MORSE INDEX COMPUTATION FOR RADIAL SOLUTIONS OF THE
HENON PROBLEM IN THE DISK
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ABSTRACT. We compute the Morse index m(up) of any radial solution u, of the semi-
linear problem:

(P)

where B is the unit ball of R? centered at the origin, o > 0 is fixed and p > 1 is sufficiently
large. In the case @ = 0, i.e. for the Lane-Emden problem, this leads to the following
Morse index formula

—Au = |z|%ulP~1u in B
u =0 on 0B

m(up) = 4m? —m — 2,

for p large enough, where m is the number of nodal domains of u.

1. MOTIVATIONS AND MAIN RESULTS

We consider the following classical semilinear elliptic problem

—Au = |x|*uP~ in B
u=0 on 0B

where a > 0, p > 1 and B is the unit ball of RY, N > 2, centered at the origin.

(1.1)

When « > 0 (L.1) has been introduced by Hénon in [27] in the study of stellar clusters
thus it is known as the Hénon problem, when o = 0 ([1.1)) reduces to the classical Lane-Emden
problem.

From a mathematical point of view it is well known that, for any fixed o > 0, problem
admits solutions, and in particular radial solutions, for every p > 1 if N = 2, and
for every p € (1,p,) if N > 3, where p, = %_*22& (see [34]). Moreover for any given
m > 1 there is exactly one couple of radial solutions of which have exactly m nodal
zones, they are classical solutions and they are the opposite of each other (see for instance
[12] 331 30]).

Observe that the two problems (o = 0 and « > 0) have a strong correlation, indeed the
change of variable

2
2 p-1 2+a
1.2 t) = | —— , t = 7,
(12) o= (52s) ) 1=
transforms radial solutions u of the Hénon problem in dimension N into radial solutions v
of the Lane-Emden problem in dimension M = M (N, a) := 2(21\521)’ with the same number

of zeros. Notice that M = N when N = 2, while M < N for any N > 3 and in this case M
may be a non integer extended dimension.
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This paper deals with the computation of the Morse index of all the radial solutions of
(1.1) in dimension N = 2, for any a > 0 fixed and for large values of the exponent p.

We recall that the Morse index m(u) of a solution u of (1.1 is the maximal dimension of
a subspace X C H{(B) where the quadratic form @, : H}(B) x H}(B) - R

Qu(v,w) = / (VoVw — [z]*pluP~ vw) dx
B

is negative definite. Equivalently, since B is a bounded domain, m(u) can be defined as the
number of the negative Dirichlet eigenvalues of the linearized operator at u

Ly = = = [a|plup

counted with their multiplicity.

The knowledge of the Morse index has important applications: it allows to distinguish
and classify solutions and to study their stability properties. Moreover it is well known that
a change in the Morse index may imply bifurcation, which may also give rise to symmetry
breaking phenomena ([23] 2, 5 311 20]).

Focusing on radial solutions u, of problem , it is known, from [28| [I1] in the case
a = 0 and [§] in the case a > 0, that the radial Morse index myaq(u,) (ie. the number of
the negative eigenvalues of L,,, in the subspace H&rad(B) of the radial functions in H}(B)),
coincides with the number m of nodal zones of u:

Myad(Up) =M

and moreover the solution u, is radially nondegenerate. Nevertheless the complete Morse
index of a radial solution wu, is generally higher, and indeed the following lower bound holds
true

m+ (m—1)N it v €10,2)

5]
m+(m1)<N+ZNj+1> if o > 2

j=1

(1.3) m(up) >

as proved in [I7] for the case o = 0 (see also [I} [I0] for previous results in this direction)
and then for the case @ > 0 in [§] by exploiting the relation in (see also [18]). Here N
stands for the dimension, IV; = (N+2J('];2_)g\!’]fj73)l
Aj = j(N +j —2) of the Laplace-Beltrami operator on the sphere Sy_1 and [-] is the integer
art.

I())bselrve that, by Morse index comparison, one deduces from the estimates that a least
energy nodal (i.e. m > 2) solution for problem , having Morse index 2 (cf. [11]), can
not be radial (see [§] and also [I} 10} 18]).

is the multiplicity of the j-th eigenvalue

For the Lane-Emden problem (o = 0) and in dimension N > 3 the estimate (1.3) is
surprisingly optimal, indeed in [I7] the following Morse index formula has been proven:

(1.4) m(u,) =m+ (m —1)N, for p € [P, Do),

for a certain p := p(m, N) > 1.
This formula has been then generalized to the Hénon case (o > 0) in [0], obtaining, again
in dimension N > 3, that

[252] (5]
(1.5) m(up) = m+ (m — 1) Z Nj+ZNj

J
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for p € [P, pa), where p := p(m, N,«) > 1. Here [] is the integer part and [-] the ceiling
function, namely
[z] =min{n € Z : = <n}.

Observe that for any o > 0 the Morse index in this formula is actually higher than the
lower value found in ; in particular implies, again by Morse index comparison,
that the ground state (positive) solution of the Hénon problem, which has Morse index 1, is
not radial for p € [p, po). Indeed for the positive (i.e. m = 1) radial solution u, gives

m(up) 21+ N (> 1)

(see also [35], where the same conclusion is derived via energy comparison).

Formulas and have been derived both by the study of an auxiliary singular

eigenvalue problem associated to the linearized operator L., which, in the radial setting,
can be decomposed into a radial and an angular part. In particular, the study of the radial
part strongly depends on the qualitative properties of the solution u,, and the proofs of both
the formulas specifically exploit the knowledge of the asymptotic behavior of u, as p = p,
from the left.
In dimension N > 3 this behavior is indeed well known: all the radial solutions of
blow-up at the origin as p — p, and vanish elsewhere, moreover each radial solution with
m nodal zones is a tower of m bubbles, i.e., in short, it looks like m superpositions of the
same limit profile

_ jaf2re T

with alternate sign and scaled with different speeds (for o = 0 see for instance [9], [17, [26],
for o > 0 see [5, [6]). Observe that U, is a solution of the critical equation

(1.7) — AU, = |z|*UP=,  x € RV,

In this paper we focus on the 2-dimensional case and derive the analogous of formulas

and (L.F).

In dimension N = 2 the asymptotic behavior of the radial solutions of as p — 400

(in this case the exponent p, is substituted with +oo) is different: one can show that all
these solutions do not blow-up but concentrate at the origin and vanish elsewhere. Moreover,
since p, = +00, the bubbling behavior is more delicate to be described and indeed profiles
different from the solutions of are involved, as shown in [25] [7] for the solution with
m = 2 nodal regions.
Very recently in [29] the results in [25] [7] have been extended to all the radial solutions of
, showing that the radial solution w, with m nodal zones (for any m > 1) develops a
tower of m bubbles, one in each nodal zone, similarly as in dimension N > 3 but, unlike
the higher dimensional case, the profile of each bubble is now different, and given, for
i1=0,...,m—1, by

(at2) (g, - =12
29272 |£C| 7 (0:—2) Yo
18)  Zau(x) =log — - ,  with N\
B e e ey n= g2 (57 foriz,

where the sequence (0;);en is uniquely determined by the following iteration

Oy = 2
(1.9) 0; = 2, —+2 fori>1

2 T 2460,
[/|:2+6i716 ' 1:|
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(L is the Lambert function, namely the inverse function of L — Lel) and Zq,; is a radial
solution of the singular Liouville equation

o+ 2

2
(1.10) —AZa; = ( ) |z|*eZei + (a4 2)7(2 — 6;)d0 in R?,

see Section ] for more details.

As a consequence of this sharp asymptotic analysis one expects that in dimension N = 2
formulas ([1.4) and (1.5) do not hold, and that the constants 6;’s must be involved in the
Morse index computations, for large values of p.

Indeed this is exactly what has been observed in the case of the radial solution w, with
m = 2 nodal zones, whose Morse index has been computed in [16] for the Lane-Emden
problem (o = 0) and in [7] for the Hénon problem (« > 0). The results in [I6] [7] may be
summarized as follows

2
:2+2Fﬂ+2{ ZO{&} if 220, ¢ N
(1.11) m(uyp) o 9
+ « « 2+« .
c [2 {5-‘ + 5 01, 2+ 2 {5-‘ + 5 91] otherwise

for p > p(a) (> 1).

So far in dimension N = 2 the value of the Morse index for all the radial solutions u, of
(1.1) with any number m > 2 of nodal zones, for p large, was unknown. Here we fill in this
gap showing that

Theorem 1.1. Let N = 2, a > 0 and let u, be a radial solution to (1.1} with m nodal
zones. Let (0;);en be the sequence in (1.9). Then there exists p = p(m,«) > 1 such that for
p=p

a m—1 24 o
(1.12) m(u,) = m + 2 [ﬂ +2 Z; [491}
Zf 22‘;‘0,; ¢ N, for everyi=1,...,m — 1. Otherwise, if 2+Ta9i € N for some index i, then
1.13

)

m—1
m(uy) — <m+2[‘;]+22 {22091}) € [—2#{1':1,...771—1’220‘91»61%},0
=1

where [-] is the integer part and [-] the ceiling function. In particular when o = 0 (1.12))
holds and it reduces to

(1.14) m(u,) = 4m* —m —2, ¥V p>p.

When m = 2 Theorem gives back (1.11]).

Observe that, since 6; > 2 for every i > 1 (see (1.9)), it follows that each value given by
is strictly higher than the corresponding value in the higher dimensional case given
in formulas —, and hence also higher than the Morse index lower bound in .
We stress that in dimension 2, and for a > 0, the bound has been recently improved
n [I5], by exploiting the monotonicity of the Morse index with respect to the parameter a.
It is not difficult to check that for a > 0 the value in is in general also strictly higher
than the corresponding value obtained in [I5] (see Remark [6.1)).

Formula (1.12)) exhibits two kinds of discontinuity w.r.t. the parameter a: one, occurring
when « is an even integer, is a common phenomenon also with the higher dimensional
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case ([6]); the other, occurring along the sequences o, = 4n/6; — 2, is instead peculiar of
dimension 2 .

The interest in Theorem is not just theoretical: the exact knowledge of the Morse

index can be used in order to get multiplicity results for , thus clarifying the structure
of the set of its solutions.
This can be obtained for instance both via nonradial bifurcation from radial solutions associ-
ated to a change in the Morse index, and via minimization procedures in suitable symmetric
settings combined with Morse index comparisons. These approaches have been explored in
dimension N > 3 for all the radial solutions, while in dimension N = 2 only the case of
the radial solution with m = 2 nodal zones has been investigated so far (see [23| [7, [, [2]).
Nevertheless there are numerical evidences that similar phenomena hold also when consid-
ering radial solutions with more than 2 nodal zones in dimension N = 2 (see [19]), and in a
subsequent paper we plan to exploit the results in Theorem [I.1] to treat this case.

The proof of Theoremfollows a similar strategy to the one developed to get and
—: thanks to the change of variable we can reduce to consider the Lane-Emden
case (« = 0); then, after a spectral decomposition of an auxiliary singular eigenvalue problem
associated to the linearized operator, we are finally lead to study the negative eigenvalues v
of the following radial singular problem

{%ww—r@%wl+;w)aw<r<h

1.15
(1.15) v =0 ifr =1,

where u,, is the radial solution of (with @ = 0) with m nodal zones (see Section
for more details). It is possible to show that negative eigenvalues for problem may
be defined and are simple ([2I]), moreover they are exactly m which we denote by vj,
j=1,...,m. The eigenvalues v; (and eigenfunctions ;) of obviously depend on wu,,
the core of the proof of Theorem is thus the investigation of their asymptotic behavior
as p — +oo. We prove that

Theorem 1.2. Foranyj=1,...,m

(1.16) 1ml¢m:_(%ﬂ)i

p—r+oo

where (0;)ien is the sequence in (1.9).

Theorem is part of a more general result which describes also the asymptotic behavior
of the eigenfunctions (see Theorem for the complete statement). Its proof is quite
technical and, as already mentioned, it strongly relies on the tower of bubbles asymptotic
behavior of the radial solution w, as p — 400 described very recently in [29], for any fixed
number m > 1 of nodal zones (see Section 4] see also [25] [7] for the case m = 2).

The main difficulty, which is peculiar of the two dimensional case, is to understand the
interaction between the different bubbles composing the profile of u, and the eigenfunctions
of .

We shall see that each eigenfunction 1); is synchronized with a different bubble: precisely
the first eigenfunction 1); matches with the more external nodal zone of u, where the last
bubble Zj ,,—1 appears, the second eigenfunction 1 matches with the penultimate bubble
Zy,m—2 and so on, till the last eigenfunction v, that matches with the first bubble Zg o (see

Section .
Indeed, in the case a = 0, one can decompose formula ((1.12) as follows

(1.17) m(uy) = mil <1 +2 [QZD + 1,

i=1
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where each term “1 + 2 [%}”, coming from the i*" eigenvalue of (1.15)), describes the

contribution to the Morse index due to the bubble Zj ,,—;, and the last term “1”, coming
from the m!" eigenvalue, is due to the first bubble Zj . Observe that the Morse index of
each bubble (as a solution to (1.10) for o = 0) is known (see [I4]) and coincides with the

previous values:

m(Z0,0) =1 and m(Z07m_i) =142 [977;_1] 5

so that (1.17)) may be rewritten as

m

m(up) = > M (Zom—i)-

i=1
Moreover, one can explicitly compute (cf. [29]) the different contribution coming from each
bubble

m(Z07m_i) = 1 + 2 |:9”;_l
from which formula follows, which is nonlinear (quadratic) in the number m of nodal
zones. We stress that in dimension N > 3 and for o = 0 formula holds, which is instead
linear in m. We notice that, since in this case the profile of the bubbles is given always by
the same function Uy (in with o = 0) and it is known that m(Uy) = 1, formula
may be read as

}8(mi)+3,

m—1

m(up) =m+ (m— 1N =m(Up) + (N +1) Y m(Uy).

i=1

The paper is organized as follows:

CONTENTS
[1.__Motivations and main results| 1
2. Asymptotic results for the Lane-Emden problem| 6
3. Strategy for the Morse index computation| 8
4. Asymptotic behavior of v;(p) as p — +oq| 10
[5. The proof of Theorem [I.1[in the case a = 0| 27
6. The proof of Theorem [1.1]in the case o > () 28
7. _Further results| 29
[References 31

2. ASYMPTOTIC RESULTS FOR THE LANE-EMDEN PROBLEM

This section collects known results about the asymptotic behavior of the radial solutions
in the case o = 0. Hence we consider the Dirichlet Lane-Emden problem

—Au = |uP~ty in B,

u=0 on OB
where p > 1 and B stands for the unit disk.

(2.1)

For any p > 1 and any m € N, m > 1, there exists a unique (up to a sign) radial solution
to (2.1) with exactly m — 1 interior zeros (see for instance [30, p. 263]).



MORSE INDEX COMPUTATION FOR HENON PROBLEM 7
The solutions do not vanish in the origin and we denote by w, the unique nodal radial
solution of (2.1)) having m — 1 interior zeros and satisfying
up(0) > 0.

With a slight abuse of notation, we often write up,(r) = u,(|z|).

2.1. Asymptotic analysis of radial solutions. Let us denote by r;;, the nodal radii of
u, and by s; ;, the critical radii of u, respectively, then it is known that

0=50p <T1p<81p<T2p<...<Tim_1p<Sm_1p<Tmp=L1L
Let us define the scaling parameters

_1
(2.2) ip = (Plup(sip)P~1) 2, i=0,...,m—1,

and rescale the solutions in each nodal zone as

. ) — . [0, 2], ifi =0,
(2.3) u,(r) = pup(sl,px) p(3i.p) as r € e
UP(S'L,p) [57 T,;::| )

ifi=1,...,m— 1.

Let (6;); be the sequence defined in (1.9, which satisfies (see [29]):

(2.4) 0p=2, 8i+2<0; <8 +4, Vi>1.
We also introduce
9
202, || (¥i=2) 0; +2 (02 —4\*
(25) ZZ(LU) = lOg W, Where Yi = 974 _ 2 <2> .

Observe that the function Z; is a radial solution of
7AZ1 = €Zi + 27’(‘(2 — 02)50 in Rz,
02—4
(2.6) Zi( 552 =,
fR2 Fidr = 87{791"
where dg is the Dirac measure centered at 0. In particular in the case i = 0, since the
constant 0y = 2, Zy solves the standard Liouville equation
—AZy = e?o r € R?,
(2.7) Zs(0) =0
Jg2 €%0dx = 8.

From [29] Theorem 2.5] we know that u, has a tower of bubbles behavior in the limit as
p — 400, with bubbles given by the functions Z;, i =0,...,m — 1:

Lemma 2.1 ([29]). As p — oo we have

) ) . 2 _
(2.8) Tiv o 20), DOt o Ze bl -4
Eip Eip Eip 2
fori=0,...m — 1. Furthermore
(2.9) u) — Zoy in Ch (R?),
(2.10) wh, — Z; in Cl (R*\{0}), fori=1,...m—1.

Last we recall some pointwise estimates that will be useful in the study of the linearized
operator at u,. Let f, be the following function

(2.11) fo(r) =prilu,(r)P~t, 0<r<1
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and for any K > 1 and p > 1 let us define the set G,(K) C [0,1] as
m—2

(2.12) Gy(K) = UO [Keip, %Hl,p} U [Kem—1p,1]-

In [I6, Proposition 6.10] it has been proven that

Lemma 2.2. There exists C > 0 such that

(2.13) fo(r) < C for any r >0 and p > 1.

Moreover for any 0 > 0 there exist K(6) > 1 and p(6) > 1 such that for any K > K () and
p = p(d)

(2.14) max {fp(r) : r € Gp(K)} <é.

3. STRATEGY FOR THE MORSE INDEX COMPUTATION

We will first consider the Lane-Emden problem (o = 0) and prove Theoremin this case
(see Section [5), finally in Section [6] we will treat the Hénon problem (o > 0) by exploiting
the change of variable (1.2)) and prove Theorem [1.1]in its full generality.

This section describes the strategy that we will adopt in order to compute the Morse
index in the case a = 0. More precisely we will show how the computation of the Morse
index may be reduced to the study of the size of the negative radial eigenvalues of a suitable
singular eigenvalue problem (see formula @ below). The study of these eigenvalues and
the conclusion of the proof of TheoremE (in the case o = 0) is instead the goal of Sections
and [5] respectively.

As before we denote by u, the radial solution to the Lane-Emden problem (2.1)) having
m — 1 interior zeros and keep all the notations introduced in Section

As already recalled the Morse index of u, is the maximal dimension of a subspace of
H}(B) in which the quadratic form

(31) 0,(0) = [ (V6 = Vy(a)s?) do
B

is negative definite, where

(3.2) V() i= pluy (@)},

Since u,, is a radial solution we can also consider the radial Morse indezx of u,, denoted by
Myad(up), which is the maximal dimension of a subspace X of H(},rad(B) (the subspace of
radial functions in Hg(B)) such that Q,(¢) < 0, V¢ € X \ {0}.

Observe that B is a bounded domain, so m(u,) (resp. mMyad(up)) coincides with the number
of the negative eigenvalues (resp. radial eigenvalues) A(p), counted with multiplicity, of the
linearized operator L, : —A — V,(z) at uy, i.e.

(3.3) —A¢—V,(z)p = A(p)o, ¢ € Hy(B) (vesp. ¢ € H,,4(B)).

It is well known (see [28] [I1]) that
(34) Myad (up) =m,

where m is the number of nodal zones of u,, moreover w,, is radially non-degenerate (see for
instance [23]).
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In order to compute m(u,) we follow the same general strategy already used in [I7) [16]
0, [7, 23]: instead of counting the negative eigenvalues of , we consider an auxiliary
singular eigenvalue problem which allow to exploit a spectral decomposition and hence to
reduce to a radial eigenvalue problem.

3.1. Singular eigenvalue problem and spectral decomposition.

It is possible to show that m(u,) coincides with the number of negative eigenvalues A(p),
counted with multiplicity, of the following auxiliary eigenvalue problem associated to the
linearized operator Ly:

(3.5) —A¢—%(x>¢=ﬁ<p>%7 6 € Ho,

in the weighted Sobolev space
Ho=L N HY(B), where £L={¢:B =R : ¢/|x| € L*(B)}.

This equivalence is quite straightforward in the case of domains which do not contain the
origin (see for instance [22], where it is proved in the case when the domain is an annulus).
In our case, since 0 € B, is a singular problem. Nevertheless its negative eigenvalues
may be variationally characterized despite a lack of compactness (see [21], for more details
see also [23] Section 3.2], and [3] for a more general setting) and the equivalence between
the number of the negative eigenvalues of and can be proved (see [2I, Lemma
2.6], see also [23] Lemma 3.5], [3] Proposition 1.1]).

The main advantage of dealing with the singular problem (3.5)) instead of (3.3) is that the
eigenfunctions of (3.5) can be easily projected along the spherical harmonics. This implies
a spectral decomposition for the eigenvalues A(p) of (3.5)) into a radial and an angular part:

(3.6) Alp) = k* + v(p),

where k2, for k = 0,1,2,... are the eigenvalues of the Laplace-Beltrami operator —Ag: (the
angular part) and v(p) are the (negative) radial eigenvalues of (3.5)), namely they satisfy the
following singular Sturm-Liouville problem

(3.7) —(r 1//)’ =r (Vp(r) + V;?) P, Y€ Horad =L N Hol,rad(B)'

Also the associated eigenfunctions ¢ of the singular eigenvalue problem (3.5 associated to
the eigenvalue A(p) decompose, indeed in radial coordinates they can be written as

(3.8) o(r,0) = (r) (Acos(kf) + Bsin(kb)),

where

e ¢ is a solution to the singular Sturm-Liouville problem (3.7)) related to v(p),
e cos(kf), sin(k0) are the eigenfunctions of the Laplace-Beltrami operator on the circle,
related to the eigenvalue k2.

We stress that A(p) is negative iff

(3.9) v —=v(p) > k.

Hence in order to compute m(u,) one reduces to study for the negative eigenvalues
v(p) of the 1-dimensional problem (3.7).

For more details about the spectral decomposition the reader may look at [32] 22 21], or to
the more recent [23, Lemma 3.7], [3], Section 4].
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3.2. Variational characterization of the negative eigenvalues and eigenfunctions

of .

As already said, the negative eigenvalues for problem (3.7)) may be defined variationally
despite the singularity of the Sturm-Liouville problem the origin, moreover they are
simple and by we know that they are exactly m, which we denote by v;(p), j = 1,...,m.
Here we recall their variational characterization and the definition of the corresponding
eigenfunctions (cf. [21], see also [3 Section 3]):

1
Jo r (WP = Vpy?) dr
fol r=1y2dr
since it is negative, it can be proven that it is attained by a function 1, € Ho raqa Which
solves (3.7) in a weak sense, and which is therefore called an eigenfunction related to the

eigenvalue v4(p); w.l.g. we may assume that it is normalized in L, i.e. fol ril(wlyp)Q = 1.
ITteratively, for j = 2,...,m, one has

1
Jo r (W' = Vpyp?) dr
fol r=Lap2dr
where the symbol _L denotes orthogonality in L, i.e.

(3.10) vi(p) = min{ 2 € Horad, ¥ # 0} ;

(311) Vj(p) = min { : 1/1 € HO,rady 1/1;7#1,;), s wj—l,p} )

1
pliy <— / r_lgm/Jdr =0,
0

Again, since vj(p) < 0 for any j = 2, ..., m, then the infimum is attained by an eigenfunction
1} p, which solves (3.7)) in a weak sense and that w.l.g. satisfies

1
(3.12) / T_le,pwh,pd’r = 6jh'
0

Furthermore one can prove that the eigenvalues are simple and that (see [§, Proposition
3.3, Theorem 1.3])

(3.13) v1(p) <va(p) < ...Vm-1(p) < =1 < wvn(p) <0,
for any p > 1.

3.3. Computation of m(u,) by the size of the negative eigenvalues of (3.7).

By (3.6), (3-8) and (3.9)), and recalling that the eigenvalues v;(p) defined in (3.10)-(3.11])

are simple while the eigenvalues k2 of the Laplace-Beltrami operator —Ag: have multiplicity
1if k =0 and 2 when k > 1, it follows that

(3.14) ) = m 23 [ —v(p) — 1] ,

for any p > 1.

4. ASYMPTOTIC BEHAVIOR OF v;(p) AS p — +00

In this section we study the asymptotic behavior, as p — 400, of the singular eigenvalues

V](p)7 j = 17' RN defined in ""

In order to compute their limit values we will properly scale the corresponding eigenfunc-
tions v}, according to each scaling parameter ¢;;, introduced in (2.2)) and then pass to the
limit into the equations satisfied by the rescaled functions. This will be possible thanks to
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the asymptotic results on the solutions w, of the Lane-Emden problem (2.1]) collected in
Section [2} Furthermore we will analyze the limit eigenvalue problems obtained (see Lemma

below).

Our results about the asymptotic behavior of the eigenvalues and the rescaled eigenfunc-
tions are stated in Theorem below (which is the complete version of Theorem in
Section .

Next we introduce some notation and observations needed to state Theorem (4.2

We denote by w;'.,p, for i = 0,...m — 1, the m functions obtained from rescaling each

eigenfunction 1;, as follows:

(4.1) ¢?7p(r) — {’d’j;p(gi,p’f") in [O, Eip)

! 0 otherwise.

Observe that 1ﬁ§7p belong to the closure of C§°(0, 00) with respect to the norm

(/oo (T|¢,|2+T71,¢)2) d’r‘)Q,
0

which will be denoted by D,.q, and solve

i i Yi\p i
(4.2) —(r (%‘,p)/)/ =r (sz + Jr(z )) Vi
in [0, 2] if i = 0, in [E— L;ﬂ ifi=1,...,m— 1, with
(4.3) Vo (1) := (£4,p)* V(i pr),

where V,, is defined in (3.2). Moreover by the definition (4.1)) and the normalization (3.12)),

we have

[e’e) 1
(4.4) /0 i ;’p)erS/o r_l(z/)j,p)erzl

(4.5) /Ooor(( ;’_)p)/)zdrg/o T(Q/J;,p)2dr.

Thanks to Lemma the set [0 ”—Z) expands to [0,00) in the limit as p — +o0, while

) g0,

the sets (?—” M), for i =1,...m — 1, approach (0, 00). Furthermore

-1
u\’
(4.6) VY = (1 + p”) — €% in OP [0, 00),
i\ P!
, u
(4.7 V, = <1—|—p> —eZi in O .(0,00), fori=1,...,m—1,
p

where Z; are the functions in (2.5)). Hence, if we prove that we can pass to the limit into
equations (4.2)), then the natural limit problems will be the following eigenvalue problems

{—<r () =r (% +5)n s r>0

ne Drad7

(4.8)

fori = 0,...,m — 1. From [I7, Section 5] and [T, Section 5.2] we know that (4.8) admits
only one negative eigenvalue, which can be explicitly characterized:
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Lemma 4.1. Leti € {0,...,m — 1} and let 8 be an eigenvalue to (4.8)). Then

. i 01 2
(4.9) B<0 iff B=p :<2> ,
where 0; is the number given by (1.9). Moreover in such a case the eigenvalue 3 is simple

and its eigenspace is spanned by
94

VOir? &+2<ﬁ—4)2
———— where ;= .

¥ + 10 ) 2

(4.10) n(r) =n'(r) ==
Notice that 7 is normalized so that

(4.11) / r~(n)?dr = 1.
0

As a consequence of Lemma it follows that all the numbers § = % in , for
i=0,...,m— 1, are candidates to be the limit value of each eigenvalue v;(p), as p — +oc.

We remark that, for ¢ = 0,...,m — 1, the limit problems , as well as their negative
eigenvalue 3* in , are different from one another, in particular combining and
we know that the following strict order holds:

(4.12) gt <t <25 <80 = 1.

In order to select the right limit value of v;(p) among all the 3%’s, we need thus to understand
which one (if any) among the possible scalings Q/J;:m, fori=0,...,m—1, does not vanish as
p — o0.

We shall see that
Theorem 4.2. Forany j=1,...,m

O \>
(4.13) pEI—Poo vi(p) = M = — (m_])

Moreover there exists A; # 0 such that
%Zﬂij - Ajnm_j
t =0, i=0,....m—1,i%m—j
weakly in Dyaq and strongly in CL (0, 00).
Observe that Theorem describes the asymptotic also for the last eigenvalue v, (p),
even if this is not needed for the computation of the Morse index.

4.1. The proof of Theorem The proof of Theorem is based on an iterative
procedure on the index j.
First we prove the result for j = 1:

Proposition 4.3.
(4.14) lim v(p) =™ !

p—+oo
Moreover there exists A1 # 0 such that
Pt = At
Pi, =0, i=0,....,m—2
Then we prove the inductive step

Proposition 4.4. Let h € {2,...,m — 1}. Assume that Theorem holds true for any
j=1,...,h—1. Then it holds true for j = h.
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The last eigenvalue has to be treated separately, namely we conclude proving

Proposition 4.5.
(4.15) lim v, (p) =" = —1

p——+oo

Moreover there exists Ay, # 0 such that
U p = A
P 0, i=1,2,...,m—1.

m,p

4.2. Preliminary convergence results. We start showing that the eigenvalues v;(p) and
the rescaled eigenfunctions ’(/J;’p are uniformly bounded in p.

Lemma 4.6. There exists C > 0 such that for every p > 1 we have
(4.16) —C <) <wa(p) <...<uvm(p) <0

(4.17) / r((wh,))dr < C
0

foreveryi=0,...m—1landj=1,...,m.

Proof. Using 1, ,, as a test function in (3.7) we get

1 1
vi(p
(4.18) /0 r(¢;7p)2dr :/0 r(V, + %)(wj’p)zdr.
For j =1, by virtue of (3.12)) we can extract v;(p) getting that
1 1
) = [ (0 gl )P = = sup fy(r) [ ) = —C
0 0

(0,1)
thanks to Lemma and (4.4)).
In addition, since vj(p) < 0 for j =1,...,m by (3.13)), (4.18), (4.4) and Lemma
1

1 1
/ T(w;};l))er < / Tﬁlfp(d’j,pfdr < sup fp(T)/ Tﬁl(i/)j,p)QdT =C.
0 0 0

re(0,1)
So also is proved, recalling . O
As a consequence we can thus prove:
Proposition 4.7. Let j = 1,...,m. Then there exist a sequence p, — +00, a number
v; <0 and m functions @;, fori=0,...,m—1, such that as n — 400
(4.19) vi(pn) = 7
(4.20) o E; weakly in Dyaq and strongly in L .(0,00).

Moreover JLJ is a weak solution to (4.8)) with eigenvalue 8 = 1.

Proof. By ({.16]) we can extract a sequence p,, — +oc such that v;(p,) — 7; < 0. (4.4) and

(4.17) imply that the sequence ( ;‘,pn)n is uniformly bounded in D,,q hence, up to another
subsequence (that we still denote by p,,), one has that 1/1;14)" — E; weakly in D,.q, strongly

in L% (0,00) and almost everywhere in (0, 00). In particular @; € Drad. Since by (2.8) the

intervals
i __{ (0, 222) if i =0
)

p - Ti,p Titlp -
ot ) ifi>0

expand to (0,00), as p — +o0, for every ¢ € C§°(0,00) we can choose n so large in such a
way that suppp C I}, and 97 = verifies
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| i e = [ e ) [, e
0 0 0

The weak convergence in D,,q then implies that
o0 oo .
; —i
|t ear s [ o@year
0 0

’I“’(/Jj)pn pdr — mpj wdr
0 0

while the strong convergence in L, and the fact that V! — e# in C}!

loc b (0,00) imply also
that

® i > Z; 7
/0 TVpnijpncpdr%/o re chpdr

getting that Ez solves (4.8) with 8 = 7; in the weak sense.
O

Thanks to Lemma [.1] we can deduce some crucial consequences of Proposition [4.7]

Corollary 4.8. Let v; and E; be as in Pmposition and ﬁi, ni as in (4.9) and (4.10). It
holds
(i) If 7; # 5,0, then T, = 0.
(i2) If there exists j € {1,...,m — 1} such that @; £0, then v; = (.
Furthermore

—1

(4.21) ¥y = Ay’ for some Aj #0, |A;] <1

(4.22) 1/)? =0 for every h # i.

Proof. (i) is a direct consequence of Proposition and Lemma Indeed 7; < 0 is an
eigenvalue of problem ([4.8) and the only strictly negative eigenvalue must be 3°.

The first assertion of (iz) follows from (i), observing also that, thanks to (3.13), 7; < —1
as j=1,...,m—1 (while -1 < 7, <0). Then Lemma implies that E; = A;jn’, for a
certain A; € R. As a consequence, by the convergence in (4.20) and Fatou’s Lemma, one
deduces that

ED < I o < ., ED
(42 B [ty = [ @) <t [, S L
0 0

0 p—r—+oo

which implies (4.21). Finally 0 # v; = 8¢ # ", for h # i, by ([4.12)), hence ([4.22) follows
O

from (1).
The convergence in (4.20)) is actually stronger, as stated by the following lemma.

Lemma 4.9. Using the same notation of Proposition[{.7, we have

(4.23) ;’pn — @; strongly in Clloc(O7 00),
asn — +oo, forj=1,...,m,i=0,...,m—1.

Furthermore, if v; < =25, then

(4.24) 0 =y in Ch[0,00),
asn — +oo, forj=1,...,m.

Proof. Recall tha v, € Horaa C C°(0,1] and v, is a solution to (3.7) (with V},, €
C*>0,1]), so ;,p, € C1(0,1] and in turn via a bootstrap argument v;, € C*(0,1]. If
re >1r; > R~ > 0 we have

_ . rs () " )
W (ra) — i, (r)] < / 0, ) (b)]dt = c( / tldt) < CRMI =T

T1

N
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so (up to another subsequence) ¢? =~ — E; uniformly in any set of type [R™!, R] by the
Arzela-Ascoli Theorem. Furthermore, by equation (4.2)), it is easy to derive a bound for

¢ . in C*(R™', R), which ensures the convergence in C'(R™!, R), completing the proof of
(4.23]).

Next we derive (4.24)).

Reasoning as in [2I, Lemma 2.4] or [23, Proposition 2.2] and integrating the equation

(3.7) one has
1 s
629 ()= [ [ @, () s
P 0
where £, = \/|V;(pn)| > 4 by assumption. Observe that

s s 1 . 3
[ 0, 0] < 1 | [ B
0

0
1
Holder s 2

< Voo lloo </0 (%p;( 2k dt) (/o t3+2"f’1’ndt)

* 24Ky, —2
*) 2 S Jbn <€0;P 24Ky, P

< egyr—F——

TP A+ 2k, T 2
where (%) follows from the normalization (£.4) and the fact that ||V}, lsc < &5 by (3-2) and
(2.2). Inserting this estimate in (4.25) we get

-2 1 72 QK .

3 1— Gipn Kjpy >4
(126) [y, (0)] < “gEpren [ simends < g Lo
P

[

2

This implies that 1; ,, is continuous and differentiable in p = 0 with ¢; ,, (0) = (¥;,p,,) (0) =
0. Then we can integrate in (0, p) getting

i) == [ (804 220 ) (51

Combining with (4.26) we derive

2—Kjp,

-2

3 ’ ,
M/ <5Vn||oo + |I/](pn)|> $2 ds
P Jo S

€o,p 0 2 P P
0. Cc—
p ( vy TS )
(4.27) < eoop(eann®+C),
where in (x) we have used (3.2)), the fact that ||V, |c = puyp, (0)P~1 (since ||up||oo = u,(0),

cf. [29]), (2.2) and (4.16). This implies that 1;,, € C'[0,1]. Furthermore by (3.7)
Yip, (P)

|(%5.0.)" ()]

—
INx

Vi (P)
_'l/};'l,pn (P) = % + (p2Vpn (p) + V](pn)) Ta for pE (07 1]3
so using (4.26)), (4.27) and (4.16)
(4.28) [y, (p)| < 2802 (ea,ian + 6) for p € (0,1].

By (2.8) for any R > 0 there exists n large enough such that R < Toen 2. Recalling the

definition of the rescaled function . ), by the regularity of 1; ., we conclude that w?p
C0, R] N C*>(0, R]. Scaling into the estimates (4.26]), (4.27), (4.28) we obtain that for
r € [0, R):

(4.26)

|,(/).§‘))pn <r)| = ‘ij)n (EO;pnr)‘ S 7‘2,
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|(69,,) ()] = g0,plt) , (€0p,7)| < (12 +C)r < Chr,

(W2, ) () =ed,, [W), (op.r)] < 202+ C)<Cr , forr e (0,R)]
thus (¢, )" are equicontinuous in [0, R] and Arzela-Ascoli Theorem implies (4.24)). O

The locally uniform convergence established in Lemma [4.9] will be crucial to control the
interactions among different scalings of the eigenfunction v ,. Adapting the proof of [6],
Lemma 3.7], we infer that

Lemma 4.10. Ifv;(p) < —1, then for any § > 0 there exist K(6) > 1 and p(6, K) > 1 such
that

r

)2
/ Mdrg(; for K > K(8) and p > p(s, K).
Gyp(K)

Here G,(K) is the set defined in (2.12)).
Proof. By definition G,(K) = U;Z_Ol[ai, b;] where we set

ai::Kei’p i:O’”.’m_l
b = %Ei-‘er i=0,....m—2
o 1 t=m-—1
Thanks to Lemmaand the definition (4.10)), one can chose K(§) and p;(d) such that
g : : 5 1,1 .1 5
4.2 < — Kn'(K z/K <2 1oL ively o 90
(429) e fy < o K0 )0 (B < g | ()0 ()1 < g6

for every K > K(9),p > p1(0),1=0,...m— 1.
Using 1;,, as a test function in (3.7) and recalling the definition of f, in (2.11)) we get

b; )2 b; )2 by
(4.30) /a W) dr:_ujtp) /a fo(r) (%;p) dr — Vjtp)~/a (r],) ) pdr.

r

i i

Let us estimate the two integrals in the right hand side of (4.30). Concerning the first one
L (W) b () 5

4.31 - P dr <2 /Ld =2 < —

) A X A e (LT

for every K > K(§) and p > p1(0), thanks to (4.29).
Moreover integrating by parts

1 bl / li 1 bl / 2 / /
0 0) /a (1% ) ) pdr = o | /a (5 ) dr 4 b p (035, (bi) — ait)j p(ai); ,(aq)
(4.32) < 2|03t p (0i)); , (0s)| + 2] ait)j p(ai) ) (ai)

since v;(p) < —3. Observe that

2bm—1¢j7p(bm—1)¢;‘,p(bm—1) = 2¢j7p(1)1/’;,p(1) =0.

The other terms can be estimated by making use of Lemma For ¢ =0,...,m — 2,
rescaling according to ¢; , gives

Ty, by, 1 820 1 i 1 —igr, 1 1)
2|bitj p(bi)); , (bs)| = 2§|¢j,p (?)(wj,p )/(}ﬂ < QEWJ' (g)(% ),(E” + 3
after chosing p > pa(4, K), for a suitable ps(4, K). Similarly for i =0,...,m —1

TYE) +

2ty (@i (an)| = 2K |0}, (K5, ()| < 2K [ (K)( o
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for p > p2(0, K). Summing up, (4.32) becomes
1
v (p)

—m—1 )

bm—1 o
/ () i < RK [T BT (K] +

8m’

m—1

1 b, 1 —it1, 1 —it1,,, 1 —i —i, 0
—W /a (1 ) g pdr < 2§|%‘ (})(%‘ ) (}N + 2K [, (K)(¥;) (K)| + Im
ifi=0,...m—2. We remark that, according to Corollary (u), at most one between the
limit functions @; and @Z-H differs from zero, and either @; = A;n' or @;H = A;n"T!, with
|A;| < 1. Therefore (4.29)) implies that for every i =0,...m —1

b,
: )
/ !/
: dr < ——
V](p) /ai (Tw“)) wj,pdr — 2m

for K > K(9) and for every p > pa(6, K).
Substituting the estimates (4.31]) and (4.33]) into (4.30) we deduce that

b; )2
/ (w]J)) dr < é,
a r

- m

(4.33) -

for K > K(9) and for every p > max{p1(9), p2(d, K)}. The conclusion follows summing up
fori=0,...,m—1. O

4.3. Proof of Proposition Proposition follows by adapting the arguments in |7,
Proposition 3.4], which concerns the case of two nodal zones. For the reader’s comprehension
we report a detailed proof. First we obtain an estimate from above of v (p) in Lemma
Next we conclude the proof relying on the general convergence result in Proposition [.7] and
in particular on Corollary [£.8] and Lemma [4.9]

Lemma 4.11.
lim sup v (p) < 7.

pP—o0
Proof. From the variational characterization (3.10)), it suffices to exhibit for every 0 < e < 1
a sequence ¢, € Ho rad such that
1
Jo 7 (Iep]? = Vogp) dr
fol r=1o2dr
if p is large enough. So we pick a cut-off function ® € C§°(0, 00) such that

(4.34) vi(p) < <pm e

1 if £ <r<Rg,
0 if0§r<ﬁorr>2R,
2R if 55 <r< §,

P’ <
| (T)"{; if R<r < 2R.

Letting £, = €m—1,, and n = ™1 as defined in (2.2) and ([4.10), respectively, we set
(4.36) ¢Amn<r>©(r), as 7 € [0,1].

€p €p

0<d(r) <1, @M:{
(4.35)

Observe that there exists @ > 0 such that the function 7 is increasing on (0, a) and decreasing

oo
on (a,00) respectively, moreover lim n(s) =0, lim n(s) =0, and [ s~'n%*ds = 1. So we can
5—0 §—00 0
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choose R = R(¢) in such a way that

1 € 1 €
. <n(= - — < —
(4.37) n(s) < U(R) <3 for s < 7 and 7n(s) <n(R) < 1 for s > R,
e R
(4.38) / s o%ds > /1 s7in?ds > 1—¢/8.
0 =

Notice that since £, — 0 we may assume w.l.g. that p is so large that 1/e, > 2R, so that

Pp € HO,rad-
Inserting the test function ¢, in the variational characterization (3.10) of v1(p) we have

Jo r (19p]? = Vip3) dr
fol r=lp2dr .

(4.39) vi(p) <
Next we estimate all the terms.

Using the relation [(fg)']? = f'(fg?) + f?(¢')?, scaling with respect to & and using the
equation (4.8)) satisfied by 7 (recall that ® has compact support) one gets

! /12 ! r r 7’
/OT|<pp\ dr /Orl(n(gp)@(gp))] dr
1 [t T r of T ! 1 ! of T T 2
= L@ 0EeE) e g [ (v ()
= /5 sn’ (17<I>2)/d5 + /Elp 51> (@')st
0 0

(4.40) qu/ 571772<I>2d5—|—/ sez’"‘ln2¢’2ds—|—/ sn? (®)% ds
0 0 0

and by the choice of ® we have

/ sn?(®')%ds < 4R2/ sn?ds + —/ sn?ds
0 1

2
3R R Jr
@39 2R? (% g2 2R 32 3¢
4.41 < ds + —— ds="" < 2=,
(441) 4/21RSS+4R2/RSS 4 1

Furthermore scaling with respect to ¢, since Ei > 2R we get
P

1 [eS)
(4.42) /0 V}Jgof,dr:/o sV P % ds
and
1 e8]
-1, 2. _ 1,252
(4.43) /0 r gopdr—/o sTn dds.

Inserting ({.40), (#41), (£.42) and (@.43) in (E39) we obtain
s fooo S(vm—l _ €Zm’1)7’]2¢)2d5 + 34£

v < m—1 p -
1(p) < B Jo sTin?®2ds
428 gm1 0+°° s|eZmmr — V| 202ds + 3e
1—¢/8 ’

On the other hand by the properties of ® we have

400 2R
1 Zme1| 252 1 Zpe 2
/ s|me —efmTlin*®ids < sup vV, —e 1|/1 snds
0 (zr-2R) 3R
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and since V" — e#m-1 uniformly on [55,2R] we can take p. in dependence by € and R(e)

2R’
large enough such that

sup |V —efmt < ————— forp > p.,
L 2R) P 8f1 SN 2ds )

(3R>

which concludes the proof of (4.34)).

Proof of Proposition[{.3 By Lemma and (4.12)

limsup v, (p) < g1 < B i=0,....,m—2.

p—+oo
As a consequence, Corollary ( i) implies that
(4.44) V=0 asi=0,...m—2.
So, by Corollary ( i), Proposition is proved after checking that
(4.45) o 2o,

To this aim we fix § > 0 such that § < —f3,,—1/3 and K = K(§) and p(6) as in Lemma[2.2]
By the definition of v1(p) it follows that

) = - / r(),)? = V(i1 p)?)dr
1
/0 PV (th1p)2dr

Keo,p m—1 .Ke;,
= / Tvp(wl,p)er‘F/ Vp(¥1,p) )2dr + Z / wl,p
Gp(K) 0

= Ii(p) + L2(p) + I3(p)

IN

The normalization of the eigenfunction and the estimate obtained in Lemma assure that

_ 2. (1/’1,;0)2
Li(p) = rVp(t1,p) dr = fp dr
Gp(K) Gp(K) r
1 2
< sup fp Mdr = sup fp, <0
Gp(K) 0 r Gy (K)

for p > p(9).
Observe that, by Lemma Vi, — ¢ in CL.(0,400) for i = 1,...m — 1, and in
CL.l0,400) for i = 0. Indeed 7y := limsup, ,,, vi(p) < ™' < B < —25 by ([E12).
Furthermore, by and , Vpi — €% in CP _(0,+00) for i = 1,...,m — 1, or re-

spectively in CP [0, +00) for i = 0. Hence, rescaling the second integral according to £,
gives

@13)

Keo,p K K .
12(p):/ rv,,(z/q,p)%r:/ ero(@[J?’p)er:/ rezo(w(f)?dwrop(l) < 0,
0 0 0
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if p > po(9). Similarly, for what concerns the third term,
Keip
=5 [ = 5 [ e
Ei,p b7d

—Z/ﬁ 7/11 dTJFOp(l)
/ ren i (g 2dr 46,

for p > p3(6). Summing up, taking p = max{p(d), p2(d), p3(d)} we have

m

K
/ Teszl(al _1)2dr > —vi(p) — 36 forp>p

1

K

so, passing to the liminf and using Lemma [£.11]

K
[ et @ e =~ imsup () — 36 = ~67 1 33 >0
1

+* p—+oo

by the choice of §. Hence @;’H # 0, concluding the proof. O

4.4. Proof of Proposition Computing the limits of the subsequent eigenvalues is
more involved, and it is done in an iterative way. Similarly as in Section [£.3] also here we
follow a two step scheme: first we obtain an estimate from above by producing a suitable
test function (Lemma, then we conclude the proof of Proposition by exploiting the
convergence results in Proposition [£.7] and taking advantage of the orthogonality condition
(13.12).

Lemma 4.12. Let h € {2,...,m} and assume that Theorem holds true for any j =
1,...,h—1. Then

(4.46) limsup v, (p) < g™ "

pP— o0

Proof. By the variational characterization (3.11)), it suffices to show, for every 0 < e < 1,
the existence of a function ¢, € Ho rad, ©pL¥1,p, V2,ps-- - Yr—1,p such that

. i~ V) o
Jo rte2dr

if p is large enough. Let ® = ®p be the cut-off function defined in (4.35), €, = €m—n,p and

n=n""" as defined in (2.2)) and E, respectively, and set

(4.48) @()—n(gp) (2)+ Zaj,pwj,p, as € [0,1],

with R = R(e) satisfying (4.37)), (4.38) and a; ;, € R choosen so that ¢, L)1 p, ¥2p, . . ., Yr_1,p,
namely:

(4.49) a; ::f/ “Lypi () (;)@(ei)dr.

p

<pmTh4e

Notice that since €, — 0 we may assume w.l.g. that p is so large that 1/¢, > 2R, so that
Pp € HO,rad-
Furthermore

(4.50) ajp, — 0as p— oo.
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Indeed, rescaling w.r.t. ¢, using that ® has compact support and that the interval (7"’";#, T’”’E’#)
P p
expands to (0,00) by (2.8), we can write for p large

o oon(@)E)er = [ aon(Z)e () o

P

+/Tmih+lyp rileyp(r)n<é)®(é> dr

Tm—h,p

o[ (D)) a

P

7"m7h,+1,p/5p 1 A
_ -1 ,m—
= / sl ' @ds.
T

"m.fh,p/sp

(4.50) then follows passing to the limit as p — oo and using that wfp_h — E;-Thh weakly in
e —m—h . .
D;aq by Proposition and that w? =0for j=1,...,h —1 by assumption.

We want to estimate all the integrals in the left hand side of (4.47). Observe that

1
/ Tl |*dr
0

I
or\’_l
=
| — |
7~
3
—

'sm‘ﬂ
~—
K
—
=
~——
~——

1
+ Z aJ%Pa&P/ Twé’,pdjzmdr
=1, j#¢ 0
(4.51) — A,+B,+C,+D,

and similarly that
1 1 2 2 h—1 1
2qr = / Ve () d 2 / )2d
/0 TVpp,dr ; er(r)n<8p) (Ep) 7‘—1—;%@ ; rVp(r) (W) p)°dr
- 1
r r
(4.52) —|—22aj,p/0 r‘/},(r)n(;)@(g)%,pdr

1
+ Z Aj,pQe,p / rVp(r) Y ptepdr
=1, j# 0
(4.53) = E,+F,+G,+ H,.

The same computations as in Lemma [4.11] (see (4.40) and (4.42)) show that

A,—E, = [37"*}1/ s~ e? ds+/ seZm=np?®? ds + / 51 (<I>')2 ds
0 0 0

(4.54) —/ 3me7h772‘1>2d3.
0
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Next using that 1;,, solves (3.7) and (3.12), and recalling the definition of a; , in (4.49)), we
have

h—1
(4.55) B, - F, = Z a?jpuj (p);
j=1
= Lo r
Cp=Gp = 2 Z aj pv;(p) / T W(;)(I)(;>1/’j,pdr
= 0 P P
\ o h—1 . .
(4.56) = -2 Z aj ,vi(p);
j=1
h—1 1
(4.57) D,-H, = Z CLjJ)CLg,pVg(p)/ )yt pdr = 0.
JA=1,57#L 0

Hence substituting (4.54), (4.55)), (4.56) and (4.57) in (4.51)) and (4.52) we infer:
1 1 oS oo
/ r|g0;,|2dr 7/ ergof,dr = ﬂm*h/ sTIn?®% ds +/ sn> (<I>')2 ds
0 0 0 0

Jr/o s(edm-n — Vp”””*h)nz(l)2 ds

h—1
(4.58) = a3 i)
j=1

On the other hand using once more (3.12) and (4.49)), rescaling with respect to €, and using
the properties of ® it also follows that

1 1 2 h—1 1
/ r‘lgaf,dr / ! (77 (T) P (T>) dr + Z amae,p/ r_le7pw7pdr
0 0 €p Ep 0

j=1

h—1 1
+2Zaj,p/ r s m <r> o <r) dr
= 0 €p €p
1 r r 2 h—1
—1 2
T nl— | <>) dr — a;
Lr(E)e(5) o2
o h—1
(4.59) = /0 sTIn?®%ds — Zaip.
j=1

Inserting (4.58) and (4.59) into the Lh.s. of (4.47)) we get
1
Jo m (I, |? = Vp2dr) dr _
fol rlp2dr

h—1
fooo S(me_h _ €Z7”7h)772(b2d8 + fooo SnQ((I)/)QdS _ Zl a?,p(Vj (p) _ Bm—h)
j:

_ Bmfh +

h—1
X —12F2 2
Jo s n?®2%ds — 3 a7,
j=1

EEV+ETD g, Jo SOV5" " = P )P ®2ds + [ s1(')2ds + (1)
Jy° 572 ®2ds + o(1)
2 gmh IS s(Vm=h — eZm=m)n2®2ds + 3¢ + o(1)

P
- 1—g+o(1)
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On the other hand, similarly as at the end of the proof of Lemma one can prove that
“+00 2R e
/ s ’me_h eZm=n |?®%ds < sup |V ~h _ gZm-n| sn?ds < =,
0 5= ,2R) 5= 8

which concludes the proof of (4.47). O

Next we conclude the proof of Proposition by exploiting the orthogonality condition
(3-12)), which allows to pick up, among all the rescaled functions introduced in (4.1)), the
only one which has a nontrivial limit.

Proof of Proposition[{.f} Fix h € {2,...,m — 1}, we want to prove that:
. _ opm—h
(4.60) pglfoo vp(p) =0
and that there exists A # 0 such that
—m—h m—
Gy =A™
¢, =0, i=0,....m—1,i#m—h.

By Lemma and limsup,, , o, vn(p) < pmh < gm=ifor i = h+1,...m, then
Corollary 1) implies that
(4.61) oy '=0, di=h+1,...m
Furthermore the claim follows by showing that @;ﬂih # 0, thanks to Corollary ( it). So
we assume by contradiction that

—m—h
(4.62) % =
As a preliminary step, we will deduce from , - that there exists k € {1, . -1}
such that
(4.63) oy T £0.

In order to prove (4.63) let us fix § > 0 such that 6 < —3™~"/3 and K = K(J) as in
Lemma By the definition of of vy (p) it follows that

1
—nlp) = - / P{(W)? = Vi (np))dr
1
< / VVy (n ) 2dr
Kgop Kslp

= L(p) + L(p) + I5(p).

We estimate these three terms with arguments similar to the ones exploited in the proof
of Proposition Indeed the normalization of the eigenfunction and the estimate obtained
in Lemma 2.2 assure that

_ 2. (d’h,p)2
Li(p) = Vo (Wh,p) dr = fp—"—dr
G, (K) Gp(K) r
1 2
< sup f Mdr = sup fp, <0
Gp(K) 0 r Gy (K)

for p > p1(0).
Moreover, by Lemma [£.9]

(4.64) Uhy =T i Cho(0,400) for i =1,...m — 1,
(4.65) in CL[0, +00) for i = 0.
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Indeed 7y, := limsup,,_, ; o, Va(p) < ,Bm_h < B < —25 by ([@12).

Furthermore, by and ([L6), V! — eZ in Cf (0,400) fori =1,...,m—1,in CP_[0, +o0)
for i = 0.

Hence, rescaling the second integral according to £¢, gives

Keo,p (2.61)
I(p) = / rV,(Unp)2dr = / rVy (¥ ,)%d r E29 / errop(l) s,
0 0

if p > po(d, K). Similarly, for what concerns the third term,
Ke;p
I5(p) = Z / V(Y p)2dr = Z / ’/‘VZ ¢h,p dr
Ei,p Nz
€z Z / reZi (3 V2dr + o(1)

< Z / re?ms (i ") 2dr + 3,
kr=1"K

for p > p3(0, K). Summing up we then get

> /1 reZms (i, ") 2dr > —vy(p) — 35, for p > p = max{p;(8),pa(8, K), ps(5, K)}.

Passing to the liminf as p — oo and using Lemma we get

Z/ re?m= (" ")V 2dr > —limsup vy, (p) — 36 > —Bm_n — 36 > 0,
1

pP—>00

by the choice of 4, which gives (4.63)).

By (4.63), Corollary [A.8} (ii) implies that there exists Aj, # 0 such that

(4.66) P = A"
(4.67) P, =0, i=0,....m—1,i#m—&.

Furthermore, since by assumption Theorem [£.2] holds true for any index below h, there
exists A, # 0 such that
(4.68) b = A
(4.69) P=0, i=0,....m—1,i%m—&.
We conclude the proof by showing that (4.66) and (4.68]) can not hold at the same time,
due to the orthogonality condition (3.12]).

Observe also that by Lemma [£.9]

(4.70) T/);i,p — @; in OL.(0,400) fori=1,...m—1,
(4.71) in CL_[0, +00) for i =0,

since by assumption 7, 1= lim,_, o v,(p) = ™" and by (4.12) g% < —25.
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Then since 9y, Ly, for any K > 1 and for any p > 1 we write

1
0 :/ wn,pwh,p dr
0 T

Keo,p Keip Kem—r,p
:/ wﬂ,pwh,pdr+/ ,l;Z)K pwh,pdr+ Z / wn,pwh pd +/ 7/)5 pwh,pd
p(K) 0 K Ei,p

r 1 T
KEm—r,p

z;ém K

= IIH) + L(p, K) + Is(p, K) + 14(p, K).
First, as both (4.66)) and (4.68]) hold true, we can take 6 > 0 so that

| Ak Al
4’ 4

(4.73) d < mm{

Since [;° wdr =1, there exists K;(d) > 1 such that

1 r

(4.74) /K O s 125, VK > K(0).

K

Moreover, by Hoélder inequality and Lemma we can take K > K;(J) and accordingly
p1(0, K) such that

wmpd’h,p (1%,1))2 : (wh,p)2 ;
4.75) |I K)| = dr e d = d 0
473 sl =1 [ |<VGP(K) - ] chm 2l gl <

for every p > p1(9, K).
For the second term we rescale according to the parameter &, and exploits the Cf. [0, 00)

convergences of ¢2,p to @2 in (4.65)) and of wgm to Ei in (4.71), we then get
Keo,p K ,,0 0
Bl = | [ et gy o [T e g
0 r 0 r
K —0—0
(4.76) = 1] B4 o,(1) = 0p(1) <5
0

for any p > pa(d, K), where the last equality follows from the fact that EZ = 0 by (4.69).
Similarly (scaling with parameter ¢;, and exploiting the convergences in (4.64) and (4.70)

we also get
K 4/t
I5(p, K)| = Z / " Pnahn gy | Z A Yerbhp g

1;£m K v 1;£m K
m—1 K —t—t

(4.77) < Y W”duop()—op(l)sa,
i=1 ®
iFEM—K

for any p > p3(d, K), where the last equality follows from the fact that El = 0, for any

i1=1,...,m—1,i# m— & by (4.69). Hence, substituting (4.75)), (4.76), (4.77)) into (4.72),

one gets

|I4(p7 K)l S 367 VP Z max{pl(é),pg(é, K)ap3<67 K)}
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On the other side, scaling with parameter €, p,, passing to the limit thanks to (4.64) and

(4.70) with ¢ = m — k, we also get
Kem—r,p K ,m—k M—K—M—kK
nK) = wW“Wd_/'wmdh’d_/'wd%m+%m

FEm—rp " %
K (m—k)2
= AKAh/ uerrop(l),
1 r
"

as p — 400, where the last equality follows from (4.68)) and (4.66). Eventually, passing to
the limit for p — oo yields

K (m—k)2
|A,€Ah|/ W 4 < 55,
1 r
or equivalenty
36 34
RO =
I %dr 1-96
K
But this last inequality clashes with (4.73]) because

30 - 3
16 5.14n Ap| 4(1 —9)

|A/<Ah| §

| A Ah| |A,§Ah|.

In that way we have reached a contradiction and the proof is completed. O

4.5. Last eigenvalue: the proof of Proposition [4.5l Here we prove Proposition {4
thus ending the proof of Theorem [1.2]

Proof of Proposition[{.5. Comparing the estimates (3.13) and ([4.46) (for h = m) and re-
calling that By = —1 by (4.12)) yields

lim v, (p) =B° = —1.

p——+o00
Proposition and Corollary (i) give that
(4.78) oy = Amn®
(4.79) b= Uy =0 fori=1,...m— 1,

where the convergence is weak in Dyaq, strong in L2 (0,00), and also strong in CL_(0,0)
thanks to Lemma [4.9] It remains to check that the constant A,, in is not zero.

Let § > 0, K = K(8) and p > p(8) where K (§) and p(d) are as in Lemma [2.2]. Following
the ideas in [7, Proposition 3.5], from the equation we deduce that

1 1
—Vm(p) = —/0 (W, p)* = Vo (m p)?]dr S/O 7V, (W p) 2 dr

KE.LP

KE()p
:/ TVIJ(7/}m,p)2d7’+/ Vo (m p)2dr + Z/ Voo (o p) 2 dr
G, (K) 0

= Ii(p) + La(p) + Is(p)-
Hence the normalization (3.12)) of the eigenfunction and the estimate obtained in Lemma
22 imply
(Ymp)”

I (p) :/ fp———dr < sup fp <6.
Gp(K) T Gp(K)
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Furthermore rescaling each integral according to €;, gives

m—1 KELp
/ Vo(¥m.p) dT—Z/ ’I"VZ E)dr <6,

=1 €i,p

for p > p3(d, K), thanks to and ( -

Finally rescaling according to €0,p and using the uniform convergence in (4.6) and the L?

convergence in (4.78) one has
K
B = [ Ve, P

K K
= (Am)2/0 reZo(n°)? dr +o0,(1) < (Am)2/0 reZo(n")2dr 46

provided that p > p2(0, K). Notice that Lemma does not guarantee the convergence in
CL.[0,00), since By = —1.
Summing up we have showed that

—vm(p) < (Am)2/0 reZo (n°)2dr + 36,

provided that p > max{p(9), p2(9, K), p3(d, K)}. Eventually

K
1 = limsup(—vi,(p)) < (Am)2/0 re” (n°)?dr,

p—o0

from which A,, # 0 follows. ]

5. THE PROOF OF THEOREM [L.1] IN THE CASE a =0

In this section we compute the exact value of the Morse index of the radial solution w,, of
the Lane-Emden problem ([2.1]), proving that formula (|1.14]) holds if p is sufficiently large.

This result follows directly from formula (3.14) and from the asymptotic behavior of the
singular eigenvalues v;(p), j =1,...,m—1, as p — 400, which has been stated in Theorem
(cf. the more general version Theorem |4.2)).

Proof of . Let u, be the solution to the Lane-Emden problem having m — 1
interior zeros. From formula we know that the Morse index m(u,) is given implicitly
in terms of the negative radial eigenvalues v;(p), j = 1,...,m — 1, of the singular problem
(3-7). Moreover from Theorem [4.2] we know that

om—j

—-vj(p) — asp— +oo, forj=1,...m— 1.

hence, recalling (2.4) we see that
Orm— .
(5.1) -] = 2] = a4

for p large. The conclusion follows from formula (3.14) and (5.1)), indeed for p large
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6. THE PROOF OF THEOREM IN THE CASE o > 0

At last we exploit the connection between Lane-Emden and Hénon problem and show how
the already performed analysis allows to compute also the Morse index of radial solutions
to the Hénon problem, concluding the proof of Theorem For every o > 0, we denote by
Uq,p the unique radial solution to
{ —Au = |z|*ulP~ u in B,

(6.1) u=20 on 0B,

with m nodal zones which is positive at the origin. In dimension N = 2 radial solutions to

(6.1) and (2.1)) are linked via the transformation

2
2 p=T 2+a
(6.2) up(t) = <2—|—a> Ua,p(T), t=r"=2,

where, as in the previous sections, u, denotes the unique radial solution of the Lane-Emden
problem with m nodal zones and positive at the origin. The interested reader can find more
details in [2T), 8, 29] and the references therein. The strategy summarized in Sectionapplies
also to the Hénon problem (see [3]), indeed the Morse index of u,,, is equal to the number
of the negative eigenvalues A (p) of

(6.3) — NG~ Vi p(2)6 = A (p)gfp, 6 € Ho(B),

where now
(6.4) Vap(2) = plz|*[uap(@) P
Moreover, similarly as in (3.6)), the negative eigenvalues Ae (p) of (6.3) can be decomposed

as R
A%(p) = k* + v (p),
where v*(p) are the eigevalues of the following singular Sturm-Liouville problem
{—(T(p/)/ =r (Vmp + ”i&”) p asl0<r<l,
¢ € HO,rad-

Using the transformation ¢t = 7*5* one sees that ©a,p 1s an eigenfunction for (6.5) related
to v*(p) if and only if ¥, (t) = wa.p(r) is an eigenfunction for (3.7) related to the eigenvalue

(66) )= (52) o)

see [8, Corollary 4.6]. Therefore all the results in Sections can be extended also to
the Henon problem, in particular

(6.5)

(67) ) < V3(0) < v (B) < - (2;“) < vap) <0,

and so

(6.8) m(uq p) = m + Qi v =1 =m+ 2§j [2;“ —v(p) — 1} ,
for any p > 1.

Proof of (1.12)) and (1.13)). The claim follows by inserting the limits computed in Theorem
inside the Morse index formula (6.8). When j = m, using also (3.13), one sees that
—v;(p) = 1 from below, hence

252w
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for large values of p, since the ceiling function is lower semicontinuous and piecewise constant.

Notice that, unlike the Lane-Emden case, also the last eigenvalue v2 (p) = (HTQ)2 V()

gives a contribution to the Morse index. When j =1,...m — 1 it is only known that
24+« 2+«
5 —I/j(p) — Tﬁm_j.

If the quantity on the right-hand side is non-integer, it follows that

2 [ -

for large values of p, and formula (1.12)) follows. Otherwise, only the estimate (|1.13)) can be
deduced. O

Remark 6.1 (Optimal lower bound for the Morse index). Notice that the Morse index
grows quadratically with respect to m: indeed in the case oo = 0 (1.14]) holds, and in the case
a > 0 we have that

J+23 [ } —om 1)

>_-

o9 o ) ) (14 [ Dw(u—mﬂy

where u, denotes the radial solution to the Lane-Emden problem with the same number of
nodal zones.

As already recalled, the lower bound is not optimal for the Hénon problem, even in
dimension N > 3. In dimension 2 that lower bound has been recently improved in [19], by
exploiting the monotonicity of the Morse index with respect to the parameter «, obtaining
that

(6.10) m(ttap) 2 m+ (m(uo ) = meaa(uo,) (14 [F])

for any fired p > 1 and o > 0. The estimate (6.9)) shows that neither the lower bound (6.10))
is reached for large values of p, at least when o > 2(m — 1).

7. FURTHER RESULTS

We collect here some further consequences of Theorems [£.2] and [I.1] that, in our opinion,
can bring to a better understanding of both the Lane-Emden and the Hénon problem in
planar domains.

7.1. Symmetric Morse index. The decomposition technique used for computing the
Morse index allow also to compute suitable symmetric Morse indexes of radial solutions
and so, by Morse index comparison, to distinguish among radial solutions and least energy
solutions in suitable symmetric spaces, in the spirit of [23]. The key point is that not only
the eigenvalues but also the associated eigenfunctions of the singular eigenvalue problem
decompose, indeed in radial coordinates they can be written as

(7.1) Y p(1) (Acos(kf) + Bsin(k0)),

where

e 1, , is a solution to the singular Sturm-Liouville problem ([3.7) related to v;(p),
e cos(kf), sin(k0) are the eigenfunctions of the Laplace-Beltrami operator on the circle,
related to the eigenvalue k2.
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Explicit formulas computing the Morse index in symmetric spaces by means of the singular
eigenvalues can be found in [3] Corollaries 4.3, 4.11]. The symmetric Morse index can be
computed then, for large values of the parameter p, by exploiting Theorem [£.2]

7.2. Nondegeneracy for large values of p. It is well known that the radial solutions are
radially non-degenerate, meaning that the linearized problem

—Aw = plz|*[uap [P w

does not have nontrivial solutions in Hy aq(B) (see [28] for a = 0 and [§] for « > 0).
Nonradial degeneracy (i.e. existence of solutions in Ho(B) \ Horad(B)), on the other hand,
can be characterized in terms of the singular eigenvalues through the condition

(72) Va(p) = 71627
see [3, Proposition 1.3]. So Theorem together with (2.4)), yields also that

Corollary 7.1. For every positive integer m, there exists p* > 1 such that radial solutions
to the Lane-Emden problem (2.1) with m nodal zones are nondegenerate for p > p*.

Moreover for every positive integer m and for every o > 0 except at most the sequences

4
e—n —2 (fori=1,...m —1, n € N), there exists p* > 1 such that radial solutions to the

Hénon problem (6.1) with m nodal zones are nondegenerate for p > p*.

7.3. Bifurcation. Observe that Theorem[I.1]gives the values of the Morse index for p large.
On the other side one can also compute the Morse index when p is close to 1, by exploiting
the (much easier to derive) asymptotic behavior of the radial solutions as p — 1 from the
right (see for instance [I3] 24]), and characterizing it in terms of zeros of suitable Bessel
functions of the first kind (see [23] for the case (o, N,m) = (0,2,2) and [4] for the general
case).

As a consequence one can now detect values of p € (1 + co) where the Morse index changes.
This is of course a sufficient condition for degeneracy of the solutions at those values of p,
which could convey to bifurcation from the curve p — uq p, for each radial solution uq p.
We refer to [23] for the case (a, N, m) = (0,2,2) where 3 branches of bifurcation have been
detected, due to a change in the Morse index caused by the first eigenvalue v4(p). For
solutions with more nodal regions other eigenvalues may play a role. To give an idea of
what may happen, let us consider for instance the case of the solution u, of the planar
Lane-Emden problem (a = 0) with m = 3 nodal regions. From [4] we know that in this case,
for p close to 1

vi(p) € (=5%,—4%),  m(p) € (=3%,-2%),  ws(p) € (~1,0)
while, from Theorem one deduces that for p large

vi(p) € (-10%,-9%),  1wa(p) € (-6°,-5%),  ws(p) € (-1,0).
As a consequence it follows that

m(u,) = 15 for p close to 1
Pl 31 for p large

respectively, and moreover there exist p = pr > 1 for k = 3,4,5 and p = p, > 1 for
k=5,6,7,8,9 at which the degeneracy condition ([7.2)) is satisfied as follows:

va(pr) = —k, for k =3,4,5
vi(pr) = —k?, for k =5,6,7,8,9,

thus involving the first two eigenvalues v (p) and v2(p). Those pg, P are the values of p at
which one expects that u, bifurcates. In [19] some numerical results in this direction have
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been indeed obtained, see also [2, Proposition 4.5] where bifurcations at py, (hence from the
first eigenvalue) is proved.
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