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Abstract
We study continuous dependence estimates for viscous Hamilton–Jacobi equations defined
on a network �. Given two Hamilton–Jacobi equations, we prove an estimate of theC2-norm
of the difference between the corresponding solutions in terms of the distance among the
Hamiltonians. We also provide two applications of the previous estimate: the first one is
an existence and uniqueness result for a quasi-stationary Mean Field Games defined on the
network �; the second one is an estimate of the rate of convergence for homogenization of
Hamilton–Jacobi equations defined on a periodic network, when the size of the cells vanishes
and the limit problem is defined in the whole Euclidean space.

Mathematics Subject Classification 35R02 · 49N70 · 91A16 · 35B27

1 Introduction

In the recent years, there has been an increasing interest in the study of dynamical system
on networks, in connection with problem such as vehicular traffic, data transmission, crowd
motion, supply chains, etc. As consequence, many results for linear and nonlinear PDEs in
the Euclidean case have been progressively extended to the network setting and also to more
general geometric structures. Here, we are interested in continuous dependence estimates for
viscous Hamilton–Jacobi (HJ for short) equations. Let us recall that such estimates play a
crucial role in many contexts, for example for regularity results, error estimate for numerical
schemes, rate of convergence in vanishing viscosity and homogenization [11, 17].
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Our analysis is inspired by the results in [20], where it is proved a continuous dependence
estimate in the C2-norm for solutions of a viscous HJ equations in the periodic setting with
an explicit dependence on the distance of the coefficients and an explicit characterization of
the constants. We prove an analogous result for viscous HJ equations defined on networks
with Kirchhoff conditions at the vertices. To this end, we use some results concerning the
study of these equations on networks [1, 2, 10] and suitably adapt the arguments in [20] to
this specific setting.

Then, the previous continuous dependence estimate is applied to two problems:

(i) Thewell-posedness of a quasi-stationaryMeanFieldGames systemdefined on a network;
(ii) An estimate of the rate of convergence for homogenization of HJ equations defined on a

periodic networks.

Mean Field Games (MFG for short), introduced in [18], modelize the interaction among a
large number of agents. In this theory, the agents are assumed indistinguishable, infinitesi-
mal and completely rational and their behaviour is influenced by the statistical distribution
of the states of the other agents. In the classical formulation, MFG lead to the study of a
coupled system of two evolutive PDEs, a backward HJ equation for the value function of
the representative agent and a forward Fokker-Planck (FP for short) equation for the distri-
bution of the agents. Recently, a different strategy mechanisms from classical MFG theory
has been proposed in [22] (see also [12]): the agents are myopic and choose their strategy
only according to the information available at present time, without forecasting the future
evolution. In this case, the Nash equilibria for the distribution of the agents are characterized
by a quasi-stationary MFG system, which is composed of a stationary HJ equation and an
evolutive Fokker-Planck equation.

While classical MFG on networks have been studied in [1, 2, 9], here we consider
a quasi-stationary MFG defined on a network and we prove existence and uniqueness
of the corresponding solution. Existence is proved via a fixed point argument and the
continuous dependence estimate is crucial since in this case it is not possible to exploit
the regularizing effect of the parabolic HJ equation to show the continuity of the fixed
point map. The continuous dependence estimate is also exploited to prove uniqueness
of the solution, which, with respect to the classical case, requires no monotonicity
assumption.

The second application of the continuous dependence estimate is to a homogenization
problem. We show that the solution of a viscous HJ equation, defined on a periodic lat-
tice of size ε, converges, as ε → 0, to the solution of an effective problem defined in
all the Euclidean space and we also give an estimate of the rate of convergence. More-
over, we obtain a characterization of the corresponding effective operator in terms of
the Hamiltonians defined on the edges of the lattice. We note that a similar problem
was studied for first order HJ equations in [16] and for linear second order equations in
[8].

The paper is organized as follows: in Sect. 2 we fix our setting and notations for the
network. Section3 is devoted to the main result, the continuous dependence estimate for the
solution to an HJ equation on the network. In Sect. 4 we tackle quasi-stationary MFGs on the
network: in particular, we obtain existence and uniqueness of a solution without requiring
any monotonicity assumption. Section5 concerns the homogenization of HJ equations on a
lattice: the main result is a rate of convergence estimate.
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2 The network 0: notations and definitions

We consider a bounded network� ⊂ R
N composed by a finite collection of bounded straight

edges E := {�α, α ∈ A}, which connect a finite collection of vertices V := {νi , i ∈ I }. We
assume that, for α, β ∈ Awith α �= β,�α ∩�β is either empty or made of a single vertex. For
an edge�α ∈ E connecting two vertices νi and ν j with i < j , we consider the parametrization
πα : [0, �α] → �α given by

πα(y) = [yν j + (�α − y)νi ]�−1
α for y ∈ [0, �α],

where �α is the length of the edge. We denote withAi = {α ∈ A : νi ∈ �α} the set of indices
of edges that are adjacent to the vertex νi .
For a function v : � → R, we denote with vα : (0, �α) → R the restriction of v to �α \ V ,
i.e.

vα(y) := v|�α ◦ πα(y), for all y ∈ (0, �α).

Moreover we define for x ∈ �α\V the derivative along the arc

∂v(x) = dvα

dy
(y) for y = π−1

α (x).

Remark 2.1 The function vα is defined only on (0, �α); nevertheless, when it is possible, we
denote vα also its extension by continuity on 0 and on �α . Note that, in this way, vα may not
coincide with the original function v at the vertices when v is not continuous.

For x = νi ∈ �α , we define the outward derivative at the vertex

∂αv
(
π−1

α (νi )
) :=

⎧
⎪⎨

⎪⎩

lim
h→0+

vα(0) − vα(h)

h
, if νi = πα (0) ,

lim
h→0+

vα(�α) − vα(�α − h)

h
, if νi = πα (�α) .

Setting

niα =
{

1 if νi = πα(�α),

−1 if νi = πα(0),

we have

∂αv(νi ) = niα ∂vα(π−1
α (νi )).

We introduce some functional spaces defined on the network �. The space C(�) is
composed of the continuous functions on �; the space

PC (�) := {v : � → R : vα ∈ C([0, �α]), for all α ∈ A}
is composed of the piece-wise continuous functions on�, i.e. functions which are continuous
inside the edges but not necessarily at the vertices. For m ∈ N

Cm (�) := {
v ∈ C (�) : vα ∈ Cm ([0, �α]) for all α ∈ A

}
,

is the space of m-times continuously differentiable functions on � endowed with the norm

‖v‖Cm (�) :=
∑

α∈A
∑

k≤m

∥∥∥∂kvα

∥∥∥
L∞(0,�α)

.
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For σ ∈ (0, 1] and w : A → R, we write

[w]σ,A = sup
y �=z
y,z∈A

|w (y) − w (z)|
|y − z|σ and ‖w‖C0,σ (A) = ‖w‖∞ + [w]σ,A.

For σ ∈ (0, 1], the space Cm,σ (�) contains the functions v ∈ Cm (�) such that ∂mvα ∈
C0,σ ([0, �α]) for all α ∈ A with the norm

‖v‖Cm,σ (�) := ‖v‖Cm (�) + sup
α∈A

[∂mvα]σ,[0,�α].

The integral of a function v on � is defined by
∫

�

v(x)dx =
∑

α∈A

∫ �α

0
vα (y) dy

and we set 〈v〉 = ∫
�

v(x)dx . For p ∈ [1,∞], we define the Lebesgue space
L p (�) = {

v : vα ∈ L p ((0, �α)) for all α ∈ A
}
,

endowed with the standard norm. For any integer m ∈ N, m ≥ 1, and p ∈ [1,∞] we define
the Sobolev space

Wm,p(�) := {
v ∈ C (�) : vα ∈ Wm,p ((0, �α)) for all α ∈ A

}
,

endowed with the norm

‖v‖Wm,p(�) =
(

m∑

k=1

∑

α∈A

∥∥∥∂kvα

∥∥∥
p

L p(0,�α)
+ ‖v‖p

L p(�)

) 1
p

.

We also set Hm(�) = Wm,2(�).
The geodesic distance d�(x, y) between two points x, y ∈ � is the infimum of the length

taken over all continuous, piecewise continuously differentiable curves ξ : [a, b] → � with
ξ(a) = x and ξ(b) = y. The couple (�, d�) is a metric space.

Denote with M the space of Borel probability measures on �. For 1 ≤ p < ∞, the L p-
Wasserstein distance dp between σ, τ ∈ M is defined by the Monge-Kantorovich transport
problem

dp(σ, τ ) = min

∈�(σ,τ)

{∫

�×�

(d�(x, y))p d
(x, y)

}

where �(σ, τ) denotes the set of transport plans, i.e. Borel probability measures on � × �

with marginals σ and τ (see [7]). Since � is compact, the Wasserstein distance dp metrises
the topology of weak convergence of probability measures on �. In particular, for p = 1, we
have

d1(σ, τ ) = sup

{∫

�

f (x)d(σ − τ) : f : � → R, | f (x) − f (y)| ≤ d�(x, y)

}
. (2.1)

We shortly recall the definition of diffusion process on the network� (see [14, 15] for details).
Consider the linear differential operator L defined on the edges by

Lαu(x) = μα∂2u(x) + Bα(x)∂u(x), x ∈ �α, α ∈ A
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with domain

D (L) =
⎧
⎨

⎩
u ∈ C2 (�) :

∑

α∈Ai

pi,α∂αu (νi ) = 0, i ∈ I

⎫
⎬

⎭

where pi,α ∈ (0, 1),
∑

α∈Ai
pi,α = 1. Then, the operator L is the infinitesimal generator of

a Feller-Markov process (Xt , αt ), with Xt ∈ �αt , such that, for xt = π−1
αt

(Xt ), we have

dxt = Bαt (xt )dt + μαt dWt + d�i,t + dhi,t . (2.2)

In (2.2), Wt is a one dimensional Wiener process; �i,t and hi,t , i ∈ I , are continuous non-
decreasing and, respectively, non-increasing processes,measurablewith respect to the σ -field
generated by (Xt , αt ) and satisfying

�i,t increases only when Xt = νi and xt = 0,

hi,t decreases only when Xt = νi and xt = �α.

Moreover, the following Itô formula holds true: for every u ∈ C2(�),

u(xt ) = u(x0) +
∑

i∈I

∑

α∈Ai

pi,α∂αu (νi )
(
�i,t + hi,t

)

+
∑

α∈A

∫ t

0
1{xs∈�α\V}

[(
μα∂2u(xs) + Bα(xs)∂u(xs)

)
ds + √

2μα∂u(xs)dWs

]
.

3 The continuous dependence estimate

We consider the following ergodic HJ equation on �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−μα∂2v + H (x, ∂v) + ρ = 0, x ∈ (�α\V) , α ∈ A,∑

α∈Ai

γiαμα∂αv(νi ) = 0, νi ∈ V,

v|�α (νi ) = v|�β (νi ), α, β ∈ Ai , νi ∈ V,

〈v〉 = 0.

(3.1)

Let us notice that, when H is given by

Hα(x, p) = sup
a∈Aα

{−bα(x, a)p − fα(x, a)} for x ∈ �α \ V, (3.2)

problem (3.1) represents the dynamic programming equation for the optimal control problem
with long-run average cost functional

ρ = inf
a

lim inf
T→∞

1

T
Ex

[∫ T

0
f (Xt , at )dt

]

where at is a feedback control law of form at = a(Xt ) and Xt is a diffusion process on �

such that xt = παt (Xt ) satisfies (2.2) with Bα(x) = Bα(x, a(x)) (see [1, Section 1.3] for
more details). Connected with the optimal control interpretation of (3.1), the second equation
is a Kirchhoff transmission condition, where the quantity piα = γiαμα(

∑
α∈Ai

γiαμα)−1

represents the probability that the trajectories of the diffusion process enter in edge �α ,
α ∈ Ai , from the vertex νi ; it can be also interpreted as a Neumann boundary condition if
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�(Ai ) = 1. The third equation implies continuity of the solution at the vertices and the last
one is a normalization condition.
We make the following assumptions

(H1) μα and γi,α are positive constants and
∑

α∈Ai

γiαμα = 1, ∀i ∈ I .

(H2) H : � × R → R, with H(x, p) = Hα(x, p) if x ∈ �α \ V and there exist positive
constants K , L , θ ∈ (0, 1] and H̃α ∈ C(�α × R), with H̃α(x, 0) = 0 such that

sup
x∈�α

|Hα(x, 0)| ≤ K

Hα(·, p) ∈ C0,1(�α) with ‖Hα(·, p)‖C0,1(�α) ≤ L(1 + |p|)
Hα(x, ·) ∈ C1,θ (R) with ‖∂pHα‖C0,θ (�α×R) ≤ L

lim
ξ→∞

Hα(x, ξ p)

ξ
= H̃α(x, p)

(3.3)

for all x ∈ �α and α ∈ A.

For the study of the ergodic problem (3.1), it is expedient to introduce for λ ∈ (0, 1) the
discount approximation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μα∂2vλ + H
(
x, ∂vλ

) + λvλ = 0, x ∈ (�α\V) , α ∈ A,
∑

α∈Ai

γiαμα∂αvλ(νi ) = 0, νi ∈ V,

vλ|�α (νi ) = vλ|�β (νi ), α, β ∈ Ai , νi ∈ V.

(3.4)

The following statement concerns existence, uniqueness and regularity of classical solutions
to the HJ Eqs. (3.1) and (3.4). The proof is an adaptation of previous papers ( [5, Theorem
II.2], [10] and [1, Proposition 3.2 and Theorem 3.7]); hence, we shall only sketch it in the
Appendix.

Proposition 3.1 There exists a unique classical solution vλ to the Eq. (3.4). Moreover,

(i) there exists a positive constant C1, independent of λ, such that

‖λvλ‖L∞(�) ≤ K , (3.5)

‖vλ − 〈vλ〉‖C2,θ (�) ≤ C1(1 + K + L) =: K̄ , (3.6)

where K , L and θ as in (3.3);
(ii) for λ → 0+, λvλ → ρ, vλ − 〈vλ〉 → v and the couple (v, ρ) is the unique classical

solution to (3.1). Moreover

‖v‖C2,θ (�) ≤ K̄ . (3.7)

Remark 3.2 The statement of Proposition 3.1 holds also when H is replaced by H + F and
Fα ∈ C0,θ (�α). Moreover, for i = 1, 2, let vλ

i be the unique bounded solution to (3.4) where
Hα is replaced by Hα + Fi

α
, with Fi

α
∈ C0,θ (�), and set: ρi := limλ→0+ λvλ

i ; then,

‖λ(vλ
1 − vλ

2 )‖∞ ≤ sup
α∈A

‖F1
α

− F2
α
‖∞ and |ρ − ρ1| ≤ sup

α∈A
‖F1

α
− F2

α
‖∞.
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We give some preliminary results for Eqs. (3.1) and (3.4). The first result is a strong
maximum principle for the linear HJ equation (see [1, Lemma 2.8] or [10, Theorem 3.1]).

Lemma 3.3 For g ∈ PC (�), the solutions of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μα∂2v + g∂v = 0, in �α\V, α ∈ A,∑

α∈Ai

γiαμα∂αv(νi ) = 0, i ∈ I ,

v|�α (νi ) = v|�β (νi ), α, β ∈ Ai , i ∈ I

are the constant functions on �.

The second result is a comparison principle for (3.4) (see [1, Lemma 3.6] and [10, Corollary
3.1]).

Lemma 3.4 If u, v ∈ C2 (�) satisfy
⎧
⎪⎨

⎪⎩

−μα∂2v + H (x, ∂v) + λv ≥ −μα∂2u + H (x, ∂u) + λu, if x ∈ �α\V, α ∈ A,
∑

α∈Ai

γiαμα∂αv(νi ) ≥
∑

α∈Ai

γiαμα∂αu(νi ), if νi ∈ V,

then v ≥ u.

We now give a continuous dependence estimate for the solution of (3.1) and (3.4) with
respect to the data of the problem.

Theorem 3.5 For i = 1, 2, consider Hi : � × R → R and Fi : � → R. Assume that

(i) H1 and H2 satisfy (H2) with the same constants K , L and θ ;
(ii) the functions Fi : � → R, i = 1, 2, fulfill: for some KF > 0,

‖Fi
α‖C0,θ (�α) ≤ KF ∀α ∈ A.

For i = 1, 2, let vλ
i be the solution of (3.4) with Hamiltonian H(x, p) = Hi (x, p) + Fi (x)

and set wλ
i := vλ

i − 〈vλ
i 〉. Then, there exists a positive constant C0, independent of λ, such

that

‖wλ
1 − wλ

2‖C2(�) ≤ C0 max
α∈A

(

max
(x,p)∈�α×[−K̄ ,K̄ ]

|H1
α − H2

α | + max
x∈�α

|F1
α − F2

α |
)

+ max
α∈A[H1

α − H2
α ]1,�α×[−K̄ ,K̄ ] + max

α∈A[F1
α − F2

α ]θ,�α ,

(3.8)

where K̄ is defined in (3.6). Estimate (3.8) also holds for vi , i = 1, 2, solution to (3.1)
corresponding to H(x, p) = Hi (x, p) + Fi (x).

Proof We shall proceed by contradiction. We assume that, for k → ∞, there exist sequences
λk → 0, Hi,k , Fi,k , i = 1, 2, satisfying (i) and (i i) with the same constants K , L , θ , KF

and v
λk
i , solution to (3.4) with discount λk , Hamiltonian Hi,k and term Fi,k such that

ck :=‖wλk
1 − w

λk
2 ‖C2(�)

≥kmax
α∈A

(

max
(x,p)∈�α×[−K̄ ,K̄ ]

|H1,k
α − H2,k

α | + max
x∈�α

|F1,k
α − F2,k

α |
)

123



   18 Page 8 of 22 F. Camilli, C. Marchi

+ max
α∈A[H1,k

α − H2,k
α ]1,�α×[−K̄ ,K̄ ] + max

α∈A[F1,k
α − F2,k

α ]θ,�α

where w
λk
i = v

λk
i − 〈vλk

i 〉. The function w
λk
i , i = 1, 2, solves the equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−μα∂2w
λk
i + Hi,k

(
x, ∂w

λk
i

) + Fi,k(x) + λkw
λk
i

+λk〈vλk
i 〉 = 0, x ∈ (�α\V) , α ∈ A,

∑
α∈Ai

γiαμα∂αw
λk
i (νi ) = 0, νi ∈ V,

w
λk
i |�α (νi ) = w

λk
i |�β (νi ), α, β ∈ Ai , νi ∈ V.

Hence the functionWk = c−1
k (w

λk
1 −w

λk
2 ) fulfills ‖Wk‖C2(�)‖ ≤ 1 and solves the equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−μα∂2Wk + c−1
k

(
H1,k(x, ∂w

λk
1 )

−H1,k(x, ∂w
λk
2 )

) + Rk = 0, x ∈ (�α\V) , α ∈ A,
∑

α∈Ai
γiαμα∂αWk(νi ) = 0, νi ∈ V,

Wk |�α (νi ) = Wk |�β (νi ), α, β ∈ Ai , νi ∈ V,

(3.9)

where

Rk = λkc
−1
k (〈vλk

1 〉 − 〈vλk
2 〉) + c−1

k

(
H1,k(x, ∂w

λk
2 ) − H2,k(x, ∂w

λk
2 ))

+λkW
k + c−1

k

(
F1,k(x) − F2,k(x)

)
.

By the third line in (3.3), we can rewrite (3.9) as
⎧
⎪⎨

⎪⎩

−μα∂2Wk + gk∂Wk + Rk = 0, x ∈ (�α\V) , α ∈ A,
∑

α∈Ai
γiαμα∂αWk(νi ) = 0, νi ∈ V,

Wk |�α (νi ) = Wk |�β (νi ), α, β ∈ Ai , νi ∈ V,

(3.10)

where

gkα(x) =
∫ 1

0
∂pH

1,k
α

(
x, t∂w

λk
1,α(x) + (1 − t)∂w

λk
2,α(x)

)
dt

and we aim to pass to the limit in (3.10) for k → ∞.
We first recall from the bound (3.6) and the third line in (3.3) that w

λk
i ∈ C2,θ (�) with

‖wλk
i ‖C2,θ (�) ≤ K̄ and respectively ∂pHi,k

α ∈ C0,θ (�α ×R) with ‖∂pHi,k
α ‖C0,θ (�α×R) ≤ L .

Then, the functions gkα , α ∈ A, are uniformly bounded and uniformly Hölder continuous
of exponent θ . Hence, there exists g : � → R such that for any α ∈ A

gkα → gα for k → ∞, uniformly in �α. (3.11)

On the other hand, we claim that the functions Rk
α are uniformly θ -Hölder continuous, i.e.

[Rk
α]θ,�α are uniformly bounded. In order to prove this claim,wefirst observe that, by assump-

tions (3.3), for every x, y ∈ �α , the function h(x) = H1,k
α (x, ∂w

λk
2 (x)) − H2,k

α (x, ∂w
λk
2 (x))

fulfills

|h(x) − h(y)|/d�(x, y) ≤ [H1,k
α (·, ∂w

λk
2 (x)) − H2,k

α (·, ∂w
λk
2 (x))]1,�α

+ ‖wλk
2 ‖C2(�)[H1,k

α (y, ·) − H2,k
α (y, ·)]1,[−K̄ ,K̄ ]

≤ (1 + ‖wλk
2 ‖C2(�))[H1,k

α (·, ·) − H2,k
α (·, ·)]1,�α×[−K̄ ,K̄ ]
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where the first inequality is due to estimate (3.6). Hence, by (3.6) and the definition of ck ,
we have

c−1
k

[
H1,k

α (·, ∂w
λk
2 (·)) − H2,k

α (·, ∂w
λk
2 (·))

]

1,�α

= c−1
k [h]1,�α

≤
(
1 + ‖wλk

2 ‖C2(�)

)
c−1
k [H1 − H2]1,�α×[−K̄ ,K̄ ] ≤ 1 + ‖wλk

2 ‖C2,θ (�) ≤ 1 + K̄ .

On the other hand, by our choice of ck , we have
[
c−1
k

(
F1,k

α − F2,k
α

)]

θ,�α

= c−1
k

[
F1,k

α − F2,k
α

]

θ,�α

≤ 1;

hence, our claim is proved, i.e. [Rk
α]θ,�α are uniformly bounded.

We now claim that

‖Rk‖L∞(�) = ok(1) as k → ∞ (3.12)

where limk→∞ ok(1) = 0, uniformly in x and may change from line to line. Indeed, we have

λkW
k = λk

w
λk
1 − w

λk
2

‖wλk
1 − w

λk
2 ‖C2(�)

= ok(1). (3.13)

Moreover, we claim that, for K̄ as in (3.6), there holds

λk‖vλk
1 − v

λk
2 ‖L∞ ≤ max

α∈A

(

max
(x,p)∈�α×[−K̄ ,K̄ ]

|H1,k
α − H2,k

α | + max
x∈�α

|F1,k
α − F2,k

α |
)

.

(3.14)

Indeed, to prove (3.14), it is sufficient to observe that

v±(x) := v
λk
2 (x) ± λ−1

k max
α∈A

(

max
(x,p)∈�α×[−K̄ ,K̄ ]

|H1,k
α − H2,k

α | + max
x∈�α

|F1,k
α − F2,k

α |
)

are a subsolution and a supersolution of the equation satisfied by v
λk
1 and to apply Lemma 3.4.

By (3.14) and (H2), we have

|λkc−1
k (〈vλk

1 〉 − 〈vλk
2 〉)| ≤ c−1

k max
α∈A

(
max

(x,p)∈�α×[−K̄ ,K̄ ]
|H1,k

α − H2,k
α |

+max
x∈�α

|F1,k
α − F2,k

α |)
∫

�

dx = ok(1).
(3.15)

Furthermore, taking into account (3.6) and (H2), we have
∣∣∣H1,k(x, ∂w

λk
2 ) − H2,k(x, ∂w

λk
2 )

∣∣∣

ck
≤ max

α∈A max
(x,p)∈�α×[−K̄ ,K̄ ]

|H1,k
α − H2,k

α |
ck

= ok(1);
by our choice of ck , we also have

∣∣∣c−1
k

(
F1,k

α (x) − F2,k
α (x)

)∣∣∣ ≤ c−1
k max

x∈�α

∣∣∣F1,k
α (x) − F2,k

α (x)
∣∣∣ ≤ 1/k.

By these estimates, (3.13) and (3.15), we obtain the claim (3.12) and we conclude that for
any α ∈ A

Rk
α → 0 for k → ∞, uniformly in �α. (3.16)
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By definition, the functionsWk satisfy ‖Wk‖C2(�) = 1. On the other hand, by (3.10), they
are also uniformly bounded in C2,θ (�). Hence, possibly passing to a subsequence that we
still denoteWk , we have that, as k → ∞,Wk uniformly converges to a functionW ∈ C2(�)

along with all its derivatives up to order 2. Moreover, taking into account (3.11) and (3.16),
W is a solution to

⎧
⎪⎨

⎪⎩

−μα∂2W + g∂W = 0, x ∈ (�α\V) , α ∈ A,
∑

α∈Ai
γiαμα∂αW (νi ) = 0, νi ∈ V,

W |�α (νi ) = W |�β (νi ), α, β ∈ Ai , νi ∈ V.

ByLemma 3.3, it follows thatW is constant and, since 〈Wk〉 = 0 for all k, then also 〈W 〉 = 0.
It follows that W ≡ 0 which gives a contradiction to ‖Wk‖C2(�) = 1 for all k ∈ N.

The estimate for the solutions of the ergodic problem (3.1) follows immediately from
Proposition 3.1-(ii) and since (3.8) is independent of λ. ��

Remark 3.6 It is also possible to prove a L∞-continuous dependence estimate. More
precisely, there exists a constant C0 such that

‖wλ
1 − wλ

2‖L∞(�) ≤ C0 max
α∈A

(

max
(x,p)∈�α×[−K̄ ,K̄ ]

|H1
α − H2

α | + max
x∈�α

|F1
α − F2

α |
)

. (3.17)

Estimate (3.17) also holds for vi , i = 1, 2, solution to (3.1) corresponding to H(x, p) =
Hi (x, p) + Fi (x).

The proof is similar (and simpler) as the one of Theorem 3.5 so we shall omit it and we
refer the reader to [20, Theorem 2.1].

4 Quasi-stationary Mean Field Games on networks

Quasi-stationary Mean Field Games, introduced in [22] (see also [12]), modelize the case
when the agent cannot predict the evolution of the population in the future, as in the classical
MFG theory, but, at each instant, it decides its behaviour only on the basis of the information
available at the current time. This feature leads to a system given by an evolutive Fokker-
Planck equation and a stationary HJ equation (which in fact depends on time through the
cost):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−μα∂2v + H(x, ∂v) + ρ = F[m(t)](x), (x, t) ∈ (�α\V) × (0, T ), α ∈ A,

∂tm − μα∂2m − ∂
(
m∂pH(x, ∂v)

) = 0, (x, t) ∈ (�α\V) × (0, T ), α ∈ A,
∑

α∈Ai
γiαμα∂αv(νi , t) = 0, (νi , t) ∈ V × (0, T ),

∑
α∈Ai

μα∂αm(νi , t) + niα∂pHα(νi , ∂vα(νi , t))m|�α (νi , t) = 0, (νi , t) ∈ V × (0, T ),

v|�α (νi , t) = v|�β
(νi , t),

m|�α (νi , t)

γiα
=

m|�β
(νi , t)

γiβ
, α, β ∈ Ai , (νi , t) ∈ V × (0, T ),

〈v〉 = 0, m (x, 0) = m0(x), x ∈ �.

(4.1)

Here, H is as in (3.2), m0 ∈ M describes the initial distribution of the players and F is
the nonlocal coupling cost (see below for the precise assumptions and see the Appendix for
examples); moreover, at each time t ∈ [0, T ], given the distribution of the population m(t),
the representative agent assumes that it will not change in the future and solves an optimal
control problem with long-run average cost functional
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ρ(t) = inf
a

lim inf
T→∞

1

T
Ey,t

[∫ T

t
( f (Ys, as) + F[m(t)](Ys)) ds

]

whereYs is a “fictitious” dynamics on the network suchYt = x and F is an additional cost term
which depends on the distribution of the agents. Note that Ys is “fictitious” because it is not
the trajectory really followed by the agent: is only the trajectory that they would follow if the
distributionm of the population does not change after time t . If the correspondingHJ equation
admits a smooth solution v(t), then the optimal feedback law a�

t (x) = −∂pH(x, ∂v(t)) gives
the vector field governing the evolution of the distribution of the population at time t and Xs

obeys to the stochastic Eq. (2.2) with Bαs = bαs (Xs, α
∗
s (Xs)).

In system (4.1), the first two lines are the standard differential equations for quasi-
stationary MFG systems, the second two relations are the vertex transition conditions and
the last two lines prescribe the behaviour of v and m at the vertices, the standard normaliza-
tion condition for v and the initial datum of m. Note that the well-posedness of differential
equations on networks relies on suitably chosen transition conditions; here these conditions
for the FP equation are obtained by duality with respect to the corresponding ones for the HJ
equation and express conservation of the flux and, respectively, a rule for the distribution of
the density. Clearly, dealing with such transition conditions is the main novelty in the study
of these equations on networks.

These quasi-stationary systems loss the standard forward-backward structure of MFG. In
order to establish the existence of a solution, it is crucial to have some regularity in time
for the value function v. In the classical approach for MFG, such a regularity follows from
the parabolicity of HJ equation; here, it will be retrieved using the continuous dependence
estimate of Sect. 3.

We first recall some basic results concerning the Fokker-Planck equation
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tm − μα∂2m − ∂ (bm) = 0, in (�α\V) × (0, T ), α ∈ A,
∑

α∈Ai
μα∂αm(νi , t) + niαbα(νi , t)m|�α (νi , t) = 0, t ∈ (0, T ), νi ∈ V,

m|�α (νi , t)

γiα
= m|�β (νi , t)

γiβ
, t ∈ (0, T ), α, β ∈ Ai , νi ∈ V\∂�,

m (x, 0) = m0(x), x ∈ �.

(4.2)

We introduce suitable parabolic spaces for weak solution of the FP equation. We set V =
H1(�) and

H1
b (�) := {

v : � → R s.t. vα ∈ H1(0, �α) for all α ∈ A
}
,

(unlike V , continuity at the vertices is not required), endowed with the norm

‖v‖H1
b (�) =

(
∑

α∈A
‖∂vα‖2L2(0,�α)

+ ‖v‖2L2(�)

) 1
2

.

By Remark 2.1, for v ∈ H1
b (�), we still denote vα the extension by continuity of vα on the

whole interval [0, �α]. We also define

W :=
{
w : � → R : w ∈ H1

b (�) and
w|�α (νi )

γiα
= w|�β (νi )

γiβ
∀i ∈ I , α, β ∈ Ai

}
,

PC(� × [0, T ]) := {v : � × [0, T ] → R : v(·, t) ∈ PC(�) for all t ∈ [0, T ] and

v|�α×[0,T ] ∈ C(�α × [0, T ]) for all α ∈ A}.
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Definition 4.1 For m0 ∈ L2(�), a weak solution of (4.2) is a function m ∈ L2 (0, T ;W ) ∩
C([0, T ]; L2(�)) such that ∂tm ∈ L2

(
0, T ; V ′) and

⎧
⎨

⎩
〈∂tm, v〉V ′,V +

∫

�

μ ∂m∂vdx +
∫

�

bm∂vdx = 0 for all v ∈ H1(�), a.e. t ∈ (0, T ),

m (·, 0) = m0.

The following result concerns existence, uniqueness and stability for the solution of (4.2)
(see [2, Theorem 3.1 and Lemma 3.1]).

Proposition 4.2 We have

(i) For b ∈ L∞(� × (0, T )), m0 ∈ L2(�), there exists a unique weak solution to (4.2).
Moreover, there exists C = C(‖b‖∞) such that

‖m‖L2(0,T ;W ) + ‖m‖L∞(0,T ;L2(�)) + ‖∂tm‖L2(0,T ;V ′) ≤ C ‖m0‖L2(�) . (4.3)

Moreover, if m0 ∈ M, then m(t) ∈ M for all t ∈ [0, T ].
(ii) Let bn be such that

bn −→ b in L2 (� × (0, T )) , ‖b‖L∞(�×(0,T )), ‖bn‖L∞(�×(0,T )) ≤ K

with K independent of n. Let mn (resp. m) be the solution of (4.2) corresponding to
the coefficient bn (resp. b). Then, the sequence (mn) converges to m in L2 (0, T ;W ) ∩
L∞ (

0, T ; L2(�)
)
, and the sequence (∂tmn) converges to ∂tm in L2

(
0, T ; V ′).

Proposition 4.3 Form0 ∈ L2(�)∩M, let m be the solution of (4.2) found in Proposition 4.2.
Then there exists a constant CW , depending only on ‖b‖L∞ and ‖m0‖L2 , such that

d1(m(t),m(s)) ≤ CW |t − s| 12 . (4.4)

Proof Let φ : � → R with |φ(x) − φ(y)| ≤ d�(x, y), hence φ ∈ H1(�). For s, t ∈ [0, T ]
with s < t , by Definition 4.1 and regularity of m, we have

∫

�

φ(x)(m(t) − m(s))dx ≤
∫ t

s

∫

�

(μ|∂m| |∂φ| + m|b| |∂φ|)dxdr

≤ ‖μ‖∞
∫ t

s

∫

�

|∂m|dxdr + ‖b‖L∞
∫ t

s

∫

�

m dxdr

≤ ‖μ‖∞
[∫ t

s

∫

�

|∂m|2dxdr
] 1

2
[∫ t

s

∫

�

1dxdr

] 1
2

+ ‖b‖L∞
∫ t

s

∫

�

mdxdr .

Exploiting
∫
�
m(r)dx = 1 for any r ∈ [0, T ], (4.3) and (2.1), by the previous inequality we

get (4.4). ��
We now prove the well posedness of system (4.1).

Theorem 4.4 Assume (H1), (H2) with θ = 1 in the third line of (3.3), m0 ∈ L2(�) ∩ M,
and F : M → L2(�) satisfying

(F) Fα : M → C0,θ (0, �α), α ∈ A, and there exist CF > 0 and θ ∈ (0, 1] s.t.
maxα ‖Fα[m]‖C0,θ (0,�α) ≤ CF ,

maxα ‖Fα[m1] − Fα[m2]‖C0,θ (0,�α) ≤ CF d1(m1,m2)

for all m, m1, m2, α ∈ A (see Sect.2 for the definition of ‖ · ‖C0,θ ).
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Then, the system (4.1) admits a unique solution (u, ρ,m), where (u, ρ) ∈ C([0, T ],C2(�))×
C([0, T ]) is a classical solution to theHJ equation for any t ∈ [0, T ] andm ∈ L2 (0, T ;W )∩
C([0, T ]; L2(�) ∩ M) with ∂tm ∈ L2

(
0, T ; V ′) is a weak solution to the FP equation.

Proof
Existence: We consider the convex, compact set

X =
{
m ∈ C([0, T ];M) : d1(m(t),m(s)) ≤ CW |t − s| 12 , s, t ∈ [0, T ]

}
,

where CW as in (4.4), and we define a map T : X → X in the following way: given m ∈ X ,
let (u(t), ρ(t)), t ∈ [0, T ], be the solution of the HJ equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μα∂2u + H(x, ∂u) + ρ = F[m(t)](x), x ∈ (�α\V) , α ∈ A,
∑

α∈Ai
γiαμα∂αu(νi ) = 0, νi ∈ V,

u|�α (νi ) = u|�β (νi ), α, β ∈ Ai , νi ∈ V,

〈u〉 = 0 x ∈ �.

(4.5)

Then, m̄ = T (m) solves the FP Eq. (4.2) with b = ∂pH(x, ∂u).
Note first that the map T is well defined. Indeed Proposition 3.1 ensures that, for each

t ∈ [0, T ], there exists a unique couple (u(t), ρ(t)) ∈ C2(�)×R, solution to the HJ in (4.5).
Let us now prove: (u, ρ) ∈ C([0, T ],C2(�)) × C([0, T ]). To this end, we note that, by
definition of X and assumption (F), there holds

max
α

‖Fα[m(t)] − Fα[m(s)]‖C0,θ (0,�α) ≤ CFCW |t − s| 12 ∀t, s ∈ [0, T ],m ∈ X .

Remark 3.2 and Theorem 3.5 entail respectively the continuity of ρ and of u w.r.t. time.
Moreover, by Proposition 4.2, there exists a unique solution m̄, in the sense of Definition 4.1,
to problem (4.2) with b = ∂pH(∂u). Since m̄ ∈ C([0, T ]; L2(�)) can be identified with the
corresponding Borel measure with density m̄(t) on � at time t , by Proposition 4.3, we also
have that T maps X into itself.

We prove that T is continuous. Given mn , m ∈ X , let (un(t), ρn(t)), (u(t), ρ(t)) be
the solutions, for any t ∈ [0, T ], of the HJ Eq. (4.5) with right hand side F[mn(t)]
and, respectively, F[m(t)] and let m̄n = T (mn), m̄ = T (m). If mn → m in X , then
d1(mn(t),m(t)) → 0 uniformly for t ∈ [(0, T ]. Invoking again Theorem 3.5, by (3.8) and
(F), for any t ∈ [0, T ] there holds

‖un(t) − u(t)‖C2(�) ≤ C0 max
α∈A ‖Fα[mn(t)] − Fα[m(t)]‖C0,θ

≤ C max
α∈A d1(mn

α(t),mα(t)),

with C independent of mn , m. The previous estimate and Proposition 4.2.(ii) with bn =
∂pH(x, ∂un), b = ∂pH(x, ∂u) imply that m̄n converges to m̄ in X and therefore the map T
is continuous.

By Schauder fixed point theorem, we conclude that there exists a fixed point of T and
therefore a solution of (4.1).

Uniqueness: Suppose that there are two solutions (u1, ρ1,m1), (u2, ρ2,m2) of (4.1).
As in [2], we introduce the function ϕ : � → R as

ϕα is affine on [0, �α], ϕα(νi ) = γiα if α ∈ Ai .

Note that ϕ ∈ H1
b (�) is strictly positive and bounded. Hence the reciprocal ϕ−1 is well

defined, positive and bounded; this property will play a crucial role in our argument.
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Set M = ϕ−1(m1 − m2). The transition condition of mi and the definition of ϕ ensure
that M(t) ∈ H1(�) for a.e. t ∈ (0, T ). Hence, we can use Definition 4.1 for m1 and m2 with
M(t) as a test function obtaining

1

2

d

dt
‖(m1 − m2)(t)(ϕ

−1)1/2‖2L2(�)
+ ‖∂(m1 − m2)(t)(μϕ−1)1/2‖2L2(�)

= −
∫

�

μ∂(m1 − m2)(t)(m1 − m2)(t)∂(ϕ−1)dx

−
∫

�

b1(m1 − m2)(t)∂M(t)dx −
∫

�

(b1 − b2)m2(t)∂M(t)dx (4.6)

where bi = ∂pH(·, ∂ui (·, t)) for i = 1, 2. We now estimate the three integrals in the right
hand side of equality (4.6). Since now on, C will denote a constant that may change from
line to line but is always independent of M . By Cauchy-Schwarz inequality, we get

−
∫

�

μ∂(m1 − m2)(t)(m1 − m2)(t)∂(ϕ−1)dx

≤
∫

�

∣
∣μ∂(m1 − m2)(t)(m1 − m2)(t)∂(ϕ−1)ϕ1/2ϕ−1/2

∣
∣ dx

≤ 1

2
‖∂(m1 − m2)(t)(μϕ−1)1/2‖2L2(�)

+ 1

2

∫

�

μ|m1 − m2|2(t)|∂(ϕ−1)|2ϕdx

≤ 1

2
‖∂(m1 − m2)(t)(μϕ−1)1/2‖2L2(�)

+ C‖(m1 − m2)(t)(ϕ
−1)1/2‖2L2(�)

(4.7)

where the last inequality is due to the boundedness ofμ and to the properties of ϕ. Moreover,
by the boundedness of b1 and of μ, again using Cauchy-Schwarz inequality, we have

−
∫

�

b1(m1 − m2)(t)∂M(t)dx

= −
∫

�

b1(m1 − m2)(t)[∂(m1 − m2)(t)ϕ
−1 + (m1 − m2)(t)∂(ϕ−1)]dx

≤
∫

�

∣∣b1(m1 − m2)(t)∂(m1 − m2)(t)ϕ
−1
∣∣ dx +

∫

�

∣∣b1(m1 − m2)
2(t)∂(ϕ−1)

∣∣ dx

≤ 1

4
‖∂(m1 − m2)(t)(μϕ−1)1/2‖2L2(�)

+ C‖(m1 − m2)(t)(ϕ
−1)1/2‖2L2(�)

.

(4.8)

Let us also assume for the moment the following estimate

−
∫

�

(b1 − b2)m2(t)∂M(t)dx ≤ 1

4
‖∂(m1 − m2)(t)(μϕ−1)1/2‖2L2(�)

+C‖(m1 − m2)(t)(ϕ
−1)1/2‖2L2(�)

(4.9)

whose proof is postponed at the end.
Replacing relations (4.7), (4.8), (4.9) in (4.6), we get

d

dt
‖(m1 − m2)(t)(ϕ

−1)1/2‖2L2(�)
≤ C‖(m1 − m2)(t)(ϕ

−1)1/2‖2L2(�)
.

Since m1(0) = m2(0), by the previous inequality we get m1(t) = m2(t) for all t ∈ [0, T ],
hence u1 = u2 in � × [0, T ] and ρ1 = ρ2.

It remains only to prove inequality (4.9). To this end, we first estimate

‖b1 − b2‖L∞(�) = ‖∂pH(·, ∂u1(·, t)) − ∂pH(·, ∂u2(·, t))‖L∞(�)
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≤ C‖∂u1(·, t) − ∂u2(·, t)‖L∞(�).

Moreover, applying Theorem 3.5 on Hi (x, p) = H(x, p) − F[mi (t)],we get
‖∂u1(·, t) − ∂u2(·, t)‖L∞(�) ≤ C d1(m1(t),m2(t)).

By the last two inequalities, for δ = d1(m1(t),m2(t)), we get ‖b1 − b2‖L∞(�) ≤ Cδ and we
deduce

∫

�

|(b1 − b2)m2(t)∂M(t)| dx ≤ C
∫

�

δ |m2(t)∂M(t)| dx

≤ 1

8

∫

�

μ|∂M(t)|2ϕdx + C
∫

�

δ2|m2(t)|2
μϕ

dx . (4.10)

We denote I1 and I2 respectively the two integrals in the right hand side of the last inequality.
We have

I1 ≤ 2
∫

�

[
μ|∂(m1 − m2)|2ϕ−1 + μ|m1 − m2|2|∂(ϕ−1)|2ϕ] dx

≤ 2‖∂(m1 − m2)(μϕ−1)1/2‖2L2(�)
+ C‖(m1 − m2)(ϕ

−1)1/2‖2L2(�)
.

Moreover, since m2 ∈ C([0, T ], L2(�)), we have

I2 = Cδ2
∫

�

|m2|2dx ≤ Cδ2 ≤ C‖m1 − m2‖2L2(�)
≤ C‖(m1 − m2)(ϕ

−1)1/2‖2L2(�)

where we used the definition of δ and the properties of ϕ. Replacing these estimates for I1
and I2 in (4.10), we accomplish the proof of inequality (4.9). ��

5 Homogenization of HJ equations defined on a lattice structure

In this section, we describe an application of the continuous dependence estimate in Sect. 3
to the study of a homogenization problem for a HJ equation defined on a periodic network.

For ε ∈ (0, 1], let �ε be the periodic network generated by the lattice εZN . Hence
Vε = εZN and Eε = {

�ε
α, α ∈ Aε

}
, where

�ε
α = {ym + (ε − y)n : y ∈ [0, ε]}

for some m, n ∈ Z
N with |m − n| = 1. Since �ε is a lattice, there are 2N edges coming out

of each vertex νi ∈ Vε, in the directions of the vectors ek of the canonical basis of RN and
in the opposite directions e−k .

For k ∈ Z
N , we define �ε

α + k = {y(m + k) + (ε − y)(n + k) : y ∈ [0, ε]} and we say
that a function φ : �1 → R is �1-periodic if

φβ = φα if �1
β = �1

α + k, k ∈ Z
N .

On the network �ε, we consider the problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μα∂2uε + Hα

(
x, x

ε
, ∂uε

) + uε = 0, x ∈ (
�ε

α\Vε
)
, α ∈ Aε,∑

α∈Ai

γiαμα∂αu
ε(νi ) = 0, νi ∈ Vε,

uε|�α (νi ) = uε|�β (νi ), α, β ∈ Aε
i , νi ∈ Vε.

(5.1)

We assume Hα : RN × �1
α × R → R and
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(i) there exist positive constants K , L , θ ∈ (0, 1] and H̃α ∈ C(RN × �1
α × R), with

H̃α(x, y, 0) = 0 such that

sup
x∈RN

sup
y∈�α

|Hα(x, y, 0)| ≤ K

Hα(·, ·, p) ∈ C0,1(RN × �α) with [Hα(·, ·, p)]1,RN×�α
≤ L(1 + |p|)

Hα(x, y, ·) ∈ C1,θ (R) with ‖∂pHα‖C0,θ ≤ L

lim
ξ→∞

Hα(x, y, ξ p)

ξ
= H̃α(x, y, p);

(ii) for every (x, p) ∈ R
N × R, H(x, ·, p) is �1-periodic;

(iii) μα and γi,α only depend on the direction ek parallel to �α and γi,α = γα , for α ∈ A and
i ∈ I and fulfill (H1).

We denote with S
N the space of the symmetric N × N matrices.

We consider the effective problem

u + H̄(x, Du, D2u) = 0 x ∈ R
N , (5.2)

where the effectiveHamiltonian H̄ is defined as follows: for every (x, P, X) ∈ R
N×R

N×S
N

fixed, the value H̄(x, P, X) is equal to −ρ, where ρ is the unique constant (see Lemma 5.1
below) for which there exists a couple (v, ρ), with v �1-periodic and ρ ∈ R, solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−μα∂2(v + Xy · y/2) + H(x, y, ∂(P · y)) + ρ = 0, y ∈ (
�1

α\V1
)
, α ∈ A1,∑

α∈Ai

γiαμα∂αv(νi ) = 0, νi ∈ V1,

v|�α (νi ) = v|�β (νi ), α, β ∈ A1
i , νi ∈ V1

∫
�1 v(x)dx = 1.

(5.3)

To display the dependence of v with respect to (x, P, X), we will denote with v(·; x, P, X)

the solution to (5.3).
We need some preliminary results whose proof are postponed to the Appendix; note that

the bound (5.6) relies on the continuous dependence estimates of Sect. 3.

Lemma 5.1 For any (x, P, X) ∈ R
N × R

N × S
N , there is a unique ρ ∈ R for which there

exists a �1-periodic solution to (5.3). Moreover

ρ = −
∑N

k=1 γk

[
− Xek · ek + ∫

ek
H(x, y, P · ek)dy

]

∑N
k=1 γk

(5.4)

and there exists a constant C̄1 such that

‖v(·; x1, P1, X1)‖C2,θ (�) ≤ C̄1(1 + |P1|)
‖v(·; x1, P1, X1) − v(·; x2, P2, X2)‖L∞(�) ≤ C̄1|P1 − P2| (5.5)

+C̄1|x1 − x2|(1 + |P1| ∧ |P2|) (5.6)

for every (x1, P1, X1), (x2, P2, X2) ∈ R
N × R

N × S
N , where θ ∈ (0, 1] as in (3.7).

Remark 5.2 The formula (5.4) entails that the effective operator H̄ is convex and uniformly
elliptic in X and there exists a constant C̄1 such that

∣∣H̄(x1, P1, X1) − H̄(x2, P2, X2)
∣∣ ≤ C̄1(|P1 − P2| + |X1 − X2|)
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+C̄1|x1 − x2|(1 + |P1| ∧ |P2|)
for every (x1, P1, X1), (x2, P2, X2) ∈ R

N × R
N × S

N .

Lemma 5.3 The problems (5.1) and (5.2) admit a unique bounded solution uε and,
respectively, u. Moreover, there exists a constant C0 such that

‖uε‖C2,θ (�ε) ≤ C0, ‖u‖C2,δ(RN ) ≤ C0 (5.7)

for some θ, δ ∈ (0, 1].
Lemma 5.4 If g : RN → R is a smooth function, then it satisfies the Kirchhoff condition at
νi ∈ Vε in (5.1), i.e.

∑

α∈Ai

γiαμα∂αg(νi ) = 0.

Theorem 5.5 Let uε and u be respectively the solution of (5.1) and (5.2). Then, there exists
a constant M such that for ε sufficiently small

‖uε − u‖L∞(�ε) ≤ Mεδ,

where δ as in (5.7).

Proof Given ε ∈ (0, 1), for η ∈ (0,∞) define the function

φ(x) := uε(x) − u(x) − ε2v
( x

ε
; [u](x)

)
− η

2
|x |2 ∀x ∈ �ε,

where v (y; [u](x)) := v(y; x, Du(x), D2u(x)) is the solution of (5.3) with (x, P, X) =
(x, Du(x), D2u(x)). Since u, uε and v are bounded, there exists x̂ ∈ �ε where the function
φ attains its maximum.

Set c := 4C̄1(1 + 2C0)ε
δ (where C̄1, C0 and δ are the constants introduced respectively

in Lemma 5.1 and Lemma 5.3) and introduce the function

φ̃(x) := uε(x) − u(x) − ε2v
( x

ε
; [u](x̂)

)
− η

2
|x |2 − c|x − x̂ |2

where |x − x̂ | is the standard Euclidean distance between x and x̂ . We have φ̃(x̂) = φ(x̂)
and also, by the definition of x̂ ,

φ̃(x̂) − φ̃(x) = [φ̃(x̂) − φ(x)] + [φ(x) − φ̃(x)] ≥ φ(x) − φ̃(x)

≥ −ε2
[
v(

x

ε
; [u](x)) − v(

x

ε
; [u](x̂))

]
+ cε2

for every x ∈ ∂B(x̂, ε) ∩ �ε, where B(x̂, ε) = {x ∈ R
N : |x − x̂ | < ε}. Using the estimates

in (5.6), Lemma 5.3 and recalling the definition of c, we get

φ̃(x̂) − φ̃(x) ≥ − C̄1[2C0ε
δ + (1 + ‖Du‖∞ + ‖D2u‖∞)ε]ε2

+ 4C̄1(1 + 2C0)ε
2+δ > 0

for every x ∈ ∂B(x̂, ε)∩�ε . Therefore, φ̃ attains amaximum at some point x̃ ∈ B(x̂, ε)∩�ε .
Let us prove that there exists a constant M1 > 0 (independent of ε and η) such that

η
1
2 |x̃ | ≤ M1. (5.8)
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By Lemma 5.1, Lemma 5.3 and the inequality φ(x̂) ≥ φ(0), we obtain

η

2
|x̂ |2 ≤ 4C0 + 2C̄1(1 + 2C0)ε

2.

We deduce that, for M1 sufficiently large, we have η1/2|x̂ | ≤ M1/2 and therefore

η
1
2 |x̃ | ≤ η

1
2 |x̂ | + η

1
2 |x̃ − x̂ | ≤ η

1
2
M1

2
+ η

1
2 ε ≤ η

1
2 M1,

hence (5.8).
We claim that there exists a constant M (independent of ε and η) such that

uε(x̃) − u(x̂) ≤ M
[
εδ + η1/2

]
. (5.9)

We first show that x̃ /∈ Vε . Indeed, assume by contradiction that x̃ = νi ∈ Vε. By adding
the term −d�(x, x̃)2, where d� is the geodesic distance on the network, it is not restrictive
to assume that x̃ is a strict maximum point for φ̃ and therefore ∂αφ̃(νi ) > 0 for all α ∈ Aε

i
(recall the definition of ∂α as the outward derivative at the vertex). Since uε and v solve
respectively (5.1) and (5.2), by Lemma 5.4 we have

0 <
∑

α∈Ai

γiαμα∂αφ(νi ) =
∑

α∈Ai

γiαμα∂α

(
u + η

2
|x |2 + c|x − x̂ |2

)

x=νi

= 0,

a contradiction and therefore x̃ ∈ (B(x̂, ε) ∩ �ε)\Vε . Let α ∈ A be such that x̃ ∈ �ε
α

and eα a unit vector parallel to �ε
α . Since uε satisfies (5.1) and x̃ is a maximum point for

uε(x) − [u(x) + ε2v(x/ε; [u](x̂)) + η|x |2/2 + c|x − x̂ |2], we have
0 ≥ uε(x̃) − μα∂2

[
u(x) + ε2v(

x

ε
; [u](x̂)) + η

2
|x |2 + c|x − x̂ |2

]

x=x̃
+

H
(
x̃,

x̃

ε
, ∂

[
u(x) + ε2v(

x

ε
; [u](x̂)) + η

2
|x |2 + c|x − x̂ |2

]

x=x̃

)
.

(5.10)

We compute

∂
[
u(x) + ε2v(

x

ε
; [u](x̂)) + η

2
|x |2 + c|x − x̂ |2]x=x̃

=Du(x̃) · eα + ε∂yv(
x̃

ε
; [u](x̂)) + ηx̃ · eα + 2c(x̃ − x̂) · eα,

and

∂2
[
u(x) + ε2v(

x

ε
; [u](x̂)) + η

2
|x |2 + c|x − x̂ |2]x=x̃ =

=D2u(x̃)eα · eα + ∂2yv(
x̃

ε
; [u](x̂)) + η + 2c.

Replacing the previous identities in (5.10) and using Lemma 5.1, Lemma 5.3, (5.8) and
x̃ ∈ B(x̂, ε) ∩ �ε , we get

0 ≥ uε(x̃) − μα

(
D2u(x̃)eα · eα + ∂2yv(x̃/ε; [u](x̂))) + H

(
x̃,

x̃

ε
, Du(x̃) · eα

)

− M2
(
εC̄2(1 + 2C0) + η1/2M1 + 2cε + η + 2c

)
≥ uε(x̃)

− μα

(
D2u(x̂)eα · eα + ∂2yv(x̃/ε; [u](x̂))) + H

(
x̂,

x̃

ε
, Du(x̂) · eα

)

− M2(ε
δ + η1/2) = uε(x̃) + H̄(x̂, Du(x̂), D2u(x̂)) − M2(ε

δ + η1/2)

= uε(x̃) − u(x̂) − M2(ε
δ + η1/2)
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for some M2, which may change from line to line but is always independent of ε and γ ;
hence (5.9). For every x ∈ �ε , by φ̃(x̃) ≥ φ̃(x̂) = φ(x̂) ≥ φ(x), we get by (5.9), Lemma
5.3 and Lemma 5.1

uε(x) − u(x) ≤ [uε(x̃) − u(x̂)] + [u(x̂) − u(x̃)] + ε2
[
v(x/ε; [u](x)) − v(x̃/ε; [u](x̂))]

+ η

2
|x |2

≤ M2
[
εδ + η1/2

] + C0ε + 2C̄2(1 + 2C0)ε
2 + η

2
|x |2.

Letting η → 0+, we deduce

uε(x) − u(x) ≤ M2ε
δ ∀x ∈ �ε.

Reversing the role of u and uε, we get the statement. ��
Acknowledgements The authors were partially supported by INdAM-GNAMPA Project, codice
CUP_E55F22000270001. The second author was also partially supported by INdAM-GNAMPA Project,
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A Appendix

Proof of Proposition 3.1 We just sketch this proof because it is an adaptation of the previous
results [5, Theorem II.2], [10] and [1, Proposition 3.2 and Theorem 3.7].

The result in [1, Proposition 3.2] ensures that problem (3.4) admits a solution vλ ∈
C2,θ (�).

(i). The comparison principle yields: ‖λvλ‖∞ ≤ K . The functionwλ := vλ−〈vλ〉 solves
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−μα∂2wλ + H
(
x, ∂wλ

) + λwλ + λ〈vλ〉 = 0, x ∈ (�α\V) , α ∈ A,
∑

α∈Ai

γiαμα∂αwλ(νi ) = 0, νi ∈ V,

wλ|�α (νi ) = wλ|�β (νi ), α, β ∈ Ai , νi ∈ V.

(A.1)

We claim that there exists K∗ ∈ R such that ‖wλ‖∞ ≤ K∗(1 + K ). Indeed, in order to
prove this claim, we proceed by contradiction assuming that there exist λk , with λk → 0 as
k → ∞, such that ‖wλk‖∞ ≥ k(1 + K ). Then, the function Wk = wλk/‖wλk‖∞ is zero
somewhere, fulfills ‖Wk‖∞ = 1 and, for x ∈ (�α\V) and α ∈ A,

−μα∂2Wk + ∂Wk

∫ 1

0
∂pH(x, t∂wλk )dt + H (x, 0) + λk〈vλk 〉

‖wλk‖∞
+ λkWk = 0

with the same transition conditions as in (A.1). We observe that

lim
k→∞

H (x, 0) + λk〈vλk 〉
‖wλk‖∞

+ λkWk = 0

uniformly in x and that, by standard arguments, theWk are uniformly bounded inC2. Hence,
eventually passing to a subsequence, Wk converges to some function W such that it is zero
somewhere and ‖W‖∞ = 1. On the other hand, dividing the differential equation in (A.1)
and letting k → ∞, by stability, we get

−μα∂2W + H̃α(x, ∂W ) = 0
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with the same transition conditions as in (A.1). The maximum principle entails that W is
constant; the desired contradiction is achieved. In conclusion, arguing as before, we have
that −μα∂2wλ + ∂wλ

∫ 1
0 ∂pH(x, t∂wλ)dt are uniformly bounded in C0,θ uniformly in λ.

By standard arguments we achieve the proof.
(ii). It is an easy consequence of point (i). ��
Proof of Lemma 5.1 The proofs of existence and uniqueness of such a ρ and of relation (5.5)
rely on an easy adaptation of standard techniques; we refer the reader to [4, 5, 13].
Relation (5.6) is due to (3.17) and (5.5).

We prove an explicit formula for ρ. Recall that, by the assumptions, there are N different
Hamiltonians Hk and N viscosity coefficientsμk , k = 1, . . . , N , corresponding to the vectors
ek . Integrating the HJ equation in (5.3) along the N arcs �k parallel to ek exiting from νi and
denoting with μk , γk the corresponding coefficients in the Kirchhoff condition, we have

0 =
N∑

k=1

γk

∫

ek
[−μk∂

2
ek (v + Xy · y/2) + H(x, y, ∂ek (P · y)) + ρ]dy. (A.2)

By periodicity of v, we have
∫

ek
∂2ekv(y)dy = ∂ekv(1) − ∂ekv(0) = −∂−ekv(0) − ∂ekv(0).

Replacing the previous identity in (A.2), we have

0 =
N∑

k=1

γkμk[∂−ekv(0) + ∂ekv(0)] +
N∑

k=1

γk[Xek · ek

+
∫

ek
H(x, y, P · ek)dy] + ρ

N∑

k=1

γk .

Therefore, taking into account the Kirchhoff condition in (5.3) at νi = 0 and observing that
γk = γ−k , where γ−k is the coefficient γα for the arc −ek , we get (5.4).

��
Proof of Lemma 5.3 The statement is obtained by standard arguments. For problem (5.1), we
refer the reader to [6, Theorem 14.5.1], [19] and [21] (note that these papers tackle infinite
networks). For problem (5.2) we refer to [4, 5]. ��
Proof of Lemma 5.4 Let g : RN → R be a smooth function. Since γiα = γα and γα , μα only
depend on the direction ek , parallel to �α , we have

∑

α∈Ai

γiαμα∂αg(νi ) =Dg(νi ) ·
N∑

k=1

(γkμkek + γkμke−k)

=Dg(νi ) ·
N∑

k=1

(γkμkek − γkμkek) = 0.

��
Example A.1 [Example of coupling F] We provide an example of coupling for the MFG
system (4.1) which fulfills the assumption (F) of Theorem 4.4. To this end, we shall borrow
some ideas of [3, Example 3.4] and of [18, pag.238].
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Consider the coupling F defined by: for any m ∈ M,

F[m](x) =
∫

�

K (x, y)m(dy) ∀x ∈ �

where the function K : � × � → R fulfills, for some positive constants k0, k1, k2,

K (x, y) = K (y, x), 0 ≤ K (x, y) ≤ k0

K (x, ·) ∈ C1(�) with ‖K (x, ·)‖C1(�) ≤ k1

K (x, ·) − K (x ′, ·)
d�(x, x ′)

∈ C0,1(�) with ‖K (x, ·) − K (x ′, ·)‖C0,1(�) ≤ k1d�(x, x ′)

for every x, x ′, y ∈ �.
Then, the coupling F satisfies assumption (F) with θ = 1 and CF = k0 + k1 + k2.

Example A.2 [Example of Hamiltonian H ] We provide an example of Hamiltonian H which
fulfills the assumptions of Theorem 4.4 (in particular, assumption (H2)). Consider Hα as
in (3.2) with

Aα = {a ∈ R
d : |a| ≤ Rα}

bα(x, a) = b̃α(x) − a and fα(x, a) = |a|2
2 f̃α(x)

.

where Rα > 0 and b̃α, f̃α ∈ C1,θ (�α), f̃α > 0. By standard calculations, the Hamiltonian
Hα reads

Hα(x, p) =

⎧
⎪⎪⎨

⎪⎪⎩

f̃α(x)
|p|2
2

− b̃α(x)p for |p| ≤ Rα

f̃α(x)

Rα|p| − R2

2 f̃α(x)
− b̃α(x)p for |p| >

Rα

f̃α(x)
.

and fulfills the assumptions of Theorem 4.4. Moreover, in this case, we also have an explicit
formula for the optimal feedback operator: for x ∈ �α

a�(x, p) =

⎧
⎪⎪⎨

⎪⎪⎩

f̃α(x)p − b̃α(x) for |p| ≤ Rα

f̃α(x)

Rα

p

|p| − b̃α(x) for |p| >
Rα

f̃α(x)
.
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