
1

A Large-Scale Dataset of 4G, NB-IoT, and 5G
Non-Standalone Network Measurements

Konstantinos Kousias∗, Mohammad Rajiullah†, Giuseppe Caso†, Usman Ali‡, Ozgu
Alay∗†, Anna Brunstrom†, Luca De Nardis‡, Marco Neri§, and Maria-Gabriella Di

Benedetto‡

∗University of Oslo, Norway
†Karlstad University, Sweden

‡Sapienza University of Rome, Italy
§Rohde & Schwarz, Italy

Abstract—Mobile networks are highly complex systems.
Therefore, it is crucial to examine them from an empirical
perspective to better understand how network features
affect performance, so to suggest additional improvements.
To this aim, this paper presents a large-scale dataset
of measurements collected over fourth generation (4G)
and fifth generation (5G) operational networks, providing
Long Term Evolution (LTE), Narrowband Internet of
Things (NB-IoT), and 5G New Radio (NR) connectivity.
We collected our dataset during seven weeks in Rome,
Italy, by performing several tests on the infrastructures
of two major mobile network operators (MNOs). The
open-sourced dataset has enabled multi-faceted analyses of
network deployment, coverage, and end-user performance,
and can be further used for designing and testing artificial
intelligence (AI) and machine learning (ML) solutions for
network optimization.

I. INTRODUCTION

The ultimate goal of current and future cellular
systems is to enable an increasing number of ser-
vices over the mobile network. In the fifth genera-
tion (5G) era, enhanced mobile broadband (eMBB),
ultra-reliable low-latency communication (URLLC),
and massive machine-type communication (mMTC)
require stringent quality of service (QoS) in terms
of throughput, latency, and connection reliability.

Considering the systems standardized by the 3rd
Generation Partnership Project (3GPP), initial steps
of the ongoing evolution of the cellular ecosystem
were Release 15 (Rel-15) and Release 13 (Rel-
13), where 5G and Narrowband Internet of Things
(NB-IoT) systems were defined, with their enhance-
ments addressed in the following releases.

The interworking between 5G, NB-IoT, and pre-
existing fourth generation (4G) Long Term Evo-
lution (LTE) and LTE-Advanced (LTE-A) systems
enables flexible and efficient support for eMBB,
URLLC, and mMTC. Therefore, 5G and NB-IoT
deployment on top of 4G networks is rapidly pro-
gressing worldwide. This allows for conducting em-
pirical investigations in parallel to theoretical analy-
ses, considering that data-driven research is crucial
toward identifying how performance is affected by
deployment, configuration, and technology features,
and how it can be further improved.

The need for data-driven analyses is also fueled
by the currently popular approach of embedding
artificial intelligence (AI) and machine learning
(ML) in the management and optimization of sev-
eral network aspects. This approach requires the use
of trustable datasets, either generated synthetically
or collected over real systems, toward properly
designing AI/ML solutions and showcasing their
benefit.

Within the above context, this paper presents an
open-source dataset collected during a large-scale
measurement campaign carried out in Rome, Italy,
on the networks of two mobile network operators
(MNOs) providing 4G, 5G, and NB-IoT connectiv-
ity in low-to-mid frequency bands (0.8–4 GHz) [1].

As detailed later, parts of the dataset were al-
ready used to support specific analyses [2]–[4];
other relevant work can be found in [5] for 4G,
[6]–[8] for 5G, and [9]–[11] for NB-IoT, where
data collection and analyses were carried out on
each technology separately, in some cases finalized
to propose AI/ML solutions for specific aspects
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(e.g., 5G throughput prediction [6]–[8] and NB-IoT
access protocol optimization [10]).

With respect to the above work and to the best of
our knowledge, our work discloses the first city-
wide dataset in a European country that is, as
described in the following, multi-technology and
multi-operator (4G, 5G, NB-IoT networks of two
MNOs), multi-device (network scanner for passive
monitoring and user device for active performance
tests), multi-scenario (indoor static and outdoor
mobile tests), and multi-service (eMBB/URLLC-
like performance tests). The dataset enables in-depth
analyses of coverage and performance across tech-
nologies, geographical areas, scenarios, frequency
bands, and MNO infrastructures, ultimately allow-
ing the design and test of AI/ML solutions for
multiple network aspects.

The article is organized as follows: first, we
describe relevant 5G and NB-IoT deployment as-
pects, followed by an overview of the data collec-
tion process. We then provide a description of the
dataset, present potential AI/ML use cases for it,
and conclude our work.

II. BACKGROUND

This section describes 5G and NB-IoT aspects
relevant to the dataset presented in this paper.

As anticipated above, MNOs are deploying 5G
and NB-IoT using roll-out options that allow for a
smooth integration with their 4G networks.

5G can be deployed in non-standalone (NSA)
or standalone (SA) mode [12]. For the initial de-
ployment, the majority of MNOs are adopting the
NSA mode (use of the 4G core network (CN)),
with SA (use of the 5G CN) expected to prevail
in the long-term. In both cases, the 5G radio access
network (RAN) is formed by Next Generation Node
Bs (gNBs) and corresponding New Radio (NR) cells
identified by their Physical Cell IDs (PCIs), i.e.,
identifiers reusable across the RAN (similar to 4G
E-UTRAN Node Bs (eNBs) and PCIs).

Synchronization Signal Block (SSB) beamform-
ing and dual connectivity (DC) are two main 5G
features for performance improvement. SSB beam-
forming uses multiple beams (up to 8 in the 5G
mid-band, as per Rel-15) to direct signals from a
PCI toward different users, thus increasing spatial
diversity. DC allows a user equipment (UE) to
simultaneously connect to a 4G and a 5G PCI, thus
increasing throughput and reliability.

NB-IoT can be deployed either in guard-band,
in-band, or standalone mode [13]. In guard-band,
NB-IoT uses a Physical Resource Block (PRB) of
180 kHz in the guard band among different sets of
LTE PRBs. In in-band, the NB-IoT PRB is within
the LTE band, while in standalone, NB-IoT uses a
200 kHz channel in the Global System for Mobile
Communications (GSM) spectrum. After selecting a
mode, NB-IoT services are provided by upgrading
4G eNBs and PCIs.

III. DATA COLLECTION

This section outlines the setup, measurements and
mobility scenarios adopted to collect our dataset.

A. Setup

The measurement campaign took place in Rome,
Italy, during seven weeks between Dec. 2020
and Jan. 2021. For active measurements, we used
the Rohde & Schwarz (R&S) Android application
Qualipoc running on a Samsung S20 5G-capable
UE, while for passive measurements, we used the
R&S TSMA6 toolkit, a system composed by an
Intel PC (Windows) and a spectrum scanner. For
network analysis, troubleshooting, visualization, and
data exporting, we used the R&S ROMES soft-
ware. The complete setup is shown in Figure 1,
and consisted of an omnidirectional radio frequency
(RF) antenna (i), a synchronized Global Positioning
System (GPS) antenna (ii), the TSMA6 (iii), and the
UE (iv). A tablet (not shown in the figure) was used
to connect to the PC embedded in the TSMA6.

Fig. 1: The measurement setup consisting of i)
an RF antenna, ii) a GPS antenna, iii) the R&S
TSMA6, and iv) a 5G-capable UE.
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B. Measurements
The above setup allowed us to perform both

passive network monitoring and active performance
tests, as detailed below.

Passive monitoring: the TSMA6 was used to
decode downlink control signals from all the cells
operating in four LTE Bands (1, 3, 7, and 20), one
NB-IoT Band (guard band of LTE Band 20), and
one 5G NR Band (n78).

4G and NB-IoT measurements were reported at
the PCI level, while 5G measurements were reported
at the SSB level, i.e., up to eight samples for 5G
PCIs adopting SSB beamforming. The high sensi-
tivity of the scanner allowed to decode rather weak
signals from distant cells, which a less sensitive
UE may not be able to decode, thus enabling very
granular analyses on deployment and coverage.

Active performance tests: We used the UE for
executing throughput and delay/reliability perfor-
mance tests on the 4G and 5G NSA networks of two
Italian MNOs, denoted as Op1 and Op2. The UE was
configured in two different modes. In 5G-disabled
mode, the UE only exposed 4G capabilities so that
it could only connect to 4G PCIs; In 5G-enabled
mode, the UE exposed 5G NSA capabilities so that
it could connect to 5G and 4G PCIs.

We organized the campaign into sub-campaigns
carried out during different days and times of day.
For each sub-campaign, we repeated the perfor-
mance tests several times; in the following, we use
the term session to refer to each repetition. Next,
we give an overview of the executed tests.

1) Throughput Test: We used the Speedtest by
Ookla jointly with R&S Qualipoc to measure the
end-to-end downlink (DL) and uplink (UL) through-
put in 5G-enabled and 5G-disabled modes. The
target server was located in Rome, and each session
lasted about 60 seconds. We opted for the Speedtest
multi-connection mode, which uses Transmission
Control Protocol (TCP) and a proprietary algorithm
for determining the number of connections [2].

2) Latency/Reliability Test: To assess latency and
reliability, we used the Qualipoc interactivity test
with the real-time online gaming traffic pattern.
Each test included multiple 10-second long sessions,
during which various game interactivity phases were
replicated, with data rates from 0.1 to 1 Mbps [2].
The test allowed for setting a delay budget on the
exchanged User Datagram Protocol (UDP) packets,
so that packets not received within the budget were

considered lost by the client. We used a 100 ms
budget, as specified by 3GPP for this application
class in Rel-15 Technical Specification 23.501.

C. Scenarios
In order to assess the influence of mobility and

location, we defined three sub-campaign scenarios:
indoor static (IS), for data collected at the seventh
floor of a residential building, and different offices
at the second floor of the Department of Information
Engineering, Electronics and Telecommunications
(DIET) of Sapienza University of Rome; outdoor
walking (OW), for data collected outdoor while
walking (3.47 km/h average speed); and outdoor
driving (OD), for data collected outdoor while
driving a car (18.54 km/h average speed). In both
mobility scenarios, the average speed was affected
by factors such as traffic lights and road congestion.

IV. DATASET

This section provides a description of our dataset,
a summary of its statistical information, and exam-
ples of the collected data. Due to space limitations,
we group the features into classes, and provide a
detailed, formal feature description in [1].

A. Passive dataset
The passive dataset includes three character-

separated values (CSV) files (one per technology).
Table I shows the available feature classes, which

include spatial and temporal fields, frequency and
cell identifiers, and signal strength and quality in-
dicators measured on 4G Reference Signal (RS),
NB-IoT RS, and different 5G control signals and
channels. We also included campaign and scenario
features that can be used to isolate particular sub-
campaigns. The same labeling scheme is used in
the active dataset so to enable joint passive/active
analyses. For 4G and NB-IoT, we engineered addi-
tional features, i.e., the line of sight (LoS) distance
between the UE and a detected cell and the number
of cells associated to each eNB. An estimated posi-
tion of 5G PCIs can also be inferred by using online
databases, e.g., www.lteitaly.it (Accessed on: March
2023), while also considering that MNOs mostly
deploy 5G PCIs on top of 4G RAN sites.

Figure 2 shows an example of the dataset, i.e.,
the highest Secondary Synchronization Signal (SS)
RSRP measured across the 5G PCIs of Op1.
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Feature Class Description
Temporal information Date [dd.mm.yyyy] and time [HH:MM:SS.sss].
Spatial and mobility information UE and cell* GPS coordinates [◦]; UE speed [km/h].
Mobile network information Includes Carrier Frequency [MHz], E-UTRA Absolute Radio Frequency Channel Number

(EARFCN), Band identifier, and mobile network code (MNC).
Cell site information Includes PCI, cell ID (CID)*, eNB* and 5G SSB beam*̃ identifiers.
Radio coverage information Includes Reference Signal Received Power (RSRP)*̂ [dBm], Reference Signal Received Quality

(RSRQ)*̂ [dB], Signal to Interference and Noise Ratio (SINR)*̂ [dB], and received Power*̂ [dBm].
Campaign information Scenario (IS/OW/OD) and measurement sub-campaign identifier.

* Only available for 4G and NB-IoT.
*̃ Only available for 5G.
*̂ The NB-IoT dataset provides such features for two antenna ports, referred to as Tx1 and Tx2, while the 5G dataset covers
different types of signals, i.e., SS, Demodulation Reference Signal (DMRS), Physical Broadcast Channel (PBCH), Primary
Synchronization Signal (PSS), and SS-PBCH.

TABLE I: Passive dataset feature classes along with a short description.
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Fig. 2: Highest SS-RSRP [dBm] measured across
the 5G PCIs of Op1 detected at the locations tra-
versed during OW and OD sub-campaigns.

B. Active dataset

Our active dataset includes two CSV files (one
per performance test). Table II lists the feature
classes, which can be categorized in two groups:
(i) indicators collected by the UE related to radio
and physical layers and (ii) QoS and quality of
experience (QoE) indicators obtained from running
the tests. We also added features related to UE
mode, scenario, MNO, and sub-campaign name.

During the campaign, the dataset was updated
(i.e., a new row was formed) every time a new value
for a feature was collected, with an update time at
millisecond-level granularity. Therefore, each row
in the files only contains values for the updated
features, while ? represents unaltered features.

As an example, Figure 3 shows the Speedtest
DL throughput achieved during three 5G-enabled
sessions executed in an IS sub-campaign for Op1.
The figure shows the use of DC under Op1 NSA
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Fig. 3: DL throughput at application layer (using
DC), 5G PDSCH, and 4G PDSCH, measured during
3 Speedtest sessions in an IS sub-campaign for Op1.

infrastructure, with a high throughput achieved at
the application layer via simultaneous use of 5G
and 4G PDSCH.

C. Statistics for passive and active dataset
The number of samples in the 4G, 5G, and

NB-IoT passive datasets are approximately 528K
(243K for Op1 and 285K for Op2), 8.14M (1.12M
for Op1 and 7.02M for Op2), and 281K (133K
for Op1 and 148K for Op2), respectively. During
our measurement campaign, only Op2 was adopting
SSB beamforming, resulting in a higher number of
5G samples collected for Op2 compared to Op1.

As regards to the active measurements, we con-
ducted 555 Ookla Speedtest sessions (197 for Op1

and 358 for Op2) and 1158 real-time online gaming
sessions (657 for Op1 and 501 for Op2).

V. AI/ML APPLICATIONS AND USE CASES

We now outline four examples of AI/ML use
cases where our dataset can be used, and put them
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Feature Class Description
Temporal information Date [dd.mm.yyyy] and time [HH:MM:SS.sss].
Spatial information UE’s GPS coordinates [◦].
Connection information Includes PCI of the serving cell(s) and indication if the UE is connected to a 5G and/or a 4G cell.
5G beam information Number of detected SSB beams of the serving 5G cell and the ID of the serving SSB beam.
Radio coverage information Includes RSRP [dBm], RSRQ [dB], and SINR [dB] of the serving cell(s).
Resource allocation information Includes Transport Block Size (TBS) [bit (4G), bytes (5G)], number of resource blocks (RBs)

assigned in DL/UL, Modulation and Coding Scheme (MCS), indication of the usage of different
modulation schemes (e.g., 256-QAM), indication of the usage of carrier aggregation (CA) for LTE
DL (e.g., number of component carriers (CCs)).

Lower-layer throughput information Includes throughput measured at Physical Downlink Shared Channel (PDSCH) and Physical Uplink
Shared Channel (PUSCH) [kb/s].

Higher-layer (application) through-
put information*

Includes instantaneous, average, and maximum DL/UL throughput during and at the end (average)
of each Speedtest session [kb/s].

Packet statistics*̂ Total number of packets sent, not received in time, during a session.
Packet delay statistics*̂ Round Trip Time (RTT) and packet delay variation (PDV) of the packets sent during a session

(median and 10th percentile values) [s].
Interactive performance*̂ Interactivity score (i-score) as a function of RTT, PDV, and packet error rate [%]. For more details,

see [2] and https://tinyurl.com/4fzemjff (Accessed on: March 2023).
Campaign information UE mode (5G-enabled/-disabled), scenario (IS/OW/OD), MNOs, and campaign identifier.

* Available for throughput test.
*̂ Available for latency/reliability test. The dataset contains values measured during and at the end of each session.

TABLE II: Active dataset feature classes along with a short description.

in the context of relevant research work.

A. User/device Positioning

User/device positioning based on cellular net-
works is receiving increasing attention in research
and standardization communities, due to the high
expectation toward cellular-enabled location-based
services [12]. Focusing on 5G, a recent review on
5G positioning presented in [14] clearly highlights
the need for data from real-world 5G networks, as
it points out that nearly all proposed techniques
are evaluated on simulated data or, at best, on data
collected in ad-hoc testbeds. At least seven different
studies are identified in [14] where ML positioning
techniques based on Neural Networks (NNs), k-
Nearest Neighbour (kNN), Deep Neural Networks
(DNNs), Support Vector Machines (SVMs), and
Gaussian Processes (GPs) are proposed, and only
tested on simulated 5G coverage data (e.g., RSRP).
Positioning is thus a key use case for our dataset,
that can enable a realistic assessment of the accuracy
of the above techniques by leveraging over 8 Million
data entries, as highlighted in the previous section.

The availability of data on three technologies
(NB-IoT, LTE, 5G NR) collected at the same time
in the same locations is an additional unique feature
of our dataset with respect to positioning; on the one
hand, it allows to reliably assess and compare the
positioning accuracy provided by different technolo-
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Fig. 4: Minimum Average Positioning Error ob-
tained for NB-IoT and 5G by using the WkNN fin-
gerprinting technique introduced in [11]. The figure
also reports, for each combination of technology and
operator (Op1, Op2, and both combined), the value
of k minimizing the average positioning error.

gies and, on the other hand, it enables the definition
of multi-technology ML models for positioning.

As an example, Figure 4 depicts the position-
ing accuracy achieved by adopting weighted kNN
(WkNN) fingerprinting on NB-IoT and 5G NR
coverage data (i.e., SINR in this instance) collected
during the same sub-campaigns. The accuracy is
evaluated in terms of the Minimum Average Posi-
tioning Error, i.e., the minimum positioning error as
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a function of k, for each combination of technology
and operator. The results for NB-IoT are a subset of
those presented in [11], where a full description of
used measurements, proposed WkNN fingerprinting
strategies, and adopted data preprocessing (e.g., data
for each PCI was spatially smoothed using the 40λ-
rule to mitigate fast fading effects) are available.
Figure 4 shows that, for Op1, NB-IoT leads to
higher accuracy than 5G due to the higher density
of PCIs detected at each location, guaranteed by the
larger NB-IoT radio coverage. For Op2, however,
the use of SSB beamforming leads to multiple
signals associated to the same PCI being detected at
each location, considerably increasing the data den-
sity; as a result, 5G outperforms NB-IoT. For both
technologies, the combination of data collected for
the two MNOs improves the positioning accuracy,
in agreement with the conclusions drawn in [11].1

B. Propagation Channel Modeling
A well-recognized AI/ML use case for commu-

nication systems is the modeling of wireless prop-
agation channel characteristics, toward overcoming
the accuracy limitation of simplistic empirical mod-
els and the complexity of deterministic models. A
relevant example is given in [15], where a channel
modeling framework based on NNs was proposed
for predicting propagation properties, e.g., received
power and root mean square delay spread, using as
input the information on transmitter/receiver posi-
tions and carrier frequency. The framework showed
higher accuracy when applied to real data rather
than to synthetic data, thus highlighting that com-
plex channel characteristics can be learned via ML,
and open-source datasets are key for further inves-
tigating this approach.

The dataset open-sourced in this paper, and the
smaller companion dataset disclosed in [4], can
provide a key contribution in this context, thanks
to the large quantity of heterogeneous data, e.g., in
terms of scenarios, frequencies, and technologies,
that can be used for model training, validation, and
refinement. To give an example referring to Table I,
features in Spatial and mobility information class
(e.g., UE and cell coordinates), Mobile network
information class (e.g., carrier frequency), and Cell
site information class (e.g., cell/beam identifiers)

1The code for the analysis presented in this Section is available at
https://codeocean.com/capsule/1679985/tree/

can be used as input for deriving a ML model for
the features in the Radio coverage information class
(e.g., RSRP). The accuracy and complexity of such
a model can be then compared against traditional
models leveraging same or different sets of features.

C. QoS Prediction
The predictive modeling of QoS parameters, e.g.,

throughput and latency, constitutes another AI/ML
use case for our dataset. Good estimates of such
indicators are essential for operations such as traf-
fic management and network optimization (e.g.,
resource allocation and user scheduling). In the
literature, [6] presented a ML-based framework that
leverages gradient boosted decision trees (GBDT)
and long short-term memory (LSTM) models for
5G throughput prediction by considering location,
mobility, and cell features, while [7] performed a
study of client-based throughput prediction for 5G
NSA vehicle-to-cloud communications.

In this context, the rich variety of features in our
dataset can further allow the application of AI/ML
for QoS prediction, toward disclosing attributes and
configurations of 5G NSA networks that should be
considered for accurate predictions. As an example,
features in the Radio coverage information class
(e.g., RSRP, RSRQ, SINR) can be used as input
variables to a ML model for predicting features
in the Higher-layer throughput information class
(e.g., application DL/UL throughput) or Interactive
performance class (e.g., RTT).

D. Handover Prediction
The analysis and modeling of vertical and hori-

zontal handovers (HOs) is another important aspect
to further investigate in 5G networks, considering
that the complex nature of HO events results in
significant implications on user performance. We
preliminary highlighted this aspect in [2], where
we leveraged part of our dataset to showcase the
impact of HOs on coverage and latency. Another
relevant work can be found in [8], where a system
that leverages mobility data from 5G cells for HO
forecasting was proposed, toward improving 6K
panoramic video on demand and real-time volumet-
ric video streaming applications.

The multi-device nature of our dataset, which
allowed for the simultaneous collection of measure-
ments from multiple 4G and 5G cells, can enable
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the design of ML algorithms for HO prediction,
to be leveraged for promptly preparing HO-related
network resources, e.g., toward HO signaling opti-
mization. For example, active features such as the
PCI and connectivity mode in the Connection infor-
mation feature class can be used as input to a time-
series model for predicting when vertical/horizontal
HOs will happen. Additional passive data, e.g., in
the Radio coverage information features class, can
also be used to enhance the prediction accuracy.

VI. CONCLUSIONS

This paper presents a large-scale dataset of 4G,
5G, and NB-IoT measurements collected over the
network infrastructures of two large MNOs during
a period of seven weeks in Rome, Italy. The dataset
offers a variety of network features collected both
by leveraging active but also passive measurements,
and has been used for the study and analysis of
aspects such as radio coverage, deployment, end-
user performance, outdoor user/device positioning,
and HO analysis. We open-source the dataset to
allow for further exploration and analysis and for
use with AI and ML use cases.
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