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Abstract
The continuous evolution of digital technologies applied to the more traditional world of industrial automation led to Industry
4.0, which envisions production processes subject to continuous monitoring and able to dynamically respond to changes that
can affect the production at any stage (resilient factory). The concept of agility, which is a core element of Industry 4.0, is
defined as the ability to quickly react to breaks and quickly adapt to changes. Accurate approaches should be implemented
aiming at managing, optimizing and improving production processes. In this vision paper, we show how process management
(BPM) can benefit from the availability of raw data from the industrial internet of things to obtain agile processes by using a
top-down approach based on automated synthesis and a bottom-up approach based on mining.

Keywords Industry 4.0 · Process management · BPM · Process mining · Process adaptation

1 Introduction

Industry 4.0 envisions production processes subject to con-
tinuous monitoring and able to dynamically respond to
changes that can affect the production at any stage. In par-
ticular, Industry 4.0 processes must be agile, where agility
is defined as a combination of responsiveness and resilience
[1]. Responsiveness concerns the ability to adapt to changes
in the demand, provide customers with personalized prod-
ucts (mass customization), quickly exploit temporary or
permanent advantages and keep their competitive edge,while
resilience concerns the ability to react to disruptions along
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the supply chain. The resulting processes will be able to suc-
cessfully adapt to an evolving and uncertain business context
in terms of both demand (customization, variability, unpre-
dictability) and supply (new components, uncertainty in the
supplies, bottlenecks and risks) taking into account not only
the single organization but the entire value chain.

The term smart manufacturing is used in some contexts
(especially in the US literature and market) as synonymous
of Industry 4.0, even though in Industry 4.0 the focus is,
in principle, not only on the manufacturing phase, having
instead impact on all the phases of the product life-cycle [2,
3]. Anyway, this term highlights the role of smart systems as
a fundamental component of the last industrial revolution. A
smart system, also known as an intelligent system, refers to a
(set of) technology(ies) and/or device(s) that incorporate(s)
advanced computing, sensing, and communication capabili-
ties to perform tasks ormake decisions autonomously or with
minimal human intervention [4]. These systems use data,
often collected in real time, to analyze and adapt their behav-
ior in response to changing conditions, ultimately optimizing
their performance and enhancing efficiency.

In a digital factory, the involved actors falling in differ-
ent categories, being humans (i.e., final users or participants
in the production process), information systems/applications
or industrial machines, must be able to communicate and
interact at the digital level while operating in the physical
world. The industrial internet-of-things (IIoT) represents one
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Fig. 1 Interplay of IoT and BPM [8]

of the technological pillars to this end [5]. By covering the
domains of machine-to-machine (M2M) and industrial com-
munication technologies, IIoT is the computing concept that
enables efficient interaction between the physical world and
its digital counterpart [6]. In particular, thanks to IIoT, phys-
ical entities involved in the manufacturing process can have
faithful representations in the digital world, usually defined
as digital twins [7].

The employment of raw data coming from IIoT to obtain
industrial agile processes is not straightforward. The IoT-
Meets-BPM Manifesto [8] proposes how business process
management (BPM) and the IoT can benefit from each other
and be effectively combined (see Fig. 1). On the one hand, the
IoT provides a vast amount of data (e.g., from sensors) that
can complement already available data (e.g., traces produced
by processes) used in BPM. A clear advantage of using IoT
data is that it can be automatically retrieved from devices, in
contrast to traditional procedures to collect them, which may
require having human users manually starting and ending
activities. In addition to that, IoT data are less error-prone
and thus more accurate than human-generated data. On the
other hand, IoT data from a single device (e.g., a converter)
may represent simply a routine, i.e., theymight lack a broader
view of the higher-level context in which they are actually
used (e.g., amanufacturing process). In such a scenario, BPM
can be leveraged to bridge the gap between raw sensor data
and the actual activities in the underlying process.

In this vision paper, in the context of the problems identi-
fied by the IoT-Meets-BPM Manifesto, we focus on how to
achieve process agility in smart manufacturing. In particu-
lar, we propose (i) a top-down approach based on automated
synthesis, and (ii) a bottom-up approach based on process
mining. To illustrate how the two approaches can be applied,
a case study is introduced, abstracted by analogy over the
real experiences of the authors in industrial settings.

This paper is based on two works in progress [9, 10],
presented during the 23rd business process modeling, devel-
opment and support (BPMDS) working conference without
publication. In particular, authors in [9] discuss the impor-
tance of the employment of artificial intelligence for the
resilience of business processes in Industry 4.0, whereas
authors in [10] discuss the potential of applying process min-
ing to time series produced by IoT powered environments. As
mentioned above, these two visions suggested that Industry
4.0 can benefit from a combined top-down and bottom-up
approach to BPM, which is the goal of the present work.
To define a common framework, the authors of both papers
agreed on a common case study (see Sect. 4) on which the
proposed approach has been defined and exemplified.

The paper is organized as follows. Section 2 intro-
duces preliminary concepts relevant for the remaining of the
manuscript. Section 3 introduces and analyzes related works.
Section 4 introduces the case study we refer to in the rest
of the paper. Sections 5 and 6 present how to obtain agile
industrial processes by using synthesis and process mining,
respectively. Finally, a discussion and concluding remarks
are presented in Sect. 7.

2 Preliminaries

2.1 BPM and process mining

Business process management (BPM) is a discipline that
uses various methods to discover, model, analyze, measure,
improve and optimize business processes. A business process
coordinates the behavior of people, systems, information and
things to produce business outcomes in support of a business
strategy [11]. In simpler terms, BPM is a way of manag-
ing and improving the processes that are used to create and
deliver products and services. It involves identifying the steps
of a process, analyzing them to identify areas for improve-
ment, and thenmaking changes to streamline the process and
make it more efficient.

Process mining, by merging data mining techniques and
processes, enables decision makers to discover process mod-
els from data, compare expected and actual behaviors, and
enrich models with information retrieved from data [12]. It
focuses on the real execution of processes, as reflected by the
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event logs collected from the software systems of an organi-
zation.

The main techniques of process mining are discovery and
conformance checking. Discovery starts from an event log
and automatically produces a process model that explains
the different behaviors observed in the log, without assum-
ing any prior knowledge on the process. Nowadays, whereas
a plethora of process discovery solutions has been developed
and successfully employed in several application domains
[13], existing techniques are suitable to discover processes
that have no data perspective incorporated into them. Confor-
mance checking compares a process model and an event log
for the same process, with the aim of understanding the pres-
ence and nature of deviations. The majority of conformance
checking techniques are based on ad hoc implementations
of traditional searching algorithms that work in specific
domains [14].

With respect to high level support to processes, process
mining can be used in a bottom-up fashion to (i) discover the
process actually employed and thus fully exploiting raw data,
(ii) identify inefficiencies and problems in the process (e.g.,
the negative outcome of the process can be predicted by tak-
ing into account sensor measurements ignored by traditional
information systems), (iii) integrate high level automation
procedures with additional conditions mined from raw data,
and (iv) suggest a different/better usage of resources.

2.2 AI and the control problem

A control problem is typically a situation in which a system
needs to bemanaged to achieve specific objectives. Themain
goal in such a problem is the selection of the right actions to
be performed in order to maintain the system in an accept-
able state. Solutions to such a problem are commonly based
on classical feedback control theory. In this context, a well-
known approach to support such systems is the feedback
control loop called MAPE-K [15] conceived as a sequence
of four actions, i.e., monitor, analyze, plan and execute, over
a knowledge base.

AI technologies can play an important role in the develop-
ment of appropriate control systems able to manage complex
processes while remaining robust, reactive and adaptive
in the presence of both environmental and task changes
[16]. Three different approaches can be distinguished: (i) a
programming-based approach, where the control is manually
generated (commonly by a programmer) and un-anticipated
events cannot be handled; (ii) a learning-based approach
(e.g., based on reinforcement learning), which does not
require a complete knowledge by the experts but instead
necessitate the presence of data related to negative condi-
tions (which are hard to collect); (iii) and a model-based
approach, where the problem is specified by hand (using, for
instance, formal methods) and the control is automatically

derived (e.g., automated planning, synthesis). We propose a
model-based approach based on automated planning.

Automated planning, which is one of the oldest areas
in AI, is designed to synthesize autonomous behaviors in
an automated way from a model [17]. Different types of
planning can be distinguished, e.g., classical planning and
non-deterministic planning. Intuitively, classical planning
deals with deterministic scenarios, while non-deterministic
planning deals with non-deterministic and stochastic scenar-
ios.

Formally, a classical planning problem [18] (X , I , γ, O)

consists of a set of state variables X , a description of the
initial state I of the system (i.e., a valuation over X ), a goal
γ represented as a formula over X , and a list of operations
(or actions) O over X that can lead to state transitions. State
variables X and actions O constitute the planning domain of
the problem. Solving a planning problem aims at automati-
cally finding a sequence of actions that, applied to the initial
state I , leads to a state s such that s |� γ (s satisfies γ ). An
action o ∈ O is defined as a tuple o = 〈χ, e〉 where χ is
the precondition and o is the effect. Both precondition and
effect are conjunctions of literals (positive or negative atomic
sentences) over X . χ defines the states in which o can be exe-
cuted, i.e., o is applicable in a state s if and only if s |� χ ; and
e defines the result of executing o. For each effect e and state
s, the change set [es] is a set of state variables whose value is
modified upon the action. And, the successor state of s with
respect to the action o, is the state s′ such that s′ |� [es] and
s′(v) = s(v) for all state variables v not mentioned in [es].

The state space of the problemmay be huge; nevertheless,
many algorithms and heuristics have been proposed and inte-
grated over the years into planning systems (i.e., planners) to
find a solution efficiently. Planners input the problem model
using a standard language PDDL (Planning Domain Defi-
nition Language) [19]. The problem model is described in
the form of the domain and problem descriptions. Such a
division allows for an intuitive separation of the elements
related to every specific problem of the given domain (i.e.,
types, predicates and actions), and the elements that deter-
mine the specific problem (i.e., available objects, initial state
and goal).

2.3 Information systems in Industry 4.0

Processes of an Industry 4.0 company are usually managed
by a set of application systems (also referred to as information
systems—ISs), along the set of steps of the product manufac-
turing, which ranges from the development of the idea to the
post-manufacture monitoring. Additionally, to support the
business processes at an operational level, business process
management systems (BPMSs) can be employed [20].

At design time, computer-aided design (CAD) and
computer-aided manufacturing (CAM) software are used,
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respectively, to design a product and to determine the
machine operations [21]. A product knowledge environment
is developed by the product life-cycle management (PLM)
that monitors and analyzes the product during its entire life
[22]. To support the customers and the suppliers, the cus-
tomer relationship management (CRM) and the supply chain
management (SCM) are employed [23]. Further, the ware-
house management system (WMS) controls and administers
warehouse operations [24].

Often confused with each other, the enterprise resource
planning (ERP) and the manufacturing execution system
(MES) represent critical ISs providing fundamental opera-
tional support. On the one hand, the ERP supports most of
the processes common to any kind of company including
sales,marketing, purchasing, production planning, inventory,
finance, and human resources [25], thus incorporating CRM,
SCM and WMS. On the other hand, a MES is commonly
associated with the ERP system and the production lines,
storing data from both sources to monitor and optimize the
production process. Common MES functionalities include
productionmanagement, creating themost productive sched-
ule of detailed operations needed to accomplish the master
production plan [26]. Also, the MES is interconnected to the
other components in the company to support interoperability
between them and enable autonomous decisions [27].

The employment and management of processes in facto-
ries can range frommanually defined procedures (sometimes
called recipes) to the employment of resource allocation and
scheduling techniques to more advanced approaches based
onAI, as proposed in thiswork.As discussed in Sects. 2.2 and
5, by leveraging AI techniques and embedding them in the
ERP and MES, model-based approaches can be deployed to
ensure a production plan (i.e., a solution to the control prob-
lem of the manufacturing company) [28]. Models are built
over the data exchanged between the ISs to suggest the ideal
planning. This in turn can be leveraged to define resilient
master production plans (in the ERP) and detailed operation
schedules (in the MES).

3 Related works

Only very recently, researchers have emphasized the advan-
tages of incorporating BPM into Industry 4.0 companies. For
instance, authors in [29] have highlighted that a high level of
BPM implementation also impacts a high level of adoption of
Industry 4.0 key-enabling technologies. In this context, inno-
vative technologies such as IIoT, enable the collection and
analysis of real-time data, empowering businesses to opti-
mize and automate their processes [30].

Authors in [31] also explored the intersection of Industry
4.0 and BPM. This intersection not only opens up new direc-
tions for themanagement and executionof business processes

but also presents new conceptual, technological and method-
ological challenges for information systems. These systems
must become more sensitive to event processing and have to
consume a large volume of data permanently. In this regard,
authors in [32] demonstrated that BPM enables the develop-
ment of frameworks for integrating IoT with BPM, enabling
bidirectional communication and IoT-aware process execu-
tion.

Industry 4.0 has led to the need for new business processes
representations that take into account the characteristics of
IoT technologies orCloudComputing applications [8]. Some
studies have proposed novel approaches to support IoT-aware
processes. Recent surveys present comprehensive lists and
comparisons of proposed solutions [33–36], even if they are
generic to IoT-aware business process modeling, without any
specificity for Industry 4.0 scenarios. Interestingly, whether
smart manufacturing poses new challenges in terms of IoT-
aware processes has not yet been investigated, to the best of
our knowledge.

Again only very recently, researchers have started present-
ing innovative approaches leveraging process mining as an
integral part of the management of dynamic manufacturing
processes. Authors in [37] proposed an innovative approach
based on joint mining techniques to support the extraction of
reliable process models from event data generated in man-
ufacturing systems. Authors in [38] investigated the use of
process mining for life cycle assessment in manufacturing
aiming at identifying process deviations and interruptions. A
comprehensive set of recommendations on how to employ
which process mining technique for different goal analyses
is discussed in [39]. Presented guidelines can be summa-
rized in: (i) use process discovery as a screening tool and (ii)
use conformance checking to detect deviations. Particularly,
(iii) use data-aware conformance checking for quality issues,
concept drift prediction and predictive maintenance, and (iv)
time-aware conformance checking for temporal deviations
and organizational problems. Finally, (v) collaborate with
domain experts to define process enhancement actions.

A few seminal works proposing AI planning in manufac-
turing are [40–42], inwhich the focus is on robotics and single
machines, whereas our work attempt to provide a high-level
view, by applying planning at the level of business processes
considered as an orchestration of intermediate steps (manu-
facturing services) for achieving a production goal [43, 44].

4 The glass factory case study

We introduce a case study scenario that depicts a glass manu-
facturing companynamedGlassFactory.1 Abrief description

1 Adapted from https://in.saint-gobain-glass.com/glass-
manufacturing-process
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Fig. 2 GlassFactory manufacturing actors and layout

of the actors involved is provided below, and their placement
in the factory is shown in Fig. 2.

• Raw materials are a mixture of different components,
comprising silica sand, calcium oxide, soda, magnesium
and recycled glass (cullet). They are stored in the ware-
house as batches and are passive, meaning that other
actors are responsible for them. In the rest of the paper,
they are named objects.

• A warehouse (of raw materials) stores the batches of raw
materials before being used in themanufacturing process.

• A heater machinery heats the batched rawmaterials (one
at a time) transforming them into molten glass.

• A processor machinery gives a shape to the molten glass
(one at a time).

• A cooler machinery cools, one at a time, the glass.
• A convertermachinery performs the tasks of the previous
three actors, i.e., heat, process and cool objects, in one
pass.

• Two robotic carriers (or robots) have three capabilities,
i.e., loading and unloading an object, and moving around
the factory.

• A warehouse (of manufactured goods) stores produced
glass before their distribution for sale.

Also considered as actors of the GlassFactory, the ERP
and theMES systemsmanage the business processes. Specif-
ically, the ERP deals with warehouse-related processes
(e.g., inventory, purchasing and planning purposes) and the
MES deals with production processes aiming at computing
accurate operation planning (coherent with the ERP) and
monitoring the production.

The glass production process consists of the ordered
sequence of heating, processing and cooling transformations
on raw material. Those activities are enabled by the heater,
the processor and the cooler, respectively. As an alternative,
the converter can be used to perform those same activities all
in one. The objects (i.e., raw materials and (semi-)finished

glass) are carried by the robots among the factory machines
to undergo thementioned transformations. The principal pro-
duction goal of GlassFactory is to “manufacture a single
glass product and place it in the warehouse of manufactured
goods”.

The involvedmachinery and robots are equippedwith sen-
sors and computing capabilities. Usually, the sensors collect
real-time working data such as speed, temperature, vibration
and voltage. As described in [45], such data can be accessed
through a set of application programming interfaces (APIs)
which can be implemented as synchronous or asynchronous
endpoints following different protocols (e.g., MQTT, Rest
APIs, WebSockets). Usually, the accessed sensor data are
usually stored in databases in a structured or even unstruc-
tured manner.

Commonly, available endpoints also give the chance to
retrieve the descriptions of the actors themselves. Such
descriptions include functionalities specified in terms of
the actions the specific actor is able to perform and status
information. Particularly, an action is expressed in terms of
prerequisites, post-action conditions and extra details such as
execution cost and probability of success. The prerequisites,
detail the conditions (typically, Boolean conditions) enabling
the execution of an action. The post-action conditions indi-
cate the effects of the execution of an action and they are
expressed in terms of which properties change.

Though the just described case study is a fictional one, it
is designed to closely mimic real-world Industry 4.0 scenar-
ios. Several real-world examples are considered to devise the
GlassFactory case study. The real cases range from indus-
trial ones such as die cutters, packaging [46] and spindles
[47] manufacturing production to the agri-food sector like
wine production [48].

The GlassFactory case study captures the essence of
real-world manufacturing networks (information systems,
machines, products, humans) by simply abstracting their
complex interactions to achieve a common goal, i.e., the
manufacture of a product. This simplified digital factory
emphasizes the pervasive presence of sensors and computing
capabilities within each actor. This enables the collection of
tons of data for insightful analyses.

In addition, the proposed case study acts as a bridge, trans-
forming complex realities into easily accessible solutions for
experimentation. This fictional setting allows us to explore
hypothetical scenarios and control for specific variables that
may be difficult to isolate in the real world. Although we
acknowledge that generalization may be challenging, we
strongly believe that the core findings can be applied in sim-
ilar real-world contexts.

On the other hand, as the case study, though realistic,
is fictitious, some limitations may apply. In first place, the
factory is modeled in terms of discretized space and time.
Even though this is usually considered a fair assumption,
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as abstraction is part of the application methodology of both
process mining and automated synthesis, the lack of real data
may result in an excessively simplified scenario. However,
this does not undermine the drawn conclusions as proposed
techniques can be applied inmore complex situations aswell.

5 Synthesis-based agility

In the traditional manufacturing process, the production plan
is generated based on new and historical orders. Then the
preparation for production is carried out, such as equipment
maintenance and material collection. Finally, formal pro-
duction is executed according to the plan. If some conflicts
appear, the plan is modified to adapt to the actual situa-
tion. After production, finished products are inspected to
ensure whether they meet requirements, and consequently
transported into the warehouse or repaired. Information gen-
erated during production such as process documents and fault
records are kept in files for the next round.

Automated planning techniques can be employed in a con-
text like that to automatically orchestrate the supply chain to
satisfy a specific goal. The generated output consists of a syn-
thesis of autonomous behaviors (i.e., plans) fromamodel that
compactly and mathematically describes the problem envi-
ronment (i.e., themanufacturing company). Its usage enables
an automatic recovery, optimization and orchestration of the
necessary actions to be executed to achieve the goal.

Wepropose a resilient automatedplanning-based approach
for the agile orchestration of the involved actors [43]. Par-
ticularly, we take advantage of the opportunity to extract the
characteristics of the actors (e.g., warehouses and robots)
from the available endpoints to define in an automated way
the description of the problem environment. The main com-
ponents of the proposed approach are depicted in Fig. 3.

We devise a module, i.e., translator, that combines the
actors and the production goal descriptions and converts them
into a PDLL problem model composed of the domain and
problem files. The planner produces the plan based on the
problemmodel and inputs it to the enactormodule. The latter
manages the effective execution of all the necessary actions

Fig. 3 The architecture of the proposed prototype

1 (move rb1 l 31 l 00 )
2 ( load rb1 o1 l 00 )
3 (move rb1 l 00 l 03 )
4 ( unload rb1 o1 l 03 )
5 ( convert cnv1 o1 l 03 )
6 ( load rb1 o1 l 03 )
7 (move rb1 l 03 l 36 )
8 ( unload rb1 o1 l 36 )

Fig. 4 Main plan in the GlassFactory use case. rb1 represents robot
1, o1 represents the manufactured object and l<r><c> represents
locationswith<r> and<c> referring to rows and columns, respectively
(see Fig. 2)

specified in the plan by invoking the endpoints of relative
actors capable of performing those actions.

5.1 Application to the case study

The production goal of the GlassFactory case study cor-
responds to the manufacture of glass, consisting of the
conversion of raw materials into glass successive to the heat-
ing, processing and cooling operations. The main steps of
the workflow to generate the GlassFactory plan for such a
production goal are described below and follow the depiction
in Fig. 3.

The actors’ descriptions, i.e., warehouses, robots,
machines and objects, are retrieved and fed, together with
the goal description, to the translator which generates the
PDDL problem model, i.e., the domain and problem files.

The problem model is then processed by the planner and,
upon planning completion, the resulting plan is generated.
Figure4 shows one of the possible plans generated forGlass-
Factory. Note that in this case the converter will be used, as
it is the cheapest way to achieve the production goal. We can
expect that in the case the converter is broken, the other three
machines will be used instead.

The sequence of actions listed in the plan is managed by
the enactor, that one at a time calls the specific actor able to
execute that action. Notably, between the action executions,
the enactor checks the state of the actor who executed the
previous action to verify if the output is equal to the expected
one. Let us assume, for instance, that the fifth operation of the
main plan times out. Then the enactor will (i) set the status
of the converter to broken and (ii) activate the translator to
update the problem model. The planner will then generate
a new updated plan (recovery plan) that, starting from the
current state of the system can lead to the final goal (involving
for instance the heater, processor and cooler.

A tool of the proposed prototype has been developed2 and
experiments have been conducted by synthesizing different
plans based on diverse conditions of the available actors.

2 Source code and experiment results of the developed tool available at
https://github.com/iaiamomo/agility_synthesis
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5.2 Support to agility

The proposed approach enables an agile and responsive solu-
tion to the control problem. This option is enabled mainly
because of the presence of two main components, i.e., the
enactor and actor endpoints.

The presence of endpoints allows the possibility to retrieve
information related to the status of the actors involved in the
process at any moment. In other words, upon an unexpected
situation happens, it is immediately noticed thanks to the
presence of the endpoints.

Additionally, the presence of the enactor module, which
interfaces with the actors, allows for continuous monitoring
of them during the process execution and if something is not
coherent with the expected results it triggers the translator to
re-compute a new problem model to reach the final target,
i.e., the manufacturing goal.

With the integration of classical planning methods and
real-time data gathering, smart manufacturing environments
are prepped to achieve new levels of efficiency and reactivity
ensuring an agile optimization of the production processes.

5.3 Limitations

The proposed approach represents a possible solution to the
general problem of orchestration of the supply chain. Despite
this, employing the classical planning approach suffers limi-
tations as regards the neglecting of the non-deterministic and
probabilistic behavior of the manufacturing scenarios, there-
fore producing non-optimal results. For instance, machines
are subject to wear and can suddenly break down, thus lead-
ing to disruption of the supply chain and re-design of the
production process.

On theother hand, non-deterministic planning approaches,
like the ones proposed by authors in [28, 49], although pro-
ducing exact solutions, have limitations on performances.
Such methods apply algorithms like Markov decision pro-
cesses (MDPs) which are exponential in the number of states
and do not competewith the heuristic algorithms used in clas-
sical planning methods. Manufacturing scenarios present a
vast number of actors (i.e., machinery, humans and actors)
and sometimes tricky production process goals (e.g., sup-
ply chain), the number of the states could be massive and
non-deterministic approaches result in being inoperable, as
of today.

6 Mining-based agility

As stated in the IoT-meets-BPM Manifesto, the combination
of process mining and data analytics techniques like data
mining and machine learning, can give valuable insights into
the data [8]. Such a combination allows to identify patterns

within low-level data and to apply predictive analytics to
reveal hidden knowledge. Then, based on the analysis results,
informed decisions can be made.

Industry 4.0 environment contains a huge number of
(intelligent) manufacturing actors typically equipped with
sensors that enable the availability of a massive amount of
raw data. It is not always straightforward to build a rela-
tionship between raw data and business processes. However,
by leveraging both process mining and data analytics tech-
niques, the gap between the parts can be filled. We can
identify different approaches intending to extract unseen
insights leveraging on analytics techniques. For instance,
localization systems (e.g., geofencing) output position data
and methods like pattern recognition or machine learning
could be applied to identify events. Furthermore, hidden
Markov models and the use of particle filters make it pos-
sible to increase the accuracy by integrating motion models
[50]. Moreover, AI methods such as clustering and unsuper-
vised learning show structures that are used by techniques
such as event classification to aggregate new patterns [32,
51]. Such approaches lay the foundation for collecting event-
related data. However, little effort has been spent on efficient
data pre-processing and accurate abstraction of event log data
from the raw data. A too fine-grained abstraction leads to
the overfitting of the discovered process model, while a too
coarse-grained abstraction results in underfitting. To illus-
trate this, consider the activity of preparing the production
related to our use case. Then, the question arises if the start of
the activity is initiated when the new order has been checked,
when the machine settings have been made, or when the
machine starts running. Most of the existing process mining
techniques are commonly applied to business events and use
data on a higher abstraction. Thus, questions related to the
analysis purpose and the start activity need to be answered
before starting the analysis. The goal of the analysis sig-
nificantly impacts the granularity of the abstraction. The
IoT-Meets-BPM Manifesto [8] discusses several challenges
including the one concerning abstracted events which need to
be aggregated to an event log in order to apply process min-
ing [52]. The challenge is, on the one hand, the combination
of offline and online data and, on the other hand, the integra-
tion of current information (e.g., context of the environment)
in the analysis. Related to abstraction is the contextualiza-
tion of activities. For instance, in the smart factory example,
wearable sensors of the actors produce similar data for lift-
ing a workpiece from one workstation and putting it down at
the next station. Because the pre-processing steps miss con-
textual information, it are unable to efficiently distinguish
between these activities during the abstraction/aggregation
step. Thus, the data need to be explicitly contextualized into
the realm of the analyzed process.

Additionally, the discovered process should be explained
in order to increase the trustworthiness of the approach
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Fig. 5 Visualization of the process analytics pipeline

[53]. The analysis result can be explained in different
ways. For example, the combination of process data with
domain knowledge (e.g., via labeling or human-in-the-loop
approaches [54]) allows transparency and interpretability of
the model. Explainability through the annotation of outliers
is likewise possible. With this approach, outlier information
is propagated through each step of the process from raw data
to the analysis results in terms of meta-data annotations [55].

To sum up, the data-driven process mining approach gives
valuable insights into the smart factory use case in terms of
discovering reasons for, e.g., late packaging and deliveries,
identifying bottlenecks, or improving predictions.

6.1 Application to the case study

We now propose a process analytics pipeline that extends
the approach proposed in Sect. 5. The pipeline (see Fig. 5)
analyzes raw data coming from the manufacturing actors to
discover processes and improve the main plan.

The pipeline allows to analyze data and knowledge from
different data sources and different levels of abstraction,
including scientific models and user (expert) knowledge,
through an interactive exploration. First, the raw datamust be
pre-processed in terms of data cleaning (i.e., removing out-
liers and extracting representative data). Then, abstraction
techniques must be applied to the pre-processed events to
enhance the datawith the corresponding information. Finally,
process mining techniques are used to discover processes by
grouping or ordering the aggregated data.

Different types of glass are manufactured by GlassFac-
tory, e.g., annealed or tempered, by using different produc-
tion processes.

The GlassFactory main plan found by the orchestrator
focuses on the production of one type of glass and consists
of the employment of robot 1 and converter machinery. Such

Fig. 6 Enhanced plan with the first two robots employed in the produc-
tion line composed by the heater, processor and cooler, and the third
robot employed in the production line employing the converter

a process is executed sequentially until the amount of man-
ufactured goods satisfies the main production goal.

Raw sensors data of temperature, voltage and uptime
work, allow the extraction of additional information related to
machinery/robots: (a)machinery temperature reach different
values depending on the glass type to be manufactured; (b)
machinery status, i.e., waiting, busy or broken, can be
accurately inferred considering its voltage, and (c) by looking
at uptimework, production process duration can be upgraded.

The main plan is enhanced in the following way. On the
one hand, analytics techniques are applied for predictive
maintenance. Currently, if a machinery breaks, the produc-
tion would be interrupted to repair the machine and the
factory would have a great waste of resources (i.e., money
and time). Being able to predict machinery (e.g., converter)
wear out, allows to re-plan before the machinery breaks pre-
venting loss of resources. If GlassFactory predicts that the
converter will break soon, its status would be changed into
broken and the orchestrator would re-plan the main plan
involving the heater, processor and cooler. On the other
hand, process mining techniques permit to optimize the plan
by considering the uptime work data. The results of such
analysis reveal that the production is optimized employing
both robot 1 and robot 2which pipeline the operations of the
heater, processor and cooler machinery. Finally, it suggests
the employment of a third robot so that upon the converter
is repaired, GlassFactory could maximize the production by
realizing two production lines, one involving the converter
which is used sequentially and another one involving the
other three machineries used in pipeline. Figure6 depicts the
enhanced production plan.

6.2 Support to agility

For data-driven mining, agility represents a closed-loop
approach. This means that the discovered process model is
used as essential quality feedback for pre-processing and
activity abstractions (see Fig. 5). For this purpose, param-
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eter tuning can be used to enhance the process model quality
based on, e.g., actor-defined values. The actor in the smart
factor pre-selects parameters, and then, the process analyt-
ics pipeline is initiated again. It is recommended not to use
predefined parameters but rather customize them according
to the use case. Mostly, the F1 score is used to evaluate the
quality of a process model. To evaluate the hyperparameter
tuning, it is recommended to analyze the influence on the
F1-score in terms of which parameter values yield average
results consistently for the data set.

6.3 Limitations

Even if the produced results are fundamental for the develop-
ment of a resilient production, it presents some limitations.

The raw sensor data usually have quality problems (in
the sense of incompleteness, redundancy or errors). There-
fore, the most time-consuming step in the analytics pipeline
from processing raw data to discovering knowledge is the
processing of the data set [56]. The reason for the time-
consuming nature of this activity is usually the quality of the
data (i.e., missing or incomplete entries). Some approaches
to improving data quality can be found in the literature [57,
58]. However, data preparation is still too time-consuming
and appropriate procedures shall be provided.

Also, it is imperative to assess the suitability of the dataset
for the intended analysis (i.e., is the data set representative?).
An exploratory data analysis might help to get initial insights
into whether the gathered data aligns with the analysis goals
and is not a “garbage-in-garbage-out” approach [59]. For
instance, assume that the wearable of the actors in the smart
factory use case are used, but have not been turned off while
wearing and thus continuously generate data. Thismeans that
certain data cannot be used for analysis or does not exist at all.
If we assume that location detection is an analysis purpose in
the use case. Then, external data about power failures could
be included beside the data from the movement detection
sensors making the data set more representative [60].

Commonly, there are often not enough data for the analy-
ses and one way to fix this is to generate synthetic data. It has
been shown that synthetic data can not only provide a substi-
tute for real data [61, 62] but even provide new insights into
domain-specific research. Synthetic data should be generated
that enable different types of analysis. Basically, it must be
balanced between the new recording of data mirroring or to
evaluate the ML method on synthetic data.

Furthermore, the detection of causal effects from data is
highly requested. The challenge, however, is that unstruc-
tured data usually do not follow well-defined patterns, so the
order in which activities are performed varies depending on
the context. This hampers the extraction of causality from
data. One solution might be the extraction of probabilistic
structures from data.

7 Discussion and concluding remarks

In this paper, we have analyzed the possible applications
of BPM and process mining in Industry 4.0. In particular,
starting from the general considerations made in the IoT-
Meets-BPM Manifesto [8], we have proposed an industrial
use case showing how process adaptation and processmining
can be applied.

Despite the clear potential of the proposed techniques
though, real application scenarios are still rare, as even
though Industry 4.0 technologies are increasingly frequent,
full interconnection of software and hardware systems is
very infrequent. Our aim, with the present paper, is to fur-
ther motivate practitioners and researchers in pursuing such
approaches; to this aim, experiments about process adap-
tivity have been performed, and future work includes the
creation of a simulation environment for applying what has
been described in this paper.

Limitations of proposed approaches have already been
defined in the specific sections above. In this section though,
we want to contextualize our work with respect to the more
general Industry 4.0 frameworks.

As stated in [1], the role of process management and min-
ing is usually associated with the properly named Business
and Functional logical layers of the Reference Architectural
Model for Industry 4.0 (RAMI) [63]. Whereas the business
layer specifically focuses on the definition and execution of
the business processes, the functional layer implements the
tasks the business processes refer to. This top-down approach
implies that technological changes at the lower hierarchy lev-
els (e.g., Field Devices), which are frequent, especially in an
Industry 4.0 scenario, are not taken into account and their
potential is not exploited.

IoT data can be instead exploited in order to integrate the
classical top-down approach (see Sect. 5) and to develop a
bottom-up approach leveraging raw data (see Sect. 6). The
variety and quantity of IoT data may increase over time, thus
producing different perspectives on the processes.

Let us discuss in detail how process mining can be applied
to the other logical layers. The Asset level represents the
source of raw data and, as such, it is the main constraining
factor of what can be obtained at the above layers.

Data provided by assets can be analyzed by applying
different techniques of data analytics. Data analytics is a
fundamental component of the methodology outlined in the
IoT-Meets-BPM Manifesto. Usually, descriptive, predictive
and prescriptive analytics techniques, paired with machine
learning and artificial intelligence, are employed to construct
models for decision making purposes [64]. Typical goals
include finding patterns and correlations of data, e.g., iden-
tifying anomalies, forecasting future events, e.g., estimating
the remaining useful life (RUL) of machines, and generat-
ing recommendations. Such analytics approaches are usually
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pairedwith the concept of digital twin (DT), i.e., a digital rep-
resentation of a physical asset. DTs are not merely used for
simulation purposes in order to continuously improve prod-
uct design, but they become a way to interact with an asset at
any point of its lifecycle [45]. DTs include features such as
the ability to interact with the environment (e.g., with other
DTs and humans), the ability to collect information about the
relative physical entity, the ability to live independently and
the ability to modify its behavior using exposed services. In
this sense, the term servitization is often used.

Advanced data-driven mining approaches require a sig-
nificant focus on data fusion, i.e., the combination of het-
erogeneous data sources. This also involves integrating data
from distributed sources to create a more complete and accu-
rate picture of the underlying processes. For instance, in the
smart factory use case, data from sensors and video cam-
eras are collected to monitor the tasks of the production. By
fusing this data, and other structured data sources such as
production logs and quality control reports, it is possible to
identify patterns that may not be apparent from solely one
data source alone [65].

The central role of products is one of the main charac-
teristics of Industry 4.0. Products are followed during their
entire life cycle, from the development phase to manufactur-
ing, employment and in some cases to re/de-manufacturing.

Products have always been indirectly part of business pro-
cesses employed in manufacturing, as the final goal of those
processes is the creation of products. In the Industry 4.0 and
RAMI vision though, products become active actors that can
execute tasks and send notifications. As such, in the future,
they will be more and more part of specific processes, in par-
ticular with respect to maintenance. In this paper, we mainly
discussed adaptivity as seen from the point of view of the
manufacturing process. Future works will include the exten-
sion of such an approach to other phases of the life-cycle of
the product.

A final remark must be made concerning the two imple-
mented approaches. The deployment of such technologies in
a real application scenario requires considering integration
issues between different involved information systems that
have been not considered in our simulations as considered
more practical than theoretical.
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Tehnički glasnik. 13(4), 349–355 (2019)

31. Bazan, P., Estevez, E.: Industry 4.0 and business process manage-
ment: state of the art and new challenges. Bus. Process. Manag. J.
28(1), 62–80 (2022)

32. Schönig, S., Ackermann, L., Jablonski, S., Ermer, A.: IoT meets
BPM: a bidirectional communication architecture for IoT-aware
process execution. Softw. Syst. Model. 19, 1443–1459 (2020)

33. Compagnucci, I., Corradini, F., Fornari, F., Polini, A., Re, B.,
Tiezzi, F.: A systematic literature review on IoT-aware business
process modeling views, requirements and notations. Softw. Syst.
Model. 22(3), 969–1004 (2023)

34. Torres, V., Serral, E., Valderas, P., Pelechano, V., Grefen, P.: Mod-
eling of IoT devices in business processes: a systematic mapping
study. In: 2020 IEEE 22nd Conference on Business Informatics
(CBI). vol. 1. IEEE, pp. 221–230 (2020)

35. Fattouch, N., Lahmar, I.B., Boukadi, K.: IoT-aware business pro-
cess: comprehensive survey, discussion and challenges. In: 2020
IEEE 29th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE). IEEE, pp.
100–105 (2020)

36. Graja, I., Kallel, S., Guermouche, N., Cheikhrouhou, S., Hadj,
KacemA.: A comprehensive survey onmodeling of cyber-physical
systems. Concurr. Comput. Pract. Exp. 32(15), e4850 (2020)

37. Friederich, J., Lugaresi, G., Lazarova-Molnar, S., Matta, A.:
Process mining for dynamic modeling of smart manufacturing sys-
tems: data requirements. Procedia CIRP. 107, 546–551 (2022)

38. Ortmeier, C., Henningsen, N., Langer, A., Reiswich, A., Karl, A.,
Herrmann, C.: Framework for the integration of process mining
into life cycle assessment. Procedia CIRP. 98, 163–168 (2021)

39. Rinderle-Ma, S., Stertz, F., Mangler, J., Pauker, F.: Process
mining-discovery, conformance, and enhancement of manufactur-
ing processes. In: Digital Transformation: Core Technologies and
Emerging Topics from a Computer Science Perspective. Springer,
pp. 363–383 (2023)

40. Fernández, S., Aler, R., Borrajo, D.: Machine learning in hybrid
hierarchical and partial-order planners for manufacturing domains.
Appl. Artif. Intell. 19(8), 783–809 (2005)

41. Krueger, V., Rovida, F., Grossmann, B., Petrick, R., Crosby, M.,
Charzoule, A., et al.: Testing the vertical and cyber-physical
integration of cognitive robots in manufacturing. Robot. Comput.-
Integr. Manuf. 57, 213–229 (2019)

42. Carreno, Y., Pairet, È., Pétillot, Y.R., Petrick, R.P.A.: Task alloca-
tion strategy for heterogeneous robot teams in offshore missions.
In: International Conference on Autonomous Agents and Multia-
gent Systems, AAMAS, pp. 222–230 (2020)

43. Monti, F., Silo, L., Leotta, F., Mecella, M.: Services in smart man-
ufacturing: comparing automated reasoning techniques for com-
position and orchestration. In: Symposium and Summer School on
Service-Oriented Computing. Springer; pp. 69–83 (2023)

44. Marrella, A., Mecella, M., Sardina, S.: Intelligent process adap-
tation in the SmartPM system. ACM Trans. Intell. Syst. Technol.
8(2), 1–43 (2016)

45. Catarci, T., Firmani, D., Leotta, F., Mandreoli, F., Mecella, M.,
Sapio, F.: A conceptual architecture and model for smart manu-
facturing relying on service-based digital twins. In: 2019 IEEE
International Conference onWebServices (ICWS). IEEE; pp. 229–
236 (2019)

46. Calamo, M., De Franceschi, A., De Santis, G., Leotta, F., Maz-
zaroppi, C., Mathew, J.G., et al.: TopKontrol: a monitoring and
quality control system for the packaging production. In: Proceed-
ings of the Research Projects Exhibition Papers Presented at the
35th International Conference on Advanced Information Systems
Engineering (CAiSE 2023), Zaragoza, Spain, June 12–16 (2023)

47. Amadori, F., Bardani, M., Bernasconi, E., Cappelletti, F., Catarci,
T., Drudi, G., et al.: Electrospindle 4.0: Towards zero defect
manufacturing of spindles. In: Joint Proceedings of RCIS 2022
Workshops and Research Projects Track co-located with the 16th
International Conference on Research Challenges in Information
Science (RCIS 2022), Barcelona, Spain, May 17–20 (2022)

48. Agostinelli, S., De Luzi, F., Manglaviti, M., Mecella, M., Monti,
F., Petriccione, F.M., et al.: BinTraWine-blockchain, tracking and
tracing solutions forwine. In:CAiSEResearchProjects Exhibition;
pp. 44–51 (2023)

49. Ciolek, D., D’Ippolito, N., Pozanco, A., Sardiña, S.: Multi-tier
automated planning for adaptive behavior. In: Proceedings of the
International Conference on Automated Planning and Scheduling,
vol. 30, pp. 66–74 (2020)

50. Carrera, J.L.V., Zhao, Z., Braun, T.: Room recognition using dis-
criminative ensemble learning with hidden Markov models for
smartphones. 2018 IEEE 29th Annual International Symposium
on Personal, Indoor andMobile Radio Communications (PIMRC),
pp. 1–7 (2018)

51. Koschmider, A., Janssen, D., Mannhardt, F.: Framework for pro-
cess discovery from sensor data. In: EMISA, pp. 32–38 (2020)

123



F. Monti et al.

52. van Zelst, S.J., Mannhardt, F., de Leoni,M., Koschmider, A.: Event
abstraction in process mining: literature review and taxonomy.
Granul. Comput. 6(3), 719–736 (2021)

53. Mehdiyev, N., Fettke, P.: Explainable artificial intelligence for
process mining: a general overview and application of a novel
local explanation approach for predictive process monitoring. In:
Interpretable Artificial Intelligence: A Perspective of Granular
Computing. Studies in Computational Intelligence. Springer, pp.
1–28 (2021)

54. Dixit, P.M., Buijs, J.C., van der Aalst, W.M.: Prodigy: Human-in-
the-loop process discovery. In: 2018 12th International Conference
on Research Challenges in Information Science (RCIS). IEEE; pp.
1–12 (2018)

55. Ziolkowski, T., Koschmider, A., Kröger, P., Devey, C.: Outlier
quantification for multibeam data. Informatik Spektrum. 45(4),
218–222 (2022)

56. Ter Hofstede, A.H., Koschmider, A., Marrella, A., Andrews, R.,
Fischer, D.A., Sadeghianasl, S., et al.: Process-data quality: the
true frontier of process mining. ACM J. Data Inf. Qual. 15(3), 1–
21 (2023)

57. Dixit, P.M., Suriadi, S., Andrews, R., Wynn, M.T., ter Hofstede,
A.H., Buijs, J.C., et al.: Detection and interactive repair of event
ordering imperfection in process logs. In: International Conference
onAdvanced InformationSystemsEngineering. Springer; pp. 274–
290 (2018)

58. Koschmider, A., Kaczmarek, K., Krause, M., Zelst, SJv: Demysti-
fying noise and outliers in event logs: review and future directions.
In: International Conference on Business Process Management.
Springer, pp. 123–135 (2021)
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