Future Generation Computer Systems 152 (2024) 288-303

Contents lists available at ScienceDirect z =
FIBICIS!

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs =

Check for

Anonymous Federated Learning via Named-Data Networking o

Andrea Agiollo !, Enkeleda Bardhi ®*!, Mauro Conti ¢, Nicold Dal Fabbro ¢!,
Riccardo Lazzeretti®

a Department of Computer Science and Engineering, University of Bologna, Italy

b Department of Computer, Control and Management Engineering, Sapienza University of Rome, Italy
¢ Department of Mathematics, University of Padua, Italy

d Department of Information Engineering, University of Padua, Italy

ARTICLE INFO ABSTRACT

Keywords: Federated Learning (FL) represents the de facto approach for distributed training of machine learning models.
Federated learning Nevertheless, researchers have identified several security and privacy FL issues. Among these, the lack of
Anonymity anonymity exposes FL to linkability attacks, representing a risk for model alteration and worker impersonation,

Named data networking
Privacy-preserving protocols
Next generation communication

where adversaries can explicitly select the attack target, knowing its identity. Named-Data Networking (NDN) is
a novel networking paradigm that decouples the data from its location, anonymising the users. NDN embodies
a suitable solution to ensure workers’ privacy in FL, thus fixing the abovementioned issues. However, several
issues must be addressed to fit FL logic in NDN semantics, such as missing push-based communication in NDN
and anonymous NDN naming convention. To this end, this paper contributes a novel anonymous-by-design FL
framework with a customised communication protocol leveraging NDN. The proposed communication scheme
encompasses an ad-hoc FL-oriented naming convention and anonymity-driven forwarding and enrollment
procedures. The anonymity and privacy requirements considered during the framework definition are fully
satisfied through a detailed analysis of the framework’s robustness. Moreover, we compare the proposed
mechanism and state-of-the-art anonymity solutions, focusing on the communication efficiency perspective.
The simulation results show latency and training time improvements up to ~30%, especially when dealing
with large models, numerous federations, and complex networks.

1. Introduction information. Thus, private knowledge concerning the user data or its
identity can still be leaked by local updates and global aggregation—
Federated Learning (FL) [1] represents the most popular and highly either under the form of ML model [2], or its gradient [3-6]. Here,

adopted framework for enabling multi-party joint training of Machine the protection of user local information is twofold and follows the
Learning (ML) and Deep Learning (DL) models. Most, if not all, FL anonymity vs. privacy trade-off [7]. More in detail, when considering
scenarios consider a central server — namely Central Aggregator (CA) protecting users from information leakage, it is required to (i) protect
- interacting with multiple users - also called clients or workers - to the value of local models from leaking, and (i) hide clients’ identities
train a ML model jointly. In this setup, each worker locally trains its in local parameter updates. Most, if not all, of the effort in the re-

ML model on its private data, while the CA aggregates local updates
upon their reception. The groundbreaking idea behind FL is that the
training process of the global model takes into account the data of all
clients belonging to the federation while never disclosing their nature.
Indeed, each worker never shares local raw data but propagates updates
from the training procedure over such data. Moreover, FL achieves
efficiency improvements over centralised training approaches, thanks
to its underlying parallelisation paradigm.

Despite the data privacy design of FL, many state-of-the-art works
show that local updates shared in the federation process may leak user

search community has focused on (i), where the concept of Differential
Privacy (DP) has been widely used to ensure the protection of local
parameters [8]. Here, noisy data are injected into local updates to avoid
disclosure of information [9,10].

Although crucial, data privacy techniques focus solely on the data
perspective, ignoring issues arising from client identity leakage. Here,
linkability attacks [11] represent a critical issue in FL applications.
An adversary model comprises curious or malicious CA or a set of
clients interested in disturbing the local model of a particular client.
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An additional adversary model includes an eavesdropper or a man-in-
the-middle located inside or outside the federation aiming to tap or
disrupt the communication between the CA and a particular client, re-
spectively. To achieve their aim, the adversaries must know the client’s
identity, i.e., IP address, so the altered model parameters are sent only
to the targeted client. These issues are particularly relevant in the
context of FL scenarios where competitor parties or public organisations
represent the federation actors. For example, consider the following
scenarios: (i) the health-care domain solutions where multiple hospitals
aim at jointly optimising a target ML model [12]; (ii) the Vertical
Federated Learning (VFL) paradigms, requiring collaboration between
competitor companies [13]; and (iii) the smart city scenario, where
devices and data are characterised by high heterogeneity [14]. Here,
the anonymity of collaborating competitors must be ensured to avoid
eavesdropping, man-in-the-middle, and other threats.

Anonymous communication represents a well-known paradigm in-
vestigated to achieve privacy-preserving solutions in FL [15-19]. Gen-
erally, these approaches leverage known tools for anonymous commu-
nication over the IP-based Internet, e.g., Tor [20]. Although valid, such
solutions introduce performance issues mainly due to the computation
overhead while also being vulnerable to deanonymisation via traffic
analysis attacks [21-23].

In this paper, we propose a novel anonymity framework by lever-
aging the Information-Centric Networking (ICN) paradigm for ensuring
client anonymity in FL applications. First introduced in the TRIAD
project [24], ICN aims at replacing the IP layer of the Internet with
a novel content-centric layer. Among the variety of ICN architec-
tures that have been proposed, Named-Data Networking (NDN) [25,26]
is considered the most promising. NDN removes IP addressing and
refers to the data using application-level names. In particular, NDN
users look for content by name via interest requests. Removing the
IP addressing procedure, NDN is considered a privacy-preserving and
anonymous-by-design paradigm.

Integrating FL upon an underlying NDN network is challenging.
Indeed, the contrast between the pull-based nature of communication
in vanilla NDN and the push-based approach characterising every FL
framework calls for a careful protocol design. Additionally, anonymous
FL requires a customised trust scheme that hides the identities and
avoids linkability attacks. Some efforts have been put into overcoming
the former limitations, mainly focusing on the interest expiration time
to enable dynamic content retrieval and distributed computing [27,28].
Nevertheless, these approaches are unsuitable for our anonymous FL
scenario, as they do not enable the clients to act as consumers, i.e., re-
ceiving global model, and producers, i.e., pushing the local model to
the CA. Instead, for the latter limitation, state-of-the-art vanilla NDN
solutions [29,30] bind namespaces to producer identities, thus failing
at ensuring full anonymity for FL workers. Therefore, we analyse how
to integrate FL into an NDN networking scenario, enabling bidirectional
communication and worker anonymity. While avoiding introducing
requirements on local updates, our mechanism can be coupled with
any data-privacy approach, thus representing the first — up to our
knowledge - protocol that achieves complete anonymity in FL. We
then analyse the proposed scheme’s anonymity in detail, consider-
ing different attacks to disclose users’ information. Finally, we study
latency performance improvements arising from the introduction of
NDN communication, primarily deriving from the in-network caching
paradigm characterising NDN.

Contributions: We summarise our contributions as follows:

» We present the first NDN-based framework for anonymous FL.
The proposed scheme is designed to achieve client anonymity
and avoid identity disclosure to other nodes inside or outside the
federation network.

» We analyse the anonymity of the proposed approach over a
set of well-defined threats in FL. The proposed approach shows
reliability against identity disclosure.
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Table 1
Summary of notations.
Symbols Definition
N Number of workers
1D, Anonymous worker ID
W, or Wip ith or I D" worker
M® Global model at time ¢
m{ or m), ith or ID" local model at time ¢
Stp, Secret factor for 1D, at time ¢
A1p,, Secret parameter between ID,, and CA
h(-) Hash function
kip, Symmetric key between CA and W
£ Symmetric encryption function
D,(-) Symmetric decryption function
kg CA’s private key
k’c"fz CA’s public key
£,() Asymmetric encryption function
D,(-) Asymmetric decryption function
chal, ith challenge
Fur () PUF function

res,
tab(chal, res)

€ Security factor

ith response

Table with challenges and responses

npers Number of hops between W, and CA
Blor Bit rate of given hop

Dhor Delay of given hop

Thor Latency of given hop

Py Packet size

N Model size

» We study the performance of the proposed framework for de-
ploying FL scenarios. The proposed communication scheme is
compared against traditional IP-based FL and other available
anonymous communication frameworks, showing improved per-
formance over the state-of-the-art.

Organization: Section 2 discusses the basic concepts of FL and
NDN, while the related work is presented in Section 3. Section 4
describes the system model and the requirements to be satisfied while
designing our mechanism. Section 5 presents the details of our pro-
posed framework, while Section 6 discusses how and to what extent
user anonymity is achieved. Our protocol’s performance is detailed
in Section 7. Finally, Section 8 provides conclusions and insight into
possible extensions of our work.

Notations: Table 1 summarises notations used in the article.

2. Background

In this section, we briefly provide a background on the two pillars
of our work, i.e., FL in Section 2.1 and NDN in Section 2.2.

2.1. Federated learning

Most, if not all, FL scenarios consider a central server — namely
CA - interacting with multiple clients to train a ML model jointly. In
this setup, we consider a federation network made of several clients
— which we refer to also as FL workers or users —, a CA agent, and
the router devices interconnecting the parties. Each worker locally
trains its ML model on its private data for a predefined time. Thus,
depending on its available data, each federation client obtains a local
update over the global ML model. The FL training relies on clients
periodically sending the results of their local training — under the form
of whole model [31,32], obtained gradient [33,34], or other possible
solutions — to the CA agent. The CA is then in charge of aggregating
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the local updates received by the federation clients to compute the
joint global update. Different aggregation solutions have been proposed
recently, such as FedAvg [33] or Newton-type methods [35]. Once the
global update is available, the CA propagates it to all the federation
participants, ensuring that each worker is constantly synchronised with
the global state of the federation. The global optimisation process is
repeated 7 times to achieve model convergence.

2.2. Named data networking (NDN)

NDN [36] is a new networking paradigm proposed among five
projects of the U.S. National Science Foundation under the Information-
Centric Networking (ICN) architectures [37]. NDN represents a data-
centric network architecture, where the data is explicitly named and
referred to during the communication. The communication in NDN
follows a pull-based fashion, i.e., consumers request content through
interest packets, while the producers provide the data upon request
via the data packets. In particular, NDN introduces hierarchically struc-
tured unique names — similar to Uniform Resource Locators (URLs) — for
requesting and retrieving the data. For example, a consumer interested
in watching the Netflix series X, episode 1, issues an interest packet
containing the name /Netflix/series/X/ep/1. When the request reaches
the producer, a data packet with the same name delivers the requested
data to the consumer. To embody this communication shift, NDN mod-
ifies the routing and forwarding engines to enable the name parsing for
delivering the packets to the destination. Here, NDN enables caches on
the routers, where the data is stored for later use according to a caching
policy, improving the retrieval latency. Additionally, the routers keep
track of the requests for content that cannot be satisfied locally based
on their arrival interface in the Pending Interest Table (PIT) and use
the reverse-path routing to deliver the data to the consumer once it
is retrieved from the producer. The router consults its Forwarding
Information Base (FIB) table whenever the content request is not in
the PIT. Decoupling the content from its location - i.e., avoiding
using IP addresses — NDN ensures complete anonymity for consumers.
Furthermore, NDN demands security guarantees encapsulated in the
data packet. The content producers sign the data packets to ensure data
origin authentication and integrity.

Although large-scale NDN networks are not yet available, the re-
search community has shown the benefits of this paradigm in the most
disparate scenarios, i.e., Internet of Things (IoT) [38-40], Vehicular
Networks [41,42] and Blockchain [43]. Furthermore, research has in-
vestigated the integration of NDN paradigm into today’s infrastructure,
i.e., TCP/IP, proposing various solutions of placing NDN semantics over
or under the IP protocol [44]. Given the benefits of applying NDN to
several applications, we aim to transpose them to the FL scenarios in
this paper.

3. Related work

This section provides an overview of the research effort for provid-
ing privacy-preserving techniques for FL and NDN.

Privacy in FL. To achieve privacy-preserving FL, the following tech-
niques can be used: (i) Differential Privacy (DP), (ii) blockchain-based
and (iii) communication anonymity. Although our mechanism falls in
the communication anonymity group, we present the state-of-the-art
for all three groups. DP techniques, i.e., (i) focus on the privacy of
the data by adding noise to personal sensitive attributes [45]. Zhu
and Yu [46] elaborate on the DP benefits and definitions for different
scenarios, also among distributed ML. Other works [47,48] engage
secure multiparty computation and DP to achieve a secured FL model
with high accuracy. Since DP is the most popular approach to ensuring
privacy in FL, several works focus on proposing various DP solutions
over different FL setups. Hu et al. [49] and Wei et al. [50] focus
on personalised FL, highlighting the complexity of keeping privacy
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while also needing to customised models depending on users needs.
Several other works focus on the communication aspects impacting DP,
focusing on different types of networks, such as wireless networks [51],
Internet of Vehicles [52], and many more. Finally, several works anal-
yse the possible impacts of DP on different FL application scenarios,
e.g., healthcare [53], mobility solutions [52]. Interested readers can
refer to recent surveys [54,55] elaborating more on the DP techniques.

Among the blockchain-based technologies, i.e., (ii), Shayan et al.
[56] tackle privacy issues arising from a single point of trust in FL
scenarios, e.g., CA, by leveraging blockchain to certify model updates in
a peer-to-peer fashion. Miao et al. [57] propose leveraging blockchain
technologies to define federations robust against byzantine attacks.
Similarly, BlockFL [58] focuses on possible malicious nodes, adding a
consensus process to validate local models effectiveness. Several works
also propose different blockchain-based technologies depending on the
application scenario at hand, such as healthcare [59], industry [60]
and Internet of Things (IoT) [61]. Other popular approaches have
been recently proposed, leveraging blockchain technologies to ensure
privacy requirements in domains such as IoT [62,63]. Although not
focusing specifically on FL, these approaches could be transferred to
the FL domain with limited effort. We refer interested readers to
recent studies [64-66] providing surveys of the blockchain-based FL
frameworks used to boost the FL security and privacy issues.

Among communication anonymity techniques, i.e., (iii), FedTor [15]
is a recent anonymity framework proposed for IoT-based FL that
leverages the onion router (TOR) to provide worker anonymity.

Domingo et al. [16] proposed a FL framework that offers both
security and privacy. Their framework aims to achieve the unlinkability
between worker identity and its updates. To achieve this, the workers
forward the updates to other workers before sending them to the central
aggregator. Additionally, Li et al. [17] targeted the adoption of FL in
autonomous driving and proposed an anonymous privacy-preserving
scheme. This scheme mainly focuses on how to keep the worker identity
private and realises it by adopting zero-knowledge proofs (ZKP). Girgis
et al. [19] proposed a privacy amplification for the FL considering sam-
pling and shuffling on data and clients, i.e., anonymisation. In such a
way, it enables the transferability of local privacy to the central privacy
guarantees. Lyu et al. [18] introduced a fair and privacy-preserving
deep learning (FPPDL) framework that designs a local credibility mu-
tual evaluation mechanism to guarantee fairness. Additionally, it uses
a three-layer onion-style encryption scheme to guarantee the accuracy
and privacy of the individual model updates.

Privacy in NDN. Efforts in privacy-preserving techniques in NDN mainly
include anonymity solutions [67,68]. ANDaNa [67] aims to achieve
communication anonymity by borrowing several features from Tor.
Similarly, Kita et al. [68] focus on the Tor logic to achieve content-
producer unlinkability. Furthermore, NDN-ABS [69] poses on the pro-
ducer anonymity issue of NDN and proposes a novel signature based
on attributes. Although valid, the proposed anonymity solutions for
NDN are insufficient for the FL scenarios where clients act as consumers
and producers. In this respect, the FL scenarios expect modifications on
the communication paradigm to enable the clients to push information
towards CA. Restricted research on NDN [27,28] aim at modifying the
interest-data exchange in vanilla NDN for scenarios of dynamic data
retrieval and distributed computing, respectively.

Similarly, few works focus on defining publish/subscribe infrastruc-
tures in the NDN domain by modifying the vanilla-NDN workflow [70,
71]. While beneficial from the communication perspective, these works
lack an anonymity-enabling scheme, representing an essential require-
ment in FL scenarios. Therefore, an ad-hoc mechanism that satisfies
anonymity and communication schemes is required for FL



A. Agiollo et al.

Local device  Local model Local data

Worker %

-
o} W
:%m =

-—

Local device  Local model Local data

Worker j

-—
Local model  Local data
Worker k

Local device

Future Generation Computer Systems 152 (2024) 288-303

Trusted Third
Party

LEGEND

«€—> Federation Communication

<4 = 9 Enroliment Communication

Fig. 1. System model of the proposed framework, including FL workflow and worker enrollment procedure.

4. Federated learning via named data networking

Federated Learning (FL) encounters several privacy issues; among
these, anonymity is not yet thoroughly explored. Indeed, most of this
research focuses on data privacy [46-48] while ignoring privacy issues
emerging from revealing a worker’s identity. Only recently, the com-
munication anonymity aspect in FL has gained attention in the research
community, with few preliminary works in different domains [15-17].
Furthermore, recent research advancements argue the importance of
networking design in distributed learning tasks, like FL [72-74]. In
light of such progress, focusing on the FL anonymity perspective from
the networking point of view represents a relevant research opportunity
for further FL advancements. Given its anonymity by design feature,
in this context, the Named-Data Networking (NDN) paradigm repre-
sents an appealing choice to develop anonymous FL routing protocols.
Although NDN has been proposed as a novel networking paradigm
to replace the IP layer, the research showed that it could also be
implemented on top of the IP protocol itself [75-77]. Therefore, we
claim the NDN-based routing protocol to be a general tool that can
be applied to FL scenarios in the current Internet infrastructure. We
describe our system model in Section 4.1, threat model in Section 4.2,
and elaborate on the system requirements in Section 4.3.

4.1. System model

Our mechanism encompasses a native NDN network, a Central
Aggregator (CA) server, and a Trusted Third Party (TTP). The former
comprises N FL workers, denoted as W;, i € [1, N]. Instead, the CA
server orchestrates the global model training by synchronising and
aggregating the local updates to compute a global update which is
then distributed back to the workers. Lastly, the TTP is in charge
of verifying and enrolling the workers in the federation. Similarly to
existing privacy-preserving solutions for FL [78-80], we consider TTP
to be a trusted entity that holds information related to the workers and
handles their anonymous enrollment in the federation. Fig. 1 shows an
example of the proposed system architecture.

The proposed system incorporates two phases: (i) enrollment, and
(i) training phase. For the enrollment phase, we consider a lightweight
anonymity-preserving scheme where the worker responds to the chal-
lenges issued by TTP entity. Our mechanism relies on the Physically Un-
clonable Functions (PUFs) [81-83] to preserve the worker’s anonymity.
PUFs are hardware-specific elements considered as the unique physical
identity of the devices widely leveraged in the cryptography field. After
that, the anonymous identity embedding is communicated to the CA
server by the TTP. Finally, after further verifying the worker, the CA
picks the secret cryptographic parameters and shares them with the
worker. For the training phase, the proposed framework encompasses
different training rounds, each of which composed by the traditional
four steps of FL training [1], namely:

201

1. Global update. Here, the CA transmits the global update to each
client in the federation.

. Local update. The federation clients optimise their model param-
eters based on their training dataset.

. Update transmission. Here, the model parameters obtained by
each worker are shared with the CA through the anonymous
channel.

. Model aggregation. The CA aggregates all the local updates, com-
puting the global model for the next round.

For the remainder of the paper, for simplicity, we denote the
exchanged local and global updates by model parameters, i.e., weights.
Without any loss of generality, the proposed approach can be applied
to any model-related updates, e.g., gradient [33,34], as our mechanism
solely focuses on the communication perspective. Therefore, in our
framework, we refer to the ith worker with the notation W, and to
its corresponding real (anonymous) identity as ID; (ID,,). The local
model obtained by the worker having identity ID,, at the rth training
round is indexed as m*) . Meanwhile, the global model aggregation is

1D,
defined mathematically as:

& 2 M

m®
ieF

MO =

where, N represents the total number of clients in the federation 7 and
M® identifies the global model computed at round .

4.2. Threat model

The considered threat model encompasses adversaries that behave
as (i) a single or a set of malicious workers placed inside or outside
the federation, (ii) a malicious CA, or (iii) a honest but curious CA.
Considering the above threats, we further elaborate on the adversaries’
capabilities in each case.

» Malicious Workers. A malicious entity inside or outside the fed-
eration aims to eavesdrop on the links connecting the targeted
worker with the CA. Eventually, having enabled eavesdropping,
such malicious workers could perform a man-in-the-middle attack
To this end, the adversary must know the targeted worker’s iden-
tity, e.g., the IP address We define these threats as in federation
eavesdropping and out of federation eavesdropping, respectively Ad-
ditionally, malicious workers capable of eavesdropping on other
workers’ identities, e.g., IP addresses or similar, can pose as them
by identity spoofing We define this threat as worker impersonation
In such a way, an attacker can send corrupted updates, linking
them with an honest user or reconstructing the target’s data by
observing consecutive updates to achieve privacy leakage
Honest but curious CA.

In this scenario, the CA server executes aggregation computation
correctly and provides the worker with the correct parameters.
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However, the CA is curious and aims at inferring information
concerning the local private data of a single or a set of workers
from the received updates

Malicious CA.

Similarly to the previous scenario, the CA targets a single or a
set of workers aiming at corrupting their local models. Here, the
CA exploits the knowledge of workers’ identities, e.g., IP address,
to alter the local model by forwarding perturbed updates to the
targeted worker.

4.3. System requirements

To design a robust anonymous FL framework, we establish the
following requirements that must be addressed:

R1 Worker’s identity anonymity.
The fundamental characteristic of our framework is to keep the
identity of the clients completely anonymous, even to the CA This
requirement represents a fundamental specification to achieve a
two-fold privacy-preserving FL scenario
R2 Robust against misbehaving parties.
Common FL frameworks are susceptible to misbehaving workers
inside and outside the federation who exploit identity spoofing
to impersonate workers participating in the federation Similarly,
such frameworks suffer from malicious and honest but curious CA
server behaviours that perturb the local models and reconstruct
the local data
Compatibility with data privacy mechanisms.
While designing the anonymity scheme for FL framework, we
require it to be compatible with other data-focused privacy mech-
anisms such as DP Indeed, the privacy issue in FL is two-folded,
i.e., ensuring both data privacy and user anonymity. Thus, it
would be deleterious to ensure only user anonymity (data pri-
vacy) while disregarding data privacy (user anonymity)

R3

Our proposed approach, presented in detail in Section 5, aims at
incorporating all the requirements R1-R3. In particular, we use NDN
networking principle to enable anonymous communication between
the CA and each worker and rely on the TTP during clients’ enroll-
ment to ensure their anonymity even to the CA, thus satisfying R1.
Meanwhile, to achieve R2, we design a novel naming schema for the
underlying NDN network to protect the communication from malicious
workers, aiming at impersonating other workers or eavesdropping on
their identity, see Section 5.1. We also propose to modify the standard
caching mechanism that characterises NDN, presenting a novel caching
paradigm. Such a modification, along with the leveraged enrollment
scheme, allows for achieving protection of the federation from mali-
cious CA server. Finally, leveraging the NDN paradigm, our proposed
approach focuses solely on the communication perspective, avoiding
introducing requirements concerning the type of updates forwarded or
their structure. Therefore, our mechanism is entirely independent of
any data-privacy approach and can be easily integrated with any of
them, e.g., DP techniques, satisfying R3.

5. Proposed architecture

This section presents our anonymous NDN-based FL architecture.
We first define the proper naming scheme to achieve user anonymity
in Section 5.1, then present the packet forwarding mechanism in Sec-
tion 5.2. Section 5.3 presents how NDN caching is used in our approach,
while Section 5.4 defines the enrollment mechanism that enables work-
ers verification.

5.1. Naming scheme

For enabling the development of FL frameworks on top of NDN
solutions, it is fundamental to define the set of names representing
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Fig. 2. Name announcement procedure. (1) W, broadcasts a packet containing the
anonymous name of its model. (2) CA receives W,’s announcement.

the interests to be satisfied. Indeed, naming conventions depend on
the considered NDN application, e.g., vehicular networks [84]. In our
context, the workers participating in the federation process need to
publish their model and request the updated global model using unique
identifiers. These identifiers depend on various aspects of the model
to be published or requested, such as: (i) model location, i.e., local
vs. global models; (ii) model versioning, i.e., which training round
produced the model; and, (iii) workers anonymous identity.

To obtain flexible names, we define a hybrid naming approach,
where names are composed of different fields, each addressing one of
the required information, i.e., location, versioning, and identity. On the
other hand, to avoid anonymity leakage and satisfy R1, we cannot rely
on plain-text naming schemes. Indeed, using an unprotected naming
schema, e.g., local/ID,,/v=t, allows malicious entities to gather the
information concerning the anonymous ID (I D,,) of the worker. In such
a setup, malicious workers can pretend to be worker I D,, and advertise
a different model addressed by local/ID,,/v=t. To protect against such
scenarios, we leverage one-way hashing functions and a temporary
secret factor to mask workers’ anonymous identities. An example of the
use of such names is proposed in Figs. 2-7. Here, the local model of
worker having anonymous ID ID,, at the end of the 10th federation
round can be addressed using the name: local/h(ID,, ® StI:DlaOn )/v=10.
The name contains the result of the hashing function # applied to
the combination of the worker anonymous identity and a secret factor
Stl:Dl,?n' The secret factor represents a temporary challenge known only
by the worker ID,, and the CA. s’fDl[?n can be arbitrarily complex
depending on the security factor that must be achieved. As an example,
consider the simple exponentiation operation shown in Eq. (2). Here,
s’fDl[‘; depends on the local model timestamp ¢+ = 10 and on a secret
parameter A;p ~shared between worker /D, and the CA during the
worker enrollment procedure explained in Section 5.4.

@

Thus, only the CA and worker ID,, can verify the overall hashing,
given the challenge updates for each time the local model is published
by worker ID,,. The combination of 4 and s, allows us to protect
the framework from impersonation attacks.

At the end of the 10th federation round, the aggregated model can
be requested using the global/v=10 name. Here, the naming scheme does
not require introducing the ID of the CA agent, as the global model
can be advertised solely by the CA. Public-key cryptography can easily
verify the global model’s integrity and origin authentication. Here, the
CA signs the global model using its private key k‘gf, while each worker
verifies its content using k’é“j, as shown in details in Section 5.2. In
such a way, our mechanism protects the federation against malicious
workers aiming at impersonating the CA.

HIDLy @), = H(I Dy @ 110)

DHH
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Interestingly, the proposed naming schema represents a flexible
solution for multiple FL scenarios. Indeed, it allows the CA and work-
ers to request any of the past local and global models, respectively.
Such a requirement is fundamental in many relevant FL frameworks
relying on model history for training optimisation, such as [85]. More
complex naming schemes can also be identified depending on the
underlying structure of the federation framework. For example, the
need to introduce hierarchical naming approaches in the FL setups
where workers can have a direct dependency [86] might exist. The
required model can be addressed in this setup using an additional
cluster field information inside the naming schema. Thus, the cluster
field represents an optional field of the name, which can be extended
depending on the hierarchical structure of the underlying federation.
We might, for example, consider the local model of worker i belonging
to cluster 3, itself belonging to cluster 1, to be represented using the
clustered name cluster1/cluster3/local/h(ID,, ® s’I p VU=t Meanwhile,
the aggregated model obtained from the CA can be addressed using
the general name global/v=t and the clusters’ models can be referred to
using the global/cluster1/cluster3/v=t

Synopsis. Our naming schema follows the most used nam-
ing convention in vanilla NDN, i.e., hierarchical naming
while anonymising the users’ identities. However, the naming
conventions are application-specific, allowing extensions and
re-definitions.

5.2. Packet forwarding

Enabling FL in NDN is challenging as it needs to define a dedicated
novel packet forwarding strategy. In particular, the most relevant issue
is related to the pull-based nature of NDN networks where content
requests are initialised by users looking for specific content. While
suitable for user-centric Internet, NDN’s nature represents a relevant
drawback for push-based frameworks such as FL where clients and CA
must periodically force their local model and global model to their
counterparts.

To define an FL compliant NDN packet forwarding protocol, we
require our novel forwarding mechanism to fulfil the following com-
munication components:

1. Downward communication from the CA to worker, to which we
refer as CA « Wy,

an

2. Downward communication from each worker to the CA, to
which we refer as W;p < CA.
3. Upward communication from each client to the CA, to which we
refer as W;p — CA.
4. Upward communication from the CA to each client, to which we
refer as CA — Wip,,-
Next, we describe each of these components in detail, defining the

NDN-based packet forwarding mechanism that enables them.

5.2.1. Downward communications (W;p < CA and CA < W,p_)

The communication respects the pull-based paradigm characteris-
ing NDN. Indeed, each downward communication requires the inter-
ested entity to download the required data through the communication
medium. Therefore, in such a scenario, relying on the traditional NDN
communication scheme is possible, where the interested party sends
an interest request for a particular content. Here, the considered parties
might be the CA or any worker belonging to the federation. Meanwhile,
the requested content might be either the local model obtained via
local training by a particular worker, i.e., m%‘m at Wyp_, or the global
aggregated model obtained by the CA, i.e., M. In the former, the CA
issues an interest request packet for the name local/h(I D, ® ", D,, )/ v=t,
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following the naming schema presented in Section 5.1. Upon the recep-
tion of this interest packet, W; = replies to the CA’s request forwarding

%M, using a symmetric encryption scheme that is trusted between
CA and W, p . The model encryption process enables the verification
of packet source, i.e., CA makes sure that m%an comes from Wjp
and not Wy , satisfying R2. Meanwhile, for the W;p < CA case,
the local worker interested in M® issues an interest request packet for
the name global/v=t. Upon the reception of this interest, the CA signs
the global model using the public-key cryptography scheme, allowing
the verification of the model integrity and source authenticity (R2).
Additionally, during the forwarding towards W,p_, the routers can
cache the shared model for later use. The caching aspect is discussed
more in detail in Section 5.3.

m

5.2.2. Upward communication from each worker to the CA (W, Dy CA)

In FL, upon the completion of the local training procedure, each
worker pushes its m%m, to the CA for the aggregation process to
execute. Vanilla NDN protocols to support this procedure have been
recently proposed [27,28]. However, these protocols fail to meet R1,
thus introducing the need for a novel push-enabling NDN packet for-
warding protocol. Therefore, we define our ad-hoc mechanism enabling
local workers to notify the CA and push their local models.

The overall mechanism is presented in Figs. 2-4, and is made of
three components, namely: (i) name announcement, where each Wi |
announces the availability of its local update; (ii) interest request, where

the CA issues the request for m% ; and (iii) update dispatching, where

m% is forwarded to CA.

Name announcement. The announcement mechanism is implemented
using a simple broadcasting scheme where W;, ~broadcasts a packet
containing the name of the updated model: local/h(I D, @ s, )/v=t.
Since the broadcasted information is received by all entities bef&nging
to the federation network, and thus also other possibly malicious work-
ers, the hashing applied to the I D,, is necessary to protect the network
against impersonation attacks (R2). Moreover, such hashing is also
helpful to allow the CA to verify the validity of the sponsored name.
Indeed, upon its reception, the CA is capable of verifying the hashing
h(ID,, ® s, Dan) checking that it comes from a valid worker W;p_. The
proposed announcement mechanism also presents a hidden advantage,
as it allows the NDN routers that compose the underlying network to
populate their FIB with the new available local model name. Populating
the FIB allows for the routers to keep track of the path from W;, to CA
so that consequent communications between such entities will follow
the quickest path. Furthermore, FIBs can be implemented efficiently
with reduced storage requirements [87], enabling the proposed strategy
to scale even with many workers. A visual example of the proposed
announcement mechanism can be found in Fig. 2.

Interest request. Upon the reception of the announcement message from
Wi p,, the CA initialises an interest request packet for the corresponding
model name. To ensure the origin of the request packet, we require
the CA to append to the interest packet a specific field containing
a unique identity verification token, aiming at satisfying R2. Indeed,
without an identity verification token, any other worker belonging to
the federation would be allowed to reply to the announcement phase
and issue an interest request for m%an. We build the CA identity
verification token r., similarly to the hashing mechanism used for
masking the worker’s ID in the naming scheme (see Section 5.1). More
in detail, we define 7o, = h(k;p, @® 4;p,), where k;p = represents
the shared symmetric key between the CA and W, , obtained during
enrollment (see Section 5.4). Therefore, the CA issues the request as the
packet I(local /h(ID,, @ SIDan‘)/v =Dk, p,, ® 4;p,,)>, where I(name)
represents the standard interest packet for certain content, and || rep-
resents the concatenation operation. The interest request mechanism is
detailed in Fig. 3.
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Fig. 4. Update dispatching procedure. 5 W, sends the encrypted local update
Ex(kl,m‘]’)) towards CA. (6) CA deciphers the local update received from W;.

Update dispatching. W;p = checks the identity of the CA validating the
token 7. If the interest request is valid, W, forwards m%

reply to the interest request, following the standard NDN paradiénm. To
(1)
1Dy,

caching mechanisms to cache local models, we require the local worker
to encrypt the update using the symmetric key k;p
Wip,, and CA during enrollment (see Section 5.4). Mathematically,
Wip,, forwards & (k;p .m ;;)zm ), where & represents any symmetric
encryption scheme and k;p ~the corresponding key shared between
Wip,, and the CA. Meanwhile, the CA can decipher the local update
following m;’}) = Dy(ksp,,. £k p, -

tion scheme corresponding to &;. The symmetric encryption mechanism

is fundamental for preventing routers from caching the local update,

as a

protect the dispatch of m from any eavesdropper (R2) and avoid

shared between

m%an)), where D, is the decryp-

thus protecting NDN-based FL against any cache probing attacks. An
example of update dispatching is presented in Fig. 4.

Following the proposed approach, the obtained W;p ~— CA up-
ward communication becomes secure and anonymous. Indeed, the
hashing trick introduced in NDN names makes it impossible for mali-
cious workers to gather information concerning the anonymous identity
of other workers and impersonate them. Moreover, the use of the
CA entity verification token z-, makes it impossible for workers to
impersonate the CA and request a local update. The same 74 is also
secure against attackers interested into obtaining k;, ~or A;p  from
the CA interest request. Indeed, reversing the hashing h(k;p & 4;p,)
is proven to be complex, and even if broken it would be complex for an
attacker to get k;p oOr A;p fromk;p @Ai;p
encryption avoids local model caching, which might be a threat due to
the few attacks available against NDN caching paradigms [88,89].

. Finally, the symmetric
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5.2.3. Upward communication from CA to each worker (CA — W;p )

Similarly to Section 5.2.2, we here design the upward communica-
tion scheme from the CA to each worker, enabling the CA to push M®
to Wip,, - An example for CA — W;p ~is shown in Figs. 5-7.

Name announcement. CA announces M® availability, sending in broad-
cast a packet containing the name of the global model (global/v=t).
This name announcement follows a plain-text mechanism that does not
require the introduction of hashing to mask the origin identity of the
broadcast, as shown in Fig. 5.

Interest request. Each local worker issues an interest request packet for
M®, which we express under the notation I(global /v=t), as shown in
Fig. 6. Here, defining any encryption criteria or identity verification
mechanisms for the workers to follow while emitting their interest re-
quests is irrelevant. Indeed, all the workers belonging to the federation
are interested in requesting the updated global model; thus, all enrolled
workers are authorised to access it.

Update dispatching. The interest requests issued by the different work-
ers end up at the CA, which replies by dispatching the updated model.
The packets containing the dispatched M® must now be encrypted
using an asymmetric encryption scheme. Indeed, the workers need to
establish the correct origin of M” to avoid CA impersonation attacks
(R2). Moreover, only workers belonging to the federation, and thus
owning the public key of CA, should be allowed to receive M®.
Indeed, the removal of this asymmetric encryption would allow any
node outside the federation to request and obtain M®. Finally, the
use of asymmetric encryption enables the possibility for the routers
of the NDN network to cache M, as it is possible to cache its
encrypted version. Enabling caching of the global model allows its fast
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Fig. 7. M© dispatching. (5) CA sends the encrypted global update E, kg, M©)
towards W;. (6) The encrypted global model is stored in routers caches for further
workers requests. (7) W, deciphers the global update received from CA.

distribution amongst all the workers. Therefore, the proposed scheme
is expected to reduce the latency when distributing the updated global
model amongst the workers (see Section 7). Fig. 7 shows an example
of update dispatching.

The proposed CA — W;p_ forwarding mechanism satisfies R2 as
it guarantees the origin of the updates concerning the global model,
i.e., only CA can send M® correctly. Meanwhile, we ensure that only
authorised workers can access the global model information, avoiding
information leakage outside the federation. Moreover, the anonymity of
the workers belonging to the federation is untouched, satisfying R1, as
each W;p does not share any personal information, but rather issues
only interest requests to the CA. Finally, the proposed packet forward-
ing scheme does not introduce any requirements on the shape of the
local and global updates during their dispatch. Therefore, our approach
is compatible with any data privacy mechanisms manipulating updated
content, such as DP, thus satisfying R3.

Synopsis. Our novel packet forwarding mechanism solves
the demand for a push-based communication for FL in an
NDN environment while satisfying the anonymity and secu-
rity requirements R1 and R2. To this end, we introduce an
anonymised name broadcasting procedure relying on a shared
secret key and entity verification token.

5.3. Caching

Caching represents one of the most innovative features of NDN,
introduced to reduce access latency for popular content. Nevertheless,
the presence of caches has also been proven to be a possible point of
attack for privacy disclosure [90,91]. Therefore, while designing the
caching requirements of any NDN-based framework, it is relevant to
predict and prevent possible leakage of information that might arise.
Thus, while defining our caching protocol, we consider the following
aspects:

A1 - Local updates in the FL framework must be kept anonymous and
private.

A2 - The distribution of the global updates requires sharing the same
information, i.e., M, among all workers.

A3 - Global updates must be accessible only to federation partici-
pants.

A1-A3 highlight different requirements of the underlying FL frame-
work and give relevant hints concerning the caching protocol required.
More in detail, A1 represents faithfully the anonymity concerns that
affect any FL setup and highlights the necessity for avoiding caching
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of local models m(l’;) Indeed, local updates should be shared solely
between W;, ~and tfle CA. Moreover, NDN caches introduce a possible
lack of information and might be subject to cache tampering attacks.
In such a scenario, malicious workers can extract relevant information
concerning the cached m% local model by attacking the intermediate
routers. Thus, to avoid this iSsue and satisfy R1 and R2, we here propose
to not cache any of the local models sent from each worker to the CA.
Here, it is also relevant to notice that NDN caching paradigm was first
introduced to boost the communication performance of the network,
aiming to cache popular content reducing its latency. In any standard
federation framework, local models m). must not represent popular
content, as they are sent only once from each worker in each federation
round. Therefore, introducing caching principles over the local updates
does not improve latency and only hinders the W;, ’s anonymity.

While caching during the local model distribution does not rep-
resent a desirable approach, the same does not hold when dealing
with the distribution of the global updates. Indeed, A2 stresses the
possible achievable benefits of communication efficiency. At the end of
each federation round, the global update from CA to Wj, represents
the most popular content in the federation. Caching such updates
inside intermediate routers may drastically reduce the latency a worker
requires to access the content. As an example, consider two workers
placed in the same local network (W; -, and W; —; in Fig. 7). One
of these two workers receives a response for its interest packet directly
from its border router (r, in Fig. 7), rather than communicating with
the, perhaps very distant, CA.

Given these latency improvements, we design our caching protocol
to allow the caching of global updates. A3 shows possible drawbacks
that might arise from a naive caching of CA’s updates. Indeed, infor-
mation concerning the result of the aggregation process in FL should
be accessible only to workers belonging to the federation. Recall from
Section 5.2 that our mechanism employs an asymmetric encryption
scheme while forwarding global updates from the CA to each worker.
The global updates are encrypted using the CA private key before
being distributed and cached. As CA’s asymmetric key is distributed to
workers during the enrollment phase (see Section 5.4), only authorised
workers belonging to the federation can decipher cached updates, thus
satisfying R2. Mathematically, we require the CA and the interme-
diate routers to send and cache &, (k’é’;‘b,M(’)), where &, represents
any asymmetric encryption function and k”"” the corresponding CA’s
private key. These updates are deciphered by each worker using M© =

D (k‘é”j,ga(k‘g/’:’, M®)), where D, represents the decryption process of
the asymmetric encryption function £, and k the corresponding CA’s
public key.

This process is shown in Fig. 7. The proposed caching protocol
satisfies A1-A3, enabling latency benefits while avoiding information
leakage or anonymity infringement.

Synopsis. Enabling caching in FL frameworks is beneficial for
communication efficiency, especially in large federation setups.
Here, vanilla NDN facilitates caching of global updates while
requiring negligible effort.

5.4. Enrollment scheme

In this section, we design a lightweight mechanism for the enroll-
ment and authentication of a new worker who aspires to participate
in the federation. To satisfy R1, for each worker with real identity, say
1D, that requests to join the federation, the TTP assigns an anonymous
identity, say ID,,. Instead, to meet R2, we use Physically Unclonable
Functions (PUFs) in the worker enrollment phase. PUFs are mainly used
as a hardware-specific security element for the device’s cryptography.
They are created during the manufacturing phase of each device,
making them impossible to clone or replicate. In this context, PUFs are
considered the physical identity of the electronic devices, making them
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widely used in cryptographic tasks. In particular, PUFs performs some
functional functions, i.e., for each query for a given input, it produces
an output. Given the PUFs function F,,, and the input as a challenge
(chal), the output as response (O) can be calculated as: O = Fpuy(chal)
Generally, for the same challenge, two PUFs must always output dif-
ferent responses while always responding equivalently to the same
challenge. However, this is only sometimes the case, as the response
generation algorithm is sensitive to noisy environments. Encountering
such an issue, the response generation and restore algorithms are
modified, encompassing a fuzzy extractor and an Error Correcting Code
(ECC) [92]. The response generation algorithm, depicted in Algorithm
1, is used in the worker both in the setup and enrollment phase. Here,
the algorithm outputs the response value to be recovered, i.e., r, and a
public helper string, i.e., P, which is used to retrieve the response. The
ECC corrects up to « errors in subsequent PUFs outputs to deal with
noisy environments.

Algorithm 1 Response Generation Algorithm

Input: Modulus n, Challenge chal
Output: (r, P)
0= Fpuf(chal);
Sample
—7Z,;

P=0,® ECC(r)
return (r, P)

Instead, the response restore algorithm, depicted in Algorithm 2,
allows an output generated by PUFs if it differs from the original output
by at most « bits. The procedure restores the response r using the public
helper string P and the error decoding algorithm D.

Algorithm 2 Response Restore Algorithm

Input: Challenge chal, Public Helper String P
Output: r

O’ =F,,(chal);

r=DP®O0)

return r

Using PUFs, we can prevent the malicious workers that aim at
impersonating another worker after having eavesdropped its I D,,. Fur-
thermore, the use of PUFs supports the CA for preventing the malicious
workers that aim at joining multiple times with different identities.
Lastly, our scheme of enrollment and authentication satisfies R2. In
particular, avoiding using the worker’s real identity and anonymous
identity in the communication prevents the honest but curious CA from
correlating the models to a specific worker.

5.4.1. Setup phase

In the setup phase, our mechanism relies on a trusted third party,
say TTP, that verifies a worker W, that wishes to join the federation.
In particular, the TTP is assumed to be a trusted entity that knows the
PUFs, similarly to [93-95]. Being a trusted entity ensures the reliability
of the verification for each new node while maintaining its identity
anonymous. A synopsis of the setup phase is presented in Fig. 8 and
summarised in the following steps:

1. W; chooses its identity related information, i.e., I D;, and shares
it with the TTP.

TTP initialises a challenge-response phase. Here, for each chal-
lenge, i.e., chal, € ChalSet, received by the TTP, W, gener-
ates a response, i.e., res;, and propagates it to the TTP which
stores each challenge and the respective response in a table,
i.e., tab(chal,res).

2.
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b .
Time Time Time

Fig. 8. Setup phase.

3. Once TTP verifies the W}, it generates an anonymous identity,
i.e., ID,,, that is used for the future communication. Thereafter,
TTP disseminates ID,, to W; and ID,,,tab(chal,res) to the CA.

. Lastly, the TTP generates the asymmetric keys k’gf;” and k’é“/’; for
the CA used for the encryption and decryption process. After
that, the TTP disseminates k’g‘j and k’g[’f to the worker W; and
CA, respectively.

For the challenge-response phase, we consider W, uses Algorithm 1 to
generate the response on the challenge based on its PUFs. After that, the
TTP adopts Algorithm 2 to verify the correctness of W,’s response. Once
the TTP validates the responses, it maps the challenge and response
pairs in a table and securely stores it for checking misbehaviour in
future enrollments.

5.4.2. Enrollment phase

In this phase, the worker W, previously verified by the TTP, wishes
to be anonymously enrolled to the federation by the CA. In our mech-
anism, the enrollment phase depicted in Fig. 9, includes the steps
described subsequently:

1. W, submits a registration request to the CA using its anonymised
identity ID,,,.

. CA picks a random challenge chal; € ChalSet and propagates it
to W;.

. W, generates a response res; for the challenge and propagates it
to the CA.

. CA verifies whether the res; hits one of the entries of the table
provided by TTP. If this is the case, W; is enrolled. Otherwise,
its request to join the federation is rejected.

. CA generates a symmetric key k;, to be used for the commu-
nication with W; and the secret parameter 4;, that is used to
calculate the name hashes as in Eq. (2).

Similarly to the setup phase, here W; uses Algorithm 1 to generate the
response. Once the CA and W, share the symmetric key and the secret
parameter, the enrollment phase is concluded.

Synopsis. Our enrollment mechanism requires the use of TTP
and PUFs to correlate a worker to its anonymous identity
uniquely. These two pillars enable an anonymous join in the
federation while preventing malicious behaviours.

6. Anonymity discussion

In this section, we provide an extensive discussion on the robustness
of our mechanism against threats identified in Section 4.2. Here, we
elaborate on the malicious workers’ threat, including worker imperson-
ation and, in and out of federation eavesdropping in Section 6.1. Then,
we consider the threat from CA posing rather as an honest but curious
or malicious entity in Section 6.2.
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Fig. 9. Enrollment phase.

6.1. Malicious workers

In federation eavesdropping. Hindering the possibility for workers to
eavesdrop on local updates, our framework relies on multiple compo-
nents. We first define name announcements — corresponding to local
updates — to be anonymous and verifiable only by the CA. Such names,
however, could be requested by any node upon the reception of the
name announcement packet. Therefore, to avoid malicious clients re-
questing and obtaining local updates of other workers, we require
the local update requests to contain an identifier field. We define our
identity verifier field as A(k;p, @ 4;p_)- Since it is built over &, and
41p,,> such a field can be adequately constructed only by the worker
and the CA. Therefore, malicious workers can only eavesdrop on other
clients’ updates only if they know their k;p ~and 4;p . Finally, the
local updates are sent by each worker using a symmetric encryption
scheme with k;p ~as the key. Thus, malicious clients cannot extract
information from the exchanged packets nor tamper the routers’ caches,
as the local models are not cached.

Out of federation eavesdropping. The proposed NDN based protocol re-
lies on caching global updates to optimise the communication between
CA and each worker. However, this caching introduces issues concern-
ing the security of the global models being accessible from outside the
federation via cache probing mechanisms [88]. To fix such an issue, we
introduce the need for an asymmetric encryption scheme between the
CA and the federation clients whenever the global updates are shared.
Indeed, our mechanism requires sharing and caching the encrypted
version of the local updates. Therefore, we protect the framework from
out-of-federation eavesdropping nodes.

Worker impersonation. FL frameworks that avoid considering workers’
anonymity are susceptible to impersonation attacks. In this scenario,
malicious workers belonging to the federation can eavesdrop on other
workers’ identities, e.g., IP addresses or similar, and pretend to be
them spoofing their identity. In such a way, an attacker can send
corrupted updates, linking them with an honest user. Here, the key
to blocking such malicious behaviour relies on making the federation
clients incapable of eavesdropping on other workers’ identities, and
anonymising them. Additionally, it is fundamental to notice that even
the anonymous identity must be kept impossible to eavesdrop. Indeed,
in NDN, eavesdropping on the anonymous identity via content name
taping would allow malicious clients to announce malicious updates
on behalf of the eavesdropped identity. Therefore, to tackle such an
issue, we introduced a novel naming schema to hide the anonymous
identity of the federation’s workers. Indeed, at each federation round,
the announced names rely on hashing a secret shared only between the
CA and the worker announcing the name corresponding to the update.
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Thus, the names can be verified only by the CA and W} involved in
the communication. A malicious client would be able only to eavesdrop
on the hashed identity of the worker h(ID,, @ s D, Therefore, to
extract ID,, from the hashing result, an attacker must invert A and
®. The attack success probability can be written as:

Pr(success) = Pr(h"'(ID,, ® STID,,,] )) - Pr(ID,,|ID,, ® S'IDM) 3)

where Pr(h~'(ID,, ® s DM)) represents the probability of being suc-
cessful in inverting the hashing function, while Pr(ID,,|ID,, ® s, DM)
represents the probability of being capable of extracting ID,, from
the @ result. The attack success probability can be tailored to be
smaller than a given security factor e by selecting a proper h. Deriving
from Eq. (3), we require A such that:

€
Pr(IDgy| Dy @ s, )

Pr(h™ (1D, @ s, ) < O

6.2. Honest but curious or malicious CA

In our framework, we achieve unlinkability between forwarded
model updates in FL and their corresponding source identity. To this
end, the proposed system ensures that the CA does not have knowl-
edge concerning the real identity of the federation clients but only
knows their anonymous IDs provided by the TTP. Besides, given the
location-independent nature of our NDN-based FL framework, the CA
cannot infer where the worker is located in the network. Thus, even
considering a CA agent capable of reconstructing the local data from
the received updates, we ensure that the CA cannot link such data
to the worker’s real identity. Moreover, it is essential to notice that
the proposed anonymity mechanism does not impose any requirement
on the shape of the local updates and thus can be coupled with any
DP technique. Therefore, the combination of our framework with DP
allows for avoiding data disclosure, rendering it cumbersome to both
reconstruct data from updates (data privacy) and link such data to a
specific identity (user anonymity). Since the CA does not know the
real identity of the federation clients, the CA cannot extract targeted
local data information, i.e., honest but curious CA, nor to corrupt target
updates, i.e., malicious CA.

7. Performance evaluation

In this section, we evaluate the proposed NDN-based protocol,
comparing it against a clean-slate IP-based protocol and many state-
of-the-art anonymity solutions. We emphasise that since our novel
protocol does not impact the model optimisation process, our exper-
iments focus solely on the communication aspects of the federation.
Also, model performance metrics, e.g., accuracy, F1 score, are not
impacted by our solution and, hence, are not evaluated. Therefore,
we evaluate the proposed communication protocol in terms of the
communication latency incurred to perform a certain number of FL
aggregations.

7.1. Simulation setup

We simulate multiple networks where each worker node W, has a
certain distance from the CA in terms of number of hops, n:wps. At
the beginning of each FL run, we draw the number of hops for each
worker to be a uniform random number between a minimum of one
and a maximum of ten. To each hop, we assign a random bit rate
Bhop [%] drawn from a range of possible rates. We also simulate
a hop latency Th°P in addition to the load transmission delay via an
exponential random variable. The resulting delay D"°P associated to a
given hop can be written as
Dhop - (5)

P
—hos TP IS,

Bho
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Fig. 10. Performance of the proposed algorithm regarding the total training time to
perform 30 aggregation steps. We show the training time versus the model size for
N =200.
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Fig. 11. Performance of the proposed algorithm regarding the total training time to
perform 30 aggregation steps. We fix the model size .§ = 200 [MBytes] and show the
training time versus the number of participating devices, N.

where Pg is the packet size in bits. We consider the same packet size
of 65 KBytes for IP and NDN packets. We set the header to be 40 Bytes
for IP, while we set it to 72 Bytes for NDN to include the signature
and hashing overheads. Indeed, the basic NDN header is 8 Bytes, to
which we add 64 Bytes to account for the content name and the hashing
function.

Simulating network delays via exponential random variables is a
well-established network modelling technique [96]. To model the in-
crease in latency when the number of participating nodes N increases,
we modify the expectation of the exponential random variables as
ThoP ~ exp(c(N)) [s], where ¢(N) is a function of the number of partic-
ipating nodes. A reasonable choice is to pick ¢(N) to be monotonically
increasing with N. Indeed, if the N increases, the network congestion
is expected to increase. For example, in a 5G network, ¢(N) could
be influenced by the virtual network resources associated with the FL
service. For simplicity, we perform our simulations with ¢(N) = kN,
with k constant. This models a hop latency whose expectation grows
linearly with the number of participating nodes. Similarly, we model
the per-hop bit rates as a decreasing function of N. Given a reference
bit rate range [B,, B,], we let

BhoP ~ %U[Bl, B,] [Mbit/s]. (6)
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To simulate caching, we associate a probability of cache hit to each
worker at each aggregation round, for the CA - W, upward commu-
nication from the aggregator to the workers. The caching probability
is modelled as an increasing function of the number of participating
workers. Such a choice is motivated by the fact that when more network
nodes are involved in the federation, a cache hit in some intermediate
hop is more likely to occur. Given the number of participating workers
N, we write the caching probability as P[caching | # nodes = N] =
1-g(N), where g(N) € [0, 1] is a monotonically non-increasing function
of N. Examples of g(N) we experimented with are g(N) = 1/ \/F or
g(N) = 1/N. A hit in the cache reduces the number of hops between
the CA and a worker. We simulate this reduction in the number of hops
for a worker W, by randomly drawing a positive integer in {1, ..., n?"ps 1
where ni“’ps is the original number of hops between the CA and W;.

7.2. Simulation results

This section compares our solution with a basic IP configuration and
several state-of-the-art anonymous solutions. For each communication
protocol baseline, we model all the additional communication compo-
nents producing overhead that characterise such a solution, including
notification messages and encryption processes. More in detail, for
Domingo et al. [16], we include the time required to transmit the
model to another worker, as required by the protocol. Each model
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packet is forwarded to a different worker before being delivered to the
CA, thus introducing high overhead. Meanwhile, methods relying on
an onion-style encryption scheme to guarantee anonymity [15,17,18]
require additional encryption mechanisms at each node. Therefore,
we model their additional overhead, adding an encryption latency for
each node involved in the communication path, and model it as a
random exponential delay. Finally, we also study two versions of the
proposed NDN-based protocol, implementing our solution with and
without caching. Here, we include all the intermediate communication
rounds required to enable the proposed push-based mechanism, while
caching is modelled as hop savings in the communication. The simula-
tion results are obtained using g(N) =1 /\/F and k = 0.05. We denote
the model size by S.

The results shown in Figs. 10, 11 and 13 have been obtained simu-
lating transmission bit rates randomly varying between a minimum of
1 Mbit/s and a maximum of 100 Mbit/s. Throughout our experimental
evaluation, we show the average performance obtained over multiple
experiments and the corresponding 0.95 confidence intervals. We first
study the impact of the ML model size on the communication perfor-
mance, letting the model size .S vary between 1 and 250 MBs while the
number of workers is fixed at N = 200. The results in Fig. 10 highlight
the increased benefits obtained from NDN caching when the model
grows. The proposed protocol reaches performance improvements of
up to 30% w.r.t. baselines.

Fig. 11 presents the results of analysing the communication per-
formance against various workers N. Here, we keep the model size
S = 200 MBs. The results highlight the superiority of our solution for
all setups. Moreover, a linear increase of improvements exists as the
number of participating workers N grows, reaching a ~20% training
time reduction for N 200. The proportionality between N and
training time improvements is due to the increase in the probability
of cache hit. Thanks to the increased number of participating nodes,
a higher number of cache hits occurs, reducing the communication
latency between CA and workers. We also analyse the impact of bit
rates between hops on communication effectiveness. Here, we vary
the average bit rate of hops between 1 and 40 Mbit/s while keeping
S =200 MBs and N = 200. Fig. 12 shows the results of our analysis.
The proposed NDN-based protocol outperforms the state-of-the-art ap-
proaches while achieving comparable performance with vanilla-IP. The
obtained performance improvements are particularly evident for low
bit rate values, reaching up to ~25% lower training time. Finally, we
analyse the impact of the communication path length on the achieved
training time, varying the maximum number of hops from each worker
to the CA between 1 and 20. Here, we set S = 200 MBs and N
200. Fig. 13 provides the results. As expected, the proposed solution
outperforms state-of-the-art overall setups thanks to its caching capabil-
ities. Similarly to Fig. 11, the performance improvement increases with
more hops in the communication path, reaching improvements of up
to ~20%. The obtained results highlight the superiority of NDN-based
solution against the state-of-the-art frameworks over all the setups.
Interestingly, these performance improvements are obtained despite
NDN requiring a larger packet header w.r.t. IP-based solutions. Indeed,
NDN header includes the required bytes to represent the content name
and their hashed values. Therefore, the packet header size does not
significantly impact the training time performance in FL setups.

8. Conclusions and future works

In this paper, we tackle the lack of anonymity issue of the FL
frameworks, which threatens overall federation privacy. We propose a
novel NDN-based federation scheme to overcome this issue, enabling
anonymous-by-design communication in FL. To this aim, we extend
the vanilla-NDN protocol to be FL compliant and fully anonymous by
adding: (i) a new-fashioned naming convention; (ii) a novel packet
forwarding protocol that encompasses both pull and push-based models
that FL seeks for; and (iii) a lightweight enrollment scheme. The
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novel framework is designed to satisfy several anonymity and security
requirements common in FL setups, such as identity anonymity and
robustness to misbehaving parties. To evaluate how and to what extent
our mechanism satisfies such requirements, we thoroughly discuss its
robustness against well-known FL security and privacy issues. The
performance of our novel framework is analysed from a communication
efficiency perspective, comparing our mechanism to multiple baselines.
The results show improved performance in terms of overall training
time with respect to various parameters of the federation mechanism
against all selected baselines. The findings of this paper highlight the
relevance of ensuring anonymity-by-design in FL scenarios where mul-
tiple competitor parties are involved in the federation. The proposed
framework shows the benefits of leveraging a communication protocol
designed with anonymity and privacy in mind, such as NDN.

Future works include the implementation and deployment of the
proposed mechanism over an NDN testbed, aiming at showing its
advantages compared to IP-based anonymity frameworks over a broad
range of ML and DL scenarios such as computer vision [97-99], graph
processing [100-102], and neuro-symbolic integration [103,104]. The
real-world deployment of the proposed scheme allows the FL. and NDN
research communities to rely on anonymity-by-design communication
and extend the proposed framework, ensuring safely distributed opti-
misation of ML models. Finally, we intend to integrate our anonymity
mechanism with available data privacy solutions to present the first
completely private FL framework.
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