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Abstract: Background. Oxidative stress and inflammation are typically implied in atherosclerosis
pathogenesis and progression, especially in coronary artery disease (CAD). Our objective was to
investigate the oxidative stress and inflammation burden directly associated with atherosclerotic
plaque in patients with stable coronary disease undergoing coronary artery bypass graft (CABG)
surgery. Specifically, markers of oxidative stress and inflammation were compared in blood samples
obtained from the atherosclerotic left anterior descending artery (LAD) and blood samples obtained
from the healthy left internal thoracic artery (LITA), used as a bypass graft, within the same patient.
Methods. Twenty patients scheduled for off-pump CABG were enrolled. Blood samples were
collected from the LITA below anastomosis and the LAD below the stenosis. Samples were analysed
for oxidative stress (sNOXdp, H2O2, NO) and inflammation markers (TNFα, IL-6, IL-1β, IL-10).
Results. The analysis showed a significant increase in oxidative stress burden in the LAD as compared
to LITA, as indicated by higher sNOX2-dp and H2O2 levels and lower NO levels (p < 0.01). Also,
pro-inflammatory cytokines were increased in the LAD as compared to the LITA, as indicated by
higher TNFα and IL-6 amounts (p < 0.01). On the other hand, no significant differences could be
seen regarding IL-1β and IL-10 levels between the two groups. Conclusions. The oxidative stress
and inflammatory burden are specifically enhanced in the LAD artery of stable coronary patients
compared to systemic blood from the LITA of stable coronary patients.

Keywords: internal thoracic artery; left anterior descending artery; coronary artery bypass graft;
oxidative stress; inflammation

1. Introduction

Cardiovascular (CV) diseases represent the leading cause of morbidity and mortal-
ity worldwide due to coronary artery disease (CAD) and subsequent heart failure, and
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atherosclerosis is the most common underlying pathology of CAD, peripheral artery dis-
ease, and cerebrovascular disease [1–4]. Despite efforts in terms of lifestyle modifications,
primary prevention, and conventional as well as innovative pharmacological therapies,
including lipid-lowering and anti-hypertensive drugs, the incidence of clinical events de-
rived from atherosclerotic disease remains high [4,5]. Systemic and vascular inflammation
play a crucial role in the genesis of atherosclerosis, the occurrence of cardiovascular events
and the severity of clinical outcomes [6–10], with the therapeutic role of anti-inflammatory
interventions recently demonstrated in large clinical trials with drugs targeting specific
inflammatory mechanisms [11–13]. Therefore, additional efforts are needed to understand
the inflammatory and oxidative mechanisms underlying atherosclerosis development.
Human studies linking specific markers of inflammation and oxidative stress with coro-
nary atherosclerosis, by directly measuring these markers in diseased and healthy vessels,
would significantly help to better understand these pathophysiological processes. Thus,
we analyzed the concentration of pro-inflammatory molecules and oxidative stress mark-
ers in blood obtained from the left ITA (LITA) and native coronary artery—left anterior
descending artery (LAD)—in patients undergoing off-pump coronary artery bypass graft
(OPCABG). Of note, LITA is not only resilient to atherosclerosis representing a benchmark
conduit for this study [14–16].

2. Materials and Methods
2.1. Study Design

This study was conducted at the European Hospital of Rome from June 2021 to July
2022. Patients scheduled for surgical coronary artery revascularization were enrolled.
Inclusion criteria were an age between 18 and 85 years old, an off-pump procedure, the
utilization of in situ LITA, and informed consent. Patients with recent STEMI (<30 days),
severe left ventricular dysfunction (LVEF < 30%), acute or chronic inflammatory diseases,
rheumatological or immunological diseases, active malignancy, or active infections were
excluded. To ascertain the required sample size, we utilized G*Power v3.1 software, with
the assumption of a mean difference of approximately 50% in major outcome variables
between the two groups (LITA vs. LAD).

The choice to include only off-pump procedures was aimed at avoiding the impact of a
cardiopulmonary bypass (CPB) on inflammation and oxidative stress homeostasis. For each
patient, we collected demographic data, and clinical and anamnestic information, and also
performed routine blood tests. All patients received preoperatory coronary angiography,
transthoracic echocardiography, chest X-rays, and ultrasounds of supra-aortic vessels.

This study was registered at ClinicalTrial.gov: https://clinicaltrials.gov/study/NCT0
5574621?term=NCT05574621&rank=1 (accessed on 23 September 2024) (NCT05574621) and
was approved by the European Hospital Ethical Committee (N◦ 2021-01).

2.2. Surgical Procedure

All patients enrolled underwent surgical coronary artery revascularization. The proce-
dure was performed under general anaesthesia, via full median sternotomy. The left inter-
nal thoracic artery was harvested in skeletonized fashion; the saphenous vein was harvested
with open standard technique; full-dose heparinization was administered (300 UI/kg); and
the heart was stabilized with an Octopus (Medtronic, Minneapolis, MN, USA) device. Distal
anastomoses were performed starting from LITA-LAD; subsequently, other bypass grafts
were performed using the right internal thoracic artery (RITA) and/or the saphenous vein
graft (SVG); and proximal anastomosis of free grafts was performed on the ascending aorta
with partial clamping. Heparin was antagonized with protamine sulphate; haemostasis
was obtained; and the chest was closed in a standard fashion.

2.3. Blood Sampling

After heparinization, blood samples (10 mL) were collected directly from the distal
edge of LITA: after completing the artery harvesting, the distal edge was ligated and cut,

https://clinicaltrials.gov/study/NCT05574621?term=NCT05574621&rank=1
https://clinicaltrials.gov/study/NCT05574621?term=NCT05574621&rank=1
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and the blood was directly spilled into a sterile container and collected. Immediately
after, LAD arteriotomy was performed and blood dripping/jet was collected directly with
a syringe; blood from LITA and LAD was then transferred into respective vacutainer
tubes without an anticoagulant to obtain serum samples. Serum samples, obtained by
centrifuging the blood at 300× g for 10 min, were stored at −80 ◦C until the time of
the analysis.

2.4. Oxidative Stress Assays

Serum sNOX2-dp. NOX2 activation was measured in serum samples as soluble NOX2-
derived peptide (sNOX2-dp) with an ELISA method, as previously described [17]. Briefly,
the peptide was recognized by binding to a specific monoclonal antibody against the amino
acid sequence (224–268) of the external portion of NOX2, which was released following
platelet activation. Values were expressed as pg/mL; intra-assay and inter-assay coefficients
of variation were 8.95% and 9.01%, respectively.

Serum H2O2 evaluation. Hydrogen peroxide (H2O2) in serum samples was assessed
by a Colorimetric Detection Kit (Arbor Assays, Ann Arbor, MI, USA). Values were expressed
as µM. Intra-assay and inter-assay coefficients of variation were 2.1% and 3.7%, respectively.

Serum nitric oxide bioavailability. Nitric oxide (NO) bioavailability in serum samples
was determined by a colorimetric assay kit (Cell Biolabs, San Diego, CA, USA) that quanti-
tatively measured NO by NO2

−/NO3 calculation. Total nitrite was detected with Griess
Reagents as a coloured dye product (absorbance 540 nm). The concentration was expressed
as µM. Intra- and inter-assay coefficients of variation were <10%.

2.5. Cytokines Determination

TNF-α assay. TNFα blood levels were evaluated in serum samples by a commercial
immunoassay kit (Abcam), and values were expressed as pg/mL; intra- and inter-assay
CVs were <10%.

IL-1β assay. The concentration of interleukin 1β (IL-1 β) in serum samples was measured
using an Enzyme-Linked Immunosorbent Assay kit (Abcam, Cambridge, UK). The values
were expressed in pg/mL Intra- and inter-assay CV were <12% and <10%, respectively.

IL-6 assay. An IL-6 Enzyme-Linked Immunosorbent Assay kit was used to determine
the quantitative measurement of IL-6 protein in serum samples. Values were expressed as
pg/mL. Intra-assay and inter-assay coefficients of variation were 2.1% and 2.4%, respectively.

IL-10 assay. The serum determination of IL-10 was performed by an Enzyme-Linked
Immunosorbent Assay kit (Abcam). Values were expressed as pg/mL. Intra-assay and
inter-assay coefficients of variation were 3.2% and 7.3%, respectively.

2.6. Statistical Analysis

To ascertain the required sample size, we utilized G*Power v3.1 software, with the
assumption of a mean difference of approximately 50% in major outcome variables between
the two groups (LITA vs. LAD). This assumption was derived from a pilot comparison
analysis on IL-6 only.

All data processing was executed on a workstation running IBM-SPSS 26 (Armonk,
NY, USA) on a Windows 10 machine (Microsoft Corp, Redmond, WA, USA). Categorical
variables were presented as numbers and percentages and were analysed by Pearson’s Chi-
squared or Fisher’s exact test. Continuous variables were expressed as mean with standard
deviation (SD) or median with interquartile range (IQR). Normality of the data were
assessed using the Shapiro–Wilk test. Differences between groups were compared using
the paired Student’s t-test. Correlation analysis and subsequent univariate/multivariate
regression was run to identify possible confounders (Supplementary Material S1).
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3. Results
3.1. Patients

Twenty patients were enrolled in the study, and the baseline characteristics are sum-
marized in Table 1. The mean age was 65 ± 10 years old; 18 (90%) were males. All
told, 8 patients had diabetes (40%), 16 were former or active smokers (80%), 17 had hy-
pertension (85%), and 15 had dyslipidaemia (75%). Coronary angiography showed a
multivessel coronary pathology in all patients, with a median of 4 ± 1 vessels involved
and a median Syntax score of 24 ± 8; all patients had stenosis in the LAD (median 80%,
range 70–100%). Preoperative echocardiography showed a median LVEF of 60% ± 7%.
(Preoperative echocardiography and coronary angiography findings are summarized in
Table 2). Preoperative blood samples showed a median of 8200 ± 2600/µL WBC, a CRP of
0.16 ± 0.38 mg/dL, and an ESR of 11 ± 14 s. (Comprehensive preoperative blood sample
results are summarized in Supplementary Table S1). Overall, 17 patients (85%) were on
acetylsalicylic acid (ASA), 3 (15%) on clopidogrel (CPD), 17 (85%) on statins and 17 (85%) on
ACE-inhibitors or angiotensin II receptor blockers at admission (Supplementary Table S2).

Table 1. Baseline patients’ characteristics.

Patients Characteristics

N◦ of patients 20

Age, y 65 ± 10

Range 46–83

Male sex 18 (90)

BSA, m2 1.90 ± 0.16

BMI, kg/m2 26.1 ± 2.9

Familiar history of CAD 6 (30)

Smoking, n (%)

Never 4 (20)

Former 10 (50)

Active 6 (30)

Hypertension 17 (85)

Diabetes mellitus, n (%)

Type 1 2 (10)

Type 2 6 (30)

Diabetes therapy, n (%)

Oral 2 (25)

Insulin 2 (25)

Oral + insulin 4 (50)

Dyslipidaemia 15 (75)

COPD 3 (15)

Paroxysmal AF 1 (5)

History of MI, n (%)

NSTEMI 4 (20)

STEMI 2 (10)

Previous PTCA 5 (25)

Previous CVA 1 (5)
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Table 1. Cont.

Patients Characteristics

CAD presentation, n (%)

STEMI 0

NSTEMI 2 (10)

Stable angina 14 (70)

Asymptomatic 4 (20)
Data are shown as mean ± standard deviation or frequencies (%). BSA: body surface area; BMI: body mass
index; CAD: coronary artery disease; COPD: chronic obstructive pulmonary disease; AF: atrial fibrillation;
MI: myocardial infarction; NSTEMI: non-ST-elevation myocardial infarction; STEMI: ST-elevation myocardial
infarction; PTCA: percutaneous transcatheter coronary angioplasty; CVA: cerebrovascular accident.

Table 2. Preoperative echocardiographic and coronary angiography characteristics.

Echocardiographic Characteristics

LVEF, % 56 ± 7

LVEDD, mm 46 ± 5

LVESD, mm 32 ± 5

IVS, mm 12 ± 2

PW, mm 10 ± 2

TAPSE, mm 26 ± 4

sPAP, mmHg 28 ± 9

Coronary Angiography Characteristics

N◦ of diseased vessels 3.6 ± 1.0

Syntax Score 24 ± 5

LAD stenosis, % 85 ± 11
LVEF: left ventricle ejection fraction; LVEDD: left ventricle end-diastolic diameter; LEVSD: left ventricle end-
systolic diameter; IVS: inter-ventricular septum; PW: posterior wall; TAPSE: tricuspid annulus plane systolic
excursion; sPAP: systolic pulmonary artery pressure; LAD: left anterior descending.

3.2. Procedure Outcome

All patients underwent off-pump coronary artery surgical revascularization as sched-
uled, and all received an in situ LITA-LAD graft. Patients received a 3 ± 1 graft, and double
thoracic artery was used in 9 (45%) patients. One procedure was later converted (on-pump)
to re-perform the LITA-LAD anastomosis. There were no intraoperative or perioperative
deaths. Four patients (20%) suffered post-operative transient atrial fibrillation.

3.3. Laboratory Findings
3.3.1. Oxidative Stress

Blood sampled from the LITA showed lower levels of oxidative stress parameters
compared to blood sampled from the LAD. In particular, the LITA group showed lower
levels of sNOX2-dp compared to the LAD group (19.22 ± 6.49 vs. 30.57 ± 9.46 pg/mL,
p < 0.001, respectively) (Figure 1A).

Accordingly, the LITA group had lower levels of H2O2 production than the LAD group
(11.88 ± 3.82 vs. 16.54 ± 3.98 µM, p < 0.001, respectively) (Figure 1B).

In addition, as increased production of ROS leads to oxidative stress and NO reduc-
tion [18], NO availability was also evaluated. Specifically, the LITA group showed a better
endothelial status, as demonstrated by the significantly higher levels of NO availability in
the LITA group compared to the LAD group (17.18 ± 2.76 vs. 10.95 ± 3.75 µM, p < 0.001,
respectively) (Figure 1C).
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Figure 1. Diagram showing different distribution between (left internal thoracic artery) LITA and (left
anterior descending) LAD blood samples: (A): sNOX2-dp; (B): H2O2; (C): NO. Data are expressed as
mean and standard deviation (SD); *** p < 0.0001.

3.3.2. Inflammatory Status

For the evaluation of inflammatory status, we measured the pro- and anti-inflammatory
cytokines. Specifically, in LITA group, we found reduced levels of TNF-α and IL-6 com-
pared to the LAD group (5.15 ± 2.42 vs. 8.43 ± 3.82 pg/mL, p < 0.05, for TNF-α and
48.71 ± 10.84 vs. 65.00 ± 16.06 pg/mL, p < 0.05, for IL-6) (Figure 2A,B). Conversely, no
changes were observed between the two groups both in IL-1β levels (24.05 ± 10.45 vs.
27.33 ± 10.70 pg/mL, p = 0.109) and the anti-inflammatory cytokine IL-10 (128.84 ± 14.21
vs. 125.54 ± 14.23 pg/mL, p = 0.353) (Figure 2C,D).
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4. Discussion

Oxidative stress occurs when the excessive production of reactive oxygen species (ROS)
sweeps endogenous antioxidant defenses, resulting in tissue injury [19]. Studies based
on analyses of human atrial tissues collected during cardiac surgery suggest a pathogenic
role of oxidative stress and identified elevated atrial nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase activity associated with post-operative complications [20,21].
There is also evidence of the role of pathogenic oxidative stress in atherotrombotic coronary
artery disease [18].

In this context, data measuring circulating biomarkers of oxidative stress have yielded
mixed results [22,23] and there is a lack of comprehensive evaluation of the levels of oxida-
tive stress in local districts, particularly in the coronary arteries. In this study, we demon-
strated that LAD-derived blood shows a deranged inflammatory and oxidative marker
profile as compared to systemic blood from the LITA, with increased NOX2-mediated ox-
idative stress, reduced NO availability, and a potentially augmented inflammatory burden.
In particular, our data showed that in blood derived from the LAD the NOX-2, the main
source of ROS [24], plays a pivotal role as a mediator of oxidative stress and seems to be
involved in enhanced ROS production in this district, as highlighted by an increase in
sNOX2-dp and H2O2 levels observed in LAD samples.

Concurrently, we detected a reduction of NO levels in LAD samples as compared to
blood sampled from LITA. This result confirms a worse endothelial status in LAD. In fact,
NO is one of the primary mediators of endothelium-dependent vasodilatation [25], and in
the vessel walls NO may be scavenged by an elevated level of ROS, produced primarily by
NADPH oxidase [26].

Of note, the differences observed are statistically significant, even though we are
dealing with a small sample of patients.

Endothelial dysfunction is strongly associated with oxidative stress, as well as with
vascular inflammation, representing a unified mechanism for the underlying pathophys-
iology of cardiovascular morbidity and mortality [27]. In fact, several pro-inflammatory
cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNFα),
as well as anti-inflammatory cytokines, such as IL-10, have been identified as part of the
inflammatory process of artery walls [28,29]. Serum levels may be elevated in patients with
CAD and have been found to predict cardiovascular risk [30,31].

The alteration of systemic inflammatory burden in patients with coronary artery dis-
ease has been proven in numerous studies. Twenty years ago, Uzui and colleagues [32]
showed the augmented inflammatory markers levels inside the coronary atherosclerotic
plaques, especially those of metalloproteinases, oxidated lipids, and TNFα. The study,
even if it is a milestone, was performed post-mortem on autoptic samples. The FINRISK
study [33] showed further association between cardiovascular risk and systemic inflam-
mation, as evaluated by CRP and TNFα. More recently, Jong-Hwa Ahn and colleagues [9]
published a comprehensive study on the residual cardiovascular risk after a first cardiovas-
cular event, again associated with systemic inflammation. Finally, the CANTOS trial group
confirmed the interaction of CRP, interleukin-1 β, interleukin-6 and interleukin-18, and
cardiovascular events [11,12,34]. We believe that our study significantly extends this work:
with samples collected directly from the LAD (without interference from different districts),
we were able to demonstrate that NOX2-derived oxidative stress may directly contribute to
inflammation, endothelial dysfunction, and coronary atherosclerotic disease. This is evi-
denced by the fact that the use of natural products such as trehalose, spermidine, catechin,
epicatechin, and oleuropein can inhibit NOX-2-mediated oxidative stress and improve
endothelial function, thereby reducing the impact of risk factors on the development of
cardiovascular disease [35,36]. A direct analysis of the differences regarding inflammatory
and oxidative stress in diseased coronary arteries and healthy internal thoracic arteries
allowed us to consistently hypothesize a direct association between atheromatic plaque
and biological response.
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Previous studies focused on the comparison between coronary and systemic blood
with samples drawn from the coronary sinus during on-pump bypass surgery or during
hemodynamic procedures through coronary catheters, but always located either in the
coronary sinus or upstream of the atherosclerotic stenosis/plaque [37,38].

Another recent study, more similar to ours, compared the metabolome of aortic blood
and internal thoracic artery blood. However, the analysis performed was an “untargeted
metabolomic”, which therefore found no particular molecules except an increase in methio-
nine and cysteine in the LITA group [39].

In this study, we found significantly higher levels of TNFα and IL-6 in LAD blood
when compared to LITA samples.

On the other hand, IL-1β and IL-10 did not show any difference. Of note, IL-10
is considered an anti-inflammatory cytokine, rising in the late inflammatory phase and
facilitating inflammation resolution, tissue clearance, and healing [40]. We may speculate
that TNFα and IL-6 may play a primary role in the promotion of coronary atherosclerosis,
although the lack of a time-course observation in our experimental setting did not allow us
to support this assumption with data [41,42].

However, it should be noted that the increase in Il-6 represents a link between inflam-
mation process and coronary atherosclerosis as has been attempted by several clinical trials.
In particular, IL-6 inhibition safely and effectively reduces biomarkers of inflammation and
thrombosis in patients at high cardiovascular risk. Indeed, based on the recent RESCUE
results [41], the opportunity has arisen to move beyond CANTOS [11] and IL-1β inhibi-
tion and to investigate in ZEUS [43] whether targeting IL-6 can provide an even greater
reduction in cardiovascular event rates acting on residual inflammatory risk.

4.1. Possible Translational Implications in Coronary Surgery

Since revascularization with an in situ LITA carries a significantly lower risk of not only
conduit disease progression, but also downstream coronary disease progression (over stents
and other conduits), improved patient outcomes with LITA grafting could be attributed to
a combination of better graft patency itself, as well as decreased atherosclerosis progression
downstream of the anastomosis performed [14,15]. As evidence of this, several reports have
shown coronary plaque regression following a LITA graft to the LAD, with non-infrequent
complete resolution of visible plaque [16,44,45].

We speculate that the benefits of surgical coronary revascularization go beyond simple
emorheology, but also offer a biological advantage in preventing hte progression of atheroscle-
rosis through a positive modulation of oxidative stress and inflammation pathways.

Upon the activation of the bypass, not only adequate hemodynamic will be reestab-
lished downstream of the stenosis, but also healthy blood flow will be restored with the
consequence that all described biological changes may have positive effects in terms of
oxidative stress and inflammation reduction.

Finally, it is possible to speculate on novel potential therapeutic strategies, such as
molecules able to inhibit NOX2 activation, that can be performed before surgery, as a sort of
preconditioning, or even during the preparation of the conduits, to be used for the bypass.
In this context, it has indeed been shown that modulation of NOX2-mediated oxidative
stress improves endothelial function in CVD patients [36,46].

4.2. Limitations

The number of patients used in the study was small, and with a higher number the
evidence would probably be stronger.

Second, we did not analyze patients with a coronary CT scan. This would have enabled
better characterization of plaque and provided information on the possible qualitative
association between plaque type and blood cytokines. However, although less precise, this
study, which does not consider plaque differences, shows very strong results and may open
up opportunities for that type of research.
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Lastly, while this study confirms the hypothesized difference in oxidative stress/
inflammation burden between coronary and internal thoracic arteries, the findings cannot
be conclusive, as we did not directly measure blood “quality” after a coronary bypass was
performed either at the level of the artery (due to technical reasons) or at the level of the
coronary sinus (although feasible on CPB, we preferred to choose OP-CABG candidate
patients to avoid the impact of CPB on oxidative stress/inflammation).

In conclusion, the novelty of this study lies in the discovery of higher NOX2-mediated
oxidative stress and inflammation burden in blood drawn from a diseased coronary vessel,
the LAD, vs. a healthy vessel, the LITA.

5. Conclusions

This study highlights the different burden of oxidative stress and inflammation mark-
ers between a LAD and a healthy LITA, on the same individual, showing local, organ-
specific biological behaviour of coronary atherosclerosis. This could strengthen the base for
the active biological targeting of coronary artery atherosclerosis.

Additional research is required to confirm the biological role of revascularization
surgery, analysing coronary venous samples or myocardial tissue (muscle, fat) to confirm
the beneficial subcellular effect. Further research on atherosclerosis disease peripheral
biomarkers could lead towards personalized therapeutic targets and therapies able to
positively modulate oxidative stress and inflammation.
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