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v

Introduction

Ramsey’s Theorem and Hindman’s Theorem are among the principles that are studied
the most in Reverse Mathematics, that is, the branch of Mathematics whose aim is,
informally, to determine the minimal set of axioms needed to prove some theorem.
This is likely due not only to historical reasons – one of the first independence results
concerning Peano Arithmetic was indeed about a variation of Ramsey’s Theorem,
namely the Paris-Harrington Principle – but also derives from the fact that they
are quite natural statements and require almost no coding in order to be formalized
in Second Order Arithmetic. Moreover, their combinatorial nature put them in a
privileged position, because of the close connection between Reverse Mathematics
and the concept of “combinatorial core” (i.e., the part of Combinatorics needed to
formalize and prove a principle), as pointed out by Dzhafarov and Mummert [DM]
and previously by Hirschfeldt [Hir].
Also, both Ramsey’s Theorem and Hindman’s Theorem can be easily parameterized
(for instance, by varying the number of colours): hence, several variations can be for-
mulated and investigated using tools from Proof Theory and Computability Theory.
Here, we study various versions of the two theorems by first relating them to
different well-ordering preservation principles, i.e., to statements of the form “if
X is well-ordered, then f(X ) is well-ordered”, where f is some (natural) operator
transforming linear orders into linear orders. Many important subsystems of Second
Order Arithmetic are known to be equivalent to such principles: therefore, after
introducing (in Chapter 1) the needed concepts, in Chapter 2 – which is based on
a joint work with Zdanowski [CMZ] – we extend a method proposed in [CZ1] for
proving lower bounds on the logical strength of different Ramsey-theoretic principles
using characterizations of formal systems (namely, ACA0, ACA′

0 and ACA+
0 ) in terms

of well-ordering preservation principles. We start by deriving the same implications
obtained in [CZ1] concerning full Ramsey’s Theorem and its restriction to colourings
of triples, yet using a slightly different argument that allows us to extend the result
to the stronger Ramsey’s Theorem for relatively large sets (due to Pudlàk and
Rödl and, independently, to Farmaki and Negrepontis), thus obtaining a direct
combinatorial proof of a stronger well-ordering preservation principle (namely, the
well-ordering preservation from X to εεεX ).
Moreover, we provide a direct implication from Hindman’s Theorem (with the
apartness property) for sums of three elements and two colours to the well-ordering
preservation principle at the level of ACA0.
Interestingly, all implications we obtain over RCA0 also establish uniform computable
reductions of well-ordering preservation principles to the corresponding Ramsey-type
theorems.
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Then, in Chapter 3, we focus on Ramsey’s Theorem and Hindman’s Theorem for
infinitely many colours. We start by recalling that, when the Canonical Ramsey’s
Theorem by Erdős and Rado is applied to regressive functions, one obtains the
Regressive Ramsey’s Theorem (due to Kanamori and McAloon). Hence, we propose
an analogous regressive variation of Taylor’s “canonical” version of Hindman’s
Theorem: more precisely, we introduce the restriction of Taylor’s Theorem to a
subclass of the regressive functions, the λ-regressive functions, and prove some results
about the Reverse Mathematics of this novel Regressive Hindman’s Theorem and of
natural restrictions of it.
In particular, we prove that imposing the so-called apartness condition on the
solution set does not make the theorem stronger over RCA0 (hence preserving a well-
known property of the standard Hindman’s Theorem), and that the first non-trivial
restriction of the principle (with apartness) is equivalent to ACA0. We furthermore
point out that the well-ordering preservation principle for base-ω exponentiation is
reducible to this same restriction by a uniform computable reduction, and observe
that in this case the argument is more straightforward than the corresponding
reduction to the bounded version of the standard Hindman’s Theorem, due to the
use of infinitely many colours.

Finally, in Chapter 4 (based on a joint work with Rathjen [CMR]), we recall how
the outcome of ordinal analysis of a theory T carried out using well-orderings
(in place of well-ordering preserving principles) is the least ordinal number whose
well-foundedness can not be proved within T and that, if added as an axiom to
T , makes the theory stronger. However, the strength of “augmented” theories of
the form RCA0 + WO(α), with α being at least the proof-theoretic ordinal of RCA0
(i.e., ωω), has not been investigated much. Therefore, in this final chapter, we fill
an apparent gap in the literature by showing that the proof-theoretic ordinal of
the theory RCA0 + WO(δ) is δω, for any ordinal δ satisfying ω · δ = δ (e.g., ωω,
ωωω , ε0). Theories of the form RCA0 + WO(δ) are of interest in Proof Theory and
Reverse Mathematics because of their connections to a number of well-investigated
combinatorial principles related to various subsystems of Arithmetic: hence, our
result also provides an ordinal analysis for all such theorems.
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Chapter 1

Preliminary notions

All the results provided in the this thesis fall within the scope of Proof Theory and
Reverse Mathematics. Hence, in Sec. 1.1, we give a brief introduction to these two
topics, in order to provide an adequate context to the present dissertation and to
explicitly formalize the main concepts discussed throughout the rest of the thesis.
Furthermore, we will often refer to some notions related to Computability Theory,
that are then formalized in Sec. 1.2.

1.1 Reverse Mathematics and Proof Theory

1.1.1 Reverse Mathematics

Any mathematical proof is carried out within some theory, which is made up of a
language, a set of axioms and a set of inference rules.1 However, in most branches
of Mathematics, this aspect is not particularly relevant, and the axiomatic system
adopted is typically left implicit. Yet, by focusing on the axioms used – or, even
better, needed – to prove a theorem, it is possible to derive interesting information
about the theorem itself, especially concerning its “strength”.
This is indeed the ultimate goal of Reverse Mathematics: given a principle P and
an adequately weak base theory T – i.e., a theory strong enough to prove basic facts
about Mathematics, yet not so strong to already prove P – the aim is to figure
out what axioms can be added to T in order to obtain P . If all of such axioms
are actually necessary, then the result can be “reversed” – hence the name Reverse
Mathematics – thus proving the axioms starting from P itself and, therefore, showing
that they are equivalent to P over the theory T . This is interesting because it makes
it possible to compare the strength of theorems, even concerning completely different
topics in Mathematics. For instance, if we manage to get the reversal of two distinct
theorems over the same theory, then we can conclude that the two theorems are
equivalent to each other: in this sense, we can state – for instance – that Gödel’s
Completeness Theorem (a well-known result in Logic) is equivalent to Jordan’s
Curve Theorem (a principle pertaining Topology), since both of them are equivalent
to the axioms of WKL0 when using RCA0 as a base theory (as showed by Simpson
in [Sim2]; see Sec. 1.1.3 below for further details about RCA0 and WKL0).

1Often, all the theorems derivable from the axioms are considered part of the theory as well.
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Furthermore, if we show that a principle P1 is equivalent to a theory T1 and a
principle P2 is equivalent to a different theory T2, with T2 ⊃ T1 (that is, all theorems
of T1 are also theorems of T2, but not vice versa), then of course the two theorems
are not equivalent to each other, with P1 being implied by P2.
This is the case, for instance, of the infinite version of Ramsey’s Theorem for triples
and two colours, which can be proved to be strictly stronger than the aforementioned
Jordan’s Curve Theorem (or, equivalently, to Gödel’s Completeness Theorem), since
the former is equivalent to ACA0, a theory including (hence, properly stronger than)
WKL0.
The idea, then, is to classify theorems according to their “equivalence classes”, which
in turn can be ordered based on their strength – or, more precisely, based on the
relation given by the implications between theorems belonging to different classes.2
This way, Reverse Mathematics also helps to highlight possible clustering phenomena
around some theories: this is exactly what happened in the 1970s, when Harvey
Friedman noticed [Fri2, Fri3] that a number of theorems of ordinary Mathematics
resulted to be equivalent to five specific axiomatic systems3, later named “The Big
Five”.
However, in the last few decades, many mathematical principles have been shown to
be equivalent to none of these five systems, hence making the whole picture of the
relations between theorems much more complex: nevertheless, the Big Five have
maintained a certain importance in Reverse Mathematics and they are still widely
used today. Many results in the present dissertation are related to some of these
systems, so we formally define them in Sec. 1.1.3.

1.1.2 Second Order Arithmetic

Reverse Mathematics can be carried out over any axiomatic system, yet in most
cases Second Order Arithmetic (or some of its subsystems) is used. According to
[DM], this is because “it is strong enough to formalize much of ordinary mathematics,
but weak enough that it does not overshadow the theorems being studied in the way
that set theory does”. Second Order Arithmetic is indeed a much stronger theory
than its first-order counterpart Peano Arithmetic (PA), since it uses a language L2
with two sorts of variables – the number variables and the set variables – to both
of which quantifiers can be applied. This, together with the introduction of the
membership symbol ∈ and an additional axiom for constructing sets, allows Second
Order Arithmetic to be more expressive and more powerful than PA: for instance, it
can formalize and prove results about real numbers, while PA can not. Hence, the
importance of Second Order Arithmetic in Reverse Mathematics is due to the fact
that the statement of many mathematical principles can not even be expressed in
PA.
Formally, this theory can be formalized as in the next Definition (following [DM]).

2Notice, however, that this order can not be linear since, by Gödel Incompleteness Theorem,
there are arithmetical theories T that can be consistently extended using (alternately) both a new
axiom A and its negation ¬A: in that case, none of these two extended theories (i.e., T ∪ {A} and
T ∪ {¬A}) implies the other.

3Actually, the weakest of these five subsystems – that is, the aformentioned system RCA0 –
is only used as a base theory, hence proper equivalences with mathematical principles are only
obtained with the remaining four subsystems.
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Definition 1.1.1. Second order arithmetic (Z2) is defined by the following axioms:

1. (∀x, y, z)[(x+ y) + z = x+ (y + z)]
2. (∀x, y)[x+ y = y + x]
3. (∀x, y, z)[(x · y) · z = x · (y · z)]
4. (∀x, y)[x · y = y · x]
5. (∀x, y, z)[x · (y + z) = x · y + x · z]
6. (∀x)[x+ 0 = x ∧ x · 0 = 0 ∧ x · 1 = x]
7. (∀x, y, z)[x < y ∧ y < z → x < z]
8. (∀x)[x ̸< x]
9. (∀x, y)[x < y = ∨x = y ∨ y < x]

10. (∀x, y, z)[x < y → x+ z < y + z]
11. (∀x, y, z)[0 < z ∧ x < y → x · z < y · z]
12. (∀x, y)(∃z)[x < y → x+ z = y]
13. (0 < 1) ∧ (∀x)[x > 0 → x ≥ 1]
14. (∀x)[(x = 0 ∨ x > 0)]
15. [φ(0) ∧ (∀x)[(φ(x) → (φ(x+ 1)]] → (∀x)φ(x), for all L2-formulas φ
16. (∃X)(∀x)[x∈X ↔ φ(x)], for all L2-formulas φ containing no set variables X.

Axioms 1-14 form a first-order subtheory that is often called PA−, for it corresponds
to the axiomatization of PA without one axiom (namely, the axiom 15 for L1, that
is the language of PA).
Axioms 15 and 16 (named, respectively, induction axiom and comprehension axiom)
are actually axiom schemas, as they consist of infinitely many axioms (one for each
L2-formula φ). As we will explain in the next Section, both of them can be restricted
by limiting the scope of φ to some subclass Γ (possibly different for the two axioms)
of L2-formulas: in that case, they are typically denoted by IΓ and Γ-CA, respectively.
These subclasses are usually specified using arithmetical and analytical hierarchies,
so it is worth to formalize these two notions.

Definition 1.1.2. The arithmetical hierarchy consists of the following classes of
formulas in L2.

• The classes ∆0
0, Σ0

0 and Π0
0 are the same, and consist of all formulas with no

unbounded quantifiers.

• For any n ∈ ω, Σ0
n+1 is the class of formulas ∃x1∃x2 . . . ∃xk ψ(x1, x2, . . . , xk),

where k > 0 and ψ is a formula in Π0
n.

• For any n ∈ ω, Π0
n+1 is the class of formulas ∀x1∀x2 . . . ∀xk ψ(x1, x2, . . . , xk),

where k > 0 and ψ is a formula in Σ0
n.

When dealing with the first order language L1, the same classification can be adopted,
but the superscript 0 is often omitted.
It is noteworthy that not all arithmetical formulas belong to the arithmetical
hierarchy: however, any L2-formula (and any L1-formula as well) can be written in
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prenex normal form, therefore each arithmetical formula can actually be related to
some class in Definition 1.1.2.

Definition 1.1.3. The analytical hierarchy consists of the following classes of
formulas in L2.

• The classes ∆1
0, Σ1

0 and Π1
0 are the same, and consist of all formulas with no

set quantifiers, called arithmetical formulas.

• For any n ∈ ω, Σ1
n+1 is the class of formulas ∃X1 . . . ∃Xk ψ(X1, . . . , Xk),

where k > 0 and ψ is a formula in Π1
n.

• For any n ∈ ω, Π1
n+1 is the class of formulas ∀X1 . . . ∀Xk ψ(X1, . . . , Xk),

where k > 0 and ψ is a formula in Σ1
n.

Restrictions on induction and comprehension axioms based on arithmetical and
analytical hierarchies are fundamental in this thesis and, in general, in Reverse
Mathematics. However, in order to be effective (especially in terms of models), they
require a specific semantics for Z2, which is briefly explained in the next paragraph.

Semantics of Z2. Second Order Arithmetic is commonly interpreted in two
different ways. The actual “second order” interpretation is called full semantics,
and adopts structures that only specify the first-order domain – that is, the domain
of number variables – and the meaning of each symbol in L2, hence assuming set
variables to range over any possible subset of the domain.
However, full semantics is quite useless in Reverse Mathematics, for it causes Second
Order Arithmetic to become a categorical theory – i.e., a theory admitting only
one model (up to isomorphism), and that has some undesirable consequences (for
instance, Gödel’s Completeness Theorem no longer holds).
Therefore, in Reverse Mathematics (and in this thesis as well), Henkin semantics is
commonly used in place of full semantics, meaning that set variables can range over
an arbitrary subset of the power set of the domain (and not necessarily over the
whole power set, as in full semantics), thus turning Z2 into a first-order theory4. In
that case, however, several logical metatheorems (such as the Completeness Theorem
and the Compactness Theorem) do hold, hence allowing models of Z2 – or of any
of its subsystems – to have non-standard elements in their domain. Then, as a
consequence of adopting Henkin semantics, we have to distinguish the domain of our
models from the set of standard natural numbers: so, in the rest of the thesis, we
adopt the notation N to denote the domain of any (possibly non-standard) model of
the theory being used, while we reserve ω for the set of standard natural numbers.

1.1.3 Subsystems of Second Order Arithmetic

As mentioned above, Second Order Arithmetic is much weaker than other well-known
theories – like ZFC: nevertheless, it often turns out to be still too powerful to be

4Nevertheless, in this thesis we will occasionally refer to “second order statements”, which
might then sound as an abuse of terminology. However, recall that our theories use a second-order
language: hence, by this expression, we mean any statement containing at least one set variable.
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used as a base system in Reverse Mathematics, since the axioms of Z2 already
imply most ordinary mathematical theorems. The solution, then, is to weaken some
of these axioms, hence obtaining subsystems of the full theory. Of course, there
exist infinitely many subsystems of Z2, each given by an arbitrary restriction of the
original axioms: however, some choices turn out to be more meaningful than others,
mainly because of the “Big Five phenomenon”. So, the vast majority of results
in Reverse Mathematics makes use of one out of these five prominent subsystems:
RCA0, WKL0, ACA0, ATR0 and Π1

1-CA0. All of them are obtained by restricting
the induction axiom and the comprehension axiom schema of Z2 (WKL0 and ATR0
also contain further axioms). [Sim2] and [DM] are good references about this topic,
while here we only give some details about RCA0 and ACA0, as they are the only
subsystems of Z2 among the Big Five that are used within this thesis. The former is
the most commonly adopted as a base system, because several useful basic principles
are already derivable in RCA0, but it still leaves space for Reverse Mathematics
analysis of most ordinary Mathematics theorems, for they often require stronger
systems to be proved. RCA0 is indeed a quite weak theory: its name stands for
Recursive Comprehension Axiom, hence it formalizes only the recursive part – i.e.,
the computable part – of Arithmetic. This is achieved by limiting the induction
axiom to Σ0

1-formulas and the comprehension axiom schema as in the next definition.

Definition 1.1.4. The schema of ∆0
1-comprehension consists of all axioms of the

form
∀x (φ(x) ↔ ψ(x)) → (∃X)(∀x)[x∈X ↔ φ(x)]

where φ(x) is a Σ0
1-formula with no free occurrences of X, and ψ(x) is a Π1

1-formula.

We denote ∆0
1-comprehension by ∆0

1-CA, thus extending the notation Γ-CA intro-
duced in the previous Section (where Γ was required to be a class of formulas, which
∆0

1 is not).

Definition 1.1.5. RCA0 is the formal system obtained by adding to PA− the axioms
IΣ0

1 and ∆0
1-CA.

The reason behind the restriction over the comprehension axiom is clear: it precludes
the possibility of constructing sets that are not decidable (∆0

1-definable sets are
indeed the class of sets for which we can computably decide whether an element
belongs to the set or not). The choice of limiting induction to Σ0

1-formulas, instead, is
due both to historical reasons and to the necessity of reaching a compromise between
not allowing induction at all (an extremely constructivist approach) and allowing full
induction, with both approaches having valid philosophical justifications. Again, a
detailed analysis can be found in [DM], where it is also highlighted how Σ0

1-induction
is necessary (actually, equivalent) to carry out even just finite recursion, and how
including stronger induction principles would break relevant conservativity results
of RCA0 with respect to weaker, finitistic theories.
The other subsystem of Z2 that will be largely mentioned in this thesis is ACA0,
whose name is the acronym for Arithmetical Comprehension Axiom: this theory is
indeed obtained by adding the arithmetical comprehension axiom schema to RCA0.

Definition 1.1.6. ACA0 is the formal system obtained by adding to RCA0 the axioms
Σ0

k-CA, for all k ∈ ω.
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Therefore, in ACA0, we can derive the existence of any set defined by an arithmetical
formula, i.e. a formula containing no set quantifiers. This, together with Σ0

1-
induction, also implies arithmetical induction (that is, induction over arithmetical
formulas), which is then included in ACA0.
Of course, such a system is much stronger than RCA0: in fact, ACA0 is a conservative
extension of Peano Arithmetic, meaning that any theorem of PA is a theorem of
ACA0 and that any theorem of ACA0 in the language of PA is already a theorem of PA
(in other words, PA is the first-order part of ACA0). This system is quite recurring
in Reverse Mathematics, since it turns out to be equivalent to a large number
of well-known mathematical principles, as is the case with several combinatorial
theorems discussed in this thesis.
Then, many equivalent formulations of ACA0 can be found in the literature. The next
Theorem summarizes the principles used in the next chapters to characterize ACA0.
In the statement of the Theorem and throughout the rest of this section, we mention
the notion of Turing jump, which will be formalized in Section 1.2: informally, the
Turing jump of a set X – in symbols, X ′ – is the Halting Problem relativized to X,
that is, the set of indexes i of algorithms (in some fixed enumeration of algorithms)
that halt on input i when using an oracle for X.

Theorem 1.1.7. Over RCA0, the following are equivalent:

1. ACA0.

2. For any injective function f : N → N there exists a set X ⊆ N such that
∀n(n ∈ X ↔ ∃m(f(m) = n)), i.e., the range of any injective function exists.

3. ∀X∃Y (Y = X ′), i.e., the Turing jump of any set exists.

Proof. (1) is equivalent to (2) by Lemma III.1.3 in [Sim2], while (1) is equivalent
to (3) by Corollary 5.6.3 in [DM]. ⊓⊔

We denote by RAN the principle (2) in Theorem 1.1.7. By extending (3) via an
iteration of the Turing jump operator, instead, we can obtain theories that are
strictly stronger than ACA0. This idea is indeed applied to formalize two further
subsystems of Z2 that are widely used in Reverse Mathematics, namely ACA′

0 and
ACA+

0 . The former is based on the notion of n-th Turing jump, defined in L2 as
follows: fixed X ⊆ N, we set X(0) = X and X(n+1) = (X(n))′ for any n.

Definition 1.1.8. ACA′
0 is the formal system obtained by adding to RCA0 the

following axiom: ∀n∀X∃Y (Y = X(n)).

Notice that, in the previous definition, n is internally quantified, hence it can be
non-standard. This aspect is crucial, for it is what makes ACA′

0 strictly stronger than
ACA0: indeed, any non-standard model M of ACA0 including only arithmetically
definable sets does not contain ∅(e) for e non-standard, otherwise such a set would be
Σ0

n-definable for some standard n < e, and then Turing-reducible to ∅(n) by Post’s
Theorem, thus contradicting the fact (provable in ACA0) that ∅(m) ⪇T ∅(m+1) for any
m, since ∅(e) ≤T ∅(n) by the argument above and ∅(n+1) ≤T ∅(e) due to (n+ 1) < e.
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Then, by introducing another Turing jump-related concept, we can formalize in L2
the system ACA+

0 : to do this, we define the ω-jump of X ⊆ N as a set coding all the
n-th Turing jumps of X; more formally, X(ω) = {⟨x, n⟩ | n ∈ N, x ∈ X(n)}, where
⟨·, ·⟩ is any computable pairing function.

Definition 1.1.9. ACA+
0 is the formal system obtained by adding to RCA0 the

following axiom: ∀X∃Y (Y = X(ω)).

ACA+
0 is a strengthening of ACA′

0, and these two theories represent nice examples of
subsystems of Z2 not belonging to The Big Five but still quite recurring in Reverse
Mathematics: they are indeed equivalent to several natural principles – or, in some
cases, they are just the best known upper bound – as we will see in the next Chapters.

1.1.4 Well-Orderings and Ordinal Analysis

Although not strictly related to Reverse Mathematics, well-orderings represent a
relevant topic in Proof Theory. This is because they are often used as an alternative
method to measure the strength of theorems and theories, at least since Gentzen has
shown that, over the weak first order theory PRA, the well-ordering5 of ε0 implies the
consistency of PA and then, by Gödel’s Incompleteness Theorem, it is not derivable
in PA (in contrast to the well-ordering of any other ordinal below ε0). Since then,
plenty of theorems and theories have been related to some well-ordering. Hence, it
is worth formalizing some relevant definitions and results about this topic.
First, let us recall the definitions of well-founded ordering and well-ordering.

Definition 1.1.10. An ordering X = (X,<X ) is well-founded if there exist no
infinite strictly <X -descending sequences of elements in X, i.e., there are no functions
f : ω → X such that f(n) >X f(n+ 1) for all n ∈ ω. In that case, we write WF(X ).

Alternative definitions of well-founded ordering can be found in the literature: here,
we are only interested in the following version.

Definition 1.1.11. An ordering X = (X,<X ) is well-founded if every non-empty
subset of X contains a <X -minimal element.

(∀Y ⊆ X)[Y ̸= ∅ → (∃m ∈ Y )(∀y ∈ Y )(m ≤X y)]

In that case, we write ME(X ).

However, we can show that in RCA0 these two versions are equivalent to each other.

Theorem 1.1.12. Over RCA0, WF(X ) is equivalent to ME(X ) for any ordering
X = (X,<X ).

Proof. First, suppose WF(X ) holds but ME(X ) does not. Let S be a non-empty
subset of X with no <X -minimal element, and let {s0, s1, . . .} be any enumeration
of S. We can computably construct a function f : ω → X by setting f(0) = s0

5The actual result uses the principle of transfinite induction in place of well-ordering, for the
latter is a second order statement, hence outside the language of PRA. However, well-orderings can
be somehow formalized in L1 as well: details are given below and in Chapter 4, where indeed we
formalize and derive well-orderings within a first order theory.
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and f(n + 1) = sk, where k is minimal such that sk <X f(n). The existence of k
is guaranteed by the definition of S. Then, we have a contradiction with WF(X ),
since f is an infinite strictly <X -decreasing sequence of elements in X.
Now we prove that ME(X ) implies WF(X ). In the argument below, recall that
< might be different from <X . Then, assume ME(X ) and, by way of contradic-
tion, let f : ω → X be an infinite strictly <X -descending sequence in X . No-
tice that the range of f contains no <X -minimal element, but the existence of
such a set is not provable in RCA0. Therefore, we need to adopt a different ap-
proach in order to reach a contradiction. In particular, we recursively construct
a set S = {s0 < s1 < · · · } by defining s0 = f(0) and, if si = f(n) for some n,
then si+1 = f(n+ k), where k ∈ (0, si + 1] is minimal such that f(n+ k) > f(n+ j)
for all j < k. Clearly each si+1 exists, otherwise {f(n+1), f(n+2), . . . , f(n+si +1)}
would only contains elements less than si, which is impossible since it contains (si +1)
many elements. Then, S is infinite, so for any m such that f(m) ∈ S, there exists
n > m such that f(n) ∈ S. Also, f(n) <X f(m), since we assumed f to be strictly
<X -decreasing. Therefore, S does not contain a <X -minimal element, contra our
hypothesis. ⊓⊔

We can then formalize the concept of well-ordering.

Definition 1.1.13. A well-founded linear ordering X is called a well-ordering, in
symbols WO(X ).

It is trivial to figure out linear orderings that are also well-founded, as is the case with
the usual ordering on the standard natural numbers. Similarly, we can easily come
up with examples of non well-founded linear orderings, e.g. the usual <-relation
over the set of negative integers. As with any other mathematical principle, we can
think of well-foundedness of some ordering X just as a theorem of a certain theory:
therefore, in Reverse Mathematics, it is natural to wonder whether WF(X ) can be
proved within a specific formal system. This analysis is usually carried out over
infinite linear orderings which – being also well-founded – are then isomorphic to
transfinite ordinal numbers. However, the well-foundedness of a linear ordering X
isomorphic to some transfinite ordinal α – hence, shortly, WF(α) – always implies
at least WF(α+ 1): for this reason, the actual question usually pondered in Reverse
Mathematics is rather about the least transfinite ordinal α whose well-foundedness
can not be proved within a certain theory. There are indeed a large number of such
results in the literature, one example being the independence of WO(ε0) from ACA0,
straightforwardly derivable from the aforementioned Gentzen’s proof of consistency of
PA plus Gödel’s Incompleteness Theorem and the Π1

1-conservativity of ACA0 over PA.
In that case, it appears to be just a corollary of some major results: however, starting
from Gentzen’s result, this kind of analysis – later called ordinal analysis – became
an interesting line of research on its own.
It is important to note that both Definition 1.1.10 and Definition 1.1.13 are second
order statements, namely Π1

1-statements: hence, the outcome of the ordinal analysis
of a theory T – i.e., the least ordinal α such that T does not prove WO(α) – is called
the Π1

1-ordinal of T . We formalize this concept in the next Definition.
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Definition 1.1.14. The Π1
1-ordinal of a theory T – in symbols, ord(T ) – is the

least ordinal α isomorphic to some primitive recursive linear ordering X whose
well-foundedness can not be proved in T .

Many alternative definitions concerning the ordinal of a theory can be found in the
literature, even using just first order statements: however, the definition given above
is probably the most adopted in Proof Theory, especially when dealing with Second
Order Arithmetic.
An arguable aspect about the Π1

1-ordinal of a theory T is that it does not catch all
the nuances of the strength of T . For instance, the axiomatic systems PRA, RCA0
and WKL0 share all the same Π1

1-ordinal – i.e., ωω – but they are not equivalent to
each other, with WKL0 being stronger than RCA0 and RCA0, in turn, being stronger
than PRA.6 Nevertheless, Π1

1-ordinal analysis is still a useful and widely adopted
method for measuring the strength of theories.

An alternative approach to ordinal analysis is instead carried out by using the
preservation of well-orderings, formalized in the following definition.

Definition 1.1.15. Let f be a function from linear orderings to linear orderings.
Then, by well-ordering preservation principle – or just by well-ordering principle –
we mean the following statement:

∀X (WO(X ) → WO(f(X ))).

If the previous statement holds, we write WOP(X 7→ f(X )).

Results concerning this kind of ordinal analysis typically show the equivalence – over
a base theory – between a subsystem S of Z2 and a certain well-ordering principle,
i.e. between S and WOP(X 7→ f(X )) for some specific f . Such an equivalence can
hardly be achieved when using Π1

1-ordinals, since most of the relevant subsystems of
Z2 are extensions of RCA0 obtained by adding axioms whose complexity is higher
than Π1

1. These axioms are often Π1
2-statements (as in the case of ACA′

0, ACA+
0 and

ATR0)7, which is indeed the complexity of the well-ordering principles.
Some notable results in this topic are reported below, where – adopting the same
notation defined in [MM], also formalized in Sec. 2.2 below – ωωω, εεε and φφφ are
computable operators from linear orderings to linear orderings behaving on well-
orderings like the usual ω, ε and φ functions do on ordinals.

6Here, the symbol ω does not stand for the set of standard natural numbers; rather, it represents
the least transfinite ordinal: we use the same symbol since the latter is isomorphic to the usual
<-ordering on the standard natural numbers. However, none of the mentioned theories can define
the notion of ordinal number: hence, by a (quite common) abuse of notation, when we refer to some
ordinal α within some subsystem T of Z2 (for instance, when we assert that RCA0 proves WO(ω2)),
we actually mean some T -definable ordering on the elements in the (possibly non-standard) domain
of T that, when “observed” from the metatheory, corresponds to α. For this reason, when dealing
with transfinite ordinals, we define ωωω, εεε and φφφ operators to obtain orderings in RCA0 that, in the
standard model, are isomorphic to ordinals larger than ω.

7The fact that ACA′
0 and ACA+

0 are characterized by Π1
2-axioms is clear from Definition 1.1.8,

Definition 1.1.9 and the fact that the concept of Turing jump is arithmetically definable. For ATR0,
refer to Definition V.2.2 and Definition V.2.4 in [Sim2]. Finally, notice that even ACA0 is clearly
characterized by a Π1

2-axiom when considering its equivalent formulations given in Theorem 1.1.7.
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Theorem 1.1.16 (Girard [Gir], Hirst [Hir2]). Over RCA0, ACA0 is equivalent to
WOP(X 7→ ωωωX ).

Theorem 1.1.17 (Marcone-Montalbán [MM]). Over RCA0, ACA′
0 is equivalent to

∀nWOP(X 7→ ωωω⟨n,X ⟩), where ωωω⟨n,X ⟩ denotes the ordering obtained by applying n
times the operator ωωω to X .

Theorem 1.1.18 (Marcone-Montalbán [MM], Afshari-Rathjen [AR]). Over RCA0,
ACA+

0 is equivalent to WOP(X 7→ εεεX ).

Theorem 1.1.19 (Marcone-Montalbán [MM]). Over RCA0, Π0
ωα − CA is equivalent

to WOP(X 7→ φφφ(α,X )).

Theorem 1.1.20 (Friedman-Montalbán-Weiermann [FMW]; Rathjen-Weiermann
[RW]; Marcone-Montalbán [MM]). Over RCA0, ATR0 is equivalent to WOP(X 7→
φφφ(X , 0)).

In Chapter 2, we carry out such an analysis for theories including different versions
of Ramsey’s Theorem. The outcome of this analysis could also be obtained by noting
that all of such theories are equivalent to ACA0, ACA′

0 or ACA+
0 , thus it would suffice

to apply the aforementioned results to derive the well-ordering principle associated
with each of these theories. However, we propose novel combinatorial proofs relating
these versions of Ramsey’s Theorem – and a restriction of Hindman’s Theorem as
well – to the respective well-ordering principles; besides showing direct implications,
our proofs also witness different kinds of computable reductions (defined in the
next Section) between such principles, hence giving a deeper insight into the actual
relations between Ramsey’s Theorem and well-ordering principles.

1.2 Notions of reducibility

1.2.1 Basic definitions in Computability theory

Despite being mainly proof-theoretic related, our results will sometimes refer to
computability concepts, which are then worth a formal definition.
We start with the fundamental notion of halting set.

Definition 1.2.1 (Halting set). By halting set relative to a set X we mean the set

X ′ = {x ∈ ω | ΦX
x (x) is defined }

where (ΦX
i )i∈ω is any fixed enumeration of X-computable partial functions.

The set ∅′ is usually called just halting set and is often denoted by K.

The existence of the enumeration (ΦX
i )i∈ω can be easily proved, and it can be

formalized even in weak theories like RCA0.
Starting from the previous Definition, we can then formalize the concept of Turing
jump.

Definition 1.2.2 (n-th Turing jump). For any n ∈ ω, we denote by X(n) the n-th
Turing jump of a set X, that is recursively defined as follows:
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• X(0) = X

• X(m+1) = (X(m))′, for any m < n.

Notice that X(1) = X ′ and it is usually called just Turing jump of X.

Definition 1.2.3 (ω-Turing jump). The ω-Turing jump of a set X, or just the
ω-jump of X, is the set

X(ω) = {⟨x, n⟩ | n ∈ ω, x ∈ X(n)}

where ⟨·, ·⟩ is any fixed, computable paring function.

As we already noticed in Section 1.1, these notions are definable in L2 and are useful
to define some relevant subsystems of Z2, namely ACA′

0 and ACA+
0 . We also showed

how the former theory does not imply the latter, by a simple argument based on
Post’s Theorem, which we now formalize for the sake of completeness. Recall that a
set X is recursively enumerable in Y if X is the domain of a partial Y -computable
function, while it is computable (also, recursive or decidable) in Y if both X and its
complement are recursively enumerable in Y .

Theorem 1.2.4 (Post’s Theorem). Let n ∈ ω.

• A set is Σ0
n+1-definable if and only if it is recursively enumerable in ∅(n).

• A set is Π0
n+1-definable if and only if its complement is recursively enumerable

in ∅(n).

A simple corollary of Post’s Theorem is that any ∆0
n+1-definable set X is computable

in ∅(n), meaning that, for any x, we can computably check whether x ∈ X or not,
using an oracle for ∅(n). This idea anticipates the notion of reducibility, that is
discussed in the next sections for its relevance within the results presented in this
dissertation.

1.2.2 Overview of reductions

The basic idea behind the concept of reducibility is to investigate whether a specific
problem can be solved by using the solution to another problem. Such a question
is of interest, for a positive answer would make it possible to link a novel problem
to an existing one – which we might already know how to solve: in that case, a
reduction would make it easier to obtain a solution to the original problem.
In this sense, we are mainly interested in computable reductions, i.e. reductions that
can be carried out by a Turing machine, or by any other equivalent computational
model allowed by the Church-Turing thesis. A first example of such a kind of
reducibility is given by Turing reducibility.

Definition 1.2.5 (Turing reducibility). A set X is Turing-reducible to a set Y , in
symbols X ≤T Y , if X can be decided by a Turing machine with an oracle for Y .

If two sets X,Y Turing-reduce each other, i.e. X ≤T Y and Y ≤T X, then X and
Y are said to be Turing equivalent, in symbols X ≡T Y . Since ≡T is an equivalence
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relation, we can define the notion of Turing degree of X as the equivalence class
of X under ≡T. For instance, any decidable set belongs to [∅]≡T . However, these
equivalence classes do not form a chain, due to ≤T not being a linear order; therefore,
there exist sets ≤T-incomparable.
One notable result concerning ≤T is the following.

Proposition 1.2.6. For any n ∈ ω, ∅(n) ⪇T ∅(n+1).

Proof. It is derivable from the prominent paper of Turing [Tur]. ⊓⊔

1.2.3 Computable reductions

Turing reductions are defined on sets, that can be considered as collections of
instances (with a positive answer) to decision problems, i.e. to problems posing
questions with boolean answers: for instance, whether a number is prime, a graph is
planar, or a map can be coloured using 3 colours and avoiding adjacent regions to
have the same colour.
However, many mathematical problems have a different form, that can be represented
using a Π1

2-formula (hence they are typically called Π1
2-problems):

∀X (φ(X) → ∃Y ψ(X,Y ))

where φ and ψ are arithmetical formulas. We say that X is an instance of a
Π1

2-problem P if φ(X) holds, and that Y is a solution for X to P if ψ(X,Y ) holds.
We are able to solve a Π1

2-problem P if we can find a solution for any instance of P.
Notice that the well-ordering principles discussed in Section 1.1 can be restated as
Π1

2-principles. This can be done by considering their contrapositive form:

∀X (¬WO(f(X )) → ¬WO(X )) (1.1)

hence redefining such principles in terms of instances (that is, infinite descending
sequences of elements in f(X )) and solutions (infinite descending sequences of
elements in X ). Actually, this formulation does not fully comply with the definition
of Π1

2-problem given above, since ¬WO(f(X )) is not arithmetical. Then, a more
pedantic reformulation of a well-ordering principle as a Π1

2-problem would rather be:

∀X (∀s :N→f(X ))
[
∀x

(
s(x) >f(X ) s(x+1)

)
→

(
∃t :N→X

)(
∀x(t(x) >X t(x+1))

)]
.

In that case, an instance of the problem would be a Turing join between X and s.
By adopting this formulation, we might even introduce a further constraint on the
solutions, namely we might require t to only contain X -terms appearing in s: in fact,
all our solutions will satisfy this additional property. This can be done because ψ in
the definition of Π1

2-problem takes X as a parameter, meaning that the condition
defining the solutions can use information about the instance. However, for the sake
of readability, throughout the rest of the thesis we will omit all these details while
dealing with well-ordering principles, and we will just adopt the usual formulation
given in (1.1).

At this point, one can wonder whether a notion of reducibility can be formulated
for this class of problems. We positively answer this question with the following
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X X̂ X X̂

Y Ŷ Y Ŷ

P

computes

Q P

computes

Q

X-computes computes

Figure 1.1. Diagram of computable reduction (left) and strong computable reduction (right)
of a principle P to a principle Q.

definition, where ⊕ denotes the Turing join operation between sets, i.e., X ⊕ Y =
{2x | x ∈ X} ∪ {2y + 1 | y ∈ Y }.

Definition 1.2.7 (Computable reduction, ≤c). Let P,Q be Π1
2-principles. Then Q

is computably reducible to P (denoted Q ≤c P) if for every instance X of Q there
exists an X-computable instance X̂ of P such that, if Ŷ is a solution to P for X̂,
then there exists an X ⊕ Ŷ -computable solution to Q for X.

Notice that the solution set Ŷ in Definition 1.2.7 must be obtained by a single
application of the principle P. Such a constraint is not required when proving
the implication from Q to P over RCA0 though: therefore, an implication over
RCA0 does not necessarily witnesses a computable reduction. For instance, in
Proposition 3.2.10, we will prove that Hindman’s Theorem is derivable over RCA0
from our novel regressive version of the same theorem, but the argument does
not establish a computable reduction, since it requires a further application of the
latter principle (actually, of the weakest principle RT1) to obtain a solution to HT.
However, in that case, it is not guaranteed that a computable reduction (possibly
based on a different argument) does not exist at all. Still, there are principles
equivalent over RCA0 that are provably not reducible to each other: for instance, our
Corollary 3.3.11 states that λregHT=2[ap] does not computably reduce RT3

3, despite
the two principles being equivalent to each other in RCA0.
Moreover, the converse is also true, meaning that some computable reductions can
not be formalized in RCA0, as the former might use derivations that can not be
inferred from the limited axioms of RCA0.
Observe that, even if the notion of ≤c is based on algorithmic transformations, they
may not be uniform, meaning that they can possibly be different for any instance
and for any solution.
Finally, notice that the procedure transforming Ŷ into Y is allowed to access the
instance of the original problem. However, one can decide not to endow the algorithm
with such a capability, thus obtaining a stronger version of computable reducibility.

Definition 1.2.8 (Strong computable reduction, ≤sc). Let P,Q be Π1
2-principles.

Then Q is strongly computably reducible to P (denoted Q ≤sc P) if for every instance
X of Q there exists an X-computable instance X̂ of P such that, if Ŷ is a solution
to P for X̂, then there exists an Ŷ -computable solution to Q for X.
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X Φ X̂ X Φ X̂

Y Ψ Ŷ Y Ψ Ŷ

P Q P Q

Figure 1.2. Diagram of Weihrauch reduction (left) and strong Weihrauch reduction (right)
of a principle P to a principle Q, witnessed by Turing functionals Φ and Ψ.

Clearly, strong computable reducibility implies computable reducibility.

On the other hand, weaker notions of reducibility can be given. For instance,
Hirschfeldt and Jockusch [HJ] formalized the ω-reducibility as follows, using the
concept of ω-model, that is, a model of RCA0 with domain ω.

Definition 1.2.9 (ω-reducibility, ≤ω). Let P and Q be Π1
2-principles. Then Q is

ω-reducible to P (denoted Q ≤ω P) if any ω-model satisfying P also satisfies Q.

In the next chapters, we will focus exclusively on stronger kinds of reductions,
so we do not provide further details about ω-reducibility; we just point out that
ω-reducibility to a principle P is implied not only by computable reducibility to P,
but even by the weaker notion of computable reducibility to m applications of P, for
any m ≥ 1 (see Proposition 4.6.9 in [DM]).

1.2.4 Weihrauch reductions

As we noted above, computable reducibility of a principle to another may be witnessed
by different computable procedures for any instance of the original problem and for
any solution. Then, it makes sense to require the two procedures to be uniform in
the instances and in the solutions to the problem, hence giving a stronger notion of
reducibility.
Despite the idea of uniform transformations was first formalized by Weihrauch
[Wei1, Wei2], in the context of Reverse Mathematics such a concept is always
defined according to the version given by Dorais, Dzhafarov, Hirst, Mileti and
Shafer in [DDH+], as the original formulation provided by Weihrauch used notions
from computable analysis whose adoption is not particularly convenient in the
field of Reverse Mathematics, especially when dealing with combinatorial principles.
However, in [DDH+] it is also shown how the two versions are equivalent to each
other within our scope of interest.
Then, in the next Definition and throughout the rest of the thesis, we stick to the
formulation given in [DDH+] and based on the notion of Turing functional, that is,
a computable function from sets to sets.

Definition 1.2.10 (Weihrauch reduction, ≤W). Let P,Q be Π1
2-principles. Then Q

is Weihrauch reducible to P (denoted Q ≤W P) if there exist Turing functionals Φ
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≤sc

≤sW ≤c ≤ω

≤W

Figure 1.3. Diagram of implications between notions of reducibility. No other relations
hold but the ones given by transitivity of implication.

and Ψ such that, for every instance X of Q, we have that Φ(X) is an instance of P,
and if Ŷ is a solution to P for Φ(X), then Ψ(X ⊕ Ŷ ) is a solution to Q for X.

While ≤W trivially implies ≤c, it does not necessarily implies ≤sc. As suggested by
Hirschfeldt and Jockusch in [HJ], one can easily check that Q ≤W P while Q ̸≤sc P
when we take P as ∀X∃Y (Y = ∅) and Q as ∀X∃Y (X = Y ). The converse is also
true, meaning that ≤sc does not entail ≤W.

Similarly to computable reductions, one can require the functional Ψ to use an oracle
just for Ŷ and not for both Ŷ and X.

Definition 1.2.11 (Strong Weihrauch reduction, ≤sW). Let P,Q be Π1
2-principles.

Then Q is strongly Weihrauch reducible to P (denoted Q ≤sW P) if there exist Turing
functionals Φ and Ψ such that, for every instance X of Q, we have that Φ(X) is an
instance of P, and if Ŷ is a solution to P for Φ(X), then Ψ(Ŷ ) is a solution to Q
for X.

Strong Weihrauch reductions imply all the previously discussed notions of reducibility.
Figure 1.3 summarizes all the existing relations between the different kinds of
reductions presented above. Hirschfeldt and Jockusch showed [HJ] that none of such
implications can be reversed.

In the next chapters, we establish several reductions concerning various versions of
Ramsey’s Theorem and Hindman’s Theorem: some of them use uniform functionals
for transforming instances and solutions, hence witnessing Weihrauch reductions.
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Chapter 2

Ramsey-type Theorems and
Well-Ordering Principles

2.1 Ramsey’s Theorem and its variations

Among combinatorial principles, Ramsey’s Theorem is certainly one of the most
studied in Proof Theory and Reverse Mathematics. Even if a finite version of such
theorem does exist, here we are only interested in the infinitary version and in its
several variations. All the definitions below are formalized in the language of Z2.
For X ⊆ N and n ≥ 1 we denote by [X]n the set of subsets of X of cardinality n.
For k ≥ 1 we identify {0, . . . , k − 1} with k. Accordingly, for S ⊆ N, c : [S]n → k
indicates a colouring of [S]n in k colours, and f(x1, . . . , xn) means f({x1, . . . , xn})
with x1 < · · · < xn.

Definition 2.1.1 (Ramsey’s Theorem). Let n, k ≥ 1. We denote by RTn
k the

following principle. For all c : [N]n → k there exists an infinite set H ⊆ N such that
c is constant on [H]n. The set H is called homogeneous or monochromatic for c.
Also, we use RTn to denote (∀k ≥ 1) RTn

k and RT to denote (∀n ≥ 1) RTn.

This principle has been widely studied in Reverse Mathematics throughout the last
few decades, hence several well-known results about its strength can be found in
the literature. For instance, it is known that, for any k ≥ 1, RT1

k is provable in
RCA0, while RT1 is equivalent to BΣ0

2 over RCA0 [Hir1]. As noted in [DM], the
latter result is quite surprising, for it shows the equivalence between a first order
and a second order principle. Moreover, for n ≥ 3 and k ≥ 2, Simpson proved the
following equivalence, starting from former results due to Jockusch [Joc].

Theorem 2.1.2 (Simpson [Sim2]). Over RCA0, for n ≥ 3 and k ≥ 2, RTn
k is

equivalent to ACA0.

The case n = 2, instead, is a bit anomalous, and even the strength of RT2
2 has

represented a longstanding question in Reverse Mathematics, until Liu [Liu] finally
proved that RT2

2 – which was already known to be weaker than ACA0 [SS] but still
not derivable in WKL0 [Joc] – does not imply WKL0: therefore, RT2

2 and WKL0 are
independent from each other, meaning that the former does not imply the latter,
and vice versa.
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It is worth pointing out that, while the equivalence over RCA0 between RTn
j and RTn

k

can be proved for any positive j, k, n by a straightforward argument, the number of
colours does matter when it comes to computable reductions: when j < k, neither
RTn

k ≤sc RTn
j nor RTn

k ≤W RTn
j holds (see [DDH+], [HJ], [BR]), while for n ≥ 2,

Patey [Pat] recently refined the corresponding (negative) results by proving that
RTn

k ̸≤c RTn
j .

As for the “full” principle, i.e. RT, we have the following equivalence.

Theorem 2.1.3 (McAloon [McA]). Over RCA0, RT is equivalent to ACA′
0.

The stronger system ACA+
0 , instead, is equivalent to Ramsey’s Theorem for 2-

colourings of exactly large sets, that is formally defined below.

Definition 2.1.4. A set S is exactly large if |S| = min(S)+1. Moreover, we denote
by [X]!ω the collection of all exactly large sets S ⊆ X.

Definition 2.1.5 (Ramsey’s Theorem for exactly large sets). Let k ≥ 1. We denote
by RT!ω

k the following principle. For all c : [N]!ω → k there exists an infinite set
H ⊆ N such that c is constant on [H]!ω. The set H is called homogeneous or
monochromatic for c.

RT!ω
2 has been originally proved by Pudlàk and Rödl [PR] and, independently, by

Farmaki and Negrepontis [FN], while Carlucci and Zdanowski [CZ2] showed its
equivalence with ACA+

0 .

Theorem 2.1.6 (Carlucci-Zdanowski [CZ2]). Over RCA0, RT!ω
2 is equivalent to

ACA+
0 .

In Section 2.2 we will obtain the implications from ACA0, ACA′
0 and ACA+

0 to the
respective versions of Ramsey’s Theorem via a combinatorial approach.

Besides those mentioned so far, there are several other variations of the original
principle (e.g., Polarized Ramsey’s Theorem, Stable Ramsey’s Theorem, Rainbow
Ramsey’s Theorem, etc.), but they are out of the scope of this thesis. Many original
results about some of these further versions can be found in [Pat], most of which
are also discussed in [DM] together with many other pertinent results.

2.2 Ramsey’s Theorem and Well-Ordering Principles

In this section, we relate well-ordering principles to different variations of Ramsey’s
Theorem, namely RT3

2, RT and RT!ω
2 , hence giving a sort of ordinal analysis of such

theorems, in the sense described in the last part of Sec. 1.1.4. As already mentioned
in the previous sections, these Ramsey-theoretic statements have already been proved
to be equivalent, respectively, to ACA0, ACA′

0 and ACA+
0 , and in turn these theories

have already been associated with well-ordering principles of increasing strength.
However, here we give a method for obtaining direct, combinatorial implications over
RCA0 and – at the same time – Weihrauch reductions between these three versions
of Ramsey’s Theorem and the corresponding well-ordering principles.
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In order to apply the scheme of reductions to well-ordering principles, it is convenient
to consider their contrapositive form, already presented and explained in Section 1.2,
that is:

∀X (¬WO(f(X )) → ¬WO(X )),

where the instances of the problem are sequences witnessing that f(X ) is not
well-ordered, while the solutions are sequences witnessing that X is not well-ordered.
In all our proofs, moreover, the solution sequence is not only computable from
the instance sequence, but it consists only of terms appearing as sub-terms in the
instance sequence.

RT3
2, ACA0, and base-ω exponentiation. We start by giving a direct combina-

torial argument showing that Ramsey’s Theorem for triples and two colours implies
WOP(X 7→ f(X )), where f is the operator of base-ω exponentiation defined below.
The needed colouring is adapted from Loebl and Nešetril’s [LN] combinatorial proof
of the unprovability of Paris-Harrington principle in Peano Arithmetic. Our proof
– that also establishes a Weihrauch reduction of the aforementioned well-ordering
principle to RT3

2 – is based on the same argument applied in [CZ1], where a direct
implication from RT3

3 to WOP(X 7→ f(X )) is already obtained. However, here we
use just two colours: this minimizes the number of colours needed, hence proving the
implication (and the reduction) from the usual principle RT3

2 often used in Reverse
Mathematics; moreover, this makes the proofs of Theorem 2.2.3 and Theorem 2.2.5
more readable.
When dealing with linear orders, we use the same notations as in [MM]. In particular,
we define the operator ωωω as follows. Given a linear order X , the field of ωωωX

is the set of finite (possibly empty) sequences ⟨x0, x1, . . . , xk⟩ of elements of X ,
where x0 ≥X x1 ≥X · · · ≥X xk. When X is an ordinal, the intended meaning of
⟨x0, x1, . . . , xk⟩ is ωx0 + · · · + ωxk . The order ≤ωωωX on ωωωX is the lexicographic order.
For any ordering Y = (Y,≤Y), we just use the symbol ≤ in place of ≤Y when there
is no risk of ambiguity.
If α ∈ ωωωX is the empty sequence (that we will occasionally denote by 0), then
we set lh(α) = 0, while we leave ei(α) undefined for any i; otherwise, for any
α = ⟨x0, x1, . . . , xk⟩ ∈ ωωωX , we define lh(α) = k + 1 and ei(α) = xi for any i < lh(α).
In more intuitive terms, we sometimes call lh(α) the length of α and ei(α) the
i-th exponent of α. Also, for any β = ⟨y0, y1, . . . , yl⟩ ∈ ωωωX different from α, with
lh(α) > 0 and lh(β) > 0, we denote by ∆(α, β) the least index at which α and β
differ, i.e. the minimum i such that ei(α) ̸= ei(β) if β is not an initial segment of
α or vice versa, otherwise ∆(α, β) = min(k, l) + 1. If either α or β is the empty
sequence, or α = β, then we set ∆(α, β) = 0.
We show the following.

Theorem 2.2.1. Over RCA0, RT3
2 implies WOP(X 7→ ωωωX ). Moreover, we have

WOP(X 7→ ωωωX ) ≤W RT3
2.

Proof. Assume RT3
2 and, by way of contradiction, suppose ¬WO(ωωωX ). We show

¬WO(X ). We define a σ-computable colouring C(σ) : [N]3 → 2 with an explicit
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sequence parameter σ of intended type σ : N → field(ωωωX ) as follows:

C(σ)(i, j, k) =
{

0 if ∆(σi, σj) > ∆(σj , σk),
1 otherwise.

Let α : N → field(ωωωX ) be an infinite descending sequence in ωωωX . Let H = {h0 <
h1 < · · · } be an infinite C(α)-homogeneous set. Consider (βi)i∈N, where βi = αhi

.
We reason by cases.
Case 1. The colour of C(α) on [H]3 is 0. Then the sequence:

∆(β0, β1) > ∆(β1, β2) > · · ·

is strictly descending in N, contradicting WO(ω).

Case 2. The colour of C(α) on [H]3 is 1. Thus, for any i < j < k, we can derive
e∆(βi,βj)(βi) >X e∆(βj ,βk)(βj), since βi >ωωωX βj >ωωωX 0 and ∆(βi, βj) ≤ ∆(βj , βk).
Therefore we have:

e∆(β0,β1)(β0) >X e∆(β1,β2)(β1) >X · · ·

In other words, α′ : N → X defined by i 7→ e∆(αhi
,αhi+1 )(αhi

) is an infinite descending
sequence in X .
Notice that α′ is obtained by first transforming the sequence α into C(α), and then
transforming the solution set H into the solution sequence α′ (using information
from α as well). Both transformations are uniform in the instance and in the solution,
as required by the definition of Weihrauch reduction. ⊓⊔

We have the following immediate corollary, from Theorem 1.1.16 and Theorem 2.2.1.

Corollary 2.2.2. Over RCA0, RT3
2 implies ACA0.

RT, ACA′
0, and iterated base-ω exponentiation. We generalize the result from

the previous paragraph to Ramsey’s Theorem with internal universal quantification
over all dimensions. This result is also in [CZ1], yet here we give a slightly different
proof using an argument more clearly formalizable in RCA0. Also, we observe that a
Weihrauch reduction can be obtained.
Given a linear ordering X , we define ωωω⟨0,X ⟩ = X , and ωωω⟨n+1,X ⟩ = ωωωωωω⟨n,X ⟩ .

Theorem 2.2.3. Over RCA0, RT implies ∀h(WOP(X → ωωω⟨h,X ⟩)). Moreover,
∀h(WOP(X → ωωω⟨h,X ⟩)) ≤W RT.

Proof. The case h = 0 is trivial, while the case h = 1 holds by Theorem 2.2.1. So, by
way of contradiction, let α : N → field(ωωω⟨h,X ⟩) be an infinite descending sequence in
ωωω⟨h,X ⟩, for some h≥2 and for some well ordering X . We show that we can construct
an infinite descending sequence in X , hence contradicting WO(X ).
First, let σ : N → field(ωωω⟨h,X ⟩) ∪ {#}, where # is an additional symbol used for
the sake of readability. For any j ∈ N, any I = {i0 < · · · < ik} with k ≥ 1, and
any n ≤ k, let us denote by σ(n),I

j the result of the n-th iteration in the process of
extracting the comparing exponent of σj using indexes in I; formally, if succI(j) is
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the least element in I greater than j (or 0 if no such element exists), then σ(0),I
j = σj

and for m < n:

σ
(m+1),I
j =



e∆(σ(m),I
j , σ

(m),I

succI (j))
(
σ

(m),I
j

)
if j ∈ {i0, . . . , ik−m−1} and

e∆(σ(m),I
j ,σ

(m),I

succI (j))
(
σ

(m),I
j

)
exists,

# otherwise,

We then denote by σ(n),I the sequence (σ(n),I
j )j∈N.

Now, let C(σ)
1 : [N]3 → 3 be the same colouring defined in the proof of Theorem 2.2.1,

with the additional property that C(σ)
1 (i, j, k) = # if at least one out of σi, σj , σk is #.

Also, if I = {i0 < · · · < ik} with k ≥ 3, for any j = 0, . . . , k − 3, let:

v
(σ),I
j = (C(σ(j),I)

1 (i0, i1, i2), C(σ(j),I)
1 (i1, i2, i3), . . . , C(σ(j),I)

1 (ik−j−3, ik−j−2, ik−j−1)),

and

w
(σ),I
j = (C(σ(j),I)

1 (i1, i2, i3), C(σ(j),I)
1 (i2, i3, i4), . . . , C(σ(j),I)

1 (ik−j−2, ik−j−1, ik−j)).

Finally, we can define a colouring C
(σ)
h : [N]h+2 → d(h), where d is a primitive

recursive function (uniform in the proof) such that d(h) is large enough to cover all
the cases defined below. For I = {i0 < · · · < ih+1}, let us define:

C
(σ)
h (I) =



(
v

(σ),I
0 , w

(σ),I
0

)
if ¬

(
v

(σ),I
0 = w

(σ),I
0 = (1, . . . , 1)

)
(
v

(σ),I
1 , w

(σ),I
1

)
if ¬

(
v

(σ),I
1 = w

(σ),I
1 = (1, . . . , 1)

)
. . . . . .(
v

(σ),I
h−2 , w

(σ),I
h−2

)
if ¬

(
v

(σ),I
h−2 = w

(σ),I
h−2 = 1

)
C

(σ(h−1),I)
1 (i0, i1, i2) otherwise

where each case of C(σ)
h (I) is defined assuming that the conditions describing the

previous cases do not hold.
By RTh+2

d(h), let H be an infinite C(α)
h -homogeneous set. We show how to compute

an X -descending sequence given α and H. Let {s0 < s1 < · · · } be an enumeration
of H in increasing order. We first show that the colour of H must be 1. To
exclude the other cases, we argue as follows. Let I = {si0 < · · · < sih+1} and
J = {si1 < · · · < sih+2} be in [H]h+2, and let (v, w) be the colour of H, where
v = (v0, . . . , vl) and w = (w0, . . . , wl), for some l < h− 1. Also, let l′ = (h− 2) − l.
Informally, l′ is the number of times we “extract” the exponent of the elements of
any (h+ 2)-tuple in [H]h+2 in order to get the colour of the tuple; in other words,
l′ is such that C(α)

h (I) = (v, w) =
(
v

(α),I
l′ , w

(α),I
l′

)
. Notice that l′ is constant for
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every tuple in [H]h+2, since it only depends on h and l, the latter being constant by
homogeneity of H.
Case 1. The colour is (v, w), with v ≠ w. This is easily seen to be impossible, since
C

(α)
h (I) = (v, w) and, by definition of J , the first component of the colour of J is

exactly w. But then v = w should hold by homogeneity.

Case 2. The colour is (v, w) for some v = w ̸= (1, . . . , 1). We have three subcases.

Case 2.1. v ≠ (t, . . . , t), with t ∈ {#, 0, 1}. Then, by hypothesis, we have v0 =
w0, v1 = w1, . . . , vl = wl and, by definition of the vectors v and w, we also have
w0 = v1, w1 = v2, . . . , wl−1 = vl. Thus we have v0 = v1 = · · · = vl. Contradiction.

Case 2.2. v = (#, . . . ,#). Then v
(α),I
l′ = (#, . . . ,#). However, no components of

v
(α),I
l′ can be #, since α is a total strictly descending sequence and v(α),I

j = (1, . . . , 1)
for any j < l′, which implies that e∆(α(j),I

i ,α
(j),I

succI (i))
(
α

(j),I
i

)
exists for each i ∈ I. So

this case can not occur.

Case 2.3. v = (0, . . . , 0). Then the sequence

(
∆

(
α

(l′),{sn,...,sn+l′ }
sn , α

(l′),{sn+1,...,sn+l′+1}
sn+1

))
n∈N

is strictly descending in N, contradicting WO(ω).

Since Case 1 and Case 2 cannot occur, for any I = {i0 < · · · < ih+1} ⊂ H we have

C
(α)
h (I) = C

(α(h−1),I)
1 (i0, i1, i2) ∈ {#, 0, 1}.

We can discard colours # and 0 as in Cases 2.2 and 2.3, so the only possible colour for
H is 1. Therefore, we can construct the sequence

(
α

(h),{sn,...,sn+h}
sn

)
n∈N, which is an

infinite descending sequence in X . To see this, we can easily prove by ∆0
0-induction

on j that:
(∀j ≤ h)

(
α(j),I

sn
>ωωω⟨h−j,X ⟩ α(j),I′

sn+1

)
where n is a free variable, I = {sn, . . . , sn+h} and I ′ = {sn+1, . . . , sn+h+1}. The case
j = 0 is trivial, while the case j > 0 is guaranteed by the fact that(

α(j−1),I
sn

>ωωω⟨h−j+1,X ⟩ α(j−1),I′
sn+1

)
by induction hypothesis, and C

(α(j−1),I)
1 (sn, sn+1, sn+2) = 1 due to the colour of H.

Then, both α
(j),I
sn+1 and α

(j),I′
sn exist, with the former being <ωωω⟨h−j,X ⟩ than the latter

by the same argument used in the proof of Theorem 2.2.1.

The proof above witnesses a Weihrauch reduction: in particular, notice that both h
and d(h) can be computed uniformly from the original instance. ⊓⊔

The following corollary is immediate from Theorem 1.1.17 and Theorem 2.2.3.

Corollary 2.2.4. Over RCA0, RT implies ACA′
0.
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Large Ramsey’s Theorem, ACA+
0 and the ε-ordering. We now apply the proof

technique from the previous paragraphs to RT!ω
2 , i.e. to the extension of Ramsey’s

Theorem to 2-colourings of exactly large sets. Such a result is conjectured in [CZ1],
yet a proof is missing.
For the sake of readability of the argument below, here we slightly redefine the notion
of largeness given in Definition 2.1.4, calling a set X exactly large if |X| = min(X)+3.
We do not reserve a specific notation for the principle RT!ω

2 using this alternative
definition of largeness, since it is equivalent over RCA0 to the original version. Indeed,
the implication from this novel version to the original one can be proved by a simple
forgetful argument, while for the converse we can fix a colouring f of sets X such
that |X| = min(X) + 3, and then define:

g(i0, i1, . . . , ii0) =
{

0 if i0 < 2,
f(i0 − 2, i1 − 2, . . . , i(i0−2)+2 − 2) otherwise.

Therefore, if H = {h0 < h1 < · · · } is any solution for g (of colour c < 2) to the
original version of RT!ω

2 , then H ′ = {h′
0 < h′

1 < · · · } = {h− 2 | h ∈ (H \ {0, 1})} is
a solution for f to this new version of the principle, as shown by the following chain
of equalities holding for any h′

s0 < h′
s1 < · · · < h′

h′
s0 +2 in H ′:

f(h′
s0 , h

′
s1 , . . . , h

′
h′

s0 +2) = f(ht0 − 2, ht1 − 2, . . . , hht0 −2+2 − 2) =

= f(ht0 − 2, ht1 − 2, . . . , hht0
− 2) =

= g(ht0 , ht1 , . . . , hht0
) = c,

where ht0 < ht1 < · · · < hht0
are chosen in H. The argument above also witnesses a

strong Weihrauch reduction.
Now, we are ready to show a direct implication (and a Weihrauch reduction) between
RT!ω

2 and WOP(X 7→ εεεX ), where εεε is defined as in [MM]: hence, if X is a linear
ordering, then the terms of εεεX are 0, εx for any x ∈ X , γ1 + γ2 for any γ1 and γ2 in
εεεX , and ωγ for any γ in εεεX . The normal form of each term and the relation <εεεX

are defined together as follows. A term γ = γ0 + · · · + γn in εεεX is in normal form if
either n = 0, or γ0 ≥εεεX γ1 ≥εεεX · · · ≥εεεX γn >εεεX 0 and each γi is either εxi for some
xi ∈ X or ωδ′

i for some δ′
i in normal form and different from εx for any x ∈ X ; also,

for each γ = γ0 + · · · + γn and δ = δ0 + · · · + δm in εεεX both in normal form, γ ≤εεεX δ
if one of the following conditions holds:

• γ = 0;
• γ = εx and, for some y ≥X x, εy occurs in δ;
• γ = ωγ′ , δ0 = εy and γ′ ≤εεεX εy;
• γ = ωγ′ , δ0 = ωδ′ and γ′ ≤εεεX δ′;
• n = 0 and γ0 ≤εεεX δ0;
• n > 0 and γ0 = δ0, m > 0 and γ1 + · · · + γn ≤εεεX δ1 + · · · + δm.

Henceforth, we assume all the terms in εεεX to be written in normal form. Also, for
any γ ∈ εεεX and n ∈ N, let:
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• γi be the i-th term of the normal form of γ if such term exists, that is,
γ0 + · · · + γn is the normal form of γ and γi = 0 whenever i > n;

• ei(γ) be the exponent of γi if such exponent does exist – that is, ei(γ) = γ′ if
γ = ωγ′ – otherwise ei(γ) = 0;

• bi(γ) = min{x ∈ X | γi < εx+1};
• ht(γ) = 0 if γ < ε0 or γ0 = εb0(γ), otherwise ht(γ) = 1 + ht(γ′), with γ0 = ωγ′ .

Informally, when γn ≥ ε0, bn(γ) is the largest x ∈ X such that εx appears in γn,
while ht(γ) is the maximum height at which εb0(γ) appears in γ0 and therefore in γ.
Moreover, if δ ∈ εεεX , we indicate by ∆(γ, δ) the index of the first term at which γ
and δ differs – or 0 if γ = δ.
Finally, notice that ωωω and εεε operators are compatible to each other in the sense of
Lemma 2.6 in [MM], so we can refer to results from the previous paragraphs while
dealing with εεε.

Theorem 2.2.5. Over RCA0, RT!ω
2 implies WOP(X → εεεX ). Moreover, we have

WOP(X → εεεX ) ≤W RT!ω
2 .

Proof. Suppose WO(X ) but ¬WO(εεεX ). Without loss of generality, we assume 0 ∈ X .
We first define a colouring C(σ)

1 : [N]3 → 5 with an explicit sequence parameter σ of
intended type σ : N → field(εεεX ) ∪ {#}. Each case of C(σ)

1 is defined assuming that
the conditions describing the previous cases do not hold.

C
(σ)
1 (i, j, k) =



# if σi = # ∨ σj = # ∨ σk = #
0 if ∆(σi, σj) > ∆(σj , σk)
1 if (σi)∆(σi,σj) ≤εεεX ε0

2 if b∆(σi,σj)(σi) >X b∆(σj ,σk)(σj)
3 otherwise

First, we claim that C(σ)
1 has the following useful property.

Claim 1. For any i < j < k such that σi >εεεX σj, if C(σ)
1 (i, j, k) = 3 then the

comparing exponent of αi with αj does exist, formally e∆(σi,σj)(σi) ̸= 0.

Proof. Assume otherwise. Since the colour is not #, all the elements in the rest of the
proof are defined. Also, C(σ)

1 (i, j, k) ̸= 0 implies (σi)∆(σi,σj) >εεεX (σj)∆(σj ,σk). By
C

(σ)
1 (i, j, k) ̸= 1 plus our assumption that the exponent of (σi)∆(σi,σj) is 0, instead,

we can derive that (σi)∆(σi,σj) = εx for some x >X 0 in X . Then, by C(σ)
1 (i, j, k) ̸= 2,

we have that b∆(σj ,σk)(σj) = x, so (σj)∆(σj ,σk) must contain a term εx: however, such
a term should appear at a lower height with respect to its height in (σi)∆(σi,σj), but
this is impossible due to the latter being exactly εx. Thus, we have a contradiction,
which concludes the proof of the claim.

Then, for any h ≥ 2, we define C(σ)
h : [N]h+2 → d(h) as in Theorem 2.2.3, but using

C
(σ)
1 as defined above: therefore, d must be adapted according to the larger range of
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C
(σ)
1 , and the condition ¬

(
v

(σ),I
0 = w

(σ),I
0 = (1, . . . , 1)

)
in the definition of C(σ)

h must
be replaced with ¬

(
v

(σ),I
0 = w

(σ),I
0 = (3, . . . , 3)

)
.

Lastly, we define a colouring C(σ) : [N]!ω → 2 as follows:

C(σ)(i0, . . . , ii0+2) =
{

0 if C(σ)
i0

(i1, . . . , ii0+2) = 3
1 otherwise

Now we are ready to prove that, by assuming ¬WO(εεεX ), we can construct an infinite
descending sequence in X , thus contradicting WO(X ).
Let α : N → field(εεεX ) be an infinite descending sequence in εεεX and, by RT!ω

2 ,
let H = {h0 < h1 < . . .} be an infinite C(α)-homogeneous set. Without loss of
generality, we assume h0 > 1 (this avoids some problems deriving from a different
behaviour of C(α)

1 with respect to C(α)
h for h ≥ 2).

First, notice that the C(α)-colour of H is 0, otherwise, for any choice of h ∈ H,
we could colour H \ [0, h] using C(α)

h and, by RTh+2
d(h), we would obtain an infinite

C
(α)
h -homogeneous set whose colour is different from 3, hence contradicting the proof

of Theorem 2.2.3, or rather its version adapted in order to manage the two additional
colours of the base colouring C(α)

1 . We can apply RTh+2
d(h) since it is implied by RT!ω

2 .
Now, for the sake of readability of the argument below, we slightly redefine the
notation used in Theorem 2.2.3. Let us denote by α

(n),H
i , with i ∈ H \ {h0} and

n ≤ precH(i) = max{h ∈ H | h < i}, the result of the n-th iteration in the process
of extracting the comparing exponent of αi using indexes in H, i.e. for any m < n:

α
(0),H
i = αi

α
(m+1),H
i = e∆(α(m),H

i ,α
(m),H

succH (i))
(
α

(m),H
i

)
Each term α

(n),H
i is well-defined, since the comparing exponent in the definition of

α
(m+1),H
i does exist. This derives from the fact that C(α)

precH(i)(i, hj0 , . . . , hjprecH (i))=3
for any choice of j0 < j1 < · · · < jprecH(i) such that hj0 > i, and from the following
claim.

Claim 2. For any h ∈ H, m ≤ h and I = {i0 < · · · < in+1} ⊆ H \ [0,m], if
C

(α)
h (I) = 3 then the comparing exponent of α(m),H

i0
with α(m),H

i1
does exist, formally

e∆(α(m),H
i0

,α
(m),H
i1

)(α
(m),H
i0

) ̸= 0.

Proof. By C(α)
h (I) = 3 and by definition of v(α),I

j we can derive C(α(j),I)
1 (i0, i1, i2) = 3

for any j < h. Then, by Claim 1 and the fact that α is decreasing, we can easily
show that e∆(α(j),H

i0
,α

(j),H
i1

)(α
(j),H
i0

) ̸= 0 holds for any j < h, and therefore holds for m.

Now, we construct an X -descending sequence τ using α and H. The idea is the
following:

1. We put in τ the <X -largest x such that εx appears in α0; clearly, εx must
appear in the first term of α0, at some height z.
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2. Now, we know that any subsequent element of α cannot contain εx at height
larger than z, since α is decreasing: therefore, if we switch to the sequence
of the comparing exponents of height z + 1 (as we have done in the proof of
Theorem 2.2.3), we will only find ε-terms εx′ where x′ <X x. The existence
of such a sequence is guaranteed by Claim 2 above. Then, we can repeat the
procedure from step 1 replacing α0 with α

(z+1),H
h .

We now formalize the idea above, yet starting our procedure from αh1 – rather than
from α0 – just to avoid an abuse of notation: of course, the argument remains valid.
Then, let us define the sequence τ : N → field(X ) as follows:

τi = b0
(
α(ti),H

ni

)
for any i ≥ 0, where t0 = h0, n0 = h1 and, for any j ≥ 0,

tj+1 = tj + ht
(
α

(tj),H
nj

)
+ 1

nj+1 = succH

(
min

{
h ∈ H

∣∣ h ≥ tj+1
})

Notice that each term τi is well-defined, since ti ≤ precH(ni), as required by the
definition of α(ti),H

ni .
Finally, since the sequence

(
α

(ti),H
ni+k

)
k∈N is decreasing by construction (cf. proof of

Theorem 2.2.3), we have:

τi = b0
(
α(ti),H

ni

) (∗)= b0
(
α(ti),H

ni+1

) (∗∗)
>X b0

(
α(ti+1),H

ni+1

)
= τi+1

where (∗) is due to the C(α)
ti

-colour of tuples in [H \ [0, ni)]ti+2 being different from 2,
while (∗∗) is guaranteed by the choice of ti+1: since ετi is the maximum ε-term in
α

(ti),H
ni and it appears at height h = ht

(
α

(ti),H
ni

)
, then no terms εx with x ≥ τi can

appear at height h′ > h in α(ti),H
ni+1 . Hence, no such terms can appear in α(ti+1),H

ni+1 either.
So (∗∗) holds.

Therefore, τ is an infinite descending sequence in X .
Moreover, both C(α) and τ are obtained from computable transformations uniform
in α and in α⊕H, respectively: then, they witness a Weihrauch reduction. ⊓⊔

We have the following corollary, yielding an alternative proof of Theorem 3.6 in [CZ2].

Corollary 2.2.6. Over RCA0, RT!ω
2 implies ACA+

0 .

Proof. From Theorem 1.1.18 and Theorem 2.2.5. ⊓⊔

RT!ω
2 generalizes to a version of Ramsey’s Theorem for bicolorings of exactly α-large

sets [FN], and we conjecture that the method presented here can be extended to
relate such general version of the theorem to the systems Π0

ωβ -CA0 for every β ∈ ωck

by using the characterization of the latter systems in terms of the well-ordering
principles (WOP(X 7→ φφφ(β,X )) [MM].
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2.3 Hindman’s Theorem and its variations

Hindman’s Theorem is another relevant principle in Reverse Mathematics that is
derived from Combinatorial Theory, and in particular from Ramsey’s Theorem:
indeed, it was first conjectured by Graham and Rothschild while listing a number
of Ramsey-related open questions [GR]. It was then proved by Hindman [Hin1],
whose argument – despite being more complex than other successive proofs – was
later used by Blass, Hirst and Simpson [BHS] to give a first (and still unimproved)
result concerning this principle from the point of view of Reverse Mathematics.
Thereafter, proof-theoretic results about Hindman’s Theorem have prospered in the
literature and, similarly to Ramsey’s Theorem, several variations of the original
principle have been formalized and studied, some of which are presented below.
Then, in the next section, we formulate a novel version of Hindman’s Theorem with
the interesting property of being in some sense “symmetric” with the analogous
variation of Ramsey’s Theorem.
We start by giving the statement of the original Hindman’s Theorem, which requires
the following Definition. As in the previous sections, we use the language of Z2.

Definition 2.3.1 (FS). For any X ⊆ N, we denote by FS(X) the set of all non-
empty finite sums of distinct elements in X.

Definition 2.3.2 (Hindman’s Theorem). Let k ≥ 1. We denote by HTk the following
principle. For all c : N → k there exists an infinite set H ⊆ N such that c is constant
on FS(H). We denote by HT the principle (∀k ≥ 1) HTk.

For technical convenience and without loss of generality, Hindman’s Theorem (as
well as any of its variations) is sometimes stated replacing N with N+ = N \ {0}.
Also, this principle is often stated using an equivalent formulation based on the
notions of finite union and block sequence, that are formalized in the next Definitions.
We use FIN(X) to denote the set of all non-empty finite subsets of X ⊆ N.

Definition 2.3.3 (FU). Let B = (B)i∈N be a sequence of non-empty finite sets.
Then we denote by FU(B) the set of non-empty finite unions of B.

Definition 2.3.4 (Block sequence). Let B = (Bi)i∈N be a sequence of non-empty
finite sets. Then B satisfies the block condition if, for any i, max(Bi) < min(Bi+1)
– in short, Bi < Bi+1. In that case, we call B a block sequence.

Using the previous Definitions, we can then restate Hindman’s Theorem (which in
that case is called Finite Union Theorem) as follows.

Definition 2.3.5 (Finite Union Theorem). Let k ≥ 1. We denote by FUTk the
following principle. For all c : FIN(N) → k there exists an infinite block sequence B
such that c is constant on FU(B). We denote by FUT the principle (∀k ≥ 1) FUTk.

The block condition is needed by FUT in order to be equivalent (over RCA0) to HT:
when this condition is dropped, Hindman’s Finite Unions Theorem becomes much
weaker (in particular, provable in RCA0) as shown by Hirst [Hir3]. We can then
introduce the corresponding property in the finite sums setting. This property is
already implicit in Hindman’s original proof [Hin2] and is usually called apartness.
Let n ∈ N+. If n = 2t1 + · · · + 2tp with 0 ≤ t1 < · · · < tp and p ≥ 1, then we set
λ(n) = t1 and µ(n) = tp (the notation is from [BHS]). We set λ(0) = µ(0) = 0.
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Definition 2.3.6 (Apartness Condition). A set X satisfies the apartness condition
if for all x, x′ ∈ X such that x < x′, we have µ(x) < λ(x′). If X satisfies the
apartness condition we say that X is apart.

If P is a Hindman-type principle, we denote by P with apartness or P[ap] the principle
P with the apartness condition imposed on the solution set.
In Hindman’s original proof the apartness condition is ensured by a simple counting
argument (Lemma 2.2 in [Hin1]) on any solution to the Finite Sums Theorem, i.e.,
on any infinite H ⊆ N such that FS(H) is monochromatic (Lemma 2.3 in [Hin1]).
As noted in [BHS], the proof shows that a solution satisfying the apartness condition
can be obtained computably in any such solution. In the Reverse Mathematics
setting, one needs to be slightly more careful to establish that HT implies HT with
apartness over RCA0.
We first check that Lemma 2.2 in [Hin1] holds in RCA0.

Lemma 2.3.7. The following is provable in RCA0: For all ℓ, for all k, for all finite
sets X, if X has cardinality 2k and is such that λ(x) = ℓ for all x ∈ X, then there
exists Y ⊆ X such that λ(

∑
y∈Y y) ≥ ℓ+ k.

Proof. The Lemma is established by a straightforward induction on k. We give the
details for completeness.
For the base case, let k = 0 and let X = {x} be a finite set of cardinality 20 such
that λ(x) = ℓ. Obviously choosing Y = X gives the desired solution.
For the inductive step, let k ≥ 0 and let X be a set of cardinality 2k+1 such that for all
x ∈ X we have λ(x) = ℓ. Let A and B be two disjoint subsets of X each of cardinality
2k. By inductive hypothesis there exists A′ ⊆ A such that λ(

∑
a∈A′ a) ≥ ℓ+ k and

there exists B′ ⊆ B such that λ(
∑

b∈B′ b) ≥ ℓ + k. We distinguish the following
cases. If λ(

∑
a∈A′ a) = ℓ+ k and λ(

∑
b∈B′ b) = ℓ+ k then λ(

∑
c∈A′∪B′ c) ≥ ℓ+ k + 1.

If either λ(
∑

a∈A′ a) > ℓ+ k or λ(
∑

b∈B′ b) > ℓ+ k then we are done.
The argument can be carried out in RCA0 since quantification over finite sets formally
means quantification over their numerical codes and the set Y is a finite subset of
the finite set X, so that the existential quantifier over Y is bounded. The induction
predicate is then Π0

1, and Π0
1-induction holds in RCA0 (Cor. II.3.10 in [Sim2]). ⊓⊔

The following Lemma appears as Lemma 9.9.6 in Dzhafarov and Mummert [DM],
but the proof proposed there uses the wrong assumption that the element denoted
by x2 is in FS(I). Then we give an alternative argument, using Lemma 2.3.7.

Lemma 2.3.8. The following is provable in RCA0 + RT1: For every m ∈ N and
every infinite I ⊆ N, there exists x ∈ FS(I) with λ(x) ≥ m.

Proof. Fix m and I and suppose that every x ∈ FS(I) satisfies λ(x) < m. In
particular this implies that every x ∈ I satisfies λ(x) < m, since I ⊆ FS(I). By RT1

there exists an ℓ < m and an infinite set J ⊆ I such that λ(x) = ℓ for all x ∈ J .
Since ℓ < m there exists k such that ℓ+ k = m. Pick a subset X ⊆ J of cardinality
2k. Then by Lemma 2.3.7 there exists a Y ⊆ X such that λ(

∑
y∈Y y) ≥ ℓ+ k = m.

This contradicts the hypothesis that λ(x) < m for all x ∈ FS(I). ⊓⊔
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As a corollary one obtains the following Proposition, which will be used to show
that HT self-strengthens to HT[ap] over RCA0.

Proposition 2.3.9.

1. The following is provable in RCA0 + RT1: For every infinite set I ⊆ N, there
is an infinite set J such that J is apart and FS(J) ⊆ FS(I).

2. For all infinite set I ⊆ ω there exists an infinite set J ⊆ ω computable in I
such that J is apart and FS(J) ⊆ FS(I).

Proof. Define a sequence of elements x0 < x1 < · · · in FS(I) recursively as follows.
Let x0 = min(I) and, for i ∈ N, let xi+1 be the least element of FS(I \ [0, xi])
such that λ(xi+1) > µ(xi). The existence of xi+1 follows from Lemma 2.3.8. Let
J = {xi : i ∈ N}. By construction J is apart and FS(J) ⊆ FS(I). ⊓⊔

Proposition 2.3.9 is close in both statement and proof to Corollary 9.9.8 in [DM] but
ensures FS(J) ⊆ FS(I) rather than J ⊆ FS(I) as in [DM]. This stronger condition
is indeed needed in the proof of the following corollary, which appears as Theorem
9.9.9 in [DM]. The proof of the latter contains an error, for it wrongly claims that
J ⊆ FS(I) implies FS(J) ⊆ FS(I).

Corollary 2.3.10. HT implies HT[ap] over RCA0. Moreover HT ≥sW HT[ap].

Proof. From Proposition 2.3.9 and the fact that HT trivially implies RT1 over RCA0.
More precisely, let c : N → k. Let I be a solution to HT for c. By Proposition 2.3.9
there exists an infinite apart set J such that FS(J) ⊆ FS(I). Then J is a solution
to HT[ap] for c.
It is clear from the proof of Proposition 2.3.9 that there is a Turing functional that
computes J from I uniformly. This is sufficient to establish the claimed strong
Weihrauch reduction. ⊓⊔

Despite the fact that – as we have just proved – HT self-strengthens to HT[ap], the
exact proof-theoretic strength of Hindman’s Theorem is unsettled to date: the best
known lower bound and upper bound for this principle are still the ones provided
by the seminal work of Blass, Hirst and Simpson [BHS], where HT is shown to be
between ACA0 and ACA+

0 .

Over the years, a number of restrictions of the original principle have been formulated,
whose provability in systems below ACA+

0 is mostly unknown as well, even if they
appear to be weaker than Hindman’s Theorem. Among these alternative versions,
substantial attention has been devoted by many authors to restrictions of HT
requiring the monochromaticity condition only for particular families of finite sums,
mainly obtained by limiting the number of terms in the sums. We then introduce
the needed terminology. For n ≥ 1 and X ⊆ N, we denote by FS≤n(X) the set of all
non-empty sums of at most n distinct elements of X, while we denote by FS=n(X)
the set of all sums of exactly n distinct elements of X.
Using these definitions, two natural families of restrictions of Hindman’s Theorem
are obtained.
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Definition 2.3.11 (Bounded Hindman’s Theorems). Let n, k ≥ 1. We denote by
HT≤n

k (resp. HT=n
k ) the following principle. For every c : N → k there exists an

infinite set H ⊆ N such that FS≤n(H) (resp. FS=n(H)) is monochromatic for c.
We use HT≤n (resp. HT=n) to denote (∀k ≥ 1) HT≤n

k (resp. (∀k ≥ 1) HT=n
k ).

Note that HT≤1
k , HT=1

k and RT1
k are all equivalent and strongly Weihrauch inter-

reducible (by identity). For all the other cases, i.e. HT≤n
k and HT=n

k with n ≥ 2
and k ≥ 1, a good overview is given in [CKLZ] and in [Car2]. One remarkable point
is that, even if HT≤n

k with n, k ≥ 2 seems to be weaker than HT, the best known
upper bound for the former principle is still ACA+

0 , that is, the same upper bound
of the original Hindman’s Theorem. It is also worth pointing out that Bounded
Hindman’s Theorems are not known to self-strengthen to their own versions with
apartness: the proof of Corollary 2.3.10, indeed, strongly relies on the use of sums
of arbitrary (finite) length. Finally, a noteworthy result about Bounded Hindman’s
Theorem is that, over RCA0, HT=n

k [ap] is equivalent to RTn
k for any n ≥ 3 and any

k ≥ 2 [CKLZ], and therefore is equivalent to ACA0.

2.4 Hindman’s Theorem and Well-Ordering Principles

We establish a connection between Hindman-type theorems and well-ordering prin-
ciples, along the lines of our previous results. For the sake of readability, here we
adopt the alternative formulation of Hindman’s Theorem based on the concept of
finite unions (see Definition 2.3.5): hence, we use FUT=n

k in place of HT=n
k [ap], with

the two principles being equivalent over RCA0 and strongly Weihrauch-reducible to
each other [CKLZ, Proposition 2.5].
Since FUT=3

2 implies ACA0 over RCA0, (see [CKLZ]), by Theorem 1.1.16 we know that
FUT=3

2 implies WOP(X 7→ ωωωX ) over RCA0. We give a new proof of this implication
(actually, a slightly more general version of it) by a direct argument that furthermore
establishes a Weihrauch reduction. Its interest also lies in the connection between
Hindman’s Theorem and principles related to transfinite ordinals.
We proceed as follows. Let X be a linear ordering and let α = (αi)i∈N be an infinite
decreasing sequence in ωωωX . We show, using FUT=n

k for n ≥ 3 and k ≥ 2, that there
exists an infinite decreasing sequence in X . The proof uses ideas from the proof
of FUT=3

2 → ACA0 [CKLZ, Proposition 3.1] adapted to the present context, based
on the following analogy between deciding the Halting Set K and computing an
infinite descending sequence in X . Given an enumeration of K and a number n,
RCA0 knows that there is an ℓ such that all numbers in K below n appear within
ℓ steps of the enumeration, but is not able to compute this ℓ. Similarly, given an
element αi in the infinite decreasing sequence α in ωωωX , RCA0 knows that there is an
ℓ such that if an exponent of αi ever decreases – meaning that there exist j, p such
that ep(αi) >X ep(αi+j) – it will do so by the ℓ-th element of the infinite descending
sequence, but it is unable to compute such an ℓ. Therefore, we can not computably
locate the leftmost “decreasing” exponent of γ, and the point in the sequence where
it first decreases. However, an appropriately designed colouring will ensure that
the information about such an ℓ can be read off from the elements of a solution to
Hindman’s Theorem.
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We start with the following simple Lemma, stating that any element of an infinite
descending sequence in ωωωX contains an exponent that eventually decreases.

Lemma 2.4.1. The following is provable in RCA0: if α = (αi)i∈N is an infinite
descending sequence in ωωωX , then

(∀n) (∃n′) (∃m < lh(αn))
[
(n′ > n) ∧ (em(αn) >X em(αn′))

]
.

Proof. Assume by way of contradiction that none of the exponents of αn, for some
n, will ever decrease. By definition of <ωωωX , for any distinct γ, δ ∈ ωωωX , we have
γ <ωωωX δ if and only if either (1.) γ is a proper initial segment of δ, or (2.) there
exists m < lh(δ) such that em(γ) <X em(δ) and em′(γ) = em′(δ) for each m′ < m.
Then we can prove by ∆0

1-induction the following claim:

∀p (p ≥ n → (αp+1 is a proper initial segment of both αp and αn)).

The case p = n is trivial, since αn >X αn+1 and (2.) cannot hold by assumption.
For p > n, by induction hypothesis we know that αp is a proper initial segment
of αn. Since αp+1 >X αp, αp+1 must be a proper initial segment of αp, otherwise
the leftmost exponent differing between αp+1 and αp – i.e. the exponent of αp+1
with index m witnessing (2.) – would contradict our assumption, for we would have
m < lh(αp) and em(αp+1) <X em(αp) = em(αn).
So αp+1 must be a proper initial segment of αp and, by induction hypothesis, it
must be a proper initial segment of αn as well.
The claim above implies that:

∀p (p ≥ n → lh(αp) > lh(αp+1))

hence contradicting WO(ω). This concludes the proof. ⊓⊔

Theorem 2.4.2. Let n ≥ 3, k ≥ 2. Over RCA0, FUT=n
k implies WOP(X → ωωωX ).

Moreover, WOP(X → ωωωX ) ≤W FUT=n
k .

Proof. Assume by way of contradiction ¬WO(ωωωX ), and let α = (αn)n∈N be an
infinite descending sequence in ωωωX . For this proof, it is convenient to use the
α-computable sequence β of all the exponents of the terms αn, enumerated in
order of “appearance”, i.e. β = ⟨e0(α0), e1(α0), . . . , elh(α0)−1(α0), e0(α1), e1(α1), . . . ⟩.
Formally we construct such sequence by first defining θ : N × N → N as follows:
θ(n,m) = m+

∑
k<n lh(αk) whenever m < lh(αn), otherwise it is undefined. The

partial function θ is clearly bijective (meaning that it is a bijection between its
domain of definition and its codomain), hence its inverse is a well-defined injective
total function. We can then fix functions t : N → N and p : N → N such that for
each n ∈ N we have θ(t(n), p(n)) = n. The sequence (βh)h∈N of exponents of terms
in α is then defined by setting βh = αt(h),p(h). Intuitively, t(h) is the element of α
from which βh has been “extracted”, while p(h) is the position of the exponent βh

within αt(h).
We call i decreasible if there exists j > i such that p(j) = p(i) and βi > βj . In that
case, we say that j decreases i and that j is a decreaser of i. Using this terminology,
Lemma 2.4.1 states that each element of α contains at least one decreasible exponent.
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Now suppose that f : N → N is a function with the following property.

Property P: For all i ∈ N, if i is decreasible, then it is decreased by some j ≤ f(i).

We first show that given such an f we can compute (in f and β) an infinite descending
sequence (σi)i∈N in X as follows.

Step 0. Let i0 be the least decreasible index of β, and let j0 be the least decreaser
of i0. By Lemma 2.4.1, βi0 must be an exponent of α0, i.e. t(i0) = 0, so we can
find i0 by just taking the least decreasible i∗ < lh(α0). Notice that we can decide
whether i∗ is decreasible by just inspecting β up to the index f(i∗), since f has the
property P.
We set σ0 = βj0 and observe that p(i) ≥ p(i0) for each decreasible i > i0. Suppose
otherwise as witnessed by i∗, and let j∗ be the least decreaser of i∗. By definition of
decreaser, p(j∗) = p(i∗) < p(i0) and βi∗ > βj∗ . However i0 is the least decreasible
β-index of exponents of α0, hence the β-index of ep(i∗)(α0) will never decrease
due to p(i∗) < p(i0), so βi∗ = βz, where z = θ(0, p(i∗)). Therefore, βz > βj∗ and
p(z) = p(i∗) = p(j∗), but in that case z would be decreasible (by j∗) and p(z) < p(i0),
which implies z < i0 since t(z) = t(i0) = 0, thus contradicting the minimality of i0.

Step s+ 1. Suppose is, js, σs are defined, (σt)t≤s is decreasing in X and p(i) ≥ p(is)
for each decreasible i > is.
Let is+1 be the least decreasible index of β larger than or equal to js, and let js+1
be the least decreaser of is+1. By Lemma 2.4.1 and the fact that no decreasible
i > is can have p(i) < p(is) = p(js), βis+1 must be an exponent of αt(js), namely the
leftmost whose β-index is decreasible. So we can find is+1 by just taking the least
decreasible i∗ ∈ [js, js + lh(αt(js)) − p(js)). Notice that we can decide whether i∗ is
decreasible by just inspecting β up to the index f(i∗), since f has the property P.
We set σs+1 = βjs+1 . As we noted above, βis+1 must be either βjs or an exponent
of αt(js) on the right of βjs , i.e. t(is+1) = t(js) and p(is+1) ≥ p(js), so βjs ≥ βis+1 .
Then, σs > σs+1 because σs = βjs ≥ βis+1 > βjs+1 = σs+1. Finally, we observe that
the last part of the inductive invariant is guaranteed as well, since p(i) ≥ p(is+1)
for each decreasible i > is+1. Suppose otherwise as witnessed by i∗, and let j∗

be the least decreaser of i∗. By definition of decreaser, p(j∗) = p(i∗) < p(is+1)
and βi∗ > βj∗ . However βis+1 is the leftmost exponent of αt(js) whose β-index
is decreasible, then βi∗ = βz, where z = θ(t(js), p(i∗)). Hence, βz > βj∗ , but in
that case z would be decreasible (by j∗) and p(z) = p(i∗) < p(is+1), which implies
z < is+1 since t(z) = t(js) = t(is+1), thus contradicting the minimality of is+1.

We now show how to obtain a function satisfying the property P from a solution of
FUT=n

k for a suitable colouring.
First, we define a number j ∈ [0, r] important in S = {n0 < · · · < nr} if the following
condition holds:

(∃i < n0)
[
(∃i′ ∈ [nj−1, nj)) (i′ decreases i) ∧ (¬∃i′′ < nj−1) (i′′ decreases i)

]
where we set n−1 = 0. Informally, j is important if in [nj−1, nj) appears the first
decreaser of some element less than n0.



2.4 Hindman’s Theorem and Well-Ordering Principles 33

Then, let g : FIN(N+) → k as follows:

g(S) = card{j | j is important in S} mod k.

By FUT=n
k let B = {B0 < B1 < B2 < . . .} be an infinite block sequence such that

FU=n(B) is monochromatic under g, and let c < k be the colour of B.

Claim 3. Given S0<. . .<Sn−3 in B, there exists S ∈ B such that Sn−3 < S and
g(S0 ∪ . . . ∪ Sn−3 ∪ S) = c.

Fix S0 < . . . < Sn−3 in B and let ℓ be the actual upper bound of the minimal indexes
decreasing all the decreasible j < min(S0). By this we mean the ℓ given by the
following instance of strong Σ0

1-bounding (in RCA0):

∀m∃ℓ (∀j < m)
[
∃d (d decreases j) → (∃d < ℓ) (d decreases j)

]
,

where we can take m = min(S0).
Since B is an infinite block sequence, there exists S > Sn−3 in B such that max(S)> ℓ.
Then, for any T >S in B, we have g(S0 ∪ . . .∪Sn−3 ∪S) = g(S0 ∪ . . .∪Sn−3 ∪S ∪T ),
since no elements in T are important in S0 ∪ . . .∪ Sn−3 ∪ S ∪ T . Also, by monochro-
maticity of B, g(S0 ∪ . . . ∪ Sn−3 ∪ S ∪ T ) = c, so g(S0 ∪ . . . ∪ Sn−3 ∪ S) = c, hence
proving the Claim.

Now, we define f : N → N as f(i) = max(Bq), where q is minimal such that
Bp+n−3 < Bq and g(Bp ∪Bp+1 ∪ . . . ∪Bp+n−3 ∪Bq) = c, with p minimal such that
i < min(Bp). Notice that q exists by Claim 3. Also, f has the Property P, i.e., each
decreasible i is decreased by some j ≤ f(i). In order to prove this, assume by way
of contradiction that i is decreasible, p is minimal such that i < min(Bp), and q is
minimal such that Bp+n−3 < Bq and g(Bp ∪Bp+1 ∪ . . . ∪Bp+n−3 ∪Bq) = c, but i is
decreasible only by numbers larger than f(i) = max(Bq).
By strong Σ0

1-bounding, let ℓ be the actual upper bound of the minimal indexes
decreasing all the decreasible j < min(Bp). Since B is an infinite block sequence,
there exists B > Bq in B such that min(B) > ℓ. Now, consider:

Bp ∪ . . . ∪Bp+n−3 ∪Bq ∪B = {b0, . . . , br, br+1, . . . bt},

where b0 = min(Bp) = min(Bp ∪ . . . ∪ Bp+n−3 ∪ Bq ∪ B), br = max(Bq) and
br+1 = min(B). Clearly, j ≤ t is important in Bp ∪ . . . ∪ Bp+n−3 ∪ Bq ∪ B if and
only if either j ≤ r and j is important in Bp ∪ . . . ∪ Bp+n−3 ∪ Bq, or j = r + 1;
hence, g(Bp ∪ . . . ∪Bp+n−3 ∪Bq) ̸= g(Bp ∪ . . . ∪Bp+n−3 ∪Bq ∪B) = c, contra our
assumption that g(Bp ∪ . . . ∪Bp+n−3 ∪Bq) = c. ⊓⊔

We obtain the following immediate corollary.

Corollary 2.4.3. Let n ≥ 3, k ≥ 2. Over RCA0, FUT=n
k implies ACA0.

Proof. From Theorem 1.1.16 and Theorem 2.4.2. ⊓⊔
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The proof of Theorem 2.4.2 can be easily adapted to FUT≤2
k (in place of FUT=n

k ).
Yet, while FUT=n

k is provably equivalent to ACA0 and so Theorem 2.4.2 is an optimal
result, we do not know the actual strength of FUT≤2

k , since we only know that
ACA0 ≤ FUT≤2

k ≤ FUT ≤ ACA+
0 . Hence, extending the above approach – adapted to

FUT≤2
k – to stronger well-ordering principles would improve the known lower bound

on FUT≤2
k and, a fortiori, on full Hindman’s Theorem.
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Chapter 3

Infinitely many colours

3.1 Canonical and Regressive Ramsey’s Theorem

One natural question about Ramsey’s Theorem is whether this principle can be
extended to colourings of tuples into infinitely many colours. Clearly, in that case,
the homogeneous condition on the solution set needs to be changed: by having an
infinite number of colours available, it is indeed quite easy to come up with an
instance of the problem – i.e., a function c : [N]n → N, for some n > 0 – that admits
no infinite monochromatic sets.
However, by carefully relaxing the constraint on the solution set, one can indeed
obtain an actual generalization of Ramsey’s Theorem for infinitely many colours, as
shown by Erdős and Rado [ER]. The idea is to impose the monochromatic condition
not on every tuple with elements in the solution set, but rather just on the tuples
sharing the same values in a uniform subset of their coordinates. To better formalize
this idea, we need to introduce the following notion. For n > 0, S ⊆ {1, . . . , n},
I = {i1 < · · · < in} ⊆ N and J = {j1 < · · · < jn} ⊆ N we say that I and J agree
on S if and only if for all s ∈ S, is = js. Note that if S is empty then all n-sized
subsets of N agree on S.
Using this notion, we can then state the so-called Canonical Ramsey’s Theorem.

Definition 3.1.1 (Erdős and Rado’s Canonical Ramsey’s Theorem). Let n > 0.
We denote by canRTn the following principle. For all c : [N]n → N there exists an
infinite set H ⊆ N and a finite (possibily empty) set S ⊆ {1, . . . , n} such that for all
I, J ∈ [H]n the equality c(I) = c(J) holds if and only if I and J agree on S. The
set H is called canonical for c. We use canRT to denote (∀n ≥ 1) canRTn.

It is interesting to notice that, if S = ∅, we obtain a monochromatic solution set
(therefore, H is a solution for c to the standard Ramsey’s Theorem). If S={1, . . . , n},
instead, H is usually called a rainbow set, since each tuple in [H]n has a distinct
colour, while if S = {1}, the colour of the tuples in [H]n only depends on the
minimum of each tuple. However, this case should not be confused with the notion
of min-homogeneous set given in Definition 3.1.3, for the latter allows two tuples
with different minimum to share the same colour.
The Reverse Mathematics of canRTn is studied in [Mil], where it is denoted by CANn.
The different notation adopted here is due to the necessity of better distinguishing



36 3. Infinitely many colours

the Canonical version of Ramsey’s Theorem from the analogous version of Hindman’s
Theorem (presented in Sec. 3.2).
As observed in [Mil] (Proposition 8.5), canRT1 is equivalent to RT1 over RCA0.
Kanamori and McAloon [KM] isolated a straightforward corollary of the Canonical
Ramsey’s Theorem inspired by Fodor’s Lemma in Uncountable Combinatorics. To
state Kanamori-McAloon’s principle we need the following definitions.

Definition 3.1.2 (Regressive function). Let n ≥ 1. A function c : [N]n → N
is called regressive if and only if, for all I ∈ [N]n, c(I) < min(I) if min(I) > 0,
otherwise c(I) = 0.

Definition 3.1.3 (Min-homogeneity). Let n ≥ 1, c : [N]n → N and H ⊆ N an
infinite set. The set H is min-homogeneous for c if and only if the following condition
holds: for any I, J ∈ [H]n, if min(I) = min(J) then c(I) = c(J).

It is worth noting that – as mentioned before – two tuples with elements in a
min-homogeneous set can share the same colour even if their minimum is different.
We can now formalize the so-called Regressive Ramsey’s Theorem.

Definition 3.1.4 (Regressive Ramsey’s Theorem). Let n ≥ 1. We denote by regRTn

the following principle. For all regressive c : [N]n → N there exists an infinite
min-homogeneous set H ⊆ N. We denote by regRT the principle (∀n ≥ 1) regRTn.

The Reverse Mathematics of regRTn is studied in [Mil], where it is denoted by REGn.
Again, we use a different notation to better distinguish the Regressive version of
Ramsey’s Theorem from the analogous version of Hindman’s Theorem discussed in
Sec. 3.2.
Note that regRT1 is trivial. A finite first-order miniaturization of regRT was proved
by Kanamori and McAloon [KM] to be independent from Peano Arithmetic and is
often considered one of the most mathematically natural examples of statements
independent from that system.
The next theorems (both stated as in [Mil]) summarize the main known results
about the Reverse Mathematics of the Canonical and the Regressive versions of
Ramsey’s Theorem.

Theorem 3.1.5. The following are equivalent over RCA0.

1. ACA0.

2. canRTn, for any fixed n ≥ 2.

3. regRTn, for any fixed n ≥ 2.

4. RTn, for any fixed n ≥ 3.

5. RTn
k , for any fixed n ≥ 3 and k ≥ 2.

Proof. See [Mil, Proposition 8.2]. ⊓⊔
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regRT canRT RT ACA′
0

regRTn, n ≥ 2 canRTn, n ≥ 2 RTn, n ≥ 3 ACA0

RTn
k , n ≥ 3, k ≥ 2

Figure 3.1. Implications over RCA0. Double arrows indicate strict implications. The
equivalences with ACA0 are from Theorem 3.1.5. For the other implications we refer the
reader to [Mil].

The proof above does not directly relate (2) and (3) with (4) and (5), i.e., it does
not highlight any straight relationship between the standard Ramsey’s Theorems
and their versions using infinitely many colours. However, Theorem 6.14 in [Hir1]
gives an implication (and a strong Weihrauch reduction) from RT2n−1

2 to regRTn

for any fixed n ≥ 2, while a simple forgetful function argument proves RTn from
regRTn+1. In addition to these implications, in Sec. 3.3 (Proposition 3.3.5) we
enrich the relationship between these two principles by giving a simple direct and
exponent-preserving proof of RTn from regRTn, which seems to be missing in the
literature.

Theorem 3.1.6. The following are equivalent over RCA0.

1. ACA′
0.

2. canRT.

3. regRT.

4. RT.

Proof. See [Mil, Proposition 8.4]. ⊓⊔

The main relations among Canonical, Regressive and standard Ramsey’s Theorems
with respect to implication over RCA0 are visualized in Figure 3.1.

3.2 Canonical and Regressive Hindman’s Theorem

Similarly to Ramsey’s Theorem, a variation of Hindman’s Theorem for colourings
using infinitely many colours can be stated. In [Tay], Taylor proved the following
“canonical” version of Hindman’s Theorem, analogous to the Canonical Ramsey’s
Theorem by Erdős and Rado (Definition 3.1.1). Recall that, for any X ⊆ N, we
denote by FIN(X) the set of all non-empty finite subsets of X.

Definition 3.2.1 (Taylor’s Canonical Hindman’s Theorem). We denote by canHT
the following principle. For all c : N → N there exists an infinite set H = {h0 <
h1 < · · · } ⊆ N such that one of the following holds:
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1. For all I, J ∈ FIN(N), c(
∑

i∈I hi) = c(
∑

j∈J hj).

2. For all I, J ∈ FIN(N), c(
∑

i∈I hi) = c(
∑

j∈J hj) if and only if I = J .

3. For all I, J ∈ FIN(N), c(
∑

i∈I hi) = c(
∑

j∈J hj) if and only if min(I) =
min(J).

4. For all I, J ∈ FIN(N), c(
∑

i∈I hi) = c(
∑

j∈J hj) if and only if max(I) =
max(J).

5. For all I, J ∈ FIN(N), c(
∑

i∈I hi) = c(
∑

j∈J hj) if and only if min(I) = min(J)
and max(I) = max(J).

The set H is called canonical for c.

We can easily show that Taylor’s Theorem implies Hindman’s Theorem, just as the
Canonical Ramsey’s Theorem implies Ramsey’s Theorem.

Proposition 3.2.2. canHT implies HT over RCA0. Moreover, canHT ≥sW HT.

Proof. Let c : N → k be a finite colouring of N, with k ≥ 1. By canHT there exists
an infinite set H ⊆ N such that one of the five canonical cases in Definition 3.2.1
occurs. It is easy to see that, since c is a colouring in k colours, only case (1)
of Definition 3.2.1 can occur. Thus FS(H) is homogeneous for c. The argument
obviously establishes a strong Weihrauch reduction. ⊓⊔

As a Hindman-type principle, canHT can be endowed with the apartness condition.
However, the argument adopted to prove Corollary 2.3.10 does not immediately
apply to the case of Taylor’s Theorem. Indeed, what the min-term (or max-term) of
a number is depends on whether that number is seen as a sum of elements of I or as
a sum of elements of J , in the notation of Corollary 2.3.10.
Nevertheless it is true that Taylor’s Theorem implies its own self-strengthening with
apartness, as we next prove.

Theorem 3.2.3. canHT implies canHT[ap] over RCA0. Moreover, canHT ≥sW
canHT[ap].

Proof. Given c : N → N, let H = {h0 < h1 < · · · } be a solution to canHT for c. Let
H ′ = {h′

1 < h′
2 < · · · } be an infinite apart set such that FS(H ′) ⊆ FS(H) (defined

as the set J in the proof of Prop. 2.3.9; notice that, for the implication over RCA0,
RT1 is required, but by Prop. 3.2.2 and the fact that HT=1 is equivalent to RT1

over RCA0, we can derive RT1 from canHT).
For each i ∈ N, let Ai ∈ FIN(N) be such that

∑
a∈Ai

ha = h′
i and hmin(Ai) > h′

i−1 if
i > 0. A non-empty set with these properties exists by definition of H ′. We fix a
uniform computable method to select Ai if more than one choice exists (for instance,
we take the set A that satisfies the conditions above and that minimizes

∑
a∈A 2a).

Then, we can state the following three Claims.

Claim 4. For any set of indexes I = {i0 < i1 < · · · < im} ∈ FIN(N), the following
properties hold:
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(i) Ai0 < Ai1 < · · · < Aim.

(ii) min(
⋃

i∈I Ai) = min(Ai0).

(iii) max(
⋃

i∈I Ai) = max(Aim).

(iv)
∑

i∈I h
′
i =

∑
s∈

⋃
i∈I

Ai
hs.

Proof. (i) derives from the fact that, for any s ∈ (0,m], hmin(Ais ) > h′
is−1 ≥ h′

is−1 ≥
hmax(Ais−1 ), which implies min(Ais) > max(Ais−1) because H is enumerated in
increasing order.
(ii), (iii), and (iv) are trivial consequences of (i). ⊓⊔

Claim 5. For any I= {i0 < i1 < · · · < im} and J= {j0 < j1 < · · · < jn} in FIN(N),
min(I) = min(J) if and only if min(

⋃
i∈I Ai) = min(

⋃
j∈J Aj).

Proof. (=⇒) By hypothesis, i0 = j0, hence Ai0 = Aj0 and min(Ai0) = min(Aj0).
Then, by Claim 4.(ii), min(

⋃
i∈I Ai) = min(

⋃
j∈J Aj).

(⇐=) By hypothesis, min(
⋃

i∈I Ai) = min(
⋃

j∈J Aj) so, by Claim 4.(ii), we have
min(Ai0) = min(Aj0) and then hmin(Ai0 ) = hmin(Aj0 ). Thus, we can show that i0 = j0,
i.e., min(I) = min(J). Assume otherwise, and suppose i0 < j0 (the case i0 > j0 is
analogous). By definition of Aj0 , we can derive hmin(Aj0 ) > h′

j0−1 ≥ h′
i0 ≥ hmin(Ai0 ),

hence contradicting hmin(Ai0 ) = hmin(Aj0 ). ⊓⊔

Claim 6. For any I= {i0 < i1 < · · · < im} and J= {j0 < j1 < · · · < jn} in FIN(N),
max(I) = max(J) if and only if max(

⋃
i∈I Ai) = max(

⋃
j∈J Aj).

Proof. (=⇒) By hypothesis, im = jn, hence Aim = Ajn and max(Aim) = max(Ajn).
Then, by Claim 4.(iii), max(

⋃
i∈I Ai) = max(

⋃
j∈J Aj).

(⇐=) By hypothesis, max(
⋃

i∈I Ai) = max(
⋃

j∈J Aj) so, by Claim 4.(iii), we have
max(Aim) = max(Ajn) and then hmax(Aim ) = hmax(Ajn ). Thus, we can show that
im = jn, i.e., max(I) = max(J). Assume otherwise, and suppose im < jn (the case
im > jn is analogous). By definition of Ajn , we can derive hmax(Ajn ) ≥ hmin(Ajn ) >
h′

jn−1 ≥ h′
im

≥ hmax(Aim ), hence contradicting hmax(Aim ) = hmax(Ajn ). ⊓⊔

Now we can show that H ′ is a solution to canHT for c by analyzing each case of
Definition 3.2.1.

Case 1. For any I, J ∈ FIN(N), by homogeneity of H and by Claim 4.(iv),
c(

∑
i∈I h

′
i) = c(

∑
s∈

⋃
i∈I

Ai
hs) = c(

∑
t∈

⋃
j∈J

Aj
ht) = c(

∑
j∈J h

′
j).

Case 2. Let I, J ∈ FIN(N). If I = J , then c(
∑

i∈I h
′
i) = c(

∑
j∈J h

′
j). Now

assume I ̸= J , as witnessed by w ∈ I \ J (the case w ∈ J \ I is analogous). By
Claim 4.(i) applied to J ∪ {w}, we have that Aw ∩ Aj = ∅ for all j ∈ J , therefore⋃

i∈I Ai ̸=
⋃

j∈J Aj .
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Then, c(
∑

i∈I h
′
i) = c(

∑
s∈

⋃
i∈I

Ai
hs) ̸= c(

∑
t∈

⋃
j∈J

Aj
ht) = c(

∑
j∈J h

′
j), where the

two equalities hold by Claim 4.(iv), while the inequality holds by Case 2 of Defini-
tion 3.2.1, since c is applied to sums of different elements in H on the two sides of
the equality, as we noted above.

Case 3. Let I, J ∈ FIN(N). If min(I) = min(J), then we have c(
∑

i∈I h
′
i) =

c(
∑

s∈
⋃

i∈I
Ai
hs) = c(

∑
t∈

⋃
j∈J

Aj
ht) = c(

∑
j∈J h

′
j), where the first and the last

equality hold by Claim 4.(iv), while the second equality holds by Case 3 of Defini-
tion 3.2.1, since in both sides of the equality, c is applied to sums of elements in
H having the same minimum term by Claim 5. Similarly, if min(I ′) ̸= min(J ′), we
have c(

∑
i∈I h

′
i) = c(

∑
s∈

⋃
i∈I

Ai
hs) ̸= c(

∑
t∈

⋃
j∈J

Aj
ht) = c(

∑
j∈J h

′
j).

Case 4. The proof is similar to the proof of Case 3, but using Claim 6 in place of
Claim 5.

Case 5. The proof is analogous to the proof of Cases 3 and 4. ⊓⊔

As observed in the previous Section, when the Canonical Ramsey’s Theorem is ap-
plied to regressive functions the Regressive Ramsey’s Theorem is obtained. Similarly,
a regressive version of Hindman’s Theorem follows from Taylor’s Theorem. We intro-
duce the suitable versions of the notions of regressive function and min-homogeneous
set.

Definition 3.2.4 (λ-regressive function). A function c : N → N is called λ-regressive
if and only if, for all n ∈ N, c(n) < λ(n) if λ(n) > 0, while c(n) = 0 if λ(n) = 0.

Obviously every λ-regressive function is regressive since λ(n) ≤ n for any n.

Definition 3.2.5 (Min-term-homogeneity for FS). Let c : N → N and H = {h0 <
h1 < · · · } ⊆ N. We call FS(H) min-term-homogeneous for c if and only if, for all
I, J ∈ FIN(N), if min(I) = min(J) then c(

∑
i∈I hi) = c(

∑
j∈J hj).

We can then state the following principle, which is an analogue of Kanamori-
McAloon’s Regressive Ramsey’s Theorem in the spirit of Hindman’s Theorem.

Definition 3.2.6 (Regressive Hindman’s Theorem). We denote by λregHT the
following principle. For all λ-regressive c : N → N there exists an infinite H ⊆ N
such that FS(H) is min-term-homogeneous.

We start by observing how Taylor’s Theorem implies the Regressive Hindman’s
Theorem just as the Canonical Ramsey’s Theorem implies the Kanamori-McAloon
Regressive Ramsey’s Theorem.

Proposition 3.2.7. canHT implies λregHT over RCA0. Moreover, canHT ≥sW
λregHT.

Proof. Let c : N → N be a λ-regressive function. By canHT there exists an infinite
set H ⊆ N such that one of the five canonical cases occurs for FS(H). It is easy to
see that, since c is λ-regressive, only case (1) and case (3) of Definition 3.2.1 can
occur. Thus FS(H) is min-term-homogeneous for c. ⊓⊔
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Similarly to Hindman’s Theorem and Taylor’s Theorem, the Regressive Hindman’s
Theorem self-improves to its own version with apartness, as shown below. We first
show that λregHT implies Ramsey’s Theorem for singletons.
Lemma 3.2.8. λregHT implies RT1 over RCA0.
Proof. Let f : N → k, with k ≥ 1, and let g : N → N be defined as follows:

g(n) =
{
λ′(n) if λ′(n) < k,

f(n) otherwise,
where λ′(n) = λ(n) − 1 if λ(n) > 0, otherwise λ′(n) = 0.
Clearly, g is f -computable and λ-regressive, so let H = {h0 < h1 < · · · } be a
solution to λregHT for g. First, we prove the following Claim.

Claim. There exists an infinite H ′ = {h′
0 < h′

1 < · · · } ⊆ H such that λ′(h′
n1 +h′

n2 +
h′

n3 + h′
n4) ≥ k for all n1 < n2 < n3 < n4.

Proof. Let us define J = {j ∈ H | λ′(j) < k}. If J contains finitely many elements,
then (H \ J) witnesses the existence of H ′. Thus, let us assume J = {j0 < j1 < · · · }
is infinite.
Notice that the sequence λ′(j0), λ′(j1), . . . never decreases: suppose otherwise by
way of contradiction, and let j, j′ ∈ J be such that j < j′ and λ′(j) > λ′(j′). Then
we have g(j) = λ′(j) > λ′(j′) = λ′(j + j′) = g(j + j′); this contradicts the min-term-
homogeneity of FS(H). Hence λ′ on J is a bounded non-decreasing function on an
infinite set.
Then we have two cases. Either for any j ∈ J there exists j′ > j in J such that
λ′(j′) > λ′(j), or there exists j ∈ J such that, for any j′ > j in J , λ′(j) ≥ λ′(j′).
The former case can not hold, since by definition of J , λ′(j) < k for any j ∈ J .
In the latter case, instead, we have some m ∈ J such that λ′(m) ≥ λ′(j) for any
j in J . Since λ′(j0), λ′(j1), . . . is non-decreasing, λ′(j) = λ′(m) holds for each j
in the infinite set J ′ = J \ [0,m). Finally, we can show that J ′ witnesses the
existence of H ′. Assume otherwise by way of contradiction. Then, there exist
j, j′, j′′, j′′′ ∈ J ′ such that j < j′ < j′′ < j′′′ and λ′(j + j′ + j′′ + j′′′) < k. Thus
g(j + j′ + j′′ + j′′′) = λ′(j + j′ + j′′ + j′′′) by definition of g. On the other hand,
since j ∈ J ′ ⊆ J , λ′(j) < k and therefore g(j) = λ′(j) by definition of g. Moreover,
λ′(j) = λ′(j′) = λ′(j′′) = λ′(j′′′) since j, j′, j′′, j′′′ ∈ J ′. Therefore we have the
following inequality

g(j + j′ + j′′ + j′′′) = λ′(j + j′ + j′′ + j′′′) > λ′(j) = g(j),
contradicting the min-term-homogeneity of FS(H). This completes the proof of the
Claim. Notice that, while λ(x) = λ(y) implies λ(x+ y) > λ(x) for any x, y ∈ N+,
the same implication does not hold when using λ′: hence, sums of 4 elements are
required in the argument above.

In order to prove the lemma, let H ′ = {h′
0 < h′

1 < · · · } be as in the previous Claim.
Then, for any n0 < n1 < n2 in N+, we have

f(h′
0 + h′

n0 + h′
n1 + h′

n2) = g(h′
0 + h′

n0 + h′
n1 + h′

n2)
= g(h′

0 + h′
1 + h′

2 + h′
3)

= f(h′
0 + h′

1 + h′
2 + h′

3),
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where the first and the last equalities hold by the previous Claim and by definition
of g, while the second equality holds by min-term-homogeneity of FS(H).
Hence {(h′

0 + h′
n0 + h′

n1 + h′
n2) | 0 < n1 < n2 < n3} is an infinite homogeneous set

for f . ⊓⊔

Although the proof above does not witness any Weihrauch reduction, in the next
Section we will observe that RT1

k can be Weihrauch-reduced to some restriction of
λregHT with apartness – hence, a fortiori, it can be Weihrauch-reduced to λregHT
(see Proposition 3.3.4 infra).
We can now derive λregHT[ap] from λregHT.

Proposition 3.2.9. λregHT implies λregHT[ap] over RCA0. Moreover, λregHT ≥sW
λregHT[ap].

Proof. The proof of Theorem 3.2.3 adapts verbatim to the case of λregHT.
Lemma 3.2.8 takes care of the use of RT1 in that proof, which is only needed for the
implication over RCA0. ⊓⊔

It is easy to see that the proof of Lemma 3.2.8 uses only sums of at most 4 terms.
However, this does not help in extending the previous Proposition to some restriction
of λregHT (see section 3.3), since the argument (which is derived from the proof of
Theorem 3.2.3) still requires sums of arbitrary length.
The following proposition shows that the Regressive Hindman’s Theorem implies
Hindman’s Theorem.

Proposition 3.2.10. λregHT implies HT over RCA0.

Proof. Given f : N → k, with k ≥ 1, and let g : N → k be as follows:

g(n) =
{
f(n) if f(n) < λ(n),
0 otherwise.

The function g is λ-regressive by construction and obviously f -computable. Let
H = {h0 < h1 < · · · } be an infinite set such that FS(H) is min-term-homogeneous
for g. By Proposition 3.2.9 we can assume that H is apart. Let i be the minimum
such that λ(hi) > k. Let H− = H \ {h0, . . . , hi}. By choice of H−, g behaves like f
on FS(H−). Let g− be the k-colouring of numbers induced by g on H−.
By RT1

k (which we can assume by Lemma 3.2.8) let H ′ = {h′
0 < h′

1 < · · · } be an
infinite subset of H− homogeneous for g−. Then, for {s1, . . . , sm} and {t1, . . . , tn}
non-empty subsets of H ′, we have

f(s1 + · · · + sm) = g(s1 + · · · + sm)
= g(s1) = g−(s1)
= g−(t1) = g(t1)
= g(t1 + · · · + tn)
= f(t1 + · · · + tn),

since FS(H−) is min-term-homogeneous for g and g coincides with f on FS(H−). ⊓⊔
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We do not know if the implication in Proposition 3.2.10 can be reversed. In fact,
obtaining such a result is probably not trivial: in particular, that seems to be as hard
as proving any other implication from HT to whatever principle stronger than ACA0
(as might be the case for λregHT, since its restricted versions – presented in the next
section – are already equivalent to ACA0). Even though proving the equivalence
between λregHT and HT would not immediately improve the lower bound on the
latter – since, to date, our best result about the lower bound on λregHT is still ACA0
– such an equivalence may provide an additional tool to achieve this goal: as we
will see in Sec. 3.3, using λregHT in place of HT may indeed result in more natural
arguments, due to the infinite number of colours available.

3.3 The strength of Bounded Regressive Hindman’s
Theorem

As already mentioned in Sec. 2.3, restrictions of Hindman’s Theorem relaxing
the monochromaticity condition received substantial attention in recent years.
To formulate analogous restrictions of λregHT we extend the definition of min-
term-homogeneity in the natural way. For n ≥ 1, we denote by FIN≤n(N) (resp.
FIN=n(N)) the set of all non-empty subsets of N of cardinality at most n (resp. of
cardinality exactly n).

Definition 3.3.1 (Min-term-homogeneity for FS≤n,FS=n). Let n≥ 1. Let c : N → N
be a colouring and H = {h0 < h1 < · · · } an infinite subset of N. We call FS≤n(H)
(resp. FS=n(H)) min-term-homogeneous for c if and only if, for all I, J ∈ FIN≤n(N)
(resp. I, J ∈ FIN=n(N)), if min(I) = min(J) then c(

∑
i∈I hi) = c(

∑
j∈J hj).

We can then formulate the natural restrictions of the Regressive Hindman’s Theorem
obtained by relaxing the min-term-homogeneity requirement from FS(H) to FS≤n(H)
or FS=n(H).

Definition 3.3.2 (Bounded λ-Regressive Hindman’s Theorems). Let n ≥ 1. We
denote by λregHT≤n (resp. λregHT=n) the following principle. For all λ-regressive
c : N → N there exists an infinite H ⊆ N such that FS≤n(H) (resp. FS=n) is
min-term-homogeneous for c.

Note that λregHT≤1 and λregHT=1 are trivial. We also point out the following
obvious relations: λregHT yields λregHT≤n which yields λregHT=n for all n (both
in RCA0 and by strong Weihrauch reductions), and the same chain of implications
and reductions holds for the versions with the apartness condition. Also, for m > n,
λregHT≤m obviously yields λregHT≤n, while λregHT=m yields λregHT=n if m is a
multiple of n (see the analogous results for Hindman’s Theorem for sums of exactly
n terms in [CKLZ], Proposition 3.5).
We compare the bounded versions of our regressive Hindman’s Theorem with other
prominent Ramsey-type and Hindman-type principles.
We start with the following simple Lemma showing that, for any n ≥ 2, λregHT=n[ap]
implies RT1. Note that in Lemma 3.2.8 we established that λregHT without apartness
implies RT1 and we later used this result to show that λregHT implies λregHT[ap]
(Proposition 3.2.9).
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Lemma 3.3.3. Let n ≥ 2. Over RCA0, λregHT=n[ap] implies RT1. Moreover, for
any k ≥ 1, we have RT1

k ≤sW λregHT=n[ap].

Proof. We give the proof for n = 2 for ease of readability. Let k ≥ 1 and f : N → k
be given. Define g : N → k as follows.

g(m) =
{

0 if λ(m) ≤ k,

f(µ(m)) otherwise.

Clearly g is λ-regressive and f -computable in a uniform way.
Let H = {h0 < h1 < · · · } be an infinite apart set such that FS=2(H) is min-term-
homogeneous for g.
By the apartness condition, for all h ∈ H \ {h0, h1, . . . , hk} we have g(h) = f(µ(h)).
Then it is easy to see that M = {µ(hk+2), µ(hk+3), . . .} is an infinite f -homogeneous
set of colour f(µ(hk+2)) since, for any i, f(µ(hk+2+i)) = g(hk+1 + hk+2+i) =
g(hk+1 + hk+2) = f(µ(hk+2)). ⊓⊔

The next proposition relates the principles λregHT=n[ap] (respectively λregHT≤n[ap])
with the principles HT=n

k [ap] (respectively HT≤n
k [ap]). The argument is essentially

the same as the proof of Proposition 3.2.10.

Proposition 3.3.4. Let n ≥ 2.

1. λregHT=n[ap] implies HT=n[ap] over RCA0. Also, λregHT=n[ap] ≥c HT=n
k [ap]

for any k ≥ 1.

2. λregHT≤n[ap] implies HT≤n[ap] over RCA0. Also, λregHT≤n[ap] ≥c HT≤n
k [ap]

for any k ≥ 1.

Proof. We prove the second point, the proof of the first point being completely
analogous. Given k ≥ 1 and f : N → k, let g : N → k be as follows:

g(m) =
{
f(m) if f(m) < λ(m),
0 otherwise.

The function g is λ-regressive and f -computable. By λregHT≤n[ap] let H = {h0 <
h1 < · · · } ⊆ N be an infinite apart set such that FS≤n(H) is min-term-homogeneous
for g. Let g′ : H\{h0, . . . , hk−1} → k be defined as g′(hi) = g(hi+hi+1+· · ·+hi+n−1).
By RT1

k, let H ′ ⊆ H be an infinite homogeneous set for g′. For the sake of establishing
the implication over RCA0, recall that RT1 follows from λregHT=2[ap] by Lemma 3.3.3
and therefore also from λregHT≤n[ap] for any n ≥ 2. For the sake of the computable
reduction result, just notice that for each fixed k ≥ 1, RT1

k is computably true.
Then, for {s1, . . . , sp} and {t1, . . . , tq} non-empty subsets of H ′, with p, q ≤ n and
s1 < · · · < sp, t1 < · · · < tq, we have

f(s1 + · · · + sp) = g(s1 + · · · + sp)
(∗)= g(s1) = g′(s1)
= g′(t1) = g(t1)
(∗∗)= g(t1 + · · · + tq)
= f(t1 + · · · + tq),
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where the equalities dubbed by (∗) and (∗∗) hold by the min-term-homogeneity of
FS≤n(H) for g. This shows that H ′ is an apart solution to HT≤n

k for f . ⊓⊔

Remark 1. The previous proof gives us a hint as to how extend the reduction to
HT≤n[ap], i.e. to the universally-quantified principles (∀k ≥ 1) HT≤n

k [ap]. In that
case, the number of colours is not given as part of the instance, and it cannot be
computably inferred from the instance X of the principle HT≤n[ap] (see the discussion
in [DM] p. 54 for more details on this issue). Nevertheless, we can easily obtain a
computable reduction by just observing that the proof of Proposition 3.3.4 provides
us, for any k ≥ 1, with both an X-computable procedure giving us an instance X̂ of
λregHT≤n[ap], and an (X ⊕ Ŷ )-computable procedure transforming a solution Ŷ for
X̂ to a solution for X: so, even if we do not know the actual value of k, we know
that the two procedures witnessing the computable reduction do exist. Thus, we can
conclude that for any n ≥ 2, λregHT≤n[ap] ≥c HT≤n[ap]. It is not straightforward
to improve this result to a Weihrauch reduction.
The same argument also applies to the case of λregHT=n[ap], so that we have that
for any n ≥ 2, λregHT=n[ap] ≥c HT=n[ap].

Also, we point out that a proof of λregHT≤2 that does not also prove HT (or, more
technically, a separation over RCA0 of these two principles) would answer Question
12 from [HLS].
It is worth noticing that a further slight adaptation of the proof of Proposition 3.3.4
gives a direct proof of RTn from regRTn and also shows that regRTn ≥c RTn

k . The
following definition can be used for computably reducing RTn

k to regRTn (for n ≥ 2
and k ≥ 1). Given k ≥ 1 and c : [N]n → k, let c+ : [N]n → k be as follows:

c+(x1, . . . , xn) =
{

0 if x1 ≤ k,

c(x1, . . . , xn) otherwise.

We can thus state the following Proposition.

Proposition 3.3.5. For any n ≥ 2 and k ≥ 1, RTn
k ≤c regRTn.

Note that by HT=n
k [ap] ≤sW RTn

k (see [CKLZ]), the above also implies HT=n
k [ap] ≤c

regRTn for any n ≥ 2 and k ≥ 1.

Equivalents of ACA0. Proposition 3.3.4, coupled with the fact that HT=3
2 [ap]

implies ACA0 (Theorem 3.3 in [CKLZ]), yields the following corollary.

Corollary 3.3.6. λregHT=3[ap] implies ACA0 over RCA0.

Proof. From Theorem 3.3 in [CKLZ] and Proposition 3.3.4 above. ⊓⊔

We have the following reversal, showing that λregHT=3[ap] is a “weak yet strong”
restriction of Taylor’s Theorem in the sense of [Car1]. The result is analogous to
the implication from RTn

k to HT=n
k (see [CKLZ]).

Theorem 3.3.7. Let n ≥ 1. ACA0 proves λregHT=n[ap]. Also, λregHT=n[ap] ≤sW
regRTn.
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Proof. We give the proof for n = 2 for ease of readability.
Let f : N → N be λ-regressive. Let g : [N]2 → N be defined as follows: g(x, y) =
f(2x + 2y). The function g is regressive since f is λ-regressive. Recall that regRT2

is provable in ACA0. Let H ⊆ N be a min-homogeneous solution to regRT2 for g.
Let Ĥ = {2h : h ∈ H}. Obviously Ĥ is apart. It is easy to see that FS=2(Ĥ) is
min-term-homogeneous for f : let 2h < 2h′

< 2h′′ be elements of Ĥ. Then

f(2h + 2h′) = g(h, h′) = g(h, h′′) = f(2h + 2h′′).

⊓⊔

We do not know if the reduction in Theorem 3.3.7 can be reversed.
We next show that λregHT=2[ap] already implies Arithmetical Comprehension. The
proof is reminiscent of the proof that HT≤2

2 [ap] implies ACA0 in [CKLZ], but the use
of λ-regressive colourings allows us to avoid the parity argument used in that proof.
As happens in the proofs of independence of combinatorial principles from Peano
Arithmetic [KM], in the present setting the use of regressive colourings simplifies
the combinatorics.
Recall from Sec. 1.1.3 that we denote by RAN the Π1

2-principle stating that for
every injective function f : N → N the range of f (denoted by rg(f)) exists. It is
well-known that RAN is equivalent to ACA0 (see Theorem 1.1.7).

Theorem 3.3.8. Let n ≥ 2. λregHT=n[ap] implies ACA0 over RCA0. Moreover,
λregHT=n[ap] ≥W RAN.

Proof. We give the proof for n = 2. The easy adaptation to larger values is left to
the reader.
Let f : N → N be injective. For technical convenience and without loss of generality
we assume that f never takes the value 0. We show, using λregHT=2[ap], that rg(f)
does exist.
Define c : N → N as follows. If m is a power of 2 then c(m) = 0. Else c(m) = the
unique x such that x < λ(m) and there exists j ∈ [λ(m), µ(m)) such that f(j) = x
and for all j < j′ < µ(m), f(j′) ≥ λ(m). If no such x exists, we set c(m) = 0.
Intuitively c checks whether there are values below λ(m) in the range of f restricted
to [λ(m), µ(m)). If any, it returns the latest one, i.e., the one obtained as image of
the maximal j ∈ [λ(m), µ(m)) that is mapped by f below λ(m)). In other words, x
is the “last” element below λ(m) in the range of f restricted to [λ(m), µ(m)).
The function c is computable in f and λ-regressive.
Let H = {h0 < h1 < · · · } ⊆ N be an apart solution to λregHT=2 for c. Without
loss of generality we can assume that λ(h0) > 1, since H is apart. Let hi ∈ H.
We claim that if x < λ(hi) and x is in the range of f then x is in the range of f
restricted to [0, µ(hi+1)).
We prove the claim as follows. Suppose, by way of contradiction, that there exist
hi ∈ H and x < λ(hi) such that x ∈ rg(f) but x /∈ f([0, µ(hi+1)). Let b be the
true bound for the elements in the range of f smaller than λ(hi), i.e., b is such that
if n < λ(hi) and n ∈ rg(f), then n < b. The existence of b follows in RCA0 from
strong Σ0

1-bounding (see [Sim2], Exercise II.3.14):

∀n∃b∀i < n(∃j(f(j) = i) → ∃j < b(f(j) = i)),
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where we take n = λ(hi).
Let hj in H be such that hj > hi+1 and µ(hj) ≥ b. Such an hj exists since H is
infinite.
Then, by min-term-homogeneity of FS=2(H), c(hi +hi+1) = c(hi +hj). But by choice
of hi, x and hj , and the definition of c, it must be the case that c(hi+hi+1) ̸= c(hi+hj).
To see this, first note that, by apartness of H, the following equalities hold:

λ(hi + hi+1) = λ(hi) = λ(hi + hj), µ(hi + hi+1) = µ(hi+1), µ(hi + hj) = µ(hj).

Then observe that c(hi + hj) > 0: by hypothesis f−1(x) ∈ [µ(hi+1), b) (recall that f
is injective), therefore x is a value of f below λ(hi +hj) whose pre-image under f is in
[λ(hi +hj), µ(hi +hj)), i.e. in [λ(hi), µ(hj)). Suppose now that c(hi +hi+1) = z > 0.
Then, by definition of c, it must be the case that z < λ(hi + hi+1), i.e., z < λ(hi),
and f−1(z) is in [λ(hi + hi+1), µ(hi + hi+1)), i.e. in [λ(hi), µ(hi+1)). This z cannot
be the value of c(hi + hj), since by hypothesis and by choice of b, we have x < λ(hi)
and f−1(x) is in [µ(hi+1), b), hence in [λ(hi + hj), µ(hi + hj)). Thus z cannot be the
value of f below λ(hi) with maximal pre-image under f in [λ(hi + hj), µ(hi + hj))
as the definition of c(hi + hj) requires, since f−1(z) < µ(hi+1) ≤ f−1(x) and f is
injective. This concludes our reasoning by way of contradiction and hence establishes
the claim that values in the range of f below λ(hi) appear as values of f applied to
arguments smaller than µ(hi+1).
In view of the just established claim it is easy to see that the range of f can be
decided computably in H as follows. Given x, pick any hi ∈ H such that x < λ(hi)
and check whether x appears in f([0, µ(hi+1)). ⊓⊔

Theorem 3.3.8 for the case of n = 2 should be contrasted with the fact that HT=2
2 [ap]

follows easily from RT2
2 and is therefore strictly weaker than ACA0, while HT=3

2 [ap]
implies ACA0 as proved in [CKLZ]. The situation matches the one among regRT2,
RT3

2 and RT2
2 (see Theorem 3.1.5).

The proof of Theorem 3.3.8 can be recast in a straightforward way to show that there
exists a computable λ-regressive colouring such that all apart solutions to λregHT=2

for that colouring compute the first Turing Jump ∅′. Analogously, the reduction can
be cast in terms of the Π1

2-principle ∀X∃Y (Y = (X)′) expressing closure under the
Turing Jump, rather than in terms of RAN.
The next theorem summarizes the equivalences – over RCA0 – between the Regressive
Hindman’s theorems for sums of exactly n elements and other prominent Ramsey-
theoretic principles (see also Figure 3.2).

Theorem 3.3.9. The following are equivalent over RCA0.

1. ACA0.

2. regRTn, for any fixed n ≥ 2.

3. RTn
k , for any fixed n ≥ 3, k ≥ 2.

4. HT=n
k [ap], for any fixed n ≥ 3, k ≥ 2.

5. λregHT=n[ap], for any fixed n ≥ 2.
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canHT canHT[ap]

λregHT λregHT[ap] HT[ap] HT

λregHT≤n[ap] HT≤n[ap]

regRTn, n≥2 λregHT=n[ap], n≥2 ACA0 HT=n
k [ap], n≥3 RTn

k , n≥3

HT=2
k [ap] RT2

k

Figure 3.2. Implications over RCA0. Double arrows indicate strict implications. The
equivalence of canHT[ap] and canHT is from Theorem 3.2.3. The implication from canHT
to λregHT is from Proposition 3.2.7 and similarly for the versions with apartness. The
equivalence between λregHT and λregHT[ap] is from Proposition 3.2.9. The implication
from λregHT to HT is from Proposition 3.2.10. The implication from λregHT≤n[ap] to
HT≤n[ap] is from Proposition 3.3.4. Finally, all the equivalences at level ACA0 are from
Theorem 3.3.9.

Proof. The equivalences between points (1), (2) and (3) are as in Theorem 3.1.5. The
equivalence of (1) and (4) is from Proposition 3.4 in [CKLZ]. Then the equivalence
of (1) and (5) follows from Theorem 3.3.7 and Theorem 3.3.8. ⊓⊔

In terms of computable reductions we have the following, for n ≥ 2 and k ≥ 1:

RT2n−1
2 ≥sW regRTn ≥c RTn

k ,

where the first inequality is due to Hirst [Hir1] and the second inequality is from
Proposition 3.3.5. Furthermore we have that

regRTn ≥W λregHT=n[ap] ≥c HT=n
k [ap],

from Theorem 3.3.7 and Proposition 3.3.4.
Moreover, whereas λregHT=n[ap] ≥W RAN for any n ≥ 2 (Theorem 3.3.8), we have
that HT=n

k [ap] ≥W RAN only for n ≥ 3 and k ≥ 2 (by an easy adaptation of the proof
of Theorem 3.3 in [CKLZ]). Also note that RTn

k ≥sW HT=n
k [ap] by a straightforward

reduction (see [CKLZ]).
Some non-reducibility results can be gleaned from the above and known non-
reducibility results from the literature. First, Dorais, Dzhafarov, Hirst, Mileti,
and Shafer showed that RTn

k ̸≤sW RTn
j when k > j (Theorem 3.1 of [DJSW]). Then

RTn
k ̸≤W RTn

j for k > j was proved by Brattka and Rakotoniaina [BR] and, inde-
pendently, by Hirschfeldt and Jockusch [HJ]. Patey further improved this result by
showing that the computable reduction does not hold either [Pat]; i.e., RTn

k ̸≤c RTn
j

for all n ≥ 2, k > j ≥ 2. We can derive, among others, the following corollaries.
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Corollary 3.3.10. For each n, k ≥ 2, regRTn ̸≤c RTn
k .

Proof. From Proposition 3.3.5 we know that RTn
k+1 ≤c regRTn, so if we had

regRTn ≤c RTn
k we could transitively obtain RTn

k+1 ≤c RTn
k , hence contradict-

ing the fact that RTn
k+1 ̸≤c RTn

k proved by Patey [Pat]. ⊓⊔

Corollary 3.3.11. RT3
3 ̸≤c λregHT=2[ap].

Proof. It is known from [Pat] that RT3
3 ̸≤c RT3

2. On the other hand λregHT=2[ap] ≤W
RT3

2, since λregHT=2[ap] ≤W regRT2 (Theorem 3.3.7) and regRT2 ≤sW RT3
2 (from

the proof of Theorem 6.14 in [Hir1]) and since the involved reducibilities satisfy the
following inclusions and are transitive: ≤sW ⊆ ≤W ⊆ ≤c. ⊓⊔

As proved in [CKLZ], restrictions of Hindman’s Theorem have intriguing connec-
tions with the so-called Increasing Polarized Ramsey’s Theorem for pairs (IPT2

2)
of Dzhafarov and Hirst [DH]. For example, HT=2

2 [ap] ≥W IPT2
2 (Theorem 4.2 in

[CKLZ]). By this result and Proposition 3.3.4 we have the following corollary.

Corollary 3.3.12. IPT2
2 ≤c λregHT=2[ap].

Note that IPT2
2 is the strongest known lower bound for HT=2

2 [ap] in terms of reduc-
tions. Some interesting lower bounds on HT=2 without apartness are in [CDH+].
We haven’t investigated λregHT=n without the apartness condition; we conjecture
that the lower bounds on HT=2 (without apartness) from [CDH+] can be adapted
to λregHT=2.

3.4 Bounded Regressive Hindman’s Theorem and Well-
Ordering Principles.

Another relevant result that can be inferred from the theorems above (precisely, from
Theorem 3.3.8) is that, for any n ≥ 2, λregHT=n[ap] implies WOP(X 7→ ωωωX ), due
to the aforementioned equivalence of the latter principle with ACA0. However, such
an argument would give neither a direct implication nor a computable reduction.
Nevertheless, it is possible to obtain WOP(X 7→ ωωωX ) from λregHT=n[ap] via a
straightforward argument, which also witnesses a Weihrauch reduction.
The proof is quite similar to the proof of Theorem 2.4.2. The idea is, again, to extract
an infinite descending sequence τ in X starting from an infinite descending sequence
σ in ωωωX : this can be done in RCA0 (and via uniform computable transformations)
by bounding the research for candidate elements of τ using a suitable function f .
The existence of such a function can be proved using the min-term-homogeneity of a
solution to λregHT=n[ap] for a λ-regressive colouring derived from σ. The interesting
point, here, is that showing the existence of f is a little easier than obtaining the
same result in the proof of Theorem 2.4.2, due to the infinite number of colours
available in λ-regressive colourings (indeed, here we can even avoid the definition
of “important number”). This highlights how sometimes regressive colourings can
make arguments easier, as is also the case with the proof of Theorem 3.3.8 (with
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λregHT≤n[ap] HT≤n
k [ap]

regRTn λregHT=n[ap] HT=n
k [ap] RTn

k

WOP(X → ωX ) RAN

sW

c

sW

sW

c

W

c

W(n≥2)
W(n≥3)

sW

Figure 3.3. Diagram of reductions. HT≤n[ap] ≤c λregHT≤n[ap] is from Proposition 3.3.4.
That the versions with sums of exactly n terms reduce to the corresponding versions for
sums of ≤ n terms is a trivial observation. The Weihrauch reduction of WOP(X → ωX )
to λregHT=n[ap] for n ≥ 2 is Theorem 3.4.1. The reduction RAN ≤W λregHT=n for
n ≥ 2 is Theorem 3.3.8. The reduction RAN ≤W HT=n

k [ap] for n ≥ 3, k ≥ 2 is from
[CKLZ]. The reduction RTn

k ≤c regRTn is from Proposition 3.3.5. The reduction
HT=n

h [ap] ≤sW RTn
k is folklore.

respect to the proof of Proposition 5 in [CKLZ], which uses HT≤2
2 [ap] in place of

λregHT=2[ap]) and with Kanamori and McAloon’s proof of the independence of a
first order version of regRT from PA (with respect to other independence results
from PA of analogous principles). Therefore, further investigations on λregHT aimed
at obtaining its equivalence with Hindman’s Theorem might be helpful not only in
order to improve our knowledge about both principles, but even to possibly give a
better answer to the longstanding question about the actual strength of HT.
For the sake of completeness, we now give the complete proof of the direct implication
of WOP(X 7→ ωX ) from λregHT=n[ap], which also establish a Weihrauch reduction.

Theorem 3.4.1. Let n ≥ 2. λregHT=n[ap] implies WOP(X 7→ ωX ) over RCA0.
Moreover, λregHT=n[ap] ≥W WOP(X 7→ ωX ).

Proof. Assume by way of contradiction ¬WO(ωωωX ), and let α = (αn)n∈N be an infinite
descending sequence in ωωωX . We define the α-computable sequence β = (βn)n∈N of
exponents of elements in α as in the proof of Theorem 2.4.2, i.e., βn = αt(n),p(n),
where t and p are such that θ(t(n), p(n)) = n, with θ(n,m) = m +

∑
k<n lh(αk)

whenever m < lh(αn), otherwise it is undefined. Intuitively, t(n) is the element of α
from which βn has been “extracted”, while p(n) is the position of the exponent βn

within αt(n).
Recall that i is decreasible if there exists j > i such that p(j) = p(i) and βi > βj .
In that case, we say that j decreases i and that j is a decreaser of i. Also, by
Lemma 2.4.1, each element of α contains at least one decreasible exponent.

Now suppose that f : N → N is a function with the following property.

Property P: For all i ∈ N, if i is decreasible, then it is decreased by some j ≤ f(i).
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We first show that given such an f we can compute (in f and β) an infinite descending
sequence (σi)i∈N in X as follows.

Step 0. Let i0 be the least decreasible index of β, and let j0 be the least decreaser
of i0. By Lemma 2.4.1, βi0 must be an exponent of α0, i.e. t(i0) = 0, so we can
find i0 by just taking the least decreasible i∗ < lh(α0). Notice that we can decide
whether i∗ is decreasible by just inspecting β up to the index f(i∗), since f has the
property P.
We set σ0 = βj0 and observe that p(i) ≥ p(i0) for each decreasible i > i0. Suppose
otherwise as witnessed by i∗, and let j∗ be the least decreaser of i∗. By definition of
decreaser, p(j∗) = p(i∗) < p(i0) and βi∗ > βj∗ . However i0 is the least decreasible
β-index of exponents of α0, hence the β-index of ep(i∗)(α0) will never decrease
due to p(i∗) < p(i0), so βi∗ = βz, where z = θ(0, p(i∗)). Therefore, βz > βj∗ and
p(z) = p(i∗) = p(j∗), but in that case z would be decreasible (by j∗) and p(z) < p(i0),
which implies z < i0 since t(z) = t(i0) = 0, thus contradicting the minimality of i0.

Step s+ 1. Suppose is, js, σs are defined, (σt)t≤s is decreasing in X and p(i) ≥ p(is)
for each decreasible i > is.
Let is+1 be the least decreasible index of β larger than or equal to js, and let js+1
be the least decreaser of is+1. By Lemma 2.4.1 and the fact that no decreasible
i > is can have p(i) < p(is) = p(js), βis+1 must be an exponent of αt(js), namely the
leftmost whose β-index is decreasible. So we can find is+1 by just taking the least
decreasible i∗ ∈ [js, js + lh(αt(js)) − p(js)). Notice that we can decide whether i∗ is
decreasible by just inspecting β up to the index f(i∗), since f has the property P.
We set σs+1 = βjs+1 . As we noted above, βis+1 must be either βjs or an exponent
of αt(js) on the right of βjs , i.e. t(is+1) = t(js) and p(is+1) ≥ p(js), so βjs ≥ βis+1 .
Then, σs > σs+1 because σs = βjs ≥ βis+1 > βjs+1 = σs+1. Finally, we observe that
the last part of the inductive invariant is guaranteed as well, since p(i) ≥ p(is+1)
for each decreasible i > is+1. Suppose otherwise as witnessed by i∗, and let j∗

be the least decreaser of i∗. By definition of decreaser, p(j∗) = p(i∗) < p(is+1)
and βi∗ > βj∗ . However βis+1 is the leftmost exponent of αt(js) whose β-index
is decreasible, then βi∗ = βz, where z = θ(t(js), p(i∗)). Hence, βz > βj∗ , but in
that case z would be decreasible (by j∗) and p(z) = p(i∗) < p(is+1), which implies
z < is+1 since t(z) = t(js) = t(is+1), thus contradicting the minimality of is+1.

We now show how to obtain a function satisfying the property P from a solution
of λregHT=n[ap] for a suitable colouring. The argument is similar to the proof of
Theorem 3.3.8.
Define c : N → N as follows: c(x) = the unique i < λ(x) satisfying the following
conditions:

1. There exists j such that λ(x) ≤ j < µ(x) and βj is the least decreaser of βi,
and

2. For all j′ such that j < j′ < µ(x), if βj′ is the least decreaser of βi′ then
i′ ≥ λ(x).

If no such i exists, we set c(x) = 0.
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The function c is computable in α and λ-regressive. Let H = {h1 < h2 < h3 < . . . }
be an apart solution to λregHT=n for c. The following Claim ensures the existence
of an (α⊕H)-computable function with Property P .

Claim 7. For each hk ∈ H and each decreasible i < λ(hk), there exists j < µ(hk+n−1)
such that j decreases i.

Proof of Claim 7. Assume by way of contradiction that there is some hk ∈ H and
some i < λ(hk) such that i is decreasible but not by any j < µ(hk+n−1).
Let b be such that if i′ < λ(hk) is decreasible, then there exists j′ < b decreasesing
i′. The existence of b can be proved in RCA0 using the following instance of strong
Σ0

1-bounding (similarly as in the proof of Theorem 3.3.8):

∀n ∃b (∀i′ < n) [∃j′(j′ decreases i′) → (∃j′ < b)(j′ decreases i′)].

Since H is infinite, there is an hk′ ∈ H such that hk′ > hk+n−1 and µ(hk′) ≥ b. Then,
by min-term-homogeneity, c(hk + · · · + hk+n−1) = c(hk + · · · + hk+n−2 + hk′). But
by choice of hk, hk′ and the definition of c, we can show that c(hk + · · · + hk+n−1) ̸=
c(hk + · · · + hk+n−2 + hk′), yielding a contradiction.
To see this, we reason as follows. First observe that, by apartness of H, the following
identities hold:

λ(hk + · · · + hk+n−1) = λ(hk + · · · + hk+n−2 + hk′) = λ(hk),

and
µ(hk + · · · + hk+n−2 + hk′) = µ(hk′).

Let j ∈ [µ(hk+n−1), µ(hk′)) be the least decreaser of i. Such a j exists for, by
hypothesis, i is decreasible but not by any j < µ(hk+n−1), and by choice of h′

k, the
least decreaser of i must be smaller than µ(hk′), since i < λ(hk).
First note that c(hk + · · · + hk+n−2 + hk′) cannot be 0, since this occurs if and only
if there is no i∗ < λ(hk) such that for some j∗ ∈ [λ(hk), µ(hk′)), j∗ decreases i∗; but
this is is false by choice of hk and hk′ .
If c(hk + · · · + hk+n−1) takes some non-zero value i∗ < λ(hk), then this same value
cannot be taken by c(hk + · · · + hk+n−2 + hk′) under our assumptions. If it were,
it would mean that i∗ is decreased for the first time by some j∗ < µ(hk′) that is
also the maximal least decreaser below µ(hk′) of some q with q < λ(hk). This is
impossible since the least decreaser of i∗ = c(hk + · · · + hk+n−1) occurs earlier in the
sequence β than the least decreaser of i since, by the definition of c, it must be that
j∗ < µ(hk + · · · + hk+n−1) and the latter value, by apartness, equals µ(hk+n−1), as
noted above. On the other hand, j is in [µ(hk+n−1), µ(hk′)), so that j∗ < j. Thus j∗

cannot be the maximal least decreaser below µ(hk′) of some q < λ(hk), as required
by the definition of c, since j is such a least decreaser of i, and i < λ(hk).
This proves the Claim. ⊓⊔

Now it is sufficient to observe that the (α⊕H)-computable function f defined as
follows has the Property P : on input n, pick the least k such that

∑
1≤n′≤n lh(αn′) <

λ(hk) and let f(n) be the α-index of the µ(hk+n−1)-th element in the sequence β
of all components appearing in α, i.e., f(n) = t(µ(hk+n−1)). That this choice of f
satisfies Property P is implied by Claim 7 above. This concludes the proof of the
theorem. ⊓⊔
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Chapter 4

The strength of Well-Orderings

As explained in Sec. 1.1.4, the outcome of ordinal analysis of a theory T carried out
using well-ordering principles is typically a specific linear order operator f such that
WOP(X 7→ f(X )) is equivalent to T over a weaker theory, while the Π1

1-ordinal of T
is the least transfinite ordinal whose existence can not be proved in T . Therefore,
adding WOP(X 7→ f(X )) to T does never result in a system stronger than T ,
which instead is always strictly included in T ′ = T + WO(ord(T )). Then, it is
natural to wonder what is the strength of T ′, and – more generally – what is the
strength of theories augmented with WO(α), where α is at least their proof-theoretic
ordinal. Even for weak theories like RCA0, the answer to this question is not trivial
and occasionally some confusion arises.1 Even the standard argument for showing
that ωω is an upper bound on the proof-theoretic ordinal of RCA0 is somewhat
indirect in that it hinges on the characterization of the provably recursive functions
of RCA0 rather than only on the computation of its Π1

1-ordinal. A proper direct
treatment approach to determining the proof-theoretic ordinal of theories of the
form RCA0 + WO(α) seems to be missing from the literature. The closest match is
Sommer’s [Som] model-theoretical treatment of first-order theories with transfinite
induction restricted to various formula-classes and ordinals strictly below ε0.
Therefore, in this Chapter – based on a joint work with Michael Rathjen – we fill an
apparent gap in the literature by showing that, if δ is an ordinal satisfying ω · δ = δ,
the Π1

1-ordinal of the theory RCA0 + WO(δ) is δω. Examples of relevant δ’s are
ωω, ωωω , etc. and ε0. Such a result provides an answer to a more general question
than just the strength of RCA0 + WO(ord(RCA0)), allowing us to investigate the
result of iterated strengthening of RCA0 via well-orderings. Moreover, it also gives
an ordinal analysis of several interesting theorems (see, e.g., [Sim1, HS, KY]) and
even of Ramsey-related principles (e.g., [Fri1]), all of which being equivalent over
RCA0 to WO(δ) for some δ = ω · δ.
The intuition behind our proof is the following. First, we switch to a first order
theory so that we can make use of standard methods to carry out ordinal analysis:
thus, starting from RCA0 + WO(δ), we construct the theory Tδ by discarding the

1For example, in proving that a Π1
1-version of Ramsey’s Theorem called the Adjacent Ramsey

Theorem is equivalent to WO(ε0) over RCA0, Lemma 2.2 in [Fri1] makes use of the false equivalence,
over RCA0, between WO(ε0) and the Π1

1-soundness of ACA0. The presentation in the later [FP]
avoids this pitfall but establishes a slightly different result.
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second order axiom ∆0
1-CA (which is not needed for our purposes) and by replacing

both IΣ1 and WO(δ) with a suitable first order axiom schema, namely the transfinite
induction up to δ restricted to Π1-formulas2, that can be formalized as follows.

Definition 4.0.1 (Transfinite induction). Let Γ be a class of formulas and let ≺
be a primitive recursive linear ordering isomorphic to some transfinite ordinal α.
Then the transfinite induction up to α for Γ formulas – in symbols, TI(α,Γ) – is the
following axiom schema:

∀x [∀y (y ≺ x → φ(y)) → φ(x)] → ∀xφ(x)

for each φ ∈ Γ.

Then, we give an ordinal analysis of the theory Tδ, and finally we show that such
theory proves the same Π1

1-statements as RCA0 + WO(δ), where – in the first order
context of Tδ – a Π1

1-sentence ∀XF (X) with F (X) arithmetic is expressed by the
formula F in which every occurrence of the clause x ∈ X is replaced by U(x), where
U is a generic unary predicate symbol added to the language of the theory. However,
in order to formalize well-orderings within Tδ, we do not translate Definition 1.1.10
using U: instead, we resort to the statement Fund≺ defined as follows:

∀x [∀y (y ≺ x → U(y)) → U(x)] → ∀xU(x), (4.1)

where ≺ is some ordering definable in the theory.
Therefore, by proof-theoretic ordinal of a first order theory T , here we mean the
least transfinite ordinal α isomorphic to some primitive recursive linear ordering ≺
such that T does not prove Fund≺. Then, in Sec. 4.2, we eventually show that from
the proof-theoretic ordinal (based on Fund≺) of Tδ we can derive the Π1

1-ordinal of
our target theory, that is, the proof-theoretic ordinal (based on Definition 1.1.10) of
RCA0 + WO(δ).
Ordinal analysis of Tδ is carried out using the (one-sided) sequent calculus – a
quite common choice in this field – since we need to work on derivations in Tδ

(and in other theories defined above) using methods made possible by this approach.
Especially, we make use of the well-known technique of cut elimination, that consists
in recasting a proof by removing all applications of the so-called cut rule, that is:

Γ, A Γ′,¬A
Γ,Γ′ (4.2)

This idea traces back directly to Gentzen’s formalization of sequent calculus and
it is widely used in Proof Theory, as any formal system admitting cut elimination
(meaning that any derivation in that system can be obtained with no applications
of the cut rule) can be easily proved to be consistent. In ordinal analysis, cut
elimination is useful because several methods have been developed to extract an
upper bound on the proof-theoretic ordinal of a theory starting from the length of
specific cut-free derivations of certain formulas.

2Recall from Chapter 1 that the superscript 0 is omitted in the notation for classes in the
arithmetical hierarchy when dealing with L1-formulas.
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However, cut elimination easily applies only to pure logic: when we add axioms
to formalize our theory, instead, cut elimination becomes “problematic”. A typical
workaround, then, is to perform partial cut elimination, that is, only cuts of formulas
whose complexity is higher than the complexity of the axioms are removed, which is
exactly what we do to our derivations in Tδ. Still, cuts of less complex formulas
need to be eliminated in order to apply the aforementioned techniques, as they only
work on cut-free derivations. Therefore, following a typical approach, we “embed”
Tδ into an infinitary theory PAω, i.e. a theory containing a rule with infinitely many
premises, called ω-rule, that can be formalized as follows.

Γ, F (n̄) for all n
Γ,∀xF (x) (4.3)

where n̄ denote the n-th numeral, that is, the term obtained by adding n times the
successor function symbol to the term 0̄ for zero.
This rule can then replace axioms with a complexity too high for our purposes (like
TI(δ,Π1)), but it also turns deductions into infinite objects, for it requires to derive
all its infinitely many premises before being applied. However, this way we can
eventually obtain cut-free derivations3, so that we can finally extract an upper bound
for the proof-theoric ordinal of Tδ and (by Π1

1-conservativity) of RCA0 + WO(δ) as
well, with the only constraint that ω · δ = δ.

Then, for the remainder of this Chapter, we fix an ordinal δ such that ω · δ = δ.
The ordinal δ is assumed to be represented in a natural primitive recursive ordinal
representation system. Also, we denote by <δ the primitive recursive linear ordering
on the ordinals smaller than δ to distinguish it from the usual ordering on the
naturals.

4.1 Ordinal analysis of Tδ

The theory Tδ is formalized using the language L1 augmented by the symbols for
all the primitive recursive relations plus a unary predicate symbol U. Bounded
quantifiers ∀x ≤ t and ∃x ≤ t are treated as quantifiers in their own right – that
is, as specific constructions not to be intended as abbreviations for other formulas.
Formulas containing only bounded quantifiers (or no quantifiers at all) are called
∆0-formulas.
For our proof-theoretic purposes, derivations in Tδ are formalized in a one sided
sequent calculus, using negation normal forms following [Sch3] (this is also known
as the Tait-calculus [Tai]).
For any term t, if t is closed (i.e., it does not contain free variables and can then be
evaluated to a number), we denote by tN the number n such that t evaluates to n
(in the following we occasionally refer to tN by t).
The axioms of Tδ are sequents of two kinds. Let Γ be a finite set of formulas of Tδ.

3Actually, at this step, there still might be cuts of atomic formulas, so we need to take them into
account (see Sec. 4.1.3).
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(i) Let R(t1, . . . , tr) be an atomic closed formula, where R is a relation symbol
for a primitive recursive relation RN. If RN(tN1 , . . . , tNr ) is true, then

Γ, R(t1, . . . , tr)

is an axiom. If RN(tN1 , . . . , tNr ) is false, then

Γ,¬R(t1, . . . , tr)

is an axiom.

(ii) If sN = tN holds for closed terms s and t, then

Γ,U(s),¬U(t)

is an axiom.

The order relation for the ordering on δ is denoted by the same symbol <δ used
to denote the corresponding primitive recursive relation. Also, we fix some binary
surjective coding function for pairs with inverses ( · )0 , ( · )1.
Moreover, Tδ includes the transfinite induction on δ for Π1-formulas, which is
expressed via the rule

Γ, ∃z ((z)0 <δ a ∧ ¬F ((z)1, (z)0)), ∀xF (x, a)
Γ, F (t, s) (4.4)

where t, s are arbitrary terms, Γ is an arbitrary finite set of formulas, F (b, a) is ∆0
and a is an eigenvariable, meaning that it does not occur free in the lower sequent.
Intuitively, 4.4 asserts that F (t, s) holds whenever the fact that F (x, y) holds for
any x and any y <δ a implies ∀xF (x, a).
Observe that Σ1-induction is included in Tδ as it follows from TI(δ,Π1), since IΠ1
entails IΣ1 even over weak theories (e.g., see Prop. 6.1.5 in [DM]).
In order to perform partial cut eliminations, we define the rank of a formula A (and
we denote it by |A|) as follows:

(i) if A is ∆0, then |A| = 0; otherwise,

(ii) if A = A0 ∧A1 or A = A0 ∨A1, then |A| = max(|A0|, |A1|) + 1;

(iii) if A = ∀xF (x) or A = ∃xF (x), then |A| = |F (0)| + 1;

(iv) if A = (∀x ≤ t)F (x) or A = (∃x ≤ t)F (x), then |A| = |F (0)| + 2.

Note that point (iv) is needed due to our definition of bounded quantifiers within Tδ.
As the rule (4.4) introduces a ∆0-formula and the main formulas of the remaining
axioms of Tδ are ∆0 as well, we can easily eliminate cuts of rank greater than 0. For
any m, k ∈ ω, we use the notation Tδ

m

k
Γ to convey that Γ is deducible in Tδ by a

deduction of length at most m such that all cuts occurring in this deduction only
act on formulas of a rank less than k. Thus Tδ

m

1 Γ means that all cut formulas (if
any) in the deduction of Γ are ∆0-formulas.

Theorem 4.1.1. Tδ
n

r+1 Γ ⇒ ∃mTδ
m

1 Γ .

Proof. By the usual cut elimination method of Gentzen’s Hauptsatz. ⊓⊔
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4.1.1 Embedding Tδ in an infinitary system

Next we embed Tδ into an infinitary system, called PAω, with ω-rule (basically the
same as the system Z∞ in [Sch3]; an explicit definition of PAω in a two-sided Gentzen
calculus can be found in [Rat1]). The formulas of PAω are the closed formulas of
Tδ, i.e. formulas without free variables. We assign a rank |A|ω to a formula A of
PAω as follows:

• |A|ω = 0 if A is atomic or a negated atom.

• |A0 ∧A1|ω = |A0 ∨A1|ω = max(|A0|ω, |A1|ω) + 1.

• |(∃x ≤ t)F (x)|ω = |(∀x ≤ t)F (x)|ω = |F (0)|ω + 1.

• |∃xF (x)|ω = |∀xF (x)|ω = max(ω, |F (0)|ω + 1).

Note that |A|ω < ω exactly when A is ∆0, and |∃xF (x)|ω = |∀xF (x)|ω = ω when
F (0) is ∆0.

The axioms of PAω are the same as Tδ, but the transfinite induction rule (4.4) is
discarded.
However, PAω includes the ω-rule as defined in 4.3, that is: if Γ, F (n̄) is deducible
for all n, then Γ, ∀xF (x) holds.
Similarly to derivations in Tδ, we will use the notation PAω

α

β
Γ to convey that Γ

is deducible in PAω by a deduction of height at most α using only cuts of formulas
with | · |ω-rank < β.
However, in this case, α and β are ordinal numbers, hence we need to define the
following operation (formalized as in [Poh], Exercise 3.3.14). Recall that any ordinal
α has a unique normal form (see [Poh], Theorem 3.3.8), that is, there exist uniquely
determined ordinals α0, . . . , αn such that α = α0 + · · · + αn; in that case, we write
α =NF α0 + · · · + αn.

Definition 4.1.2 (Hessenberg sum). Let α =NF α0+· · ·+αm and β =NF β0+· · ·+βn.
We set α#β = γ0 + · · · + γp, where γ0, . . . , γp are the ordinals α0, . . . , αm, β0, . . . , βn

enumerated in non-increasing order, that is, γi ≥ γi+1 for all i < p = m+ n.

Notice that the Hessenberg sum is commutative. Then, we can state the following
Lemma.

Lemma 4.1.3 (Reduction Lemma). If |B|ω ≤ ω, PAω
α

ω Γ, B and PAω
β

ω Γ,¬B ,
then PAω

α#β

ω Γ .

Proof. See [Sch3], p. 882. ⊓⊔

Now we can “embed” Tδ into PAω.

Theorem 4.1.4 (Embedding Theorem). If Tδ
m

1 Γ , then PAω
δm

ω Γ∗ , where Γ∗ is
the result of assigning closed terms to all free variables in Γ (the same term to the
same variable).
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Proof. We proceed by induction on m. We only need to pay attention to the case
where the last inference is an instance of the rule (4.4), since it is not included in
PAω; all the other cases trivially derive from the definition of rank in Tδ and in PAω.
So let Γ = Θ, F (t, s) and assume

Tδ
m0

1 Θ,∃z ((z)0 <δ a ∧ ¬F ((z)1, (z)0)),∀x F (x, a)

for some m0 < m.
Let * be an assignment. Inductively we have that, for all closed terms q:

PAω
δm0

ω Θ∗,∃z ((z)0 <δ q ∧ ¬F ∗((z)1, (z)0)),∀xF ∗(x, q) (4.5)

For any α in the field of <δ, we can show by transfinite induction that:

PAω
δm0 ·ω·(α+1)
ω Θ∗,∀xF ∗(x, ᾱ) (4.6)

By the induction hypothesis, we have:

PAω
δm0 ·(ω·(η+1))
ω Θ∗, F ∗(s, η̄)

for every η <δ α and arbitrary closed term s′, yielding

PAω
δm0 ·(ω·α)+1
ω Θ∗,¬(η̄ <δ ᾱ) ∨ F ∗(s′, η̄)

via an inference (∨). If r is a closed term such that rN is different from all η
preceding α, then ¬(r <δ ᾱ) is an axiom, and thus, via an inference (∨), we arrive
at PAω

1
0 Θ∗,¬(r <δ ᾱ) ∨ F ∗(s′, r) . Thus from the above we conclude that

PAω
δm0 ·(ω·α)+1
ω Θ∗,¬((k̄)0 <δ ᾱ) ∨ F ∗((k̄)1, (k̄)0)

holds for all k, so that, via an application of the ω-rule, we get:

PAω
δm0 ·(ω·α)+2
ω Θ∗, ∀z (¬((z)0 <δ ᾱ) ∨ F ∗((z)1, (z)0)). (4.7)

Applying the Reduction Lemma 4.1.3 to (4.5) and (4.7) yields:

PAω
δm0 #(δm0 ·(ω·α))+2
ω Θ∗,∀xF ∗(x, ᾱ). (4.8)

From (4.8) we finally get:

PAω
δm0 ·(ω·(α+1))
ω Θ∗,∀xF ∗(x, ᾱ) ,

confirming (4.6).
If a term q has the property that qN is not in the field of <δ then one can directly
infer from (4.5) that

PAω
δm0

ω Θ∗, ∀xF ∗(x, q). (4.9)
The reason for this is that if the formula ∃z ((z)0 <δ q ∧ ¬F ∗((z)1, (z)0)) figures as
the main formula of an inference in this derivation its minor formula is of the form
(p)0 <δ q ∧ ¬F ∗((p)1, (p)0). The latter formula conjunctively contains a false atomic
formula. Such a formula can always be erased from the derivation. Formally, of
course, this has to be proved by a separate induction on the ordinal of the derivation.
(4.6) and (4.9) now yield

PAω
δm

ω Θ∗, F ∗(t, s)
for all closed terms t and s, since ω · (α+ 1) <δ δ on account of ω · δ = δ. ⊓⊔



4.1 Ordinal analysis of Tδ 59

4.1.2 Eliminating cuts with ∆0-formulas

The next step is to eliminate cuts with ∆0-formulas that are not atomic.

Lemma 4.1.5. Let 0 < n < ω and suppose PAω
α

n+1 Γ . Then PAω
ω·α
n Γ .

Proof. We proceed by induction on α. The crucial case is when the last inference
was a cut of rank n with cut formulas A,¬A. Note that A is not an atomic formula.
We then have PAω

α0

n+1 Γ, A and PAω
α0

n+1 Γ,¬A for some α0 < α. The induction
hypotheses furnishes us with

PAω
ω·α0
n Γ, A and PAω

ω·α0
n Γ,¬A (4.10)

Let A be of the form (∃x ≤ t)F (x), the case (∀x ≤ t)F (x) being symmetric. Then
¬A is the formula (∀x ≤ t) ¬F (x). From (4.10) we obtain

PAω
ω·α0
n Γ, F (0̄), . . . , F (p̄) and PAω

ω·α0
n Γ,¬F (k̄) (4.11)

for all k ≤ p, where p is the numerical value of t. As the formulas F (k̄),¬F (k̄) have
rank < n, we can employ (p+ 1)-many cuts to (4.11) to arrive at PAω

ω·α0+p+1
n Γ .

Thus we have PAω
ω·α
n Γ as ω · α0 + p+ 1 < ω · α. A similar argument works when

A is of either form A0 ∧A1 or A0 ∨A1. ⊓⊔

Corollary 4.1.6. If PAω
α

ω Γ then PAω
ωω ·α
1 Γ .

Proof. We use induction on α. The only interesting case arises when the last
inference is a cut with a formula A of rank k > 0. Then we have PAω

α0
ω Γ, A and

PAω
α0
ω Γ,¬A for some α0 < α. The induction hypothesis yields PAω

ωω ·α0

1 Γ, A and
and PAω

ωω ·α0

1 Γ,¬A . Hence PAω
ωω ·α0+1
k+1

Γ . Applying Lemma 4.1.5 k times we

arrive at PAω
ωk·(ωω ·α0+1)
1 Γ . As ωk · (ωω · α0 + 1) = ωω · α0 + ωk ≤ ωω · α we also

have PAω
ωω ·α
1 Γ as desired. ⊓⊔

Note that δ ≥ ωω since ω · δ = δ.

Corollary 4.1.7. Let m > 0. If PAω
δm

ω Γ then PAω
δm+1

1 Γ .

Proof. Corollary 4.1.6 yields PAω
ωω ·δm

1 Γ . Thus the desired conclusion follows as
ωω · δm ≤ δ · δm = δm+1. ⊓⊔

4.1.3 Upper bounds for the provable well-orderings of Tδ

The results of the previous section can be utilized to determine the ordinal rank of
provable well-orderings of Tδ. Let ≺ be a primitive recursive ordering. ≺ is said to
be a provable well-ordering of Tδ if Tδ proves that ≺ is a total linear ordering and
that Fund≺ holds.
Assuming Tδ ⊢ Fund≺, from Theorem 4.1.1, Theorem 4.1.4 and Corollary 4.1.7 we
can derive

PAω
δm

1 ∀v[∀u(u ≺ v → U(u)) → U(v)] → ∀vU(v) (4.12)

for some m > 0, where F → F ′ stands for ¬F ∨ F ′ for any formulas F, F ′.
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There are several ways of obtaining an upper bound for the order type of ≺ in
terms of the length of a cut-free deduction of Fund≺ (see e.g. [Sch2, Theorem
23.1], [FS, Theorem 2.27]) which ultimately go back to Gentzen. Schütte [Sch2,
Theorem 23.1] obtains particularly sharp bounds. He shows that the length α of a
cut-free derivation of transfinite induction along an ordering ≺ (of which Fund≺ is
an instance) provides an upper bound for the ordinal rank of ≺ if ω ·α = α. However,
in our case, we need to extract bounds from deductions that still have cuts with
formulas U(s),¬U(s).4 We could first eliminate these remaining cuts, yet we would
get bounds of the form 2δm (as in [Sch3], p. 882), and these would be too high for
our purpose of showing that δω is the proof-theoretic ordinal of Tδ. To overcome
this obstacle, we draw on a technique proposed by Rathjen (e.g., see [Rat2]). We
extend PAω by yet another infinitary rule Prog≺ due to Schütte [Sch1, p. 384], that
is:

Γ,U(m̄) for all m ≺ n

Γ,U(s) (4.13)

whenever s is a closed term with value n.
We denote by PA∗

ω the extension of PAω with the rule Prog≺. Notice that all the
results obtained in the previous sections for PAω also hold for PA∗

ω: indeed, all the
arguments can be adapted verbatim to PA∗

ω, with the only exception of the proof of
Lemma 4.1.3, which requires to be slightly extended (see [Sch3], p. 883).
Now, let PROG≺ be an abbreviation for ∀v [∀u (u ≺ v → U(u)) → U(v)]. The rule
Prog≺ has the effect of making PROG≺ provable.

Lemma 4.1.8. PA∗
ω

α

1 Γ,¬PROG≺ ⇒ PA∗
ω

3·α
1 Γ .

Proof. We proceed by induction on α. If ¬PROG≺ was not the main formula of the
last inference then the desired result follows immediately by applying the inductive
assumption to its premisses and subsequently reapplying the same inference. Thus
suppose that ¬PROG≺ was the main formula of the last inference. Then, by the
weakening rule, we have

PA∗
ω

α0

1 Γ, ¬PROG≺,∀u(u ≺ s → U(u)) ∧ ¬U(s) (4.14)

for some α0 <δ α and some closed term s. The induction hypothesis yields

PA∗
ω

3·α0

1 Γ, ∀u(u ≺ s → U(u)) ∧ ¬U(s) . (4.15)

Using inversion for (∧), (∀) and (∨) we arrive at

PA∗
ω

3·α0

1 Γ, ¬ (n̄ ≺ s), U(n̄) (4.16)

for all n, and

PA∗
ω

3·α0

1 Γ, ¬U(s) . (4.17)

4They may also contain cuts with formulas R(t1, . . . , tk), ¬R(t1, . . . , tk), where R is a symbol for
a primitive recursive predicate. But these are entirely harmless.
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Since PA∗
ω

0
0 Γ, n̄ ≺ s holds for all n with n ≺ sN, we can apply cuts and the rule

Prog≺ to (4.16) to arrive at

PA∗
ω

3·α0+2
1 Γ, U(s). (4.18)

Applying Cut to (4.18) and (4.17) yields

PA∗
ω

3·α0+3
1 Γ (4.19)

and hence

PA∗
ω

3·α
1 Γ. (4.20)

⊓⊔

Corollary 4.1.9. For all n, PA∗
ω

δm

1 U(n̄) .

Proof. Follows from (4.12) and Lemma 4.1.8. Note that m > 0. ⊓⊔

For a closed numerical term s we denote by |s|≺ the ordinal {|n̄|≺ | n̄ ≺ s is true}.

Proposition 4.1.10. Assume that the sequent ¬U(t1), . . . ,¬U(tr),U(s1), . . . ,U(sq)
is not an axiom and s1 ⪯ . . . ⪯ sq holds. Then

PA∗
ω

α

1 ¬U(t1), . . . ,¬U(tr),U(s1), . . . ,U(sq)

implies

|s1|≺ < ω · α. (4.21)

Proof. Let ¬U(⃗t ) be an abbreviation for ¬U(t1), . . . ,¬U(tr). In the above, we allow
r = 0, in which case ¬U(⃗t ) is the empty sequent.
We proceed by induction on α. As the sequent is not an axiom, it must have been
inferred. The only two possibilities are applications of Prog≺ or cuts with atomic
formulas.
Case 1: The last inference was Prog≺. Then there is a term sj and α0 <δ α such
that PA∗

ω
α0

1 ¬U(⃗t ),U(s1), . . . ,U(sq),U(n̄) for all n̄ ≺ sj . As s1 ⪯ sj this also holds
for all n̄ ≺ s1. The induction hypothesis yields that

|n̄|≺ < ω · α0

holds for those n̄ ≺ s1 for which the sequent is not an axiom. By definition of PA∗
ω,

¬U(⃗t ),U(s1), . . . ,U(sq),U(n̄) (4.22)

is an axiom only if n̄ has the same value as some t1, . . . , tr; then there are only
finitely many n for which (4.22) is an axiom. Thus |s1|≺ < ω · α0 + ω, whence
|s1|≺ < ω · α.
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Case 2: The last inference was a cut with cut formulas U(p),¬U(p), i.e., we have

PA∗
ω

α0

1 ¬U(⃗t ),U(s1), . . . ,U(sq),U(p) (4.23)

PA∗
ω

α0

1 ¬U(⃗t ),U(s1), . . . ,U(sq),¬U(p) (4.24)

for some α0 < α and closed term p. If the sequent from (4.24) is not an axiom,
the induction hypothesis applied to that derivation yields |s1|≺ < ω · α0. If it is an
axiom, there is an sj such that p and sj evaluate to the same numeral, and hence
s1 ⪯ p. In that case, the induction hypothesis applied to (4.23) yields |s1|≺ < ω ·α0.
Case 3: The last inference was a cut with cut formulas R(q⃗),¬R(q⃗) for a symbol R
for a primitive recursive relation. Then we have

PA∗
ω

α0

1 ¬U(⃗t ),U(s1), . . . ,U(sq), R(q⃗) (4.25)

PA∗
ω

α0

1 ¬U(⃗t ),U(s1), . . . ,U(sq),¬R(q⃗) (4.26)

for some α0 < α. If R(q⃗) is true, it follows from (4.26) that we also have

PA∗
ω

α0

1 ¬U(⃗t ),U(s1), . . . ,U(sq)

since ¬R(q⃗) is false and thus it can be ditched from the derivation of (4.26). Hence
the induction hypothesis yields |s1|≺ < ω · α0.
Likewise, if R(q⃗) is false, it follows from (4.25) that we also have

PA∗
ω

α0

1 ¬U(⃗t ),U(s1), . . . ,U(sq)

and hence the induction hypothesis yields |s1|≺ < ω · α0.
To formally prove both these cases, one should apply a further induction on the
length of the derivation. ⊓⊔

Corollary 4.1.11. The following implications hold:

(i) PA∗
ω

α

1 U(s) ⇒ |s|≺ < ω · α

(ii) PAω
β

1 Fund≺ ⇒ | ≺ | ≤ ω · 3 · β, where | ≺ | is the ordinal rank of ≺.

Proof. (i) is an immediate consequence of Proposition 4.1.10, while (ii) follows from
(i) and Lemma 4.1.8. ⊓⊔

In sum, it follows that the ordinal rank of ≺ is not larger than δm for m ∈ ω, and
hence δω is an upper bound for the proof-theoretic ordinal of Tδ.
Proposition 4.1.10 can also be proved via techniques in A. Beckmann’s dissertation,
notably his [Bec, 5.2.5 Boundedness Theorem] that also features in [BP].
Turning to lower bounds, one can easily show, using external induction on n, that
Tδ ⊢ Fund≺δn . This is a folklore result; details can be found in [Som, Lemma 4.3]
Finally, as a consequence of the results gathered so far, we have the following
theorem.

Theorem 4.1.12. The proof-theoretic ordinal of Tδ is δω.

It remains to transfer this result to our target theory RCA0 + WO(δ).
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4.2 Proof-theoretic ordinal of RCA0 + WO(δ)

In this last section, we show that we can apply our results from the previous section
to conclude that the ordinal of RCA0 + WO(δ) is δω.
To prove such conservativity result, we proceed as follows. We start by showing that
any L2-structure whose first order part is a model of Tδ can be extended to a model
of RCA0 + WO(δ). We follow the scheme of Simpson ([Sim2], IX.1). By writing
that M1 is an ω-submodel of M2 we mean that M1 = (M1,S1) and M2 = (M1,S2)
where S1 ⊆ S2. In other words, the two models share the same first order part M1.

Lemma 4.2.1. Let M be an L2-structure which satisfies the axioms of Tδ. Then
M is an ω-submodel of some model of RCA0 + WO(δ).

Proof. We first show that M can be extended to a model M′ satisfying RCA0 and
TI(δ,∆0

0) with the same first-order domain as M. Then we show that such an
extension also satisfies WO(δ).
The ω-extension M′ is defined exactly as in Simpson, Lemma IX.1.8, i.e., the second-
order part is given by the ∆0

1-definable sets of the base model M. By Lemma IX.1.8
of [Sim2] we have that M′ satisfies RCA0.
Then, in order to check that TI(δ,∆0

0) is also satisfied, we use the first claim in
Simpson’s Lemma IX.1.8. Let φ be a Σ0

0 formula with no free set variables and
parameters in M ′. Then, there exists a Π0

1-formula φΠ with the same free variables
and parameters only in M such that φ and φΠ are equivalent over M ′. Thus,
TI(δ,Π0

1) in M implies TI(δ,∆0
0) in M′.

Finally, we show that M ′ also satisfies WO(δ). Since δ is a linear ordering by
definition and WF(δ) is equivalent to ME(δ) by Theorem 1.1.12, we can just show
that ME(δ) holds. Assume otherwise, letting S be a set witnessing ¬ME(δ): then,
we would have that S̄, i.e. the complement of S, witnesses the failure of an instance
of TI(δ,∆0

0). More precisely: suppose that S is non-empty and has no <δ-minimal
element. Then ∃x(x ∈ S). On the other hand, S̄ is in M ′ (since any model of RCA0
is closed under Turing reducibility hence under complement) and ∀x(∀y(y <δ x →
y ∈ S̄) → x ∈ S̄). Suppose in fact that for some x, ∀y(y <δ x → y ∈ S̄) but x ∈ S.
Then all y <δ x are not in S but x is in S and thus x is the minimum of S, contra
our hypothesis. ⊓⊔

Then we can prove the following conservativity result.

Lemma 4.2.2. If RCA0 + WO(δ) proves ∀XF (X) with F (X) arithmetic, then Tδ

proves the formula F ′ obtained from F (X) by replacing expressions of the form
t ∈ X with U(t).

Proof. By way of contradiction, assume ¬F ′ holds in some L2-model M of Tδ.
Then we can extend M to an L2-model M′ for RCA0 + WO(δ) as in the proof of
Lemma 4.2.1. Since the second order part of M′ contains all the ∆0

1-definable sets,
there exists X in M′ such that x ∈ X if and only if U(x) for all x. Hence ¬F (X)
holds, contradicting our hypothesis. ⊓⊔
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Now we show that from the proof-theoretic ordinal of Tδ, obtained in the previous
section and based on the concept of Fund≺, we can derive the Π1

1-ordinal of the
theory RCA0 + WO(δ). First, we translate Fund≺ accordingly to the statement of
Lemma 4.2.2.

Definition 4.2.3. For any ordering X , we define Fund(X ) as follows:

∀Y [∀y(∀z(z <X y → z ∈ Y ) → y ∈ Y ) ∧ ∀y(y ∈ Y )]

Then, we have the following result.

Lemma 4.2.4. RCA0 + WO(δ) does not prove Fund(δω).

Proof. From Theorem 4.1.12 and Lemma 4.2.2. ⊓⊔

Now, it only remains to show that WF(X ) implies Fund(<X ) over RCA0, for any
ordering X = (X,X ).

Lemma 4.2.5. Over RCA0, WF(X ) implies Fund(X ) for any ordering X .

Proof. Suppose WF(X ) but ¬Fund(X ). Then, we have:

∃Y [∀y(∀z(z <X y → z ∈ Y ) → y ∈ Y ) ∧ ∃y(y /∈ Y )]

Therefore Ȳ , i.e., the complement of Y , is non-empty. Since

∀y(∀z(z <X y → z ∈ Y ) → y ∈ Y )

holds by assumption, then for any y ∈ Ȳ there exist z ∈ Ȳ s.t. z <X y. Hence, we can
use Ȳ to recursively define an infinite descending sequence in X , thus contradicting
WF(X ). ⊓⊔

Lemma 4.2.6. RCA0 + WO(δ) does not prove WF(δω).

Proof. By way of contradiction, assume that we can derive WF(δω) in RCA0+WO(δ).
Then, by Lemma 4.2.5, we have RCA0 + WO(δ) ⊢ Fund(δω), hence contradicting
Lemma 4.2.4. ⊓⊔

Theorem 4.2.7. The proof-theoretic ordinal of RCA0 + WO(δ) is δω.

Proof. The upper bound is given by Lemma 4.2.6. The lower bound follows from
the observation that, for each n, RCA0 + WO(δ) ⊢ WO(δn). The proof, which we
omit, is analogous to the proof that RCA0 ⊢ WO(ωn) for each n. ⊓⊔
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Conclusion

We investigated different topics concerning Ramsey-theoretic principles and well
orderings, providing several original results. After giving an introductory overview
(Chapter 1) about Proof Theory, Reverse Mathematics and Computability Theory,
in Chapter 2 we studied the relations between Ramsey’s Theorem and the so-
called well-ordering principles: first, we better formalized former results due to
Carlucci and Zdanowski, then we extended the argument to Ramsey’s Theorem
for large sets, hence answering a question left open in [CZ1]. We provided both
implications over RCA0 and Weihrauch reductions, giving a method that is likely
applicable to stronger well-ordering principles as well. We also showed how the
weakest restriction of Hindman’s Theorem known to be equivalent to ACA0 – i.e.,
HT=3

2 [ap] – Weihrauch-reduces WOP(X → ωωωX ) – that is, the well-ordering principle
for base-ω exponentiation, which is known to be equivalent to ACA0.

Then, in Chapter 3, we analyzed Ramsey-like principles for infinitely many colours.
Starting from a corollary of the Canonical Ramsey’s Theorem (namely, its application
to regressive colourings), we formulated and studied an analogous variation of
Hindman’s Theorem: in particular, we defined the class of λ-regressive colourings
and we applied Taylor’s Theorem (that is, the “canonical” version of Hindman’s
Theorem) to this class of functions, hence obtaining a novel principle – that we
called Regressive Hindman’s Theorem – with some interesting features. First of
all, it preserves various properties of Hindman’s Theorem and Taylor’s Theorem: it
self-improves to its own version with apartness, it implies the standard Hindman’s
Theorem over RCA0 and it can be parameterized by limiting the length of the sums
in the solution, so as to produce a hierarchy of bounded versions of the full principle.
These versions, in turn, were analyzed, highlighting how their (apparently) weakest
version – i.e., the Regressive Hindman’s Theorem for sums of exactly 2 elements –
endowed with apartness is already equivalent to ACA0. This fact results in a nice
symmetry with Ramsey’s Theorem: the regressive version of the latter, indeed, is
equivalent to ACA0 even when applied to colourings of pairs, while the standard
Ramsey’s Theorem requires triples, which is exactly what happens with Hindman’s
Theorem and its regressive version (both with apartness), whose equivalence with
ACA0 is obtained, respectively, for sums of 3 elements and sums of 2 elements.
Finally, we mentioned that a Weihrauch reduction from such restriction of Regressive
Hindman’s Theorem and WOP(X → ωωωX ) can be found: this last result highlights how
the use of regressive functions can help in simplifying arguments about Hindman’s
Theorem, hence giving an additional tool in the research for the optimal bounds on
this kind of principles.
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In the last Chapter, then, we answered a natural question that can arise when
dealing with well-orderings, especially while using them in ordinal analysis: namely,
we measured the strength of the family of systems RCA0 + WO(α), where α = ω · α.
Several theorems were proved equivalent to some of these systems: therefore, besides
answering the original question, we also gave an ordinal analysis of all such principles.
Finally, different lines of research can be derived from the results presented here:
first, one could try to extend the Weihrauch reductions from Ramsey’s principles to
stronger well-ordering principles. Moreover, various open questions about Hindman’s
Theorem can be shifted to its regressive version, so as to investigate (for instance) its
optimal bounds or the strength of the restricted versions without apartness, hence
possibly giving a better insight even into the original Hindman’s principle as well.
Lastly, it may be interesting to relate the Regressive Hindman’s Theorem with
Hindman-type variants of the Thin Set Theorem (recently studied by Hirschfeldt
and Reitzes in [HR]), since they all deal with infinitely many colours.
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