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Abstract

Precision medicine research increasingly relies on the integrated analysis of

multiple types of omics. In the era of big data, the large availability of different

health-related information represents a great, but at the same time untapped,

chance with a potentially fundamental role in the prevention, diagnosis and

prognosis of diseases. Computational methods are needed to combine this data

to create a comprehensive view of a given disease. Network science can model

biomedical data in terms of relationships among molecular players of different

nature and has been successfully proposed as a new paradigm for studying

human diseases. Patient stratification is an open challenge aimed at identifying

subtypes with different disease manifestations, severity, and expected survival

time. Several stratification approaches based on high-throughput gene expres-

sion measurements have been successfully applied. However, few attempts

have been proposed to exploit the integration of various genotypic and pheno-

typic data to discover novel sub-types or improve the detection of known

groupings.
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1 | INTRODUCTION

Precision medicine (considered analogous to and sometimes synonymous with personalized medicine or stratified med-
icine; Erikainen & Chan, 2019) is defined as an emerging approach for disease treatment and prevention that takes into
account individual variability in genes, environment, and lifestyle for each person (König et al., 2017). As such, it recog-
nizes the complex nature of diseases as the result of the wide variety of direct and indirect interactions between genes
and the environment (Craig, 2008). In the last decades, there has been a growing proliferation of research studies in this
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field, which suggest going beyond the traditional classification of diseases based on symptoms (phenotypes), anatomical
site, or histology. Indeed, precision medicine aims to characterize diseases at a higher resolution using layered data
extracted at different scales (from molecules to system level).

Recent innovations and developments in molecular biology and biotechnology have made it possible to acquire and
store large health-related datasets. However, this huge amount of information is not knowledge: rather, it represents a
valuable potential that requires computational resources and capabilities to be exploited. The main aim of computa-
tional efforts in this field is to propose new methods for data analysis and integration to identify biomarkers that open
the possibility of shifting from the traditional therapeutic approach of the average model patient to the modern
approach of patient-specific and data-driven therapies.

Recently, network science has been established as one of the most successful computational approaches in dealing
with the precision medicine challenge, so it can be considered an effective common “language” between physicians and
data analysts to implement network medicine in a clinical setting (Farina, 2021). Examples are: the concept of hubs
(“essential genes tend to be associated with hubs, or highly connected proteins”) and the concept of network module
(“disease genes have a high propensity to interact with each other, forming disease modules”) (Barab�asi et al., 2011).
These assumptions, as well as other network measures, have been applied with great success in many different tasks,
such as: disease gene prediction (Ghiassian et al., 2015; Petti et al., 2020, 2021; Wang & Loscalzo, 2018; Yin et al., 2017),
drug repurposing (Cheng et al., 2018, 2019; Paci et al., 2022; Zhou et al., 2020), gene expression analysis (Langfelder &
Horvath, 2008; Paci et al., 2017), protein–protein interaction prediction (Colonnese et al., 2021).

In this review, we focus on network-based computational approaches for patients' stratification, which is the key
challenge of precision medicine. We discuss its potential and related open problems, survey the analytical methods
based on network analysis for integrating health-related data and consider knowledge gaps and future directions for
this developing field. Finally, we will review successful applications of patient similarity networks.

2 | PATIENTS' STRATIFICATION: COMPUTATIONAL APPROACHES AND
OPEN CHALLENGES

Patient stratification is an important goal of biomedical research and one of the main challenges aimed at developing
personalized treatments. Despite being based on specific patient selection criteria, clinical trials often reveal unexpected
heterogeneity in response and survival rates. This is related to the well-established hypothesis that cohorts of patients
with the same disease contain subgroups with similar clinical features and/or similar omics profiles which determine
the occurrence of similar within-group clinical outcomes. For example, complex common diseases such as cancer are
heterogeneous diseases with diverse pathogeneses and clinical features. In particular, to date, many cancers are known
to contain subtypes associated with different outcomes and therapeutic treatments (Russnes et al., 2017; West
et al., 2012).

Patient stratification allows the identification of subgroups by their genetic, genomic, physiological, and clinical
profiles. In the past, risk stratification assays have focused mainly on response prediction to existing treatment reg-
imens. Still, today there is awareness about the need for robust subtypes in epidemiologic and functional studies to
learn more about mechanisms in tumor development and evolution during treatment with a focus on response and
resistance (Russnes et al., 2017). Indeed, more recently, molecular stratification (based on genetics and omics
datasets) allowed to build gene signatures and to model group-specific underlying pathological mechanisms. How-
ever, most risk models are based on one or few features, with limited use of integrated clinical and omics data.
New evidence suggests that multiple biomarkers must be considered at the same time (Alfano et al., 2023). Most
computational approaches based on machine learning recommend selecting the most accurate prognostic factors
and their combination (Ali & Aittokallio, 2019; Jalali-najafabadi et al., 2021). Instead, in this review, we highlight
the need to address the multidimensionality of health-related data and the potential of multiple and integrated
biomarkers exploiting network and systemic approaches, as described in detail in the following sections.

3 | PATIENT SIMILARITY NETWORK PARADIGM

Patients with similar clinical signatures and/or similar omics profiles are expected to show similar clinical outcomes.
Pairwise similarities between patients have a natural representation as networks. Indeed, a network is commonly
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defined as a series of interconnected components, systems or entities. A graph G = (V, E) is the abstract representation
of a network: it consists of the set V of vertices (or nodes) linked by means of edges (set E), indicating the presence of
some relationship (similarity, dependency) between the vertices. Patient Similarity Network (PSN) is a recent paradigm
aimed at patient stratification where nodes represent patients and edges represent the similarity between patients calcu-
lated using their clinical and/or biomolecular features (Figure 1).

Each patient data feature (e.g., age, sex, mutation status, gene expression profile) can be used to obtain a network of
pairwise patient similarities. Several distance/similarity measures can be adopted to measure patient similarity, and in
Table 1 we reported the most used and their application in patient similarity frameworks.

Once the PSN is built, the patient subtypes can be identified investigating the community structure of the obtained
network. In network science, a community is defined as a subset of nodes that are densely connected to each other and
loosely connected to the nodes in different communities. In the case of weighted networks, a community is instead a
group of nodes strongly connected to each other with weak connections with nodes of other communities. In PSN, com-
munities are thus densely/strongly connected groups of nodes and could reveal patients' subtypes. Among the methods
proposed in literature (Fortunato, 2010), the most used are the algorithms based on modularity (Newman, 2006), spec-
tral algorithms (von Luxburg, 2007) and information theory algorithms such us Markov Clustering Algorithm.

The PSN framework is characterized by important advantages such as generalizability, accuracy, interpretability,
ability to integrate heterogeneous data, and the natural management of missing values.

In the next section we show network-based methods for health-related data integration describing approaches
already used for this aim, but also other approaches potentially exploitable.

FIGURE 1 Overview of patient stratification based on health-related data integration and Patient Similarity Network paradigm.

TABLE 1 List of common distance and similarity measures used in patient similarity frameworks.

Distance/
similarity metrics Measures Uses in patient similarity framework

Euclidean distance Distance in cartesian space (Pai et al., 2019; Vitali et al., 2018;
Wang et al., 2014; Wang & Sun, 2015)

Hamming distance Distance between equal length string (Lee et al., 2018)

City Block distance Absolute difference between coordinates of
a pair of vector

(Chen et al., 2018)

Minkowsky distance Generalization of both the Euclidean
distance and the Manhattan distance

(Labellapansa et al., 2016)

Chebychev distance Greatest differences between two vector
along any coordinate dimension

(Li et al., 2020)

Pearson correlation Linear dependence (Gliozzo et al., 2020)

Cosine similarity Similarity in vector space (Lee et al., 2015; Tashkandi et al., 2018)

Jaccard similarity Similarity between sets (Shu et al., 2019)
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4 | NETWORK-BASED METHODS FOR DATA INTEGRATION

In this section, we focus on the definitions that can be exploited to address data multidimensionality and data
integration.

4.1 | Multipartite networks

A bipartite graph G = (S, T, E) is a network in which nodes can be divided into two disjoint sets of nodes S and T, so
that each edge in E connects a node of S with a node of T. From a bipartite network, it is possible to derive 2 projected
networks, where each one is composed of only one set of nodes. The projections in the two sets of vertices are obtained
by deducing relationships between nodes of the same type. In other words, in order to study the relationships among a
particular set of nodes, the projected networks contain links between 2 nodes of S if both are connected to the same
node of T. A bipartite graph represents a special case of multipartite graphs or k-partite graphs with k = 2.

In Figure 2, we show an example of a phenotype–patient bipartite network composed of the set of patients and
the set of phenotypes: the links inform about the phenotypes manifested by the patients. The projection in the set of
patients returns a patient similarity network in which pairs of patients are linked if they manifest at least one com-
mon phenotype (Figure 2, panel a). From a patient cohort, multiple information can be represented and analyzed
using multipartite networks. For example, a phenotype–patient–gene tripartite network can be constructed
(Figure 2, panel b): in this case, we can obtain an additional patient similarity network based on the similarity
between patients in sharing at least one mutation. Moreover, the multipartite networks built with real-world cohort
data can be expanded by integrating publicly available sources. In Figure 2c we show an example of integration with
well-known databases: protein–protein interactions (e.g., BioGRID;Oughtred et al., 2021), drug-target interactions
(e.g., Drugbank; Wishart et al., 2018), miRNA-target interactions (e.g miRTarBase; Huang et al., 2022), lncRNA–
miRNA interactions (e.g., LncCeRBase; Pian et al., 2018), lncRNA-disease associations (e.g., LncRNADisease; Bao
et al., 2019) and drug-phenotype associations (e.g., Drugbank).

A multipartite graph also allows to consider indirect associations between nonadjacent layers of nodes: for example,
the direct links between the two pairs patient-gene and gene-drug, can be substituted with the indirect and gene-
mediated association patient-drug (see Figure 2, panel c).

Multipartite graphs have proven to be a successful tool in representing, integrating and analyzing molecular and,
more in general, health-related data (Pavlopoulos et al., 2018; Petti et al., 2023; Wu et al., 2021). It is worth noting that
also a temporal bipartite network modeling approach has been proposed to study multimorbidity trajectories in patients
with severe mental illnesses (Wang et al., 2022). However, their potential in the PSN framework has not yet been
explored also as a consequence of the need for specialized methods and software for studying such networks
(Pavlopoulos et al., 2018).

4.2 | Multi-layer networks

A multi-layer network is described by a set of nodes V, a set of edges E, and a set of layers L. Multilayer net-
works provide better modeling for biological networks and, more in general, for complex networks. They can
be classified in two types: “node-colored graphs” (heterogeneous nodes are distributed in the layers) and edge-
colored graphs (heterogeneous links in different layers, that is, each layer is related to a specific type of con-
nection) (Hammoud & Kramer, 2020). In particular, the latter are node-aligned graphs, that is, the same node
belongs to different layers simultaneously: such graphs are very suitable for studying different aspects of the
same system and thus in modeling patient similarity extracted from multiple features (see Figure 3, panel b).
The multi-layer PSN can be obtained by building unimodal PSNs on each data source or data type and then
staking or merging the layers (Figure 3).

The analysis of stacked PSNs is possible thanks to some graph measures that have already been extended in the
multi-layer space. Among them, there is modularity optimization (Mucha et al., 2010): the authors extended the modu-
larity function for community detection by adapting it to layered network. The key point is to include a meso-structure
(called interslice couplings) that connects a node (i.e., a patient) of a specific slice (i.e., PSN) to its copy in another slice.
This coupling parameter determines the stability of the network partitioning (i.e., patients' subtypes) across the slices
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(i.e., clinical and/or molecular features). Network alignment is an alternative approach to extract similar patterns from
multi-layer networks. This procedure aims to find a good node mapping between two or more layers that identifies
common interaction patterns between the compared networks. It allows the extraction of “similar” subnetworks in two

FIGURE 3 Overview of the multi-layer network construction and layers integration. (a) unimodal PSNs where nodes represent the

patients, edge color codes for the type of data used to evaluate the patient similarity and edge thickness codes for the similarity strength.

(b) Multi-layer PSN obtained by stacking the unimodal PSNs. (c) Result of networks fusion.

FIGURE 2 Overview of the use of multipartite networks in representing, integrating and analyzing patient data and publicly open

sources. (a) Phenotype–patient bipartite network with associated Patient Similarity Network (PSN) obtained with the projection in the set of

patient nodes. (b) Phenotype–patient–gene tripartite network. (c) Example of integration between patient data and public databases.
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or several input networks. Typical applications are associated with different organisms to uncover complex mechanisms
at the basis of evolutionary conservations or to infer the biological meanings of groups of interacting cellular compo-
nents belonging to organisms not yet well characterized (Faisal et al., 2015; Guzzi & Milenkovi�c, 2018). The application
of the global network alignment to multi-layer PSNs may reveal patients subtypes also in the case of “node-colored
graphs,” that is, when the layers (unimodal PSN) are composed of different or not completely overlapping sets of nodes
(patients' cohorts).

However, there is not a large availability of procedures allowing to exploit the multidimensionality of multi-layer
PSNs. Rather, recently developed methods are based on layers integration by stacking or merging the edges. An over-
view of these approaches is provided below.

4.2.1 | Heterogeneous network

Heterogeneous networks consider k different kinds of nodes, each type corresponding to a separate layer of biological
information. In this framework, intra-layer and inter-layer connections are formally treated in the same way, even if
they can be weighed differently. The multi-layered information is therefore squeezed into just one dimension. An exam-
ple of the application of heterogeneous networks for modeling gene-phenotype networks was presented by Li and
Patra (2010).

4.2.2 | Network fusion

Network fusion can be performed creating a multigraph or merging the parallel edges in a single edge. Multigraphs
are graphs with multiple edges (associated with different connectivity/similarity measures) connecting the same
pair of nodes: in a multigraph, two or more edges are incident to the same two vertices. Such edges are also called
parallel edges or multi-edges. They have been used for the modeling of metabolic pathways where the same sub-
stances can be transformed by different reactions, but also with the aim to integrate different kinds of relationships
obtained from different data sources (Li & Li, 2012). Instead, edge fusion has been developed to process a set of
unimodal PSNs producing an integrated PSN. The Similarity Network Fusion method was proposed by Wang and
colleagues (Wang et al., 2014): it can combine many different types of measurements (such as mRNA expression
data, DNA methylation, miRNA expression and more—clinical data, questionnaires, image data, etc.) for a given
set of samples. Briefly, SNF consists of two main steps: constructing a sample-similarity network for each data type
and integrating these networks into a single similarity network using a nonlinear combination method (more
details are provided in Section 5).

5 | SUCCESSFUL PSN-BASED METHODS FOR PATIENT STRATIFICATION
AND THEIR APPLICATIONS

5.1 | Network-based stratification

The Network-based stratification (NBS) method was proposed to integrate somatic tumor genomes with gene
networks (Hofree et al., 2013). This is one of the first approaches developed to focus on the orthogonal prob-
lem of using network knowledge to stratify a cohort into meaningful subsets. The method requires that the
somatic mutations for each patient are represented as a profile of binary states on genes, in which state 1 indi-
cates a gene for which mutation has occurred in the tumor relative to germline. It consists of the following
steps.

- For each patient, projection of the mutation profiles onto a human gene interaction network.
- Application of the technique of network propagation (Vanunu et al., 2010) to spread the influence of each mutation
profile over its network neighborhood. This step provides a “network-smoothed” profile in which the state of each
gene is no longer binary but reflects its network proximity to the mutated genes in that patient along a continuous
range [0, 1].
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- The patient profiles are clustered into a predefined number of subtypes (k = 2, 3, …12) using an unsupervised tech-
nique based on nonnegative matrix factorization.

- Application of consensus clustering (Monti et al., 2003), in which the above procedure is repeated for 1000 different
random subsamples.

- Aggregation of the 1000 runs into a (patient � patient) co-occurrence matrix, which summarizes the frequency with
which each pair of patients has co-segregated into the same cluster.

- This co-occurrence matrix is then clustered a second time to recover a final stratification of the patients into clusters/
subtypes.

The authors of NBS applied the proposed approach to stratify the somatic mutation profiles of three major can-
cers cataloged in TCGA (ovarian, uterine and lung adenocarcinoma), proving that NBS identifies patient subtypes
that are predictive of clinical outcomes such as patient survival, response to therapy or tumor histology. In another
study, NBS was applied to evaluate the effectiveness of various gene panels in classifying tumors into clinically
meaningful subtypes (Zhong et al., 2015). NBS was applied to 13 major cancer types with exome-level mutation
data and compared the classification based on the full exome data with those focusing only on small sets of genes.
The results showed that small panels effectively cluster tumors and furthermore, often outperform full exome data
for most cancer types.

Despite the success of the NBS applications in detecting patient subgroups, some studies investigated its lim-
itation related to the use of a nonspecific network (He et al., 2017). In fact, with this approach, the mutations
are mapped onto a network that does not describe the pattern of gene interactions in the tumor under in-
vestigation. To overcome this limitation, in (He et al., 2017), the authors propose to use a cancer-type-specific
co-expression network instead of a human gene interaction network. This modification represents an additional
level of data integration: the updated version of NBS has been shown to outperform the original method
in identifying cancer subtypes significantly associated with clinical outcomes in most cancer types studied (He
et al., 2017).

5.2 | Similarity network fusion (SNF)

The similarity network fusion (SNF) method has been developed by Wang and colleagues (Wang et al., 2014) to
integrate a set of unimodal PSNs. The NBS limitation discussed above is completely overcome in SNF as it exploits
cancer-specific networks obtained from data such as gene expression and DNA methylation. SNF first constructs a
sample similarity network for each data type (similarity based on Euclidean distance followed by exponential scal-
ing). This set of networks is then fused by iteratively increasing the weights of concordant edges among different
layers, and decreasing the weights of those only present in some but not all layers. Spectral clustering is then
applied to reveal the network community structure. Integrating data in a nonlinear fashion allows SNF to take
advantage of the common as well as complementary information in different data types. Furthermore, it does not
require a priori feature selection and was shown to outperform methods based on single data types as well as other
multi-omics approaches.

SFN has been applied with success in many different applications. For example in (Bhalla et al., 2021), the
author investigate the heterogeneity of multiple myeloma using Whole-Exome Seq (WES), Whole-Genome Seq
(WGS) and RNA-Seq data from 655 tumor samples from Multiple Myeloma (MM). In this application, unimodal
PSNs are based on 5 data types: (1) gene expression and (2) gene fusion data from RNA-Seq; (3) somatic single
nucleotide variations (SNVs) from WES, (4) Copy Number Alterations (CNAs; focal and broad) and (5) transloca-
tions from WGS. MM-SNF identified patient subgroups not previously described defined by specific patterns of
alterations, enriched for specific gene vulnerabilities, and associated with potential therapeutic options (Bhalla
et al., 2021).

In another work (Cavalli et al., 2017), SFN was applied to genome-wide DNA methylation and gene expression data
across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblas-
toma subtypes. The authors identified 12 different subtypes of medulloblastoma, some of which not easily distinguish-
able through the analysis of individual types of data.

Even in the case of this method, several studies proposed some changes to improve and expand SNF. The main
aspects that these studies have successfully addressed are: weighted version of similarity network fusion to give
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different importance at the different layers (Mac Aog�ain et al., 2021; Xu et al., 2016); extension for data types containing
discrete values (e.g., mutation profile) (Yang et al., 2017) and similarity network construction to obtain robust dense
similarity matrices (Liu et al., 2021).

5.3 | netDx: Patient classification by similarity networks

Lastly, we introduce netDx, an approach combining a supervised machine learning method for patient classification
and the PSN paradigm (Pai et al., 2019). The goal of netDx is to identify the input features predictive of high and low
risk, and to accurately assign new patients to the correct class. The workflow requires defining a classification problem
and a cohort of patients containing positive and negative examples (i.e., cases and controls). Each available data feature
is converted into a PSN using a similarity measure defined on the basis of data type. netDx uses Lasso regression within
the cross-validation loop to prefilter only variables carrying predictive information. Starting from the unimodal PSNs,
the integrated PSN is obtained by averaging all edge weights between patients from all selected networks (features).
netDx has been applied to classify patients as belonging to one of two ependymoma subtypes identified by Witt et al.
(Witt et al., 2011). The two subgroups differ in terms of demographic, clinical, and molecular (gene expression) profiles.
Cross-validation showed that netDx obtained an accuracy of 81% (Pai & Bader, 2018).

As for any supervised machine-learning method, netDx requires a large bank of patient samples to learn from. This
limitation will gradually be mitigated as rapidly new technologies enable the acquisition and storage of data from ever-
increasing patient cohorts. However, in the case of small populations other approaches are needed.

The above-described methods (with related updated versions) are the most used in cancer research. Their appli-
cations have demonstrated their potential in patient stratification and data integration providing relevant results.
The common feature of these approaches is that they merge the layers obtaining a unique network. PSN-based
methods able to explore the multidimensional space of health-related data are still missing. Some network tools for
multi-layer network analysis are already available, but their use in patient stratification tasks has not yet been
explored. Moreover, further studies are needed to identify guidelines in their application depending on the disease
of interest, type of data and sample size. The application and comparison of different approaches could benefit
from harmonizing different PSN techniques. Lastly, it is worth noting that to date, these approaches are only
reserved for the research field. The main limitation to their use in clinical practice is to define procedures for
secure sharing of private data.

6 | CONCLUSION

In this review, we aimed to provide an overview of the network-based methods for patients' stratification and biomedi-
cal data integration. In particular, we focused on the Patient Similarity Network paradigm, a recently developed
approach where patients are represented as nodes connected by edges coding for the pairwise similarity calculated from
clinical or omics data. This paradigm successfully addresses both challenges (patients' stratification and biomedical data
integration), as proven by the recent applications in different diseases. We described approaches already used to repre-
sent and analyze patient similarity, but we highlighted the need for new algorithms and network measures to handle
the multidimensionality of available health-related data. We believe that leveraging network and systemic approaches
can bring about the expected shift toward precision medicine.
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