvin

transform of a nontrivial point z € R is given by K(z) = ﬁ It is easy

to see that K(RY) = RY and K (T;) = (Rfil) ﬁB_%p (Oﬁ) for any p < 0.

K

B

P,
T, 0
Fig. 1: The Kelvin Transform acting on the set T7, with p <0.

Next, we follow an approach similar to the one in [9] based on the
fractional Kelvin transform, Ks(u), which acts on functions defined in a
subset of RY, in the following way:

1 1 T
00 = e (1) = e ()
As proven in [9], if (—A)*u = f(u), then the action of the fractional lapla-
cian on the fractional Kelvin transform of u is given by

(—A)Ky(u) = W%f (u(K(x))).
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Let u(x) be a solution to problem (B.I) and define f(t) = t" and g(t) =

t
{\,&2)8 . Then, the Kelvin transform v = ICs(u) satisfies the following mixed
tN—Qs
BVP,
N+2s
(=A)*v = g(|z|N 2 v)v Nt?s, v >0, in RY,
v=0 on Xp(0),
ov
=0 >ar(0
. on ¥(0),
since on {zy = 0}, we have
ov TN 1 ou
%(l’) = (25 — N)WU(K(@) + 2N Dz (z)) =0.

Moreover, v is a continuous and positive function in RV\{0}, with a possible
singularity at the origin and it decays at infinity as |W\,%,QSU(O), thus v €
L% (RY)NL(RY\B,(0)) for any r > 0. Finally, we consider V = E;[v] the
extension function of the Kelvin transform v = Ks(u) and the corresponding
extension problem,

—div(y'"*VV) =0 in RY ¢ R
B(V)=0 on (3p(0) UXp(0)) x Ry,
oUu N+2s

S g(|z|N250)u N2 on Q x {y =0}.
(3.2)

Observe that, since v € L% (RY\B,(0)) for any 7 > 0 and the extension
operator Ejs is an isometry, by [19], for any p < 0 the extension function
vVelr? (15, y'=2%dX), where 2" = 2(]@[:1) denotes to the Sobolev conjugate
exponent in dimension N + 1.

The following lemma, which extends to the fractional framework [17,
Lemma 2.1], provides us with a key-point inequality in order to obtain
monotonicity in the zi-direction for the function V' defined in (32)).

Here we use the notation V,(X) = V(X?) and v,(x) = v(z”) for the
reflected functions that are singular at the point O, and o, respectively.
Moreover we denote by A, = {z € T,\O, : v > v,}.

LEMMA 3.1. Assume that u € Hy (RY) OCO(@) is a weak solution of
B.1) and let v = Kg(u). Then, for any p < 0, (v—v,)"€ H§, (T,)NL>(T,).
Moreover, there exists C, > 0, increasing with respect to p, such that

| S =) Pdaay
P 2s

1 N
<C / — dx / 1=2517(V — V)T Pdady. (3.3
p< ML > Y*y IV ( )7 y. (3.3)

P
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P roof Since for a given p < 0 there exists » > 0 such that Y, C
R\ B,.(0), the functions v and (v —v,)" < v belong to L% (T,) N L>®(T),)
and the function \w\% is integrable in T,. The assertion (v—v,)"e H%D(Tp)
follows from (B.3) taking in mind that the extension operator Es is an
isometry.

In order to prove inequality (B.3]) we test conveniently the equations

N+2s N+2s
(~2)°0 = glJal¥ 200 ¥ E, (=A)y, = gl 0,0
in the set T,\O,. At this point, we make full use of the extension technique,
so that we consider the extension functions V' = E,[v| and V, = E[v,] =
V(X*) and we set the nonnegative function ¢ = ¢, = n2(V —V,)" as a test
function in the corresponding extended problem for a convenient function
n.. More precisely, for ¢ > 0 small enough we take 7. € C}(RV*!) with
0 < n. <1 and such that:

(77551 forQES\X—Op\gé
Ne =0 for | X -0,/ <e or §§|X—Op|,
|V775|§§ for e < |X —O,| < 2¢
|Vne| < ce for§< |1 X -0, <§.

Observe that in the set Y7 the function (V — V,)* vanishes where
the Dirichlet condition holds for V' but also where the Dirichlet condition
holds for the reflected function and, therefore, it is allowed to take ¢ =
n2(V —V,)* as a test function in the corresponding extended problem.

Fig. 2: The Kelvin transform centered at 0 acting on Xp(0) (doted line)
and X zr(0) for the functions v and v,,.

Thus, using the definition of weak solution for the extended problem
satisfied by V' and V), respectively and subtracting those expressions, we
obtain

Ks / Yy BV (V — V,) Ve dady
T

*
p



SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS ... 1219

N+2s

N+42s
-/ (gﬂx\N-%v)v—Nfzs - g(\xﬂ\N-%vp)v,é”s> o, 0)de
P

On the other hand,

s / Y2V (V= V) Pdedy < K/T 2V (e (V =V, ) D) Pdady
T3N[2e<|X-0,/< 1] ’

:K/S/
T

= /18/ y1_2sV(V - V,)Vedxdy + I,
0

*
P

PV Vo) Vepdady + k. |y (V- V) PV Pdady

* *
P Yp

N+2s

N+2s
:/ <g(|x‘N_28'U)th28 _g(|xp‘N_28vp),UpN2s> SO(m’ O)dx +IE
Tp

Since g is a nonincreasing function, |z| > |z*| in Y, and v > v, in the

set where ¢(+,0) # 0, it follows that —g(|z*|¥N~2v,) < —g(|z|¥~2v) and
therefore,

s / YTV — V) Pdady

TiN[2e<|X—0,|< L)

N+42s N+2s

< [ atal 0 (B <o poe 1 B

P

N-2s Ni2s R
< g(|x]| v) (VN2 —wv, ) (x,0)dx + L.

P

Now, if 0 < v, < v from the Mean Value Theorem, we find

N42s
N+2s Ni2s N +2s _as
VN2 — gy T < V=2 (v — v)).

- N-2s
Using that f(t) =" with 1 < r < §+25 it follows that
4s t 4s t
g(t)thls — —]]C\f(+2)s tN-2s = —f( ) = tr_l’
tN—Qs t

4s
and g(t)t ™2 is bounded in any interval (0, ¢y). Moreover, since |z|¥ ~2%v(z)

=u ( ;”'2> is bounded from above for z € T, and p < 0, we conclude

N+2s N+2s N 2 4s
g(Jz/N~250) ( - N) < N2 N -2u)uw s (0 — )

- N —2s

4s
N + 25 g(|z|N > ) (Ja |V ?5v) -2 ~ 1
< N — 25 |$|48 (’U - UP) < CP |ZL‘|48 (’U - vﬂ)?
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for a positive constant 5,), increasing with respect to p. Then, inequality
(34) takes the form

Ks / Yyl TBIV(V - Vp)+|2dazdy
T20[2e<| X —0p|< L]
<C/ z ‘43 (v=vp)p(x,0)dz+I, <C/ z ‘4877€(m ,0)[(v— vp) ]da:—i—[

1
< — (v — 1.
<G, el ) P+ 1.

Using Hélder’s inequality with p = 2— and g = _2 we conclude
Ks / Yy BV - V)T Pdady

T5N[2e<|X—0,|<1]
2s 2

<&, </,4 H%dw) (/Y [(v—vp>+]2?dx> L

Next, we focus on the term I, = / 1=25(V - V,)")?| V.| *dedy. Define

*

the set
1 2
WEZ{XGTZ: s<\X—Op|<250rg<|X—Op\<g},

1 1
: §C( €N+1+€N+l )

so that supp(|Vne[?) € We. Since [V N x| < e e T

=cdand (V-V,)* € L (15, y'~2%dxdy), applying Hélder’s inequality with

p—NJr1 and ¢ = 2,vveﬁ]ad
2

2
7 N1
I < </ =2y —v,) 2 dwdy>2 (/ yl_QSIV%IN*ldwdy) :

§C</ y! (V- V)] da:dy) —0ase—0.
Letting ¢ go to 0 and applying the trace inequality (2.3]), we conclude

/ YIBT(V = V) Pdady
P

V]
*‘ N

2s

2s 2
e 1 N o 2%
<k, Cp i de . (v —w,)"|*dx
p . p

1 N
<C / —dx / 122517 (V — V)2 dady,
P< A, |22V ) T*y IV( )" Y

P
for a positive constant C), increasing with respect to p. O
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Proof of Theorem Bl The proof follows the lines of [17, Propo-
sition 2.1] adapted to our framework. First, we establish a starting plane
that delimits a hyperspace in which the monotonicity in the x;-direction
holds. Next we extend to such a region progressively until we reach the
half-space, and in a second step, to the whole space having a special care
to the singularity of the Kelvin transform at the origin. Since

1 1
[4 Wdl‘ § /Y Wdl‘ — 0, as p — —0Q,
p p

then there exists —oco < pp < 0 such that

2s

1 N
C / ——dx <1, forall pe (—o0,po).
’ ( A, PN >

From 33) we deduce that (V —V,)* =0 in T}, and therefore V <V, in
T} for all p € (o0, pg). Consequently v < v, in T, for any p € (—o0, pp).
Assume now that pp < 0 is maximal. By the Maximum Principle, v <
Vpo in T py. Then x4, - ‘I‘% — 0 point-wisely as p — po in RY\{T,, UO,, }.
Thus, if p < pg + 6 < 0 then x4, - Irl% < XTpyis |m|12N e L'(RY) so

that applying the Dominated Convergence Theorem

1
/ Tandr — 0, as p— po,
A, ||

and we conclude

2s
1 N

C / Tevdr | <1, Vp€ (po,po+9),

p< A, |z[*N ) ( )

for some § > 0 sufficiently small. Therefore (V' —V,)* = 0 in T} for
p € (po, po+9) in contradiction with the maximality of py. As a consequence
V <V, in Y7 provided p < 0 and by continuity V' < V{ in T, so that v < v
in Ty. Noticing that |z| = |z”| for p = 0 we conclude u < uy in Y.

The above argument works for the Kelvin transform centered at a point
P =P, = (u0,...,0) € RY, namely, v*(z) = W%%U(PH + ﬁ) with
p < 0 (see Figure 3).

This fractional Kelvin transform v* satisfies a Dirichlet condition in the
part of the boundary with zx = 0 and z; < 0 so we can prove as before
that for any p < 0 the inequality v* < v} holds in Y,. Since p < 0 is
arbitrary, it follows that v* < v(’f in Tg. Thus u < wuy, in T, for p <0, so
u is nondecreasing in the xi-direction provided x; < 0.
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1

Fig. 3: The Kelvin transform centered at P,, p < 0 acting on Xp(0)
(doted line) and ¥x(0) for the functions v* and vj,. The set Lxr(0) is
transformed into those z € RY such that 0 < 21 < —%, so vl satisfies a

Neumann condition on 7 < 1 < 2p with 7 =2p + %

Now we extend progressively the region in which the monotonicity holds
reaching T, for p > 0. First, observe that we cannot continue as before
due to the singularity of the Kelvin transform at the origin: we cannot
take a moving plane starting at p = —oo since for p large there are points
where the Neumann boundary condition holds (and the solution is positive)
which are reflected to the Dirichlet part of the boundary. In terms of the
test functions, for p large enough the function (V — Vp)+ is not allowed
to be chosen as test function for the problem satisfied by the reflected
function V, , since it does not vanish at those points of the boundary where
the Dirichlet condition for V, holds.

Nevertheless, an inequality similar to ([3.3)) holds for (v* — vh)™ if p is
close to 0 so that we extend the inequality v¥(z) < vj(z) = v*(z,) for
every p < 0 fixed, moving p from g = 0 where the strict inequality is true

upto,uz}—f}.

Tp(0) 0 En(0)

Fig. 4: The Kelvin transform centered at P,, p > 0 acting on Xp(0)
(doted line) and ¥xr(0) for the functions v* and vh. The set Xp(0) is
transformed into the x € Rf such that zny = 0 and —% < z1 <0, so the
reflected function v}, satisfies a Dirichlet condition on 2p < z1 < 7 with
T=2p+ é It follows that for x € T, the function v* vanish where the
Dirichlet condition holds for v}.

If p > 0, the fractional Kelvin transform centered at the point P,
(denoted by v*(x)) satisfies a Dirichlet boundary condition at points = €
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]Rﬂ\rf with zny = 0 and _71 < x1 <0 (x; <0if g =0 as in the previous
step) and a Neumann condition on the remaining part of the boundary.
Then, if —i < p < 0 it follows that V#, and hence (V# — V}')*, vanishes
where the Dirichlet condition holds for V# and also where the Dirichlet
condition holds for the reflected function V' (therefore ¢, is an allowed
test function).

Thus, proceeding exactly as in the case p = 0, we obtain

/T yEIV(VE - VY Bdady
P

2s

1 N
< 1—2s Mo 2 + 2
<C, </Af; —\m|2Nd$> /T y I V(VE = V) TR dady,

b
where C,, is increasing with respect to p and A, = {x € T,\O, : v" > v, }.
If we now fix p < 0 the previous estimate holds for any p € (0, —%)
and, since Irl% € Ll(Tp), applying the Dominated Convergence Theorem

we conclude x 4 - ‘I‘% — 0 as p — 0 in RM\{T, U P,}, we recall that

P, =(2p,0,...,0) is the reflected point of the origin, which is the singular

point of every transform V#. As a consequence
2s

1 N
C / g <,
’ ( an PN )

for some pg € (5—;,0) and the monotonicity follows. Finally, suppose that
o < —ﬁ is maximal such that v* < vj, in T, for all 0 < p < p19. Then,
by the maximum principle, v* < vy and hence A, — () as u — po. Thus,

there exists € > 0 such that

2s
1 N
C, </,4“de> <1 for p € (po,po+e€).
P

We conclude that v* < v} for u > g and close to p in contradiction with
the maximality of pp.

To summarize, for every p < 0 and p < —2% we have v < vh in T,
or, equivalently, fixed p > 0 the inequality holds for every —ﬁ < p<O0.
Letting p — 0 we get v* < vfj in Yo, L.e., v (x1,2") < vH(—xz1,2') for all z
with 21 <0, so that v < u, in Y, with g > 0. Since p > 0 is arbitrary we
get that u is nondecreasing in the xq-direction in whole Rf . O

REMARK 3.2. Let us observe that the method described in the above
theorem in the xi-direction may be applied to any other direction zo, ...,
xN_1, centered at any point P of the form P = (0, P»,..., Py_1,0), with
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a hyperplane orthogonal to both to the e; and e,, directions. Thus, due to
the arbitrary of the point P, we can deduce that v does not depend to the
Z9,...,TNn_1 variables.

4. A priori bounds in L*®(Q).

In this section we prove Theorem exploiting the blow-up method
by Guidas-Spruck (see [23]). To this aim we will make use of the estimates
proved in [12] Theorem 1.2] that guarantee the compactness needed in order
to accomplish this limit step. Then, with the same ideas, we prove Theorem
1.3 using the uniform estimates proved in [12, Theorem 1.3] for the moving
boundary conditions (as in hypotheses (B)-(B3)).

Proof of Theorem We argue by contradiction: set A > 0 given
by Theorem [[T]and assume that there exists sequences {A\x} C [0, A], {ug}
of solutions to problems (Py, ) and {px} C Q of points verifying

My, = sup ug(z) = up(pr) = +00, as k — oo.

z€e)
r—1

Let us set pu = M, > and define the functions vy (y) = M%cu(pk + pry)-

Note that vy(y) is defined in Qj = H_lk (2 —p) as well as v(0) = 1 and
vk || oo () < 1 for all k& > 0. Moreover, the scaled function vy satisfies the

problem

(—A)Svk = )\kMIZ_T’UZ + ’U;; Vg > 0, in Qk = H_lk (Q —pk),

v =0 on Z’va
E =0 on E./\/”

where Eka and Ef\/ are the transformed boundary manifolds.

Now we study the limit problem obtained as k — co. To carry out this
step we need some compactness properties for the sequence {vk} in order
to guarantee the convergence in some sense. By [12, Theorem 1.2] the
sequence {v;} is uniformly bounded in C7(Qy) for some v € (0, 3). Then,
by the Ascoli-Arzeld Theorem, there exists a subsequence {vj} uniformly
convergent over compact sets in @ to a function v € C”(@) for some
0 <n <7< i Moreover [v]| oo ervy < 1 and v(0) = 1.

On the other hand, the problem satisfied by the limit function v depends
on the position of the point p = kh_)rrolo pi. Let us set

dP = dist(p,¥%) and &Y = dist(pg, 2K).
and define dg = min{de,dffv }. We distinguish several cases according to
dj,

the behavior, up to subsequences, of the sequences . with i = Q, D, N.
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Fig. 5: The relevant geometry after dilation of variables lies in a

1.

neighbourhood of pj such as the one of the picture.

. ds?
Interior case: {u—’;} — +o00.

Since Bag )y, (0) C O (see Figure 5) we have that 0 — R and the limit
function v is a positive bounded solution to

Then,

(=A)*v=2" in RY,

by [14, Theorem 1] (see also [9, Theorem 3.1])we conclude v = 0, in

contradiction with v(0) = 1.

2.
In this

2.1

2.2

Q —
Boundary Cases: {Z—’;} —d? cRy.
situation we have several possibilities:
D — N
Dirichlet Case: {i—kk} — dP € R, and {%} — +00.
Now, as Yp is a (N — 1)-dimensional smooth manifold, we have
that, up to a rotation
Qe — Qp = {z e RY 12y > —dP},
and the limit function v is a positive solution to
(—A)v =" in Qo ,
v=0 in{zy=—dP},
with [|v[ L= p) < 1 and v(0) = 1. Thus, if dP = 0 we have a
contradiction with the continuity since v(0) = 1 while if d > 0 we

have a contradiction with [9, Theorem 3.4]
D

di dy’ N R
Neumann case: T [ T and e ds &V e Ry
As before, since Xy is a (N — 1)-dimensional smooth manifold, we
have that, up to rotation,



1226

2.3

J. Carmona, E. Colorado, T. Leonori, A. Ortega

Q= Qv = {z e RY :zy > —dV},
and the limit function v is a positive solution to
(—A)’v =v" in Qu,
{ 82—1;\]:0 in {zy = —dV},
with [[v]|ge(q,) < 1 and v(0) = 1. Then, if we define the trans-
lated function w(x) = v(x1,zs,...,zx + dV) it follows that
{ (—A)*w =w" in RY,

2 =0 in{zy =0},

with HwHLm(Rf) < 1 and w(0,0,...,d") = 1. Extending to the
whole space by reflection through the hyperplane {z = 0}, thanks
to [9, Theorem 3.1], it follows that w = 0 and we get a contradiction
with w(0,0,...,dV) =1.
dD D — dN N —
Interphase Case: {u—’;} —d” € R,y and {l/«_kk} —dV e R,
Let us set d? = min{d?,d"} > 0 and note that ¥, ¥k and
I'; = 3% N K, are smooth manifolds by hypotheses (). Hence,
we can assume that, up to a rotation,
QO — an = {a: S ]RN TN > —dQ},
and the interphase I'y, — {x; = 7} for some finite 7 € R. Then the
limit function v is a positive solution to
(—A)*v=0" in Qye,
v=0 in{zy=—-d?}n{z <7},

£—1jv =0 in{zy= —dQ}ﬂ{ml > T},

with HvHLoo(QdQ) <1 and v(0) = 1.

1) If d? = 0 and 7 > 0 we get a contradiction with the continuity
of v, since the maximum is achieved at a point on the Dirichlet
boundary where v = 0.

2) If d? > 0 and 7 > 0 we get a contradiction with the mono-
tonicity (Theorem BI]) and the Hopf Lemma at the maximum
point. Indeed it is sufficient to have the monotonicity of the
solution v with respect to the zi-direction up to xz; = 7.

3) If 7 < 0, we reach, once again, a contradiction with the mono-
tonicity and the Hopf Lemma at the point of maximum. In this
step it is necessary to use the monotonicity of v with respect
to the xq-direction in the whole space.
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O
With the same ideas, we can prove the next result concerning the mov-
ing boundary conditions.

Proof of Theorem [[3l As we did in Theorem [[.2] we argue by
contradiction. Assume that there exists a sequence {uq }aer. of solutions
to problems (P, ), a sequence of points {p,} C , @ € I, and a sequence

1o

T

of numbers o = My?** verifying

My = sup uq(x) = uq(pa) = +00, as @ = @.
z€e)

We have to distinguish several cases. The interior, Dirichlet and Neu-
mann cases can be proved following the corresponding cases in Theorem
1.2

As far as the interface case is concerned, we need some compactness for
the sequence {u,} as @ — @. Since we are considering sets Yp(a) with o €
I, = [e,|09]] for some £ > 0 and satisfying hypotheses (B,) and (Bj)-(B3),
by [12, Theorem 1.3] the sequence {u,} is uniformly bounded in C7(Q) for
some 7y € (0, %) and so the conclusion follows as in the corresponding case
in Theorem O

5. Minimal and mountain-pass solutions

We devote this section to the proof of Theorem [, exploiting the
extension technique. We recall that in terms of the s-extension, problem
(Py)) can be reformulated as

—div(y'™*VU) = 0 in Cq,
B(U)=0 on 0r.Cq,
U>0 on  x {y = 0}, (P5)
ou

%:fA(U) on Q x {y =0},

where fy(s) = A|s|771s + |s|"~!s. Associated to the problem we con-
sider the Euler-Lagrange functional Jy : Hé% (Ca,y'~>*dxdy) — R given
by
W) =% [ HVUPddy - [ FU(,0)ds,
2 Jeg 0

where F)(s) = [ fa(7)dr. Since Jy does not satisfies the Palais-Smale (PS
for short) condition, due to the unboundedness of the cylinder Cq, we show
the PS condition for the functional I.
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LEMMA 5.1.  Let {u,} C Hy, () be a PS sequence, ie., I)(u,) — c
and I} (u,) — 0. Then, there exist a subsequence (again denoted by) uy
strongly convergent in Hs, (€2).

P roof Since I\(un) — ¢ we have that [lup|[gg (@) < C uniformly
D

for some positive constant. By the Sobolev embeddings, there exists a
subsequence still denoted by {u,} such that

up, — u in L'(Q), for any 1 <r < 2}, (5.1)

and
up —u  in Hg_(Q). (5.2)
Using that I} (u,) — 0 together with (5.I)-(5.2]), we have the strong con-
vergence proving the PS condition. O

Proof of Theorem [L.TF(1). Consider the eigenvalue problem as-
sociated to the first eigenvalue Af, and let 1 be the positive normalized
in L?(2) associated eigenfunction. Using ¢ as a test function in problem

(Py)), we have
(A} — )\)/ uprdr = / u"prdx,
Q Q

and hence necessarily A < Aj. On the other hand, using the fractional
Sobolev inequality together with Poincaré inequality we find

1 . A 1 .
I(v) = 5/9‘(_A) /zv\2daz— §/Q|v|2dm— m/ﬂ\v\ tldx

2 (r+1)/2
> ¢ (1— —5> / (= A2 dg — ¢ (/ |(—A)8/2v|2d:1:> ,
AT Ja Q

for positive constants ci, co. Therefore, v = 0 is a local minimum for
I, and, since I)(tv) — —oo as t — oo, the functional I satisfies the
hypotheses of the Mountain Pass Theorem by Ambrosetti-Rabinowitz [4].
Hence, by Lemma 5.1} we obtain the existence of at least one solution for
0 < XA < A{. Even more, the bifurcation result is a consequence of the
classical Rabinowitz Theorem [26]. O

Next, in order to continue with the proof of Theorem [I.1], we establish
some preliminary results. Some of these results can be proved for more
general nonlinearities f(u), with f at least continuous, satisfying the growth
condition 0 < f(s) < ¢(1+]|s|P) for some p > 0. In such cases we will denote
the associated extension problem as (F5).

The first result deals with the sub and supersolutions method, the proof
is rather standard and so we omit it.
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LEMMA 5.2. Suppose that there exist a subsolution Uy and a superso-
Iution Uy to (P}), ie., U, Uz € Hl%(CQ,yl_%dazdy) such that B(U;) <0,

B(Us) > 0 on 91.Cq and for every nonnegative ¢ € Hl%(CQ, y'~25dxdy) the
following inequalities are satisfied:

s / VUL Vdady < / F(Us(,0))(z, 0)d .
Ca Q

s / BV, gdady > / f(Ua(z,0))(z, 0)dr
Ca Q

respectively. Assume moreover that U; < Us in Cq. Then, there exists a
solution U verifying Uy < U < Us in Cq.

Next we deal with a comparison result.

LEMMA 5.3. Let U,Us € HlE(CQ,yl_%dajdy) be respectively a posi-

tive subsolution and a positive supersolution to (P}) and assume that f(t)/t
is decreasing for t > 0. Then Uy < U; in Cq.

P r o o f. The proof is similar to the proof of [3, Lemma 3.3]. By defi-
nition we have, for any positive test functions ¢1, ¢o € H. 1%(69) that

s / YUV g dady < / F )1z, 0)da,
Ca Q

s / VUL godady > / F (u2) o, 0)d,
Ca Q

where u; = Uj(x,0) and us = Ua(x,0). Let 6(t) be a smooth non-decreasing
function such that (t) =0 for t <0, §(¢t) = 1 for t > 1, set 0.(t) = 6(t/e),
and define the test functions ¢ and @9 as

o1 =U20. (Ui —Us), ¢2=U16: (U1 —Uy).

From the above inequalities we obtain
Je 1 = s / y' 7 (U\VU, — Ua VUL, V(Uy — Us)) 62 (Uy — Us) dady
Ca

> /Qu1u2 <Lu2) — M) O (u1 — ug) dx.

U2 Uy

On the other hand,
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Je < /%s/ y' ¥ (VUL (U1 = Uz) V(UL = Ua)) 0L (Ur — Us) dady
Ca
= /-ﬁs/ y' T2 (VU Ve (Uy — Up)) dzdy
Ca

:/ﬂmmwrmmm
Q

where 7n.(t) = t0.(t). Since 0 < 7. < &, we find j. < ce. Then, letting

e — 01 we conclude
o (1022 10

U2 Uy

>da:§0.

QN{u1>uz}
Taking in mind the hypotheses on f, it follows u; < wg in 2. The result
for the whole cylinder Cq follows by the maximum principle. O

Next we focus on the remaining assertions in Theorem [[.T}(2). Thus,
from now on we assume that 0 < ¢ < 1.

LEMMA 5.4. Let A be defined by

A = sup{\ > 0: (Py) has solution},
then, 0 < A < oo.

P r o o f. As for the linear case, consider the eigenvalue problem asso-
ciated to the first eigenvalue Aj, and let ¢; the associated eigenfunction.
Using 1 as a test function in problem ([Py]), we have

/Q(Auq + u")prdr = A] /Q wprde. (5.3)

Since there exists a constant ¢ = ¢(r,q) > 1 such that M7 4+ " > c\%t with
= =, for any ¢ > 0, from (5.3) we deduce cA? < \j and hence A < oc.
In particular, this also proves that there is no solution to (Py) for A > A.
In order to prove that A > 0, we prove, by means of the sub and
supersolution technique, the existence of solution to for any small
positive A. Indeed, for € > 0 small enough, U = ¢F[p1] is a subsolution to
(]E]). A supersolution can be constructed as an appropiate multiple of the
function G, the solution to

—div(y'"*VG) =0 in Co,
B(G)=0 on 9r.Cq,

oG
81/8_1 on Q x {y =0}.




SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS ... 1231

Since the trace function g(x) = G(z,0) is a solution to

(=A)*g=1 in Q,
B(g)=0 on 09,
by [12, Theorem 3.7] we have [|g||zo (@) < +00. Next, since 0 < g <1 <7
we can find A9 > 0 such that for all 0 < A < \g there exists M = M(\)
such that
M =AM gl )+ Mgl e (5.4)

As a consequence, the function h = Mg satisfies M = (—=A)*h > Ah? + A"
and, by the maximum principle, the extension function U = E[h] is a
supersolution and U < U. Applying Lemma we conclude the existence
of a solution U to problem (P5). Therefore, its trace u(z) = U(z,0) is a
solution to problem (Py), A\ < Ap. O

REMARK 5.1.  In the proof of Lemma [5.4], precisely in (5.4), we
can choose M = M(\) verifying M(A) — 0 as A — 0, proving that
luxllpee(@) — 0 as A — 0. Indeed, it is enough to choose M(X) = \"
with 0 <7 < 2.

REMARK 5.2. Although Lemma[5.4] provides the existence of a solution
for small A > 0, we can also prove this result studying the associated
functional . Indeed,

1 ) A 1 .
I)\('U) = 5\/Q|(—A) /22)\2dx— mA‘U‘q+ld$— m/s;"l)‘ +1d.’17
)

1 (¢g+1)/2
> —/ (—A)Y20Pdz — ey </ |(—A)5/2v|2d:r>
2 Ja Q

(r+1)/2
— ¢ </ ‘(_A)s/2v|2dm> :
Q

for some positive constants ¢; and c¢o. Then, for sufficiently small A, there
exist (at least) two solutions to problem ([Py)), one given by minimization
and another given by the Mountain-Pass Theorem. The proof is rather
common, based on the geometry of the function g(t) = %tz—)\cltq“ — ottt

(see for instance [4]).

Next we show that there exists a solution for every A € (0, A).

LEMMA 5.5.  Problem (P\) has at least a positive minimal solution
for every 0 < A < A. Moreover, the family {uy} of minimal solutions is
increasing with respect to A.
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P r o of. By definition of A, for any 0 < A < A there exists p €
(A, A] such that (P;) admits a solution Uy,. It is easy to see that U, is a
supersolution for (Py).

On the other hand, let V) be the unique solution to problem (P}) with
f(t) = At? (the existence can be deduced by minimization, while uniqueness
follows from Lemma [B5.3]). It is clear that V) is a subsolution to problem
(P}) and, by Lemma 5.3, we have V) < U,. Therefore, thanks to Lemma
(.2, we conclude that there is a solution to @ and, as a consequence, for
the whole open interval (0, A).

Finally, we prove the existence of a minimal solution for all 0 < A < A.
Indeed, given a solution u to (Py]) we take U = Es(u) and, by Lemma [5.3]
being U solution to problem (P5)), it satisfies V) < U with V) solution
to problem (Pf) with f(¢) = At?. Then, the function vx(z) = Vi(z,0)
is a subsolution of problem (Py) and the monotone iteration procedure
described by

(=A)upy1 = Mup +up,  w, € Hy (Q)  with  ug = vy,
verifies u, < U(x,0) = u and wu,,  u) with uy solution to problem (Py]).
In particular uy < u and we conclude that u) is a minimal solution. The
monotonicity follows directly from the first part of the proof, taking U, =
E4(u,) which leads to uy < u, whenever 0 < A < < A. O

LEMMA 5.6. Problem (]E]) has at least one solution if A = A.

To prove Lemma [5.6] we extend [3, Lemma 3.5] to the fractional frame-
work. This result guarantees that the linearized equation corresponding to
(P,) has non-negative eigenvalues at the minimal solution.

PROPOSITION 5.1. Let uy be the minimal solution to (Py)) and define
ay = ay(z) = )\qui_l + rul~'. Then, the operator [(—A)* — ay(z)] with
mixed boundary conditions has a first eigenvalue vy > 0. In particular it
follows that

/Q <|(—A)s/2v|2 _ a>\v2> dr >0, forany ve Hs (5). (5.5)

P r o o f. By contradiction, assume that 1 < 0 and let ¢; > 0 be the
first eigenfunction. Let v > 0 and observe that since 0 < ¢ < 1,
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(=A)*(ux — agr) — (A(ur — ag1)? + (uy — agr)")

=Xud +ul — a1 —« <)\qu§\_l + ru’:\_1> d1—Muy — adr)?—(uy — adr)”
> Ul — avigr — arul Ty — (uy — agr)”

= —av1¢1 + o(adr).

Using that v1 < 0, ¢1 > 0, for a > 0 sufficiently small we have that

(=A)*(ux — agr) — (A(ur — ad1)? + (un — agr)") >0,
proving that uy — agq is a supersolution of (P))).
Now, let ¢ = )\ﬁv, with v a solution to
{ (=AY v=0v? inQ,
B(v) =0 on 09,

that turns out to be a subsolution of ([Py)).

Then ¢ < uy — a¢; and problem (P,) has a solution u such that
¥ <u < uy — agy in contradiction with the minimality of uy. O

(5.6)

Proof of Lemma Let {\,} be a sequence such that A\, A

and denote by w, = wu), the minimal solution to problem (P, ). Let
U, = Esluy], then
s A 1
= /| Eun|2d$——n/uiﬂdw——/uzﬂdfc.
q+1Jg r+1Jq

Moreover, since u, is a solution to (P, ), it also satisfies

/|(—A)%un|2da::)\n/u%“da:—l—/uﬁ“da:.
Q Q Q

On the other hand, using (5.5) with v = uy,

/ |(—A)%un|2dac—)\nq/ u%“dac—r/ ultdx > 0.
Q Q Q

As in [3, Lemma 3.5], we conclude Iy, (u,) < 0. Since I} (u,) = 0,
we obtain that |luy]| Hy (@) < C'. Hence, there exists a weakly convergent
D

subsequence u, — u € HgD(Q) and, as a consequence, u is a weak solution
of (Py) for A = A. O

Next we assure the existence of a second solution to (Py) for every
0 < X < A following the ideas of [5], developed to concave-convex problems
in [2, O] for the classical Laplacian and the fractional Laplacian respec-
tively. In order to find a second solution by means of variational methods
it is essential to have a first solution which is also a local minimum of the
associated functional J).
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LEMMA 5.7. Problem (P)) has at least two solutions for each A €
(0,A).

P r o o f. The proof follows exactly as in [9, Lemma 5.11]. O

Now we can conclude the proof of Theorem [[.11

Proof of Theorem [L.IF(2). Part a) follows by Lemma More-
over part b) is a consequence of Lemma 5.6, part ¢) of Lemma [5.4] while
part d) holds true thanks to Lemma [5.7] g

5.1. Moving the boundary conditions. Now we prove Theorem [L.4]
i.e., the assertions on the behavior of the minimal and mountain pass solu-
tions when we move the boundary conditions (see hypotheses (Bj)-(B3)).
To this aim, we need the following result.

LEMMA 5.8. Let v be the solution to problem (5.6]). There exists a
constant > 0 such that

¢l (@ — 4 /Q G de > 86|y for all ¢ € H (Q).  (5.7)

P r o o f. Since we always consider boundary conditions satisfying that
|Xp| = a > 0, the function v can be obtained as

win {1613, @ = 1ol ¢ € e, ]
and thus, by (5.5)
quHH& @~ q/ v gPde > 0, for all ¢ € Hy ().
As a consequence, the linearized problem

“A¥p—quilp = i
{( APo—qui-lo=pp in Q (5.8)

q+1

B(y) =0 on 012,

has a non-negative first eigenvalue p1. Let (1 be the first eigenfunction
and assume p; = 0. Since v is a solution to (5.6]), then

q/vqulda::/vquld:r:.
Q Q

which is a contradiction. Hence pq > 0. |

LEMMA 5.9. There exists A > 0 such that for all A € (0,A) the
problem (Py)) has at most one solution satisfying |ul| () < A.



SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS ... 1235

Proof Let A > 0 such that rA""! < B, with 3 given by (E.7).
Assumme by contradiction that there exists a second solution u = uy + w
of ([Py) such that ||u||fe() < A. Since uy is the minimal solution, w > 0.

Let ((x) = )\quv(x) with v the solution to (5.6), so that (—A)*¢ = A(1.
Moreover, u) is also a supersolution of (0.6]), and hence, by Lemma [5.3]

1
uy > AT=av. On the other hand, since u = uy + w is a solution to (P we
have

(—A)°(ux +w) = A(uy +w)? + (uy +w)".
By concavity, A(uy +w)? < Auf + )\qug\_lw and hence

(—A)’w < )\qug\_lw + (uy +w)" —ul.

1
. — -1 - —
Furthermore, since u) > AT-9v, one also has u(/]\ < A M1 and as we are
assuming |luy[|ze(q) < A, we find

(—A)w < quT™ + (ux +w)" —u}
< quiTt 4 rAT .
Multiplying the above inequality by w and using (5.7]) we conclude
ﬁ/ wdr < TAT_I/ w?dz.
Q Q
Since 8 < rA™L it follows w = 0. O

Now we can perform the proof of Theorem [L.4l

Proof of Theorem [[4 First we claim that if A = A(«) is the
associated constant to obtained in Lemma [5.9] then A(a) — 0 as

a — 0.
Indeed, it is enough to observe that

HUHH;{)( )(Q)
0<p <A(a)= inf =
uEH%D(a) () ||u||%2(9)
uZ0

where p is the first eigenvalue of the linearized eigenvalue problem (5.8]).
Since by Remark 211 A\j(a) as a \, 0, the result follows.

In particular we deduce:

(1) From the proof of Lemma 5.4} we have cA%(a) < A§(a) and arguing
as above A(a) - 0 as a — 0.

(2) There exist atmost one solution u to (Py)) with (A, ||u|«) € (0, A(a))
x(0, A()), that is the minimal solution and, since A(a) N\, 0 as
a — 0, the minimal solution converges to zero as « \ 0.



1236 J. Carmona, E. Colorado, T. Leonori, A. Ortega

Now we prove that for 0 < A < A(a) small enough, the solution to
problem obtained by the Mountain Pass Theorem, u,,, satisfies

luallfs@) — 0, as a 0.

The proof follows the lines of |16, Lemma 5.12]. Let us consider the fun-
cional at A =0

1 . 1 .
Io(ua) = §/Q|(—A)2ua|2dm— m/s;ua—i_ldl’

1 2 1 +1
- §HUOCHH§D(Q)(Q) - r+1 Hua| ZH-I(Q)

r+1

1 9 1 1_rtl 1 2
- _ 2% - r+1

D(w)

>

r+1
Let us define g(t) = 3t% — co(r, \Q|))\f(a)_5%t7"+1. It is easy to see that if
to is such that ¢'(to) = 0 then to < c(r, |Q)A] (@) with p = 2(’111), so that
ta — 0 as a (0. Hence, the Mountain Pass solution converges to zero as

a N\ 0. O

REMARK 5.3. As a conclusion of the above arguments:

(1) Both the minimal solution uy and the mountain pass solution y,
converge to zero as a \ 0.

(2) If we set a € I. = [g,|09]] with € > 0, under hypotheses (B,) and
(B1)-(Bs3), there exist M., A, such that the family S. C [0, A;] X
[0, M,] (see Theorem 1.3 for the definition of S.).

(3) To conclude, it is interesting to point out Theorem 8 by Denzler in
[18], where the author proved that

sup {Ai(a) : v = [Xpl} = A (|09),
0<a<|o9|

which in particular proves that there are configurations of the dis-
tribution of the manifolds ¥p and ¥z on 92 such that [16, Lemma
4.1] does not apply and hence A\j(a) 4 0 as o N\, 0. But this is
not our case under hypotheses (B,) and (Bp)-(Bs), in which [16]
Lemma 4.1] applies proving that Aj(a) — 0 as o \( 0.
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