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Abstract

Non-inferiority trials compare new experimental therapies to standard ones

(active control). In these experiments, historical information on the control

treatment is often available. This makes Bayesian methodology appealing since

it allows a natural way to exploit information from past studies. In the present

paper, we suggest the use of previous data for constructing the prior distribution

of the control effect parameter. Specifically, we consider a dynamic power prior

that possibly allows to discount the level of borrowing in the presence of hetero-

geneity between past and current control data. The discount parameter of the

prior is based on the Hellinger distance between the posterior distributions of

the control parameter based, respectively, on historical and current data. We

develop the methodology for comparing normal means and we handle the

unknown variance assumption using MCMC. We also provide a simulation

study to analyze the proposed test in terms of frequentist size and power, as it is

usually requested by regulatory agencies. Finally, we investigate comparisons

with some existing methods and we illustrate an application to a real case study.
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1 | INTRODUCTION

Non-inferiority (NI) clinical trials aim to establish whether a new experimental treatment is not worse than a standard
one (active control), which is known to be effective. Much controversy exists regarding the ethic of placebo-controlled
trials1,2: NI tests are quite popular because they do not require a placebo arm. NI trials are largely used in several medi-
cal and pharmaceutical contexts, such as vaccine experimentation3–6; oncology studies7; anti-infective product trials.8

Statistical methodologies for NI trials have been developed mainly under a frequentist perspective. However, past data
providing information on the control arm are often available: this makes Bayesian inference an ideal framework for
these trials. In fact, the Bayesian approach allows inclusion of historical knowledge for the control treatment parameter
of the current study by means of the prior distribution.9–15 Borrowing historical data implies in general that more trial
resources can be devoted to the novel treatment while retaining accurate estimates of the current control arm parame-
ter. Nevertheless, the potential lack of full homogeneity between current and previous information may recommend
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downweighting of historical data. Several methods for discounting prior information have been proposed in the litera-
ture: see, among others, Neuenschwander et al.,16 Hobbs et al.17 and, for a comprehensive review on historical data bor-
rowing, Viele et al.15 Among several alternative borrowing methodologies, we here focus on power priors, originally
defined by Ibrahim and Chen.18 See also De Santis,19 De Santis,20 Ibrahim et al.21 The power prior is proportional to
the product of an initial prior (often non informative) and the likelihood based on previous data raised to a coefficient a
that takes values in 0,1½ �: the larger a, the stronger the borrowing from historical data. The choice of a allows one to
take into account both heterogeneity and differences in sample sizes of historical and current data.

In its original definition a is either a fixed coefficient – unrelated to current and historical data – or a random variable.
More recently, several contributions follow a dynamic approach where a is based on a measure of similarity between his-
torical and current data: see, for instance, Pan et al.,22 Gravestock and Held,23 Liu13 Nikolakopoulos et al.,24 Ollier
et al.,25 Bennet et al.,26 Shi et al.27 The fundamental differences between all these approaches rely on the choice of the
measure of similarity used to define the discount parameter a. In particular, Pan et al.22 define a as a measure of con-
gruence between historical and current data based on the Kolmogorov–Smirnov statistic. Gravestock and Held23 intro-
duce an empirical Bayes approach to estimate a by maximizing its marginal likelihood based on historical and current
data; this approach has then been extended to multiple historical studies.28 Liu13 proposes a p-value based dynamic bor-
rowing approach, where a is a function of the p-value of a test on the difference between parameters of historical and
current control treatment. Nikolakopoulos et al.24 suggest the use of the Box prior predictive p-value29 that quantifies
the conflict between the priors based on historical and current data. In order to tune the commensurability parameter a
in the context of phase I bridging studies, Ollier et al.25 introduce the idea of using the Hellinger distance between the
normalized likelihoods of the control parameter given the historical and current control data. Bennet et al.26 propose to
define a on the basis of two alternative measures of agreement between current control and historical data. These quan-
tities are both functions of the posterior distributions of the respective parameters. The first measure (probability
weight) is a tail posterior probability computed for the difference between historical and current control parameters.
The second approach (equivalence probability weight) exploits the posterior probability that the difference between his-
torical and current control parameters lies within a pre-speficied interval of equivalence. A similar measure of agree-
ment is used in De Santis and Gubbiotti.30 Finally, Shi et al.27 construct the agreement parameter a using the overlap
area under the sampling distributions of the current control and historical data: the stronger the congruence, the closer
the area to one. Note that, unlike the previous ones, this method does not depend on observed data. As a data-
dependent variant of this basic idea, the authors suggest to penalize the borrowing coefficient taking into account the
p-value of a two-sided test on the equality of the control and historical parameters.

Of all the concepts contained in the above proposals, in this article we select two main ideas for defining a: (i)
the use of posterior distributions of the parameters, as in Bennet et al.26; (ii) the use of a formal distance between these
distributions, as in Ollier et al.25 who, however, consider normalized likelihoods rather than posteriors. The proposed
approach, previously considered in different contexts by De Santis and Gubbiotti,31,32 is here implemented in the frame-
work of NI trials for normal outcomes with both known and unknown variance. Specifically we follow the analysis of
Gamalo et al.,10 who, however, incorporate all historical information (full borrowing), thus ignoring potential heteroge-
neity between past and current studies in the elicitation of the control parameter prior distribution.

The outline of the paper is as follows. In Section 2.1, we describe the NI setting10 and we formalize the problem for
normal random variables. In Section 2.2, we describe the construction of the dynamic power prior. In Section 2.3, we
address the unknown variance case and we provide a MCMC algorithm for implementation of posterior analysis. In
Section 3.1, we explore the frequentist properties (size and power) of the proposed methodology through a simulation
study; in Section 3.2, we compare our proposal with other dynamic power prior approaches. In Section 4, we illustrate
an application to drug data. All the analyses presented in Sections 3 and 4 are performed using R33; code is available as
supplementary material S1. Finally, Section 5 contains some concluding remarks.

2 | METHODOLOGY

2.1 | NI trial setting

Let us consider a NI trial in which an experimental therapy E is compared to an active control C. We assume that the
latter is effective since in past studies the same drug C0 has been tested against a placebo P0. We are interested in study-
ing drug average effects by assuming that treatment responses in historical and current trials are distributed as mutually
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independent normal random variables with unknown means μi, for i¼P0,C0,C,E. Specifically, let Xi ¼
Xi1,…,Xij,…,Xini

� �
be ni i.i.d. responses under treatment i, with Xij j μi,σ2i �N μi,σ

2
i

� �
and let Xi be the corresponding

sample means, with Xi j μi,σ2i �N μi,σ
2
i =ni

� �
, i¼ P0,C0,C,E. Let us also assume independence between the Xi's and, for

the time being, known variances. Non-inferiority of the experimental therapy with respect to the active control is
declared by rejecting the null hypothesis of the test:

H0 : θ≤ �δ vs H1 : θ> �δ ð1Þ

where θ¼ μE�μC and δ>0 is the so-called NI margin.
In order to define a Bayesian methodology for NI clinical trials, one should specify:

a. assumptions over the parameters;
b. choice of the NI margin δ, that may depend on past performances of the active control and that may be modified

according to medical judgement;
c. rejection rule of the test.

This problem has been recently addressed by Gamalo et al.10 as follows.

i. Non informative priors are assumed for μP0
, μC0

and μE.
ii. The prior distribution of μC is based on full borrowing of historical control data.
iii. The NI margin is chosen to be

δ¼ 1�λð Þ�LC0�P0 , λ� 0,1½ � ð2Þ

where LC0�P0 is the lower bound of the 1�αð Þ credible interval for μC0
�μP0

and where λ allows to take into account
potential clinical judgements.

iv. Non-inferiority of the experimental treatment (rejection of H0) is declared if

LE�C > �δ, ð3Þ

where LE�C is the lower bound of the 1�αð Þ credible interval for μE�μC.
In the following section we describe how we modify point (ii) by adjusting the amount of borrowing using a

dynamic power prior for μC.

2.2 | Priors and posteriors

Implementation of Bayesian NI test requires posterior distributions of the parameters of interest μi, i¼P0,C0,C,E. As
in Gamalo et al.10 we consider non informative priors π μið Þ/ 1 for i¼P0,C0,E. Thus, the posterior density of μi is

μi jXi �N Xi,
σ2i
ni

� �
, i¼C0,P0,E: ð4Þ

Past data regarding the active control C0 can be exploited to define a power prior distribution for μC, that is propor-
tional to a starting prior π0 μCð Þ times the likelihood associated to XC0 , L μC;XC0ð Þ, raised to a power a� 0,1½ �. This quan-
tity tunes the amount of the borrowed historical information: if a¼ 0 it is totally neglected; if a¼ 1 it is fully
incorporated in the current experiment; intermediate values of a represent partial borrowing. Therefore, the power
prior for μC is
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πP μCjXC0ð Þ/ L μC;C0ð Þa�π0 μCð Þ, a� 0,1½ � ð5Þ

Assuming a non-informative starting prior, that is, π0 μCð Þ/ 1, the power prior of μC is

πP μCjXC0ð Þ¼N μC jXC0 ,
σ2C0

anC0

� �
: ð6Þ

where N � jm,v2ð Þ denotes the normal density function of parameters m and v2. Hence, the resulting posterior distribu-
tion of μC is

πP μCjXC0 ,XCð Þ¼N μC jeμC ,eσ2C� � ð7Þ

where

eμC ¼eσ2 nCXC

σ2C
þanC0XC0

σ2C0

 !
and eσ2C ¼ nC

σ2C
þanC0

σ2C0

 !�1

: ð8Þ

The posterior distribution of the parameter of interest θ¼ μE�μC is

μE�μC j XE,XC,XC0 �N XE�eμC ,σ2EnEþeσ2C
� �

: ð9Þ

To take into account potential lack of homogeneity between historical and current studies, instead of setting a pre-
fixed value of a, following the dynamic approach proposed by Ollier et al.25 and De Santis and Gubbiotti,31 we define
a as

a¼ κ � 1�dH π μCjXCð Þ,π μCjXC0ð Þ½ �ð Þ, ð10Þ

where κ� 0,1½ � is a static coefficient which provides an upper limit to the quantity of information that we borrow
and dH is the Hellinger distance between the posterior distributions of μC, respectively, obtained by updating the non-
informative π0 μCð Þ with XC and XC0 . In other words κ represents the maximum proportion of historical infor-
mation one is willing to incorporate into the current analysis in case of perfect compatibility (dH ¼ 0). For a given
value of κ, the more compatible information provided by π μCjXCð Þ and π μCjXC0ð Þ, the larger a. Since both dH and κ
range in 0,1½ �, then a takes on values in the unit interval as well. In the normal case here considered, the Hellinger
distance is

dH π μCjXCð Þ,π0 μCjXC0ð Þ½ � ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

σ2Cσ
2
C0ffiffiffiffiffiffiffiffiffi

nCnC0
p

σ2C
nC
þ σ2C0

nC0

vuuuut exp �1
4

XC�XC0

� �2
σ2C
nC
þ σ2C0

nC0

264
375

8><>:
9>=>;

0BB@
1CCA

1=2

: ð11Þ

See Appendix A for details. The null hypothesis (inferiority) of (1) is rejected if LE�C > �δ, where LE�C is the lower
bound of the 1�αð Þ credible interval for μE�μC , namely the α=2 level quantile of the posterior distribution given by
Equation (9) and δ is given by Equation (2). Note that

LE�C > �δ , P H1ð Þ>1�α

2
, ð12Þ
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where P H1ð Þ¼P θ> �δjXE,XC,XC0ð Þ is the posterior probability computed with respect to (9) and represents a mea-
sure of evidence in favour of H1.

2.3 | Unknown variance case

Let us now assume unknown variances. Following Gamalo et al.,10 we suppose that σ2i 's have independent Jeffrey's non
informative priors, that is, π σ2i

� �/ σ�2
i , for i¼ P0,C0,E. As regards σ2C, the Authors propose to use as prior distribution

the posterior density based on historical data with no discount. Conversely, we prefer a non-informative prior for σ2C
that in this set up is a nuisance parameter, in order to restrict the use of historical data only to the construction of the
prior for the effect parameter of the control group μC . Therefore, we consider the Jeffrey's prior π σ2C

� �/ σ�2
C for σ2C as

well. From standard conjugate analysis, the corresponding posterior distributions, conditional on μi, are independent
inverse gamma, that is,

σ2i jXi,μi � IG
ni
2
,
niS

2
i

2

 !
, ð13Þ

where S
2
i ¼ 1

ni

Pni
j¼1 Xij�μi
� �2

and i¼P0,C0,C,E. In implementing the NI test, recall that LE�C is the lower bound of the
1�αð Þ credible interval of the marginal posterior of μE�μC. For standard conjugate analysis results the marginal poste-
rior distribution of μi, i¼E,C, are Student t densities. As in Gamalo et al.,10 the value of LE�C can be easily obtained
numerically as the α=2 empirical quantile of an MCMC draw from the marginal posterior distribution of μE�μC, where
values of μE are sampled from μE j xE and values of μC are sampled from μC j xC,xC0 ,σ

2
C,σ

2
C0

(power posterior). The simu-
lation steps are detailed below.

1. Given the observed historical data xi, compute sample means xi, sample variances s2i , for i¼ P0,C0, and deter-

mine LC0�P0 ¼ xC0 � xP0ð Þ� z1�α
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2C0
nC0

þ s2P0
nP0

r
.

2. Fix λ� 0,1½ � and set δ¼ 1� λð Þ�LC0�P0 according to (2).
3. Consider non informative priors for μi and σ2i , i¼C0,C,E.
4. Let the observed data be xi, i¼C,E.
5. Gibbs sampling from the marginal posterior μE j xE .

Set M¼ 10000 (number of MCMC draws) and B¼ 1000 (burn-in).
Initialize σ2E.
For m¼ 1,…,M, draw

• μ mð Þ
E from μE j xE,σ2 m�1ð Þ

E �N xE,
σ2E

m�1ð Þ

nE

� �
,

• σ2E
mð Þ from σ2E j xE,μ mð Þ

E � IG nE
2 ,

nEs
2 mð Þ
E
2

� �
, where s2 mð Þ

E ¼
PnE

j¼1
xEj�μ mð Þ

Eð Þ2
nE

6. Gibbs sampling from the marginal posteriors μi j xi, i¼C,C0 for computing a

For m¼ 1,…,M, draw

• μ mð Þ
C0

from μC0
j xC0 ,σ

2 m�1ð Þ
C0

�N xC0 ,
σ2C0

m�1ð Þ

nC0

� �
• σ2 mð Þ

C0
from σ2C0

j xC0 ,μ
mð Þ
C0

� IG
nC0
2 ,

nC0 s
2 mð Þ
C0
2

� �
, where s2 mð Þ

C0
¼
PnC0

j¼1
xC0 j�μ mð Þ

C0

� �2

nC0

• μ mð Þ
C from μC j xC,σ2 m�1ð Þ

C �N xC,
σ2C

m�1ð Þ

nC

� �
• σ2 mð Þ

C from σ2C j xC,μ mð Þ
C � IG nC

2 ,
nCs

2 mð Þ
C
2

� �
, where s2 mð Þ

C ¼
PnC

j¼1
xCj�μ mð Þ

Cð Þ2
nC
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Remove burn in and then compute dH numerically using the two posterior MCMC samples μ mð Þ
C0

and μ mð Þ
C , for

m¼Bþ1,…,M. Then compute a from (10).

7. Gibbs Sampling from the power posterior μC j xC,xC0 ,σ
2
C,σ

2
C0

For m¼ 1,…,M, draw

• μ mð Þ
C0

from μC0
j xC0 ,σ

2 m�1ð Þ
C0

�N xC0 ,
σ2C0

m�1ð Þ

nC0

� �
• σ2 mð Þ

C0
from σ2C0

j xC0 ,μ
mð Þ
C0

� IG
nC0
2 ,

nC0 s
2 mð Þ
C0
2

� �
• μ mð Þ

C,a from the power posterior μC j xC,xC0 ,σ
2 m�1ð Þ
C,a ,σ2 m�1ð Þ

C0
�N eμ m�1ð Þ

C,a ,eσ2 m�1ð Þ
C,a

� �
, where eμ m�1ð Þ

C,a and eσ2 m�1ð Þ
C,a are given by

(8) with XC and XC0 replaced by xC and xC0

• σ2 mð Þ
C,a from σ2C j xC,μ mð Þ

C,a � IG nC
2 ,

nCs
2 mð Þ
C,a

2

� �
, where s2 mð Þ

C,a ¼
PnC

j¼1
xCj�μ mð Þ

C,að Þ2
nC

8. Compute μ mð Þ
E �μ mð Þ

C,a , for each m¼ 1,…,M.
9. Remove burn-in and find the α

2 th quantile eLE�C of the empirical distribution of μ mð Þ
E �μ mð Þ

C,a , for m¼Bþ1,…,M.
10. If eLE�C > �δ reject H0.

3 | SIMULATION

3.1 | Frequentist size and power

Regulatory agencies require to analyze frequentist size and power of any new statistical test in clinical trials.34,35 In the
following we will assume that historical data are fixed, whereas we consider current trial data XE,XCð Þ as random vari-
ables. The power function of the NI test based on the rejection rule (3) is η θð Þ¼P LE�C > �δð Þ, where P �ð Þ is the proba-
bility computed with respect to the joint distribution of XE,XCð Þ. To evaluate size and power we fix a design value
θ ? ¼ μ ?

E �μ ?
C ¼�δþξ, ξ�ℝ, so that the power function can be expressed as follows

η ξð Þ¼ α ξð Þ ξ≤ 0

1�β ξð Þ ξ>0

	
,

where α ξð Þ and β ξð Þ are the type-I and type-II probability error functions respectively. The size of the test is then given
by α¼ α 0ð Þ, whereas for ξ>0 we obtain the power. The simulation steps required for evaluating size and power of the
test are the following.

1. Steps 1–3 as in the algorithm of Section 2.3.
2. Set U ¼ 10000. In current experiment, for u¼ 1,…,U, independently draw nC iid values x uð Þ

Cj from N μ ?
C ,σ

2
C

� �
and nE

iid values x uð Þ
Ej from N μ ?

E ,σ
2
E

� �
, where μ ?

E ¼ μ ?
C �δþ ξ, ξ≥ 0.

3. Set xE ¼ x uð Þ
E and xC ¼ x uð Þ

C , where x uð Þ
i ¼ x uð Þ

i1 ,…,x uð Þ
ini

� �
, for i¼E,C.

4. Repeat U times steps 5–9 as in the algorithm of Section 2.3. Compute eL uð Þ
E�C , u¼ 1,…,U.

5. Approximate η ξð Þ as the fraction of eL uð Þ
E�C > �δ, that is, the empirical size (if ξ¼ 0) or the empirical power (if ξ>0).

Using this algorithm, we perform a simulation study to analyze frequentist properties of our procedure. In addition
we compare our results to the ones obtained using the frequentist approach. Simulations are conducted under two
scenarios.

Scenario 1: Following Gamalo et al.10 (Section 4.2), let μC0
¼ 1, μP0

¼ 0, σC0 ¼ σP0 ¼ 1, nC0 ¼nP0 ¼ 600. Historical
data xC0 and xP0 are simulated at the beginning and then considered as fixed. For step 2 in the above described
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algorithm, we consider the following design values: μ ?
C ¼ 1 and μ ?

E ¼ μ ?
C �δþ ξ. We set σC ¼ σE ¼ 1 and nC ¼nE ¼ 30.

In Table 1 we compute the size α for several values of λ and for different choices of a, assuming both known and
unknown variances. In Figure 1, we fix λ¼ 0:3 and show the power functions for increasing values of ξ, while consider-
ing full, partial and no borrowing of historical data as well as the power for the frequentist test. Known and unknown
variance cases are displayed in the two panels. Finally, Figure 2 shows expected interval estimates of θ¼ μE�μC for dif-
ferent values of λ, in the unknown variance case, both under the Bayesian and the frequentist approaches. Note that
the expected intervals depend on λ and, consequently on δ, because the design value is θ ? ¼�δþξ. The main com-
ments are the following.

i. All the approaches preserve type-I error for different values of the NI margin (Table 1).
ii. In the partial borrowing case the power prior parameter a is much smaller in Table 1(B) than in Table 1(A). This is

due to the additional uncertainty considered under the unknown variance assumption that induces a lower level of
compatibility (larger dH) between current and historical data. Nevertheless, the different values of a do not seem to
influence the sizes α that are very close in both known and unknown variance cases.

iii. Figure 1 shows that full borrowing (a¼ 1) and partial borrowing (with κ¼ 0:8) approaches are consistently more
powerful than the ones in which historical data are not exploited (a¼ 0, frequentist approach).

iv. Figure 2 compares expected lengths of interval estimates for μE�μC for several λ values. First, we note that the no
borrowing Bayesian case produces intervals substantially coincident with confidence intervals. Second, whenever
past data are borrowed in the current study, the Bayesian methodology produces the shortest interval estimates:
indeed, as already discussed, the use of prior knowledge in the current study may produce more accurate estimates.
Moreover, the higher the level of borrowing the shorter the expected interval lengths. Finally note that as λ gets
larger, since θ ? is an increasing function of λ, expected intervals are shifted towards larger values.

Scenario 2: In the previous scenario consistency between θ ? and historical control data implies that borrowing is
always advantageous. However, it is also important to evaluate the procedure when the use of historical data might lead
to an inflation of type-I error probability. Specifically, we now explore the behaviour of the proposed method in terms
of type-I error probability when the true θ ? belongs to the null hypothesis set (i.e., ξ¼ 0), but historical data support
the alternative hypothesis. Keeping the assumptions of Scenario 1, we let vary μC0

¼ 0:9,0:8,0:7 and κ¼ 0:8,0:6,0:4,0:2

TABLE 1 Scenario 1: Size of NI Bayesian and frequentist tests.

(A) Known variances

Full borrowing Partial borrowing No borrowing Frequentist case

κ 1 1 0.8 – –

a 1 0.940 0.752 0 –

λ

0.0 0.0278 0.0229 0.0256 0.0259 0.0246

0.30 0.0292 0.0247 0.0241 0.0239 0.0248

0.60 0.0258 0.0229 0.0256 0.0259 0.0256

0.90 0.0300 0.0247 0.0241 0.0239 0.0250

(B) Unknown variances

Full borrowing Partial borrowing No borrowing Frequentist case

κ 1 1 0.8 – –

a 1 0.329 0.263 0 –

λ

0.0 0.0310 0.0265 0.0257 0.0237 0.0253

0.30 0.0271 0.0261 0.0260 0.0219 0.0283

0.60 0.0281 0.0238 0.0237 0.0226 0.0278

0.90 0.0308 0.0238 0.0261 0.0255 0.0259
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and we set λ¼ 0:3. We investigate how the proposed method preserves the size of the test when θ ? belongs to the null
hypothesis. In Table 2, values of 1�dH �ð Þ consistently reduce as μC0

is smaller and smaller than μC. However, for
μC0

¼ 0:8,0:7, the size α is substantially preserved only when small values of κ are considered.

3.2 | Comparisons with other dynamic power priors

In this section, the frequentist properties of the Hellinger distance approach (hellinger) are compared to the ones of
the methods obtained using other similarity measures proposed in the literature. In particular, we select the following
competitors.

• pvalue: p-value based method (Liu et al.13). The power parameter is a¼ exp κ1
1�p ln 1�pð Þ
h i

where p is the p-value of
the hypothesis test H0 :j μC0

�μC j > ε vs H1 :j μC0
�μC j < ε, where ε>0 is a pre-specified margin for equivalence

(here ε¼ 0:01) and κ1 ≥ 1 is an arbitrary coefficient that penalizes the borrowing.

(A)

(B)

FIGURE 1 Scenario 1: Power function η ξð Þ for full, partial, no borrowing and frequentist cases.
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• epw: equivalence probability weight method (Bennet et al.26). The coefficient a is the probability that the random
variable μC�μC0

jXC ,XC0 lies within the pre-specified interval of equivalence �γ,γð Þ (here, γ¼ 0:08).
• overlap: overlap method (Shi et al.27). The power parameter is a¼Aκ2 , where A is the overlap area under the two

distributions XC j μC,σ2C �N μC,
σ2C
nC

� �
and XC0 j μC0

,σ2C0
�N μC0

,
σ2C0
nC0

� �
and κ2 ≥ 1 is an arbitrary calibration parameter.

• overlap2: modified overlap method (Shi et al.27). The coefficient is a¼ A �pð Þκ2 , where p is the p-value of the two-
sided hypothesis test H0 : μC ¼ μC0

vs H1 : μC ≠ μC0 and A and κ2 ≥ 1 are defined as before.

Since κ, κ1 and κ2 have different interpretations across the selected approaches, we fix κ¼ κ1 ¼ κ2 ¼ 1 to ensure a fair
comparison. Note that overlap, overlap2 and hellinger do not require the specification of further parameters;
whereas pvalue and epw depend respectively on the margin of equivalence ε and on the equivalence bound γ.

Figure 4 displays the true values of the similarity measures when μC0
varies in the interval μC�1. All methods imply

similar values of a when μC0
¼ μC. The values of a reach 1 in the case of maximum compatibility, that is, when nC0 ¼nC

(see right panel). The larger j μC0
�μC j, the smaller a in each panel. The methods depending on p-values (overlap2,

pvalue) return values of a close to 0 even for very small differences between μC0
and μC . All other three methods

(epw, overlap, hellinger) allow for larger and similar levels of borrowing even when compatibility between cur-
rent and historical control data is not stringent.

Let us now discuss the simulation results. Table 3 reports the size of the test and the average values of a across simu-
lations for all the methods under comparison. Figure 3 shows the power of the tests when μC0

¼ 0:9. The main com-
ments are the following.

i. Table 3 shows three different values of μC0
that induce three different levels of disagreement between current and

historical data. In general an increasing amount of borrowing yields inflation in type-I error rate. This is more and
more evident when the values of μC0

get smaller (i.e. more in contrast with the current control data).

FIGURE 2 Scenario 1: Average 95% credible intervals intervals of μE�μC , for full borrowing, partial borrowing with κ¼ 1, no

borrowing and average 95% confidence interval of μE �μC (frequentist case).

TABLE 2 Scenario 2: Size of NI tests for different values of κ and μC0
. The true values of 1�dH are reported in the right column.

μC0
κ = 0.8 κ = 0.6 κ = 0.4 κ = 0.2 1�dH

0.9 0.0400 0.0375 0.0335 0.0311 0.374

0.8 0.0853 0.0744 0.0631 0.0493 0.286

0.7 0.1440 0.1221 0.1022 0.0720 0.187
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ii. As a consequence of the behavior of a shown in Figure 4, the methods based on p-values (pvalue, overlap2)
ensure a better preservation of the type-I error rate but, at the same time, these approaches are less powerful than
the others (Figure 3).

iii. hellinger, overlap and epw show similar performances both in terms of size and power.
iv. In general, full and partial borrowing methods are more powerful than the no borrowing one.

4 | APPLICATION TO DRUG DATA

In this section, we consider the Example in Gamalo et al.10 (see Section 4.3, pp. 232-236), based on a NI trial for an
iron-containing drug for intravenous administration, which is indicated for the treatment of iron deficiency anemia in
adult patients with chronic kidney disease. The parameter of interest in this study is the mean change in hemoglobin
(Hgb) from baseline to day 35. The drug is dosed at 510 mg per injection for a total of two daily injections. We consider
a NI trial to test whether the effect of a new dosage (i.e., 255 mg four times daily in the experimental arm E) is not infe-
rior to that of the approved dosage (in the control arm C) by a specified margin. First, we assume the setup S1, as in
Gamalo et al.,10 based on a previous placebo-controlled trial: the observed mean change in Hgb in the placebo arm is
xP0 ¼ 0:16 (sP0 ¼ 1:02) and xC0 ¼ 0:82 (sC0 ¼ 1:24) in the 510mg arm, with nP0 ¼ 76 and nC0 ¼ 228. Assuming non infor-
mative priors for μP0

and μC0
, we obtain LC0�P0 ¼ 0:377, then δ¼ 1� λð Þ�0:377. In the current trial, the mean change in

Hgb in the 510mg arm is xC ¼ 0:71 (sC ¼ 1:00) and xE ¼ 0:87 (sE ¼ 1:14) in the 255mg arm, with nC ¼ 64 and nE ¼ 62. In
addition, we consider two different historical setups: in setup S2 we consider xC ¼ xC0 ¼ 0:71, that is, strong

TABLE 3 Size of NI tests and average a values across simulations (in brackets) for different similarity measures, for μC ¼ 1.

μC0
0.9 0.8 0.7

Full 0.0555 (1) 0.1399 (1) 0.2839 (1)

hellinger 0.0454 (0.314) 0.0899 (0.272) 0.1539 (0.212)

overlap 0.0450 (0.276) 0.0838 (0.232) 0.1368 (0.171)

epw 0.0424 (0.228) 0.0750 (0.188) 0.1171 (0.135)

overlap2 0.0424 (0.159) 0.0591 (0.119) 0.0774 (0.073)

pvalue 0.0326 (0.051) 0.0406 (0.036) 0.0418 (0.019)

no 0.0250 (0) 0.0250 (0) 0.250 (0)

FIGURE 3 Power function η ξð Þ for full, partial and no borrowing when μC0
¼ 0:9 and κ¼ κ1 ¼ κ2 ¼ 1.
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compatibility between current and historical control data; whereas in setup S3, we set xC0 ¼ 0:67, that is, we assume
that in the current trial the active control performs better than expected from previous data.

Under the three setups S1, S2 and S3, we compare results of our Bayesian procedure, considering full, partial and
no borrowing. Table 4 reports, for different values of λ, the posterior probability P H1ð Þ given in Equation (12), which
measures the evidence in favour of H1, and the corresponding decision for 1� α

2¼ 0:975, (1= reject H0, 0= accept H0).
Note that decisions based on frequentist confidence intervals are not included in the table, as they essentially coincide
with decisions obtained under the Bayesian no borrowing case.

Here are the main comments.

i. For each given λ, the values of δ decrease as we move from setup S1 to S2 and S3. In fact, the larger xC0 the larger
LC0�P0 and j δ j.

ii. Across all setups, as λ increases j δ j gets closer and closer to 0 and P H1ð Þ decreases.
iii. In setup S1 the control treatment performs worse than expected (xC ¼ 0:71< 0:82¼ xC0 , a¼ 0:593): hence, ignoring

historical information (a¼ 0) the difference between experimental and control treatments in the current trial is
more remarkable which results in values of P H1ð Þ slightly larger than those obtained for full and partial borrowing.
Moreover, the same final decisions are obtained in the full and partial borrowing cases and in the no borrowing
case (a¼ 0) – which yields the same decisions of the frequentist approach – except for λ¼ 0:4, as already shown in
Gamalo et al.10

iv. In setup S2, there is a larger level of compatibility between historical and current control data (a¼ 0:798). Since
the values of j δ j are smaller than in the previous scenario, the values of P H1ð Þ are smaller for a¼ 0. However, par-
tial and full borrowing imply a more and more evident difference between experimental and control treatments
which favor H1 (larger and larger values of P H1ð Þ). Full and partial borrowing yield different decisions for λ¼ 0:4
only, whereas in the no borrowing case H0 is rejected only for λ¼ 0 and λ¼ 0:1.

v. Setup S3 shows the opposite situation with respect to setup S1: current control data are closer to experimental data
than expected (xC ¼ 0:71> 0:67¼ xC0 ) and therefore we obtain smaller values of P H1ð Þ than in setup S1 and S2, for
a¼ 0. When comparing the a¼ 0 case to the borrowing cases, we draw conclusions similar to those of comment
(iv). Note that in the no borrowing case H0 is rejected only for λ¼ 0.

Summarizing, if the performance of the current control treatment improves with respect to the historical data (mov-
ing from S1 to S3), borrowing widens the difference between control and experimental treatments, making more likely
rejection of H0.

FIGURE 4 True values of different similarity measures as μC0
varies and for different choices of nC . We set μC ¼ 1, κ¼ κ1 ¼ κ2 ¼ 1; the

grey vertical line represents complete agreement between historical and current control data.
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TABLE 4 Chronic kidney disease example – Values of P H1ð Þ and corresponding decisions using full, partial and no borrowing

approaches, for several values of λ.

Setup S1

a¼ 0 a¼ 1�dH ¼ 0:593 a¼ 1

λ |δ| P H1ð Þ Decision P H1ð Þ Decision P H1ð Þ Decision

0.0 0.377 0.997 1 0.998 1 0.998 1

0.1 0.339 0.995 1 0.995 1 0.995 1

0.2 0.301 0.991 1 0.991 1 0.991 1

0.3 0.264 0.985 1 0.984 1 0.983 1

0.4 0.226 0.976 1 0.972 0 0.971 0

0.5 0.188 0.963 0 0.955 0 0.953 0

0.6 0.151 0.945 0 0.929 0 0.925 0

0.7 0.113 0.920 0 0.893 0 0.886 0

0.8 0.075 0.887 0 0.846 0 0.835 0

0.9 0.038 0.845 0 0.787 0 0.771 0

1.0 0.0 0.795 0 0.716 0 0.696 0

Setup S2

a¼ 0 a¼ 1�dH ¼ 0:798 a¼ 1

λ |δ| P H1ð Þ Decision P H1ð Þ Decision P H1ð Þ Decision

0.0 0.266 0.986 1 0.995 1 0.996 1

0.1 0.239 0.980 1 0.992 1 0.993 1

0.2 0.213 0.971 0 0.988 1 0.989 1

0.3 0.186 0.962 0 0.982 1 0.983 1

0.4 0.160 0.950 0 0.974 0 0.975 1

0.5 0.133 0.934 0 0.962 0 0.964 0

0.6 0.106 0.914 0 0.947 0 0.949 0

0.7 0.080 0.891 0 0.927 0 0.930 0

0.8 0.053 0.863 0 0.902 0 0.905 0

0.9 0.027 0.831 0 0.871 0 0.874 0

1.0 0.0 0.794 0 0.834 0 0.837 0

Setup S3

a¼ 0 a¼ 1�dH ¼ 0:763 a¼ 1

λ |δ| P H1ð Þ Decision P H1ð Þ Decision P H1ð Þ Decision

0.0 0.227 0.977 1 0.994 1 0.995 1

0.1 0.204 0.969 0 0.991 1 0.992 1

0.2 0.181 0.960 0 0.987 1 0.988 1

0.3 0.159 0.949 0 0.981 1 0.983 1

0.4 0.136 0.936 0 0.974 0 0.977 1

0.5 0.113 0.920 0 0.964 0 0.968 0

0.6 0.091 0.901 0 0.952 0 0.957 0

0.7 0.068 0.879 0 0.937 0 0.942 0

0.8 0.045 0.854 0 0.918 0 0.924 0

0.9 0.023 0.826 0 0.896 0 0.902 0

1.0 0.000 0.795 0 0.869 0 0.876 0
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5 | CONCLUSIONS

The Bayesian approach has a practical utility in NI trials since it allows to involve past information on the active control
that is often available from historical data. This may also represent an advantage in terms of frequentist power. These
benefits are obtained as long as historical information is wisely employed and, potentially, discounted in the presence
of heterogeneity with respect to current trial data.

In this article we consider a Bayesian approach to NI trials for normal means with unknown variance that exploits
historical information on the active control arm for the construction of the prior distribution of μC. We consider a
dynamic power prior based on the Hellinger distance.

Our analysis follows some key aspects of Gamalo et al.10: (i) the choice of the NI margin; (ii) the comparison with
respect to the frequentist NI test; (iii) the use of Gibbs sampling for dealing with the unknown variance case. However,
our method presents several originalities with respect to Gamalo et al.'s approach. Specifically, whereas they consider
full incorporation of historical data for the construction of the prior distribution of μC, we adopt a dynamic power prior
in order to calibrate the level of borrowing. As a consequence, the simulation procedure of Section 4.1 in Gamalo
et al.10 is modified in our algorithms to compute the power prior coefficient (see step 6 of the algorithm of Section 2.3)
and to draw an MCMC sample from the power posterior of μC (see step 7) accordingly. Furthermore we assess the
impact of different choices of a on the expected length of credible intervals.

One central aspect of the present paper is to study the frequentist properties of the proposed Bayesian methodology,
as required by regulatory agencies for new statistical procedures to be introduced in clinical practice. Simulations of
Section 3.1 (Scenario 1) show that the proposed method can be more powerful than the frequentist approach while
retaining type-I error (size of the test): when historical information is fully or partially borrowed larger values of the
power functions are obtained uniformly. We also perform a sensitivity analysis with respect to alternative historical
setups (see Scenario 2). We explore the behaviour of the proposed method in terms of type-I error probability when the
true θ ? belongs to the null hypothesis set, but historical data support the alternative hypothesis. In particular, the pro-
posed approach still yields acceptable values of the type-I error probabilities, especially when κ is small. In addition, in
Section 3.2 we compare our method with other existing dynamic power prior approaches: our conclusions are consis-
tent with those obtained using the epw method introduced by Bennet et al.26 and the overlap method proposed by Shi
et al.27

Finally, in the real data application of Section 4 based on the original example of Gamalo et al. the proposed and
the frequentist methods bring to the same decisions almost all the times, in contrast with the full borrowing methodol-
ogy. However, if we consider alternative historical setups, we show that conclusions depend on compatibility between
historical data and θ ? . Specifically, if the current control treatment performs better than the historical control, borrow-
ing past information induces a wider difference between control and experimental treatments, so that rejection of H0

becomes more likely.
Given the simulations and example discussed in the present article, our opinion is that the power prior based on the

Hellinger distance has specific advantages over other alternative borrowing methods, such as ease of implementation,
interpretability and availability in closed-form for the most common distributions.

Here are some ideas for further developments.

i. In simulation studies, one might take into account potential randomness of historical control data to assess its
impact on the performances in terms of size and power.

ii. The methodology can be extended to other models and to non-conjugate priors, resorting to numerical integration
or Monte Carlo approximation whenever the Hellinger distance is not available analytically.

iii. As sketched by Gamalo et al.10 the proposed method can be extended to three-arms NI trials that consist of pla-
cebo, reference and experimental treatment. This structure allows one to test simultaneously superiority of the ref-
erence over the placebo and non-inferiority of experimental treatment over the reference. In this setup, Bayesian
methods ensure the same advantage we have stressed in the present paper, as well as in any active-control trial,
that is the possibility of exploiting substantial historical information regarding both placebo and reference treat-
ment. See also Ghosh et al.,36 Tang et al.,37 Tang et al.38 and Ghosh et al.39
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APPENDIX A

Given θ�N μ1,σ
2
1

� �
and θ�N μ2,σ

2
2

� �
. Let π1 θjμ1,σ21

� �
and π2 θjμ2,σ22

� �
be the respective density functions. The

Hellinger distance between these two densities is:

dH π θjμ1,σ21
� �

,π θjμ2,σ22
� �
 �¼ 1�

Z
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π1 θjμ1,σ21ð Þπ2 θjμ2,σ22ð Þ

q
dθ

� �1
2

,

where

Z
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π1 θjμ1,σ21ð Þπ2 θjμ2,σ22ð Þ

q
dθ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ1σ2
σ21þσ22

s
exp �1

4
μ1�μ2ð Þ2
σ21þσ22

( )
:
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