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From flocking to glassiness in dense
disordered polar active matter
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Living materials such as biological tissues or bacterial colonies are collections of heterogeneous
entities of different sizes, capable of autonomous motion, and often capable of cooperating. Such a
degree of complexity brings to collective motion on large scales. However, how the competition
betweengeometrical frustration, autonomousmotion, and the tendency tomovecooperatively impact
large-scale behavior remains an open question. We implement those three ingredients in a model of
activematter and show that the system, in formingmigratorypatterns, canarrange in bandsor develop
long-range order, depending on the density of the system. We also show that the active material
undergoes a reentrant glass transition triggered by the alignment interaction that typically causes only
collective migratory motion. Finally, we observe that polar order destroys active phase separation,
producing homogeneous, disordered moving configurations.

Understanding the properties of collective rearrangements in dense active
systems plays an important role in gaining insight into complex biological
phenomena such as wound healing and metastasis invasion: two paradig-
matic exampleswhere cell groups showcoordinatedmotion to accomplish a
specific task1. The central role played by dynamical heterogeneities and
glassy dynamics in collective cell motion has become progressively clear
during the last decades2–5. In contrast to equilibrium systems6, dense living
materials are collections of self-propelled objects whose dynamics is
intrinsically out-of-equilibrium, as autonomous motion is based on bio-
chemical processes that transform chemical energy into systematic
motion7–10.

These reaction processes do not satisfy detailed balance, at least on
small scaleswhere the single agentdevelops spontaneousmotion.Moreover,
living organisms are also characterized by alignment interactions with a
purelymechanical origin11, or due to signalingmechanisms, as in the case of
Vicsek interactions that capture collective animal behavior12,13. Although it
is well established that the interplay between mechanical interactions, self-
propulsion, and alignment interactions impact the structural anddynamical
properties of active matter4,5,14–24, the generic features of emerging collective
behaviors in dense active systems remain still poorly understood25–27.

Particulate models are very effective for modeling collective beha-
vior since they require a limited number of parameters and provide a
microscopic viewpoint on the key physical ingredients at play28–30. In this
paper, we study collective behaviors emerging in a collection of geo-
metrically frustrated active particles interacting via both, mechanical
and aligning interactions. The former is purely repulsive through

excluded volume. As alignment interactions, following early
works11,31–34, we consider a simple feedback mechanism between particle
velocity and self-propulsion direction that tends to make the motion
more persistent along the velocity direction. These choices make the
modelminimal and thus give us access to general large-scale behaviors in
active systems where these two interactions are at play. Moreover, the
velocity/self-propulsion feedback introduced has proved to be very
effective in reproducing large-scale behavior in confluent cell
monolayers5,15,35. Tests against experiments proved that collective cell
behavior can be rationalized because of theminimal polar interaction we
consider here5, even adopting a particle-based picture36.

As largely studied in the context of the celebrated Vicsek model,
velocity-alignment interactions between point-like self-propelled particles,
induce a phase transition towards a polarized, collectively moving state.
Polar order has also been predicted in the case of implicit alignment
interactions of the kind we consider here33. Although it is well established
that band formation drives instabilities leading to a discontinuous transition
in the case of Vicsek-like alignment interactions37,38, the phenomenology of
polar active fluids becomes richer in the presence of birth-death processes39,
disorder40, or additional conservation laws41.

In the presence of excluded volume interactions, self-propulsion trig-
gers a phase separation, hence called Motility-induced phase separation
(MIPS), in the absence of velocity alignment42. The mechanism behind
MIPS is the self-blocking of particles when they collide, giving rise to a
velocity that decays fast with the local density, eventually destabilizing the
homogenous state. Alignment interactions favor close-by particles to move
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along the same direction and are thus responsible for a different aggregation
mechanism (the one by which polar bands emerge).

In this work, besides showing that dense disordered active materials
develop a complex and rich phase diagram, where the competition between
mechanical frustration and alignment destroys large-scale density hetero-
geneities and promotes disordered and homogeneous structures, we also
document the existence of long-range order in 2D in the velocityfield across
the flocking transition.

The long-range order is developed when the system is so dense that it
behaves as an incompressible disordered active material. Using Finite-Size
Scaling techniques, we compute the static critical exponents of the model
showing that they satisfy scaling laws.

The transition qualitative changes from second to first-order as the
density decreases below a threshold value. Looking at the structural prop-
erties of the system across the transition, we show that for forming bands,
the local structure of the active liquid changes at the transition as signaled by
a peak in the structure factor at low wave numbers. This peak disappears as
the transition becomes of the second-order kind. We thus make a con-
nection between the structural properties of the system and the growth in
collective polar order.We show that band formation, and thus a first-order-
like scenario, is signaled by a demixing transition. When the transition
becomes second-order, demixing and bands disappear, and the fluid
remains incompressible.

We also find that alignment plays a key role in the collective rearran-
gements of the system at high densities, in a regime where the active system
develops glassy dynamics. As we show, alignment controls a reentrant glass
transition: It first fluidizes the system at moderate coupling strengths but
then triggers a glass transition towards a polarized amorphous solid for
strong enough alignment. Finally, we documented how the alignment
interaction considered here tends to destroy any kind of active phase
separation, driving the system toward homogeneous configurations.

Results
The reason why we chose a polydisperse mixture is because we want to
prevent crystallization in a wide range of the phase diagram. Because of the
presence of geometrical frustration, even though the active fluid regime
should maintain the same structural and dynamical properties as its
monodisperse counterpart (as in the case of an equilibrium fluid in contact
with a thermal bath where choosing a monodisperse system instead of a
polydisperse one does not change its large-scale behavior of the system),
besides allowing a glass regime we prevent hexatic order in the phase
separation (MIPS) region43.

The model counts several control parameters. For exploring the col-
lective behavior of the system we choose changing the packing fraction ϕ,
which is a natural control parameter in active systems that can be easily
tuned in experiments, the strength of the alignment interaction J, which has
been shown to play an important role in experiments of confluent
monolayers5, and the persistence time of the active motion τ, that sets also
the distance from the equilibrium of the active system44.

Continuous transition to a collective migratory phase at high
density
In the dense regime, ϕ = 0.79, the flocking transition can be characterized in
terms of J at fixed τ = 1.0, measuring the polar order through the polar-
ization φ(t), (in the following, we indicate with φ≡ φ(t) and with 〈φ〉 its
average performed over stationary trajectories. The location of the flocking
transition is obtained from the magnetic susceptibility peak,
χφ � Nh½φ� hφi�2i. Figure 1a reports the probability distribution function
of the order parameter, PðφÞ, across the transition. PðφÞ changes con-
tinuously as in an equilibrium second-order phase transition. To make
quantitative progress, we perform a finite-size scaling analysis, i.e., N = 322,
602, 1202, 2402, changing the box size accordingly, i.e., L = 32, 60, 120, 240, at
constant packing fraction, ϕ = 0.79, and compute 〈φ〉, the Binder cumulant,
U4 ¼ 1� hφ4i=ð3hφ2i2Þ45, and the susceptibility, χφ for each system size.
As a proxy of the flocking transition, we consider the intersection of U4 for

different N whose behavior provides the estimate of the critical point
Jc = 0.7545. This estimate matches the position of the peak of χφ.

The continuous growth of φ with J is consistent with a second-order
phase transition. To check its validity, we study the scaling of the peak of χφ
with system size46. Figure 1e shows that the scaling follows a power-law,
χpeak ~ L2−η, with 2− η = 1.3. Employing the usual scaling ansatz that
assumes for a generic observable O the finite-size scaling O ¼
LxO=ν F̂OðL1=νðJ � JcÞÞ with F̂O a scaling function (we ignore sub-leading
corrections and assume the divergence of the correlation length,
ξ ~ ∣J− Jc∣−1/ν, at the critical point46) and the resulting scaling collapse
L�xO=νO vs. L1/ν(J− Jc). Figure 1b shows a good scaling collapse of U4 with
ν≃ 1. In the theory of critical phenomena, ν and η are the only two inde-
pendent critical exponents, while the others are bonded by scaling laws. For
instance, from the scaling laws, one has γ/ν = 2− η, with γ the critical
exponent of the susceptibility, and β/ν = (d+ η− 2)/2, with β the critical
exponent of the order parameter (d = 2 the spatial dimension). Figure 1c, d
show the scaling laws are satisfied for χφ and the order parameter,
respectively.

The presence of a diverging correlation length is signaled by a quali-
tative change in the spatial correlation function of φ. Figure 1f depicts the
Fourier transformof the velocity spatial correlation function, ĈvðqÞ, (qbeing
the wave vector modulus47), for L = 240. Far from the critical region, the
correlation function has an Ornstein–Zernike shape,
ĈvðqÞ∼ 1þ ðξqÞ2� ��1

, i.e., as in the Gaussian theory above the critical
point, with ξ being the correlation length. As the system approaches the
critical point, ĈvðqÞ∼ q�2þ~η becomes power-law on large scales (q→ 0),
with the best fit ~η ¼ 1:4 ± 0:1, compatible with the η estimated indepen-
dently from the scaling of χφ.

Simulations at τ = 1, i.e., away from the motility-induced phase
separation (MIPS) regime43, (the regime where active particles systems
phase separate without microscopic attractive forces42 as the result of the
competition between excluded volume effects and persistent motion), are
run to analyze the role of density to promote collective motion.

In Vicsek-like models, the emergence of polar order is also accom-
panied by band formation and anisotropic decay of the spatial correlation
function. In the dense regime, once we measure the structural properties of
the system within the migratory frame, we do not detect any anisotropy in
the system, as shown in Fig. 2, where we report the radial distribution
function and the static structure factor of the system deep in the flock-
ing phase.

Crossover to the discontinuous transition mirrors
positional order
We now study how changing the packing fraction of the system, and thus
relaxing any incompressibility condition, changes the collective behavior of
the active system. With this aim, we have performed simulations for
spanning the J-ϕ. In doing that, we monitor both, the positional order
through the static structure factor, and the presence of migratory patterns
through theVicsek order parameter. The results of our analysis are shown in
Fig. 3. The phase diagram of the model is shown in Fig. 3a.

We start our discussion with the flocking transition that brings the
system from a resting liquid to a migrating liquid. We obtain the transition
points in Fig. 3a bymonitoring the behavior of φ andU4 see Fig. 3h, i where
we report the behavior of the two observables. We can thus discriminate
between a continuous, second-order-like transition, where φ is a smooth
and growing function of J, and a discontinuous transition, i.e. first-order-
like, where there is a jump inφ that ismirrored by anegative value inU4.We
obtain that, by decreasing density, the transition shifts to higher J values, but
it also changes from second tofirst-order. In the following, wewill specialize
our study at J = 1, where, as discussed in the previous section, the transition
is second-order, and J = 4, where the transition becomes first order.
Moreover, in spanning the Jvsϕ phase diagram, the system is always in a
fluid phase (as we will see in the next section, there is a dynamical slowing
down induced by the alignment interaction that takes place for larger J
values).
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We thus monitor the positional order along the two non-equilibrium
transitions. With this aim, we measured the static structure factor S(q) for
several values of ϕ and J = 1 (where the transition is second-order-like) and
J = 4 (where the transition is first-order-like). The results are shown in
Fig. 3b, c. The behavior of S(q) reveals that the qualitative difference of the
two transitions is reflected by different structural properties.Wehighlight in
magenta the S(q) at the flocking transition. In particular, the discontinuous
transition (J = 4) is accompanied by a peak in S(0) that signals a demixing
transition in the structure of the activefluid.A typical snapshot of the system
in its stationary configuration confirms this behavior, as shown in Fig. 3e,
where it is possible to appreciate the formation of a band. On the contrary,
crossing the second-order-like transition (J = 1), the system remains
homogeneous, as shown in the snapshot in Fig. 3f and reflected by the
behavior of S(q), Fig. 3c.

The small wave number limit of S(q) provides a measure of the com-
pressibility of the system, its behavior is shown in Fig. 3d. As one can see,
S(0) is a monotonous decreasing function of ϕ for J = 1, indicating that the
system becomes progressively incompressible.Moreover, we can appreciate
a peak of the compressibility for J = 4 that matches the flocking transi-
tion point.

As a generic property of the transition to the migrating fluid, we
observe that the transition shifts to higher J as ϕ decreases, following a
power-law, JcðϕÞ∼ ðϕ� ϕ�Þ�κ, with ϕ*≃ 0.35 and κ≃ 1.7. The phenom-
enological scaling of Jc(ϕ) suggests that below a threshold value ϕ*, it is
impossible to observe any flocking transition, no matter how large the
coupling constant of the alignment interaction is. To check the existence of a
finite threshold value ϕ*, we perform simulations for ϕ = 0.44, 0.39 up to
J = 30, without detecting polar order. Additionally, we performed simula-
tions at low density, i.e., ϕ = 0.20 up to J = 500, without detecting any
increase in polar order.

Similarly to what happens in cellular models15, the existence of an
Active Gas phase where it is not possible to observe any migratory pattern
follows directly by the definition of the model. In the gas regime, particles
interact so rarely that we can approximate μFi≃ 0, so that vi ¼ v0êi. This
implies θi = ψi and thus the equation for angle θi becomes _θi ¼ ηi, the free
rotational diffusion of a standard Active Brownian particle.

Inotherwords, at packing fractions belowϕ*, the system is in theActive
Gas phase where collisions between particles are so rare that self-alignment
can not produce any polar order on length scales larger than single particle
size. This is confirmed by the behavior of S(q) that tends to become flat at
low densities. For making quantitative this observation, we look at the
position of the first peak of S(q) (with q ≠ 0), denoted qpeak. In the liquid
phase, the peak is around 2π and shifts to lower values in the gas phase. As
shown in Fig. 3g, qpeak is almost density-independent at low packing frac-
tions, i.e., below ϕ*. qpeak starts growing at ϕ* indicating that there is a
qualitative change in the local structure of the active fluid around ϕ*.

Reentrant glass transition
In the previous section, we have shown that the emergence of collective
behavior depends on the interplay between positional order and self-
propelled (and self-aligned) motion. In particular, we observe a clear sig-
nature of the flocking transition looking at a pure positional order obser-
vable, as the static structure factor. In this section, we study how the self-
alignment impact disordered configurations undergoing a glass transition.

We now investigate the high-density region, ϕ = 0.79, by spanning the
phase diagram through J and τ. As shown in ref. 43 for J = 0, the system
behaves as a supercooled liquid at small τ. As it is shown in Fig. 4a–f, where
we report the map of displacements, once we subtract the center of mass
motion, the systemdevelops dynamical heterogeneities that survive even for
large J values, i.e., in a regionof thephasediagramcharacterizedby collective
migration.

To quantify the system’s dynamical properties, we compute the cage-
relative intermediate scattering function FCR to remove the global motion
due to the polar order48,49 (details are provided in Methods).

Below the flocking transition, alignment fluidizes the system while,
above the flocking transition, local rearrangements (reflected by a decay in
FCR(q, t)) are strongly inhibited as J increases and the system eventually

Fig. 1 | Flocking transition at high density.Here the packing fraction ϕ is ϕ = 0.79.
a The probability distribution function of the polar order parameter PðφÞ changes
continuously by crossing the transition (the alignment interaction strength changes
within J∈ [0.1, 1.0], from violet (0.1) to green (1.0)). b Finite-size scaling (FSS) of the
Binder cumulantU4 for different system sizes (number of particlesN = 322, . . . , 2402,
with box sizes L = 32, . . . , 240, respectively). c FSS of the susceptibility χφ which
develops a peak at the transition. d FSS of φ for different system sizes sizes. e Scaling
of the peak of χφ for increasing system sizes provides evidence for 2− η≃ 1.3. f The
Fourier transform of the spatial correlation function of velocity ĈvðqÞ changes from
Ornstein–Zernike with finite correlation length ξ (dashed red curve is fit to
ΔJc =−0.2 data, violet symbols) to a power-law at criticality (ΔJc = 0, yellow symbols)
that is fitted by ~η� 2 ¼ 1:4 ± 0:1. Data obtained for L = 240.

Fig. 2 | Positional order of the migratory fluid.
a Radial distribution function computed in the
flocking frame (in panel b the components g∥ and
g⊥) for alignment interaction strength J = 100
(extremely deep in the flocking phase). c Static
structure factor S(q) across the transition (as in
panels (a, b), we have persistence time τ = 1, number
of particles N = 602, and box size L = 60). Increasing
values of J from violet to yellow (see legend).

https://doi.org/10.1038/s42005-024-01551-7 Article

Communications Physics |            (2024) 7:57 3



becomes a moving glass, i.e., FCR(q, t) develops a plateau for large J. The
typical behavior of FCR(q, t) is shown in Fig. 4g for τ = 0.1 and ϕ = 0.79.
Figure 4i displays the corresponding relaxation time τα (defined as
FCR(τα) = e−1), where τα is a non-monotonous function of J: starting from
J = 0, initially, τα decreases as J increases. The relaxation time reaches a
minimumaround theflocking transition and starts to increase again. This is
because, in the polarized phase, particle rearrangements become strongly
inhibited by collective motion15,16.

xistence of non-trivial glassy dynamics characterized by dynamical
heterogeneity is confirmed by the study of the dynamical susceptibility χ4(t),
as shown in Fig. 4h (for τ= 0.1). χ4(t) mirrors the non-monotonicity in J
observed in the behavior of the structural relaxation time τα. This behavior
indicates a first stage, for τJ < 1, where the typical length scale ξd of dynamical
heterogeneity decreases with J (the peak χ4 is proportional to ξdyn

50) but then,
around the flocking transition, i.e., τJ≃ 1, χ4 becomes broader, higher, and
the peak shifts towards longer time. This fact indicates a proliferation of
dynamical processes on different time scales (the width of χ4), larger dyna-
mical correlation length (the height of the peak), and longer relaxation time
(the position of the peak)50. We measure χpeak for the entire data set, i.e.,
τ= 0.1, 0.2, 0.3, 0.5, 1.0, the result is shown in Fig. 4k where χpeak∝ ξdyn has
been normalized to the maximum value in each data set. As one can see,

χpeak undergoes a sharp crossover around the flocking transition, indicating
that migratory patterns are characterized by larger cooperative regions.

These results are summarized in the resulting phase diagram, Fig. 4j. It
is worth noting that a careful study of the structural properties of the system
bymeans of the radial distribution function computed in the flocking frame
doesnotprovide anykindof anisotropy in the system, as shown inFig. 2.We
stress that the system undergoes a non-equilibrium dynamical slowing
down towards a static glass phase for J = 0 and τ≪ 1, and it behaves as an
activefluid for τ > 1 (as shown in ref. 43). As a result, from the point of viewof
the structural and dynamical properties of the system in the center of mass
frame, we obtain a reentrant phase diagram where, in the region τ < 1, the
system results as a supercooled active fluid below the flocking transition line
J < Jc(τ), for Jc(τ) collective migration starts in a fluid phase that eventually
becomes a moving glass for large enough J values.

Suppression of active phase separation by polar order
We conclude by focusing on the impact of J on phase separation. Arguably
one of the most studied collective phenomena exhibited by self-propelled
particles is the so-called motility-induced phase separation (MIPS). Such a
phenomenon hinders a self-trapping mechanism resulting in a fast reduc-
tion of the particles’ velocity with increasing local density42. The question of

Fig. 3 | Competition between positional and polar order. a Phase diagram in the
alignment strength J vs packing fraction ϕ plane (the box size is L = 120, the per-
sistence time τ = 1). From the study of the positional order and the center of mass
dynamics, we can identify a Gas phase, a Liquid phase, and a migratory liquid state.
Blue diamonds indicate a first-order-like flocking transition, and red circles a con-
tinuous, second-order-like, transition. The magenta star and triangle correspond to
the magenta structure factor shown in panels (b) and (c), respectively. The solid
green line is a fit to ðϕ� ϕ�Þ�κ, with κ = 1.7, and ϕ* = 0.35. b Static structure factor
S(q) crossing the first-order transition for J = 4. The packing fraction increases from
violet to yellow (see legend). The magenta curve indicates the value of ϕ where S(q)

develops a peak in the limit q→ 0. c S(q) crossing the second-order transition (J = 1).
Increasing values of packing fraction from violet to yellow (see legend). At the
flocking transition, S(q) does not show any low-q peak. d Low-q value of S(q) as a
function ofϕ for J = 1 (red circles) and J = 4 (blue diamonds). Crossing thefirst-order
transition, S(0) develops a clear peak. e, f Snapshots of stationary configurations for
J = 4 (e) and J = 1 (f) at the transition (the colormap indicates the velocity orientation
of each particle). g Position of the peak of S(q) as a function of ϕ for J = 1, 4. hVicsek
order parameter as a function of J for different values of ϕ (see legend) and the
corresponding Binder parameter U4 (panel i).
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Fig. 4 | Glass transition meets polar order. a–f Dynamical heterogeneity at per-
sistence time τ = 0.1 for different values of alignment interaction strength J in the
center of mass frame. g Intermediate scattering function (cage-relative) FCR com-
puted at the first peak of the structure factor (qpeak = 2π〈σ〉, with σ the particle size)
for τ = 0.1 and packing fraction ϕ = 0.79 (the number of particle is N = 322, we
average over Ns = 126 independent runs). Increasing values of J go from violet to
yellow (see legend). h Four-point dynamical susceptibility χ4(t) for τ = 0.1 as an
indicator of dynamical heterogeneity. i Structural relaxation time τα as a function of J

for different values of τ (see legend). j Phase diagram using τ and J as control
parameters for ϕ = 0.79. The green symbols indicate the region where τα reaches its
minimum value. Red symbols indicate the flocking transition. Blue symbols indicate
the glass transition defined through τα. Error bars reflect the finite number of J
sampled for computing the phase diagram. The arrows indicate the direction of the
dynamical slowing down. k The magnitude of the peak of χ4 as a function of J
(normalized to its maximum value for clarity, different curves indicate different
values of τ, as indicated in the legend of panel i).

Fig. 5 | Suppression of motility-induced phase separation in favor of homo-
geneous polar states. a–c Stationary configurations of the system in slab geometry
(the packing fraction is ϕ = 0.54, number of particles N = 102, box sides are Lx = 240,
Ly = 60, and the persistence time is τ = 100) as the strength of the alignment inter-
action J increases (from left to right, with a color scale indicating the orientation of
the particles’ velocity). dOrder parameter φ (red squares) and distance between the

two peaks Δϕ of PðϕÞ (blue circles) as a function of Jτ, at fixed τ = 100. Vertical
dashed lines indicate Jτ = 0.1, 1, 10, whose representative snapshots are shown in
(a, b, and d), respectively. e Probability distribution function PðϕÞ for increasing
values of J shows suppression of phase separation in favor of homogeneous con-
figurations. f The corresponding distribution of the polar order parameter φ.
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how alignment affectsMIPS has recently been addressed, showing that, well
below the onset of flocking, polar alignment allows to trigger MIPS at
smaller self-propulsion strengths19,20. As we shall discuss below, strong
enough coupling J can also induce particle aggregation andphase separation
via the local synchronization of particlemotion, a differentmechanism than
the one controllingMIPS18. Indeed, as alignment can induce strong velocity
correlations that result in aggregates thatmove coherently, particles’ velocity
does not decay anymore with the local density, and thus the mechanism
responsible for phase separation in the regimewhere thepolarization is non-
zero differs from MIPS20.

We perform numerical simulations in a slab geometry, i.e., particles
move in a rectangular boxLx × Ly, withLx = 4 Ly. The rectangular box allows
restricting the phase separation along one direction making it easy to
individuate the surface between the two phases51–53. We consider the case
Ly = 60, N = 1002 (corresponding to ϕ = 0.54), and τ = 100, i.e., deep in the
phase-separated region for J = 0.

In the presence of alignment interactions, the demixing order para-
meter Δϕ, i.e., the difference between the two peaks of the density dis-
tribution function, decreases as polar order increases. Typical stationary
configurations are shown in Fig. 5a–c). The phase separation present at
moderate couplings is largely suppressed. For small values of J, i.e., J = 0.001
that is far below theflocking transition, the systemphase separates in adilute
and dense apolar phase, as in the standardMIPS (see Fig. 5a). At larger J, we
observe the formation of migratory polar patterns in the dense phase, as
documented in Fig. 5b (similarly to ref. 18). Finally, for J≫ Jc, phase
separation disappears (see Fig. 5c). To provide a quantitative analysis of this
observation, Fig. 5e display the distribution PðϕÞ for the local packing
fraction, ϕ(x, y)≡ ϕ (in Fig. 5f the corresponding distribution PðφÞ). PðϕÞ
shows the typical features of a phase-separated state for small J values where
the distribution turns out to be double-peaked (see Fig. 5e), while there is no
hint of polar order (Fig. 5e reports the corresponding distribution PðφÞ).
The system is still phase-separated when the polar order rises (Fig. 5b, d),
although the nature of the dense phase changes, as it now displays polar
order. Finally,PðϕÞ becomes single peaked (Fig. 5e), and thus the system is
homogeneous from the point of viewof the positional order, while the polar
order reaches its maximum intensity (Fig. 5f).

This analysis is resumed inFig. 5d,wherewe showacomparisonbetween
the two relevant order parameters in this region of the phase diagram: the
distance between the twopeaks in thedistribution of the local packing fraction
Δϕ, and thepolarizationφ.Aswecansee, as the systemstarts todevelopapolar
order, the distance between the two peaks starts to decrease, and eventually,
phase separation disappears when the polar order saturates to its maximum
value. We notice that there is a region of the phase diagram where phase
separation andpolar order coexist. This translates into the emergence of large-
scale, dense migratory structures, in coexistence with a disordered back-
ground. We stress that the existence of this coexistence region, where we can
appreciate both, phase separation and collective migration, might suggest
another mechanism of active phase separation driven by alignment
interactions18,54. This aspect deserves future investigations.

Conclusion
Despite disordered active materials are widespread in biology, suitable
minimal models that allow for a systematic study of their collective prop-
erties through a few, essential, ingredients, remain poorly explored.Here we
have established the structural and dynamical properties of a disordered 2D
active system in the presence of two leading interactions: steric forces that
prevent particles from overlapping, and alignment interactions. We
observed that collective polar motion at high ϕ shows typical features of
second-order phase transitions, i.e., the phenomenology is well captured by
two independent critical exponents, and other quantities are bounded by
scaling laws. We documented a continuous-to-discontinuous crossover
tuned by density. We have shown that this crossover is intimately bound to
the interplay between positional order and self-alignment interaction that
can trigger band formation for a large value of the alignment strength and
moderate packing fraction. Band formation is reflected by a peak in the

structure factor that signals a demixing transition.Moreover, thepresenceof
geometrical frustration destroys any anisotropy typical of the flocking
transition. We also show that the presence of the alignment interaction
allows us to distinguish between theActiveGas andActive Fluid phase since
only in the latter is possible to appreciate the emergence of migratory pat-
terns, while in the former, since the interaction is mediated by mechanical
forces, there is no hope to induce collective polar order.

We stress that the existence of a second-order phase transition in dense
and disordered active materials (with a diverging correlation length) might
have important implications for collective rearrangements in biological
systems, as in the case of confluent monolayers5. Recent hydrodynamic
theories suggest that the presence of quenched disorder combined with the
incompressibility condition leads to long-range order, and thus a second-
order phase transition scenario, in two spatial dimensions55,56.We stress that
aminimalmicroscopicmodel like the onediscussed heremight be a suitable
and natural benchmark for such a scenario. This is because our model is
basically incompressible at high packing fractions and geometrical frus-
tration is a standard source of quenched disorder.

Consistently with the phenomenology of Vicsek models in two
dimensions, we documented band formation as density decreases which
leads to a first-order scenario for the flocking transition37. We stress that
our finite-size scaling analysis does not suggest any crossover from
second to first-order transition at high density, at least up to the system
size investigated here. As a future direction, it would be essential to
provide an accurate estimate of the typical crossover length Lc, if there is
any, leading to the first-to-second-order scenario at high density to
understand how robust against finite-size fluctuations the phenomen-
ology we documented is.

In the dense regime, alignment interactions provide an additional
control parameter for the glass transition in active matter. We showed that
τα is a non-monotonic function of J: starting from a disordered active glass,
alignment helps the system to fluidize while, for large enough J, τα grows
again. This non-monotonous behavior has been observed also in the pro-
liferation of dynamical heterogeneities through the study of the dynamical
susceptibility χ4. Eventually, for large enough values of the alignment
interaction, the system becomes a disordered moving solid. This fact shows
how important alignment interactions are not only for developing collective
motionbut also for changing the structural properties of a living system16.As
a future direction, it might be interesting to study how the reentrant glass
transition changes by changing the persistence length of the active motion
ℓ = v0τ by tuning v0 instead of τ.

Finally, we documented how alignment interactions strongly change
structure formation in the system. This is possible because the feedback
mechanism between velocity and self-propulsion promotes homogeneous
configurations that tend todestroyphase separation.However, at least in the
space of parameter explored here, we have also observed a region of the
phasediagramwherephase separation coexistswith apolar state.As a future
direction, it would be interesting to understand whether the presence of
geometrical frustration plays a role away from the glassy regime. In parti-
cular, the tendency to promote homogeneous configurations should not
depend on the presence of quenched disorder.

Itmight be also interesting in the future to perform the coarse-graining
of the microscopic dynamics to get analytical insight into the model and
compare it with other similar self-alignment interactions33.

Methods
In the following, we consider amodel of active glass in two spatial dimensions
where particles of different sizes interact via a purely repulsive interaction that
prevents overlapping at any density. As an alignment interaction, we consider
a simple feedback mechanism in the angular dynamics of the particle orien-
tation.The alignmentmechanismconsideredherehasbeen introducedbefore
in refs. 11,34. The alignment interactionmakes themotion of each particlemore
persistent in thedirectionof the actual velocity. Since thedirectionof theactual
velocity results from the sum of self-propulsion velocity and mechanical
forces, the system can develop polar order as density increases.
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Microscopic model
The system is composed of a polydisperse mixture57 of N Active Brownian
disks, labeled i = 1,..., N, where particles interact via a purely repulsive
power-law potential v(r)11,22,43,58–61. The diameters σi, with average 〈σ〉 = 1,
are extracted from apower-law distribution57. Particlesmove in a 2D square
box of side L with periodic boundary conditions. The dynamics of disk i,
individuated by the vector ri and moving with velocity vi, is given by

_ri ¼ vi ¼ v0ei þ μFi
_θi ¼� J sinðθi � ψiÞ þ ηi;

ð1Þ

where the angles θi and ψi parameterize the self-propulsion direction ei and
the velocity direction vi/∣vi∣, respectively; ηi is a white noise having zero-
mean and 〈ηi(t)ηj(s)〉 = 2τ−1δijδ(t− s), with τ setting the persistence time of
the active motion; J sets the strength of the alignment interaction that tends
to make the motion more persistent along the velocity direction11,15,34. The
mechanical force is Fi ¼ �∇ri

P
j≠ivðrijÞ (with rij = ∣ri− rj∣). In the

following, we set μ = 1, v0 = 1, and we adopt as control parameters τ, J,
and the packing fraction ϕ =AsN/A, with As = π(〈σ〉/2)2 the average
particle’s area43, and A the simulation box area).

In order to prevent crystallization57,62–66, we consider a continuous
mixture of disks of different diameters σi interacting through a pair potential

vðrijÞ ¼
σ ij
rij

 !n
þ GðrijÞ ð2Þ

GðrijÞ ¼ c0 þ c2
rij
σ ij

 !2
þ c4

rij
σ ij

 !4
ð3Þ

with rij≡ ∣ri− rj∣.We set the softness exponent ton = 12.The coefficients c0,
c2, and c4 are chosen in a way that vðrcÞ ¼ v0ðrcÞ ¼ v00ðrcÞ ¼ 0, (v0ðrÞ ¼ dv

dr).
To suppress the tendency to demix, we consider non-additive diameters

σ ij ¼
1
2

�
σ i þ σ j

��
1� ϵjσ i � σ jj

�
; ð4Þ

where ϵ tunes the degree of non-additivity57,67. The cutoff is rc = 1.25σij, and
ϵ = 0.2. The particle diameters σi are drawn from a power-law distribution
P(σ) with hσi � R σmaxσmin

dσ PðσÞσ ¼ 1, with σmin = 0.73, σmax = 1.62, and
P(σ) =Aσ−3, with A a normalization constant57.

We explore the glassy regime using small system sizes at packing
fraction ϕ = 0.79 (with N = 322 and L = 32) and performing averages over
Ns = 102 independent runs (tmax = 104Δt, with Δt = 2.5 × 10−3 the integra-
tion time step).We consider three persistence times, i.e., τ = 0.1, 0.3, 0.5, 1.0
and varying J inside the intervals J∈ [0.01, 20], J∈ [0.01, 35], J∈ [0, 20], and
J∈ [0.01, 100], respectively.

To investigate the nature of the flocking transition in dense and dis-
ordered configurations, we performed numerical simulations at high
packing fractions, i.e., ϕ = 0.79, and τ = 1. In this region of the phase dia-
gram, we have performed the finite-size scaling analysis of the transition by
changing the system sizes L = 32, 60, 120, 240 and thus N = 322, 602, 1202,
2402. We vary the magnitude of the alignment interaction within the
interval J∈ [0.5, 1.2].

For investigating the role of density on flocking transition, we per-
formed simulations for L = 120 and N = 952, 1002, 1052, 1102, 1152 corre-
sponding to ϕ = 0.49, 0.55, 0.60, 0.66, 0.72, 0.79 varying J at τ = 1.0.

The impact of alignment and the subsequent flocking transition in the
active particle’s aggregation and structure formation has been investigated
by performing numerical simulations in a rectangular box with periodic
boundary conditions. In this slab geometry, the box is Lx × Ly, with
Lx = 4 × Ly. We consider the case Ly = 60, N = 1002 (corresponding to
ϕ = 0.54), and τ = 100, i.e., deep in the phase-separated region for J = 0. In
this simulations J∈ [0, 10].

Observables
Polar order. For studying the polar order typical of the flocking state, the
standard observable is the polar order parameter

φðtÞ ¼ 1
N

X
i

vi
vi

�����
�����: ð5Þ

For computing the polar order we consider stationary trajectories, i.e., we
perform time-averages 〈φ〉 once φ(t) reaches a stationary state. To quantify
the properties of the flocking transition we look at the probability
distribution function PðφÞ and its momenta. From the second and the
fourth momentum, we compute the Binder cumulant U4

45 defined as

U4 ¼ 1� hφ4i
3hφ2i2 ; ð6Þ

that is scale-invariant at the critical point. We also measure the magnetic
susceptibility χφ defined as

χφ � N φ� hφi� �2D E
: ð7Þ

Since the model at high density reveals typical features of a second-order
phase transition, we performed the usual Finite-Size Scaling analysis46.
Under the finite-size scaling ansatz, around the critical point, a given
observableO for a system of linear size L behaves as

O ¼ LxO=ν FOðLξ�1Þ þ OðLL�ω
; ξ�ωÞ� � ð8Þ

with ξ the correlation length that diverges as ∣J− Jc∣−1/ν at the critical point.
FO is a universalfinite-size scaling function, xO is the critical exponent of the
observableO, and the exponentω determines the sub-leading correction to
the scaling. Once we ignore sub-leading corrections, and assume the
divergence of the correlation length ξ, we get

O ¼ LxO=ν F̂OðL1=νðJ � JcÞÞ; ð9Þ

with F̂O another scaling function. From the scaling ansatz follows the
scaling collapse of different observables once plotted as L�xO=νO vs
L1/ν(J− Jc).

To investigate the large-scale behavior of the system approaching the
flocking transition we compute the Fourier transform of the velocity cor-
relation function

ĈvðqÞ ¼
X
r

eiq�rvðrÞ
�����

�����
2* +

: ð10Þ

Where the velocity field v(r) = (vx(r), vy(r)) is obtained by discretizing the
simulation box into a grid of linear size 2〈σ〉. ĈvðqÞ is thus obtained through
the Fast Fourier Transform of v(r) using data from the larger system size
investigated, i.e., L = 240.

Moving frame. At a given time, we can define the polarization vector
φ = (φx, φy) whose components are

φx;yðtÞ ¼ 1
N

P
i

vx;yi
vi
: ð11Þ

When the system develops polar order, we have also studied the dynamical
and structural properties of the system in the flock frame. For a given
observableOðrÞ that depends on a configuration of the system r � frigNi¼1,
we can thus define Ok and O? that are computed longitudinally and per-
pendicularly to φ(t). The two components are computed in the follow-
ing way.

https://doi.org/10.1038/s42005-024-01551-7 Article

Communications Physics |            (2024) 7:57 7



• At each time st we compute φ that, in two spatial dimensions, can be
parametrized through the angle Θ, i. e., φðtÞ �
jφðtÞjðcosΘðtÞ; sinΘðtÞÞ (where the angle is taken in the lab frame).

• If ∣φ(t)∣ ≠ 0, we move to the frame of the polarization field. To do that,
we perform a rotation of the reference frame where the new reference
frame is rotated byΘ. Meaning that, a point originally located at x, y in
the lab frame, will have coordinates (x∥, x⊥) in the flocking frame given
by

xk ¼ x cosΘþ y sinΘ

x? ¼ � x sinΘþ y cosΘ:
ð12Þ

• In the case of a scalar observable, we can thus defineOk � Oðxk; 0; tÞ
andO? � Oð0; x?; tÞ.

Phase separation. Density heterogeneities are investigated by looking at
the local packing fraction field ϕ(x, y) that is obtained by discretizing the
simulation box in a lattice of size δ = 4〈σ〉 and computing the local
packing fraction in each box. We can thus define the probability dis-
tribution function PðϕÞ of the local packing fraction ϕ≡ ϕ(x, y), with the
vector (x, y) pointing at the center of each box, i.e, ðx; yÞ ¼ 1

2 ði; jÞδ, and
i = 1,..., Nb (same for j), with Nb = L/δ. In this
way PðϕÞ � δ ϕ� ϕðx; yÞ� �� �

.

Dynamical transition. For removing global motion due to the presence
of polar order, we consider only cage-relative (CR) quantities for com-
puting dynamical observables48,49. These observables are computed
considering the Voronoi neighbor of each particle so that no cutoff dis-
tances are required. The CR displacement ΔrCRi ðtÞ for a given particle i at
time t is defined as follows

ΔrCRi ðtÞ � riðtÞ � riðt0Þ � 1
Ni

PNi

j¼1
rjðtÞ � rjðt0Þ
h i

ð13Þ

wherewe extend the sumover j to theNineighbors of the particle i at time t0.
As CR quantities, we have measured the mean-squared displacement Δr2CR
and the self-part of the intermediate scattering function FCR(q, t) that is
defined as follows

FCRðq; tÞ ¼ P
k
e�iΔrðtÞCR�q

	 

s

: ð14Þ

Through FCR we compute the structural relaxation time τα defined as
FCR(τα) = e−1. To provide evidence of dynamical heterogeneity, we also
computed the dynamical susceptibility χ4(t) that measures the sample-to-
sample fluctuations of FCR(q, t)68. To visualize dynamical heterogeneity, we
measure themapof displacement performedby each particle on a time scale
of the order of the structural relaxation time τα.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code is available from the corresponding author upon reasonable
request.
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