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We introduce and study here a renewal process defined by means of a time-fractional 
relaxation equation with derivative order α(t) varying with time t ≥ 0. In particular, 
we use the operator introduced by Scarpi in the seventies [23] and later reformulated 
in the regularized Caputo sense in [5], inside the framework of the so-called general 
fractional calculus. The obtained model extends the well-known time-fractional 
Poisson process of fixed order α ∈ (0, 1) and tries to overcome its limitation 
consisting in the constancy of the derivative order (and therefore of the memory 
degree of the inter-arrival times) with respect to time. The variable order renewal 
process is proved to fall outside the usual subordinated representation, since it can 
not be simply defined as a Poisson process with random time (as happens in the 
standard fractional case). Finally a related continuous-time random walk model is 
analyzed and its limiting behavior established.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

The Poisson process and, in general, the renewal processes are extensively studied and applied in many 
different fields, ranging from physics to finance and actuarial sciences. In particular, their fractional exten-
sions have been proved to be useful since they are characterized by non-exponentially distributed intervals 
between subsequent renewal times. It is indeed well-known that the time-fractional Poisson process (of 
order α ∈ (0, 1]) is a renewal process with inter-arrival times following a Mittag-Leffler distribution (with 
parameter α) (see, for example, [2,17,19]). The latter entails a withdrawal from the memoryless property, 
which is greater the further away α is from 1. Although this model is much more flexible than the standard 
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one, and more adaptable to real data, there is still a rigidity since the derivative order (and therefore the 
memory degree of the inter-times) is constantly equal to a fixed value α over time.

We introduce and study here a renewal process defined by means of a time-fractional relaxation equation 
with order α(t) varying with time t > 0. The class of suitable functions α(·) is characterized and some 
explanatory examples are given; in particular, α(·) can be modelled to represent two different variable-
order processes: a transition from an initial order α1 to a second order α2 (to be achieved as t → +∞); a 
transition from an initial order α1 to a second order α2 (to be achieved at a finite time T ) with a return 
to the initial value α1 as t → +∞. These models can be compared with the renewal processes defined by 
means of distributed order derivatives [1,8], under the assumption of a discrete uniform distribution for the 
random order α (i.e., taking values α1 and α2), even if, in our case, the transition between the two values 
is depending on the time.

Although different approaches are available in the literature to define variable-order fractional derivatives, 
in this work we focus on the operator introduced by Scarpi in the seventies (see [23]) and later reformulated 
in the regularized Caputo sense in [5]. The main feature of this approach is that it formulates a generalization 
of classic constant-order operators in the Laplace domain, thus to facilitate the construction of operators 
satisfying a Sonine condition.

This work is organized in the following way. In Section 2 we introduce the variable-order generalization 
of the fractional derivative (according to the mentioned approach introduced by Scarpi) and we recall some 
basic facts about time-fractional Poisson processes of constant order. In Section 3 we consider the variable-
order fractional relaxation equation and formulate the assumptions which are proved to be sufficient in order 
to guarantee that its solution is a proper tail distribution for the inter-arrival times of a renewal process. In 
Section 4 the renewal process defined by means of the previous results is hence studied and some features, 
such as the factorial moments and the auto-covariance, are obtained in the Laplace domain; some graphical 
representations are provided thanks to numerical inversion of the corresponding Laplace transformations. 
Section 5 is devoted to the study of the continuous-time random walk with counting process represented by 
the variable-order fractional renewal and we study its asymptotic behavior, under an appropriate rescaling 
and under some assumptions on the jumps distribution.

2. Preliminaries

A variable-order fractional derivative can be provided by means of the following definition (we refer to 
[5] for a more in-depth treatment).

Definition 2.1. Let α : [0, T ] → (0, 1), T ∈ R+, be a locally integrable function with Laplace transform 
A(s) :=

∫ +∞
0 e−stα(t)dt and let φA(t), t ∈ [0, T ], be the inverse Laplace transform of φ̃A(s) := ssA(s)−1, for 

s > 0. For f ∈ AC[0, T ] the (Caputo-type) fractional derivative with variable order α(t) is defined as

D
α(t)
t f(t) :=

t∫
0

φA(t− τ)f ′(τ)dτ, t ∈ [0, T ]. (1)

It is easy to check that, when α(t) = α for any t, the operator Dα(t)
t coincides with the standard Caputo 

fractional derivative of order α, since, in this case, A(s) = α/s and φ̃A(s) = sα−1. Therefore the kernel is 
φα(t) = t−α/Γ(1 − α) and (1) reduces to

CDα
t f(t) := 1

Γ(1 − α)

t∫
(t− τ)−αf ′(τ)dτ, t ∈ [0, T ], α ∈ (0, 1).
0
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We recall that the Laplace transform (hereafter LT) of Dα(t)
t is equal to

L{Dα(t)
t u; s} = ssA(s)ũ(s) − ssA(s)−1u(0), s > 0, (2)

where L{u; s} := ũ(s) =
∫ +∞
0 e−szu(z)dz (see [5]).

The operator (1) was analyzed in the framework of the so-called General Fractional Calculus (see [10–
12,15]): in particular, it was proved in [5] that Dα(t)

t is invertible under the following assumption

lim
s→+∞

sA(s) = α ∈ (0, 1),

which is verified if

lim
t→0+

α(t) = α ∈ (0, 1). (3)

Then we will assume hereafter that the condition in (3) is verified; indeed this is enough to ensure the 
existence of a real function φA(·) as inverse transform of φ̃A(s).

Moreover, let us denote by ψA(·) the Sonine pair of φA(·), i.e. the function such that ψ̃A(s) = 1/(sφ̃A(s)). 
Then the inverse operator of Dα(t)

t is well defined as

I
α(t)
t f(t) :=

t∫
0

ψA(t− τ)f(τ)dτ, t ∈ [0, T ], (4)

for ψA(t) := L−1{s−sA(s); t}, since, thanks to condition (3), also the function ψA is real. It was proved in [5]
that the integral in (4) enjoys both the semigroup and symmetry properties and that 

{
D

α(t)
t , I

α(t)
t

}
satisfies 

the fundamental theorem of fractional calculus, i.e.

D
α(t)
t I

α(t)
t f(t) = f(t), I

α(t)
t D

α(t)
t f(t) = f(t) − f(0), t ∈ [0, T ].

Finally, the results in [5] are obtained for kernels φ̃A(·) satisfying the following conditions

φ̃A(s) → 0, sφ̃A(s) → +∞, s → +∞ (5a)

φ̃A(s) → +∞, sφ̃A(s) → 0, s → 0, (5b)

which are necessary to include Definition 2.1 in the framework of the so-called general fractional calculus 
(see [10], for details).

It seems difficult to find examples of functions φ̃A(s) (in addition to the limiting case sα−1) satisfying 
(5a)-(5b) which are also Stieltjes. These three assumptions would be sufficient to ensure that the solution 
to the following relaxation equation with fractional variable order

D
α(t)
t u(t) = −λu(t), u(0) = 1, (6)

is completely monotone (CM), as happens in the constant-order fractional case. We recall that a function f :
[0, +∞) → [0, +∞) in C∞ is CM if (−1)nf (n)(x) ≥ 0, for any x ≥ 0, n ∈ N (where f (n)(x) := dn/dxnf(x)). 
However, we do not need the complete monotonicity of the solution to (6) and we will explore below the 
consequences of its lack to our analysis.

We recall that when α(t) = α, for any t ≥ 0, the solution to

Dα
t u(t) = −λu(t), u(0) = 1, (7)
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coincides with uα(t) = Eα(−λtα), where Eα(x) :=
∑∞

j=0 x
j/Γ(αj + 1) is the one-parameter Mittag-Leffler 

function.
The so-called time-fractional Poisson process Nα := {Nα(t)}t≥0 can be defined as a renewal process with 

inter-arrival times Zα,j , j = 1, 2, ..., independent and identically distributed with P (Zα > t) = uα(t), t ≥ 0, 
i.e. Nα(t) :=

∑∞
k=1 1Tα

k ≤t, where Tα
k :=

∑k
j=1 Zα,j (see, for example, [2,17]).

It has also been proved in [19] that Nα is equal in distribution to a standard Poisson process time-changed 
by the inverse of an independent α-stable subordinator (we will denote it as Lα(t), t ≥ 0, and its density 
function as lα(x, t), x, t ≥ 0). This result is a consequence of the complete monotonicity of the Mittag-Leffler 
function, and thus of the solution to (7), since, in this case, we have that

uα(t) =
+∞∫
0

e−λzlα(z, t)dz, (8)

(see [7]). In other words, it follows since the LT of (8), i.e. ũα(s) = sα−1/(sα + λ), is a Stieltjes function 
and thus it coincides with the iterated LT of a spectral density.

Formula (8) shows that, for the fractional Poisson process Nα, the tail distribution function of the 
interarrival times Zα satisfies the following relationship:

P (Zα > t) = P (Z > Lα(t)), (9)

where Z ∼ Exp(λ) is the inter-arrival time of the standard Poisson process N := {N(t)}t≥0. From (9), by 
considering that

{Tα
k < t} = {Nα(t) > k}, (10)

we have the following equality in the finite-dimensional distributions’ sense

Nα(t) f.d.d.= N(Lα(t)), (11)

where Lα(t) is assumed to be independent of N(t).
As we will see below, in the variable order case considered here, a subordinated representation of the 

process (analogue to (11)) does not hold, providing an interesting example where the usual correspondence 
between time-fractional equations and random time processes does not apply.

3. The variable-order fractional relaxation equation

Let us consider the solution to the fractional relaxation equation with variable order derivative (6). By 
taking into account (2), it is easy to see that its LT reads

ũA(s) = ssA(s)−1

λ + ssA(s) , s > 0. (12)

In view of what follows, we prove that, under appropriate conditions on α(·), the function (12) can 
be expressed as the Laplace transform of a tail distribution function, i.e. its inverse can be written as 
uA(t) = P (ZA > t), for a positive r.v. ZA.

We recall that a function g : (0, +∞) → R is Bernstein if it is C∞, g(x) ≥ 0, for any x, and 
(−1)n−1gn(x) ≥ 0, for any n ∈ N, x > 0 (see [24, p. 21]).
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Theorem 3.1. Let α : [0, T ] → (0, 1), T ∈ R+, be such that the following conditions hold

lim
t→0+

α(t) = α′, lim
t→+∞

α(t) = α′′, (13)

for α′, α′′ ∈ (0, 1), and that, for its LT A(s), the function ssA(s), s > 0, is Bernstein. Then the solu-
tion uA(t) to the relaxation equation (6) is non-negative, non-increasing, right-continuous and such that 
limt→0+ uA(t) = 1.

Proof. It is easy to check that, if (13) holds, the conditions (5a)-(5b) are satisfied, by applying the initial 
and final value theorems, respectively (see [14, p. 373]). Indeed, we have that

lim
s→+∞

sA(s) = α′, lim
s→0+

sA(s) = α′′ (14)

(where α′ and α
′′ can coincide). Let now write sũA(s) = g(f(s)), where f(s) := ssA(s) and g(x) := x/(λ +x). 

It is easy to check that g(·) is a Bernstein function, so that, under the assumption on ssA(s), also sũA(s) is 
Bernstein and ũA(s) is completely monotone (by applying Corollary 3.8 in [24]).

As a consequence, by the Bernstein theorem, there exists a non-negative, finite measure μ (·) on [0, +∞)
such that ũA(s) =

∫ +∞
0 e−stμ(dt), for any s.

In order to prove that the inverse LT of ũA(s) is a non-increasing and right continuous function (i.e. 
monotone of order 1), we apply Theorem 10 in [29, p. 29]: it is enough to check that lims→+∞ ũA(s) = 0, 
that the lims→0+ sũA(s) exists and that the first derivative of sũA(s) is CM and summable. The latter holds 
since sũA(s) is Bernstein, while the limiting conditions are satisfied by (14). Thus ũA(s) is the Laplace 
transform of a non-negative, non-increasing, right-continuous function, which coincides with the solution to 
(6). Finally, since ũA(s) ∼ 1/s, for s → +∞, we can apply the Tauberian theorem (see [3]) in order to check 
that limt→0+ uA(t) = 1. �

We now provide some explanatory examples of functions α(·) for which the previous result holds, in 
addition to the constant-order case. Obviously, when α(t) = α ∈ (0, 1), ∀t, we have that ssA(s) = sα is a 
Bernstein function and

ũA(s) = ssA(s)−1

λ + ssA(s) = sα−1

λ + sα
.

Its inverse LT is the Mittag-Leffler function uα(t) = Eα(−λtα), which is completely monotone for 0 < α ≤ 1
[7,25].

3.1. Exponential transition from α1 to α2

A special case is obtained by means of the function

α(t) = α1 + (α1 − α2)e−ct, α1, α2 ∈ (0, 1), c > 0, (15)

describing the order transition from α1 to α2 according to an exponential law with rate −c [4,5]. It is 
immediate to compute its LT, A(s), and the corresponding function ssA(s), as

A(s) = α2c + α1s

s(c + s) , ssA(s) = s
α2c+α1s

c+s .

Finding all possible choices of parameters α1, α2 and c in order to guarantee that ssA(s) is Bernstein 
remains an open problem. Numerical inversion of the LT (according to the procedure outlined in [5]) allows 
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Fig. 1. Solution uA(t) (left plot), and its first-order derivative u′
A(t) (right plot), of the variable-order relaxation equation with 

α(t) = α1 + (α1 − α2)e−ct and different parameters α1, α2 and c. Here λ = 1.

however to observe the existence of some sets of parameters for which the solution to the renewal equation 
(6) displays the properties ensured by Theorem 3.1. Indeed, as we show in Fig. 1, for the considered sets 
of parameters, we obtain non-negative solutions of the relaxation equation (left plot) which are also non-
increasing, as one can argue by observing the non-positive character of their first-order derivatives (right 
plot).

3.2. Exponential transition with return

A further transition, recently introduced in [6], is obtained by means of the function

α(t) = α1 + (α2 − α1)
e−c1t − e−c2t

Fc(c2 − c1)
, α1, α2 ∈ (0, 1), c1, c2 > 0. (16)

Unlike the previous one, this function describes an order transition which starts from α1, increases (or 
decreases) to α2 and hence returns back to α1 as t → ∞. Thus, in this case, the condition (13) holds for 
α′ = α′′ = α1. The constant Fc is chosen so that α(t) has maximum or minimum value α2, and hence it is 
given by

Fc = 1
c2 − c1

[(c1
c2

) c1
c2−c1 −

(c1
c2

) c2
c2−c1

]
,

and α2 is achieved at time t = (c2 − c1)−1 log c2/c1. Moreover, it is simple to evaluate

A(s) = 1
s
α1 + α2 − α1

Fc(s + c1)(s + c2)
, ssA(s) = sα1s

s(α2−α1)
Fc(s+c1)(s+c2) .

Also in this case a precise characterization of the whole set of possible choices for α1, α2, c1 and c2
to ensure that ssA(s) is Bernstein does not seem possible. Again, numerical inversion of the LT is used to 
guarantee that there exist some sets of parameters such that the solution to the renewal equation (6) has 
the properties required in Theorem 3.1. From Fig. 2 we observe the non-negativity of these solutions (left 
plot) and its non-increasing character expressed as non-positivity of the corresponding first-order derivatives 
(right plot).

3.3. On the necessity of the assumptions of Theorem 3.1

The condition that ssA(s) is a Bernstein function was proved to be sufficient in order to ensure that uA(t)
is non-negative and non-increasing. An interesting question is whether this condition is necessary as well.

Beyond the constant-order case, a precise characterization of α(t) such that ssA(s) is Bernstein does not 
seem possible; useful information to check the assumptions may be however obtained numerically.



L. Beghin et al. / J. Math. Anal. Appl. 531 (2024) 127795 7
Fig. 2. Solution uA(t) (left plot), and its first-order derivative u′
A(t) (right plot), of the variable-order relaxation equation with 

α(t) = α1 + (α2 − α1) e−c1t−e−c2t

Fc(c2−c1)
and different parameters α1, α2, c1 and c2. Here λ = 1.

Fig. 3. Identification of threshold values of α2 for α(t) = α1 + (α1 − α2)e−ct (with α1 = 0.3 and c = 2) such that ssA(s) ceases to 
be Bernstein and the solution uA(t) of the relaxation equation (with λ = 5) ceases to be non-negative and non-increasing.

By virtue of [24, Remark 3.3], the inverse LT of ssA(s) must be non-positive to ensure that ssA(s) is 
Bernstein. We can therefore perform the numerical inversion of ssA(s) on some sufficiently large interval 
[0, T ] and check its maximum value: whenever it is positive, ssA(s) is no longer Bernstein. Similarly, by 
numerical inversion of the LT of ũA(s) and its derivative, we can identify when uA(t) is no longer non-
negative and/or non-increasing.

To this aim, we describe, in Fig. 3, some results for the exponential transition (15), with α1 = 0.3, c = 2, 
and increasing values of α2 (on the abscissa axis). In particular, for each choice of α2, we have plotted 
the maximum value of the inverse LT of ssA(s), the minimum value of the solution uA(t) of the relaxation 
equation and the maximum value of u′

A(t). The interval t ∈ [0, 40] has been used here.
Although ssA(s) ceases to be Bernstein for (approximately) α2 > 0.741, we observe that uA(t) continues to 

be non-increasing for α2 � 0.7965 and non-negative for α2 � 0.8575. Thus, in the interval α2 ∈ [0.741, 0.7965]
the solution of the relaxation equation is non-negative and non-increasing even if ssA(s) is no longer Bern-
stein.

It is therefore possible to state that the assumption in Theorem 3.1 on the Bernstein character of ssA(s)

is only sufficient, but not strictly necessary.
Finding a more precise characterization in terms of shape and parameters of α(t), to ensure that the 

solution of the relaxation equation is non-negative and non-increasing, appears however to be an open 
problem.
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4. The variable-order fractional renewal process

By resorting to the results obtained so far, we can define a renewal process by assuming that its inter-
arrival times have tail distribution function equal to the solution of the relaxation equation (6).

Definition 4.1. Let NA(t) := {NA(t)}t≥0 be a renewal process with inter-arrival times ZA,j , j = 1, 2, ..., 
independent and identically distributed with P (ZA > t) = uA(t), where uA(t), t ≥ 0, coincides with the 
solution of (6).

The density function of ZA,j can be written in Laplace domain as

f̃ZA
(s) = λ

λ + ssA(s) , (17)

while the LT of the k-th renewal time density reads

f̃TA
k

(s) = λk(
λ + ssA(s)

)k , k = 1, 2, ..., (18)

where TA
k :=

∑k
j=1 ZA,j . Thus the probability mass function (in Laplace domain) of NA can be obtained 

as follows

p̃Ak (s) := L{P (NA(t) = k) ; s} = λk

s
(
λ + ssA(s)

)k − λk+1

s
(
λ + ssA(s)

)k+1 (19)

= λkssA(s)−1(
λ + ssA(s)

)k+1 , k = 0, 1, ..., t ≥ 0,

and pAk (t) satisfies the following Cauchy problem

D
α(t)
t pk(t) = −λ(pk(t) − pk−1(t)), pk(0) = 1{0}(k), (20)

for k = 0, 1, 2, ... and t ≥ 0.
It is proved in [5], by some counterexamples, that, in the variable order case, φ̃A(s) is not in general a 

Stieltjes function; as a consequence, also the function (12) is not Stieltjes. Thus, in our case, the solution 
of the relaxation equations uA(t) can not be expressed as integral of the exponential tail distribution (as in 
(8)) and a time-change representation (analogue to that given in (11)) does not hold for the renewal process 
NA.

We give in Fig. 4 the probability mass function pAk (t), for small values of k, in the first explanatory special 
case introduced above (i.e. for α(t) = α1 + (α1 − α2)e−ct). One can observe that, with the exponential 
transition from α1 to α2, the variable-order probability mass functions have a similar behavior to the 
corresponding functions of order α1 for t → 0+ and of order α2 as t → ∞.

On the other side, as one can observe from Fig. 5, with the variable-order transition (16), the behavior 
is similar to the behavior of the probability mass functions of constant order α1 both as t → 0+ and as 
t → ∞, while the behavior with the constant order α2 is replicated just on short intervals at intermediate 
times.

We are now interested in the properties of the above defined process, starting from its factorial moments 
and the moments of its inter-arrival times.
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Fig. 4. Comparison of probability mass functions pA
k (t), k = 0, 1, 2, 3 between exponential variable-order α(t) = α1 + (α1 −α2)e−ct

and constant orders α1 and α2 (here α1 = 0.7, α2 = 0.9 and c = 1.0).

Fig. 5. Comparison of probability mass functions pA
k (t), k = 0, 1, 2, 3 between exponential variable-order α(t) = α1 + (α2 −

α1) e−c1t−e−c2t

Fc(c2−c1)
and constant order α1 (here α1 = 0.6, α2 = 0.8, c1 = 0.2 and c2 = 2.0).

Theorem 4.1. The r-th factorial moment of NA, r ∈ N, has LT

L{E [NA(t) · · · (NA(t) − r + 1)] ; s} = r!λr

srsA(s)+1 . (21)

Moreover, the r-th moment of its inter-arrival time ZA is infinite for any r ∈ N.

Proof. In order to prove formula (21) we derive the expression of the probability generating function of NA

(in the Laplace domain), as follows, for |u| < 1,

G̃NA
(u; s) := L{GNA

(u; t); s} =
∞∑
k=0

ukp̃Ak (s) (22)

= [by (19)]
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= ssA(s)−1

λ + ssA(s)

∞∑
k=0

(uλ)k(
λ + ssA(s)

)k
= ssA(s)−1

λ(1 − u) + ssA(s) ,

Now, by taking the r-th order derivative of (22), for u = 1, formula (21) easily follows.
As far as the moments of the inter-arrival times are concerned, we first prove that the expected value is 

infinite: indeed we have that

EZA = lim
s→0+

+∞∫
0

e−stP (ZA > t)dt

= lim
s→0+

ssA(s)−1

λ + ssA(s) = +∞,

where the interchange between limit and integral is justified by the monotone convergence theorem. The 
last step follows by applying the conditions (13), which imply (14), and by considering that α′, α′′ ∈ (0, 1), 
so that lims→0+ ssA(s)−1 = +∞ and lims→0+ ssA(s) = 0. Finally, by applying the Holder’s inequality to ZA

and taking into account that it is a non-negative random variable, we can conclude that the moments are 
infinite for any r = 2, 3, .. �

In order to evaluate the first moments and auto-covariance of NA (at least in the Laplace domain), we 
recall the following results by [28], which hold for any renewal process M(t) := {M(t)}t≥0 with density 
function of the inter-arrival times f(·):

+∞∫
0

e−stEM(t)dt = f̃(s)
s
[
1 − f̃(s)

] , (23)

+∞∫
0

e−stEM2(t)dt = f̃(s)
s
[
1 − f̃(s)

] + 2f̃(s)2

s
[
1 − f̃(s)

]2 , (24)

for s ≥ 0, and

+∞∫
0

+∞∫
0

e−s1t1−s2t2E [M(t1)M(t2)] dt1dt2 =

=

[
1 − f̃(s1)f̃(s2)

]
f̃(s1 + s2)

s1s2

[
1 − f̃(s1)

] [
1 − f̃(s2)

] [
1 − f̃(s1 + s2)

]
(25)

for s1, s2 ≥ 0. By considering (17), we immediately obtain from (23), (24) and (25) that

+∞∫
0

e−stENA(t)dt = λ

ssA(s)+1 , (26)

+∞∫
e−stEN2

A(t)dt = λ

ssA(s)+1 + 2λ2

s2sA(s)+1 (27)

0
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and

+∞∫
0

+∞∫
0

e−s1t1−s2t2Cov [NA(t1), NA(t2)] dt1dt2 =

=
λ2

[
s
s1A(s1)
1 + s

s2A(s2)
2 − (s1 + s2)(s1+s2)A(s1+s2)

]
+ λs

s1A(s1)
1 s

s2A(s2)
2

s
s1A(s1)+1
1 s

s2A(s2)+1
2 (s1 + s2)(s1+s2)A(s1+s2).

(28)

It is possible to check that, in the fixed order case, i.e. for sA(s) = α, formula (28) reduces to the LT of 
the well-known auto-covariance of the fractional Poisson process, which is equal to:

Cov [Nα(t1), Nα(t2)] = λ (t1 ∧ t2)α

Γ(1 + α) +

+ λ2

Γ(1 + α)2
[
α (t1 ∧ t2)2α B(α, α + 1) + F (α; t1 ∧ t2; t1 ∨ t2)

]
,

(29)

where B(α, β) :=
∫ 1
0 xα−1(1 − x)β−1dx is the Beta function, α, β ≥ 0, F (α; x; y) := αy2αB(α, α + 1; x/y) −

xαyα and B(α, β; x) :=
∫ x

0 yα−1(1 − y)β−1dy is the incomplete Beta function, for x ∈ (0, 1], α, β ≥ 0 (see 
[13]). By taking the double LT of (29) we have that

+∞∫
0

+∞∫
0

e−s1t1−s2t2Cov [Nα(t1), Nα(t2)] dt1dt2

= λ

Γ(1 + α)

+∞∫
0

e−s2t2

⎡
⎣ t2∫

0

e−s1t1tα1 dt1 +
+∞∫
t2

e−s1t1tα1 dt1

⎤
⎦ dt2 +

+ λ2

Γ(1 + 2α)

+∞∫
0

e−s2t2

⎡
⎣ t2∫

0

e−s1t1t2α1 dt1 + t2α2

+∞∫
t2

e−s1t1dt1

⎤
⎦ dt2 +

+ λ2α

Γ(1 + α)2

+∞∫
0

e−s2t2t2α2 dt2

t2∫
0

e−s1t1dt1

t1/t2∫
0

zα−1(1 − z)αdz +

+ λ2α

Γ(1 + α)2

+∞∫
0

e−s2t2dt2

+∞∫
t2

e−s1t1t2α1 dt1

t2/t1∫
0

zα−1(1 − z)αdz +

− λ2

Γ(1 + α)2

+∞∫
0

e−s2t2tα2 dt2

+∞∫
0

e−s1t1tα1 dt1

=: IIs1,s2 + IIIs1,s2 + IIIIs1,s2 + IIIIs2,s1 + IIVs1,s2 .

By some calculations we easily obtain the following results:

IIs1,s2 = λ

s1s2(s1 + s2)α
(30)

IIIs1,s2 = λ2

2α (31)

s1s2(s1 + s2)
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IIVs1,s2 = λ2

s1+α
1 + s1+α

2
, (32)

while for the terms of the third type, we must take into account the following formula (see (1.6.15) together 
with (1.6.14) and (1.9.3) in [9]):

1∫
0

eztta−1(1 − t)c−a−1dt = Γ(c− a)Ea
1,c(z),

for 0 < Re(a) < Re(c), where Eγ
α,β (·) is the Mittag-Leffler function with three parameters (also called 

Prabhakar function), for any x ∈ C,

Eγ
α,β (x) :=

∞∑
j=0

(γ)jxj

j!Γ(αj + β) , α, β, γ ∈ C, Re(α) > 0,

for (γ)j := Γ(γ + j)/Γ(γ). We also recall the well-known formula (see [9, p. 47])

L
{
tβ−1Eγ

α,β(atα); s
}

= sαγ−β

(sα − a)γ
, |as−α| < 1. (33)

Thus we can write

IIIIs1,s2 = λ2α

Γ(1 + α)2

+∞∫
0

e−s2t2t2α2 dt2

1∫
0

zα−1(1 − z)αdz
t2∫

zt2

e−s1t1dt1 (34)

= λ2α

Γ(1 + α)2
1
s1

+∞∫
0

e−s2t2t2α2 dt2

1∫
0

zα−1(1 − z)α
[
e−s1t2z − e−s1t2

]
dz

= λ2

s1

⎡
⎣ +∞∫

0

e−s2t2t2α2 Eα
1,2α+1 (−s1t2) dt2 −

1
(s1 + s2)2α+1

⎤
⎦

= λ2

s1

[
1

sα+1
2 (s1 + s2)α

− 1
(s1 + s2)2α+1

]

and, analogously, for IIIIs2,s1 . In view of (30), (31), (32) and (34), we obtain that

+∞∫
0

+∞∫
0

e−s1t1−s2t2Cov [Nα(t1), Nα(t2)] dt1dt2 = λsα1 s
α
2 + λ2 [sα1 + sα2 − (s1 + s2)α]
sα+1
1 sα+1

2 (s1 + s2)α
,

which coincides with (28), when sA(s) = α.
As far as the variance is concerned, we remark that the latter can not be obtained as special case of 

formula (28); thus we can, at least, derive its asymptotic behavior, as t → +∞, from that of its LT for 
s → 0+, by applying the Tauberian theory to (26) and (27) (see Theorem 4, p. 446, in [3]). Recall that 
lims→0+ sA(s) = α′′, by assumption (13), so that we get

ENA(t) � λtα
′′

Γ(α′′ + 1)

and
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varNA(t) � λtα
′′

Γ(α′′ + 1) + 2λ2t2α
′′

α′′

[
1

Γ(2α′′) − 1
α′′Γ(α′′)2

]
,

for t → ∞. Thus, in the limit, the mean and variance of NA coincide to those of the fractional Poisson 
process with constant order α′′ (see [2]), as could be expected, since α′′ is the limiting value of α(t), when 
t → ∞.

5. The related continuous-time random walk and its limiting process

Based on the previous results, we consider the continuous-time random walk (hereafter CTRW) defined by 
means of the counting process NA: let Xi, i = 1, 2, ..., be real, independent random variables, with common 
characteristic function HX(ξ) := EeiξX ; let us denote the Fourier transform as ĝ(κ) :=

∫
R eiκxg(x)dx, for 

κ ∈ R and for a function g : R → R, for which the integral converges. We define, for any t ≥ 0, the CTRW 
with driving counting process NA and jumps Xi (under the assumption that NA and Xi are independent 
each other) as

YA(t) :=
NA(t)∑
i=1

Xi, (35)

and denote its characteristic function as HYA(t)(·), for any t. Then it is well-known that the LT of HYA(t)(κ)
reads

L
{
HYA(t)(κ); s

}
= 1 − f̃ZA

(s)
s
[
1 − f̃ZA

(s)HX(κ)
] , s ≥ 0, κ ∈ R,

where f̃ZA
(s) is the LT of the inter-arrivals’ density. By considering (17), we get

L
{
HYA(t)(κ); s

}
= ssA(s)−1

ssA(s) + λ[1 −HX(κ)]
. (36)

We are now able to study the limiting behavior of the CTRW under an appropriate rescaling. To this aim, 
we recall the definition of the time-space fractional diffusion Y ϑ

α,β(t), t ≥ 0 as the process whose density is 
the Green function of the following equation, for α ∈ (0, 1], β ∈ (0, 2], |ϑ| = min{β, 2 − β},

CDα
t u(x, t) = Dβ,ϑ

x u(x, t), x ∈ R, t ≥ 0, (37)

where Dβ,ϑ
x is the Riesz-Feller fractional derivative with Fourier transform

̂Dβ,ϑ
x u(κ) = −ψβ,ϑ(κ)û(κ), κ ∈ R,

and ψβ,ϑ(κ) := |κ|βei sign(κ)ϑπ/2 (see [16], for details).
We also recall the definition of a stable random variable Sβ with stability index β ∈ (0, 2] and symmetry 

parameter |ϑ| = min{β, 2 − β}, which is defined by the following characteristic function

EeiκSβ = e−ψβ,ϑ(κ) = e−|κ|βei sign(κ)ϑπ/2
. (38)

We will consider hereafter Sβ in the symmetric case, i.e. we assume that ϑ = 0.
We recall that a (centered) random variable X is said to be “in the domain of attraction of Sβ” (and we 

write X ∈ DoA(Sβ)), if the following convergence in law (by the extended central limit theorem) holds for 
the rescaled sum of independent copies Xi, i = 1, 2, ...,
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an

n∑
i=1

Xi =⇒ Sβ , (39)

where {an}n≥1 is a sequence such that limn→+∞ an = 0.

Theorem 5.1. Let N (c)
A (t), t ≥ 0, be the renewal process with (rescaled) k-th renewal time TA,c

k :=
c−1 ∑k

j=1 ZA,j , for c > 0, where ZA,j are i.i.d. random variables with density defined by (18), and let 
us consider the r.v.’s Xi, i = 1, 2, ..., independent copies of the centered r.v. X ∈ DoA(Sβ). Then the 
following convergence of the one-dimensional distribution holds, as c → +∞,

c−α′′/β

N
(c)
A (t)∑
i=1

Xi =⇒ Yα′′,β(t), t > 0, (40)

where Yα′′,β(t) is the space-time fractional diffusion process, whose transition density satisfies equation (37), 
with time-derivative of order α′′ = limt→+∞ α(t), β ∈ (0, 2] and ϑ = 0.

Proof. The characteristic function of (40) can be written, for any t ≥ 0, as

Eeiκc
−α′′/β ∑N

(c)
A (t)

i=1 Xi =
∞∑

n=0
pA,c
n (t)

[
HX(κc−α′′/β)

]n
,

where pA,c
n (t) := P

(
N

(c)
A (t) = n

)
, t ≥ 0, n = 0, 1, .... We note that

pA,c
n (t) = P (TA,c

n < t) − P (TA,c
n+1 < t)

= P

⎛
⎝ n∑

j=1
ZA,j < ct

⎞
⎠ − P

⎛
⎝n+1∑

j=1
ZA,j < ct

⎞
⎠ = pAn (ct),

so that, by (19), we have

+∞∫
0

e−stpA,c
n (t)dt = 1

c

λn(s/c) s
cA(s/c)−1(

λ + (s/c) s
cA(s/c))n+1

and

L
{
Eeiκc

−α′′/β ∑N
(c)
A

(t)
i=1 Xi ; s

}
= 1

c

(s/c) s
cA(s/c)−1

(s/c) s
cA(s/c) + λ[1 −HX(κc−α′′/β)]

= s
s
cA(s/c)−1

s
s
cA(s/c) + λ[1 −HX(κc−α′′/β)]c s

cA(s/c) .

We observe that limr→0+ srA(sr) = α′′ and thus limc→+∞ s
s
cA(s/c) = sα

′′ , by (14).
Moreover, we can prove that the hypothesis X ∈ DoA(Sβ) is equivalent to assuming the following 

behavior of the characteristic function

HX(κc−1) � 1 − (|κ|/c)β , c → +∞ (41)

(where we denote that an � bn, for the sequences {an}n≥1 and {bn}n≥1 such that limn→+∞ an/bn = 1, 
n → +∞). Indeed, on one hand, the convergence in (39), for ac = c−1/β , follows from (41) and (38), since
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Eeiκc
−1/β ∑c

i=1 Xi =
(
HX

(
κc−1/β

))c

�
(
1 − |κ|βc−1)c , c → +∞. (42)

On the other hand, if, for a X ∈ DoA(Sβ), the asymptotics in (41) were not satisfied, then 
∣∣∣HX(κc−1)
1−|κ|β/cβ

∣∣∣ could 
be infinitely often less than 1 + δ or greater than 1 − δ, for some δ > 0, and this contradicts the assumption. 
Therefore, we have that

lim
c→+∞

L
{
Eeiκc

−α′′/β ∑N
(c)
A (t)

i=1 Xi ; s
}

= sα
′′ − 1

sα′′ + λ|κ|β

and, inverting the LT by means of (33), we can write

lim
c→+∞

Eeiκc
−α′′/β ∑N

(c)
A

(t)
i=1 Xi = Eα′′(−λtα

′′ |κ|β), (43)

for any fixed t ≥ 0. Formula (43) coincides with the Fourier transform of the Green function of (37) (see 
[16], for details). �

The previous result reduces, in the fixed order case, to Theorem IV.2 in [22], if α(t) = α′′, for any t; thus 
we can conclude that, in the limit, the influence of the initial parameter α′ vanishes.

Theorem 5.2. Let Y (c)
A (t) :=

∑NA(ct)
i=1 Xi, then, under the assumptions of Theorem 5.1,

{
c−α′′/βY

(c)
A (t)

}
t≥0

J1=⇒{Yα′′,β(t)}t≥0 , c → +∞,

on D([0, +∞)).

Proof. Under the assumptions on α(·) and A(·) given in Theorem 3.1, we can easily see that TA
�ct� :=∑�ct�

j=1 ZA,j behaves asymptotically, for c → +∞, as in the special case (of the fractional Poisson process) 
where ZA is distributed as Aα(Z), where Aα(t), t ≥ 0, is an α-stable subordinator (with α = α′′) and Z
is an independent, exponential r.v. with parameter λ. Indeed, since, by (14), lims→0+ sA(s) = α′′, we have 
that

L{P (ZA > t) ; s} � sα
′′−1

sα′′ + λ
, s → 0+,

by considering (12).
Thus we can derive the following asymptotic behavior of the inter-arrivals’ tail distribution P (ZA > t) �

Eα′′(−λtα
′′), for t → +∞, which proves that ZA ∈ DoA(Aα′′), by considering the well-known power law 

behavior of the Mittag-Leffler function (i.e. Eα(−λtα) � t−α), together with Theorem 4.5 (b) in [18].
Then, by applying Proposition 4.16 (a) and Remark 4.17 in [18] to the special stable case, we obtain that 

{TA
�ct�}t≥0

J1⇒ {Aα′′(t)}t≥0, as c → +∞, in D([0, +∞)).
By the independence of ZA,j and Xj , for any j = 1, 2, . . . and by the generalized functional central limit 

theorem proved by Skorokhod in [26], we have that
⎧⎨
⎩c−1/β

[ct]∑
j=1

Xj , c
−α′′

NA(ct)

⎫⎬
⎭

t≥0

J1=⇒ {Sβ(t),Lα′′(t)}t≥0 , c → +∞,

in the J1 topology on the product space D([0, +∞)) × D([0, +∞)). Therefore the following convergence 
holds



16 L. Beghin et al. / J. Math. Anal. Appl. 531 (2024) 127795
{
c−α′′/βY

(c)
A (t)

}
t≥0

J1=⇒{Sβ(Lα′′(t))}t≥0 , c → +∞,

as proved in [27] (see also [18] p. 104, for more details). Finally, the desired result is obtained by considering 

the well-known equality in distribution Sβ(Lα′′(t)) d= Yα′′,β(t) (see [16]). �
Remark 5.1. As a special case of the previous result, when β = 2 and λ = 1/2, we obtain the convergence of 
the process Y (c)

A , for c → ∞, to the so-called generalized grey Brownian motion Bα(t), t ≥ 0, (with α = α′′), 
which can be defined by means of its characteristic function EeiκBα(t) = Eα(−tακ2/2) [20,21].
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