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Abstract: Biological models for cardiac regeneration and remodeling, along with the effects of cy-
tokines or chemokines during the therapy with mesenchymal stem cells after a myocardial infarction,
are of crucial importance for understanding the complex underlying mechanisms. This paper presents
a mathematical model composed of three coupled partial differential equations that describes the dy-
namics of stem cells, nutrients and chemokines, highlighting the fundamental role of the chemokines
during the myocardial tissue regeneration process. The system is solved numerically using mimetic
difference operators and the MOLE library for MATLAB. The results show the tissue regeneration
process in the necrotic part closest to the cell implantation area.

Keywords: reaction–diffusion equations; free boundary problem; mimetic difference operators; stem
cell therapy; chemokines; chemotaxis

MSC: 35K20; 35Q92; 35R35; 65M22; 92C17; 92C50

1. Introduction

In the field of regenerative medicine, stem cell therapy has been used to treat heart
diseases after a myocardial infarction [1,2]. Different stem cell populations have been
explored for their ability to renew themselves and differentiate into multiple lineages [3,4].
These treatments take into account different protocols. In particular, the number of cells im-
planted, the route of administration and the time of application are variable and potentially
very important factors in determining the effect of the treatment [5–7].

Developing a mathematical model for cardiac tissue regeneration therapy with stem
cells is a challenging task due to the intricate interconnections among various complex
processes. In the literature, numerous studies propose mathematical models that describe
only some of the processes involved, not only in myocardial-regeneration-related works
but also in studies concerning the use of stem cells in tumor treatment or wound healing [8].
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Three of the main aspects described are chemotaxis [9–12], the three-dimensional movement
of cells in cardiac tissue [13–15] and the diffusion and consumption of nutrients [16].

In this paper, a mathematical model based on a system of evolutionary and diffusive
partial differential equations is proposed. The unknowns of this system will be naturally
the concentration of stem cells but also those of nutrients (namely, oxygen) and messengers
(chemokines). This mathematical scheme explicitly takes into account the three-dimensional
geometry of the tissues, where the injured area is represented as a portion of the spatial
domain in which the problem is posed. The boundary separating this area from healthy
tissue moves during reconstruction and, of course, the objective is to advance toward the
necrotic area as much as possible. Furthermore, the explicit spatial dependence of our
scheme allows us to directly and realistically introduce, for example, the different routes of
administration and quantity of implanted stem cells, which can be described by different
boundary conditions.

To achieve the description of the dynamics of stem cells and the contraction of the
necrotic core, we employ diffusion–reaction equations, which are extensively used to
describe a wide variety of chemical and biological processes [17–20].

The existing model in [21] has been taken as the base model of this paper. This model
is characterized by the use of differential equations that play a decisive role in predicting the
tissue regeneration process. The authors propose a 3D model that describes the dynamics
of stem cells and nutrients in a regenerative therapy of cardiac tissue through two coupled
partial differential equations. They analyze the performance of the model by carrying out
simulations that demonstrate how the supply of new nutrients modifies the dynamics of
stem cells.

The mathematical model described in [21] , which is still a pure-mathematical model,
is primarily focused on the description of the evolution of the regenerated tissue geom-
etry and the reduction of the necrotic zone. Indeed, the mathematical scheme is a free
boundary problem, where the free boundary represents the border of the necrotic core:
the presence of stem cells promotes the regeneration of heart tissue so that the necrotic
zone reduces its size. This fact is not easy to handle even from a theoretical point of view.
Regardless, from the point of view of the application, the importance of the model lies in
the numerical simulations that allow an approximation to the phenomenon, yielding the
expected behavior.

Similar to the model in [21], the domain where the diffusion phenomenon occurs is a
region of the heart affected by inflammation, represented as D(t). This domain will be mod-
ified as regeneration progresses. The first differential problem is a diffusion–convection–
reaction equation that describes the dynamics of stem cells, where s(x⃗, t) represents the
concentration of stem cells in D over the interval [0, T]. The second problem of the base
model describes the dynamics of nutrients n(x⃗, t).

In this paper, we add the dynamics of chemokines, describing their chemotactic effects
on the stem cells. The study is mainly focused on mesenchymal stem cells and nutrient and
chemokine concentrations, though it is well-known that the regeneration process is more
complex and involves more biological agents, which could be included in the mathematical
modeling in the future.

Stem cells have the capacity to regenerate cardiac tissue and improve the function
of the damaged heart; indeed, they can divide and become specialized cells, such as
cardiomyocytes. Thus, clearly, the impact of the chemokines in the attraction of these cells
toward the damaged area of the myocardium becomes very important. The chemokines
induce the migration of the stem cells and also stimulate the movement of certain types of
white blood cells, attracting them to areas of inflammation to help the body fight infections,
external pathogens and other diseases. Hence, we model the dynamics of chemokines
given their role as chemoattractants for stem cells.



Mathematics 2024, 12, 1937 3 of 15

2. Methodology

The model presented in this paper is composed of three partial differential equations.
The basic model in [21], consisting of two equations describing the stem cells and nutrient
dynamics, is modified to also account for the phenomenon of chemotaxis.

Cytokines and adhesion molecules are biological mediators that lead implanted stem
cells from blood vessels to migrate to endothelial cells of a tissue. Once the stem cells
reach the tissue, they begin to fulfill their function. Chemokines are particular cytokines
produced by certain immune cells and other cells in the body, endowed with chemotactic
activity. In the event of a myocardial injury, chemokines are secreted by tissue cells in
response to damage caused by a heart attack.

After an acute myocardial infarction, the ventricular remodeling stage begins [22,23].
One of its causes is the increase in interstitial collagen deposits, and this alteration leads to
increased myocardial fibrosis [24]. In the meantime, the damaged tissue seeks to recover
and the immune system responds by emitting damage signals so that new cells come to its
aid. These signals are the chemokines. That is, after the signal is emitted, a cell receives it
and begins its relocation to the damaged area, following a gradient given by chemokines.
This biological effect induced by chemokines is called chemotaxis.

In the model presented in [21], which was still a simplified model, the radial attraction
was introduced in order to describe the movement of the stem cells toward the necrotic core.
Actually, as explained above, this attraction is related to the chemotactic effect generated
by the chemokines, which are activated in the core and, in part, move to the inflamed
area surrounding the infarcted area. Such an effect is directional, and the direction of the
induced motion is the one of the steepest increase in the chemokine concentration, i.e., the
direction of the gradient. Thus, in developing our model, the simple radial attraction
term toward the center of the necrotic core in the first equation of the basic model in [21],
following [10], is replaced with a chemotactic term dependent on the gradient of chemokine
concentration in the tissue, which influences stem cell movement by guiding them toward
the necrotic zone.

Hence, an equation describing the dynamics of chemokines in the tissue is added to
the model. The three equations interact with each other in that the dynamics of stem cells
are influenced by both the dynamics of nutrient substances and chemokines. Conversely,
the consumption of nutrients and deactivation of chemokines are regulated by the presence
of stem cells in the tissue and their dynamics.

In this study, we denote concentrations as follows: stem cells as s, nutrients as n
and chemokines as q.

2.1. Dynamics of the Stem Cells

The mathematical model for the concentration of stem cells is a diffusion–convection–
reaction equation given by:

∂s
∂t

= div(Ds∇s − χs∇q) + µmax
n(1 + K)

nmaxK + n
s
(

1 − s
smax

)
− Rds . (1)

The above equation governs the dynamics of stem cells in the spatial domain D, over a
temporal interval [0, T].

The domain D, which represents the inflamed zone, is the region where stem cells are
transported from an implantation zone to the necrotic core, which is the portion of tissue
injured by the infarction.

Tissue regeneration is promoted by the arrival of stem cells at the border Γ of the
necrotic zone. As a result, the necrotic core contracts and its border Γ moves inward. In this
way, the dynamics of the stem cells are described by a free boundary model with Γ = Γ(t)
and D = D(t).

As an initial condition, a zero amount of stem cells is placed in D(t) at the beginning
of the phenomenon. As a boundary condition, the number of cells in a portion A of the
fixed boundary ∂E is determined by a function BC(t) decreasing in time. We consider the
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same function introduced in Figure 3 in [21], which is a smoothed decreasing step function,
passing from a maximum value s0 to 0. In this way the concentration of stem cells on A
disappears at a rate that can be predetermined in the model. Furthermore, there is no flow
at the boundary, except for the portion A, which is indicated by a Neumann condition
through a unit normal vector ν̂ pointing outward of D(t). It is expected that when the
stem cells migrate and reach N, substances that regenerate the tissue are activated and
engraftment occurs in the damaged tissue. Consequently, the cells disappear upon reaching
Γ(t), implying a contraction of the necrotic zone. So the border Γ(t) moves inward with a
velocity V(x⃗, t) proportional to the flux of stem cells. Thus, we have the system for stem
cell dynamics [21]:

∂s
∂t

= div(Ds∇s − sχ∇q) + µmax
n(1 + K)

nmaxK + n
s
(

1 − s
smax

)
− Rds, D(t), 0 < t < T (2)

s(x⃗, 0) = 0, D(0) (3)

s(x⃗, t) = BC(t), A × (0, T) (4)
∂s
∂ν̂

(x⃗, t) = 0,
(
∂E

∖
A
)
× (0, T) (5)

s(x⃗, t) = 0, Γ(t), t ∈ (0, T) (6)

V(x⃗, t) = −(λDs∇s · ν̂)ν̂, Γ(t), t ∈ (0, T) (7)

• s: stem cell concentration;
• Ds: stem cell diffusion coefficient;
• χ: internal attraction sensitivity parameter;
• q: chemokine concentration;
• smax: maximum possible concentration of stem cells in the tissue;
• n: nutrient concentration;
• µmax: maximum proliferation rate;
• nmax: maximum possible concentration of nutrients;
• K: average saturation constant;
• Rd: stem cell mortality rate;
• V(x⃗, t): inward normal velocity of the free boundary Γ;
• v̂: unit vector, normal to the surface, pointing outward;
• λ: parameter representing the volume of a single myocardial cell, averaged by the

probability that a stem cell arriving at Γ differentiates into such a cell.

2.2. Dynamics of Nutrients

The mathematical model for nutrient dynamics is a diffusion–reaction equation,
with variable n(x⃗, t), which represents the nutrient concentration in D over the interval
[0, T]. In D(t), the variation in nutrient concentration with respect to time ∂n

∂t is determined
by the movement of nutrients represented by a diffusive flow. The reaction terms corre-
spond to the consumption of nutrients, that is, the interaction of nutrients with the stem
cells. The consumption ratio is determined by a Hill function of exponent 4 [25].

The initial condition describes an amount n0 of nutrient in D(t) at the beginning of the
phenomenon, that is, at t = 0. To indicate that no nutrient leaves or enters the necrotic core,
we have a Neumann condition at the border Γ(t). Furthermore, the flow at the boundary
∂E will be given by a function that can be zero if there is no flow of nutrient (in this case a
null Neumann condition), or different from zero if there is exit or entry of nutrient across
∂E, as the case may be. In this model we impose the former condition, supposing that the
stem cells feed only on the nutrient already present in the domain. In future research, we



Mathematics 2024, 12, 1937 5 of 15

can consider a nonzero nutrient flow, which can allow us to model the phenomenon of
angiogenesis due to the regeneration of the cardiac tissue. We have:

∂n
∂t

= div(Dn∇n)− δmax
n4

θ4 + n4 s, D(t), t ∈ (0, T) (8)

n(x⃗, 0) = n0, D(0) (9)

Dn∇n · ν̂ = 0, Γ(t), t ∈ (0, T) (10)

Dn∇n · ν̂ = F(n), ∂E × (0, T) (11)

• n: nutrient concentration;
• s: stem cell concentration;
• n0: initial nutrient concentration;
• Dn: nutrient diffusion coefficient;
• δmax: maximum rate of nutrient ;
• θ: constant for the rate of nutrient consumption (Hill function with exponent 4).

2.3. Dynamics of Chemokines

The diffusion of chemokines occurs from the necrotic area into the inflamed area
around the infarction; naturally, inflammation is important for the emission of warning
signals that indicate the presence of an injury that the body must repair. Chemokines
reach receptors on cells and then induce chemotaxis. The variation in the concentration
of chemokines over time is determined by their movement in the inflamed area, and their
consumption during chemotaxis.

The mathematical model that describes the dynamics of chemokines is a diffusion
equation, with variable q(x⃗, t), which represents the concentration of chemokines in the
inflamed area surrounding the necrotic core.

In D(t), according to standard considerations, we determine the variation in the
chemokine concentration over an arbitrary control volume Ω with respect to time, ∂

∂t

∫
Ω q dx

by the diffusive movement of chemokines as well as by the interaction of chemokines with
stem cells, whose rate is modeled by the mass action principle, and the consumption or
death rate of chemokines themselves, proportional to the chemokine concentration:

∂q
∂t

= div(Dq∇q)− Rsqsq − Rqq (12)

The initial condition for chemokines is given by a concentration q0 in D(t) at the
beginning of the phenomenon, that is, at t = 0. To indicate that chemokines do not leave or
enter E, we have a Neumann condition on the boundary ∂E. Furthermore, the flux across the
boundary Γ(t) will be given by a constant Φ. We have the following mathematical model:

∂q
∂t

= div(Dq∇q)− Rsqsq − Rqq, D(t), t ∈ (0, T) (13)

q(x⃗, 0) = q0, D(0) (14)

Dq
∂q
∂ν̂

= 0, ∂E × (0, T) (15)

Dq
∂q
∂ν̂

= Φ, Γ(t), t ∈ (0, T) (16)

where:

• q: chemokine concentration in D × (0, T);
• s: concentration of stem cells in D × (0, T);
• Rsq: chemokine consumption coefficient;
• Rq: chemokine mortality coefficient;
• Dq: diffusion coefficient of q;
• q0: initial concentration;
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• Φ: constant chemokine flux parameter at the border of the necrotic core.

2.4. Coupling

The equation for chemokine dynamics has been coupled to the base model, in the
domain D = E\N, where E and N are two concentric cubes described in Figure 1.

Figure 1. D = E\N (white color) is the inflamed zone, where N (blue color), the necrotic zone, is a
concentric cube with faces parallel to the faces of the cube E. A (yellow color) is the implantation
area of the stem cells in ∂E.

Stem cell dynamics:

∂s
∂t

= div(Ds∇s − sχ∇q) + µmax
n(1 + K)

nmaxK + n
s
(

1 − s
smax

)
− Rds, D(t), 0 < t < T (17)

s(x⃗, 0) = 0, D(0) (18)

s(x⃗, t) = BC(t), A × (0, T) (19)

∂s
∂ν̂

(x⃗, t) = 0,
(
∂E

∖
A
)
× (0, T) (20)

s(x⃗, t) = 0, Γ(t), t ∈ (0, T) (21)

V(x⃗, t) = −(λDs∇s · ν̂)ν̂, Γ(t), t ∈ (0, T) (22)

Nutrient dynamics:

∂n
∂t

= div(Dn∇n)− δmax
n4

θ4 + n4 s, D(t), t ∈ (0, T) (23)

n(x⃗, 0) = n0, D(0) (24)

Dn∇n · ν̂ = 0, Γ(t), t ∈ (0, T) (25)

Dn∇n · ν̂ = F(n), ∂E × (0, T) (26)

Chemokine dynamics:

∂q
∂t

= div(Dq∇q)− Rsqsq − Rqq, D(t), t ∈ (0, T) (27)

q(x⃗, 0) = q0, D(0) (28)

Dq
∂q
∂ν̂

= 0, ∂E × (0, T) (29)

Dq
∂q
∂ν̂

= Φ, Γ(t), t ∈ (0, T) (30)
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2.5. Adimensionalization

Taking into account the appropriate parameters for non-dimensionalization, follow-
ing [21], we implement the non-dimensional mathematical model, setting s = smax s̄,
n = nmaxn̄, θ = nmax θ̄, q = qmax q̄. The dimensionless model is as follows:

Stem cell dynamics:

∂s̄
∂t

= div(Ds∇s̄ − s̄χqmax∇q̄) + µmax
n̄(1 + K)

k + n̄
s̄(1 − s̄)− Rd s̄, D(t), 0 < t < T (31)

s̄(x⃗, 0) = 0, D(0) (32)

s̄(x⃗, t) = BC(t), A × (0, T) (33)
∂s̄
∂ν̂

(x⃗, t) = 0,
(
∂E

∖
A
)
× (0, T) (34)

s̄(x⃗, t) = 0, Γ(t), t ∈ (0, T) (35)

V(x⃗, t) = −(λDssmax∇s̄.ν̂)ν̂, Γ(t), t ∈ (0, T). (36)

Nutrient dynamics:

∂n̄
∂t

= div(Dn∇n̄)− δ
n̄4

θ̄4 + n̄4 s̄, D(t), t ∈ (0, T) (37)

n̄(x, 0) = n̄0, D(0) (38)

Dn∇n̄ · ν̂ = 0, Γ(t), t ∈ (0, T) (39)

Dn∇n̄ · ν̂ = F(n̄), ∂E × (0, T). (40)

Chemokine dynamics:

∂q̄
∂t

= div(Dq∇q̄)− Rsqsmax s̄q̄ − Rq q̄, D(t), t ∈ (0, T) (41)

q̄(x, 0) = q̄0, D(0) (42)

Dq
∂q̄
∂ν̂

= 0, ∂E × (0, T) (43)

Dq
∂q̄
∂ν̂

= Φ̄, Γ(t), t ∈ (0, T), (44)

where δ =
δmaxsmax

nmax
, n̄0 = n0

nmax
, q̄0 =

q0

qmax
and Φ̄ =

Φ
qmax

.

3. Results
3.1. Mimetic Differences Method for Partial Differential Equations

In this paper, given that our model includes a new variable, a new partial differential
equation and its respective boundary conditions, we opted for high-order mimetic methods,
based on finite differences, which are easy to implement. Our proposal was to show that,
with mimetic differences, it is possible to find a numerical solution to our coupled system
of partial differential equations.

The mimetic difference methods that we used were initially described by Castillo
and Grone in the article [26], where the mimetic schemes that the authors construct with
second-order difference approximation preserve the properties of the continuous operators,
with the same order of accuracy in the interior and on the boundary; this makes it possible
for the discretized equations to imitate the physical properties of the problem such as the
conservation laws. The authors show how to construct high-order approximations for
the derivatives using finite volumes on a uniform one-dimensional mesh. The mimetic
scheme uses discretizations that have properties analogous to the divergence theorem, local
conservation law and global conservation law.

In [27], the operators given in [26] are improved and high-order divergence and
gradient operators in dimensions two and three are constructed, using mimetic finite
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differences on a staggered grid. These operators have been implemented in MATLAB by
the authors Corbino and Castillo [27], making available a library with the operators in
matrix form called MOLE (Mimetic Operators Library Enhanced).

To obtain the results shown in this paper, we built the program in MATLAB, which
allows the use of mimetic operators such as divergence and gradient. To implement mimetic
differences, we perform the discretization of the domain, the discretization of the variables
with their initial and boundary conditions and the discretization of the equations, using
mimetic differences and mimetic operators.

Let us underline that one of the contributions of this article is the use of a new library
of mimetic differences called MOLE. In this library it is possible to find the matrix represen-
tations of the Corbino–Castillo high-order operators; Divergence, Gradient and Laplacian.
Although these operators can be used in curvilinear domains, the problem in using them
lies in the implementation of the boundary conditions for complex domains where there
are mobile interfaces, such as the border of a necrotic area. In addition, the current version
of MOLE is still being revised for non-Cartesian cases. This is the reason why in the model
developed in this paper and in the simulations, the domain has been considered as in
Figure 1, with a cube E, which contains an initially cubic necrotic core N and an inflamed
zone D = E \ N, while the position and the shape of the implantation zone A of the stem
cells were varied.

3.2. Mimetic Representation of the Model
Following [28], let S, N and Q be the discrete variables that approximate s̄, n̄ and q̄ in

the centers of the elements of the mesh. We obtain the vectorizations of S, N and Q, where
D, G and L are the divergence, gradient and Laplacian operators, respectively, in mimetic
differences. The mimetic difference schemes for the system of equations are:

St = D(DsG − χqmax diag(GQ))S + µmax(1 + K)diag
(

N
K + N

)
(I − diag(S))S − RdS

Nt = DnLN − δ diag
(

N3S
θ4 + N4

)
N

Qt = DqLQ − Rsq diag(S)Q − RqQ,

(45)

where the operator diag corresponds to placing a vector on the diagonal of a matrix
and obtaining a diagonal matrix. Using one-step discretization for the time derivative,
and linearizing the nonlinear part implicitly, the discrete numerical scheme is as follows:

MSSn+1 = {I + dt[D(DsG − χqmax diag(GQn))− Rd]}Sn

MN Nn+1 = [I − dtDnL]Nn

Qn+1 = [I + dt(DqL − Rsq diag(Sn)− Rq I)]Qn,

(46)

where:
MS = I − dtµmax(1 + K)diag

(
N

K+N

)
(I − diag(Sn))

MN = [I + dtδ diag
(

N3Sn

θ4+N4

)
].

3.3. Implementation and Results

Given the discretization introduced within the mimetic framework, a numerical
method has been implemented in MATLAB, dwelling upon the MOLE library.

In the presentation, the images show the graph with the upper and lower sides
inverted, thus the implantation area is shown below, and the dynamics develop upwards.

The placement of two different values of chemokine concentration in each half of the
necrotic core was implemented.

Since the geometry for the boundary available within the library allows for Cartesian
grids, the geometry of the necrotic core has been modeled as a cube. However, the ge-
ometry and the position of the stem cell implantation zone have been varied, to see how
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in the different cases, the dynamics of the stem cells, moving toward the necrotic core,
would result in a regression of the necrotic core due to the effect of stem cells attracted
by chemokines.

Moreover, the implantation of stem cells was carried out also on one side of the
boundary, as in Figure 1, to avoid symmetric biases in the execution of the method. In the
figures presented in this paper, we chose an off-center square (Figures 2–5) and an off-center
disk (Figures 6–8). The side of the square and the diameter of the disk of stem cells are
about one-third of the side of the cube where the dynamics evolve: the cube contains at
its center the necrotic core, which is initially cubic, too, and around it, the chemokines,
the stem cells and the nutrient evolve according to the previous equations.

The initial data and parameters used in the numerical experiments are given in Table 1.

Table 1. Initial data and parameters used in the numerical experiments.

Parameter Value Unit

smax = s0 104 [1/m3]
qmax 102 [1/m3]
nmax 10−1 [mol/m3]

q0 5 × 10−2 [1/m3]
n0 1 [mol/m3]
Ds 2 × 10−1 [m2/s]
χ 8 × 10−3 [m5/s]

Rd 3 × 10−7 [1/s]
λ 10−2 [m3]

Dq 10−1 [m2/s]
Rsq 10−6 [m3/s]
Rq 10−8 [1/s]
Φ 10−6 [1/(m2s)]

δmax 10−2 [mol/s]
Dn 2 × 10−1 [m2/s]
K 5 × 10−2 [1]

µmax 10−5 [1/s]
θ 4 × 10−2 [mol/m3]

Let us remark that we do not claim their values to be realistic; instead, they were
chosen in order to highlight the effects of stem cell therapy on the necrotic zone.

The chemokines flow from Γ(t), and their interactions with the stem cells take place
in D(t).

The dynamics of the stem cells clearly show a qualitative movement in the concentra-
tion toward the necrotic core: due to the chemotaxis produced by the chemokines, the stem
cells move from the implantation zone A, their interactions with the chemokines take place
in D(t), then they reach Γ(t) and, after their engraftment, they reduce the necrotic zone,
regenerating the cardiac tissue. Moreover, the moving boundary feature of the numerical
method shows how the regression surface of the necrotic core evolves as long as the con-
centration of stem cells grows outside the moving boundary. The effect is that the necrotic
core is slowly eroded from the direction from which the stem cells come, of course—this is
evident from the picture of the chemokine concentration compared to the stem cell diffu-
sion, after a while, as in Figures 2–5, where A is an off-center square, and in Figures 6–8,
where A is an off-center disk.
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(a) (b)

Figure 2. (a) Chemokine concentration at t = 750 s; the highest concentration is on the side closest
to the stem cells; (b) chemokine concentration at t = 4104 s; the necrotic core regenerates by 3.5%,
and the chemokine concentration has decreased in the regenerated part. A is an off-center square.

Figure 3. Profile of the concentration of chemokines after 5000 s. A is an off-center square. The reduc-
tion in the necrotic core in the lower boundary is evident.
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(a) (b)

Figure 4. Evolution of stem cells concentration after 573 s (a) and after 2018 s (b). A is an off-
center square.

(a) (b)

Figure 5. (a) Evolution of stem cells concentration after 5000 s; (b) profile of the stem cells concentra-
tion after 5000 s. A is an off−center square. The reduction in the necrotic core is evident.
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(a) (b)

Figure 6. (a) Concentration of stem cells at the initial time; (b) concentration of chemokines at the
initial time. A is an off-center circle.

The moving boundary evolves toward the inner side of the necrotic core, from the side
from which stem cells diffuse: in Figure 8, we plot this at the same time as that at which the
previous pictures were taken.

(a) (b)

Figure 7. (a) Concentration of stem cells after 1623 s; (b) concentration of chemokines after 1623 s. A
is an off-center circle.
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Figure 8. Deformation of the lower boundary of the necrotic core after 1623 s, due to stem cell action.
A is an off-center circle.

4. Discussion

The model here presented, formed by a system of three coupled diffusion equations,
describing the evolution of stem cells, chemokines and nutrients, is qualitatively coherent
with the expected experimental outputs, related to stem cell therapy, in particular, for what
concerns the regeneration of the damaged area.

In this work, we introduced the dynamics of chemokines, restricting the chemotaxis
effects mainly to the concentration of mesenchymal stem cells, nutrient concentration and
chemokine concentration,

Let us remark that the model proposed in this paper corrects in some sense the
previous one, described in [21], clarifying in particular, from a physiological point of view,
the attraction of the stem cells toward the necrotic area. Thus, as in [21], it can be considered
as the proposal of a new model, corroborated by numerical results, waiting for experimental
validation. In fact, as already observed, the initial data and parameter values were chosen
in order to highlight the effects of the stem cell therapy on the necrotic zone and do not
claim to be realistic. Thus, the model must be still considered a purely mathematical model.
In the future, the validation of the model, by means of experimental data, will be necessary,
with the goal of making the model more realistic. Once we have validated it, we will
have the possibility of improving it, building a more general model, which will take into
consideration the paracrine effects of the stem cells, too, having clearly in mind that the
regeneration process is very complex and involves more biological agents, which can be
included in the future, in the mathematical model. Moreover, for a cell biology model to be
as realistic as possible, other important phenomena must be added to the modeling, such
as the vascularization and the behavior of nutrients other than oxygen. For what concerns
vascularization, in this model, as already remarked, we supposed that there is no flow of
nutrient at the boundary ∂E, which implies that the stem cells feed only on the nutrient
already present in the domain. In future research, we will consider a nonzero nutrient flow,
which can allow us to model the phenomenon of angiogenesis, due to the regeneration of
the cardiac tissue.

From a theoretical point of view, the study of very important issues, such as the
existence and uniqueness of the solution, the stability analysis and the non-negativity of
the model, will be considered in future research.

From a numerical point of view, the main contribution of this work is the implementa-
tion of mimetic operators for the solution of the model here proposed through the use of the
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new library MOLE. This is absolutely novel, thus, at this moment, we have no benchmarks
to compare against.

In the future, it is our intention to study the reproduction number of the cardiac cells of
our model, whose definition and computation, for PDE models such as reaction–diffusion
systems, though intriguing, are typically more complicated.

Author Contributions: Conceptualization, D.A., A.M.B., E.B., F.J.L.T. and S.M.; methodology, D.A.,
A.M.B., E.B. and S.M.; Mimetic operators and algorithm, M.D. and Y.E.Z.-P.; numerical implemen-
tation, P.C., S.M., O.R. and Y.E.Z.-P.; validation, P.C., O.R. and Y.E.Z.-P.; writing—original draft
preparation, A.M.B., S.M. and Y.E.Z.-P.; writing—review and editing, D.A., A.M.B., E.B., P.C., F.J.L.T.,
S.M., O.R. and Y.E.Z.-P.; funding acquisition, F.J.L.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by CONCYTEC-PROCIENCIA, in the framework of the call for
proposals E041-2022-02 “Proyectos de investigación aplicada”, grant number PE501078531-2022.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article. Further inquiries can be directed to the corresponding author.

Acknowledgments: The authors D.A. and A.M.B. are members of the Gruppo Nazionale per la Fisica
Matematica (GNFM) of the Istituto Nazionale di Alta Matematica (INdAM). Author F.J.L.T. expresses
gratitude to the Instituto de Investigación Científica at Universidad de Lima (Peru) for the support
provided during this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Arbatli, S.; Aslan, G.S.; Kobacas, F. Stem Cells in Regenerative Cardiology. Adv. Exp. Med. Biol. 2018, 1079, 37–53. [PubMed]
2. Doppler, S.A.; Deutsch, M.A.; Lange, R.; Krane, M. Cardiac regeneration: Current therapies-future concepts. J. Thorac. Dis. 2013,

5, 683–697. [PubMed]
3. Sun, R.; Li, X.; Liu, M.; Zeng, Y.; Chen, S.; Zhang, P. Advances in stem cell therapy for cardiovascular disease (Review). Int. J. Mol.

Med. 2016, 38, 23–29. [CrossRef]
4. Leri, A.; Kajstura, J.; Anversa, P. Mechanisms of myocardial regeneration. Trends Cardiovasc. Med. 2011, 21, 52–58. [CrossRef]
5. Penn, M.S. (Ed.) Stem Cells and Myocardial Regeneration; Contemporary Cardiology Series; Humana Press: Totowa, NJ, USA , 2007;

ISBN: 978-1-59745-272-4.
6. Wu, K.H.; Han, Z.C.; Mo, X.M.; Zhou, B. Cell delivery in cardiac regenerative therapy. Ageing Res. Rev. 2012, 11, 32–40. [CrossRef]

[PubMed]
7. Prat-Vidal, C.; Rodríguez-Gómez, L.; Aylagas, M.; Nieto-Nicolau, N.; Gastelurrutia, P.; Agustí, E.; Gálvez-Montón, C.; Jorba, I.;

Teis, A.; Monguí-Tortajada, M.; et al. First-in-human PeriCord cardiac bioimplant: Scalability and GMP manufacturing of an
allogeneic engineered tissue graft. EBioMedicine 2020, 54, 102729. [CrossRef] [PubMed]

8. Roose, T.; Chapman, S.J.; Maini, P.K. Mathematical Models of Avascular Tumor Growth. SIAM Rev. 2007, 49, 179–208. [CrossRef]
9. Hillen, T.; Painter, K.J. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 2009, 58, 183–217. [CrossRef]
10. Keller, E.F.; Segel, L.A. Model for chemotaxis. J. Theor. Biol. 1971, 30, 225–234. [CrossRef]
11. Epshteyn, Y.; Xia, Q. Efficient Numerical Algorithms Based on Difference Potentials for Chemotaxis Systems in 3D. J. Sci. Comput.

2019, 80, 26–59. [CrossRef]
12. Kettemann, A.; Neuss-Radu, M. Derivation and analysis of a system modeling the chemotactic movement of hematopoietic stem

cells. J. Math. Biol. 2008, 56, 579–610. [CrossRef] [PubMed]
13. Rørth, P. Collective cell migration. Annu. Rev. Cell Dev. Biol. 2009, 25, 407–429. [CrossRef] [PubMed]
14. Rangarajan, R.; Zaman, M.H. Modeling cell migration in 3D. Cell Adhes. Migr. 2008, 2, 106–109. [CrossRef] [PubMed]
15. Mogilner, A. Mathematics of cell motility: Have we got its number? J. Math. Biol. 2009, 58, 105–134. [CrossRef] [PubMed]
16. Shakeel, M.; Raza, S. Nonlinear Computational Model of Biological Cell Proliferation and Nutrient Delivery in a Bioreactor. Appl.

Math. 2014, 5, 2284–2298. [CrossRef]
17. Keener, J.; Sneyd, J. Mathematical Physiology I: Cellular Physiology; Springer: New York, NY, USA, 2009.
18. Murray, J.D. Mathematical Biology II. Spatial Models and Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2003.
19. Britton, N. Reaction-Diffusion Equations and Their Applications to Biology; Academic Press: London, UK, 1986.
20. Britton, N. Essential Mathematical Biology; Springer: London, UK, 2003.
21. Andreucci, D.; Bersani, A.M.; Bersani, E.; Leon Trujillo, F.J.; Marconi, S. A 3D mathematical model of coupled stem cell-nutrient

dynamics in myocardial regeneration therapy. J. Theor. Biol. 2022, 537, 111023. [CrossRef] [PubMed]
22. Escobar, E. Remodeling after myocardial infarction. Medwave 2001, 1, e831. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/29064067
http://www.ncbi.nlm.nih.gov/pubmed/24255783
http://doi.org/10.3892/ijmm.2016.2607
http://dx.doi.org/10.1016/j.tcm.2012.02.006
http://dx.doi.org/10.1016/j.arr.2011.06.002
http://www.ncbi.nlm.nih.gov/pubmed/21736956
http://dx.doi.org/10.1016/j.ebiom.2020.102729
http://www.ncbi.nlm.nih.gov/pubmed/32304998
http://dx.doi.org/10.1137/S0036144504446291
http://dx.doi.org/10.1007/s00285-008-0201-3
http://dx.doi.org/10.1016/0022-5193(71)90050-6
http://dx.doi.org/10.1007/s10915-019-00928-z
http://dx.doi.org/10.1007/s00285-007-0132-4
http://www.ncbi.nlm.nih.gov/pubmed/17906861
http://dx.doi.org/10.1146/annurev.cellbio.042308.113231
http://www.ncbi.nlm.nih.gov/pubmed/19575657
http://dx.doi.org/10.4161/cam.2.2.6211
http://www.ncbi.nlm.nih.gov/pubmed/19262098
http://dx.doi.org/10.1007/s00285-008-0182-2
http://www.ncbi.nlm.nih.gov/pubmed/18461331
http://dx.doi.org/10.4236/am.2014.515222
http://dx.doi.org/10.1016/j.jtbi.2022.111023
http://www.ncbi.nlm.nih.gov/pubmed/35041851
http://dx.doi.org/10.5867/medwave.2001.07.831


Mathematics 2024, 12, 1937 15 of 15

23. Frantz, S.; Hundertmark, M.J.; Schulz-Menger, J.; Bengel, F.M.; Bauersachs, J. Left ventricular remodelling post-myocardial
infarction: Pathophysiology, imaging, and novel therapies. Eur. Heart J. 2022, 43, 2549–2561. [CrossRef] [PubMed]

24. Masotti, S.; Franzini, M.; Prontera, C.; Passino, C.; Clerico, A. Marcatori di rimodellamento e fibrosi cardiaca. Biochim. Clin. 2017,
41, 23–38.

25. Hill, A.V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 1910, 40,
iv–vii.

26. Castillo, J.; Grone, R. A matrix analysis approach to higher-order approximations for divergence and gradients satisfying a global
conservation law. SIAM J. 2003, 25, 128–142. [CrossRef]

27. Corbino, J.; Castillo, J.E. High Order Mimetic Finite Difference Operators Satisfying a Gauss Divergence Theorem. J. Appl.
Computat. Math. 2018, 7, 387. [CrossRef]

28. Dumett , M.A.; Castillo, J.E. Mimetic Differences Vector Calculus Identities; CSRC Report. Publication Number: CSRCR2023-01;
San Diego State University: San Diego, CA, USA, 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/eurheartj/ehac223
http://www.ncbi.nlm.nih.gov/pubmed/35511857
http://dx.doi.org/10.1137/S0895479801398025
http://dx.doi.org/10.1016/j.cam.2019.06.042

	Introduction
	Methodology
	Dynamics of the Stem Cells
	Dynamics of Nutrients
	Dynamics of Chemokines
	Coupling
	Adimensionalization

	Results
	Mimetic Differences Method for Partial Differential Equations
	Mimetic Representation of the Model
	Implementation and Results

	Discussion
	References

