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Shizuhiko Nishisato in Toronto, Canada, aged 32 years (1967). Source Courtesy of
the Toronto Public Library, Toronto, Canada



Foreword

“What is so special about someone’s 88th birthday?” might a non-Japanese person
ask. Sure, it is a venerable age, and remaining active in academic life is worth a
tremendous compliment, but to publish a special book to honour a person on his 88th
birthday seems a bit excessive. Doesn’t it?

However, this is not true in Japan. In Japanese culture, the 88th birthday, or Beiju
(米寿), is the celebration of a long life and represents purity and wholesomeness.
The first kanji character of Beiju can be deconstructed as 8, 10, and 8 on top of each
other:

Shizuhiko Nishisato is the ideal person to celebrate Beiju for. During his academic
lifetime that spans nearly 60 years, he has been an influential scientist inspiring an
innumerable number of colleagues in categorical data analysis, the academic love of
his life. He also produced many content-related results by sharing his insights into
categorial data through teaching and executing analyses in numerous disciplines.
That he was well loved and appreciated as a person in the scientific community
shines through in the pictorial tribute in this book.

His life has played itself out primarily in North America. Clearly, he foresaw a
glittering career on that continent, but this book shows that he never lost his love for
his native Japan. A Canadian document on the Internet referred to him as
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viii Foreword

Dr. Shizuhiko Nishisato. The expert from Japan is involved in research in psycholog-
ical scaling theory. (Ph.D., North Carolina). Professor in psychometrics and analysis of
categorical data [dual scaling] [Toronto Star 28/9/1967]

In the book Modern Quantification Theory (Springer, 2021) written by Nishisato
together with the editors of the present Festschrift, a full account is provided by him
of his academic career, which started of course in Japan with Masanao Toda and
Chikio Hayashi, continued with a thesis at the University of North Carolina under
the direction of R. Darrell Bock. After a brief interlude back in Japan, he made the
definitive step to North America, in particular Canada. After only about a year at
McGill University, he made his final move to the University of Toronto, where he
and his career came to a full bloom.

Nishi published a wealth of books both on his own and with his colleagues, as is
elaborated in his chapter in this Festschrift. Next to his books, Nishi (as known to his
friends) produced over 100 other academic publications. His early book Analysis of
Categorical Data: Dual Scaling and its Applications (University of Toronto Press,
1980) has around 1000 citations (search date: April 2023) and shows that Nishisato
has made a lasting mark in the world of categorical data analysis.

Detailed accounts of the various aspects of his work on quantification theory and
applications thereof are dealt with in the above-mentioned books and of course in the
ensuing papers. The appreciation for his work goes on relentlessly and the authors
of the papers in this Festschrift acknowledge this abundantly and wholeheartedly.

Leiden, The Netherlands
April 2023

Pieter Kroonenberg



Preface

This book marks a celebration of the career and influence of our dear colleague and
friend, Prof Shizuhiko Nishisato, or “Nishi” as we call him, in honour of his 88th
birthday. Such a milestone deserves a moment to sit back and reflect upon a life
filled with happiness, hope, at times sadness, but with love and passion for all that
drives us forward. So it is with this Festschrift that we all celebrate Nishi’s career
and the influence (both personal and professional) he has had on us all. It is also our
opportunity to thank him for all he has done for us as editors, and for everyone who
was able to contribute to his Festschrift and those who were unable to do so.

Our connection to Nishi dates back about 20 years and so it is relatively young,
certainly in comparison with many of those who have contributed to this book. A key
moment was the first face-to-face meeting of the Nishi/Clavel and Beh/Lombardo
teams at the IFCS (International Federation of Classification Societies) Conference
in Tokyo in 2017. From this meeting came the 2021 Springer book that we had
the pleasure to co-author with Nishi titled Modern Quantification Theory: Joint
Graphical Display, Biplots and Alternatives. So, it came as a pleasant surprise in late
February 2022 that we were invited to edit his Festschrift. Of course, we said “yes”.
We would like to acknowledge the early involvement of Prof. Yasumasa Baba who
is a long-term dear friend of Nishi and who was originally committed to this project
but, unfortunately, was unable to continue in the role.

Nishi’s career spans a great many achievements that are laid out in many of the
papers of this book, and so we leave it to you to peruse the pages and appreciate
the depth of work he has committed a lifetime of passion to. It is safe to say his
impact on quantification theory, and the vast array of research avenues this covers, is
profound. Therefore, this Festschrift is a celebration of many of these avenues and
is divided into four broad topics. The first, “Data Theory” provides a mix of written
and pictorial accounts of Nishi’s life and his work. It also gives some perspective of
Nishi’s influence in the context of the career of Prof. Chikio Hayashi, an early and
highly influential pioneer of quantification theory. The next major part of this book
is titled “On Associations and Scaling Issues” and includes papers that celebrate
Nishi’s impact on the numerical issues concerned with dual scaling and its related
methods, as well as providing new insights into this area of research. A more visual
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x Preface

appreciation of the scaling issues is explored in “On Correspondence Analysis and
Related Methods”. Here, the papers discuss a range of issues including the naming
conventions used in the past, exploring the anatomy of correspondence analysis and
detailing extensions of correspondence analysis for analysing various data structures.
The final part of Nishi’s Festschrift is titled “General Topics” and includes papers
that are not necessarily related to issues concerned with quantification theory but
are here because of the close professional and personal connections that Nishi has
shared with the authors over the years.

This celebration of Nishi’s career is a collection of 29 papers where all the
corresponding authors and some of their co-writers were all personally invited to
contribute. We must also acknowledge those who were invited to contribute to this
collection and prepared an early version of their work for inclusion but, ultimately,
were unable to do so. Every one of those who have been invited to contribute to
this collection all share a personal and professional bond with Nishi. These papers
are written by 45 authors that come from all corners of the globe; in alphabetical
order, Australia, Barbados, Canada, England, France, Germany, India, Italy, Japan,
the Netherlands, Scotland, Spain, Switzerland, and the USA.

The preparation of Nishi’s Festschrift would not have been possible without
the help and support of Springer. So, we thank them, and especially Sridevi
Purushothaman, for the many email queries that were patiently responded to. We
also extend our heartfelt appreciation to Pieter Kroonenberg, our close personal
friend and of Nishi’s, for writing the Foreword to this book. Our biggest thanks goes
to each of the authors who have contributed to this collection of celebratory papers.
It has been an immense pleasure communicating with each and every one of you and
the email conversations that have followed. We thank you for your commitment to
this book and for helping to celebrate Nishi as the kind and endearing person that he
is and for the role he has played over the decades as a researcher who has committed
himself to the development of quantification theory and its related methods.

No one succeeds in life without the love of those around them. While we have
all provided various degrees of professional and/or personal help and support over
many years (and decades), his successes rest primarily with his wife Lorraine. So, on
a personal note, we thank Lorraine for her support and love as Nishi has carved a wide
long path through his academic career, a path that many of us have travelled alongside
Nishi or behind him. Whether you subscribe to the phrase of Scott Fitzgerald behind
every great man there is a great woman or Tariq Ramadan’s behind every great man
is not a woman, she is beside him, she is with him, not behind him, or even Jim
Carrey’s behind every great man is a woman rolling her eye, Lorraine’s influence has
been a blessing to us all. So, thank you Lorraine. Finally, we thank Nishi for inviting
us to edit his Festschrift and wish him continued health, happiness and love as he and
those around him continue to mould and direct the next generation of researchers.

Newcastle, Australia
Naples, Italy
Murcia, Spain
June 2023

Eric J. Beh
Rosaria Lombardo

Jose G. Clavel
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Gratitude: A Life Relived

Shizuhiko Nishisato

1 To Begin with

First of all, my heartfelt appreciation goes to Prof. Akinori Okada for his considerate
thoughtfulness in conceiving my Festschrift. I was overjoyed with his proposal, but
frankly speaking, this excitement was followed with mixed feelings of great honour
and a definitive sense of the finale of my research career. It was indeed a long and
enjoyable career spanning over 60 years. What a wonderful group of researchers I
have had the privilege to meet and know!

I am also very grateful to the co-editors Eric J. Beh, Rosaria Lombardo, and José
G. Clavel who kindly accepted the very time-consuming task of editing all those
contributions into a fine book. My work with the three co-editors resulted in our joint
book, published in 2021 (age 86), which was one of the highlights of my career. Of
course, I am exceptionally grateful to all the contributors, too. One of them said:
“What a wonderful feeling it is to be brought back together with those old timers!”
Yes—many of them represent my good old days.

I am not only fortunate to have been surrounded by many wonderful researchers,
but also blessed with the luxury of my family’s tireless support, those in Canada and
those in Japan.

In an attempt to acknowledge all those people, I would like to reflect on my
personal life with photos (only those which I managed to find—many pre-digital
photos, old negatives and slides are long gone).

2 Bygone Days and Memories

I was born on June 9, 1935, in Sapporo, Hokkaido, Japan (Fig. 1). The SecondWorld
War started when I was 6 years old. My family moved from Sapporo to Obihiro and
then to a small mountain village of Urahoro in Hokkaido, where my father was born

S. Nishisato (B)
Ontario Institute for Studies in Education, University of Toronto, Toronto, ON, Canada
e-mail: shizuhiko.nishisato@utoronto.ca

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
E. J. Beh et al. (eds.), Analysis of Categorical Data from Historical Perspectives,
Behaviormetrics: Quantitative Approaches to Human Behavior 17,
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4 S. Nishisato

Fig. 1 Childhood; hobby; graduation from Hokkaido University

and passed away when I was only in grade 1 (age 6). Those ten years in Urahoro
exposedme to an extremehardship of life aswell as firmly established lifelong friends
who still meet annually at a nearby hot spring hotel (except during the COVID-19
pandemic). The museum in Urahoro has a special corner of permanent exhibits of
my books, papers, and photos.

On April 3, 1952, a sunny spring day, an earthquake of magnitude 8.3 struck
Urahoro and its neighborhood, destroying almost everything in sight. It changed my
life forever. Moving back to my birth place of Sapporo served as a springboard for
the next stage of my life.

After graduating from SapporoMinami High School, I entered Hokkaido Univer-
sity in 1955 (age 20). Foreign languages were my major interest, and I took courses
in English, French, German, Latin, Greek, and Esperanto. In my first year at the
university, I founded the Esperanto Association and became its first President. I was
the Esperanto interpreter when a Yugoslavian anthropologist gave a lecture on his
lifework on the dawn of the human race at Sapporo City Hall.

Another equally strong hobby ofminewas classical guitar, and I played the instru-
ment inCircolo Mandolinistico Aurora of the university: I used to enjoy playing such
pieces as Recuerdos de la Alhambra (Tarrega), DanzaEspañola N o 5 (Granados)
and Asturias (Albeniz) (Fig. 1). Much later, we old-timers met in Sapporo (Fig. 2).
I continued this hobby until some 30 years ago. My old colleague R. P. McDonald
once called it Nishi’s latent ability.

In choosing my major field of study, an English professor discouraged me from
pursuing linguistics with the view that I would never be able to compete with those
Europeans who were raised bilingual or multilingual. In 1959, with my BA thesis
on Factor Analysis of Anxiety (Supervisors M. Toda, Y. Takada, and Y. Sugiyama), I
finished my undergraduate program in experimental psychology and represented my
graduating class at the graduation ceremony (Fig. 1). Two years later, I completed
myMA thesis there titled Human Reaction Time as a Function of Anxiety and Stress
(Supervisor Y. Sugiyama). A short paper based on this thesis (Nishisato, 1966) is
one of my most frequently cited papers. I was blessed with excellent mentors (M.
Toda, Y. Takada, T. Oyama, and Y. Sugiyama) and friends (Fig. 3).
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Fig. 2 Ex-musicians of Hokkaido University

Fig. 3 Friends in experimental psychology, Hokkaido University

Fig. 4 1963 International Congress of Psychology; Spring in Chapel Hill

On September 6, 1961 (age 26), thanks to a fulbright scholarship, I arrived at the
Raleigh-Durham airport in North Carolina, where my host family Mr and Mrs A.
Ringwaltmetme and droveme toChapelHill. I can never thank them and their family
enough for their kind care and support during my four-year stay in Chapel Hill. The
father of Mrs. Ringwalt, Dr. Rudolph Teusler, was the founder of St. Luke’s Hospital
in Tokyo, where coincidentally I had my physical examination for my entrance
into the USA. The University of North Carolina in Chapel Hill (UNC) (six smaller
photos in Figs. 4 and 5) was an academic paradise for me with super mentors (R. D.
Bock, L. V. Jones, D. Adkins-Woods, T.G. Thurstone, E. Shuford, and H. F. Kaiser)
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Fig. 5 1965 Williamsburg International Assembly; UNC; Graduation; Back Home

and wonderful fellow students (A. Rapoport, E. Abbe (née Niehl), S. Zyzanski, D.
Messick, L. Gordon, N. Cole (née Stooksberry), B. Mukherjee, S. Das Gupta, T.
Smith, J. and M Nakahara, S. Suzuki, M. Novick and H. Kusama).

During my Chapel Hill days, memorable events took place: In the fall of 1961,
the newly elected President of the USA, John F. Kennedy, gave his famous nei-
ther red nor dead speech at the University Day in Chapel Hill; the Cuban Missile
Crisis in 1962 (age 27); Dr. Martin Luther King’s March to Washington with a quar-
ter of a million demonstrators gathered in front of the Lincoln Memorial in 1963
(on that day, I was attending the International Congress of Psychology in Washing-
ton, D.C. (Fig. 4) and we were cautioned not to go outside the Mayflower Hotel);
John F. Kennedy’s assassination in 1963; the Tokyo Olympics in 1964; the Annual
Williamsburg International Assembly of Foreign Students in 1965 (I was one of the
two Japanese representatives; the student delegate from Norway was Gro Harlem
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Fig. 6 Old Friends at OISE, University of Toronto, Canada

Brundtland who later served three terms as the prime minister of Norway and the
director general of the World Health Organization) (Fig. 5). After completing my
PhD thesis titled Minimum Entropy Clustering of Test Items (Supervisor R. D. Bock)
and the final oral examination, I returned to Japan in September of 1965 (age 30)
(Fig. 5).

An unexpected failure in finding a job anywhere in Japan was extremely devas-
tating, but it was an unbelievable fortune in disguise. I was immediately offered a
position in the Department of Psychology, McGill University, Montreal, Canada, by
G. A. Ferguson, D. Bindra, andW. Lambert. There I met two persons who steeredmy
life and career toward fulfillment: my future wife Lorraine A. M. Ford from South
Africa, and Ross E. Traub.

Thanks to R. E. Traub, I was recruited in 1967 (age 32) to a new research center,
the Ontario Institute for Studies in Education (OISE) at the University of Toronto,
my home base until my retirement on June 9, 2000 (Fig. 6, some old timers). In 1967,
I married Lorraine Ford, who continued to help me and my students with editorial
work, the task she used to do for Bindra at McGill University.

At OISE, R. E. Traub (test theory; Princeton University), R. P. McDonald (fac-
tor analysis and structural equation modeling; University of Queensland, Australia),
R. P. Bhargava (multivariate analysis of discrete and continuous variables; Stanford
University) and myself (measurement theory and scaling; University of North Car-
olina) together established one of the world centers of psychometrics. In this process,
I also served as the chairman of the Department of Measurement and Evaluation,
OISE from 1971 to 1976 (age 36–41) (Fig. 6).

In those days, the East and the West were politically divided without much scien-
tific communication between them.On theWestern side from 1970 (age 35) onwards,
I participated in many international meetings in France, Germany, the Netherlands,
Italy, Spain, and Japan (Figs. 7, 8, and 9). I greatly benefited from those INRIA (Insti-
tut National de Recherche en Informatique et en Automatique) meetings in France,
annual meetings of the German Classification Society, French-Japanese meetings,
German-Japanese meetings, and M. J. Greenacre’s CARME (Correspondence Anal-
ysis and Related Methods) conferences. I extend my sincere appreciation to the
organisers of those conferences.
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Fig. 7 International Conferences in European Countries

Fig. 8 German-Japanese Conference in Kyoto
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Fig. 9 International Conference of Psychometric Society in Tokyo

On the Eastern side, I was lucky to be invited to Moscow, USSR, in December
of 1990 (age 55). B. Mirkin and S. Adamov were hosts to a group of international
researchers that included W. Gaul, H. H. Bock, H. Bozdogan, W. Day, and myself.
Those were the last days of the Soviet Union since only a few weeks later the Soviet
Union collapsed in 1991.

Another experience in the Eastern world preceeded the Moscow visit. In the sum-
mer of 1986 (age 51), V. Zudravkov of Sofia, Bulgaria, invited me, together with
J. C. Gower, P. van der Heijden, E. van der Burg, and T. Saito, to give lectures on
quantification theory to Bulgarian researchers. I was happily surprised when several
Bulgarian researchers asked me to autograph copies of my 1980 book, entitled Anal-
ysis of Categorical Data: Dual Scaling and Its Applications (University of Toronto
Press). Bulgaria was still a communist country.

International trips were not easy then with visa restrictions and limited funds, but
surprisingly researchers knew many others abroad through exchanging postcards to
request reprints of published papers, a custom we no longer have.

As for international conferences, I organised three major ones: the annual meeting
of the Psychometric Society in Toronto with R. E. Traub, the annual meeting of the
Psychometric Society in Banff, Alberta, Canada, and the International Conference
on Measurement and Multivariate Analysis in Banff with Y. Baba (Fig. 10).

My professional services for academic organizations and awards are:

• Psychometric Society: President, Editor of Psychometrika and trustee.
• Classification Society of North America (CSNA): Trustee.
• German Classification Society (GfKl): Editorial Board for Studies in Classifica-
tion, Data Analysis, and Knowledge Organization, Springer-Verlag.

• International Federation of Classification Societies (IFCS): Chair of Award Com-
mittee.

• American Statistical Association: Fellow.
• Japanese Classification Society: Fellow, Lifelong Achievement Award.
• Behaviormetric Society: Honorary Member, Lifelong Achievement Award, Pub-
lication Award.



10 S. Nishisato

Fig. 10 International Banff Conference, Alberta, Canada

• The University of North Carolina: Distinguished Alumnus Award of the UNC
Psychology Alumni Association.

Outside the academic world, I engaged with several organizations, including:

• Metropolitan Toronto Japanese Family Services (JFS): First President (The JFS
was established by my close friend S. Thurlow, a recipient of the Nobel Peace
Prize).

• Volunteer of the Year Award from the Government of Ontario.
• Toronto Hokkaido Association: First President (T. Fuse and I founded this orga-
nization in 1972 (age 37).

So, together with academic and non-academic work, I have lived a busy life.
In retrospect, there are a few matters that come to my mind:

[1] Greatest regret: The translation of my 1980 book (Fig. 14) into Russian never
materialised, solely due to the collapse of the Soviet Union (USSR). There was a
signed agreement between the University of Toronto Press and Finansi Statistika
Publisher in Moscow on its publication, and the translation had been completed by
B. Mirkin and S. Adamov by 1990 when the aforementioned Moscow meeting took
place. This translation included an addendum to the original 1980 book, namely
some key developments since 1980.
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Fig. 11 Mentor Bock, his wife and student; distinguished alumnus with friends

[2] Proud moments in research: (a) In 1997 (age 62), The American Psychological
Association awarded theDistinguishedContributionAward tomymentor R.D. Bock
and I chaired his memorial lecture; on the same day, Bock chaired my invited lecture.
I celebrated the occasion with my mentor and Mrs. Bock (Fig. 11); (b) in 2000 (age
65), I was honoured as Distinguished Alumnus by the UNC Psychology Alumni
Association (Fig. 11).

[3] Busy life after retirement: In 2000, I retired as Professor Emeritus from the
University of Toronto and then worked part time for one to six months a year as
Visiting Professor at Kwansei Gakuin University and Doshisha University in Japan
and University of Murcia in Spain until 2007 (age 72) (Fig. 12). My wife and I
enjoyed many international travels.

[4] Blessed with co-authorships. There are seven books written with co-authors
(Fig. 13) and ten books by myself (Fig. 14). As for the co-authored books, I joined
Iwamoto and Nakahara for the translation of the book by Penfield and Rasmussen
Cerebral Cortex of Man into Japanese (the main work was done when we were
students atHokkaidoUniversity). Three bookswerewrittenwithmy son IraNishisato
who wrote the entire package of “DUAL3” dual scaling software with me. The Banff
conference resulted in the proceedings with Baba, Bozdogan, and Kanefuji as the
co-editors. And although this is not co-authorship, I translated my grandson Lincoln
Dugas-Nishisato’s first book,writtenwhen hewas 8 years old, into Japanese. To solve
the perennial controversy over the joint graphical display of quantification theory, I
was joined for the book by Beh, Lombardo, and Clavel (Fig. 13).
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Fig. 12 Activities of life after retirement



Gratitude: A Life Relived 13

Fig. 13 Co-authors and books; the three co-authors of the last book are the editors of the current
Festschrift

Fig. 14 Single-authored books; the last book is Nishisato, S. Measurement, Mathematics and New
Quantification Theory: Springer (2023) (age 88)
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[5] Edwin Diday: Regarding a great contribution of the late Edwin Diday, I once
made the following remark; see page 560 of Nishisato, S.: Gleaning in the field of
dual scaling. Psychometrika 61, 61, 559–599 (1996):

Considering the abundance of publications and the outstanding contributions to the field by
French researchers, it was hardly surprisingwhen EdwinDiday, a leading French statistician,
casually remarked that correspondence analysis had been exhaustively investigated by 1975,
and that he and his colleagues were moving to the next stage of innovation, symbolic data
analysis (Diday, personal communication, September 23, 1991). To his mind and many
others, correspondence analysis must have seemed mathematically transparent; hence there
was nothing more to discover about it.

Whether Diday was right is a matter of opinion. There is still plenty of grain left by the
reapers in the field of quantification, and continued gleaning can shed further light on a
number of missing links between the mathematics of quantification theory and the validity
of its applications. The main object of this paper is therefore to further the current under-
standing of quantification theory by bringing to the surface a number of its buried or implicit
characteristics.

This paper was based on my Presidential address of the Psychometric Society, deliv-
ered at its annual meeting held in Banff, Canada, in 1996.

[6] Lifelong Support 1: My wife Lorraine greatly helped me with editorial work
in my early days; my son Ira wrote a major portion of my computer programs; my
grandson Lincoln Dugas-Nishisato kept his grandfather working (i.e., translation)
until recently. I am very proud of both my family and extended families. Lincoln
has been extensively involved in volunteer work with his mother Samantha and his
other grandparents André and Gillian Dugas to help a countless number of those less
fortunate in our community. Far from Canada, my siblings (Fig. 15) lived in Japan,
to whom I also owe very much.

[7] Lifelong Support 2: I would like to mention another lifelong support of two
groups of friends from my elementary school (Fig. 15) and Hokkaido University
(Fig. 16).

[8] Lifelong Support 3: Expatriates all share hard experiences through a foreign
language. I would like to mention four close friends who left Japan many years ago
and overcame language barriers to achieve super careers: Setsuko Thurlow (the first
photo, a recipient of the Nobel Peace Prize, Executive Director of the Japanese Fam-
ily Services where I served as its first President), Yoshio Takane (the second photo
of Fig. 17, Professor, University of Victoria, Former President of the Psychometric
Society, one of the most influential psychometricians of the past 100 years, also
a graduate of my alma mater University of North Carolina in Chapel Hill, whose
first job was at McGill University as mine was), Akira Kobasigawa (the third photo,
an internationally famous academic in child development; Professor Emeritus, Uni-
versity of Windsor, a gate-ball (croquet) buddy), Takashi Asano (the fourth photo,
Recipient of the StockholmWater Prize, Professor Emeritus, University of California
at Davis, my high school and university friend who played the guitar together with
me at Hokkaido University; see Fig. 2).
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Fig. 15 With my siblings; elementary school friends in Urahoro

Fig. 16 Friends of Hokkaido University from the first year
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Fig. 17 Super expatriates from Japan, my dear friends

[9] Lifelong Support 4: There are many researchers to whom I owe much gratitude,
in particular those involved in quantification theory. I am pleased to share a few
photos of them which I managed to find (Fig. 18). I must admit with regret, however,
that I could not find photos of many other equally important friends.

Before I end my thanks and gratitude to my family and friends, I acknowledge
that I have been exceptionally lucky to have lived my tumultuous early life in Japan,
my hardworking student days at Hokkaido University, Sapporo, Japan, and at the
University of North Carolina, Chapel Hill, North Carolina, USA, and my highly
fulfilling research and teaching life first in Montreal and then Toronto, Canada. In
May 2000, one month before my retirement from the University of Toronto, John C.
Gower told me “Life exists after retirement” (see 14.1.1 John C. Gower in Nishisato,
2022). His words encouraged me to work all the time until today.

In retrospect, when I first arrived in the USA as a student, the most remarkable
novelty was the interdisciplinary pursuit of research, as exemplified by the joint sem-
inars at the University of North Carolina’s Departments of Statistics and Biostatistics
and the Psychometric Laboratory. How lucky I was to be able to listen to talks by
such eminent scholars as Hotelling, Roy, Bose, Madow, Chakrabarti, Grizzle, Sen,
Koch, Hoeffding, Bock, Jones, Kaiser, Thurstone, Gabriel, Quade, Glaser, Donnely,
and Shuford from my own university campus! A countless number of top invited
speakers from all over the world also enriched my student life. The new trend of
interdisciplinary research spread to other countries as well. The birth of the Japanese
Behaviormetric Society fifty years ago is another timely example in response to
interdisciplinary research. My academic life is deeply rooted in this revolutionary
change of academia when researchers with different academic backgrounds worked
together.

Thank you all for a wonderful life for this very lucky person!
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Fig. 18 With mentors and colleagues in my research domain, past and present
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3 Lifelong Publications: 1960 (age 25)–2023 (age 88)

Books

1. Nishisato, S.: Applications of Psychological Scaling: Analysis of Qualitative
Data and Interpretations. Seishin Shobo Press, Tokyo (1975) (in Japanese).

2. Nishisato, S.: Analysis of Categorical Data: Dual Scaling and Its Applications.
The University of Toronto Press Mathematical Expositions No. 24, Toronto
(1980). ISBN 0-8020-5489-7.

3. Nishisato, S., Nishisato, I.: An Introduction toDual Scaling.MicroStats, Toronto
(1984). ISBN 0-9691785-0-6.

4. Nishisato, S.: Quantification of Qualitative Data: Dual Scaling and Its Applica-
tions. Asakura Shoten, Tokyo (1984) (in Japanese).

5. Iwamoto, T., Nakahara, J., Nishisato, S.: (Japanese translation of Penfield, W.,
Rasmussen, T.: Cerebral Cortex of Man. McMillan, New York (1950)). Fuku-
mura Shuppan, Tokyo (in Japanese).

6. Nishisato, S., Nishisato, I.: DUAL3 Users’ Guide. MicroStats, Toronto (1986).
ISBN 0-9691785-2-6.

7. Nishisato, S.: Quantification of Categorical Data: A Bibliography 1975–1986.
MicroStats, Toronto (1986). ISBN 0-9691785-2-6.

8. Nishisato, S., Nishisato, I.: Dual Scaling in a Nutshell. MicroStats, Toronto
(1994). ISBN 0-9691785-3-6.

9. Nishisato, S.: Elements of Dual Scaling: An Introduction to Practical Data Anal-
ysis. Lawrence ErlbaumAssociates, Hillsdale, NJ (1994). ISBN0-8058-1209-1.
(Retirement, June, 2000)

10. Nishisato, S., Baba, Y., Bozdogan, H., Kanefuji, K. (eds.): Measurement and
Multivariate Analysis. Springer, Tokyo (2002). ISBN 4-431-70338-1.

11. Nishisato, S.: Insight into Data Analysis: The Necessity of Quantification.
Kwansei Gakuin University Press (2007) (in Japanese). ISBN 978-4-86283-
014-2.

12. Nishisato, S.: Multidimensional Nonlinear Descriptive Analysis of Categorical
Data. Chapman & Hall, London (2007). ISBN 1-58488-612-9.

13. Nishisato, S.: Data Analysis for Behavioral Sciences: Applications of Methods
Appropriate for Information Retrieval. Baifukan, Tokyo (2010) (in Japanese).
ISBN 978-4-563-05218-8.

14. Nishisato, S.: Japanese translation of (Dugas-Nishisato, L.: Finding Greatness.
Kids for Kids Books, Toronto (2018)). ISBN 978-1-926863-93-1). Hokkaido
Shuppan Kikaku Center Press, Sapporo (2019). ISBN 978-4-8328-1911-5.

15. Nishisato, S., Beh, E.J., Lombardo, R., Clavel, J.G.: Modern Quantification
Theory: Joint Graphical Display, Biplots and Alternatives. Springer, Singapore
(2021). ISBN 978-981-16-2469-8.

16. Nishisato, S.:OptimalQuantification andSymmetry. Springer, Singapore (2022).
ISBN 978-981-16-9160-0.

17. Nishisato, S.: Measurement, Mathematics and New Quantification Theory.
Springer, Singapore (2023).
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Selected Research Papers

• Nishisato, S.: Factor analytic study of anxiety. Jpn. J. Psychol. 31, 228–236 (1960)
(in Japanese).

• Oyama, T., Sugiyama, Y., Nishisato, S.: Discrimination between schizophrenic
patients and neurotic patients: proposal of a simplified method and proposal of a
new RRS score. Rorschachiana Japonica 4, 65–79 (1961) (in Japanese).

• Nishisato, S.: A simple method of time series analysis. Festschrift for Professor
Kin-ichi Yuki, pp. 102–111. Yamafuji Press, Sapporo (1965) (in Japanese).

• Nishisato, S.: Reaction time as a function of arousal and anxiety. Psychonomic
Sci. 6, 157–158 (1966).

• Nishisato, S., Wise, J.S.: Relative probability, inter-stimulus interval and speed of
same-different judgment. Psychonomic Sci. 7, 59–60 (1967).

• Bindra, D., Donderi, D.C., Nishisato, S.: Decision latencies of same and different
judgments. Percept. Psychophys. 3, 121–130 (1968).

• Nishisato, S.: Probability estimation of dichotomous response patterns by logistic
fractional-factorial representation. Jpn. Psychol. Res. 12, 87–95 (1970).

• Nishisato, S.: Structure and probability distribution of dichotomous response pat-
tern. Jpn. Psychol. Res. 12, 62–74 (1970).

• Nishisato, S.: Transform factor analysis: a sketchy presentation of a general
approach. Jpn. Psychol. Res. 13, 155–166 (1971).

• Nishisato, S., Torii, Y.: Effects of categorizing continuous normal variables on
product-moment correlation. Jpn. Psychol. Res. 13, 45–49 (1971).

• Nishisato, S., Torii, Y.: Assessment of information loss in scoringmonotone items.
Multivariate Behav. Res. 6, 91–103 (1971).

• Nishisato, S.: Information analysis of binary response patterns. In: Takagi, S. (ed.)
Modern Psychology and Quantification, Chap. 2. Theory of Measurement and
Applications, pp. 73–92. University of Tokyo Press, Tokyo (1971) (in Japanese).

• Nishisato, S.: Analysis of variance through optimal scaling. In: Proceedings of the
First CanadianConference inApplied Statistics, pp. 306–316. SirGeorgeWilliams
University Press, Montreal (1971).

• Nishisato, S.: Analysis of variance of categorical data through selective scaling.
In: Proceeding of the 20th International Congress of Psychology, p. 279. Science
Council of Japan, Tokyo (1972).

• Nishisato, S.: Optimal Scaling and Its Generalizations, I: Methods. Measurement
and Evaluation of Categorical Data Technical Report (MECDTR) No. 1. Depart-
ment of Measurement & Evaluation (ME), Ontario Institute for Studies in Educa-
tion (OISE), Toronto (1972).

• Nishisato, S., Inukai, Y.: Partially optimal scaling of itemswith ordered categories.
Jpn. Psychol. Res. 14, 109–119 (1972).

• Nishisato, S.: Optimal Scaling and Its Generalizations, II: Applications.MECDTR
No. 2, ME, OISE, Toronto (1973).

• Nishisato, S.: Elements of Applied Scaling. Department of Measurement & Eval-
uation, OISE, Toronto (1973).
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• Nishisato, S., Yamauchi, H.: Principal components of deviation scores and stan-
dardized scores. Jpn. Psychol. Res. 16, 162–170 (1974).

• Nishisato, S., Arri, P.S.: Nonlinear programming approach to optimal scaling of
partially ordered categories. Psychometrika 40, 525–548 (1975).

• Nishisato, S., Leong, K.S.: OPSCAL: A FORTRAN IV Program for Analysis of
QualitativeData byOptimal Scaling.MECDTRNo. 3,ME,OISE, Toronto (1975).

• Nishisato, S.: Optimal Scaling as Applied to Different Forms of Data. MECDTR
No. 4, ME, OISE, Toronto (1976).

• Nishisato, S.: Recent developments in scaling and related areas: a bibliographic
overview. Jpn. J. Behav. 4, 74–95 (1977).

• Nishisato, S.: Recent developments in scaling and related areas: multidimensional
scaling. Jpn. J. Behav. 5, 37–55 (1978).

• Nishisato, S.: Psychometrics: international trends. Math. Sci. 183, 69–73 (1978).
• Nishisato, S.: Optimal scaling of paired comparison and rank order data: an alter-
native to Guttman’s formulation. Psychometrika 43, 263–271 (1978).

• Nishisato, S.: An Introduction to Dual Scaling. MECDTR No. 5, ME, OISE,
Toronto. (1979).

• McDonald, R.P., Torii, Y., Nishisato, S.: Some results on proper eigenvalues and
eigenvectors with applications to scaling. Psychometrika 44, 211–227 (1979).

• Nishisato, S.: Dual scaling and its historical development. Math. Sci. 190, 76–83
(1979).

• Nishisato, S.: Dual scaling and its variants. In: Traub, R.E. (ed.) New Directions
in Testing and Measurement, pp. 1–12. Josey Bass, San Francisco (1979).

• Nishisato, S., Sheu,W.J.: Piecewise method of reciprocal averages for dual scaling
of multiple choice data. Psychometrika 45, 467–478 (1980).

• Nishisato, S.: Dual scaling of successive categories data. Jpn. Psychol. Res. 22,
134–143 (1980).

• Nishisato, S.:Mathematical expositions of dual scaling. In:Chaubey,Y.P.,Dwivedi,
T.D. (eds.) Topics in Applied Statistics, pp. 629–640. Concordia University Press,
Montreal (1981).

• Nishisato, S., Sheu, W.J.: A note on dual scaling of successive categories data.
Psychometrika 49, 493–500 (1984).

• Nishisato, S.: Dual scaling by reciprocal medians. Estratto Dagli Atti della XXXII
Riunione Scientifica, Sorrento, Italy, pp. 141–147 (1984).

• Nishisato, S.: Forced classification: A simple application of a quantification
method. Psychometrika 49, 25–36 (1984).

• Nishisato, S.: Generalized forced classification for quantifying categorical data. In:
Diday, E. (ed.) Data Analysis and Informatics, IV, pp. 351–362. Elsevier Science
Publishers B. V., North Holland, Amsterdam (1986).

• Nishisato, S.: Classification with a variety of categorical data. In: Gaul, W.,
Schader, M. (eds.) Classification as a Tool of Research, pp. 353–359. Elsevier
Science Publishers B. V., North Holland, Amsterdam (1986).

• Weingarden, P., Nishisato, S.: Can a method of rank ordering reproduce paired
comparison? An analysis by dual scaling (correspondence analysis). Can. J. Mar-
ket. Res. 5, 11–18 (1987).
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• Nishisato, S.: Robust techniques for quantifying categorical data. In: MacNeil,
I.B., Umphrey, G.J. (eds.) Foundations of Statistical Inference, pp. 209–217. D.
Reidel Publishing Company, Dordrecht, The Netherlands (1987).

• Nishisato, S.: Dual scaling: its development and comparisons with other quantifi-
cation methods. In: Proceedings of the Annual Meeting of the German Society of
Operations Research, Berlin, pp. 376–389 (1988).

• Nishisato, S.: Assessing quality of joint graphical display in correspondence anal-
ysis and dual scaling. In: Diday, E., Escoufier, Y., Lebart, L., Page, J., Schektman,
Y., Tommasone, R. (eds.) Data Analysis and Informatics, V., pp. 409–416. North
Holland, Amsterdam (1988).

• Nishisato, S.: Market segmentation by dual scaling through generalized forced
classification. In: Gaul, W., Schader, M. (eds.) Data, Expert Knowledge and Deci-
sions, pp. 268–278. Springer, Berlin (1988).

• Nishisato, S.: Forced classification procedure of dual scaling: its mathematical
properties. In: Bock, H.H. (ed.) Classification and Related Methods, pp. 523–532.
North Holland, Amsterdam (1988).

• Nishisato, S.,Gaul,W.:Marketing data analysis by dual scaling. Int. J. Res.Market.
5, 151–170 (1989).

• Nishisato, S., Lawrence, D.R.: Dual scaling of multiway data matrices: Several
variants. In: Coppi, R., Bolasco, S. (eds.) Multiway Data Analysis, pp. 317–326.
North Holland, Amsterdam (1989).

• Nishisato, S., Gaul, W.: An approach to marketing data analysis: The forced clas-
sification procedure of dual scaling. Journal of Marketing Research 27, 354–360
(1990).

• Nishisato, S.: Dual scaling of designed experiments. In: Schader, M., Gaul, W.
(eds.) Knowledge, Data and Computer-Assisted Decisions, NATO ASI Series F:
Computers and Systems Science Vol. 61, pp. 115–125. Springer, Berlin (1990).

• Nishisato, S.: Standardizing multidimensional space for dual scaling. Proceedings
of the 20th Annual Meeting of the German Operations Research Society, pp. 584–
591. Hohenheim University, Germany (1991).

• Yamada, F., Nishisato, S.: Several mathematical properties of dual scaling as
applied to item category data. Japanese Journal of Behaviormetrics 20, 56–63
(1993) (in Japanese).

• Nishisato, S.: On quantifying different types of categorical data. Psychometrika
58, 617–629 (1993).

• Bean, G., Nishisato, S., Rector, N.A.: The psychometric properties of the Compe-
tency Interview Schedule. Canadian Journal of Psychiatry 39, 368–376 (1994).

• Nishisato, S.: Graphical representation of quantified categorical data: Its inherent
problems. Journal of Statistical Planning and Inference 43, 121–132 (1995).

• Nishisato, S.: Optimization and data structure: Seven faces of dual scaling. Annals
of Operations Research 55, 345–359 (1995).

• Nishisato, S., Ahn, H., When not to analyze data: Decision making on missing
responses in dual scaling. Annals of Operations Research 55, 361–378 (1995).

• Nishisato, S.: An overview and recent developments in dual scaling. In: Gaul, W.,
Pfeifer, D. (eds.) From Data to Knowledge, pp. 73–85. Springer, Berlin (1995).
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• Beans, G., Nishisato, S., Rector, N.A., Glancy, G.: The assessment of compe-
tence to make a treatment decision: An empirical approach. Canadian Journal of
Psychiatry 41, 85–92 (1996).

• Nishisato, S.: What is quantification? A point of view. Festschrift for Professor
Yoshio Sugiyama, 187–192 (1996).

• Nishisato, S.: Gleaning in the field of dual scaling. Psychometrika 61, 559–599
(1996). (Presidential address of the Psychometric Society).

• Nishisato, S.: Graphing is believing: Interpretable graphs for dual scaling. In:
Blasius, J., Greenacre, M.J. (eds.) Visualization of Categorical Data, pp. 185–196.
Academic Press, London (1997).

• Nishisato, S.: Exploring multidimensional quantification space. In: Hayashi, C.,
Yajima, K., Bock, H.-H., Ohsumi, N., Tanaka, Y., Baba, Y. (eds.) Data Sci-
ence, Classification and Related Methods: Proceedings of the Fifth Conference of
the International Federation of Classification Societies (IFCS-96), pp. 441–451.
Springer, Kobe, Japan (1998).

• Nishisato, S.: Data types and information: Beyond the current practice of data
analysis. In: Decker, R., Gaul, W. (eds.) Classification and Information Processing
at the Turn of the Millennium, pp. 40–51. Springer, Heidelberg (1999).

• Nishisato, S., Baba, Y.: On contingency, projection and forced classification of
dual scaling. Behaviormetrika bf 26, 207–219 (1999).

(Retirement, June 2000)

• Nishisato, S.: Le dual scaling et ses applications. In: Moreau, J., Doudin, P.-
A., Cazes, P. (eds.) L’Analyse des Correspondances et les Techniques Con-
nexes: Approaches Nouvelles pour l’Analyse Statistique des Données, pp. 9– 31.
Springer, Berlin (2000) (in French).

• Nishisato, S.: A characterization of ordinal data. In: Gaul, W., Opitz, O., Schader,
M. (eds.) Data Analysis: Scientific Modeling and Practical Applications, pp. 285–
298. Springer, Heidelberg (2000) (Festschrift for Professor Dr. Hans-Hermann
Bock).

• Nishisato, S.,Hemsworth,D.:Quantification of ordinal variables:A critical inquiry
into polychoric and canonical correlation. In: Baba, Y., Hayter, A. J., Kanefuji, K.,
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Nishisato’s Psychometric World

Pieter M. Kroonenberg

1 Introduction

This chapter contains photographs rather than words to show Prof Shizuhiko
Nishisato’s psychometric world. This contribution is made up of photographs of
him and his colleagues as they appeared in front of the lens of my camera. Obviously
not all of them are present, as at the time neither they nor I knew that they had a role
to play in the Festschrift for Nishi’s 88th birthday. Given selfies came only in vogue
after 2012, I had to include my own existence captured by other, to me unknown,
photographers. I am afraid this mostly precludes giving proper acknowledgements
(Fig. 1).

Fig. 1 Nishisato at the European Psychometric Conference, 1995; Leiden
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I have tried to contact the persons displayed, but not all have responded to my
email. Those that did, were all in favour of their portrayal, and some have kindly send
me a photograph of themselves. The symbol † indicates that the person is deceased,
as far as I know; when known, the year is provided.

2 Nishisato: The Man Himself

(a) Nishisato at IMPS2005
(Willem Heiser in the background)

(b) Nishisato at IMPS2007

(c) Nishisato at IMPS2015 (d) Nishisato at IMPS2015

Fig. 2 Nishisato at conferences: IMPS2005, IMPS2007 and IMPS2015
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(a) Nishisato at IFCS2017 (b) Nishisato at IFCS2017

Fig. 3 Nishisato at conferences: IFCS2017

3 Nishisato and Colleagues

(a) With William Stout, Haruo Yanai,
Ivo Molenaar

(b) With David Thissen, William Stout,
Haruo Yanai

Fig. 4 Nishisato and friends: IMPS2001

(a) With Wim van der Linden (b) With Hiroshi Ikeda

Fig. 5 Nishisato and friends: IMPS2007
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(a) With Terry Ackerman; Su-
san Rees at the back

(b) With Larry Hubert (c) With Sy Miin Chow and
Sophia Rabe Hesketh

Fig. 6 Nishisato and friends: IMPS2015

(a) With Helga Gaul; IFCS2017 (b) With Yasumasa Baba, 2013;
Photo courtesy of Nishisato

(c) With Michel van de Velden, Rosaria Lombardo, Eric Beh and Pieter Kroonenberg;
IFCS2017

Fig. 7 Nishisato and friends, IFCS2017
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4 Japan

(a) Kohei Adachi, 2015;
Osaka

(b) Haruo Yanai, 2007;
2013

(c) Chikio Hayashi, 1998;
2002

Fig. 8 Nishisato’s Japanese colleagues: Part I

(a) Kentaro Hayashi, 2007;
Mānoa, Hawaii

(b) Tadashi Imaizumi, 2017;
Tama, Tokyo

(c) Yukio Inukai, 1997;
Nagoya

Fig. 9 Nishisato’s Japanese colleagues: Part II

(a) Akinori Okada, 2005;
Rikkyo, Tama, Tokyo

(b) Shuichi Iwatsubo, 1997 (c) Yutaka Kano, 2007; Osaka

Fig. 10 Nishisato’s Japanese colleagues: Part III
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(a) Kazuo Shigemasu, 2007;
Tokyo

(b) Tatsuo Otsu, 2007;
NCUEE, Komaba

(c) Takashi Murakami, 2016;
Nagoya, Chukyo

Fig. 11 Nishisato’s Japanese colleagues: Part IV

5 North America

(d) Terry Ackerman, 2015;
UNCG, Greensboro, USA

(e) Darrell Bock, 2008;
thesis supervisor; 2021

(f) Peter Bentler, 2017;
UCLA, USA

Fig. 12 Nishisato’s North-American colleagues: Part I

(a) Ulf Böckenholt, 2006;
Kellog, Evanston, USA

(b) Robert Cudeck, 2006;
Columbus, USA

(c) Norman Cliff, 2017;
USC, USA

Fig. 13 Nishisato’s North-American colleagues: Part II
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(a) Vartan Choulakian, 2015;
Moncton, Canada

(b) Yoshio Takane, 2007;
Victoria, Canada

(c) Jim Ramsay, 1995;
Montreal, Canada

Fig. 14 Nishisato’s Canadian colleagues: Part III

(a) David Thissen, 2006;
Chapel Hill, USA

(b) Larry Hubert, 2016;
Urbana-Champaign, USA

Fig. 15 Nishisato’s North-American colleagues: Part IV

6 Europe

(a) Wolfgang Gaul, 2017;
Bonn, Germany

(b) Gerhard Fischer, 2017;
Vienna, Austria

(c) Hans-Hermann Bock,
2010; Aachen, Germany

Fig. 16 Nishisato’s European colleagues: Germany, Austria
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(a) Brigitte Le Roux, 2015;
Paris

(b) Gilbert Saporta, 2011;
Paris

(c) Ludovic Lebart, 2015;
Paris

Fig. 17 Nishisato’s European colleagues: France

(a) Jan de Leeuw, 2011;
UCLA, USA

(b) Willem Heiser, 2017;
Leiden

(c) Jacqueline Meulman,
2019; Leiden

Fig. 18 Nishisato’s European colleagues: Leiden, The Netherlands

(a) Pieter Kroonenberg,
2012; Leiden

(b) Wim van der Linden,
2016; Twente

(c) Peter van der Heijden, 2006;
Utrecht

Fig. 19 Nishisato’s European colleagues: The Netherlands
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(a) Ivo Molenaar, 1995;
2018

(b) Jos ten Berge, 2005 (c) Henk Kiers, 2006

Fig. 20 Nishisato’s European colleagues. Groningen: The Netherlands

(a) Patrick Groenen, 2005;
Rotterdam

(b) Michel van de Velden,
2017; Rotterdam

(c) Helmut Vorkauf, 2021;
Switzerland; Courtesy of HV

Fig. 21 Nishisato’s colleagues: The Netherlands

(d) John Gower, 1999;
2019; UK

(e) Frank Critchley, 2019;
Milton Keynes, UK

(f) David Hand, 2010;
Imperial College London, UK

Fig. 22 Nishisato’s European colleagues: Great Britain
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(a) Karl Jöreskog, 2008;
Uppsala, Sweden

(b) Michael Greenacre
1999; Barcelona, Spain

(c) Eeke van der Burg,
2008; Leiden 2019

Fig. 23 Nishisato’s European colleagues: Sweden, Spain, Switzerland

(d) Michel Tenenhaus,
2011; Paris, France

(e) Jan van Rijckevorsel,
2017; Amsterdam

(f) Ineke Stoop, 2021;
Courtesy of Ineke Stoop
Den Haag, The Netherlands

Fig. 24 Nishisato’s European colleagues: France, The Netherlands

7 South Africa

(g) Johané Nienkemper
2017; Stellenbosch

(h) Niel Le Roux, 2010;
Stellenbosch

(i) Sugnet Lubbe, 2010;
Stellenbosch

Fig. 25 Nishisato’s South African colleagues
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8 Nishisato with Many Friends

(a) Top row: Caussinus, Rouanet, Zárraga, Nishisato, Pagés, Galindo, Saporta, Friendly,
Heiser, Kroonenberg, Lewi, Gower. Bottom row: Takane, Cuadras, Lauro, Ter Braak,
Lebart

Fig. 26 Nishisato and friends: CARME2003

9 The Distinguished Editors

(a) Eric J. Beh, 2013;
Newcastle, Australia

(b) Rosaria Lombardo,
2013; Capua, Italy

(c) Jose G. Clavel, 2016;
Murcia, Spain

Fig. 27 Editors of this volume



My Recollections of People in the World
of Data Science

Shuichi Iwatsubo

1 Prologue

I felt very honoured to be asked to contribute to the Festschrift of Professor Emeritus
Shizuhiko Nishisato. At the same time, however, I hesitated before I could write
anything. Why? Well, Nishisato has absorbed himself in the world of multivariate
methods for categorical data and has contributed greatly to these areas; but my main
interest changed a long time ago from developing data analysis utilised to clarify
universal human behaviour to investigating individual human personality. Then I
recalled how lucky I have been to know Nishisato, who is so open-minded, kind,
and generous, a man who loves people. I have also had the fortune to get to know
many attractive scientists, not only in Japan but also overseas, directly and indirectly,
including those Nishisato has known very well. I felt that this might be a valuable
opportunity to inform scientists living abroad about some aspects of the past activities
of Japanese data scientists, which will most likely be largely unknown to them. And
I have to admit that I have personally felt great pleasure to be a member of this world.
So, I decided to take the plunge…

I would like to share my humble but precious memories of the great scientists
I met, mainly, during the 1960s, ‘70s, and ‘80s however fragmental they may be. I
firmly believe that a happy family originates from the warmest humanity, so I would
also like to mention their families that I have had a chance to get to know very
well. I will be happy if my memories can offer some previously unfamiliar episodes
featuring distinguished scientists of multivariate categorical data analysis and the
data sciences.
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2 Chikio Hayashi’s ‘Type III’ Method

The history of science sometimes reveals the interesting fact that similar methods
are sometimes discovered and developed independently and almost simultaneously.
It was in the spring of 1968 that I learned about one of Chikio Hayashi’s quantifi-
cation methods called ‘Type III’. It was later recognised to be similar to the ‘Dual
Scaling’ developed by Shizuhiko Nishisato (Nishisato 1975, 1980), the ‘Correspon-
dence Analysis’ developed by J.P. Benzécri (Benzécri 1973), and the ‘Reciprocal
Averaging Method’ described by M. O. Hill (Hill 1973).

In 1968, I was a member of the research section of the Electro-Technical Labora-
tory (ETL) in Tokyo. Hirohiko Nishimura, my senior colleague, sent me to Dentsu,
Japan’s largest commercial advertising company. The idea was to learn Hayashi’s
Methods that were utilised there and to train in the techniques of manipulating the
FORTRAN computer programming language.

At Dentsu’s Marketing Research Division at that time, a computerised method
was under construction to predict TV audience ratings based on categorical data
characterised from a new planned TV programme. Hayashi’s ‘Type I’Method, which
formally corresponds to the multi-correlation method for categorical data, had been
adopted. Meiko Sugiyama of NHK, Japanese semi-public broadcasting company,
had already been struggling energetically to predict the audience ratings of radio and
TV programmes.

I was handed a copy of the small textbook prepared for seminar attendants that
had been written by Toshio Uematsu, who was then a member of the Institute of
StatisticalMathematics (ISM) in Tokyo. Produced using a kanji-character typewriter,
it was designed to make Hayashi’s Methods easy to understand. I immediately got
absorbed in them, especially ‘Type III’.

The following is a brief sketch of ‘Type III’ with the data to which the method
was applied for the first time: ‘Thirty Persons by ten Designs of Cans’ binary data
are given, where ‘1’ of the binary data represents a person likes one design and ‘0’
where that person who does not. Hayashi put xi to design i and y j to person j. Then
{X |xi , i = 1, . . . , 30} and {

Y |y j , j = 1, . . . , 10
}
are adjusted so that the correlation

coefficient between X and Y is maximised. The result leads to the simultaneous
construction of one-dimensional scaling with regard to persons and designs.

Soon after I returned to ETL, Nishimura and I started to give both words and
sentences numerals, determined by applying ‘Type III’ to ‘words by sentences’ binary
data. Sixty-one sentences were selected from four areas: software and hardware
papers in computer sciences and two American literary works by John Steinbeck
and Saul Bellow. Forty-one words were selected according to the running occur-
rence frequency order occurring in sixty-one sentences. The considerable results of
applying ‘Type III’ to 61 by 41 binary data led to our contribution to a scientific
magazine (Nishimura and Iwatsubo 1970), the percept of which was sent to Chikio
Hayashi at ISM. That launched our close communication.
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3 The Behaviormetric Society (BS)

TheBehaviormetric Society (BS)was established in Japan in 1973. Itsmembers, who
belonged to a broad range of scientific fields, were methodologically very interested
in statistical methods, especially such multivariate methods as factor analysis, MDS,
Hayashi’s Methods, etc. Chikio Hayashi was the first President and Haruo Yanai
was the Secretary. Yanai was supported by several young members, one of whom,
Kumiko Maruyama, enthusiastically persuaded many people to participate in this
new interdisciplinary society.

I helped Yanai to dispatch scientific journals, newsletters, and so on to members.
After our busy work was over, we often enjoyed a break together. As soon as we sat
down for a cup of coffee, Yanai would ask me to listen about how he had obtained
his recent new results, most of which were theorems and lemmas concerning mainly
projector, generalised inverse of matrices.

Can you spare me a few minutes? Five minutes will be alright. No, no! Just three minutes
will be enough! Please listen carefully!

Then he would vividly and cheerfully continue for half an hour, or sometimes
more than one hour, to tell me how to infer new propositions and deduce a lot of
lemmas. He would do this by writing down hard-to-decipher symbols and formulae
very quickly on any small sheet of paper available!

Yoshio Takane was one of the students who was taught multivariate statistical
analysis by Yanai at the University of Tokyo. I believe that Takane was encouraged a
great deal by Yanai to study multivariate methods. In fact, I feel it would be no exag-
geration to say that his professional life was basically determined by meeting Yanai.
In 1986, Takane was the 1st prize winner of the Hayashi Chikio Award (Achievement
Award) from the Behaviormetric Society as a great methodological contributor to
behaviormetric research. It was Yanai who had earnestly recommended him.

4 University of California, San Diego

In the summer of 1975, J. D. Carroll and Taro Indow organised a US-Japan Seminar
on ‘Theory, Methods and Applications of Multidimensional Scaling and Related
Techniques’. Sponsored by the National Science Foundation, U.S.A. and the Japan
Society for the Promotion of Science, it was held at the University of California, San
Diego (UCSD), from the 19th to the 23rd of August. I remember that was soon after
the end of the Vietnam War.

The participants from Japan were Taro Indow, Chikio Hayashi, Masaaki Yoshida,
Meiko Sugiyama, Akio Kameoka, Keiko Matsushima (now Keiko Watanabe),
Akinori Okada, and myself. Participants from the U.S.A. were J. D. Carroll, J.
J. Chang, J. B. Kruskal, Myron Wish, Norman Cliff, James C. Lingoes, R. N.
Shepard, W. S. Torgerson, L. R. Tucker, and other well-known researchers. Jean-
Marie Bouroche was the only participant from France. It was thanks to him that four
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years later we got the opportunity to be in contact with French scientists and to meet
J. P. Benzécri.

Whenwearrived atUCSDon the 19th ofAugust, three hippie-styleNorthCarolina
gentlemen appeared. They were Forest Young, Jan de Leeuw and Yoshio Takane.
The young Takane was long-haired and wearing sunglasses. According to the notes I
wrote at the time, I invited him to my room in Tioga Hall of UCSD one evening and
we kept talking until 1 a.m. It was the day before he left for the University of North
Carolina, Chapel Hill, where he was to spend two years. The only thing I remember
now from all that talking was that Takane had enjoyed seeing the movie Jaws, which
was then enjoying great popularity in the U.S.A!

In September 1980, J. B. Kruskal came to Japan as an invited speaker at the
Annual Meeting of the Behaviormetric Society held at the Hiyoshi Campus of Keio
University. He gave us a lecture on ‘Analysis of Data by Geometric and Multilinear
Methods’ with splendid interpretation by Takane, whowas then atMcGill University
in Canada.

5 ISI Session, New Delhi

In 1977, Haruo Yanai and I attended the 41st Session of the International Statistical
Institute (ISI) in New Delhi. We shared a room at a hotel in New Delhi, very near
Old Delhi. Another important purpose for Yanai to visit to India was to meet C. R.
Rao, who had recently retired from his position as Director of the Indian Statistical
Institute to concentrate on his research. After the ISI Session, Yanai remained in New
Delhi to contact Rao. I remember that one day after returning from a discussionYanai
was in his room making great efforts to solve problems proposed by Rao. I suppose
it meant that he had to carefully prepare answers ready for the next discussion a few
days later! Their discussions culminated in the following statistical papers: Rao and
Yanai (1979, 1985).

After returning to Japan, Yanai told me that the Japanese Ambassador to India
had invited him as a guest to both the Christmas and NewYear parties at the Japanese
Embassy, and in lotteries at them he had won a large traditional Indian wooden table
(Christmas) and a TV set (New Year)! The Embassy staff and their families had
apparently been very envious! The generous Yanai donated his prizes to Embassy
staff.

I can never forget Yanai’s deep kindness to me during the visit I made to Calcutta
despite his busy days with Rao. Thanks to him, then the Director of the Indian Statis-
tical Institute, Gopinath Kallianpur, invited me as a guest researcher. In Calcutta, I
called onMrsMahalanobis, who was a friend of my parents-in-law. She ledme to the
spacious drawing room where R. A. Fisher once enjoyed talks with her late husband,
P. C. Mahalanobis. I presented the gentle old lady with a Kabuki Theatre calendar
which featured woodblock prints of famous scenes from Kabuki performances. She
turned the calendar sheets one by one and asked me the meaning of every scene. In
particular, she wanted to knowwhymost of the characters looked angry. I discovered
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afterwards that Kabuki actors pause to pose dramatically for a few seconds to empha-
sise their character’s actions, especially when punishing the wicked, and naturally
their eyes are widely opened, which makes them look very angry. I felt sad that the
combination of my poor English and my lack of knowledge about a traditional art of
my country prevented me from giving Mrs Mahalanobis a satisfactory answer.

In 1979, onhiswayback from the42nd ISISessionheld inManila,Yanai consulted
with B. N. Mukherjee, one of his co-authors, about the publication of their book The
Foundation of Multivariate Analysis. It was published in 1982 and received a high
evaluation (Takeuchi et al. 1982).

6 International Symposium at Versailles

I have to admit that, at first, we all supposed that ‘J. P. Benzécri’ was not actually
a personal name but a collective one just like ‘Nicolas Bourbaki’. We later realised
that we had been mistaken! Many bright young scientists actively collaborated with
Professor Benzécri as honourable members of the ‘Banzécri Clan’. One of them,
Ludovic Lebart, told us that Benzécri had written his two-volume L’analyse des
Données in old-style French. We were familiar with Benzécri’s legendary refusal
to travel by air, which prevented him from attending international meetings abroad.
Apparently, he spent most his time meditating on data analysis at his mysterious
lodge 200 km’s from Paris, so the fact that Chikio Hayashi managed to realise a
meeting with him in Paris in October 1979 was a rare achievement indeed (Fig. 1).

The 2nd International Symposium on Data Analysis and Informatics (ISDAI)
was held at Versailles, France, in the autumn of 1979. The Japanese attendants

Fig. 1 Sketch by the author on 22 Oct. 1979
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were Chikio Hayashi, Setsuko Takakura (a good French speaker), Meiko Sugiyama,
Noboru Ohsumi, Fumi Hayashi (no relation with Chikio Hayashi, but his very reli-
able research collaborator), and myself. I had the honour of shaking hands with
Benzécri at his meeting with Hayashi. The delicate softness of the genius’ hand was
unforgettable. (In strong contrast, Gilbert Saporta’s handshake was so strong it left
my right hand numb; I felt it embodied the dynamism of young French scientists!)
BesidesLebart andSaporta,we could alsomeetEdwinDiday,YvesEscoufier,Michel
Jambu,AlainMorineau,MauriceRoux, Jean-PierreNakache, and other activeFrench
scientists.

It was also my great pleasure to meet Jean-Marie Bouroche again. He invited us
to visit his apartment in Paris, and we met his three beloved young daughters. When
he attended the 46th ISI Session held in Tokyo in 1987, I welcomed him and his
wife to my house. My father, who had learnt to speak French in his youth, sang La
Marseillaise accompanied by my mother on the piano. Mr and Mrs Bouroche were
so pleased to hear their national anthem, they sang an old French song in beautiful
harmony to thank my parents.

Ever since that time, Ludovic Lebart has been extending kindness to Japanese data
scientists. A deep friendship of trust between Ludovic and Noboru Ohsumi began
and has continued right up to the present. Ohsumi later spent one year at ENST,
Ludovic’s institute, as a visiting scientist. In 1994, Ohsumi and Yasumasa Baba
were the co-authors of a Japanese book (Ohsumi et al. 1994) which was basically
a translation of the book written by Lebart, Morineau, and Warwick (Lebart et al.
1984) andwith additional contents. It waswarmlywelcomed in Japan. In the Preface,
Ohsumi expressed his gratitude to Kinji Mizuno (ISM), who had offered his survey
data for the book, and to Haruo Yanai for his detailed comments on the manuscript.

Ludovic loves The Little Prince by Antoine de Saint-Exupéry and collects the
versions published in other countries, so when he came to Japan he made sure to
find a Japanese edition! He is also very interested in Japanese culture. He once told
me how much he enjoyed reading I am a Cat written by Soseki Natsume, one of
Japan’s greatest novelists, which is often compared in Japan to E. T. A. Hoffmann’s
Lebensansichten des Katers Murr.

In October 1985, Haruo Yanai participated in the 5th International Symposium
on Data Analysis and Informatics at Versailles as an invited speaker. He told me
that his book The Foundation of Multivariate Analysis might be of interest to the
French organisers of the Symposium. I also attended the Symposium on my way to
the UK. We shared a room at a small hotel near Pont Mirabeau on the Seine, the
bridge which features in Le Pont Mirabeau, the famous love poem by Guillaume
Apollinaire. One evening we were standing on the bridge in the autumn twilight
gazing at the salmon-pink sky. Yanai suddenly askedme to give him some advice. He
had been offered a professorship from The National Centre for University Entrance
Examinations (DNC) in Tokyo, to which I belonged. I expressed my opinion that
he would probably rather have more freedom at his university than at DNC. Then
next spring in the UK I heard from a DNC colleague that Yanai had in fact joined
DNC! He was such a great figure who contributed to both activities for DNC and
the development of data analysis. In July 2007, he presided over the International
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Psychometric Meeting held in Japan. After retiring from DNC, he belonged to St.
Luke’s International University, a nursing university in Tokyo and made great efforts
to establish a system of common entrance examinations for nurses.

Haruo Yanai sadly passed away in December 2013 at the age of only seventy-
three. A condolatory telegram from C. R. Rao expressing deep sadness was read at
the funeral. Yanai was indeed a highly distinguished scientist who was loved by so
many people both in Japan and abroad. For me he will remain forever just as if he
were my kind elder brother.

7 John C. Gower

From the autumn of 1985 to the summer of 1986, I was a visiting scientist at the
Statistics Department of Rothamsted Experimental Station. I owed that happy spell
in the UK to the kindness of Akinori Okada who willingly took over as Secretary of
the Behaviourmetric Society, to which I had succeeded from Kinji Mizuno.

I stayed at the RothamstedManor House, built of sturdy English oak in the seven-
teenth century, which offered accommodation to visitors. Staying there were many
students and researchers not only from the UK but from all over the world. I made
friends with a doctorate student from Germany who studied entomology. During
World War II, a treaty was forged between Japan and Germany to fight against the
UK, but now, in the UK, I was able to forge a private friendship between Japan and
Germany, a friendship that has continued right up to the present. That made me think
howwonderful peace is. MyGerman friend was a pious evangelist and he introduced
me to his British evangelist friends, including Keith Goulding, who was in the RES
Soils Division.

Needless to say, the English ‘tea break’ took place every morning and afternoon.
I envy British people being able to enjoy those tea breaks, although I have known
some people (even British gentlemen) call it an ‘infamous’ custom…Well, I believe
that most of the best aspects of British culture might have originated from it!

It was during those breaks that I met Pete Digby, Alan Todd, Simon Harding,
Gavin Ross, Peter Lane, Rodger Payne, and other fine people. At one of them, Gavin
Ross told me that it was very difficult in the UK to find a mug with an ape on it. Well,
I decided to surprise him if I could, so I searched for one every weekend, sometimes
wandering all around London. But it was all in vain… Gavin sympathised with me
when I told him, and he kindly presentedmewith amug he happened to have acquired
with a monkey hanging from a tree branch by its tail. It is now one of my favourites
in my collection of eleven mug cups decorated with various figures of apes.

What led me to go to RES was my interest in John Gower’s general coefficients
of similarity (Gower 1971) rather than his principal coordinates analysis. John had
just succeeded to the position of Head of the Biomathematics Division from John
Nelder, who had encouraged the members to complete GENSTAT. John and I were
very soon on first name terms and I was also welcomed by his wife Janet and their
children Sally and James. Janet was a splendid cook and the Gowers invited me to
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dinner at home while I was staying at the Manor House. I still clearly remember
the delicious taste of the soft, juicy roast lamb I was served. James, who was then
sixteen, loved tortoises, tropical fishes, and other little creatures. He told me that he
was not very interested in the biology lessons he received at school, so I gave him a
paperback titled The Green Year, the story of a boy who loves natural history, written
by A. J. Cronin.

My family went to the UK in May 1986. After detailed investigation, Keith
Goulding introduced us to a lovely small elementary school formy two young daugh-
ters. Their teacher, Christopher Rowlatt, of whom our girls grew very fond, was later
successful as a marbling artist, and we still keep in touch.

In April 1987, John attended the 46th ISI Session held in Tokyo. Janet accom-
panied him, and one day my wife took her sightseeing in Tokyo. They visited the
famous Senso-ji Temple in Asakusa and tasted some small Japanese cakes baked at
a traditional confectionary shop while strolling along Nakamise Street. After taking
lunch at Tatsumi-ya, a long-established Japanese restaurant, they went on a boat
trip down the Sumida River to Hama-Rikyu Gardens. On their way, Janet saw some
people eating and drinking under the cherry trees on the riverbank, even though it was
quite a cold day. They had probably expected to enjoy full blossoms, but despite the
cold and being disappointed that only a few flowers were in bloom they had decided
to go ahead with their cherry-blossom-viewing party! Janet was amused and took
some photos of them. The two ladies took a pleasant ramble around the Hama-Rikyu
Gardens and then enjoyed tea and cakes at Shiseido Parlour, a popular café in Ginza.
Janet really appreciated the beautiful cakes subtly decorated with a net of thin starch
jelly strings and took a photo of them.

The Gowers’ son James grew up to became a very successful exhibition organiser.
One Sunday when I was visiting the UK in 1989, I telephoned John from St. Pancras
Station in London. The Gowers were all out at a local school where an exhibition
organised by James was being held, but, as luck would have it, just at that moment
John happened to return home to fetch something he’d forgotten. He invited me to
join them, so by chance I had the honour of participating in James’s debut exhibition!

The Great Hanshin Earthquake occurred in 1995 just when James and his wife Jo
were staying with us in Tokyo. Janet quickly telephoned us from the UK to confirm
their safety. In 1996 James very kindly offered accommodation to our two daughters,
then university students, when they visited the UK. In February James often took
my elder daughter to an underground station to pay visits to London. In summer
travelling by car in Spain with James and Jo still remains vividly in my younger
daughter’s mind thanks to many amusing events caused from their rigid rule never to
reserve accommodations in advance, interesting conversations with local Spaniards
who could not speak English, etc.

In the summer of 1999, I went to the UK again on business and stayed a few
days with James and Jo at Hatfield near London. John and Janet had moved to
Nailsworth, a town in Gloucestershire not far from Wales. James presented me with
a CD of compositions by Michael Greenacre, his father’s good friend, titled You,
Woman. I must confess that the moment I heard it I was so fascinated by the music
that I could hardly believe that the composer Michael Greenacre was really the same
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person as the distinguished South African data analyst! When I listened to the CD
again later, I discovered that it was Michael himself who sang ‘Cradle Song’, one of
the thirteen songs, so beautifully. I apologise to him for misunderstanding up to then
that all the tracks were sung by Gurdeep Stephens.

John was a keen lover of natural orchids. His delight in seeing a rare one was for
him just as if he found a newproperty in his algebraic studies ofmultivariatemethods!
He had been greatly affected by the wild flowers he saw in a wood near Selborne,
made famous by Gilbert White’s The Natural History of Selborne, where John spent
his elementary school days duringWorldWar II.When he visited Japan in July 2001,
we went to Lake Shirokoma located in the mountainous Nagano Prefecture. To my
great surprise, on our way to the lake he quickly spotted a little orchid,Dactylostalix
ringens Reichb.f., blooming quietly in the dark wood. In June 2013, when my wife
and I took a two-week journey around the UK, he escorted us (fellow wild orchid
lovers!) to a natural grass field with fine red British wild orchids. During our stay in
the UK, we were able to lodge for a few days in the same room (The Pink Room) of
theManor House as I had inhabited for six months around thirty years earlier. At that
time I was also to stand before the memorial monument to Pete Digby built after his
early death. It’s near the former building of the Statistics Department and the Manor
House (Figs. 2 and 3).

After retirement from RES, John remained very active in his studies. He stayed in
the Netherlands for a few years. Janet accompanied him wherever he went. He wrote
two books (Gower and Hand 1996; Gower and Dijksterhuis 2004). Everyone who
acquired ‘Procrustes Problem’, one of two books, from him as a complimentary copy
would see on the back cover, ‘I hope you enjoy some Procrustes bedside reading’
and John’s autograph.

In July 2001, John visited DNC and introduced to us the Open University system
of certification. He also presented us a video of R. A. Fisher produced by RES.
One weekend afternoon, John and I called in at the National Museum in Ueno Park

Fig. 2 Dactylostalix ringens Reichb.f.
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Fig. 3 Orchis mascula in the UK

in Tokyo. When we came out, John stopped on the steps to look at several people
lingering to look at the sunset. ‘I like to see people lingering…’ John murmured. I’m
not sure why, but I was so impressed by the sound and meaning of the word ‘linger’
that I have made it a habit to collect any sentence in which the word appears!

JohnGower, a very happymanwhowas dearly loved by friends all over the world,
passed away in May 2019 soon after his birthday. And a very sad mail came from
Sally telling us that Janet, his greatest supporter, had peacefully followed him in
October. My younger daughter and her husband had been able to meet John, Janet,
and their family in the summer of 2018 before the onset of the COVID-19 pandemic.
It is a precious memory.

8 French Connections

On our way back home from the UK in the summer of 1986, we dropped into
France. Ludovic Lebart picked us up and took us to see the night view of Paris from
Montmartre. Fifteen years later, from 2001 to 2002, my younger daughter was in a
graduate course at Nottingham Trent University in the UK studying art. When she
took a holiday in France, Ludovic kindly welcomed her to stay with him in Paris.

During our 1986 trip,YvesEscoufier and hiswife invited us to supper at their home
inMontpellier near theMediterranean Sea. My elder daughter still says that the salad
served by Mrs Escoufier on that occasion was one of the two most delicious dishes
she has ever tasted in her life: tomato and paprika-based bouillabaisse risotto with
mussels, shrimps, octopus, other seafood, containing onions, and garlic tomatoes,
mussels, harmoniously blended with white wine as a secret ingredient. (She insists
that her memory is precise with a probability of seventy per cent!) By the way, her
other favourite dish was served at a small restaurant in Bath, the beautiful English
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town known for its Roman bath and ‘Beau’ Nash: sliced duck filet, lightly browned,
served with roasted duck with orange juice, Grand Marnier, white wine, and orange
zest in a brown sauce.

InMarch 1987, the Japanese-French Scientific Seminar on ‘Recent Developments
in Clustering and Data Analysis’ was held at the Institute of Statistical Mathematics
(ISM) in Tokyo. The French participants were Edwin Diday, Michel Jambu, Yves-
Max Schektman, Alain Morineau, Maurice Roux, Isräel C. Lerman, Yves Escoufier,
Brigitte Escofier, Ludovic Lebart, GuyDerMegreditchian, and Jean-Pierre Nakache.
I enjoyed the beautiful flowing French of Megreditchian’s lengthy address at the
welcome party. After returning home, he kept sending me his papers. When I heard
of his death after a battle with cancer, I really missed him and understood why he
had earnestly continued sending his papers to a lot of scientists: he must have been
writing papers in defiance of his physical condition.

9 Kinji Mizuno

Kinji Mizuno was one of Chikio Hayashi’s great research supporters from his twen-
ties (Iwatsubo 2018). After belonging to the Institute of Behavioural Sciences (IBS)
in Tokyo and the University of Nagoya, he moved to ISM in 1973. He took over from
Haruo Yanai as Secretary of the BS, which was then headed by Chikio Hayashi as
President. I sometimes went to his office at ISM and helped him prepare materials
for delivery to BS members. I was soon moved by his sincere personality, and my
respect for him grew day by day. I would go so far as to say I have never seen such
a gentleman like him who devoted himself so much to public welfare.

Mizuno contributed a great deal to the nationwide survey of the Japanese national
character conducted by ISM every five years, especially in 1978 (Res. Committee
for the Study of the Japanese National Character 1982). Each survey has been based
on face-to-face interviews regarding 50 items. To facilitate comparisons, the same
questions have been included for a long time. Between 3000 and 6000 Japanese
nationals aged twenty and over was selected at random by a stratified three-stage
probability sampling method based on voter lists. Mizuno struggled to maintain the
reliability of the survey but the number of respondents who rejected the interviews
increased year after year, which caused him great stress.

In March 1981, I accompanied Mizuno when he visited Atami, the well-known
Japanese resort, to survey the awareness and attitude of citizens regarding the widely
anticipated Tokai Earthquake. I had kept asking him to give me a chance to partic-
ipate in his surveying activities and on that occasion he allowed me to join him.
Following his instructions, I interviewed some citizens. It taught me how impor-
tant, and also how difficult, it is to collect reliable data. My experiences in Atami
considerably influenced my attitude towards research. I sometimes said to myself,
‘Of course it’s very important to develop data analytic methods mathematically with
computer programmes. But aren’t good methods, including a set of questionnaires
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and interviewing to collect reliable data, indispensable and important as a major
premise?’

Mizuno’s study was developed into disaster preparedness education for school
children (Iwatsubo 2002). In his elementary school days, he had read a story in a
Japanese language textbook about an old village headman who helped to save his
villagers from a tsunami disaster. One day, he felt a strong earthquake and noticed
that the sea waves were changing. He immediately set fire to sheaves of the precious
new rice that had just been harvested near his house on the hill. The villagers all
stopped working and rushed up the hill, thinking that the headman’s house was on
fire. Just as they reached it, a terrific tsunami surged in and swallowed up the fields
they had just been working in.

Titled Burning the Rice Sheaves (Inamura no Hi), the story had been written by
an elementary school teacher, Tsunezo Nakai, with reference to Lafcadio Hearn’s A
Living God. In fact, the story was based on an actual earthquake and tsunami that
occurred in 1854. The village headman was a real person named Go-ryo Hamaguchi.
Nakai’s words were so simple, clear, and vivid that not only Mizuno but also most
of his fellow pupils were impressed, and the message ‘Whenever you feel a strong
earthquake near the seashore, run to higher ground as soon as possible’ was engraved
forever on their young minds. Mizuno made great efforts to make it possible for
Tsunezo Nakai to be awarded the Japanese government’s prize for contributing to
disaster prevention in 1987.

Hyon-Jun Rho from South Korea, who came to ISM from 1987 to 1988 and
belonged to Mizuno’s research section, is still very grateful for the deep kindness
shown to him by Mizuno. He studied Hayashi’s methods and introduced them to
data scientists in South Korea. He also made a large contribution to the development
of quality control techniques in his country. After retirement from his university, he
started writing books on modern politics and history. We used to meet every time he
came to Japan and enjoyed many happy moments. Since the end of 2019, it is a great
shame that the COVID-19 pandemic prevented us from meeting.

It wasmy great pleasure to hear thatMizunowas going tomove from ISM toDNC
in 1991. Sadly, however, he passed away in 1999; eight years after his move. At the
memorial gathering for him in 2000, Chikio Hayashi presented an hour-long speech
to express how much he missed the indispensable partner in his studies. Hayashi
greatly appreciated the fact that Mizuno had shown us how quickly he acquired
essentials from data, and he promised to establish his own data science as soon as
possible, meeting Mizuno’s expectations. His book for Data Science published in
2001 (Hayashi 2001), was dedicated to two late young comrades, one of whom was
Kinji Mizuno.

We never imagined that Hayashi would be following Mizuno only two and a
half years after that memorial party, leaving a wealth of works on the data sciences.
Ryozo Yoshino, the editor of the Bulletin of Data Analysis of Japanese Classification
Society, provided us with many invaluable words he had heard from Hayashi in
2001 (Takahashi 2021). In 2021KumikoMaruyama published a biography of Chikio
Hayashi (Maruyama 2021).
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Both Hayashi and Mizuno retained their great passion for inquiring into human
behaviour, never losing a fresh interest in human beings. In other words, I would
say it’s very clear that they both loved people. Mizuno highly evaluated two younger
scientists, Takashi Murakami and Ei-ichiro Nojima, to whom he taught computer
programming techniques in their undergraduate days. Since retiring from his univer-
sity, Murakami has continued to enjoy his studies, sometimes writing scientific
papers for journals. Nojima, who became the head of the Waseda University School
of Human Sciences, kindly made efforts for me to move from DNC to Waseda
University.

10 Waseda University and Walking the Hakone Ekiden
Course

I am rather afraid that the following section may be too personal and drifting some
distance away from Nishisato. However, I beg for your forgiveness to let me include
it as a personal example of someone who moved away from developing categorical
data analysis.

In April 2005, I moved from DNC to Waseda University. I feel it was appropriate
for me to leave DNC since my interest had been gradually changing from ‘education
before entrance examinations’ to ‘education after entrance examinations’. I started
to present lectures on elementary statistics which in fact continued for eight years
(later I lectured to graduate students on multivariate methods for categorical data).
There were nearly 500 students every year, many of whom, unfortunately, were less
than excited about studying mathematics!

I kept doing my best to prepare materials for my lectures, giving a small test after
every lecture and encouraging their application of statistical analysis to their own
data collection efforts. This took me some distance from my BS duties as I was very
short of multivariate ability.

Despite all my efforts, I must say now that my teaching was not successful. I set a
minimum requirement to be learnt by students: a deep understanding of variance as a
fundamental source of information. I’m not sure that even myminimum requirement
was met. Eventually, most students did not seem to be interested in statistics and data
analysis.

I did, however, get to know some students who sympathised with my desperate
efforts, and we started communicating frequently. One of them was a runner in the
Hakone Ekidenmarathon race held every NewYear which features twenty university
teams of ten runners. The race consists of five stages run betweenOtemachi inCentral
Tokyo and Hakone Mountain on the first day and the same five stages in reverse
back to the finish line in Ohtemachi on the second day. The total distance of the
ten courses is around 207 km’s. As a kind of challenge to encourage the Waseda
University team, in 2011 my wife proposed that between September and December
every year we shouldwalk all ten stages, at a pace of one stage a day.We finally ended
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our annual walking mission in 2020, meaning we had walked a total of 2070 km’s,
which is about one twentieth of the way around the Earth. Unfortunately, despite
all our efforts, the Waseda University team did not win the race in any of those ten
years!

Around 2005, I suppose my interest was gradually moving away from the devel-
opment of categorical data analysis. Soon after I knew about Hayashi’s ‘Type III’
Method, I was interested in the method applying to three-way categorical data. Natu-
rally I got a method that gives optimal numerals

(
xi , y j , zk

)
to a point (i, j, k) of

three-way binary data by means of the maximisation of multiple correlation coef-
ficients. It is easily generalised to the case of n(n > 3)-way binary data (Iwatsubo
1978) and led to the methods by the maximisation of canonical correlation coeffi-
cient as anyone may conclude. I think that the investigation of linear relationships
latent in multi-way binary data is reduced to the inquiry into the properties of canon-
ical correlation coefficient. I sensed that might be the reason why John Gower had
concentrated on writing a book on canonical analysis until just before he passed
away.

The vast world of non-linear relationships latent in categorical data is opened
before us. I once proposed the method for three-way binary data in terms of
the maximisation of the third correlation coefficient, inspired by Kei Takeuchi’s
paper (Takeuchi 1974). I expected that the method might detect the tendency to
gradual changes of people’s sense of value inverselywith the lapse of timeby applying
to some cohort categorical data. Tadashi Yoshizawa generalised my method into the
analysis of multiple contingency tables (Yoshizawa 1988).

Those very busy days atWaseda University seemed to make me, day by day, more
and more remote from the development of multivariate methods for categorical data.

11 Shizuhiko Nishisato

Although Shizuhiko Nishisato had been a familiar name since he published the book
on applied psychometric scaling in 1975, it was unfortunate that I had few chances
to see and talk with him either in Japan or abroad. I was there when he presented a
lecture in the autumn of 1986 for the 6th International Symposium on Data Analysis
and Informatics (ISDAI) at Versailles, but I was so busy preparing for my session and
another meeting that I had little time to talk with him. Due to a previous appointment,
I had also lost a good opportunity to have the honour of being one of the commentators
at an annual meeting of BS, which Yasumasa Baba, the organiser of a special session
for Nishisato, had invited me to accept.

So, it was a great pleasure that I could have a long talk with Nishisato when he
came to Japan in June 2019 to receive the Award from Annual Meeting of Japanese
Classification Society and present a lecture. It reconfirmed for me his sincere person-
ality—open-minded, kind and generous—but also impressed on me the importance
of friendship. Since he returned to Canada, we have continued communicating by
e-mail.
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I was also very happy and surprised to get to know Nishisato’s grandson, Lincoln
Dugas-Nishisato. At the age of nine, Lincoln wrote a science fiction book which was
published thanks to thewarm support of his family and his teachers, with a translation
into Japanese by his beloved grandfather. The book tells how the grown-up Lincoln,
a physicist, is carried by a time-machine to meet great figures from the past. The
humble but kind suggestions, encouragement and help Lincoln gives them help to
trigger their great achievements. For example, in the Netherlands he meets Anne
Frank and suggests she should buy a diary on her birthday, which will surely be read
by countless people all over the world. Lincoln deeply laments that he was unable
to save her as historical facts can never be altered.

At the age of twelve, Lincoln organised a cooking class designed for children
with disabilities, and donations to a rehabilitation hospital are requested. Not only
children but also many adults enjoyed making cakes and learning new recipes at
his kitchen or via Zoom following his instructions. He loves cooking using various
recipes of the places where he has enjoyed travelling with his parents. Ever since
he was five, whenever he sees people who are unhappy, he has never hesitated to
volunteer to help them. It seems to me that Lincoln shares that ‘unbearable pity for
the suffering of mankind’ which was one of the three passions that Bertrand Russell
said governed his life.

There is a café in Tokyo called ‘Avatar Robot Café DAWN’ where the bedridden
or housebound can serve and communicate with guests in the café through the robots
developed bymy young friendKentaroYoshifuji, who studied engineering atWaseda
University. Each robot is manipulated by a PC operated by a disabled person far from
the café. To assist people with much more serious disabilities, Yoshifuji has recently
been facing the challenge of developing a system for operating a PC using only brain
waves.

It gives me feelings of both considerable relief and considerable hope that, in spite
of all the anxieties filling the world today, we never fail to see such young people as
Lincoln and Yoshifuji, who love human beings and offer themselves to improve the
happiness of mankind.

12 Postscript

Every autumn for several years, I have stood in front of the graves of Chikio Hayashi,
Kinji Mizuno, and Haruo Yanai. Those of Hayashi and Yanai are located not so far
apart, so I can visit them on the same day.While offering sincere gratitude to all three
of them, I also apologise for not having fulfilled my duties for the BS as they had
expectedme to do, and for not repaying their great kindness. I beg their forgiveness…
Silence. They seem to be complaining to me, but have finally dared to permit me
at least as being a humble seeker of the answer to that everlastingly difficult but
fascinating question: ‘What is a human being?’ Well, so I believe…

I cannot help but notice once again that in this contribution to the Shizuhiko
Nishisato Festschrift, I have talked too much about myself rather than about him.
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It is, however, certain that I could never have met and known such splendid people
as I have been talking about here if I had not been interested in the multivariate
methods for categorical data and related topics which Shizuhiko Nishisato has loved
throughout his life. I will be extremely happy if, just as a record of some episodes
in the lives of great data scientists, my memories might be permitted to slip into the
Festschrift of a man I highly respect.
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On Association and Scaling Issues



A Straightforward Approach
to Chi-Squared Analysis of Associations
in Contingency Tables

Boris Mirkin

1 Introduction

A two-way contingency table, or cross-classification, is a type of data relating two
sets of categories, usually being mutually exclusive values of two nominal or ordinal
features. This data structure has attracted considerable attention from researchers for
the analysis of interrelations between the features.

A number of loglinear models were proposed, as were low-rank approximations
of the tables such as dual scaling, and common-sense considerations; for the latest
descriptions see, for example, Agresti (2019), Bland (2020), Goodman (1991) and
Nishisato (1994). Yet Pearson’s chi-squared independence test remains the most
popular approach to analysing contingency tables. There is an issue inherent to
this approach, though: it gives a global assessment of whether the hypothesis of
“global” independence between features should be rejected or not. Whenever the
independence hypothesis is rejected, an open issue remains of investigation of those
associations between categories that cause the rejection. Sharpe (2015) puts the issue
as a blunt question:

Chi-square test is statistically significant: Now what?

He proceeds to review the main approaches to the analysis of associations
between individual categories. They all establish a fact of statistical dependence
but fail to evaluate that quantitatively. The only exception is the so-called odds-ratio
in 2 × 2 contingency tables. This is a case at which both features have only two
categories each. Therefore, one may compare one category of a feature with respect
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to the other feature by comparing respecting probabilities in the categories. This,
however, is not directly applicable to larger contingency tables. Therefore, in larger
contingency tables, the researcher can move on to a heuristic analysis of differences
between observed probabilities and those corresponding to the independence case,
standardised by the analogues of their standard deviations (standardised residuals).

This author argues that, in larger contingency tables, one should compare proba-
bilities at one category not with those at another category but rather with the average
probabilities at the entire dataset. There is nothing new in this proposal. In fact, that
value—the change of the probability of a category when a category of the other
feature becomes known—was proposed at the very dawn of the era of statistics
research by its founding father, Adolphe Quetelet (1796–1874); see Quetelet (1832)
and Mirkin (2001). Currently, there is not much interest in the Quetelet index as is
among statistics researchers. For example, it is mentioned, in passing, by Goodman
(1991, Eq. (2.2.3)) before moving on to more interesting subjects. Perhaps, the only
exceptions from the rule are Greenacre (2009) and Beh and Lombardo (2014).

This author has discovered that there is an interest in the Quetelet index as is.
It relates to the Pearson’s chi-squared statistic. In fact, the values of the Quetelet
index averaged over the bivariate probabilities total to the phi-squared, the Pearson’s
chi-squared related to the number of elements. This shows that the Pearson’s chi-
squared has an operational meaning. The index value is proportional to the average
change of probability of a category of one feature when a category of the other feature
becomes known. Moreover, the averaging formula represents a decomposition of the
chi-squared statistic in contributions by individual pairs of feature categories. This
allows for both capturing important contributions and assigning them operational
meaning. This is a novel tool for the analysis of contingency tables.

The remainder of this paper is structured as follows. Section 2 describes the
conventional concepts of Pearson’s chi-squared statistic and standardised residuals
in their relation to the former using an example from Sayassatov and Cho (2020).
Section 3 introduces the concept of the Quetelet index and relates it to the Pearson’s
chi-squared statistic using the very same example to point out the strongest associa-
tions together with their quantitative values. Section 4 provides three more examples
from the literature to illustrate the action of Quetelet indexes. Section 5 provides
some final remarks.

2 Pearson Chi-Squared Index and Association Patterns

2.1 Statistical Independence and Pearson’s Statistic

The contingency table is a conventional way of representing bivariate distributions.
Given a set of objects I, and a set of categories over I indexed by symbols k = 1, 2,
…, K and of categories over I indexed by l = 1, 2, …, L, a contingency table T is
defined as a K × L matrix, the (k, l)th entry of which is the number Nkl of objects
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from I falling in category k and category l simultaneously, that is, the frequency of
(k, l) pair. Any reasonable analysis of contingency tables involves a nonoverlapping
of the categories constraint: no object may fall in two categories k1, k2 such that k1
�= k2, k1, k2 = 1, 2, …, K, nor in two categories l1, l2 such that l1 �= l2, l1, l2 =
1, 2, …, L. This, basically, means that the categories k = 1, 2, …, K belong to one
nominal feature over set I, and l = 1, 2, …, L, to another. This is assumed further on
in this text.

Then the category frequencies, frequently referred to as marginal frequencies are
defined so that:

Nk+ =
L∑

l=1

Nkl , N+l =
K∑

k=1

Nkl,

K∑

k=1

Nk+ =
L∑

l=1

N+l = N ,

where Nk+ and N+l , is the marginal frequency for row category k, and column cate-
gory l, respectively, and N is the total number of objects in I. By dividing these byN,
one arrives at similar equations for the relative frequencies (empirical probabilities):

pk+ =
L∑

l=1

pkl, p+l =
K∑

k=1

pkl,
K∑

k=1

pk+ =
L∑

l=1

p+l = 1. (1)

Two features represented by the categories are referred to as statistically
independent if the equations:

pkl = pk+ p+l (2)

hold for all pairs (k, l).
The most popular tool for the analysis of associations via a contingency table

is what is called Pearson’s chi-squared statistic, frequently referred to as Pearson’s
index in the computer sciences. This index measures the summary deviation of the
observed frequencies from the statistical independence.

Given a category pair (k, l), its deviation from the statistical independence is
convenient to measure with what is referred to as the standardised residual:

s(k, l) = pkl − pk+ p+l√
pk+ p+l

. (3)

This is the difference between the real and “ideal” frequencies moderated by their
size in the denominator.

The Pearson’s chi-squared index is defined asN times the sum-of-squares of these
values:
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X2 = N
K∑

k=1

L∑

l=1

s(k, l)2 = N
K∑

k=1

L∑

l=1

(pkl − pk+ p+l)
2

pk+ p+l
. (4)

The presence of factor N is justified by a theorem proven by Pearson (1904)
(see also Pearson (1948)): If a contingency table is based on a sample of objects
randomly and independently drawn from a population in which the statistical inde-
pendence holds (so that all deviations are due to just randomness in the sampling),
then the probabilistic distribution of X2 converges, at N tending to infinity, to the
chi-square distribution with (K − 1)(L − 1) degrees of freedom. K. Pearson defined
the probabilistic chi-square distribution (with p degrees of freedom) as a distribution
of the sum-of-squares of p independent random variables, each distributed according
to the standard Gaussian N(0, 1) distribution. This leads to a simple universal crite-
rion for testing the hypothesis of statistical independence between the features (see
any statistics textbook or statistical distribution tables). Still, one should not overesti-
mate the universality of this criterion: first, the sample sizeN should not be too small;
second, no zero entries Nkl are permitted in the table when the marginal probabilities
are not zero. As all concerned know getting around this latter commandment requires
some fantasy and rigour in modelling more suitable candidates for the zeros; see, for
example, Agresti (2019) and Devore (1995).

Pearson’s theorem focuses on the testing of the statistical independence hypothesis
and implies no instructions for the analysis of statistical ‘dependence’ or ‘associa-
tion’ in a case at which a chi-squared value is greater than an accepted indepen-
dence threshold. Therefore, in such situations, researchers use various heuristics for
capturing associations behind the failure of the independence test. A most popular
heuristic comes from observation of the standardised residuals defined by (3): posi-
tive associations correspond to positive values in (3), and negative associations, to
negative values in (3). The larger the absolute value of a standardised residual, the
greater the association; see Sharpe (2015) and Sayassatov and Cho (2020).

2.2 Example

To see, how this may work, let us use an example from Sayassatov and Cho (2020).
This paper analyses the association between two features that the authors evaluate
of their sample of 40 students. The authors accept a classification of learning styles
from Mumford and Honey (1986). According to this view, there are four different
approaches people take to learning new information. Their labels are listed below
together with the main characteristics of them, in parentheses:

• Activists (Learn by doing and happy to jump),
• Reflectors (Learn through observation and reflecting on results),
• Theorists (Like to understand the theory behind action),
• Pragmatists (Need to be able to see how they apply their learning to the real

world).
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The second feature under study is the student’s preferences among artifi-
cial “Internet of Things” devices (IoT). There were four artificial devices under
consideration defined by Sayassatov and Cho (2020) and described as follows:

• D1: Smart Organised Backpack. This device has certain sensors to help students
not to lose their college belongings.

• D2: Smart Voice Recorder for Group Discussions. This device helps students at
group meetings or discussions.

• D3: Smart Headset for Concentration. This device helps students to be more
concentrated at individual studies.

• D4: Smart Education Storage Ring. By wearing this device, students keep all their
education related data in its memory card.

The authors cross-classified the students according to their learning style and
preferred artificial IoT device; see Table 1. The value of X2 for this table is 30.498,
which leads to the rejection of the independence hypothesis with a confidence level
greater than 99.9%.

Sayassatov and Cho (2020) then engage in an investigation of meaning behind
this value. They first turn to a natural version of X2, the so-called phi-squared which
is X2 without the factor N:

ϕ2 =
K∑

k=1

L∑

l=1

(pkl − pk+ p+l)
2

pk+ p+l
. (5)

The values that (5) can take lie within the interval between 0 (at statistical inde-
pendence) and the minimum of K − 1 and L − 1. The latter value is reached for a
contingency table in which every row k (at K ≥ L) has just one non-zero entry, in
a column l(k). In this case, the pattern of association between the features can be
expressed as a purely logical implication rule k ⇒ l(k) (k = 1, 2, …, K) from k to
l(k). Unfortunately, for Table 1, neither value of ϕ2, nor the value of its derivative,
called Cramér’s V, can provide any information on the association pattern between
the learning style and an IoT model of preference (Sayassatov and Cho 2020).

Therefore, the authors turn to an analysis of the residuals (3) as presented on the
left in Table 2.

Table 1 Cross-classification of learning styles and preferred artificial IoT devices from Sayassatov
and Cho (2020)

Device preferred Learning style Total

Activist Reflector Theorist Pragmatist

D1 8 2 1 1 12

D2 1 6 1 1 9

D3 1 1 5 2 9

D4 1 2 1 6 10

Total 11 11 8 10 40
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Table 2 Standardised residuals for the data in Table 1 (left part) and the Quetelet index values (part
on the right)

Device
preferred

Learning style Learning style

Activist Reflector Theorist Pragmatist Activist Reflector Theorist Pragmatist

Standardised residuals Quetelet index values

D1 0.4091 − 0.1132 − 0.1429 − 0.1826 1.4242 − 0.3939 − 0.5833 − 0.6667

D2 − 0.1482 0.3543 − 0.0943 − 0.1318 − 0.5960 1.4242 − 0.4444 − 0.5556

D3 − 0.1482 − 0.1482 0.3771 − 0.0264 − 0.5960 − 0.5960 1.7778 − 0.1111

D4 − 0.1669 − 0.0715 − 0.1118 0.3500 − 0.6364 − 0.2727 − 0.5000 1.4000

One can see that all the standardised residuals here are negative, except for those
on the diagonal (highlighted in bold) which shows an exceptionally clear-cut pattern
of associations. Each learning style one-to-one corresponds to a specific IoT device
preferred: Activist to D1, Reflector to D2, Theorist to D3, and Pragmatist to D4.
There is no quantitative evaluation of the degree of association, though (Sayassatov
and Cho 2020).

3 Quetelet Indexes for a Comprehensive Analysis
of Associations

In fact, there is a similar normalised difference expression, both related to the chi-
squared statistic and having a very clear meaning. This is what we refer to as Quetelet
index, due to Quetelet, the founding father of statistics; see Quetelet (1832) in our
paper Mirkin (2001).

The Quetelet index is defined as the relative difference between (empirical) condi-
tional probability P(l/k) = pkl/pk+ that category l occurs under condition k and
the (empirical) probability that category l occurs at all, P(l) = p+l = N+l/N (Mirkin
2001):

q(l/k) = P(l/k) − P(l)

P(l)
. (6)

That is, the Quetelet index expresses association between categories k = 1, 2, …,
K and l = 1, 2, …, L as the relative change in the probability of l when k is taken
into account; see also an earlier description in Lebart and Mirkin (1993).

With a little algebra, one can derive simpler expressions:

q(l/k) = pkl − pk+ p+l

pk+ p+l
= pkl

pk+ p+l
− 1, (6′)
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which do not differ that much from the standardised residuals in (3). The difference
in semantics, however, is huge: Quetelet indexes in (6) and (6′) have a clear-cut quan-
titative interpretation as the relative probability changes, whereas the standardised
residuals have no operational meaning.

It may seem somewhat odd that q(l/k) = q(k/ l), the change in the probability
is a same in both directions, l under condition k and k under condition l, as follows
from the right part of (6′). This means one may use symmetric notation q(k, l) for
asymmetricq(k/ l) andq(l/k). In this author’s view, this symmetry can be considered
as a mathematical expression of the idea that static data, by themselves, can give no
information of casual dependencies—those must be derived from beyond the table.

Quetelet indexes for Table 1 are presented on the right of Table 2. Obviously, the
patterns of plus/minus signs in the left and right parts of Table 2 coincide because the
numerators in (3) and (6′) coincide. However, in contrast to the entries in the table
of standardised residuals, these entries are meaningful. One can see that attending to
‘Pragmatist’ learning style increases the probability of choosing D4 IoT device by
140%, and attending to ‘Theorist’ learning style increases the probability of choosing
D3 IoT device by 178%.

Now one can take an averaged Quetelet index:

Q =
K∑

k=1

L∑

l=1

pklq(l, k) =
K∑

k=1

L∑

l=1

pkl

(
pkl

pk+ p+l
− 1

)
=

K∑

k=1

L∑

l=1

p2kl
pk+ p+l

− 1, (7)

and interpret it as the average change in the probability of a random object to fall
into k-category when its l-category becomes known.

It is well-known, though, that the expression in (7) on the right is equal to the
phi-squared of (5), so that Q = ϕ2. Therefore, the chi-squared statistic does have
an operational meaning. Its structural part, ϕ2 = X2/N, is the average change in the
probability of a random object to fall into k-category when its l-category becomes
known. One should draw attention to this claim. It contradicts conventional claims
that the chi-squared is but a statistical criterion for testing the statistical independence.

Moreover, the left-side of (7) gives a meaningful decomposition of Pearson’s
chi-squared statistic in the sum of relative Quetelet indexes, pklq(k, l). The relative
Quetelet index takes into account both the probability pkl of (k, l) and its prognostic
power q(k, l). Although the pattern of ± signs does not change at the set of relative
Quetelet indexes, as can be seen in the right part of Table 3, the values do change, so
that the total, in this caseQ= ϕ2 = 0.7625, is always non-negative. This value shows
that, for any category, information of a category of the other feature increases, on
average, the category’s probability by 76.25%. Moreover, all within-row and within-
column sums are positive as well (proven in Mirkin 2001). The within-row sums
in the column “Total” of Table 3 shows what part of the total relative probability
change, 76.25%, comes from each row category. For example, 23.39% are provided
by the preference for D1 device.

The decomposition (7) shows that the total probability change is the difference
between the sum of its positive entries, 0.9307 in Table 3, and the sum of its negative
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entries, 0.1682 in Table 3. The former (0.9307) reflects the positive associations
between categories and the latter (0.1682), the negative associations. Distinguishing
between positive and negative category-to-category associations may be a subject in
the area of data engineering, but this author has nothing to say about it as yet.

4 More Examples

4.1 Sleeping Pills Action

Consider an example from Nishisato (1989) that involves a contingency table—see
Table 4—summarising the answers of 140 individuals to the following two questions:

• Q.1: “How do you feel about taking sleeping pills?” with a range of answers:
strongly for, for, neutral, against, strongly against;

• Q.2: “Do you sleep well every night?” with answers of either (1) never, (2) rarely,
(3) sometimes, (4) often, (5) always.

Nishisato (1989) analyses this dataset with respect to the dual scaling. That is,
he assigns categories with quantitative values so that the correlation between these
quantified features becomes maximum. We apply the Quetelet index approach to the
table, so that Table 5 summarises the Quetelet pairwise indexes.

Table 5 shows that opinions on usage of sleeping pills strongly correlate with the
level of sleep disorders. Those always sleeping well are 175.86% more likely than
the average to be strongly against sleeping pills, whereas those never sleeping well
are more likely, 177.78%, than the average to be strongly for them. Medium sleeping
disorders bring forward more moderate probability changes such as, say, 45.83%
increase for the pair Q1.sometimes/Q2.against.

Table 6 presents the relative Quetelet values for the partition of the phi-squared for
this dataset. What is interesting about this is that the valueQ= ϕ2 here is just 0.5581,
which is far smaller than the maximum possible value of 4 (for 5 × 5 contingency
tables), less than 14% of the maximum value. A similar value for Table 1, 0.7625,

Table 4 Cross-classification of the answers to Questions 1 and 2 below by 140 respondents

Q2 Q1 Total

1. Never 2. Rarely 3. Sometimes 4. Often 5. Always

Strongly for 15 8 3 2 0 28

For 5 17 4 0 2 28

Neutral 6 13 4 3 2 28

Against 0 7 7 5 9 28

Strongly ag. 1 2 6 3 16 28

Total 27 47 24 13 29 140
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Table 5 Quetelet index values for data in Table 4 (those greater than 0.35 are highlighted in bold)

Q2 Q1

1. Never 2. Rarely 3. Sometimes 4. Often 5. Always

Strongly for 1.7778 − 0.1489 − 0.3750 − 0.2308 − 1.0000

For − 0.0741 0.8085 − 0.1667 − 1.0000 − 0.6552

Neutral 0.1111 0.3830 − 0.1667 0.1538 − 0.6552

Against − 1.0000 − 0.2553 0.4583 0.9231 0.5517

Strongly ag. − 0.8148 − 0.7872 0.2500 0.1538 1.7586

Table 6 Relative Quetelet index values for data in Table 4 (those highlighted are greater than 0.05)

Q2 Q1 Total Total,
%1. Never 2. Rarely 3. Some 4. Often 5. Always

Strongly
for

0.1905 − 0.0085 − 0.0080 − 0.0033 0 0.1706 30.6

For − 0.0026 0.0982 − 0.0048 0 − 0.0094 0.0814 14.6

Neutral 0.0048 0.0356 − 0.0048 0.0033 − 0.0094 0.0295 5.3

Against 0 − 0.0128 0.0229 0.0330 0.0355 0.0786 14.1

Strongly
ag.

− 0.0058 − 0.0112 0.0107 0.0033 0.2010 0.1979 35.5

is just about 25% of the maximum value. That means that the association between
two features here is rather weak, according to the holistic estimate, whereas there is
a clear-cut association between sleeping disorders and opinions on pills described
above.

Another interesting feature of the decomposition ofQ= ϕ2 according to Table 6 is
that zeros in it are just zeros, meaning no contribution toQ= ϕ2—and that is all. This
drastically contrasts the treatment of zeros according to formula (5) for ϕ2. Indeed,
(5) is to test the hypothesis that pkl = pk+ p+l . Since pk+ and p+l are positive, the
value of pkl must be positive, too!. This implies that “continuity correction” of zero
counts in contingency tables is needed in conventional research projects; see, for
example, Devore (1995).

4.2 Voting Preferences

Table 7 presents voting preferences of USA citizens as related to their incomes
according to a survey undertaken by the PewResearchCentre in 2014. They classified
household income in 4 groups: (1) Less than $30,000, (2) More than $30,000 but
less than $50,000, (3) More than $50,000 but less than $100,000, and (4) $100,000
or more. Voter party affiliation is defined as either R (Republican or leaning to
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Table 7 Contingency table income-party voting (left part) and its Quetelet index values (part on
the right)

Income Party Total Party

R U D R U D

Respondent counts Quetelet index values

1 2388 2034 4423 8845 − 0.3034 0.4629 0.0985

2 2286 938 2696 5920 − 0.0037 0.0079 0.0004

3 3885 1126 3712 8723 0.1491 − 0.1788 − 0.0652

4 3258 695 3049 7002 0.2005 − 0.3686 − 0.0435

Table 8 Relative Quetelet index values for data in Table 7

Income Party

R U D

1 − 0.0238 0.0309 0.0143

2 − 0.0003 0.0002 0

3 0.019 − 0.0066 − 0.0079

4 0.0214 − 0.0084 − 0.0043

Republican) or U (Undecided) or D (Democrat or leaning to Democrat). Although
the Quetelet index values do not reach the highs seen in Table 5, one can easily see
that the richer people tend to lean to that identify as being Republican, 14.91% and
20.05% in group (3) and group (4), respectively, over the proportions in the entire
population. On the other hand, the group of poor (1) do not like Republicans at all
(− 30.34% with respect to the proportion on the total sample), while remaining
mostly Undecided (+ 46.29%).

The relative Quetelet index values for Table 7 are summarised in Table 8. The sum
of positive entries in this table is 0.0859, and its negative entries sum to− 0.0513. The
total is Q = ϕ2 = 0.0345, which is just above 1% of its maximum value 3. However,
this is quite enough to warrant rejection of the independence hypothesis with 99.9%
confidence according to the Pearson’s chi-squared independence test because of a
large number of respondents.

4.3 Marital Status Versus Medical Treatment

Table 9 presents a contingency data fromDeViva (2014) who compared the treatment
status of military veterans and their marital status (Married or Not). The treatment
categories are: (1) never seen for therapy, (2) seen but not completing therapy, and
(3) completed therapy.
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Table 9 Contingency table for treatment versus marital status (left part) and its Quetelet index
values (on the right, those positive highlighted in bold)

Marital
status

Treatment Treatment

Never seen Seen,
didn’t
complete

Completed Total Never seen Seen,
didn’t
complete

Completed

Counts Quetelet index values

Not
married

57 53 11 121 0.1650 − 0.057 − 0.3068

Married 17 32 13 62 − 0.3219 0.1112 0.5988

Table 10 Relative Quetelet index values (on the left) and Quetelet values (on the right)

Marital
status

Treatment Total Treatment

Never seen Seen, didn’t
complete

Completed Never seen Seen, didn’t
complete

Completed

Relative Quetelet index values Quetelet index values

Not
married

0.0514 − 0.0165 − 0.0184 0.0164 0.1650 − 0.0570 − 0.3068

Married − 0.0299 0.0194 0.0425 0.0321 − 0.3219 0.1112 0.5988

Total 0.0215 0.0029 0.0241 0.0485

The Quetelet index values on the right of Table 9 show that being married highly
increases the chance of getting their treatment completed—by 59.88%—whereas
being not married decreases that chance by 30.68% and increases the chance of never
seeing a doctor by 16.5%. This explanation gives a clear picture of the associations in
the data, in contrast to the analyses given in Sharpe (2015) where only some general
claims of statistical dependence are made.

The relative Quetelet index values are provided on the left of Table 10. The total
increase of category probabilities by the positive Quetelet index values, 0.1134, is
drastically reduced by the negative total, − 0.0648, leading to the summary Q =
ϕ2 value of 0.0485 which is so small, that the resulting X2 = Nϕ2 = 8.8774 it is
not enough to reject the independence hypothesis at 99% confidence level (critical
chi-squared value is 9.210 at 2 degrees of freedom), yet quite enough at the 95%
confidence level (critical value 5.991). Once again we see that the global indepen-
dence testing turns a blind eye to the local dependencies clearly visible when using
the Quetelet index values.

4.4 Aspirin and Heart Attacks

Table 11 is a contingency table from Agresti (2019, p. 30), on the relation between
the usage of aspirin and Myocardial infarction in a medical survey.
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Table 11 Cross-classification of Aspirin/Placebo use and having or not Myocardial infarction (on
the left) and its Quetelet and relative Quetelet values on the right

Aspirin use Myocardial infarction

Yes No Total Yes No Yes No

Counts Quetelet index Relative Quetelet

Placebo 189 10,845 11,034 0.2903 − 0.0039 0.0025 − 0.0019

Aspirin 104 10,933 11,037 − 0.2902 0.0039 − 0.0014 0.0019

Total 293 21,778 22,071 0.0011 0.0000

In spite of a rather small value of ϕ2 = 0.0011 here, the chi-squared is X2 =
25.0139 which, at 1 degree of freedom, leads to the rejection of the independence
hypothesis at more than 99.9% confidence level (the critical value is 10.828). To
follow a conventional advice, one should take a look at the odds-ratio here; see
Bland (2020). The odds-ratio is 1.83 meaning that the estimated odds of Myocardial
infarction are 83% higher for the Placebo group than for the aspirin group (Agresti
2019). The odds-ratio counterposes the two groups, whereas the Quetelet index
compares any group rates with the grand mean. One can see that use of the Placebo
increases the risk of the illness by 29.03% in comparison to the average risk.

5 Conclusion

In contrast to conventionalwisdom that Pearson’s chi-squared statistic is a criterion of
statistical independence, rather than ameasure of association, this paper demonstrates
that the Pearson’s chi-squared indeed is a measure of association between nominal
or ordinal features if the scaling N factor is removed. Its normalised version, the
phi-squared, is the average change of the probability of a category of a feature when
a category of the other feature becomes known. Associations between individual
categories are captured with indexes introduced by the celebrated Belgian statistician
Adolphe Quetelet quite early, not later than 1832. Even at smaller values of the phi-
squared for the total association, contributions of individual category pairs can be
significant.
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Contrasts for Neyman’s Modified
Chi-Square Statistic in One-Way
Contingency Tables

Yoshio Takane and Sébastien Loisel

1 Introduction

This and its companion paper (Loisel and Takane 2022) were initially conceived as a
paper dealing with “A theory of contrasts for Pearson’s chi-square statistic” for mul-
tiple comparisons in the analyses of contingency tables (Lancaster 1949; Loisel and
Takane 2016; Lombardo et al. 2020; Takane and Jung 2009).While wewere working
on this topic, we gradually came to realise that Pearson’s statistic was not ideal for
use in multiple comparisons, because in this statistic, mean and variance-covariance
structures assumed on observed frequencies (proportions) are closely connected to
each other. This means that if parts of mean structure are rejected, the corresponding
parts of variance-covariance structure are also rejected. To illustrate, let there be C
response categories, and let pC denote the C-component vector of their true proba-
bilities. Let p̂C denote the observed counterpart of pC . DefineDC = diag(pC), where
the diag operator turns a vector into a diagonal matrix. Then, Pearson’s statistic can
be stated as:

X2
Total = n(p̂C − pC)′D−1

C (p̂C − pC), (1)

where n indicates the total sample size (the number of independently replicated
observations) to calculate p̂C . This statistic is known to follow an asymptotic chi-
square distribution with C − 1 df (degrees of freedom) when the prescribed pC is
correct. Note that nD−1

C is a g-inverse (generalised inverse) of the variance-covariance
matrix of p̂C , denoted by �C/n, where:

�C = DC − pCp′
C . (2)
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Notice that�C is completely determined by pC . This means that if hypotheses about
pC are rejected, the corresponding parts of �C are also rejected. As a consequence,
any subsequent tests that assume�C is correct become invalidated.Weneed a statistic
in which mean structure and variance-covariance structure can be specified indepen-
dently. A statistic that satisfies this requirement and that immediately comes to our
mind is Neyman’s modified chi-square statistic (Neyman 1949). In this paper, we
develop a theory of contrasts for Neyman’s statistic to be used for multiple compar-
isons in one-way tables. We refer to Loisel and Takane (2022) for a similar theory
in two-way and higher-order contingency tables.

The plan of this paper is as follows. In the following section (Sect. 2), we intro-
duce Neyman’s modified chi-square statistic, and show how the variance-covariance
structure assumed of p̂C is free from its mean structure pC . Like Pearson’s statistic,
Neyman’s statistic (Y 2

Total) is a global index of overall discrepancies between observed
and prescribed mean vectors. In Sect. 3, we introduce the notion of contrasts useful
in multiple comparisons. Contrasts capture specific aspects of the overall discrepan-
cies. We also introduce orthogonal contrasts, and how to generate them when a set of
non-orthogonal contrast vectors are given. Orthogonal contrasts partition the overall
discrepancies into non-overlapping components, each of which represents a unique
aspect of the overall discrepancies. In Sect. 4, we show the existence of a contrast,
denoted by vmax, which captures the entire variation in Y 2

Total. The existence of such
a contrast justifies Schéffe’s type of post-hoc tests by Goodman (1964). Section5
deals with a special case in which homogeneous cell probabilities are postulated for
pC . This special case is important because it is deemed to cover a majority of appli-
cations in the analysis of one-way tables. In Sect. 6, we briefly touch on the subject
of statistical issues by presenting results from small Monte-Carlo studies examining
statistical properties of Neyman’s statistic. Section7 concludes the main topic of
the paper. Throughout this paper, a numerical example is provided to illustrate the
computations involved. An additional section, Sect. 8, briefly discusses Nishisato’s
influences on our work in the past.

2 Neyman’s Modified Chi-Square Statistic

Consider a one-way table of observed cell probabilities. It could also be a one-
way marginal table derived from a higher-order contingency table or a slice of a
conditional probability table at a particular level of a conditioning variable. Neyman’s
modified chi-square statistic is stated as:

Y 2
Total = n(p̂C − pC)′D̂−1

C (p̂C − pC), (3)

where D̂C = diag(p̂C) is the observed counterpart to DC . Here it is tacitly assumed
that D̂C is nonsingular. That is, there are no empty cells in the table. This statistic
is known to follow asymptotically the same distribution as Pearson’s statistic. The
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difference is that in Pearson’s statistic, D−1
C is used as the weight matrix, while in

Neyman’s statistic, its sample estimate, D̂−1
C is used. An important point is that D−1

C

is completely determined by pC , while D̂−1
C is not, although the latter is expected

to approach the former as the sample increases indefinitely (D̂−1
C is a consistent

estimate of its population counterpart, D−1
C ). Note that nD̂−1

C is a g-inverse of the
variance-covariance matrix of pC , namely �̂C/n, where:

�̂C = D̂C − p̂C p̂′
C , (4)

(Compare (4) with (2)). Provided that D̂−1
C exists, it can be easily verified that (3) is

invariant over the choice of a g-inverse of �̂C/n with nD̂−1
C being just a special case.

Note 1. While we have never seen a formal proof of this invariance in Neyman’s
statistic, Puntanen et al. (2011, p. 120) shows a similar invariance in Pearson’s statis-
tic. The proof for Neyman’s statistic should not be difficult, following a similar line
of proof for Pearson’s statistic by Puntanen et al. (2011).

For later use, it is convenient to rewrite (3) as:

Y 2
Total = n(a − 1), (5)

where
a = p′

C D̂−1
C pC . (6)

This follows trivially from (3) by simply expanding its terms.

An illustrative example: Assume that the following frequency table is observed:
F = (

40 50 10
)′

with C = 3 and n = 100. The corresponding table of observed

proportions is given by p̂C = (
0.4 0.5 0.1

)′
. It is postulated that the true proba-

bilities of the three cells in the table are pC = (
0.5 0.2 0.3

)′
. The value of Y 2

Total
is found to be 60.5000, and a = 1.6050. This data set will be used in the following
discussion to exemplify various aspects of multiple comparisons in one-way tables.

3 Contrasts

Let v be a C-component nonzero vector such that:

v ∈ Ker(p′
C) (7)

where Ker(p′
C) indicates the null space of p′

C . That is, the space spanned by vectors
x such that p′

Cx = 0. A linear function of pC of the form:

φ(v) = v′pC (8)
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is called a population contrast associated with the contrast (weight) vector v. An
analogous function:

φ̂(v) = v′p̂C (9)

with pC in (8) replaced by its observed counterpart p̂C is called a sample contrast.
The size of the effect due to a contrast is measured by:

Y 2
φ(v) ≡ n(v′p̂C)2/v′�̂Cv. (10)

Obviously, the size of the effect of a contrast is invariant over the transformation of
v of the form dv for any nonzero scalar d .

Note 2: We typically require (7) on v. This, however, is not an absolute necessity. For
example, we may wish to test p1 = 0.5. For that, we define w = (

1 0 0
)′
and test

the hypothesis that w′pC = 0.5. Obviously, this w does not satisfy (7), as indicated
by the fact that w′pC �= 0. This w is still admissible if its effect size is measured by:

Y 2
φ(w) = n(w′(p̂C − pC))2/w′�̂Cw, (11)

which generalises (10). Is it then just a matter of convenience to require (7)? No,
because the word “contrast” implies comparing two quantities. How dowe compare?
By taking a difference between the two and checking if the difference is significantly
different from zero. The difference of zero is typically postulated as the null hypoth-
esis to be tested. Also, note that the above w can always be turned into an equivalent
v that satisfies (7) by the following transformation:

v = (IC − 1Cp′
C)w = (IC − 1C(1′

CDC1C)−11′
CDC)w. (12)

If we apply this transformation to the above w, we obtain v ∝ (
1 −1 −1

)′
, and

Y 2
φ(w) = Y 2

φ(v). The hypothesis to be tested is also turned into v′pC = 0, which is
equivalent to (7). It may sound a bit surprising at a first glance to find that p1 = 0.5
and p1 − p2 − p3 = 0 represent the same hypotheses, but this makes perfect sense
because if p1 = 0.5, p2 + p3 = 0.5, so that p1 − p2 − p3 = 0. That Y 2

φ(w) = Y 2
φ(v)

can be easily verified.
A pair of contrasts are said to be �̂C -orthogonal (or simply orthogonal) if and

only if v′
i �̂Cv j = 0, where vi and v j (i �= j) are two contrast vectors. The effect

sizes of the two orthogonal contrasts evaluated separately by (10) add up to the size
of the joint effects of the two contrasts obtained by:

Y 2
φ(V) = np̂′

CV(V′�̂CV)−1V′p̂C , (13)

where V = [vi , v j ].
A set of K contrasts are said to be orthogonal if every pair of contrasts in the set are

mutually orthogonal. When the contrasts are orthogonal, the size of their joint effects
can be obtained by adding the effect sizes of the contrasts calculated separately. The



Contrasts for Neyman’s Modified Chi-Square … 77

size of the joint effects of more than one contrasts can generally (whether they are
orthogonal or not) be calculated by (13), where V is redefined as V = [v1, . . . , vK ].
If K = C − 1, Y 2

φ(V) = Y 2
Total.

Let U = [u1, . . . , uK ] (K ≤ C − 1) be a matrix of non-orthogonal but linearly
independent vectors. These vectors can be successively orthogonalised by the fol-
lowing procedure. We assume that U already satisfies the condition (7). If not, we
simply apply (12) to U to satisfy the condition.

Step 1. Set v1 = u1 and set V = v1.
Step 2. For k = 2, . . . , K , set vk = (IC − V(V′�̂CV)−1V′�̂C)uk , and append V
by vk .

In the endV contains a set of orthogonalised contrast vectors.Obviously, the above
sequential process will produce different results if the columns of U are arranged
differently. In general, vk indicates the effect of uk eliminating all previous effects,
u1 through uk−1, and ignoring all subsequent effects, uk+1 through uK .

An example continued: Consider two contrasts defined by v1 = (
1 −1 −1

)′
and

v2 = (
0 3 −2

)′
. The first one is the same as the one discussed in Note 2 above. The

second one concerns the ratio of p2 to p3 is 2/3, i.e. p2/p3 = 2/3, which turns into
3p2 = 2p3 or 3p2 − 2p3 = 0. We find that Y 2

φ(v1) = 4.1667. We also find Y 2
φ(v2) =

52.6480. These two Y 2 values do not add up to Y 2
Total = 60.5000 because the two

contrasts are not orthogonal. If v2 is orthogonalisedwith respect to v1 using the proce-
dure given above, v2 eliminating v1, is given by v2|v1 ∝ (

0.4333 0.7667 −1.2333
)′
,

and its Y 2 value by Y 2
φ(v2|v1) = 56.3333, so that Y 2

φ(v1) + Y 2
φ(v2|v1) = 60.5000 = Y 2

Total,
as expected. If, on the other hand, v1 is orthogonalised with respect to v2, v1
eliminating v2 is given by v1|v2 ∝ (

4.0000 −0.1121 6.5919
)′

with the Y 2 value
of Y 2

φ(v1|v2) = 7.8521, so that Y 2
φ(v2) + Y 2

φ(v1|v2) = 60.5000 = Y 2
Total, as expected. So

here we have two sets of two mutually orthogonal contrast vectors, [v1, v2|v1] and
[v1|v2, v2].

4 The Contrast That Captures the Whole Variations
in Y2

Total

In Loisel and Takane (2022), it was shown that there exists a contrast that captures
the entire interaction effects in two-way contingency tables. An analogous contrast
that captures the entire between-cell effects in one-way tables also exists, and can be
defined in a similar manner, namely:

vmax = S(S′�̂CS)−1S′p̂C , (14)

where S is a matrix of linearly independent bases vectors spanning Ker(p′
C), and �̂C

is as defined in (4). We want to show that:
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Y 2
φ(vmax)

≡ nv′
maxp̂C = Y 2

Total. (15)

The proof of (15) is much more difficult than the analogous proof in Loisel and
Takane (2022), since:

Sp(�̂C) ⊃ Sp(S), (16)

(where ⊃ indicates the space on the lefthand side of ⊃ includes the space on the
righthand side) does not necessarily hold (unless pC ∈ Sp(1C)), and consequently
Khatri’s (1966) extended theorem:

S(S′�̂CS)−1S′ = �̂
+
C − �̂

+
CpC(p′

C�̂
+
CpC)−1p′

C�̂
+
C , (17)

where �̂
+
C is the Moore-Penrose (MP) inverse of �̂C , does not necessarily hold. As

a result, we need to take a somewhat different route to prove (15).
Using (4), we can rewrite nv′

maxp̂C as:

nv′
maxp̂C = np̂′

CS(S′D̂CS − S′p̂C p̂′
CS)−1S′p̂C

= np̂′
CS[(S′D̂CS)−1 − (S′D̂CS)−1S′p̂′

C

× (1 − p̂′
CS(S′D̂CS)−1S′p̂C)−1p̂′

CS(S′D̂CS)−1]S′p̂C

= n(b + b2/(1 − b)) = nb/(1 − b), (18)

where
b = p̂′

CS(S′D̂CS)−1S′p̂C ≡ v∗′
p̂C , (19)

and v∗ = S(S′D̂CS)−1S)−1S′p̂C . The second equality in (18) holds; see, for example,
Rao (1973, p. 33, Complements and Problems 2.8). Using Helmert-Khatri’s original
lemma (Khatri 1966; Takane 2016), we can rewrite (19) as:

b = p̂′
C(D̂−1

C − D̂−1
C pC(p′

C D̂−1
C pC)−1p′

C D̂−1
C )p̂C = 1 − 1/a, (20)

where a is as given in (6). Note that whereas (17) does not necessarily hold, a more
restricted version (which we call Helmert-Khatri’s original lemma):

S(S′D̂CS)−1S′ = D̂−1
C − D̂−1

C pC(p′
C D̂−1

C pC)−1p′
C D̂−1

C (21)

holds. Compare (21) and (17). While D̂C is assumed nonsingular, �̂C is bound to be
singular. Putting the expression of b given in (20) into (18), we obtain:

Y 2
φ(vmax)

= nv′
maxp̂C = n

(a − 1)/a

1 − (a − 1)/a
= n(a − 1) = Y 2

Total, (22)
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as anticipated. This implies that the asymptotic distribution of Y 2
φ(vmax)

is the same as
that of Y 2

Total if the hypothesised mean structure pC is correct. It in turn implies that no
matter how many comparisons are made, the joint α level, the probability of making
a Type 1 error in at least one of the tests performed, never exceeds a prescribed α

level if each test is performed with the same critical value as in the test of Y 2
Total,

i.e. the critical value of chi-square with C − 1 df and a prescribed α level. This is
because if nv′

maxp̂C is smaller than this critical value, no other contrasts can exceed
the critical value (Maxwell et al. 2018). It may be noted in passing that vmax = av∗,
so that Y2

φ(vmax)
= Y2

φ(v∗), where the latter is calculated by n(v∗′
p̂C)2/v∗′

�̂Cv∗.

An example continued: For the example data set we are using, vmax is found to
be vmax = (

0.3550 1.2050 −1.3950
)′
, andY 2

φ(vmax)
= 60.5000 = Y 2

Total, as expected.

For every hypothesised pairwise ratio, v3 = (
2 −5 0

)′
, v4 = (

3 0 −5
)′
, and v5 =

(
0 3 −2

)′
(this is the same as the v2 in the previous numerical illustration), we

have Y 2
φ(v3) = 25.7806, Y 2

φ(v4) = 8.7344, and Y 2
φ(v5) = 52.6480. These values are to

be compared with the critical value of chi-square with 2 df (the same df as in the test
of Y 2

Total) and a prescribed α level. With α = 0.05 the critical value is found to be
5.9915, and with α = 0.01 it is 9.2103. Compare these critical values with 3.8415
and 6.6349, respectively, for planned comparisons. The differences are not so large in
this example, becauseC = 3 is rather small. (Note that Y 2’s due to pairwise ratios do
not add up to Y 2

Total because the corresponding contrast vectors cannot be orthogonal
to each other).

5 The Special Case in Which pC = 1C/C

We now hypothesise equal cell probabilities for pC , i.e.:

pC = 1C/C. (23)

This is a special case of the more general case treated above, but it may be more
predominant in practical applications. One prominent difference this assumption
makes is that now(16) holds, so that (17) holds, and so:

S(S′�̂CS)−1S′ = �̂
+
C − �̂

+
C1C(1′

C�̂
+
C1C)−11′

C�̂
+
C (24)

(Khatri 1966); this is just (17) with pC replaced by 1C/C . Since �̂
+
C1C = 0, it follows

that:
Y 2

φ(vmax)
= np̂′

CS(S′�̂CS)−1S′p̂C = np̂′
C�̂

+
C p̂C . (25)

Since �̂
+
C can be expressed as:

�̂
+
C = QC D̂−1

C QC , (26)



80 Y. Takane and S. Loisel

(Tanabe and Sagae, 1992), where QC = IC − 1C1′
C/C , we obtain:

np′
C�̂

+
CpC = n(1′

C D̂−1
C 1C/C2 − 1) = n(a∗ − 1) = Y 2

Total, (27)

as expected. Here, a∗ = 1′
C D̂−1

C 1C/C2 is a special form of a defined in (6) with
pC = 1C/C .

An example continued:With the samedata set as before, butwith the newhypothesis
of pC = (

1/3 1/3 1/3
)′
, we obtain Y 2

Total = 61.1111, and vmax =
(
0.7778 0.9444 −1.7222

)′
. The value of Y 2

φ(vmax)
is 61.1111, as expected. We test

all possible pairwise differences among three cells, 1 versus 2 (with the associ-
ated contrast vector of v6 = (

1 −1 0
)′
), 1 versus 3 (with the contrast vector of

v7 = (
1 0 −1

)′
), and 2 versus 3 (with the contrast vector of v8 = (

0 1 −1
)′
). The

values of Y 2 for the three contrasts are, respectively, 1.1236, 21.9572, and 36.3636.
Again, these values do not add up to Y 2

Total because the corresponding contrast vectors
are not mutually orthogonal in this case.

6 Some Statistical Concerns

So far, our discussion has mainly focused on algebraic properties of contrasts. In
this section, we briefly discuss some statistical issues concerning Neyman’s statistic,
namely the problem of sample size needed for Neyman’s statistic to achieve its
asymptotic distributional properties. We remind the reader that all the tests discussed
in this paper are based on a large sample theory, as we assumed throughout the
analyses of the example data set. But was this really justifiable? Recall that the
example data set has n = 100. The first question we ask is if it is considered large
enough to rely on the asymptotic theory.

6.1 A Monte-Carlo Study with n = 100

A small-scale numerical experiment was conducted to address the above issue. One
thousand replicated data sets were generated with n = 100 according to a set of
prescribed cell probabilities, pC = (

0.5 0.2 0.3
)′
(the same as the example data

set). For each data set, Y 2
Total, Y

2
φ(v1) and Y 2

φ(v2|v1) = Y 2
Total − Y 2

φ(v1) were calculated,

where v1 = (
1 −1 −1

)′
, and v2 = (

0 3 −2
)′
. (These contrasts vectors were also

the same as in the example data set). Note that v2 is not orthogonal to v1 in Neyman’s
statistic, while it is so in Pearson’s statistic. (The symbol v2|v1 indicates the effect
of v2 eliminating the effect of v1). The quantile values of these quantities were
plotted against the theoretical chi-square quantile values to obtain Q-Q plots, which
are presented in the first column of Fig. 1. For comparisons, analogous X2 values



Contrasts for Neyman’s Modified Chi-Square … 81

0 10
0

5

10

15

(a)

0 10
0

5

10

15
(b)

0 10
0

5

10

15

(c)

0 5 10
0

5

10

(d)

0 5 10
0

5

10

(e)

0 10
0

5

10

15
(f)

Fig. 1 Q-Q plots of Neyman’s modified chi-square statistic (the first column) and Pearson’s chi-
square statistic (the second column) for n = 100 and with theoretical chi-square quantiles on the
x-axis, and observed quantiles on the y-axis. a Y 2

Total, b X2
Total, c Y 2

φ(v1)
, d X2

φ(v1)
e Y 2

φ(v2|v1), and
f X2

φ(v2)
, where v1 and v2 are given in the main text. Of two vertical lines in each plot, the left

one indicates the 95% theoretical and the right one the 99% theoretical quantiles used as critical
values in planned comparisons. With n = 100, C = 3, and no cell probabilities radically close to 0,
observed and theoretical distributions show a fairly close match, and little differences are observed
between the two statistics

were also calculated, and their Q-Q plots are displayed in the second column. Q-
Q plots visually indicate how good an agreement there is between observed and
theoretical distributions. In Fig. 1, agreements are good in all cases. This means that
the asymptotic theory holds reasonably well for the example data set.

6.2 A Monte-Carlo Study with n = 50

Our next question is howmuch we can reduce the sample size without compromising
the asymptotic theory. Another numerical experiment similar to the one above was
conducted with the sample size cut down to one half of the original size (i.e. n = 50).
Results are presented in Fig. 2. We find that agreements are still good for X2’s, while
they are not as good for Y 2, particularly for quantile values beyond 95%. This means
that we can still use the asymptotic theory for Neyman’s statistic with a sample size
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Fig. 2 Q-Q plots of the two statistics for n = 50, Neyman’s modified chi-square in the first column,
and Pearson’s chi-square statistic in the second column. The basic construction of Fig. 2 is identical
to that of Fig. 1. With n = 50, the asymptotic chi-square theory barely holds up to 95% quantiles
for Neyman’s statistic, while it upholds relatively well all the way for Pearson’s statistic

of n = 50, if the test is performed at the significance level of 0.05, but not at the level
of 0.01. It is understandable that Neyman’s statistic needs a larger sample size to
achieve its asymptotic properties than does Pearson’s statistic, since the former uses
�̂C/n as an estimator of the variance-covariance matrix of p̂C/n, whereas the latter
uses its true population value, i.e. �C itself. But exactly how much lager sample is
necessary is difficult to determine from this small study. More systematic studies are
necessary to obtain more generalisable results.

What can we do if the asymptotic theory fails? We may ignore the asymptotic
theory altogether, andwemay focus on empirical distributions only,which are derived
as intermediary results to construct the Q-Q plots. We can directly evaluate how rare
the observed value of Y 2 is against its empirical distribution. If it is smaller than a
prescribed α level, the null hypothesis is rejected. There have been vigorous attempts
to minimise the number of evaluations of key statistics in simulated data (Hope 1968;
Langeheine et al. 1996; Feng and McCulloch 1996) rather than deriving an entire
range of empirical distributions.
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When the sample size is so small that the minimum expected cell frequency is less
than 5, it gets increasingly more difficult to obtain a reliable empirical distribution
due to increased numbers of simulated data sets with zero frequency cells. Read
and Cressie (1980, p. 75) proposed a correction formula for Y 2 for small samples.
This formula is convenient because it can be used without deriving an empirical
distribution by a simulation study.

7 Concluding Remarks

This paper presented a theory of contrasts for Neyman’s (1949) modified chi-square
statistic for one-way tables. This complements an earlier paper by the same authors
(Loisel and Takane 2022) on a similar theory for the tests of (part) interaction effects
in two-way and higher-order contingency tables.

Themethod proposed in this paper analyses the departure fromhypothesisedmean
structures by postulating linear models on observed proportions. A comment is in
order on what will happen if nonlinear transformations are applied to the observed
proportions. In recent literature on correspondence analysis (CA), considerable atten-
tion has been paid to applying nonlinear transformations to the observed proportions,
e.g. the log transformation (Greenacre 1984), and power transformations (Beh and
Lombardo 2023; Beh et al. 2018; Greenacre 2010). A simple solution to this problem
is already available due to Grizzle et al. (1969), which only involves replacing �̂C

(n times the covariance matrix of p̂C ) in (4) by J�̂CJ′, where J =
[

∂t(pC )

∂pC
|pC=p̂C

]
is

the matrix of the first derivatives of the transformations t(pC) with respect to their
arguments evaluated at p̂C . For example, if t is the element-wise logarithmic trans-
formations of pC , J = D̂−1

C , and if it is the element-wise square-root transformations
of pC , J = (1/2)D̂−1/2

C . This asymptotic covariancematrix of t(p̂C) (multiplied by n)
can be justified by the deltamethod; see, for example, Rao (1973, pp. 385–391). Some
preliminary analysis on the numerical example used earlier indicates that Grizzle et
al.’s method works very well in the present context.

8 About Nishi and His Work

In what follows, “I” refers to Yoshio Takane. Nishi is exactly ten years older than
I. So he was already a full-fledged psychometrician when I started my career. Since
then, I learned a lot from him. Indeed, I wrote book reviews (Takane 1982 1994)
on two of his monographs on dual scaling (Nishisato 1980, 1994). This means that
I read at least two of his books very closely. Here, dual scaling means simple and
multiple correspondence analysis (Greenacre 1984) as well as other variants of scal-
ing methods for ranking and pair comparison data. Although Nishi’s influences on
my subsequent work are many and profound, I may point out the following three,
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optimal scaling, analysis of sorting data, and incorporations of external information,
as particularly important.

When I arrived at University of North Carolina (UNC) at Chapel Hill in 1973 as a
newgraduate student,myfirst duty as a research assistantwas to “nonmetrise” various
linear multivariate analysis methods, such as ANOVA, regression analysis, principal
component analysis (PCA). Incorporating optimal monotonic transformations into
the traditional multivariate analysis techniques fitted very nicely to the idea of dual
scaling, that of assigning numbers to the subjects according to their patterns of
responses to item categories. This basic idea has served as a landmark for many
important developments in scaling that followed in the past forty years (Takane 2005).

In 1980, I published a paper on amethod of analysis of sorting data (Takane 1980).
In sorting data, a group of subjects are asked to sort a set of stimuli into several groups
according to their similarity. The method finds an optimal representation of stimulus
points as well as the centroids of sorting clusters in a joint multidimensional space.
This method can be regarded as my first and concrete contribution to the area of dual
scaling. It has turned out that the method is essentially equivalent to dual scaling of
multiple-choice data arranged in such a way that the rows correspond with stimuli,
and the columns with sorting clusters elicited by the subjects (Nishisato 1994).

The third point concerns how to incorporate external information in dual scaling.
Nishisato (1980) proposed two alternative methods. One simply takes the product
of the main data matrix and the matrices of external information regarding the rows
and/or columns of the data matrix. The product is then subjected to the singular value
decomposition (SVD) for further analysis. The second method, on the other hand,
first projects the data matrix onto the spaces spanned by the matrices of external
information, which is then subjected to SVD. Nishisato seemed to favour the first
method on the ground that the second method involves the SVD of a larger matrix.
Takane and his collaborators (Takane and Shibayama 1991; Takane andHunter 2001;
Takane et al. 1991; see also Takane 1994) argued, on the contrary, that the second
method is superior on the ground that it is scale-invariant, and that there is a simple
way to get around the computational problem pointed out by Nishisato (1980).
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From DUAL3 to dualScale:
Implementing Nishisato’s Dual Scaling

Jose G. Clavel and Roberto de la Banda

1 Introduction

Nishisato (1980) presented dual scaling as a technique for finding measurements
through their regression on data. Dual scaling is a versatile technique that handles
not only multiple-choice data but also other types of data formats for categorical
data (e.g. contingency tables, rank-order data, sorting data, paired comparison data
and successive categories data), all of which are used to explore the hidden structure
of the association between the categorical variables. Mathematically, dual scaling is
equivalent to such quantification methods as optimal scaling, Hayashi’s quantifica-
tion theory, correspondence analysis (CA) and homogeneity analysis. For a complete
historical overview of these quantification methods see Nishisato (2007) while Beh
and Lombardo (2014) gave a detailed view of scaling specifically related to CA.

To cover a variety of categorical data, Nishisato and Nishisato (1994) provided
a software package called DUAL3 in Basic for (1) the total-space quantification of
multiple-choice data, sorting data, paired comparison data, rank-order data and suc-
cessive categories data and (2) subspace quantification, also referred to as forced
classification. Our proposal is launched in order to ‘power up’ their DUAL3 into
a completely new programming language, i.e. (R R Core Team 2013), to meet the
demands of current practises of data analysis. This present paper provides a descrip-
tion of the this new dual scaling package.

The package dualScale (Clavel, Nishisato and Pita 2014) examines the kind
of incidence data that was also analysed by other functions such as

• MCA() in the FactoMineR package (Husson, Josse, Le and Mazet 2014),
• mjca() in the ca package (Nenadic and Greenacre 2007),
• mca() in the MASS package (Venables and Ripley 2002),
• dudi.acm() in the ade4 package (Dray and Dufour 2007),
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• CA3variants package which performs a whole range of correspondence anal-
ysis and multi-way components analysis techniques for nominal/ordinal contin-
gency tables (Lombardo and Beh 2016; Lombardo, van de Velden and Beh 2023),
and

• homals() from the package of the same name (de Leeuw and Mair 2009).

Our package is easy to use and powerful enough to handle a large data set. It is
therefore particularly attractive and useful for those students, teachers and researchers
who are involved in social, political, health, medical and educational studies. It
can also be used to examine general opinion polls and marketing research where
questionnaires are typically used to collect data and data sets are generally large. As
we know, an ingredient for a popular programme is that it should be easy to follow
with a clear rationale. This is exactly what the current paper aims to provide.

In Sect. 2, the R functions used to perform a dual scaling of a contingency table
will be introduced. In Sect. 3, the functions used for multiple-choice data are pre-
sented. Special attention is given to the function dsFC() which is used to per-
form forced classification and its use is demonstrated using several examples, that
will be presented with several examples. Following Nishisato (1996), the R package
dualScale creates ds objects for the analysis of the following types of categorical
data:

• Incidence data, where the elements are either the presence or absence of an
attribute, and a chi-squared metric is used to reflect distance relationships. It
includes:

– contingency/frequency data
– multiple-choice data.

• Dominance data: formed from ordinal measurements. Here the scaling is to find
a multidimensional configuration of row variables and column variables such that
the information in the data is best approximated in a low-dimensional space. This
type of data includes:

– paired comparison data
– rank-order data.

Due to space constraints, we will present here only the functions related with inci-
dence data analysis: ds_cf() and ds_mc().

2 Dual Scaling of Contingency Tables: ds_cf()

Contingency or frequency tables are the most straightforward type of data to handle
with dual scaling. In summary, given a table with categorical information contained
in its rows and columns, dual scaling will determine weights for the rows yi and
weights for the columns x j in such a way that the correlation between the rows and
the columns is maximised (Nishisato 1994).
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Included in our R package is the object name curricula that Nishisato and
Nishisato (1994) used in their package. The data we analyse is from Hollingshead
(1949) and examines how the youth of a small Midwestern community called Elm-
town from different social classes would enrol in different curricula. There are 390
students classified into four social classes and three curricula: college preparation,
general and commercial. The following gives the R object containing this data:

> curricula

s.class1 s.class2 s.class3 s.class4

collegPrep 23 40 16 2

general 11 75 107 14

commercial 1 31 60 10

Let fi j be the frequency of responses in row i (for i = 1, 2, . . . , I ) and column
j (for j = 1, 2, . . . , J ) of an I × J contingency table. Let f· j be the sum of the
responses of row i , f· j be the sum of the responses of column j and f·· the total
number of responses in the table ( f·· = 390 respondents in our example). The trivial
solution coincides with the expected value of each frequency when the row and
column variables are independent—i.e. there is statistical independence between
curricula and social class. In this case, the expected values are:

> ds_cf(curricula)$appro0

Distribution of Order 0 Approximation

V1 V2 V3 V4

1 7.2692 30.3231 38.0077 5.4

2 18.5769 77.4923 97.1308 13.8

3 9.1538 38.1846 47.8615 6.8

Dual scaling analyses the portion of the data which is free from the effect of the
trivial solution, f ∗

i j . This is reflected in what is called Distribution of order
0 Residual Matrix with elements fi j − f ∗

i j , where:

fi j − f ∗
i j = fi j − fi · × f· j

f··
.

For the data in curricula these values can be found using the command:

> ds_cf(curricula)$residual0

Distribution of Order 0 Residual Matrix

V1 V2 V3 V4

1 15.7308 9.6769 -22.0077 -3.4

2 -7.5769 -2.4923 9.8692 0.2

3 -8.1538 -7.1846 12.1385 3.2
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Next, we extract the most dominant pattern of the association. The first solution
set, including yi1, x j1 and ρ1 (a measure of association), minimises the sum-of-
squares discrepancies reflected on the above Order 0 Residual Matrix or,
in otherwords, the first solution is the one thatmaximally explains the variation in f ∗

i j .
Assuming that the first solution

(
yi1, x j1, ρ1

)
does not explain all of the association

captured in the f ∗
i j elements, dual scaling will analyse the unexplained portion of

association by finding the second most dominant pattern, and continue until all of the
association will be accounted for. In our example, only two dimensions are needed
to explain the data:

> ds_cf(curricula)$out

Component Eigenvalue SingValue Delta CumDelta

1 0.1765 0.4202 99.2289 99.2289

2 0.0014 0.0370 0.7711 100.000

where:

• Eigenvalue is the squared correlation ratio ρ2
k and indicates the proportion of

information one can gain from the rows given our knowledge of the data in the
columns, and vice versa; here k = 1, 2, . . . , K , where K = min (I, J ) − 1. The
sum of the squared correlation ratios is the total of variance contained in the data;

• SingValue is the positive square root of the eigenvalue, also callρk , and indicates
the amount of linear relationship between the responses weighted by the row
weights yik and by the column weights x jk ;

• Deltadenotes the δk values and is the percentage of the total association explained
by solution k. It also reflects its relative importance in the full set of solutions.

Following the terminology ofNishisato (1980), both normed and projectedweight
vectors are provided. The normed weights yi (and x j ) are scaled in such a way that
the sum-of-squares of the set of rowweights by yik (and columnweights x jk) is equal
to f··. For example, the normed weights for the columns (the four social class in our
example) for solutions one and two is:

> ds_cf(curricula)$norm_opt

V1 V2

1 -2.6785 1.1522

2 -0.4133 -0.7654

3 0.7216 -0.0568

4 0.8474 3.1465

Since the total number of elements in each of the social classes (columns) is
(35, 146, 183, 26), then for the first solution:

4∑

j=1

y j1 f j1 = −2.6785 × 35 − 0.4133 × 146 + · · · + 0.8474 × 26 = 390
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and the same is obtained for the second solution:
∑

j y j2 f j2 = 390. The projected
weights are given by ρk yik and ρk x jk so that the sum-of-squares of the responses
weighted by them is equal to ρ2

k f·· thus reflecting the importance of that solution.

3 Dual Scaling of Multiple-Choice Data: ds_mc()

3.1 An Overview of Dual Scaling

Multiple-choice data consist of a table of N rows (subjects) by n columns (items)
of chosen response option numbers. For quantification purposes, the data are trans-
formed into the ‘N subjects’-by-‘total number of response options’ table of response
patterns of 1’s and 0’s, where 1 indicates a choice of that option and 0 is a non-choice.
We use m j to indicate the number of response options of item j and m to show the
total number of options of all the items. For our package, we assume that each person
selects only one response option per item. Thus, the response-pattern matrix for item
j is expressed as a N × m j matrix F j such that each of the N rows—for example,
(0, 1, 0, . . . , 0)—contains only one choice, coded as 1, out of the m j options. The
entire data matrix for the N subjects and n items is therefore expressed as an N × m
matrix, which we denote by F so that:

F = [F1, F2, . . . , Fn]

with

m =
n∑

j=1

m j .

The task of dual scaling is to determinem option weights as the least-squares regres-
sions on the input data F (Nishisato 1980), so as to optimise mathematically equiv-
alent criteria. For example, the variance of the subjects’ weighted scores being a
maximum, or the average inter-item correlation is maximised. These equivalent cri-
teria lead to a generalised eigen-equation, yielding K orthogonal components. Since
the rank of F is m − n + 1, assuming that N � m − n + 1 and there exists the so-
called trivial component, dual scaling typically provides K = m − n components.
In other words, dual scaling typically yields m − n sets of option weights.

The function ds_mc carries out dual scaling, using the following steps:

1. Calculate the matrix C = F�D−1
n F where Dn is the diagonal matrix of row totals

ofF (the number of responses from individual subjects, which are equal to n when
no missing responses are involved).

2. Obtain A = D−1/2CD−1/2 − D1/211�D1/2

ft
. Here, f denotes the m × 1 vector of

columns totals of F so that D = diag (f) is the diagonal matrix of column totals
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of F, and ft is the sum of the elements of F, which is equal to nN , provided that
no missing responses are involved.

3. Carry out a singular value decomposition onA. That is, solve
(
A − ρ2I

)
D1/2x =

0 where ρ2 is the maximum eigenvalue and its square root, ρ, is the singular
value. The singular vectorD1/2x is then converted to x, which is referred to as the
normed vector of weights for the columns (response options) of F.

4. There exist dual relations—see Nishisato (1980)—such that:

ρy = D−1
n F�x

ρx = D−1
n F�y

where y is the normed score vector for the rows (subjects) of F, ρy is the vector
of projected scores for subjects, and ρx is the vector of projected weights for the
options.

5. From the above computations we obtainm − n set of components: one consisting
of m − n non trivial eigenvalues, singular values, reliability coefficients (Cron-
barch’s α), and delta coefficients δ (see Nishisato (2007) for an explanation of
the terms), together with weights for the options, x j and ρ jx j , and scores for the
subjects, y j and ρ jy j .

6. Compute the inter-item correlation matrix, based on the optimal scores, for com-
ponent k, r j j ′(k), and the item-total correlation r jt (k) as expressed by:

r jt (k) = x�
j F

�
j Fx√

x�
j DJx jx�F�Fx

, (1)

where x j is the vector of weights for the options of item j on component k, F�
j is

the m j × N matrix of response patterns for item j , DJ is the diagonal matrix of
the column totals of F�

j . See Nishisato (1994) for a number of interesting roles
that the item-total correlation can play in data analysis.

3.2 An Application: Singapore 1985

In the R package we are describing here, the function ds_mc is used to carry out
ordinary dual scaling of multiple-choice data. Let us use the singaporean data
set that is included in the package to explain the output features of this function. This
data set, presented in Nishisato and Nishisato (1994), contains the responses of 23
subjects to a 4-item questionnaire on the view that adults aged 20 years and older
have to Singaporean children. The data were collected at Nishisato’s workshop in
Singapore in 1985. The four items are:
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1. How old are you?
(1) 20–29; (2) 30–39; (3) 40 or over

2. Children today are not as disciplined as when I was a child.
(1) agree; (2) disagree; (3) I cannot tell

3. Children today are not as fortunate as when I was a child.
(1) agree; (2) disagree; (3) I cannot tell

4. Religion should be taught at school.
(1) agree; (2) disagree; (3) indifferent

All four items have 3 options each, so that m = 12. The total number of possible
components ism − n = 12 − 4 = 8. To obtain the m option weights (weights of the
different categories) for each component we can use the R command
ds_mc(singaporean). The following output is given using the default options,
and other possible outputs are controlled by using the print() for dualScale:

> ds_mc(singaporean)

Component Eigenvalue SingValue Delta CumDelta Alpha

1 1 0.6476 0.8047 32.3780 32.3780 0.8186

2 2 0.4407 0.6638 22.0333 54.4113 0.5769

3 3 0.3170 0.5631 15.8520 70.2633 0.2819

4 4 0.2136 0.4622 10.6806 80.9439 -0.2271

5 5 0.1843 0.4293 9.2134 90.1573 -0.4756

6 6 0.1157 0.3402 5.7852 95.9425 -1.5476

7 7 0.0528 0.2297 2.6380 98.5804 -4.9847

8 8 0.0284 0.1685 1.4196 100.0000 -10.4072

The first part of the output contains the 8 eigenvalues, ρ2
k , of matrix A, which sum

to:
m

n
− n = 12

4
− 1 = 2 .

Other outputs include the corresponding singular values ρk , Alpha (the Kurder-
Richardson generalised reliability coefficient, or Cronbach’s α), and values of delta
(the percentage of information accounted for by component k, i.e. the percentage of
the eigenvalue divided by the sumof all the eigenvalues). These statistics are obtained
for all components. As Nishisato (1994) discusses, theoretically, the coefficient α

is the ratio of the expected values of two positive quantities, hence it is expected
to be positive. The formula we use is an approximation to this theoretical quantity,
and can become negative. Besides, Nishisato (1994) has shown that α becomes
negativewhen the corresponding eigenvalue becomes smaller than 1/n. He suggested
that we should consider only those components with non-negative values of α for
interpretation. If this strategy is adopted, the above values ofDelta andCumDelta
can be redefined for those adopted set of components. For example, since only the
first three eigenvalues of the Singaporean data are greater than 1/n = 1/4 we would
only consider the first three components. The redefined Deltas for the first three
components are then adjusted to 46.09%, 31.35% and 22.56%, respectively, so that
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these three components account for 100% of the total information. The values of
CumDeltas should then also be adjusted accordingly.

Because of the orthogonality of the components, the total number of components
is synonymously referred to as dimensions. Let us define by r2j t (k) the information of
item j on component k. Then, the distribution of information over the k components
is given as follows:

> ds_mc(singaporean)$info

Distribution of Information Over 8 Components

Comp Item1 Item2 Item3 Item4 Avge

1 0.8615 0.7022 0.3637 0.6629 0.6476

2 0.7418 0.1904 0.0185 0.8120 0.4407

3 0.0124 0.4541 0.7370 0.0646 0.3170

4 0.0758 0.1967 0.5174 0.0646 0.2136

5 0.1664 0.2640 0.2644 0.0423 0.1843

6 0.0062 0.1298 0.0710 0.2558 0.1157

7 0.0709 0.0392 0.0235 0.0774 0.0528

8 0.0651 0.0237 0.0044 0.0205 0.0284

The last column lists the average item contribution to component k, which turns
out to be equal to the eigenvalue of the component; see Nishisato (1980) for an
explanation of this feature. The statistic r2j t indicates the extent to which item j is
correlated with component k: the higher the value, the greater the relevance of the
item to that component. In our case, Item 1 contributes the most to component 1
(r21t (1) = 0.8615), and Item 4 to component 2 (r24t (2) = 0.8120). Another interesting
aspect of this statistic is that its column sum is equal to the number of options of
the items minus 1. For the current example, this is 2 for each column; for example,
0.8615 + 0.7418 + · · · + 0.0651 = 2 for the first item. This is the total contribution
of the item.

Thenext output offers k tables of inter-itemcorrelations for the components, r j j ′(k).
These values indicate the amount of linear relationship (defined by their product-
moment correlation) between two items, of which the options are optimally scaled,
usually through nonlinear transformations. Note that dual scaling determines option
weights so as to maximise the sum-of-squares of all the inter-item correlations. For
the Singapore data, eight correlation matrices are produced but only one of them is
shown below:

> ds_mc(singaporean)$rij[,,1]

Inter Item Correlation for Component 1:

Item1 Item2 Item3 Item4

Item1 1.0000 0.8005 0.3856 0.7033

Item2 0.8005 1.0000 0.3303 0.4795

Item3 0.3856 0.3303 1.0000 0.3983

Item4 0.7033 0.4795 0.3983 1.0000
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One should keep inmind a very important feature of these correlation coefficients:
since each correlation coefficient is optimised for all option weights, each coefficient
is dependent on what other items are involved in the data set. In other words, the
correlation coefficient between items 1 and 2 of component 1 will change if another
item is discarded or additional items are added to the data set. Nishisato (2007) inves-
tigated this problem, and considered the projection of one item onto the space of the
other item as the basis for assessing the correlation between two items in multidi-
mensional space. To this end, he used his forced classification procedure (Nishisato
1984) and derived his coefficient ν j, j ′ . One remarkable aspect of his derivation is
that he went one step further and proved successfully that his coefficient ν j, j ′ is, in
spite of its different appearance, identical to Cramér’s coefficient Vj, j ′ . That is:

Vj, j ′ =
√

χ2
( j, j ′)

ft (p − 1)
= ν j, j ′ , (2)

where p is the smaller number of options of the two items, j and j ′, and χ2
( j, j ′) is

the Pearson chi-squared statistic calculated from the contingency table consisting of
the options of item j and item j ′. For the Singaporean data, we obtain the following
matrix ν or, equivalently, V:

ν = V =

⎛

⎜⎜
⎝

1.000 0.579 0.292 0.682
0.579 1.000 0.308 0.394
0.292 0.308 1.000 0.332
0.682 0.394 0.332 1.000

⎞

⎟⎟
⎠ .

Thus, in multidimensional space, the correlation between Item 1 and Item 4 (ν14 =
0.682) is the highest. The result is also available with the command:

> ds_mc(singaporean)$Cramer

More specific information from ds_mc() can be obtained from names(). The
output of dualScale is structured as a list-object. For example, the normed option
weights are obtained by:

> ds_mc(singaporean)$norm_opt

while one can obtain a more general series of output by:

> summary(ds_mc(singaporean))
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3.3 Visualising the Results

The function ds_mc() produces a dualScale object, which includes optimal
scores for the subjects and optimal weights for the options. The scores are projected
or normed weights; for an explanation of the distinction of these two ideas; see
Nishisato and Clavel (2003). Lebart, Morineau and Warwick (1984) pointed out
that:

A great deal of caution is needed in interpreting the distance between a variable point and
an individual point because these two points do not belong to the same space.

This leads to a perennial problem of constructing a joint graphical display of both
option weights and subject scores in the same space. In our package, a measure of the
row-column space discrepancy (Nishisato and Clavel 2010) is provided to assist the
user and should be used as a precaution for making a direct interpretation of a sym-
metric graph that is constructed using the projected scores of subjects and projected
weights of options. If the separation angle is large, the data points corresponding
to the rows and columns should not have coordinates on a single continuum of the
component.

Following the approach of Clavel and Nishisato (2012), dualScale provide
three kinds of plots that are available through the argument type. They are:

• Plots for one type of elements: type = "Sub" for only subjects and
type = "Ite" for only item options. They are the projected subject scores
and the projected option weights.

• Plots for two types of elements called asymmetric plots: type = "Asy1" for
joint plots of normed row weights and projected column weights (the default
option) andtype = "Asy2" for joint plots of projected rowweights andnormed
column weights. Although these options are logically correct, the projected quan-
tities always have a smaller norm than the other set of quantities, and this differ-
ence in norms would typically make it difficult to make between-set (rows versus
columns) comparison. This might be the main reason why many researchers still
use the symmetric plot in spite of the fact that the symmetric display is an erroneous
representation of two sets of variates. By default, an asymmetric graph (Asy1)
for the first and second component is plotted. For example, the asymmetric plot
of the singaporean data set is created with the following command:

> plot.ds(ds_mc(singaporean))

When choosing other combinations of components we must indicate those compo-
nents. For example:

> plot.ds(ds_mc(singaporean), dim1 = 2, dim2 = 4)

produces a plot that is constructed using the first two components and is shown in
Fig. 1. The symbol � is given to the subjects, labelled with an s. and a number.
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Fig. 1 Asymmetric plot for the singaporean data set using components 1 and 2

The symbol · is given to the options. They are labelled with a q. and two numbers
separated by a colon. The first number indicates the item and the second number is
the option within that item. For example, q.2:1 is the label given to the first option
of Item 2. To facilitate the reading of the plot, all the options of the same item are
shownwith the same colour. The plots also show the type of graph and the percentage
of the total variance explained by each component.

For Fig. 1, the cumulative δ is 54.40%, and it shows that some distinct clusters
can be identified. In the upper right quadrant are located those subjects aged 40 or
over (q.1:3) who think that religion should be taught (q.4:1). In the upper left
quadrant we find it dominated by those subjects age 20–29 years who are indifferent
about the issue of religion at school and don’t believe that the children today are less
disciplined than before.

3.4 Forced Classification Analysis: ds_mcf()

Sometimes, we are interested in the analysis of a particular item of the questionnaire,
rather than the entire set of items. Suppose one collects data on a father’s education,
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mother’s education, the student’s enrolment or non-enrolment in kindergarten and
the student’s graduation from high school or drop-out half way. From the policy
makers point of view, the last item (the one referring to drop-out) may be of utmost
interest. If this is the case, our analysis should be focussed on this particular point
with an aim to see how the response to this item is related to the responses to the first
three questions of the questionnaire. This is akin to examining how to scale weights
for the response options of the other items in such a way that the correlation between
the item of interest with each of the remaining items is maximised. This kind of
focused analysis can be carried out by forced classification of dual scaling, and it is
in essence equivalent to discriminant analysis of multiple-choice data.

The function ds_mcf() in the dualScale package provides this analysis. To
define the item of interest (called the criterion item) dominant in the data matrix,
Nishisato (1984) proposed to modify the input response-pattern matrix by multiply-
ing the criterion item, say p, by a large enough constant K , called the forcing agent.
That is, modify F = [

F1, F2, . . . , Fp, . . . , Fn
]
to F = [

F1, F2, . . . , KFp, . . . ,

Fn
]
, and perform the dual scaling analysis on it. Nishisato (1984) has shown that this

analysis converges to the analysis of the original response-pattern matrix F projected
onto the subspace spanned by the columns of the criterion item, as the value of K
approaches positive infinity. Thus, asymptotically, it is equivalent to the dual scaling
of PpF, where Pp = Fp

(
F�
pFp

)−1
F�
p . The asymptotic properties of this process are

captured by the following relations:

lim
K→∞ r2pt = 1

lim
K→∞ ρ2

p = 1

For Item p with mp options, the first
(
mp − 1

)
components attain the above

asymptotic results. These components are called the proper components of forced
classification, and item p is referred to as the criterion item. The mathematics of
forced classification is presented in Nishisato (1984), and its applications and further
characteristics are discussed in Nishisato (1986, 1988, 1994) and Nishisato and
Baba (1999). Due to the forcing agent K , the criterion item determines the main
components, meaning that option weights for non-criterion items are determined so
as to maximise their correlations with the criterion item (Nishisato 2007).

The results provided by executing the package are essentially the same as
those obtained with ds_mc() with some new features. Let us examine again the
singaporean data set. Suppose we are interested in whether or not religion should
be taught at school. Then, we should select Item 4 as the criterion and we can carry
out forced classification by using the following command:

> ds_mcf(singaporean, crit = 4)

The output of this command is:
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Call: ds_mcf(input = singaporean, crit = 4)

Type of Analysis: ds_mcf

Results:

Dual Scaling---Dual Scaling---Forced multiple-choice data analysis

Forced classification of the criterion item (type A)

Component Eigenvalue SingValue Delta CumDelta
1 0.3074 0.5544 63.41 63.41
2 0.1773 0.4211 36.59 100.00

Since the criterion item has three options—(1) agree, (2) do not agree, (3)
indifferent—the number of proper components is mp − 1 = 3 − 1 = 2. Remember,
too, that the asymptotic aspect of forced classification, where the eigenvalues of the
modified data matrix do not provide statistics proportional to the contributions of the
proper components to forced classification, needs an alternative measure of within
relationships. Nishisato and Baba (1999) derived the following formula to calculate
the exact correlation ratios in the subspace of the criterion variable:

ρ2
k =

∑
j r

2
j t (k) − 1

n − 1
. (3)

The function ds\_mcf() provides these adjusted correlation ratios for forced clas-
sification. The statistic δ for each of the proper components is redefined accordingly.
The vectors of the projected subject scores and projected option weights, associated
with these proper components have special significance to the interpretation of the
forced classification outcomes. From the output this command produces, we will
present only those vectors for components 1 and 2:

> ds_mcf(singaporean, crit = 4)$proj_opt_a

V1 V2

1 -0.5500 0.1214

2 0.0791 -0.3286

3 0.4484 0.3011

4 0.1744 -0.0096

5 -0.4354 0.2688

6 -0.3709 -0.1631

7 0.3841 0.1206

8 0.0597 -0.0561

9 -0.4096 0.0960

10 0.4964 0.4364

11 0.1594 -0.5112

12 -0.9011 0.1849

> ds_mcf(singaporean, crit = 4)$proj_sub_a
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V1 V2

1 0.5561 0.3356

2 -0.1113 -0.3022

3 0.2552 -0.5623

4 -0.6601 0.4169

...

...

22 0.2552 -0.5623

23 -0.7590 0.0542

These option weights of non-criterion items are optimal in the sense that they pro-
duce maximally discriminative scores of subjects who chose different options of the
criterion item, and these scores of subjects produce maximally discriminative option
weights for the criterion item.

The remaining output produced using the ds_mcf function is similar to the
output already seen from ds_mc(). The Distribution of Information
of the components consists of the squares of the product-moment correlation between
item j and the total scores (in the first n columns) and the average of these statistics
in the last column:

Distribution of Information Over 8 Components:

Item1 Item2 Item3 Item4 Avge

1 0.506 0.227 0.189 1.000 0.481

2 0.419 0.080 0.034 1.000 0.383

3 0.225 0.559 0.662 0.000 0.361

4 0.217 0.769 0.070 0.000 0.264

5 0.169 0.036 0.652 0.000 0.214

6 0.225 0.210 0.302 0.000 0.184

7 0.151 0.079 0.088 0.000 0.079

8 0.087 0.041 0.004 0.000 0.033

As expected, the criterion item (Item 4) has a perfect squared correlation with
the first two components and a zero correlation with the other components. In other
words, the criterion item is accounted for by the first two proper components and
the remaining components do not contain any information about the criterion item.
Considering that the sum of the two proper eigenvalues is 0.307 + 0.177, and that
Item 4 contributes to the total proper subspace by 2, we can say that about the 25%
of Item 4 (that is (0.484/2) × 100 = 24.2%) can be explained by first, second and
fourth items.

Now, let us look at the inter-item correlation, using the function:

> ds_mcf(singaporean, crit = 4)$rij_a

Inter-Item Correlation for Component 1:

[,1] [,2] [,3] [,4]

[1,] 1.0000 0.7769 0.3169 0.7115
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[2,] 0.7769 1.0000 0.2607 0.4763

[3,] 0.3169 0.2607 1.0000 0.4344

[4,] 0.7115 0.4763 0.4344 1.0000

Inter-Item Correlation for Component 2:

[,1] [,2] [,3] [,4]

[1,] 1.0000 0.1288 -0.0578 0.6472

[2,] 0.1288 1.0000 -0.2082 0.2820

[3,] -0.0578 -0.2082 1.0000 0.1831

[4,] 0.6472 0.2820 0.1831 1.0000

In forced classification, the criterion variable (Item 4) is perfectly correlated
with the total score, and the item-total correlation is identical to the item-criterion
correlation. As we can see, the correlation coefficient of the other three items
with the criterion item in Component 1—that is, 0.7115, 0.4763 and 0.4344—are
equal to the square roots of the corresponding values in the Distribution of
Information table above: 0.7115 = √

0.506, 0.4763 = √
0.277 and 0.4344 =√

0.189. The magnitude of the correlation is a clear reference for which item will be
better predicted by the criterion item. In our case, Item 1—how old are you?—has
the highest correlations with the first two components (i.e. 0.7115 and 0.6472).

Using the plots already presented in Sect. 3.3, Fig. 2 is obtained from the output
of a forced classification analysis where Item 4 is the criterion. See the location of
the items options in this case. The figure shows the plot of the options using their
weight of the proper components as coordinates. As Item 4 is the criterion item,
its options are located in the vertices of the triangle that define the projected space
and all the non-criterion options are projected onto the space of the criterion item.
Option 3 of Item 1 (i.e. q.1:3, the age group 40 or over) is close to q.4:1 (agree
that religion should be taught). Similarly, q.1:1 is close to q.4:3 and q.1:2 is
close to q.4:2. The points in the middle (i.e. q.3:2 and q.2:1) do not contribute
greatly to the interpretation of the results.

3.4.1 Eliminating Versus Ignoring the Effects of the Criterion Item

The first two components of our previous example are relevant to the criterion item,
and asymptotically those proper components are dual scaling results obtained from
the data projected onto the subspace of the criterion item. That is, dual scaling is
performed on the matrix PpF. The remaining components can tell us how other
non-criterion items behave in the absence of the influence of the criterion item,
and it corresponds to dual scaling of the complimentary space of the criterion item.
That is, dual scaling is performed on the matrix

(
I − Pp

)
F. Since the analysis of

complimentary space is as important as the analysis of the criterion item subspace,
a convincing explanation is in order.
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Fig. 2 Plot for forced classification of singaporean data when item 4 is the criterion

Suppose that health survey data were collected from several municipal hospitals
where many senior patients are involved. Do we not wonder then if the dominance
of senior patients somehow affects the outcome of survey results? One can then
decompose the data into the analysis of the subspace for senior patients and the
analysis of the complimentary space of senior patients. The former reflects how senior
patients data affect the results of the survey, and the latter tells us what happens if we
remove the contributions of senior patients from the analysis. In practise, there are
many cases in which some variables are not taken into consideration for control, and
the current two-way analysis of subspace and complimentary space can be effectively
used to investigate if some uncontrolled variables have any substantial effects on the
outcome of data analysis. To this end, we recommend the following strategy:

1. Suppose that age is the variable of concern. If so, carry out a forced classification
and retain the results from the complimentary space. That is, we perform a dual
scaling on the matrix

(
I − Pp

)
F. Let us call this analysis: ‘Eliminating the effect

of the criterion item.’
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2. Remove the age item from the data set, and subject the remainder of data to
ds_mc(). Let us call this analysis as: ‘Ignoring the effect of the criterion item.’

Both analyses yield the same numbers of components. When we compare the
corresponding eigenvalues with the squared item-total correlations, we would expect
that those values associated with ‘ignoring’ are larger than those from ‘eliminating,’
the reason being that the former may capture the hidden influences of the criterion
item on results by not controlling its effects. This is a useful application of forced
classification since it can be used to identify some hidden variables that influence the
data analysis. To show this, let us look at a numerical example. Suppose we analyse
the singaporean data once again but carry out forced classification using the age
(Item 1) as the criterion. That is:

> ds_mcf(singaporean, crit = 1)

We are interested in the information distribution pertaining to the non-proper forced
classification components, that is, in rows 3–8 of the following table:

Distribution of Information Over 8 Components:

q.1 q.2 q.3 q.4 Avge

1 1 0.645 0.157 0.498 0.575

2 1 0.024 0.017 0.428 0.367

3 0 0.583 0.643 0.053 0.320

4 0 0.210 0.659 0.146 0.254

5 0 0.150 0.376 0.404 0.233

6 0 0.144 0.071 0.254 0.117

7 0 0.178 0.038 0.087 0.076

8 0 0.066 0.039 0.129 0.059

By discarding the contributions of the proper components from Table1, we now
need new mean values of the squared correlation coefficients. That is, we now must
divide the sums of the item-total correlation coefficients by 3, not 4. This revised
table of information distribution should be compared with the corresponding table
obtained from the second data set, that is, the data set without the age item. This can
be easily obtained with the command:

ds_mc(singaporean[-1,])$out

or alternatively, using the function ds_mcf()

> ds_mcf(singaporean, crit = 1)$out_b

In our case, the new data set will consist of three items; Item 2: Children today are
not as disciplined as when I was a child, Item 3: Children today are not as fortunate
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Table 1 Non-proper components of dsFC versus dsMC components ignoring criterion item
dsFC results dsMC results

Compon. q.2 q.3 q.4 Average Compon. q.2 q.3 q.4 Average

3rd 0.583 0.643 0.053 0.426 1st 0.598 0.537 0.682 0.605

4th 0.210 0.659 0.146 0.338 2nd 0.779 0.276 0.257 0.437

5th 0.150 0.376 0.404 0.310 3rd 0.016 0.574 0.601 0.397

6th 0.144 0.071 0.254 0.156 4th 0.309 0.363 0.072 0.248

7th 0.178 0.038 0.087 0.101 5th 0.128 0.164 0.216 0.169

8th 0.066 0.039 0.129 0.078 6th 0.169 0.086 0.173 0.143

as when I was a child, and Item 4: Religion should be taught at school, each with 3
options. Thus the number of possible components, without the criterion item, is now
(m − n) = (3 × 3) − 3 = 6. Using the ds_mc() function produces the following
output:

Component Eigenvalue SingValue Alpha Delta CumDelta

1 0.606 0.778 0.674 30.275 30.275

2 0.437 0.661 0.357 21.872 52.147

3 0.397 0.630 0.240 19.849 71.996

4 0.248 0.498 -0.516 12.399 84.395

5 0.169 0.411 -1.454 8.464 92.859

6 0.143 0.378 -2.001 7.141 100.000

Let us now present the information distributions from the two analyses, one from
the complimentary space analysis of forced classification (that is, by eliminating
the effects of the criterion item) and the other from dual scaling of the data set
reduced by dropping the criterion item from the data set; see Table1. Notice that
the eigenvalues, indicated by Avge, from dual scaling are always larger than those
from forced classification because the former values contain the contributions of
the criterion item as a hidden contamination variable, while forced classification
results on the latter were obtained by eliminating the effects of the criterion variable
completely. Remember that the data set fords_mc() does not have the age question,
but that the data set is nonetheless under the influence of the age in a hidden way.

4 Summary

In this paper we have presented some functions of the R package dualScale for
dual scaling analysis. This package contains all the features of the former commer-
cially available software (DUAL3) plus various important new features, especially
those related with the forced classification approach; such features include adjusted
eigenvalues, analysis of complementary subspace, match-mismatch tables andmore.

The three functions ds_ct(), ds_mc() and ds_mcf() produce a class of
objects named ds that can be easily represented by specifically created plots by the
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programme using theplot()method fords objects. Since this book is aFestschrift
to celebrate Nishisato’s career, the authors have decided to present their results using
Nishisato’s traditional data sets, and notation. The final goal is to include all of
the findings of Nishisato fruitful career in dualScale thereby making it easily
available for future generations.
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Confounding, a Nuisance Addressed

Helmut Vorkauf

1 Introduction

I got to know Shizuhiko Nishisato in 1996 as the editor of Psychometrika, not as
the editor of the nagging sort that one has to fight to get a paper published but as a
friendly and resourceful helper. It is thus a great pleasure to honour such a friend by
contributing to his Festschrift.

I happen to have a long history of problems with non-orthogonal data designs.
As a teenager, still in school, I worked in an educational research institute and was
assigned the task to calculate an analysis of variance with a mechanical calculating
machine (no computers at that time in the 1950s), following the rules from a book
by Edwards on analysis of variance (sorry, no exact recollection). As I know now,
the rules were for orthogonal designs and my data were non-orthogonal survey data.
When I ran the calculations using Edwards’ rules and arrived at negative sums of
squares for various sources of variation, my boss was ready to fire me for evident
incompetence. I insisted he do some calculations himself, and he also got negative
sums of squares. I was not involved in the discussions thereafter, since I was just a
teenager earning some pocket money. But I kept the job.

In my professional life, problems with non-orthogonality re-surfaced often.

2 Confounding Is Not the Data’s Fault, but of the Analysis
with Aggregation

Recently I encountered data (Table1) from von Kügelgen, Gresele and Schölkopf
(2021) containing all confirmed COVID-19 cases in China (up to February 2020)
and Italy (to March 2020).
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Table 1 COVID-19 case fatality rate in China and Italy

Age Italy China Case fatality rate

Alive Died Alive Died Italy China Higher in

0–9 43 0 0 0 0.000 ? ?

10–19 85 0 548 1 0.000 0.002 China

20–29 296 0 3612 7 0.000 0.002 China

30–39 470 0 7582 18 0.000 0.002 China

40–49 890 1 8533 38 0.001 0.004 China

50–59 1450 3 9878 130 0.002 0.013 China

60–69 1434 37 8274 309 0.025 0.036 China

70–79 1671 114 3606 312 0.064 0.080 China

80–89 1330 202 1200 208 0.132 0.148 China

Total 7669 357 43233 1023 0.044 0.023 Italy

Unequal cell sizes led to spurious results, due to our routine practice of aggregat-
ing the data to arrive at column totals to estimate an independent variable’s effect,
ignoring that unequal cell sizes can lead to skewed results.

In these COVID-19 data, the erroneous result demonstrates the well-known Simp-
son paradox, where aggregation reverses the uniform trend of a higher fatality rate
of Chinese patients in each of the age groups into an astonishing higher fatality rate
of Italian patients in the aggregated total (bold-faced in the table).

The reason for this paradoxical result is the confounding variable Age. Chinese
patients being younger than Italian patients, themanyolder Italian patientswith a high
fatality rate determine the column total and thus produce the paradox. In this example
of low dimensionality, it is not difficult to identify Age as the responsible confounder.
In an epidemiological case–control study, however, with maybe 30 potential causes
of an infection it is certainly less easy to single out one of the 30 causes or one of
the 435 pairs of causes as responsible for any confounding effect. The confounder
might even be a triple or a higher n-tuple of causes.

It is clear that the source of the error is the summing-out of factors to arrive at
marginal sums when these sums are erroneously influenced by differently skewed
distributions. This problem did not exist in the early times of analysis of variance
when a planned experimental design was orthogonal with equal cell frequencies.
Confounding could rear its ugly head only when data started to be collected in
surveys where unequal cell sizes are normal.

Alas, the change from orthogonal experimental designs to survey sampling
(almost necessarily non-orthogonal) was not accompanied with a corresponding fun-
damental change of the method of analysis. Programs like BMDP, which I used in
the late 1960s, refined the analysis to arrive at positive sums of squares, but did not
eliminate confounding and its rare extreme outcomes like Simpson’s paradox. Tra-
ditional analyses rely not only on the original individual cell frequencies, but also on
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marginal sums, ignoring Fisher’s (1958) demand to use all of the data, not aggregated
sub-tables:

In inductive reasoning the whole of the data, or the available axioms, or the available obser-
vations, has to be taken into account.

3 An Approach Based on the Data, Not Marginal Sums

Searching for an analysis liberated from confounding effects, one has to look for a
way to avoid the use of aggregation which is replacing original data with marginal
sums. These sums have as their aim the isolation of variables and their effects. Could
there be a way to isolate the effect of one variable on another variable without
replacing the original data with partial sums and thus losing the original data?

A way was found to eliminate the association between two variables without any
summing out, leaving all frequencies intact. This is done by combining the categories
of two variables into one composite variable. Any association of, e.g., Sex = [M, F]
and Department = [1, 2, 3] is eliminated by combining the values of Sex and
Department into the composite variable SexDep = [M1, M2, M3, F1, F2, F3].

This simple operation is not new and has certainly found its uses in the past. But
the approach presented here makes novel use of the removal of interdependence
of Xi and X j ; we gave it the name uncoupling.

H , the entropy of a categorical distribution with k categories, is at the basis of a
proposed alternative analysis and defined by:

H = −
k∑

i=1

pi × ln (pi ) ,

for pi > 0. When H = 0, there is no variation since all cases are concentrated on a
single category; H reaches the maximum of ln (k) for a rectangular distribution over
the k categories. H , a measure of uncertainty, can readily be interpreted as a measure
of variance for categorical variables.

The uncoupled composite variable SexDep has less entropy than the cross-
tabulation of Sex and Department ; this loss of entropy is due to the association
between Sex and Department . We need a way to express this loss of association
as a component part of the total of the associations between all variables. We could
gain a quantitative partitioning of the total of all correlation into the contribution of
every pair of variables to the total correlation, i.e. an “analysis of entropy”.

This total of all correlation’s between all variables in a data set can be computed
with the coefficient of terseness ζ (zeta)1 introduced by Preuss and Vorkauf (1997).

1 We collaborated for the publication, but the derivation of the total correlation is almost entirely
the work of Lucien Preuss.
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Table 2 Original three-dimensional 9 × 2 × 2 table, regrouped as a two-dimensional 9 × 4 table
by uncoupling Country and Fatali t y

Age Uncoupled pair of variables

Italy China

Alive Died Alive Died

0–9 43 0 0 0

10–19 85 0 548 1

20–29 296 0 3612 7

30–39 470 0 7582 18

40–49 890 1 8533 38

50–59 1450 3 9878 130

60–69 1434 37 8274 309

70–79 1671 114 3606 312

80–89 1330 202 1200 208

ζ is a coefficient of the closeness of relations between a complete set of M variables,
or a coefficient of total correlation and is defined as:

ζ = 1 −
∑M

i=1 H(Xi |X1, . . . , Xi−1, Xi+1, . . . , XM)

H(X1, X2, X3, . . . , XM)
,

and is valid for tables with any number of dimensions; it is normalised to 1, indepen-
dent of the base of the logarithm and independent of the sample size N . Therefore, it
is comparable for tables of different size and dimensionality, a quality that is highly
desirable.

For the analysis of the COVID-19 data in Table1 we first compute ζTotal for the
three-dimensional total table and then the reduced ζ for each of the two-dimensional
sub-tables in which a different pair of variables is uncoupled (an uncoupled pair is
indicated by square brackets).

1. [countr y, f atali t y] × age which eliminates the correlation of countr y and
f atali t y, shown as Table2,

2. [countr y, age] × f atali t y which eliminates the correlation of countr y and
Age,

3. [age, f atali t y] × countr y which eliminates the correlation of age and fatality.

Note that the tables with a pair of variables uncoupled contain the same 9 × 2 × 2
frequencies of the original table, the calculations are based on only these frequencies,
with none of the marginal sums that can lead to erroneous interpretation.

The key difference is the structural interpretation, with the two-dimensional cross-
tabulation of two correlated variables being replaced by the one-dimensional com-
posite variable, thus losing the information of correlation. That is:
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a b
c d

contains the correlation, whereas:

a b c d

ignores it.
The original three-dimensional Table1 produces a ζTotal = 0.025893.
We calculate the ζ of each of the three two-dimensional sub-tables and subtract

from ζTotal producing:
�ζ = ζTotal − ζSubtable,

which is the contribution to the total correlation of the pair of variables that are
uncoupled.

1. The table uncoupling countr y and age produces �ζ = 0.017717, a loss of 68%.
We recognise that the dominant effect contained in the data is the overwhelming
difference of the age distribution of the two countries, the cause of the confound-
ing.

2. The table uncoupling f atali t y and age produces�ζ = 0.007758, a loss of 30%;
f atali t y increases considerably with age.

3. The table uncoupling countr y and f atali t y produces �ζ = 0.000146, a negli-
gible coefficient and a negligible loss of 1%. The disturbing Simpson’s paradox
has vanished as the confounder was given no chance to exert its influence.

4 Byssinosis, an Epidemiological Example

Let us now turn to a more complex data set with six variables by Higgins and Koch
(1977) as shown in Table3.

The complete 3 × 3 × 2 × 2 × 2 × 2 table is difficult to assess. When one tries
to find the main factors leading to byssinosis, a lung disease caused by exposure to
cotton dust, one has to take into accountmany interrelationships that exist between the
possibly illness-inducing variables. Higgins andKoch (1977) devised a laboriousχ2-
based set of rules designed to find the important factors; they concluded that dustiness
of the workplace is the most important determinant of illness, gender of employee
and smoking following next. From the content of the study, it seems curious that the
length of employment and therefore the length of exposure to dust came in fourth
place only. Could it be that some confounder has suppressed the relation between
length of employment and byssinosis?2 The�ζ values summarised in Table4 should
provide an answer to this question.

2 Higgins and Koch’s division of χ2 by degrees of freedom might also have played a role.
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Table 3 Byssinosis by dustiness, employment, smoking, gender and race
Employ Smoke Sex Race Dustiness of workplace

Most Medium Least

No Yes p No Yes p No Yes p

< 10 Yes M White 37 3 0.0750 74 0 0.0000 258 2 0.0076

Other 139 25 0.1420 88 0 0.0000 242 3 0.0122

F White 5 0 0.0000 93 1 0.0106 180 3 0.0164

Other 22 2 0.0833 145 2 0.0136 260 3 0.0114

No M White 16 0 0.0000 35 0 0.0000 134 0 0.0000

Other 75 6 0.0741 47 1 0.0208 122 1 0.0081

F White 4 0 0.0000 54 1 0.0182 169 2 0.0117

Other 24 1 0.0400 142 3 0.0207 301 4 0.0131

10–20 Yes M White 21 8 0.2758 50 1 0.0196 187 1 0.0053

Other 30 8 0.2105 5 0 0.0000 33 0 0.0000

F White 0 0 ?? 33 1 0.0294 94 2 0.0208

Other 0 0 ?? 4 0 0.0000 3 0 0.0000

No M White 8 2 0.2000 16 1 0.0588 58 0 0.0000

Other 9 1 0.1000 0 0 ?? 7 0 0.0000

F White 0 0 ?? 30 0 0.0000 90 1 0.0110

Other 0 0 ?? 4 0 0.0000 4 0 0.0000

≥ 20 Yes M White 77 31 0.2870 141 1 0.0070 495 12 0.0237

Other 31 10 0.2439 1 0 0.0000 45 0 0.0000

F White 1 0 0.0000 91 3 0.0319 176 3 0.0167

Other 1 0 0.0000 0 0 ?? 2 0 0.0000

No M White 47 5 0.0962 39 0 0.0000 182 3 0.0162

Other 15 3 0.1667 1 0 0.0000 23 0 0.0000

F White 2 0 0.0000 187 3 0.0158 340 2 0.0058

Other 0 0 ?? 2 0 0.0000 3 0 0.0000

From an epidemiological point of view, it is reassuring that in this analysis the
order of pairs that include the dependent variable byssinosis is dust, length of employ-
ment, smoking, gender and race. This order appears more plausible for a lung disease
than Higgins and Koch’s (1977) order: dust, gender, smoking, length of employment
and race.

But the largest value of �ζ occurs for the uncoupling of race and length of
employment; the much higher turnover of non-white employees is responsible for
almost half of the terseness ζ = 0.0984 of the whole table.

Table5 shows this difference of turnover to have the effect that the clear increase
of byssinosis with length of employment (and therefore exposure) seen within race,
especially within other race, is reduced when race is summed out. This confounding
has not affected the �ζ , however, they are immune.

Here, the collapsing of the table by summing out racewas not yet an error produc-
ing a reversal of trend as in Simpson’s paradox, but it is an error that led Higgins and
Koch to underestimate the effect of length of employment on developing a byssinosis;
the confounding was just not extreme enough to produce a rather rare Simpson’s
paradox.
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Table 4 Byssinosis: terseness when uncoupling pairs of variables

Terseness of the full table ζ = 0.0984

�ζ % Loss Pair of uncoupled variables

0.0486 49 Race, length of employment

0.0137 14 Gender, dust

0.0102 10 Gender, smoker

0.0066 7 Race, dust

0.0060 6 Gender, length of employment

0.0057 6 Byssinosis, dust
0.0027 3 Smoking, length of employment

0.0027 3 Dust, length of employment

0.0026 3 Race, gender

0.0009 1 Byssinosis, length of employment

0.0008 1 Smoker, dust

0.0006 1 Byssinosis, smoker

0.0006 1 Race, smoker

0.0005 1 Byssinosis, gender
0.0003 0 Byssinosis, race

Table 5 Percentage of byssinosis: within race versus total

Years employed White Other Total

< 10 1.1 3.1 2.3

10 to 19 2.8 8.3 3.7

≥ 20 3.4 9.5 3.8

For the analysis with �ζ , the overwhelming size of race and employment is just
an effect to recognise, but we need not fear its confounding influence on the �ζ of
byssinosis and dust. If you continue to analyse with accepted procedures like logistic
regression, you might use the analysis to guide you to appropriate steps to counter
the confounding.

5 Conclusion

This is a short first presentation of amethod of analysis of entropy that can provide an
alternative to procedures like ANOVA, regression analysis and log-linear modelling.
The method promises, first of all, relief from the perennial problem of confounding,
as it is free from the practice of estimating effects from marginal sums.
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It needs no distinction between methods for binary and multi-category variables;
there is also no need to correct by dividing by degrees of freedom for multi-category
variables.

It contains only straightforward calculation and so needs no lengthy iterations to
arrive at a solution.

It is robust against sparse tables; there is no need to add a bothersome and slightly
falsifying “correction” like adding 0.5 to every cell frequency.

In its simplicity and easiness, the analysis can be used by, e.g., an epidemiologist
with limited statistical training when confronted with a study involving a larger
number of variables. Yes, using traditional methods, he or she might get help from a
statistician who can identify confounding variables by running a number of restricted
logistic regression models, yet the proposed simple “analysis of entropy” could give
this epidemiologist some autarchy.

6 Closing Remarks

The method is clearly oriented to �ζ as the effect size, not statistical significance. I
am not alone in rejecting significance as the criterion for model building.

Significance is important, however, it tells me if I can be confident that an effect
can be expected to return in a repetition of my study or if it is more likely to have
occurred by chance. Studying the significance of �ζ needs a standard error for
which I, being a psychologist with exhaustive data analysis experience and not a
mathematical statistician, am unable to derive a formula. So I rely on bootstrapping
to obtain standard errors, and bootstrapping rewards me with the additional freedom
to adapt the bootstrap sampling to clustered or other non-srs samples.

The simplicity of uncoupling allows me, using the same procedures, to try an
aimed search for confounders, such as looking for variables that both the dependent
variable and a further variable depend on, a standard definition of a confounder. In
my experience, the basic table of�ζ has already givenme the necessary information.

My program for the analysis (available on request) is written inMSVisual FoxPro.
It relies on simple SQL queries, not muchmore, so it should be translatable into other
languages that know SQL (for that purpose, the source code is also available).

7 A Reluctant Dedication

Dear Nishi, I am rather old (about your age) and tired. I tried to publish this, with
different accents, in good journals. The results were negative (“nothing new”) or
simply neutrally negative (“already too many papers”). A less renowned journal
published one such paper (Vorkauf, 2016), but it evoked only deafening silence.

So, in contributing this paper to your Festschrift after several futile attempts to
get an idea published, I am still certain to have an important point to make on the
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topic of Analysis of Categorical Data, even if it did not convince some editors. I feel
confident that you, as an editor, would have helped me find a more palatable way to
bring it to paper.
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Correcting for Context Effects in Ratings

Michel van de Velden and Ulf Böckenholt

1 Introduction

In surveys, respondents are frequently asked to indicate their opinions and prefer-
ences on rating scales. It is well known that the responses on rating scales can be
influenced by factors not related to the content of the items. In particular, when intro-
ducing the well-known range–frequency theory, Parducci (1963, 1965) and Parducci
andWedell (1986) showed in several experiments how the “rating context” can influ-
ence how respondents select the available categories for the ratings. For example,
exposing respondents to a “skewed” set of objects to be rated (e.g. a few small and
many large objects) affected systematically the ratings for subsequent objects, regard-
less of their underlying true values. These authors studied these contextual effects
utilising controlled distributions of the objects’ physical properties and showed that
ratings can be seen as a weighted average of a range and a frequency factor. The
range factor captures the objects’ physical dimension range, and the frequency part
captures how often each object is displayed.

Althoughmany studies are available demonstrating the effectiveness of the range–
frequency theory in accounting for contextually induced biases in observed ratings,
little work is available to de-bias the ratings for these contextual factors. In this
chapter, we show that the dual-scaling work on successive categories introduced in
Nishisato (1980) and Nishisato and Sheu (1984) provides the foundation for such a
de-biasing method. We also consider further extensions by Schoonees et al. (2015)
and Takagishi et al. (2019). Specifically, we study the extent to which the individual-
specific correction methods introduced in Takagishi et al. (2019) can be used to de-
bias observed ratings that have been subject to range and frequency manipulations.
We examine the performance of the correction methods using simulation studies that
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mimic previous settings of experimental studies on range–frequency theory and show
that it can be used effectively to control for range and frequency effects in ratings.

In the following parts of this paper, we first review briefly the range–frequency
theory (Parducci 1963, 1965), and we present the key features of the proposed bias
correction for contextual effects. In a simulation study, we investigate the perfor-
mance of the proposed approach and show that it can reduce effectively rating biases
introduced by contextual variations.

2 Range–Frequency Theory

According to range–frequency theory, the rating of an object is affected by the distri-
bution of other objects to be rated. In particular, the observed ratings are a compromise
between range and frequency effects: The range effects amounts to distributing the
ratings over the range of the objects to be rated, whereas the frequency effect con-
cerns the tendency to evenly distribute ratings over the available rating categories.
Category ratings according to the range–frequency model are a weighted average of
their range and frequency values. We can formalise these concepts as follows. Let:

R(c)
i j = xi j − x (c)

min

x (c)
max − x (c)

min

(1)

denote the range value of individual i for object j in context c. Here xi j denotes
individual i’s rating of object j , x (c)

min and x (c)
max denote, respectively, the lowest and

highest ratings of all objects in context c. Hence, the range value normalises the
ratings with respect to the range of the items in a context. On the other hand, the
frequency value F (c)

i j of individual i for object j in context c is defined as:

F (c)
i j = f (c)

i j − 1

Nc − 1
, (2)

where f (c)
i j is the rank (with 1 indicating the lowest ranked item) of item j in context

c and Nc is the number of items in context c. According to range–frequency theory,
an individual’s rating value is a weighted sum of these range and frequency values.
In particular, rating y(c)

i j , of an individual i , for item j in context c is:

y(c)
i j = αc R(c)

i j + (
1 − αc

)
F (c)
i j , (3)

where α ∈ (0, 1).
Figure1 provides ten illustrations of object distributions on a seven point rating

scale, that have been considered in range–frequency studies. For example, respon-
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dents who are exposed to an object distributionwithmostly “large” objects as in Con-
text 5 tend to adjust their ratings to discriminate more among “large” than “small”
objects.

3 Contextual Bias Correction

Based on the dual-scaling work on successive categories of Nishisato (1980) and
Nishisato and Sheu (1984), Takagishi et al. (2019) proposed a method that corrects
for response styles in rating data exhibited by different subgroups of the raters.
Response styles are defined as scale usage that is independent of item content. For
example, some respondents may tend to use only the extremes of the category rating
scales (extreme responding), or, respondents may tend to use predominantly the
middle of the scale (midpoint scaling) or only use the lower (nay-saying) or upper
(yea-saying) parts of rating scales.

Rather than considering group-specific response tendencies, we implement a sim-
plified version of the scaling method proposed by Takagishi et al. (2019) to obtain
and correct for individual-specific response tendencies that could arise due to range–
frequency theory. In the following, we refer to this approach as contextual bias
correction (CBC).

A crucial step in CBC is the transformation of the observed rating data to succes-
sive categories data as described in Nishisato (1980) and Nishisato and Sheu (1984).
That is, in addition to the rated items, we add “thresholds” that define the differences
between ratings. Thus, for a r point rating scale, r − 1 thresholds are considered.
The thresholds capture the transitions from rating “1 to 2”, “2 to 3” up to “r − 1 to
r”. Next, item ratings and thresholds are jointly ranked, by sorting them from small
to large. For ties, the average rank is assigned.

As an example, consider three items, A, B and C that are rated on a 5-point
rating scale as 1, 4 and 5, respectively. For a 5-point rating scale, we get 4 thresh-
olds, say τ1, . . . , τ4. Jointly sorting the three item ratings and r − 1 thresholds
results in the sequence: A < τ1 < τ2 < τ3 < B < τ4 < C . By assigning zero to the
lowest ranked item or threshold, we can code this as:

A B C τ1 τ2 τ3 τ4
0 4 6 1 2 3 5

In CBC, the normalised threshold values (i.e., for the example above, the last four
columns) are approximated using I-spline basis functions. That is, let fi j denote the
rank-ordered threshold values divided by the number of items and thresholds for
individual i . Then, for i = 1, . . . , n and j = 1, . . . , r − 1:

fi j ≈ φCBC
i

(
j

r

)
,
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where

φCBC
i (x) =

3∑

s=1

βisMs (x) ,

and
3∑

s=1

βis = 1, βis ≥ 0 (s = 1, 2, 3) .

Here, the first three I-spline basis functions are:

M1(x) =
{

2t(x−L)−(x2−L2)
(t−L)2

(L ≤ x < t)

0 (t ≤ x ≤ U )

M2 (x) =
{

(x−L)2

(t−L)(U−L)
(L ≤ x < t)

(t−L)

(U−L)
+ 2U (x−L)−(x2−t2)

(U−t)(U−L)
(t ≤ x ≤ U )

(4)

M3 (x) =
{
0 (L ≤ x < t)
(x−t)2

(U−t)2
(t ≤ x ≤ U )

and x ∈ [L , U ], t = L + 0.5 (U − L). See, for example, Ramsay (1988) for more
details on these I-splines. For convenience, and without loss of generality, we use
L = 0 and U = 1. Nonnegative conditions, βis ≥ 0 (s = 1, 2, 3), are required for
φi to be a monotone-increasing function.

The individual-specific smoothing functions φi can be seen as estimates of
individual-specific and context-related scale usage. Moreover, the functions can be
used to estimate threshold values and derive “corrected” rating data. For more details
on the model and its estimation, see Takagishi et al. (2019).

In Takagishi et al. (2019), the estimation of the response functions is combined
with a cluster analysis to detect groups of individuals exhibiting a similar response
behaviour. Here, rather than assuming cluster-specific preferences or response pat-
terns, we assess whether themethod can be used to identify and correct for contextual
effects. We investigate the performance of this approach using a simulation study.

4 Simulation Study

We conduct several simulation studies to examine if it possible to correct for range–
frequency response effects. For this purpose, we generate individual-specific con-
tinuous preferences for a set of items. These continuous preferences are discretised
to map onto the rating scale by using the individual-specific “threshold” values.
We consider different spacings of the threshold values to induce various contextual
response effects. The frequency effect is induced by considering different spacings
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of the thresholds over a fixed interval. For example, increasing the intervals between
the thresholds (i.e. the lower threshold are closer to each other than the higher ones)
mimics discrimination at the lower end of the preference continuum. In the range–
frequency framework, this corresponds to a scenario where individuals are asked to
rate a set of items where most items are “small” and only a few items are “large”.

For our simulation, we draw individual-specific threshold values from 10 differ-
ent distributions, each corresponding to a different “context”. We also consider an
11’th case where all 10 contexts are equally often present in a data set. In addition,
range effects are incorporated by using the range of individual-specific preferences
to translate the threshold values to a scale compatible with the underlying prefer-
ences. For the 10 context and the 11’th multi-context cases, we map the underlying
preferences onto the rating scale. Finally, we apply CBC to the resulting rating data
and assess how well CBC is able to recover the underlying preferences.

4.1 Study Design

In our simulation studies, we first generate the underlying true population prefer-
ences. We then add individual specific effects by drawing from a normal distribution
to obtain the “true” underlying preferences. Finally, these underlying preferences are
mapped onto the rating scale by considering context and individual-specific threshold
values. Thus, our data-generating process follows these four steps:

1. Generate underlying preference values:
Generate a p-dimensional mean preference vectorµ by drawing from p indepen-
dent standard normal distributions.

2. Add individual-specific effects:
For each individual, add random noise εi , from a N (0, σ ) distribution, to all
elements of themean preference vectorµ to obtain individual specific preferences
mi = µ + εi1, where 1 denotes a p-dimensional vector of ones.

3. Generate individual- and context-specific threshold values:
For each context draw r − 1 thresholds from a uniform distribution, where r
indicates the largest rating. The intervals that we draw the r − 1 thresholds from,
and hence their spacing, depend on the contextual specification. In Table1, the
intervals for a 7-point rating scale, for the 10 considered contexts, are given. In
this table, the columns represent the threshold positions and the entries the [r ,
r + 1] pairs. For example, for Context 2, the first threshold is drawn from the
interval [0, 1/6], the second threshold from the interval [1/6, 1/3], etc. Note that
when intervals are overlapping—as, for example, in the case of Context 1—the
threshold values are drawn simultaneously and then ordered. Thus, for Context
10, we draw 6 threshold values from the interval [1/6, 1/3] and then order them
to reflect their different positions on the underlying preference continuum.
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Table 1 Threshold intervals for considered contexts for a 7-point rating scale. Contexts in rows,
threshold intervals in columns

Context τ1 τ2 τ3 τ4 τ5 τ6

1 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
2

[
0, 1

6

] [ 1
6 , 1

3

] [ 1
3 , 1

2

] [ 1
2 , 2

3

] [
2
3 , 5

6

] [
5
6 , 1

]

3
[
0, 1

6

] [ 1
6 , 1

3

] [ 1
12 , 11

12

] [ 1
12 , 11

12

] [
2
3 , 5

6

] [
5
6 , 1

]

4
[ 1
3 , 2

3

] [ 1
3 , 2

3

] [ 1
3 , 2

3

] [ 1
3 , 2

3

] [ 1
3 , 2

3

] [ 1
3 , 2

3

]

5
[
0, 1

6

] [ 1
12 , 1

4

] [ 1
6 , 1

3

] [
1
4 , 5

12

] [ 1
3 , 1

2

] [
5
12 , 2

3

]

6
[ 1
3 , 7

12

] [ 1
2 , 2

3

] [ 7
12 , 3

4

] [
2
3 , 5

6

] [ 3
4 , 11

12

] [
5
6 , 1

]

7
[
0, 1

4

] [
0, 1

4

] [
0, 1

4

] [ 1
12 , 1

4

] [ 1
12 , 1

2

] [ 1
12 , 1

]

8
[
0, 11

12

] [ 1
2 , 11

12

] [ 1
2 , 11

12

] [ 3
4 , 1

] [ 3
4 , 1

] [ 3
4 , 1

]

9
[
0, 1

3

] [
0, 1

3

] [
0, 1

3

] [
0, 1

3

] [
0, 1

3

] [
0, 1

3

]

10
[ 2
3 , 1

] [ 2
3 , 1

] [ 2
3 , 1

] [ 2
3 , 1

] [ 2
3 , 1

] [ 2
3 , 1

]

For the multi-context case, we randomly select one of the 10 contexts for each
observation so that, on average, data sets are comprised of an equal number of
observations for each of the 10 single-context scenarios.

4. Transform the thresholds to a scale commensurable with the observed preference
scale:
Since the individual-specific thresholds generated in the previous step are between
0 and 1, we multiply them by the range of an individual’s preferences (mi) and
subtract the smallest preference in absolute value. We then apply an inflation
factor to the resulting thresholds so that the smallest and highest preferences do
not automatically receive the smallest and highest ratings.

5. Transform the preferences to discrete ratings:
Using the thresholds, we map the preferences onto the discrete rating scale. This
yields, for each context, a matrix of observed ratings

There are several factors that we control for in our set-up. In particular:

• The number of observations. We consider two cases: n = 50 and n = 200.
• The number of items.We consider three cases: p = 10, p = 20 and p = 50 items.
• The size of individual-specific effects, controlled through σ in step 2. We con-
sider three cases: σ = 0, σ = 2/r and σ = 1, corresponding, respectively, to no,
medium and high individual effects.

The resulting design leads to 2 × 3 × 3 = 12 matrices of underlying preferences
each with 11 (the number of contexts and the multi-context case) corresponding sets
of observed ratings. We consider 100 replications for each setting.
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4.2 Measures

Our simulation framework allows us to generate rating data sets where the observed
ratings are biased due to contextual effects. This makes it possible to study how
contexts affect observed ratings, and how this impacts the recovery of the underlying
preferences. Moreover, by applying CBC to the simulated data sets, we are able
to study the effects of the dual-scaling bias-correction method. In particular, we
consider whether and under which circumstances the correction method results in a
better recovery of the underlying preferences.

To appraise the results of the correction method, we calculate for each vector of
simulated ratings:

• R2
o : The squared correlation between observed ratings and underlying preferences.

• R2
c : The squared correlation between CBC corrected ratings and underlying pref-

erences.
• MADc: The mean (over the items) of the absolute differences between the CBC
corrected ratings and the normalised underlying preferences.

• MADo: The mean (over the items) of the absolute differences between the nor-
malised observed ratings and the normalised underlying preferences.

For each of the 100 generated data set, we collect the means of the above measures.

4.3 Results

Note that in Fig. 1, the distributions for contexts 1, 2 and 3 are similar. There are,
however, important differences between them. For context 1, all thresholds are drawn
from uniform [0,1] distributions. For context 2, the thresholds are selected from
equispaced intervals corresponding to the number of thresholds. For context 3, the
middle two thresholds are drawn from wider intervals, whereas the lowest and high-
est thresholds are equivalent to those in context 2. The differences between these
three contexts are primarily related to the variance of the threshold distributions. In
particular, in context 2, there is very little variation in the threshold distributions and
true preferences are mapped onto an equal-spaced rating scale. On average, these
three contexts all lead to equispaced threshold distributions, however, as the under-
lying preferences are generated using normal distributions, they result in bell-shaped
frequency distributions of the observed ratings.

To appraise the performance of the CBC analysis, we consider the measures
described in Sect. 4.2. In particular, for each combination of the factors that are
varied in the simulation study, we calculate, for each generated data set, the mean
values for the measures described in Sect. 4.2. Boxplots of the results of the 100
replications can be found in Figs. 2, 3, 4 and 5.
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Fig. 1 Histograms of observed ratings per context
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Fig. 2 Mean differences in squared correlations with underlying preferences for n = 50: R2
c − R2
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where ‘c’ and ‘o’ refer to ‘corrected’ and ‘observed’ respectively
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Fig. 3 Mean differences in squared correlations with underlying preferences for n = 200: R2
c − R2
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where ‘c’ and ‘o’ refer to ‘corrected’ and ‘observed’ respectively
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Fig. 4 Mean differences between mean absolute deviations (normalised) observed and corrected
ratings for n = 50: MADo − MADc
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Fig. 5 Mean differences between mean absolute deviations (normalised) observed and corrected
ratings for n = 200: MADo − MADc

The results across conditions paint a rather consistent picture concerning the
effectiveness of the CBC corrections. In particular, with the exception of context 2
(equispaced threshold distribution), the correction leads to an improved relationship
with the underlying preferences. Furthermore, the performance improves with an
increasing number of items and seems to be more effective for the skewed contexts.
We also note that the CBC method is beneficial in the multi-context case when all
10 contexts are considered.

For the scenario with 200 observations, 20 items and medium individual effects,
Figs. 6 and 7 depict how the mean absolute differences between the observed ratings
and the underlying preferences (left panels) and the CBC-corrected ratings and the
underlying preferences (right panels) are related to the underlying preferences. We
note the strong and systematic differences between the observed ratings andgenerated
preferences. These differences are much reduced and less systematic for the CBC-
corrected ratings demonstrating the usefulness of the CBC methodology. However,
we stress that the CBC correction does not fully account for all of the contextual
effects. This is especially so for scenarios with extreme skewness, where the CBC
approach does not fully correct for these contextual effects.
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Fig. 6 Observed and corrected ratings against underlying preferences for contexts 1 (top) to 5
(bottom). The plots in the left panels depict the mean absolute differences with normalised observed
ratings. The plots in the right panels show the mean absolute differences with the CBC corrected
ratings
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Fig. 7 Observed and corrected ratings against underlying preferences for contexts 6 (top) to 10
(bottom): the plots in the left panels depict the mean absolute differences with normalised observed
ratings. The plots in the right panels show the mean absolute differences with the CBC corrected
ratings
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5 Conclusion

This paper studied whether the impact of contextual effects introduced by the range–
frequencymechanism can be overcome by recent extensions of the dual-scalingwork
on successive categories of Nishisato (1980) and Nishisato and Sheu (1984). Using
the approach of Schoonees et al. (2015) and Takagishi et al. (2019), we presented the
results of several simulation studies that demonstrated that it is possible to recover
the underlying preferences that gave rise to the ratings even when ratings are elicited
from respondents who are exposed to different contexts. This is an important finding
because it shows that CBC can improve the comparability of ratings from different
respondents when rating differences across individuals are caused by contextual
variations.

Importantly, we could demonstrate the superiority of the CBC in the case of a sin-
gle contextual distribution and in the more realistic scenario of multiple contextual
distributions. Thus, even when each individual is exposed to different item distribu-
tions, the observed ratings can be corrected for these item distribution differences.
These corrections can prove to be useful in subsequent analyses of the ratings. Such
item statistics as mean item differences or item correlations may be estimated more
accurately when rating data are corrected for contextual influences.
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Old and New Perspectives on Optimal
Scaling

Hervé Abdi, Agostino Di Ciaccio, and Gilbert Saporta

1 Introduction

Qualitative variables are ubiquitous in many fields, but genetic and human sciences
(especially psychology) have been some of the first disciplines to routinely incorpo-
rate qualitative variables in their practice. This importance of qualitative variables
prompted the psychologist Stevens (1946) to create the now classic typology of mea-
surement scales. In this typology, qualitative (also called categorical) variables come
in two varieties:

• Nominal variables, so called because the modalities—also named levels or
categories—of a nominal variable are “names.” Formally, a nominal variable cor-
responds to a partition of a set.

• Ordinal variables (a nominal variable whose modalities are ordered); formally, an
ordinal variable corresponds to a pre-order on a set.

Because most multivariate statistical methods are designed for quantitative vari-
ables (in Stevens’s typology: interval and ratio scales), an obvious problem is to
optimally transform a qualitative variable into a quantitative variable. This problem
being relevant for several disciplines, similar procedures to solve it were indepen-
dently developed multiple times and therefore come under different names with
scaling, quantification, coding and encoding being favourites. So, a nominal or ordi-
nal variable is quantified, (en)coded, or scaled when its modalities are replaced by
numbers having at least the properties of an interval scale.
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Note that the terms coding and encoding are ambiguous because they can refer
either to the transformation of a qualitative variable into a numerical variable (quan-
tification) or to a way of representing a qualitative variable such as, for example,
disjunctive coding.

The problem of transforming qualitative variables into quantitative variables has
a long history. In statistics, its history goes back to the early contributions of major
figures such as Hirschfeld (1935), Horst (1935), who coined the named “reciprocal
averaging”, Fisher (1940) and Hayashi (1950). In psychology (and of course psycho-
metrics) early contributions of other major figures include Guttman (1941, 1944),
Festinger (1947) and even Coombs (1964) in his classic work a Theory of Data,
see also Coombs (1948). The statisticians were mostly interested in maximising the
(squared) correlation between sets of variables; but the psychologists (influenced by
factor analytic models) were concerned about scaling (i.e. estimating a quantitative
latent variable or factor from qualitative measurements). Themaximisation approach
of the statisticians would lead to (simple) correspondence analysis, whereas the fac-
torial approach of the psychologists would lead tomultiple correspondence analysis;
see, for details, the historical review of Lebart and Saporta (2014).

This early work matured in the 1970s and early 1980s, which were the years of
the search for optimal codes (called factor scores or scaling scores) in supervised or
unsupervised contexts, an endeavour where researchers such as de Leeuw (1973),
Nishisato (1980), Takane (1980), Tenenhaus (1988) and Young (1976, 1978, 1981),
see also Tenenhaus and Young (1985) distinguished themselves. This research was
then implemented by commercial software with procedures such as PRINQUAL and
TRANSREG for SAS, or CATEGORIES for SPSS.

In the next 30 years or so, after this first foray in the theory of optimal scaling,
the topic did not generate much research: routine applications involved computing
predictive scores, such as risk scores in banking and insurance. However, recent
interest in the scaling problem was reignited by the availability of massive data sets.
Nowadays, machine learning researchers and practitioners need to handle categor-
ical data (which are ill-suited for most machine learning algorithms such as neural
networks) that often have large numbers of modalities (e.g. from dozens or even
hundreds of modalities, such as postal codes; for details, see, for example, Hancock
and Khoshgoftaar 2020).

This new interest in qualitative data stimulated the development of several coding
methods—mostly developed in the ignorance of the early work of statisticians and
psychometricians. As an illustration of this trend, Di Ciaccio (2023) recently reported
that the popular Python package scikit-learn offers 17 different methods that
he categorised into three groups:

• methods where the encoding of a variable does not depend on the other variables,
in particular the response (e.g. hash encoding),

• methodswhere the encoding only depends on the response (e.g. conditionalmean),
and

• One-Hot Encoding (OHE), which is nothing more than the usual disjunctive rep-
resentation with as many indicators as modalities; see Eq. (2).



Old and New Perspectives on Optimal Scaling 133

The large size of certain categorical data sets raises problems of stability and
over-fitting, problems that were neglected in classical statistical applications where
the number of modalities was typically small and the learning-testing methodology
rarely used. Because of their different view points, the confrontation of the early
approach of the statisticians and psychometricians with the newer approach from
data scientists could foster a renewal of coding methods for qualitative data; for
details, see Meulman et al. (2019).

The rest of the chapter is organised as follows: Sects. 2 and 3 are devoted to nota-
tions and to the mathematical structures of quantifications. Section4 describes early
works from 1935 till the 1960s. Section5 is devoted to the “golden seventies” dom-
inated by optimal scaling (performed with alternating least squares) and Nishisato’s
dual scaling. Section6 describes how machine learning has taken over the problem
of encoding, with its connection to multivariate statistics and how this can foster a
re-interpretation of correspondence analysis from a nonlinear point of view.

2 Matrix Representation of Categorical Encoding
and Notations

When dealingwith I observations, it is often practical to represent a nominal variable
as a binary group matrix (called a complete disjunctive coding matrix) denoted by
X whose rows are observations and whose columns represent the modalities of the
nominal variable.1

For example, consider a sample with I = 5 observations, denoted {S1, . . . , S5},
and a nominal scale with J = 3 modalities: {1, 2, 3} that could be, for example,
{disagree, neutral, agree}, with the following answers for these five observations:

X = [1, 2, 3, 1, 2]T , (1)

then the group matrix would be equal to:

X =

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

S1 1 0 0
S2 0 1 0
S3 0 0 1
S4 1 0 0
S5 0 1 0

= [
11, 12, 13

]
(2)

where, for example, 11 = [1, 0, 0, 1, 0]T is the indicator variable for the first cate-
gory.

1 As noted above, and developed later on, this is a procedure rediscovered inmachine learning under
the name of one hot encoding.
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In this chapter, the following notations are used:

• I is the number of units/observations {1, 2, . . . , i, . . . , I },
• X is a nominal variable, namely a sequence of I modalities,
• x is a quantification of X (i.e. a real vector of length I ),
• K is the number of nominal variables,
• J is the number of modalities of a variable, {1, 2, . . . , j, . . . , J },
• Jk is the number of modalities of the kth variable (when K > 1),
• X is the disjunctive matrix (of dimensions I × J ) for variable X ,
• L is the dimension of a vector space {1, 2, . . . , �, . . . , L},
• ak is the single category quantification of variable k (i.e. a real vector of length

Jk),
• Ak is the category quantification array on L dimensions (of dimensions Jk × L),
• qk is the vector of a single quantified variable k, (a real vector of Length I ),
• Qk is the quantified array of variable Xk (of dimensions I × L) for L dimensions.

3 The Structure of Quantifications

Quantifying or encoding a categorical variable can be written using simple transfor-
mations that we explicitly define in the following sections.

3.1 Categorical Encoding

Let X be a nominal variable with J unordered modalities {1, . . . , j, . . . , J } and x
a quantification of X using at most J distinct values

{
a1, . . . , a j , . . . , aJ

}
. Then,

if 1 j denotes the indicator variable of the j th category, we have:

x =
J∑

j=1

a j1 j . (3)

Quantifying X boils down to defining a linear combination (with theweights a j called
the code or scale values) of the indicator variables. When there is no constraint on
the a j weights, the set of possible quantifications x is a vector subspace W with
dimension J .

Because:
J∑

j=1

1 j = 1, (4)
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(with 1 begin a commensurable vector of 1’s) the set � of constant variables (which
is a one-dimensional subspace) is included intoW . If x is required to have zeromean,
then:

x ∈ {
�⊥ ∩ W}

. (5)

Note that the encoding from (3) is redundant because the value of any 1 j variable
can be deduced from the values of the other (J − 1) variables. Another possibility
could be to use only J − 1 indicator variables as done, for example, with the dummy
coding scheme used in the general linear model and logistic regression. We will not
use this coding scheme here so that all modalities play the same role.

3.2 Ordinal Encoding

If there is a natural order between the modalities (i.e. a pre-order on the set of
responses), it is natural to require that:

a1 ≤ a2 ≤ · · · ≤ aJ .

Let us consider the following reparamaterisation:

a1 = b1, a2 = b1 + b2, . . . , aJ = b1 + · · · + b j + · · · + bJ with

{
b1 ∈ R

b2, . . . , bJ ≥ 0;
(6)

then

x =
J∑

j=1

a j1 j

= b111 + (b1 + b2)12 + · · · + (b1 + b2, . . . )1J

= b1 (11 + 12 + · · · + 1J ) + b2(12 + · · · + 1J ) + · · · + bJ1J

= b1 + b2 (12 + · · · + 1J ) + · · · + bJ1J

= b1 +
J∑

j=2

b jz j (7)

where

z j =
J∑

�= j

1� . (8)

The variable x is thus a linear combination of J − 1 variables with non-negative
coefficients, which is the definition of a convex polyhedral cone (see, for example,



136 H. Abdi et al.

Tenenhaus 1988), plus one unconstrained constant term. In other words, x belongs
to the direct sum of � and a (J − 1) convex polyhedral cone, CJ−1, and so:

x ∈ {� ⊕ CJ−1} . (9)

Note: if we also require that x has zero mean, the constant b1 will be negative.

3.3 Two Simple Optimal Scaling Problems

Let Y be a numerical response variable. What is the optimal way to quantify a
qualitative variable X in order to best predict Y in the least-squares sense?

If X is categorical, the solution2 is given by the projection of Y onto the subspace
W spanned by the set of the indicator variables 1 j . In other words, the optimal
solution is obtained by performing a multiple regression without the intercept of Y
onto the set of the 1 j . Because the 1 j are orthogonal, the solution is easily found:
The optimal scores {a j } are the conditional means for each modality ȳ j .

If X is ordinal, the solution is less straightforward because we have to project
Y onto a polyhedral cone instead of a vector subspace. However, because the cone
is convex (cf. (8)), the solution is unique and boils down to computing a multiple
regression:

Ŷ = b1 +
J∑

j=2

b jz j , (10)

with positivity constraints for the b j coefficients for j > 1; see (7). The solution of
this constrained optimisation problem can be found using some efficient numerical
methods such as the pool adjacent violators algorithm; see, for example, Kruskal
(1964), Tenenhaus (1988) and de Leeuw et al. (2009).

3.4 Crisp Coding, Fuzzy Coding, Spline Coding

Transforming a numerical variable into a qualitative variable by splitting it into
classes, and then recoding this variable according to the previously mentioned prin-
ciples, is a low cost way of nonlinearly transforming a numerical variable.

Coding with (3)—called here crisp-coding—has the disadvantage of introducing
discontinuities that can loose some information from the original variable. To allevi-
ate this problem, various kinds of fuzzy encodings can be used—a procedure equiv-
alent to defining membership functions for neighbouring intervals. Crisp-coding and
piecewise-linear encoding (which is a form of fuzzy coding) are particular cases of

2 Called target encoding in machine learning.
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Fig. 1 Basis spline functions of degrees 0 and 1

Fig. 2 Trapezoidal encoding (from Gallego 1982)

linear combinations of spline functions as illustrated in Fig. 1 that shows examples of
splines of, respectively, degrees 0 and 1 associated to (discontinuous) crisp-coding
and piecewise continuous linear transformations.

An additional example of spline function is suggested by Ramsay (1988) who
advocates the use of monotonous spline functions. Gallego (1982), who also consid-
ers fuzzy coding, uses trapezoidal encodings as illustrated in Fig. 2.

4 Early Works

Quantifying a qualitative variable on its own makes little sense if it is not linked
to a goal, such as explaining another variable. Statisticians were concerned very
early on with the search for nonarbitrary quantifications by seeking to optimise
specific criteria (which were, most of the time, expressed as maximising squared
scalar products such as correlations). The early works were naturally concerned with
the case of two categorical variables and their associated contingency table.
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4.1 The Case of Bivariate Distributions

Hirschfeld (1935, p. 520)—better known under his American identity of Hartley—is
apparently the first researcher to ask the following question (and to answer it):

It is well known that the correlation theory for such a distribution gives much better results if
both regressions are linear […]. Given a discontinuous distribution pvq , is it always possible
to introduce […] new values for the variates xv , yq , such that both regressions are linear?

Later on (and without reference to Hirschfeld), as summarised by Lancaster (1957,
pp. 289–290):

In 1940, Fisher considered contingency tables from the point of viewof discriminant analysis.
Suppose that ‘scores,’ i.e. arbitrary variate values, are assigned to the rows and also to the
columns of a contingency table: what are the best scores to assign to the rows so that a linear
function of them will best differentiate the classes determined by the columns, and vice
versa. This turns out to be a problem in maximising the correlation between the scores and
the required correlations are those known as ‘canonical’ in the sense of Hotelling (1936).

Lancaster was referring to the algorithm described by Fisher (1940, p. 426), and
now considered as an early example of alternating least squares or dual scaling,
applied to the (now) famous table cross-tabulating the eye and hair colours of Scottish
schoolchildren (from the county of Caithness):

…starting with arbitrarily chosen scores for eye colour, determining from these average
scores for hair colour, and using these latter to find new scores for eye colour.

This “optimal coding” algorithm converges to the solution given by the coordinates
of the rows and columns along the first axis of the correspondence analysis of the
contingency table.

Maung (1941, p. 200)—who was interested in the higher order encodings corre-
sponding to the successive pairs of canonical variables—attributes to Fisher a formula
giving the value of each cell in the contingency table from the margins, the canonical
correlations and the successive codings. This formula—also called the RC canoni-
cal correlation model—is none other than the well-known reconstitution formula of
correspondence analysis.

Williams (1952) is also a notable reference about the development of significance
tests for canonical correlations.

Further details on the relationship between optimal scaling and correspondence
analysis are given in Saporta (1975), Nishisato (2006, Chap.3), Lebart and Saporta
(2014) and many others, including Hill (1974), and Beh and Lombardo (2014).

4.2 Lancaster’s Theorem

The search for optimal scores is unexpectedly related to the problem of transforming
a given probability distribution into a normal distribution. Lancaster (1957) showed
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that the (squared) correlation coefficient between the two components of a bivariate
normal vector cannot be increased regardless of the (nonlinear) transformations that
can be applied to them.

This result inspired the following comments to Kendall and Stuart (1961, pp.
568–569):

We may ask: What scores should be allotted to the categories in order to maximise the
correlation coefficient between the two variables? Surprisingly enough, it emerges that these
‘optimum’ scores are closely connected with the transformation of the frequencies in the
table to bivariate normal frequencies […]And the theoretical implication of the [Lancaster’s]
result is clear: if we seek separate scoring systems for the two categorised variables such as to
maximise their correlation, we are basically trying to produce a bivariate normal distribution
by operations upon the margins of the table.

4.3 Quantifying More Than Two Attributes: Guttman,
Hayashi

Guttman (1941), in a famous paper, referred to the method of reciprocal averaging
(as described by Horst 1935) and proposed to simultaneously quantify K categorical
variables in such a way that they are as similar as possible and that their means are as
dispersed as possible. The rationale behind this criterion was that such an approach
would be optimal when the K variables, collected in a multiple choice questionnaire,
measured more or less the same construct (as in a factor analysis model with only
one latent variable). When the total variance is fixed, this amounts to maximising the
measure of internal consistency as described below.

Let X = [X1| . . . |Xk | . . . |XK ] be the super-matrix of all K disjunctive matrices,
ak the category quantification vector of variable Xk , a the super-vector concatenating
all category quantifications, zk = Xkak the corresponding vector of object scores and:

z̄ = 1

K

K∑
k=1

zk = 1

K
Xa, (11)

the vector of average object scores.
Guttman (1941) showed that the scores, which maximise the variance of z̄ under

a scaling constraint for a, are given by the coordinates of the modalities of the K
variables along the first axis of what will later be called multiple correspondence
analysis (MCA). On this occasion, Guttman coined the term “chi-square metric”
now routinely associated with correspondence analysis.

Independently, Hayashi (1950) developed an approach similar to Guttman’s under
the name of Type III quantification. Three other types of quantification using (or not)
an external response variable were also developed by Hayashi. Tanaka (1979), and
Takeuchi et al. (1982, Chap.8) are useful references for the Japanese contributions.
A bit later Slater (1960) proposed a method to analyse personal preference data that
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represents these data in a multi-dimensional space where observations and stimuli
can be represented simultaneously and, as noted by Nishisato (1978, p. 263), his
approach was “essentially the same as Guttman’s, but the close relationship between
them was apparently left unnoticed.”

5 The Golden Seventies

The 1970s were a particularly fertile period for the development of optimal scaling
and the journal Psychometrika was the privileged venue for publishing on this topic
with no less than 145 articles appearing between 1968 and 1982 using the keywords
“Optimal Scaling” (799 using the same keywords without dates and 199 using only
the keywords “Dual Scaling”). It is therefore impossible to be exhaustive.

5.1 The Alternating Least Squares (ALS) Approach
for Optimal Scaling

In his 1981 Presidential Address to the Psychometric Society’s Spring Meeting,
Young (1981) returned at length to his work carried out in collaboration with, on one
hand de Leeuw and Takane and with, on the other hand, Tenenhaus. He reflected that
these collaborations constituted an important new stream because:

Optimal scaling is a data analysis technique which assigns numerical values to observation
categories in a way which maximises the relation between the observations and the data
analysis model while respecting themeasurement character of the data (Young 1981, p. 358).

A large number of algorithms were then developed using the alternating least squares
(ALS) approach, which consists in separating the parameters of the problem into two
sets:

1. the model parameters, and
2. the data parameters (the codings).

The optimisation then proceeds by obtaining the least squares estimates of the model
parameters while assuming that the data parameters are constant. One then switches
to the other set: obtaining the least squares estimates of the data parameters given
the model parameters and so on until convergence. Even though convergence to a
local optimum is guaranteed, convergence to a global optimum is not guaranteed
because convergence depends upon the initial values (i.e. there are multiple local
optima where the search could converge). Note that the ALS approach can also be
applied to regression or predictive type problems which are now called supervised
approaches, whereas the pioneers were not particularly interested in these methods.

MORALS-type algorithms (Young et al. 1976) make it possible to carry out mul-
tiple regressions by transforming both a response Y and the predictors X1, . . ., Xk ,
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. . . , XK with monotonic or nonmonotonic optimal transformations according to the
nature of the variables by using successions of projections on vector subspaces or
cones. Denoting by ψ and ϕ1, …, ϕK the transformations of the original variables,
the optimisation problem is the following:

max
ψ,ϕ1,ϕ2,...,ϕK

R2 [ψ (Y ) ; ϕ1 (X1) , ϕ2 (X2) , . . . , ϕK (XK )] . (12)

Transformed variables are usually constrained to be standardised in order to avoid
degeneracy.

The PRINQUAL (Bouroche et al. 1977) and PRINCALS (Young et al. 1978)
algorithms implement a principal component analysis of K coded qualitative vari-
ables while respecting the nominal or ordinal nature of these variables. However, the
optimality criterion is not as obvious as is the maximisation of the (squared) multiple
correlation inmultiple regression, because this is an unsupervised problem. Themost
commonly used criterion maximises the percentage of variance explained by the first
L principal components C1, . . . , CL ; the default value is L = 2 in the PRINQUAL
procedure of SAS because two-dimensional displays are the ones most frequently
used. Formally, the maximisation problem can be expressed as the solution of:

max
ϕ1,ϕ2,...,ϕk
C1,...,CL

K∑
k=1

L∑
�=1

r2 (ϕk (Xk) , C�) . (13)

Note that if L = 1, the solution for K nominal variables is identical to the solution
provided by the first dimension of multiple correspondence analysis, (i.e. this is
the solution of the problem from Guttman 1941). However, there is a fundamental
difference between the algorithms of the PRINQUAL-type—which look for unique
codings of the categorical variables—and the algorithms of the MCA and HOMALS
types—which look for as many codings as the number of dimensions of the data; for
more, see Tenenhaus and Young (1985) Gifi (1990).

In the late 1980s, vanBuuren andHeiser (1989) developedGROUPALS, amethod
for optimising simultaneously a clustering of units and quantifications of categorical
variables, which was taken up almost 30years later by van de Velden et al. (2017)
for their development of cluster correspondence analysis.

5.2 Dual Scaling: Nishisato’s Synthesis

In the 1970s Nishisato (originally a psychologist, later turned into a psychometri-
cian) revisits the problem of the quantification of qualitative variables (both nominal
or ordinal) and integrates the two quantification traditions (i.e. statistics and psy-
chometrics). Faced with so many names for equivalent methods, Nishisato preferred
the appellation of dual scaling. In his early book, Nishisato (1980) presents an early
synthesis of these two branches in the first chapter dedicated to the history of the
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“scaling” problem for qualitative variables—a review that remains one of the best
sources for its origins and early efforts but that also often suggests future develop-
ments. Nishisato anchors dual scaling in the early psychometric approach of Horst
(1935) and Guttman (1941), but also integrates Maung’s (1941) and Fisher’s contri-
butions; that is, his “additive scoring” (Fisher 1940). Nishisato describes dual scaling
as amaximisation problem as previously defined by Bock (1960) as an approach that:

assign[s] numerical values to alternatives, or categories, so as to discriminate optimally
among the objects (Bock 1960, p. 1).

From this definition, Nishisato generalised and adapted the dual scalingmethodology
to a wider set of data types whose extension can only be compared to the, then,
contemporary, French developments. For the specific problem of quantifying a set
of nominal variables, Nishisato uses the super matrix approach described in (11) and
derives from there the equations and properties of multiple correspondence analysis.

5.3 A Success Story: Credit Scoring

Credit scoring techniques are used to check if a loan applicant is worthy of credit.
Using historical data on whether or not debtors have correctly repaid their instal-
ments, the problem reduces for numerical predictors to an application of a supervised
classification method such as discriminant analysis or logistic regression.

However, for individual applicants,most of the predictors are categorical variables
such as gender, marital and employment status. Scoring methods assign a score to
each modality of a variable so that the addition of these partial scores best separates
the two groups. Because the quantification of each predictor is equivalent to defining a
linear combination of the indicators of its modalities, the optimal solution is obtained
from a discriminant analysis using the columns of the associated disjunctive table as
predictors:

X = [X1| . . . |Xk | . . . |XK ] . (14)

Because X is not of full rank, Bouroche et al. (1977) proposed to replace it by
the P best components zp of the multiple correspondence analysis of X. Here “best
components” means the components that best predict the target, instead of the ones
with the largest eigenvalues. Fisher’s linear discriminant function is then computed as
and redecomposed as a linear combination of all indicator variables which gives the
optimal scores—a procedure similar to “principal component regression” for qual-
itative instead of quantitative variables. The previous method known as DISQUAL
(see Niang and Saporta 2006, for a detailed illustration of DISQUAL) as well as
logistic regression (which eliminates an indicator in each Xk) are routinely used by
banks, insurance companies and so on: Optimal coding has become transparent!

The interest of scores compared to black box approaches is to lead to easily
interpretable decision rules—a feature now socially required.
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6 Machine Learning and Variable Encoding

In the machine learning terminology, the modality quantification (or encoding) can
be obtained by “embedding” the modalities in a low-dimensional space. For neural
networks, a well-known embedding is called word-embedding; see, for example,
Bengio et al. (2003). Embedding in Natural Language Processing (NLP, which is
the set of techniques that use machine learning to analyse textual data) is a vector
representation of the words in such a way that words which frequently appear in
similar contexts are close to each other. It is possible to use the same approach for
representing modalities in a vector space, in order to use models that require numer-
ical data. Using neural networks, interesting connections appear with the optimal
scaling methods described in the previous paragraphs. One of the advantages of the
approach showed here is the ability to analyse categorical variables with hundreds
of modalities, as long as the number of observations is adequate.

It is convenient to distinguish the supervised case, in which we need to predict a
quantitative target Y , from the unsupervised case, in which we do not have a target
variable. In the supervised case, quantification is only a tool for applying the model
to qualitative data and generally has no interest in itself: The best quantification
is the one that best predicts the target. By contrast, in the unsupervised case, the
interest is precisely in the quantifications of the modalities: here the embedding of
the modalities, and eventually of the units, should best represent the information
present in the data.

6.1 Traditional Encoding Methods

In addition to the approaches described in the previous paragraphs, other methods
have been proposed to encode categorical variables; for details, see the review by
Hancock and Khoshgoftaar (2020). These are simple and popular methods because
they can be used for qualitative data with both classical models and machine learning
algorithms. These methods either:

1. only use the target,
2. consider the target and other variables, or
3. do not consider any other data than the variable to be quantified.

In the latter case (i.e. ignoring the data), a criterion is chosen that does not use other
data and the result is usually a single numeric variable. This way, there is no risk
of over-fitting, but the encodings obtained cannot be unambiguously interpreted.
Such methods include: The label encoder—which assigns a different integer to each
modality—and the ordinal encoder—which constrains the assignments to respect
the natural modality order. The hash encoder uses a hash function to embed the J
modalities of a variable into a small number of dimensions, but multiple values can
be represented by the same hash value—an effect known as a collision. Because
this encoder is extremely efficient, it is sometimes used with big data sets when the
number of modalities of some variables is very high. But, in these cases, it is not
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possible to perform a reverse lookup to determine what the input was and so the
quantifications provided by collision could be meaningless.

There are many methods that use the target to obtain a numerical coding of the
modalities in such a way that the availability of other explanatory variables does not
influence the coding. The result of such a procedure can be either:

1. a single numeric variable for regression tasks (whose dimensionality would be
the same as the dimensionality of the original data), or

2. multiple numerical variables that can then be used for classification.

Applying target-based encoding often produces data leakage—a problem leading to
over-fitting and poor predictive performance. To correctly work, this method needs
large amounts of data, a small number of categorical variables and the same target
distribution in training and test data sets. To overcome data leakage, it has been
suggested to add noise, or to use cross-validation techniques, or other forms of
regularisation. The simple target encoder—a popular method for regression tasks—
belongs to this group. This method assigns the conditional mean target value to each
modality of the explanatory variable.

For classification tasks, where the target is also categorical, the explanatory cate-
gorical variable is encoded with J new variables (where J is the number of classes
of the target). These variables contain the relative conditional frequencies of each
class given the modality of the categorical variable.

Othermethods in this approach are based on the contrast between somemodalities
and other modalities of the variable; these methods are called contrast encoders
(an approach often used in the general linear model framework for testing specific
predictions). For example, the Helmert encoder requires a quantitative target and
ordered levels of the categorical variable; this encoder generates a set of contrasts
where each modality is compared in turn to all the subsequent ones. This method is
also routinely used in multiple regression and analysis of variance.

A favourite method to analyse qualitative variables is the, previously mentioned,
one hot encodingwhich assigns one indicator matrix to each variable. Note that OHE
differs from dummy coding that excludes one modality of the variable (to avoid mul-
ticollinearity). But, when applyingmachine learningmodels it is necessary to include
all the modalities, otherwise the omitted modality disappears—a standard problem
(called “the dummyvariable trap”) inmultiple regressionwhen using dummycoding;
see, for example, Darlington and Hayes (2017).

In fact, one hot encoding is not a real quantification method, but just a binary
transformation of the original data. Using OHEmakes it possible to take into account
the other explanatory variables because the quantifications are obtained as parameters
of a model. The main drawback of OHE follows from the tendency of indicator
variables to cause over-fitting. Moreover, if a variable has many modalities, OHE
generates a large number of new features and a sparse array inwhich the new indicator
variables are perfectly independent—an unrealistic assumption. OHE is used in the
optimal scaling approach (seeMORALS inSect. 5) but is alsowidely used inmachine
learning.



Old and New Perspectives on Optimal Scaling 145

6.2 Nonlinear Encoding in the Supervised Case

In the supervised case, modality quantifications are generally just a tool for applying
a predictive model. The best quantification will therefore be the one that gives the
best predictions for the model used.

As shown in Sect. 5.1, MORALS makes it possible to perform a multiple regres-
sion considering optimal transformations of the variables. Let Xk (of dimensions
I × Jk) be the indicator matrix of variable k, and Y a numerical response variable.
If we have K categorical explanatory variables, MORALS defines the residual sum
of squares (RSS) as:

RSS =
∥∥∥∥∥ y −

K∑
k=1

βkXkak

∥∥∥∥∥
2

=
∥∥∥∥∥ y −

K∑
k=1

βkqk

∥∥∥∥∥
2

, (15)

where qk = Xkak is the vector of the quantified kth variable, ak is the vector with the
(single) quantification of the modalities of the kth variable, with the centering and
normalisation constraints:

1Tqk = 0,
1

I
qT
k qk = 1, k = 1, 2, . . . , K . (16)

The algorithm then defines the following optimisation problem, solved by an alter-
nating least squares algorithm:

min
a1,a2,...,aK
β1,β1,...,βK

∥∥∥∥∥ y −
K∑

k=1

βkXkak

∥∥∥∥∥
2

. (17)

With only explanatory nominal variables—unless a different normalisation of the
parameters is used—MORALS essentially corresponds to a linear regression with
OHS. This approach is likely to over-fit data sets with few observations or when
variables have many modalities. It is also possible to obtain multiple quantifications
by creating copies of the variables; see, for example, Gifi (1990). However, this
approach would increase the number of free parameters and having more parameters
to fit the data would worsen the over-fitting problems of MORALS.

In machine learning, and specifically for neural networks, OHE encoding is often
used to analyse categorical variables. All the dummies of all the variables, put
together, constitute the input of the network. However, this method is not an optimal
choice because it greatly increases the size of the dataset by adding orthogonal binary
variables.

A different andmore adequate strategy (proposed byDiCiaccio 2020) is described
below. Let L be the chosen dimensionality of the embedding space. To explicitly
introduce the quantification of modalities in a neural network, it is possible to define
an architecture which provides a distinct input for each categorical variable. Each
input will be of the OHS type and will be followed by a “dense layer” (the classical
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Fig. 3 Supervised neural network for two nominal explicative variables

fully connected layer) with L neurons without bias and with a linear activation func-
tion. Layers and activation functions are the basic elements of a neural network; for
definition of these terms see, for example, Abdi et al. (1999), or Bengio et al. (2003).
The output of this step is an array Qk (of dimensions I × L) for each variable, which
gives the L-dimensional quantification of Xk , while the modality quantifications are
given by Ak . In the next layer, the outputs, coming from all the variables, must be
concatenated. At this point, we can add the classical layers of a neural network, for
example, one dense layer with S neurons and activation function σ (usually nonlin-
ear, chosen by the researcher), and one output dense layer with only one neuron and
a linear activation function ϕ (if Y is quantitative). The final network architecture is
shown in Fig. 3. The corresponding neural network can be defined as:

ŷ = β0 +
S∑

s=1

βsσ

(
K∑

k=1

L∑
�=1

Xkak�wk�s + w0 s

)
. (18)

Conversely, in the classical OHE encoding:

ŷ = β0 +
S∑

s=1

βsσ

(
K∑

k=1

Xkwks + w0 s

)
. (19)
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The function σ is the activation function of the dense layer with S neurons and is
usually nonlinear. The embedding dimension is given by L , while S is the number
of neurons which determines the adaptive capacity of the network. In (18), Xkak� is
equal to qk�, which is the �th column of Qk .

A relevant difference between the two expressions is the different number of
parameters. If the qualitative variables have more than two modalities and if L = 2,
there are fewer parameters in (18). Even if the variables have many modalities (for
example, 100 or 200), the embedding of (18) makes it possible to perform the analy-
sis without difficulty because it involves a smaller number of parameters. Di Ciaccio
(2023) showed how this approach—compared to OHS or target encoding—leads,
with neural networks, to much better predictions. Other works that consider a com-
parison between different techniques in the supervised approach are, for example,
Di Ciaccio (2020), and Potdar et al. (2017).

6.3 Nonlinear Encoding in the Unsupervised Case

In the unsupervised case, the quantifications can be the true goal of the analysis and
must therefore highlight the information present in the data. The modalities can be
represented in a vector space obtaining multiple quantifications, as in the case for
HOMALS and MCA.

With HOMALS or MCA, the modalities are “optimally” encoded by using the
eigenvectors with the largest eigenvalues of the cross-product matrix. In MCA, the
problem is solved analytically, while in HOMALS, the problem is solved numer-
ically. This numerical variant offers great flexibility in machine learning. The
MCA/HOMALS approaches are linear methods that give a map where both units
and variables are represented in a low L-dimensional Euclidean space in such a way
that an observed unit is relatively close to the modalities that characterise it and away
from the modalities that do not. In this representation, the modality embeddings are
the centres of gravity of the units that share the same modality.

Let Z (of dimensions I × L) be the score matrix (the observations coordinates
on the vector space), Xk (of dimensions I × Jk) the indicator matrix of variable k,
Ak (of dimensions Jk × L) the multiple quantification of the modalities, and Uk the
unitary matrix (of dimensions L × L). The HOMALS loss finds the object scores Z
and the quantifications Ak so that:

min
A1,A2,...,AK

Z

LOSS =
K∑

k=1

‖ Z − XkAk ‖2, (20)

with the centring and normalisation constraints uTZ = 0, ZTZ = IU, to avoid the
trivial solutions: Z = 0, Ak = 0. The LOSS function in (20) can be written as:
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LOSS =
K∑

k=1

‖ Z − XkAK ‖2 =
K∑

k=1

∥∥ Xk − ZA+
k

∥∥2

=
K∑

k=1

∥∥ Xk − X̂k

∥∥2 =
I∑

i=1

K∑
k=1

Jk∑
j=1

(
xik j − x̂ik j

)2
, (21)

where X̂k is the best “reconstruction” of Xk and A+
k the Moore–Penrose inverse of

AK . Considering that, to minimise this loss, Z has to be the mean of the K matrices
XkAK , the modality quantifications AK are the only parameters to estimate.

The previous expression suggests an alternative formulation as an auto-encoder
neural network. An auto-encoder (also called an auto-associator) associates a pattern
to itself, often as a way of de-noising a signal; an auto-encoder can also be seen
as a nonlinear version of principal component analysis; for more, see Bengio et al.
(2003). Within our framework, an auto-encoder is a particular neural network able
to minimise the LOSS:

min
σ,ϕ

L (X, σ (ϕ (X))) , (22)

where ϕ and σ introduce some constraints in the reconstruction of X and the LOSS
penalises the difference between X and X̂. Using the residual sum of squares (RSS),
(22) becomes:

min
σ,ϕ

‖ X − σ(ϕ(X)) ‖2, (23)

where ϕ maps the indicator arrayX to an L-dimensional latent space (the bottleneck),
σ maps this representation to the output, which is the same as the input. Considering
only linear ϕ, σ , and a low embedding of dimension L , the architecture of the
corresponding auto-encoder for only two nominal variables is shown in Fig. 4. This
neural network includes only dense layers (also called standard or fully connected
layers).

The first layer is composed by two dense sublayers with L neurons for each
variable and linear activation function. The output layer has two dense sublayers
with as many neurons as the number of modalities of the corresponding variable and
a linear activation function. The auto-encoder produces the modality quantification
A1 and A2 on L dimensions (usually L = 2 or 3). The score matrix, Z, is the mean
of the quantified variables Q1 and Q2 on L dimensions. To obtain the same results as
HOMALS, the score matrix, Z, needs to be orthonormalised and column centred. Of
course, actually performing all these computations would not make sense, because
with much less effort we can use the elegant analytical solution provided by MCA
or the alternating least squares algorithm of HOMALS.

The neural network architecture shown in Fig. 4 highlights two constraints:

1. the weights of the output layer are the inverse weights of the first layer, and
2. for all layers, the activation function is linear.
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Fig. 4 An auto-encoder that reproduces HOMALS

Moreover, the LOSS function of HOMALS is based on the classical RSS, which
may not be the best choice to compare X̂k to Xk . It is possible to extend the previous
approach by eliminating these two constraints and introducing a better LOSS func-
tion. The new architecture of the auto-encoder for only two nominal variables and
dimension L is shown in Fig. 5.

Note that in the output layer there is a new parameter matrix Wk (of dimensions
L × Jk) and the activation function is now Softmax (see Bengio et al. 2003)—the
same function as used in multinomial logistic regression. Specifically, Softmax is a
function, denoted σ : R

J → (0, 1)J , defined as:

σ(v) j = ev j

∑J

m=1
evm

, j = 1, . . . , J, v = (v1, v2, . . . , vJ )
T . (24)

This way, X̂k contains, for each unit, the estimated probability of assuming the
different modalities of variable k. Then, the categorical cross-entropy H

(
Xk, X̂k

)
(also called logistic LOSS) is more appropriate to compare the reconstructed array
to the indicator array Xk :

K∑
k=1

H
(
Xk, X̂k

) = −
I∑

i=1

K∑
k=1

Jk∑
j=1

xik j log x̂ik j = −
K∑

k=1

I∑
i=1

log (σ (ziWk)) xT
ik,

(25)
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Fig. 5 Auto-encoder to extend HOMALS to nonlinear encoding

where zi is the i th row vector of Z (with length L). Then the minimisation problem
becomes:

min
W1,Wk ,...,WK

Z

K∑
k=1

H (Xk, σ (ZWk)) . (26)

Considering that, by definition, Z is the mean of XkAK , the modality quantifica-
tions AK and the weights WK are the parameters to estimate. The nonlinear encod-
ing achieved in this way can be much more effective than the encoding provided by
HOMALS/MCA. Note that both methods (i.e. HOMALS and its nonlinear exten-
sion) use the same OHE coding of the categorical variables as its input. However, the
parameterisation is different, and the extension includesmore parameters, a nonlinear
transformation and a different objective function. As a simple example, consider only
two categorical variables, X and Y , each with 5 modalities denoted (respectively) by
(A, B, C, D, E) and (a, b, c, d, e), which, together, produce the contingency
table shown in Table1 (from Di Ciaccio 2023). The strong associations of the pairs
of modalities (A, a), (B, b), (C, c), (D, d), (E, e) are evident because of the
dominant cell frequencies that appear in the main diagonal of the table.

We would therefore expect a representation on two components that highlights
these associations: a representation where strongly associated pairs are close to each
other and equally far away from the othermodalities. By applyingMCA, the first four
components have the same eigenvalue and are all necessary to obtain a satisfactory
representation of the modalities. This is a feature of the matrix being symmetric;
see Beh and Lombardo (2022). Figure6 shows the result obtained from the first two
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Table 1 A contingency table showing the association between variables X and Y

X/Y a b c d e Total

A 801 100 100 100 100 1201

B 100 800 100 100 100 1200

C 100 100 800 100 100 1200

D 100 100 100 800 100 1200

E 100 100 100 100 800 1200

Total 1201 1200 1200 1200 1200 6001
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Fig. 6 Categorical encoding for CA (left) and nonlinear extension (right) on data of Table 1, first
two components

components of MCA (on the left) and with the nonlinear version just described (on
the right). Note how—with the presence of only one more unit for the pair (A, a)—
MCA creates, on the first two dimensions, a configuration that is hard to interpret.
By contrast, a nonlinear extension shows, with only two axes, a representation of the
associations very consistent with the data in the table.

7 Conclusion and Perspectives: Towards a Renewal
of Optimal Coding Methods

Transformingqualitative variables into numerical variables is once again a hot topic in
part because the profusion of (qualitative) variableswith a large number ofmodalities
often found in big data analytics applications.

The statisticianswho developed optimal scalingmethodswere not very concerned
about the over-fitting and instability issues that could arise from the use of a large
number of indicators because these statisticians often worked with low-dimensional
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data (they, however, developed very efficient algorithms in the linear case). The
DISQUAL method is certainly a method of regularisation by projection onto a low-
dimensional subspace, but this aspect remained secondary to the objective of calcu-
lating scores. Similarly, the work of Russolillo (2012) uses optimal scaling to apply
PLS regression and PLS path modelling to qualitative data without really focusing
on the regularising effect of projection onto the PLS components.

It is only very recently (see Meulman et al. 2019) that regularisation by Ridge,
LASSO or Elastic Net has been combined with MORALS-type optimal scaling
regression—a combination that opens up many new opportunities.

Largely independently,machine learning practitioners confrontedwith these high-
dimensional problems have developed—without always being concerned with opti-
mality or robustness—a large number of techniques, some of them arbitrary, or
some of them being a rediscovery of known techniques. However, we have noticed
that an approach based on neural networks leads to satisfactory results not only in
supervised but also in unsupervised approaches. In the latter case, an auto-encoder
network minimising the cross-entropy with the consideration of nonlinear links may
give better results than the least-squares minimisation at the origin of the alternating
least-squares methods.
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Marketing Data Analysis by the Dual
Scaling Approach: An Update and a New
Application

Daniel Baier and Wolfgang Gaul

1 Introduction

Dual scaling and relatedmethods like quantification theory, correspondence analysis,
or homogeneity analysis (in the following shortly summarised as the dual scaling
approach) have a long history in data analysis and statistics; see Nishisato et al.
(2021, pp. 5–25) for a recent review. After the first attempts by Karl Pearson and
others to quantify categorical data at the beginning of the twentieth century, Shizuhiko
Nishisato and others formalised and advanced this approach from the 1960s under
different names. From the start, the dual scaling approach was successfully applied
in various disciplines; see Malhotra et al. (2005). Also in marketing, it demonstrated
its usefulness. Well-known and often cited are the early articles on applications in
marketing by Franke (1985) and Hoffman and Franke (1986). They applied dual
scaling for copytesting print advertisements and correspondence analysis for market
structuring. Nishisato and Gaul (1988) summarised early applications of dual scaling
in marketing and demonstrated its usefulness by referring to analysing complex and
varied data (e.g. paired comparisons, preferences, ratings). They argued that the dual
scaling approach—at least in marketing—no longer should be called the “neglected
multivariate method” with a reference to Hill (1974).

However, thirty years later, at least in marketing, other methods seem to be pre-
ferred: So, Orme (2019) argues on the basis of a yearly survey among industrial
users of Sawtooth Software (the market leader for conjoint analysis software) that
conjoint analysis is applied more than 27,000 times a year in large-scale commer-
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cial contexts. Baier and Brusch (2021) support these findings by analysing a large
sample of conjoint analysis applications of a major European market research insti-
tute. Articles with overviews on applications of conjoint analysis (Green and Srini-
vasan 1978, 1990) are among the most often cited articles in marketing research
journals, in contrast to the mentioned articles on applications of the dual scaling
approach. Additionally, when the goal is to analyse complex and varied data—a
known advantage of dual scaling—themost often appliedmethods according to polls
among data scientists (e.g. https://www.kdnuggets.com/2016/09/poll-algorithms-
used-data-scientists.html) are regression, cluster analysis, and decision trees. Visu-
alisation is ranked fourth in this poll, but the dual scaling approach is not referred to
as a solution for this task.

The paper is structured as follows: In Sect. 2, we take a closer look at applications
of the dual scaling approach in marketing and the potential reasons of less usage.
Section3 shows dual scaling results of well-known paired comparisons data using
recent software developments. In Sect. 4, we introduce and analyse a new dataset
with preferences of a large sample of online shop customers. The paper closes with
an outlook in Sect. 5.

2 Marketing Data Analysis by the Dual Scaling Approach

Collecting data and analysing themwith advanced statisticalmethods has a long tradi-
tion in marketing (see, Ferber 1949). However, in a recent review,Wedel and Kannan
(2016) argued that the spread of these methods firstly gained impact in the 1960s
when developments and practical applications were published in respected journals
like Journal of Marketing and Journal of Marketing Research or additionally—from
the 1980s—International Journal of Research in Marketing andMarketing Science.
Inspired by these articles, cluster, conjoint, correspondence, and discriminant anal-
ysis, dual scaling, logit analysis, multidimensional scaling, regression analysis, and
many other methods were further developed and applied to solve real-world market
segmentation, product positioning, and pricing problems.

Roberts et al. (2014) analysed the diffusion of these methods in marketing theory
and practice. Based on a citation analysis and three surveys among researchers, medi-
ators, and practitioners, they determined that some methods were outstanding in this
regard. So, publications on developments and applications of conjoint analysis (e.g.
Green and Srinivasan 1978, 1990) were most often cited and had the highest impact.
On the other side, publications on developments and applications of the dual scaling
approach—see Table1 for an overview—also show a high number of citations. But,
compared to other methods, the application numbers of the dual scaling approach
are still low and corresponding publications not among the top 100 publications with
outstanding impact; see Roberts et al. (2014). At least in marketing and in contrast
to the expectations of Nishisato and Gaul (1988), the dual scaling approach must
further be referred to as a “neglected multivariate method”.

https://www.kdnuggets.com/2016/09/poll-algorithms-used-data-scientists.html
https://www.kdnuggets.com/2016/09/poll-algorithms-used-data-scientists.html
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Table 1 Overview on applications of the dual scaling approach in marketing
Marketing task Data (sample size) Method applied Reference

Copytest a print ad for
women’s shoes

Ratings of 18 attributes
w.r.t. the ad (n = 30)

Dual scaling of response
frequencies

Franke (1985)

Structure the overnight
delivery market

15 attributes describing
one’s shipper (n = 252)

Carroll-Green-Schaffer-
Scaling

Carroll et al. (1986)

Structure the beverage
market (cola, non-cola)

Weekly consumption of 9
brands (yes/no, n = 34)

Correspondence analysis
with French plot

Hoffman and Franke (1986)

Position cognac brands by
print ads

Paired comparisons of 10
print ads (n = 69)

Dual scaling of the
dominance matrix

Nishisato and Gaul (1988)

Position cognac brands by
print ads

Ratings of 7 attributes w.r.t.
10 print ads (n = 69)

Forced classification on
dominance matrix

Nishisato and Gaul (1988)

Segment cosmetics markets
(hypothetically)

Ratings of brands w.r.t.
attributes by consumers

Forced classification on
dominance matrix

Nishisato (1988)

Segment cosmetics markets
(hypothetically)

Preferences of consumers
w.r.t. brands

Forced classification on
dominance matrix

Nishisato (1988)

Position cigarette brands by
print ads

Ratings of 14 attributes
w.r.t. 8 ads (n = 126)

Forced classification on
dominance matrix

Nishisato and Gaul (1990)

Measure attribute impact
on destination choice

12 paired comparisons of
fictive dest. (n = 157)

Multiple correspondence
analysis

Kaciak and Louviere
(1990)

Track periodic beverage
consumption (t = 1, . . . , 4)

Allocation of brands to
occasions (n = 800)

Correspondence analysis
with French plot

Higgs (1991)

Improve the perceived
safety of small cars

Results of 24 cars w.r.t. 4
objective tests

Multiple correspondence
analysis

Hoffman and De Leeuw
(1992)

Position hospitals in the
eyes of referrers

Referrals of physicians
(n = 1086) for diseases

Correspondence analysis
with French plot

Javalgi et al. (1995)

Position banks in the eyes
of customers

Allocation of 25 features to
10 banks (n = 364)

Correspondence analysis
with French plot

Yavas and Shemwell (1996)

Position retailers w.r.t.
purchase patterns

Allocation of motives to
products (n = 319)

Correspondence analysis
with French plot

Yavas (2001)

Position cigarette brands in
the eyes of men

Allocation of 12 brands to
11 attributes (n = 100)

Correspondence analysis
with French plot

Cholakian (2006)

Position airline brands in
the eyes of customers

Allocation of brands to
attributes (n = 381)

Correspondence analysis
with French plot

Wen et al. (2008)

Sell luxury goods online
and/or in-store

Reasons to shop online
resp. in-store (n = 55)

Text mining and
correspondence analysis

Liu et al. (2013)

Segment software markets
w.r.t. preferences

Preferences w.r.t. 12 design
attributes (n = 128)

Correspondence analysis
with French plot

Wang (2016)

Measure effectiveness of
online marketing

Usage frequencies of 5
tools (n = 313)

Correspondence analysis
with French plot

Krizanova et al. (2019)

Find big five personality
trait segments

Scores on big five
personality traits (n = 27)

Correspondence analysis
with French plot

Pitt et al. (2020)

Position plant-based meat
alternatives

Evoked associations by
consumers (n = 1039)

Correspondence analysis
with French plot

Michel et al. (2021)

Improve online shops w.r.t.
sustainability

Preferences w.r.t. 9
improvements (n = 4411)

Dual scaling of
ranking data

This paper

Abbreviation w.r.t. = with respect to
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The reasons for this neglect seem to be many-fold. Here, we only discuss two
concerns often raised when talking to marketing researchers, mediators, and practi-
tioners: (1) The lack of powerful software for the dual scaling approach that makes
it easy to collect and analyse data as needed in a market research or consulting
project as well as (2) the lack of a convincing case study where the application of
the dual scaling approach leads to a measurable impact from a marketing manager’s
or decider’s point of view.

So, concerning (1), it is often argued that conjoint analysis and structural equation
modelling are very successful since powerful and dedicated software is available.
Sawtooth Software offers Lighthouse for conjoint analysis, a system that handles
the whole market research process from designing advanced online questionnaires,
data collection, analysis, simulation, and optimisation as well as final presentation
of results to marketing managers and deciders. The software is constantly improved
in close collaboration with researchers, managers, and deciders. The same holds for
smartPLS, a currently widespread structural equation modelling software that allows
the analyst to perform acceptance analyses of new technologies in an advanced man-
ner. For dual scaling, at a first glance, this availability of powerful and dedicated
software also holds: Beh (2004), Malhotra et al. (2005) as well as Lombardo and
Beh (2016) discuss a large number of procedures and packages. Shizuhiko Nishisato
and Ira Nishisato developed Dual3 for dual scaling which is based on the work
of Nishisato (1980). Nowadays, Dual3 is no longer available, but the R package
dualScale by Clavel et al. (2014) helped to fill this gap. For related methods like
correspondence analysis, the availability of software packages and procedures is even
greater. All statistical software systems (e.g. BMBP, SAS, and SPSS) offer at least
simple correspondence analysis. Moreover, Lombardo and Beh (2016) not only dis-
cuss their own powerful R packageCAvariants, but also 12 further R packages for
correspondence analysis: ca by Nenadic and Greenacre (2007) and FactoMineR
by Lê et al. (2008), as well as ade4, anacor, cabootcrs, CAInterprTools,
cncaGUI, ExPosition, homals, MASS, PTAk, and vegan. Most of these
packages receive a yearly update and/or constant improvements; see Lombardo and
Beh (2021), Greenacre et al. (2020), and Husson et al. (2020). Lombardo and Beh
(2016) conclude that these packages cover broad areas from a methodological and
an application-oriented point of view. However, the close collaboration between the
software (andmethodological) developers and themarketing research practice seems
to be limited at the moment. Here, maybe, more exchange between researchers,
mediators, and practitioners during conferences (e.g. COMPSTAT, ECDA, IFCS,
INFORMS Marketing Science) could be a solution.

Concerning (2), dual scaling still lacks a convincing marketing case study with
a convincing managerial impact from a practical point of view. At a first glance,
Table1 contains a large number of advertising testing, brand management, or market
segmentation applications. Graphical displays of two modes of objects (e.g. indi-
viduals and brands or brands and attributes) are employed. However, the often used
“French plot” in these applications is problematic since the coordinates of the two
modes of objects come from two different subspaces. The visualisation is helpful
for exploration, but it does not allow to relate inter-mode distances to market shares
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or profits. Consequently, modifications (e.g. modified brand positions) can not be
evaluated in terms of future market shares and profits. Many recent publications pro-
pose alternative joint graphical displays and biplots included in freely downloadable,
easy-to-use, and comprehensive software packages; see Lombardo and Beh (2016)
for an overview and an excellent R software package. But—up to now—there is a
lack of marketing applications of these packages that lead to a measurable impact
from a managerial point of view.

In the next two sections, we try to show that these concerns are exaggerated.
In Sect. 3, we analyse the well-known paired comparisons data from Nishisato and
Gaul (1988) with a newer R package (FactoMineR). In Sect. 4, we apply the same
analysis to a large datasetwith preference data from n = 4411 online shop customers.

3 Analysing the Nishisato and Gaul (1988) Paired
Comparisons

In their review article on marketing applications of dual scaling, Nishisato and Gaul
(1988) analysed the paired comparisons data first published in Gaul and Schader
(1988). Each of the 69 customers who took part in the study was asked (forced
choice) to indicate for all possible pairs of presented ads which ad he/she prefers.
The ten ads used in data collection were two each for the five cognac brands Remy
Martin, Hennessey, Courvoisier, Bisquit, and Martell, leading to 10 · (10 − 1)/2 =
45 possible pairs of presented ads. In the following, we reanalyse this data using
the R package FactoMineR. First, following a proposal by Torres and Greenacre
(2002), we transfer them to count data as given transposed in Table2. Each customer
is represented by two rows: One row counts her/his indicated dispreferences for each
ad (“−”), one row counts her/his indicated preferences for each ad (“+”).

Cell (i−, j) indicates how often customer i did not prefer j to another ad (i =
1, . . . , 69 and j = 1, . . . , 10). Cell (i+, j) indicates how often customer i preferred
j to another ad. Note that the sum of (i−, j) and (i+, j) is always nine since j is
contained in nine ad pairs. The additional rows All− and All+ summarise the counts
across all customers (summing up to 69 · (10 − 1) = 621 for each ad as the number
of presentations of pairs with the ad contained). It can be easily seen that—across all
69 customers—ad Martell (1) was the most preferred in a paired comparison (419
times), whereas ad Hennessey (1) was the least preferred (186 times).

The organisation of the paired comparisons data as described has the advan-
tage that the count data (without the additional rows All− and All+) now can
be analysed using correspondence analysis software; for example, FactoMineR
or CAvariants. Nevertheless, the same results emerge as if dual scaling and
Dual3 would have been applied; see Torres and Greenacre (2002). For this anal-
ysis, Nishisato and Gaul (1988) constructed a so-called dominance matrix from the
paired comparisons data with customers as rows (69 rows) and ads as columns (10
columns) where each cell counts the number of times a customer preferred the ad
minus the number of times a customer dispreferred the ad. Note that dual scaling and
Dual3 are able to deal with negative cells (in contrast to correspondence analysis).
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Table 3 Summary of statistics when dual scaling is applied to the paired comparisons data from
Nishisato and Gaul (1988)

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

Eigenvalue 0.123 0.064 0.046 0.032 0.024 0.018

Singular
value

0.350 0.254 0.215 0.178 0.156 0.136

Accounted
for (%)

36.401 19.119 13.751 9.428 7.222 5.492

Cum.
accounted
for (%)

36.401 55.520 69.271 78.699 85.921 91.413

Discrepancy
angle (◦C)

69.494 75.293 77.566 79.730 81.023 82.179

Abbreviation Comp. = component, cum. = cumulative

Table3 summarises the results of applyingFactoMineR to the data inTable2.As
expected, the eigenvalues, singular values, and variances accounted for are identical
to the results presented in Nishisato and Gaul (1988). Two components account for
55.520% of the inertia. The calculated high discrepancy angles for each dimension—
seeNishisato et al. (2021, p. 49) for a discussion—additionally indicate that the usual
joint graphical display (French plot) as given in Fig. 1 must be used with caution.
Overlaying the row (customer) and the column (ad) subspaces is inaccurate.However,
Nishisato et al. (2021)’s discussion of the discrepancy angles and their consequences
allows the analyst to read the French plot in an appropriate way.

Taking these caveats into consideration (a topic that has always been at the core of
Shizuhiko Nishisato’s talks), Fig. 1 is able to provide some interesting insights. First,
the graphical display of the ads is identical to the graphical display in Nishisato and
Gaul (1988). Note the different sign in dimension 1 is irrelevant from an analytical
point of view. The low distance between the two ad points of the same cognac brand
indicates again that they are very similarly judged by the customers. Moreover,
similar ads with respect to the presented motifs are near-by positioned: Courvoisier
and Martell as well as RemyMartin (1) show exclusive convivial moments, whereas
the others show exclusive solitude with or without a lonesome brand ambassador.

Moreover, now, in contrast to Nishisato and Gaul (1988), Fig. 1 shows one point
for each customer’s preferences (rows i+, displayed by a “+”). The point for a single
customer’s dispreferences (rows i−, displayed by a “−”) is suppressed for readabil-
ity reasons. Due to the dependence of the corresponding counts (the cells for “+” and
“−” in Table2 sum to the number of ads minus one for each ad), each dispreferences
point (“−”) would have a mirrored at the origin position to the corresponding pref-
erences point (“+”). The many “+” in the direction of the Courvoisier and Martell
ads demonstrate that many customers prefer these ads. Even if we are aware of the
discrepancies of the two subspaces (for ads and customers) and take the increasing
distance from the origin into account, the graphical display gives useful insights into
the competition between brands. We demonstrate the advantages of this graphical
display in the next section with an even larger sample of customers.
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Fig. 1 Graphical displaywhen dual scaling is applied to the paired comparisons data fromNishisato
and Gaul (1988), “+” displays a customer’s preferences, “−” displays a customer’s dispreferences
(“+” and “−” are mirrored points at the origin, “−” points are suppressed for readability reasons)

4 Analysing Sustainable Online Shop Improvement
Preferences

During the last decade, sustainability has developed from amarginal to a mainstream
topic in many industries; see Baier et al. (2020) and Rausch et al. (2021) for more
on this development. Consumers are increasingly environmentally conscious and
expect from their business partners the same. So, Rausch et al. (2021) showed in two
surveys (with n = 1770 and n = 1678) that customers of a major German apparel
online retailer (BAUR, www.baur.de) favour durable products, especially when they
aremanufactured using low-emission technologies as well as fair wages andworking
conditions. Baier et al. (2020) additionally found in a large survey with ADIDAS
customers that consumers—on average–would accept a price increase for sustainable

www.baur.de
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apparel and sportswear of about 15–20%. In spring 2021, the BAUR surveys were
repeated, with a focus on potential online shop improvement options (in the following
shortly: options).

A list of options was developed based on Baier et al. (2020), Rausch et al. (2021),
and the references there as well as workshops with 23 BAUR customers and ten
experts (the retailer’s senior staff for website design, for corporate sustainability, and
for customer service). Table4 reflects the final nine options with short names (used
later in this paper) and a shortened description of each option with sample images to
make the options clearer for the customers (text in German).

An online questionnaire—developed and hosted using the software Qualtrics
(see www.qualtrics.com)—contains these descriptions and the invitation to sort the
described options according to decreasing preference (“Please indicate by ranking
which of the discussed options are most important to you. Please arrange the nine
options from top to bottom, starting with the most important. To do this, simply
drag the respective option to the desired position while holding down the mouse but-
ton.”). The questionnaire also asked for socio-demographic information and for the
respondent’s past sustainable and non-sustainable buying behaviour. The question-
naire was tested with a sample of ten customers. According to their understanding
of the descriptions, some phrasing was slightly modified.

The questionnaire was distributed among BAUR customers via the company’s
June 2021 newsletter. Recipients of the newsletter were asked to participate in an
improvement survey of the shop and for participating they were offered a raffle
with five vouchers at 20 Euro. Within one week, n = 4411 completely filled out
questionnaires were collected. Gender distribution (female: n = 3502, 73.4%, male:
n = 900, 18.9% male, diverse: n = 9) and age distribution (up to 29 years: n =
199, 4.5%, 30–39years/30s: n = 529, 12.0%, 40s: n = 873, 19.8%, 50s: n = 1509,
34.2%, from 60years: n = 1301, 29.5%) of the sample reflects quite well gender and
age distribution of the online retailer’s newsletter recipients with about 75% female
and 25%male customers, most of them 45+ years old. Of course, as with many other
customer surveys using newsletters for distribution, the sample is biased in so far that
we expect that especially loyal and less critical customers participated in the survey.
Moreover, only 2% of the newsletter recipients answered.

The collected rank-order preferences were—as in the last section—transformed
into count data as given and summarised in Table5. Cell (i−, j) indicates how often
customer i ranked option j less important than another option (i = 1, . . . , 4411,
j = 1, . . . , 9). (i+, j) indicates howoften customer i ranked option j more important
than another option. The sum of (i−, j) and (i+, j) is always eight (the number of
options minus 1) since in each ranking the rank of option j can be compared with the
rank of eight other options. Again, All− and All+ summarise the counts across all
4411 respondents. It can be easily seen that—across all respondents—product traffic
light is themost preferred option (22,915 times), followed by labelled images, visible
filter, and brand traffic light. Note that again, the sum of the All− and All+ counts
in each row is the number of customers (here: 4411) times the number of options
(here: 9) minus 1 (here: 4411 · 8 = 35,288). Analysing this count data (again without
the rows All− and All+) using FactoMineR leads to the results in Table6. Two

www.qualtrics.com
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Table 4 Potential sustainable online shop improvement options for an online apparel retailer

Short name Description in the questionnaire (shortened, with explanatory images)

Product traffic light Please imagine that there was a traffic light
system in the BAUR online shop, with
which the individual products were
labelled with regard to their sustainability.
With the help of the traffic light system,
you as a customer receive a simple
assessment of whether the product in
question meets the three sustainability
criteria (ecology, economy, social issues)

Brand traffic light Please imagine that there was a traffic light
system in the BAUR online shop with
which the brands behind the products are
identified with regard to their
sustainability. With the help of the traffic
light system, you receive a simple
assessment of whether the respective brand
meets the three sustainability criteria
(ecology, economy, social issues)

Labelled images Please imagine BAUR labelling the
product images in the online shop with the
word “sustainable”. When shopping, you
can see at first glance whether a product
has been manufactured sustainably or not

Webpages Please imagine that BAUR would show
very transparently on its website how the
company is committed to more
sustainability, for example, “Which
specific sustainability projects are
supported?”, “What seals are there in the
BAUR online shop?”, etc. On this page you
could also read general information about
sustainability, for example, “Why is
sustainability important?”

Seal Please imagine that BAUR would use
different seals to label products in the
online shop in order to show which criteria
for sustainability a certain product met

Visible filter Please imagine that the BAUR online shop
gave you the option of filtering products
directly according to the “sustainability”
criterion. The associated filter is directly
visible and clickable, so you can filter for
all sustainable products with just one click

(continued)
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Table 4 (continued)

Short name Description in the questionnaire (shortened, with explanatory images)

Detailed filter Please imagine you could filter the
products in the BAUR online shop
according to various sustainability criteria.
The filter criteria are explained in a simple
and understandable way

Project filter Please imagine you could filter the products
in the BAUR online shop according to
various sustainability criteria. The filter
criteria would be named after specific
projects that are supported. You can find
more information about the projects on
their own information page on baur.de

Product details Please imagine that BAUR went into more
detail about the sustainability of these
products in the details and descriptions of
the individual sustainable products in the
online shop

components account for 42.011% of the inertia. Again, the high discrepancy angles
for each dimension (see, Nishisato et al. 2021, p. 49, for a discussion) indicate that
the joint graphical display should be used with caution.

Again, taking these caveats into consideration, Fig. 2 is able to provide some
interesting insights. First, the graphical display helps to understand how similar
the options were ranked by the customers. Product traffic light and brand traffic
light seem to be similarly preferred, the same holds for labelled images and visible
filter. Again, as in the last section, the “+” reflect single customer’s preferences,
whereas the “−” that reflect single customer’s dispreferences are suppressed for
better readability. The grouping of many “+” on the left side of the display indicates
that the above mentioned options—product traffic light and brand traffic light but
also labelled images and visible filter—are preferred options whereas the similar
options webpages and project filter are dispreferred.

In order to analyse whether these preferences depend on the grouping of the
customers (e.g. age and gender as a priori groups or groupings derived by clustering),
an advantage of dual scaling is to position supplementary variables in the display.
Here, the aggregate counts of the age and the gender groups were formed similar
to the All− and All+ rows in Table5, and their positions were calculated using the
FactorMineR package. Figure3 shows the derived graphical display. Note that
here (for better interpretation), the single customers’ “+” were suppressed also.

It can easily be seen that the age and gender group’s preferences and dispreferences
are very similar to the observed overall preferences and dispreferences in Fig. 2. All
“+” are on the left side of the display, all suppressed “−” are on the right side.
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Table 6 Summary of statistics when dual scaling is applied to the sustainable online shop improve-
ment preference data

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

Eigenvalue 0.115 0.060 0.051 0.048 0.041 0.038

Singular value 0.394 0.246 0.226 0.219 0.202 0.194

Accounted for (%) 27.504 14.506 12.285 11.471 9.786 9.075

Cum. accounted for
(%)

27.504 42.011 54.297 65.768 75.554 84.629

Discrepancy angle
(◦C)

70.213 75.768 76.924 77.372 78.350 78.787

Abbreviation Comp. = component, cum. = cumulative
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Brand traffic light

Labeled images

Webpages
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Fig. 2 Graphical display when dual scaling is applied to the sustainable online shop improvement
preference data, “+” displays a customer’s preferences, “−” displays a customer’s dispreferences
(suppressed for readability reasons)
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Fig. 3 Graphical display when dual scaling is applied to the sustainable online shop improvement
preference data, “+” displays a customer group’s preferences, “−” displays a customer group’s
dispreferences (suppressed for readability reasons); positions of customer groups are calculated via
supplementary variables (gender groups: female and men, age groups: up to 29years, 30 s, 40 s, 50 s
and above 60years, all other positions are the same as in Fig. 2

However, a slight indication is available that male and elder customers tend a bit
more to the options in the lower part of the display (product traffic light and brand
traffic light), whereas female and younger customers tend more to the options in
upper part of the display (labelled images and visible filter). Further analyses have
of course been conducted, but we will stop here with our discussion due to space
restrictions.
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5 Conclusions and Outlook

In this paper, we discussed the diffusion of the dual scaling approach in marketing
and discussed a new application. The number of applications has recently consider-
ably increased; however, for playing a major role in marketing applications, some
further successful applications and convincing case studies are needed. The available
software has made major progress and offers many possibilities to analyse complex
and varied data (answers to open questions, associations, cross-tabulations, discrete
choices, preferences, ratings) a deciding asset of dual scaling from the beginning.

At this point of reflections, the authors would like to say a big thank you to
Shizuhiko Nishisato for his never-ending effort to make dual scaling popular among
us and other marketing researchers. We are looking forward to even more joint work
in the near future that helps to demonstrate the inspiring elegance and practical
usefulness of these methods.
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Power Transformations and Reciprocal
Averaging

Eric J. Beh, Rosaria Lombardo, and Ting-Wu Wang

1 Personal Reflections and Outline

Professor Shizuhiko Nishisato has dedicated his career to the development and dis-
semination of ideas concerned with many areas of Statistics. Much of it has focused
specifically on a vast array of issues concerned with quantification theory and cat-
egorical data analysis. We, therefore, consider it an honour and a privilege to not
only be asked to contribute to this special collection of papers designed to celebrate
his career but to also (in the case of the first two authors) to edit it. Our humble
addition to this collection will focus on a variation of a key area of research that has
garnered much of Nishisato’s attention throughout his career. However, before we
discuss more on the nature of this variation, we feel it is appropriate to view through
a wide-field lens the contributions he has made.

Nishisato’s work in quantification theory has been predominantly on quantifying,
for largely categorical data, scores that help to reflect the association between the
variables as well as understanding how specific categories compare. In Chap.2 of
his book titled Multidimensional Nonlinear Descriptive Analysis (Nishisato 2007),
Nishisato outlines a variety of different ways in which quantification theory can
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be approached. These include using the method of reciprocal averaging (which is
our favoured option), through a one-way ANOVA framework, by maximising the
bivariate correlation between the variables (a technique related to canonical corre-
lation analysis) and by approaching the method through geometric means. He also
discusses a least squares approach that involves minimising the sum-of-squares of
the difference between an observed cell frequency and its estimated value obtained
from an association model. Interestingly, he starts the chapter (Sect. 2.1) with the
question:

Is Likert-Type Scoring Appropriate?

Such a question is certainly relevant when viewed from the point of view we have
taken for much of our joint and independent work concerning ordinal variables.
Indeed, Likert-type scores (we’ve referred to them as natural scores in the past—
see, for example, Beh and Lombardo (2014, 2021))—are used as a basis for the
construction of orthogonal polynomials when defining the structure of ordinal cat-
egories. While Nishisato does not immediately answer the question, he does state
more recently (Nishisato et al. 2021, p. 39) that:

. . . the Likert scale is nowadays useful only as a coding method, and it no longer serves as
a scoring method.

For the range of contributions Nishisato has given to quantification theory, much
of his energy has been dedicated to developing dual scaling—a term he coined in
1976 but proposed to the scientific community in his book titled Analysis of Cate-
gorical Data: Dual Scaling and its Applications (Nishisato 1980a). One may refer to
Nishisato (2007, Sect. 3.3.4) for more information on the genesis of the term. While
papers in this Festschrift provide a comprehensive discussion of his career and its
many highlights, his work on dual scaling spans an extensive array of publications
that specifically deal with this area of research, including the books Elements of
Dual Scaling (Nishisato 1994), Dual Scaling in a Nutshell (Nishisato and Nishisato
1994) and, of course, Analysis of Categorical Data: Dual Scaling and its Applica-
tions (Nishisato 1980a). He has also examined the role of dual scaling on ordered,
and partially ordered, categories—see Nishisato (1980b, 2000), Nishisato and Arri
(1975), Nishisato andWen-Jenn (1984) and Nishisato and Inukai (1972)—which has
been a topic that we (Beh and Lombardo) have independently, and jointly, focused
much of our attention to since the late 1990s. More recently, Nishisato has written
extensively about some of the pit-falls inherit in using the scores obtained from quan-
tification theory to visualise the relationship between variables (as correspondence
analysis does for categorical variables); see Nishisato (1988a, 1995) and Nishisato
and Clavel (2003, 2010) for an array of discussions on this matter. While we have
been greatly influenced by Nishisato’s early work on the analysis of ordinal categor-
ical variables—especially of Nishisato and Arri (1975)—it is through his concerns
raised on the topic of visualisation that cements our collaboration and friendship.
The Nishisato/Clavel and Beh/Lombardo teams may be on opposite sides of the
visualisation spectrum, something we were open about in the Preface of Nishisato
et al. (2021), but this only helped to strengthen our friendship and mutual respect

http://dx.doi.org/10.1007/978-981-99-5329-5_2
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of each other’s work. However, to avoid any potential “rift” (we say with a smile
on our face) we refrain from discussing the role of data visualisation in quantifica-
tion theory. Instead, we shall describe in this paper the variation to dual scaling that
we alluded to in the first paragraph. This variation involves investigating the role
of power transformations using an analogous technique to dual scaling—commonly
referred to as reciprocal averaging—for two categorical variables. Such an approach
is very much related to the issue of power transformations described from a corre-
spondence analysis perspective by Michael Greenacre (Greenacre 2009, 2010) and
the methods of Beh and Lombardo (2024), Cuadras and Cuadras (2006, 2015) and
Cuadras et al. (2006) although we focus purely on the scaling aspects here instead
of the geometric/visual elements.

To describe the role of power transformations from a reciprocal averaging per-
spective, this paper is divided into six further sections. Section2 introduces the nota-
tion of a two-way contingency table that we shall be using throughout this discussion
(Sect. 2.1), as well as defining the profile of a row and column of this table (Sect. 2.2).
An overview of the traditional approach to reciprocal averaging as outlined by many,
including Hill (1974) and Beh and Lombardo (2014), is also described (Sect. 2.3).
Section3 provides a discussion of the role of power transforming the elements of
the row and column profile. Greenacre (2009) describes two types of transformation
that can be considered and does so from the perspective of correspondence analysis.
We shall be focusing our attention on the role of reciprocal averaging on his “power
family 2” although one may consider Wang et al. (2023) for a related discussion on
its role in a third type of power transformation. Section4 provides the core discus-
sion of this paper where we derive the reciprocal averaging procedure to determine
a one-dimensional set of row and column scores when a power transformation is
applied to the profile elements (Sect. 4.1). We also show how eigen-decomposition
can be performed to obtain a multi-dimensional orthogonal set of row and column
scores (Sect. 4.2).We show in Sect. 4.3 that the correlation between the set of row and
column scores that is obtained is themaximumpossible correlation along eachdimen-
sion. Section5 outlines the role of singular value decomposition (SVD) for obtaining
the row and column scores. The practical equivalence of the scores obtained using
the reciprocal averaging procedure and through the SVD of a matrix of residuals is
demonstrated in Sect. 6.We study the asbestos data of Irving Selikoff (Selikoff 1981)
which is described in Sect. 6.1 and then calculate the one-dimensional row and col-
umn scores using reciprocal averaging for various power transformations (Sect. 6.2).
We then describe the application of SVD to obtain equivalent one-dimensional scores
and, more generally, multi-dimensional scores in Sect. 6.3. Some final comments are
left for Sect. 7 where we also describe how one may perform alternative reciprocal
averaging methods to obtain row and column scores under a power transformation of
the profile elements. Such methods advance the arithmetic averaging of the elements
on which the traditional reciprocal averaging is based, but also include a modified
version of method of reciprocal medians (Nishisato 1984) and geometric averaging
(Clavel 2021, Chap.8) which considers the geometric average of the profile ele-
ments. At the end of the paper we include an appendix which gives an R function
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rapower.exe() that performs the one-dimensional reciprocal averaging proce-
dure described in Sect. 4.

2 An Overview of Reciprocal Averaging

2.1 Notation

Suppose we consider an I × J two-way contingency table, N, where the (i, j)th
cell entry has a frequency of ni j for i = 1, 2, . . . , I and j = 1, 2, . . . , J . Let the
grand total ofN be n and let the matrix of relative frequencies be P so that its (i, j)th
cell entry is pi j = ni j/n where

∑I
i=1

∑J
j=1 pi j = 1. Define the i th row marginal

proportion by pi• = ∑J
j=1 pi j so that it is the i th element of the vector r and the

(i, i)th element of the diagonal matrixDI . Similarly, define the j th columnmarginal
proportion as p• j = ∑I

i=1 pi j so that it is the j th element of the vector c and the
( j, j)th element of the diagonal matrix DJ .

2.2 Definition of a Profile

Before we provide a broad discussion of reciprocal averaging, it is important to
understand the quantities we are working with when we calculate row and column
scores and the interpretation they provide when comparing the row scores or the
column scores. The quantities of interest to us here are the profile of a chosen row or
column category. The profile of the i th row category is defined as the set of relative
cell frequencies of that row so that the profile takes the form:

(
ni1
ni•

,
ni2
ni•

, · · · ,
ni j
ni•

, · · · ,
ni J
ni•

)

=
(
pi1
pi•

,
pi2
pi•

, · · · ,
pi j
pi•

, · · · ,
pi J
pi•

)

.

Similarly, the profile of the j th column profile is:

(
n1 j
n• j

,
n2 j
n• j

, · · · ,
ni j
n• j

, · · · ,
nI j

n• j

)

=
(
p1 j
p• j

,
p2 j
p• j

, · · · ,
pi j
p• j

, · · · ,
pI j
p• j

)

.

If there is no association between the row and column variables, such that pi j =
pi• p• j , for all i = 1, 2, . . . , I and j = 1, 2, . . . , J , then the i th row and j th
column profiles simplify to:

(
p•1, p•2, · · · , p• j , · · · , p•J

)

and
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(p1•, p2•, · · · , pi•, · · · , pI•) ,

respectively, so that the i th centred row profile is:

(
pi1
pi•

− p•1,
pi2
pi•

− p•2, · · · ,
pi j
pi•

− p• j , · · · ,
pi J
pi•

− p•J
)

.

Similarly, the j th centred column profile is:

(
p1 j
p• j

− p1•,
p2 j
p• j

− p2•, · · · ,
pi j
p• j

− pi•, · · · ,
pI j
p• j

− pI•
)

.

In both cases, if there is complete independence between the row and column cate-
gories, both sets of centred profiles will consist of zeros.

2.3 Reciprocal Averaging

Reciprocal averaging, like dual scaling and other analogous quantification methods,
determines row and column scores that do two things. First, they are calculated to
best discriminate between differing profiles and highlight those with a similar struc-
ture. Secondly, they are calculated to maximise the association that exists between
the row and column variables. Once these scores are determined they can be used
for visually exploring the nature of this association rather than relying solely on
numerical summaries. Correspondence analysis is the most common approach that
adapts these quantities for such a purpose and many of Nishisato’s friends who have
contributed to this collection have dedicated much of their career to the development
of correspondence analysis and its related methods.

Before we describe the reciprocal averaging of power transformed profiles we
provide a broad overview of the traditional approach to the reciprocal averaging of
the profile elements. Such an overview is not new and has been described numerous
times throughout the quantification literature including, for example, Hill (1974) and
Hirschfeld (1935), and in various forms in many of Nishisato’s publications.

Suppose we define the i th row score by aim while the j th column score is denoted
by b jm for m = 1, 2, . . . , M ; the subscript m is typically included to reflect the
quantity along the mth dimension of a visualisation of the association although,
while we make no such comment on this, it is important to note that such dimensions
are orthogonal to each other. There aremany accounts given that show how reciprocal
averaging can be performed to determine these scores, most of which do so by stating
that the scores are subject to the following properties:

E (aim) =
I∑

i=1

pi•aim = 0 Var (aim) =
I∑

i=1

pi•a2im = 1 (1)
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E
(
b jm

) =
J∑

j=1

p• j b jm = 0 Var
(
b jm

) =
J∑

j=1

p• j b2jm = 1 . (2)

We refrain from referring to (1) and (2) as the constraints of aim and b jm , as has often
been done in the quantification literature. This is largely because Gower (1989, p.
222) states that properties of the type defined by (1) and (2) are “conveniences that
should not be regarded as constraints”.

Reciprocal averaging involves determining the row score, aim and column score
b jm , by considering the weighted (arithmetic) mean of the elements of their centred
profiles so that:

λmaim =
(
pi1
pi•

− p•1
)

b1m + · · · +
(
pi J
pi•

− p•J
)

bJm

=
J∑

j=1

(
pi j
pi•

− p• j
)

b jm (3)

and

λmb jm =
(
p1 j
p• j

− p1•
)

a1m + · · · +
(
pI j
p• j

− pI•
)

aIm

=
I∑

i=1

(
pi j
p• j

− pi•
)

aim . (4)

The λm term in these two equations is the maximum (positive) correlation between
the mth set of row and column scores so that:

λm =
I∑

i=1

J∑

j=1

pi jaimb jm .

Equations (3) and (4) can be expressed in matrix notation by:

λmam = (
D−1

I P − 1I cT
)
bm

and
λmbm = (

D−1
J PT − 1J rT

)
am ,

where
am = (a1m, · · · , aim, · · · , aIm)T

and
bm = (

b1m, · · · , b jm, · · · , bJm
)T

.
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The solution to am and bm can be obtained by solving the eigen-decomposition
equation:

(
ZZT − λ2

mII
) (

D1/2
I am

)
= 0I , (5)

where
Z = D−1/2

I

(
P − rcT

)
D−1/2

I (6)

and II is an I × I identity matrix. Note that the (i, j)th element of Z is Pearson’s
standardised residual:

Zi j = pi j − pi• p• j√
pi• p• j

so that
√
nZi j is asymptotically standard normally distributed. By denoting ãm =

D1/2
I am then (5) becomes:

(
ZZT − λ2

mII
)
ãm = 0I ,

so that ãm is the mth eigen-vector of ZZT and λ2
m is the mth largest eigen-value of

this matrix. A similar derivation obtains the eigen-decomposition equation:

(
ZTZ − λ2

mII
)
b̃m = 0I ,

where b̃m = D1/2
J am is the mth eigen-vector of ZTZ.

3 Linear Transformations and Reciprocal Averaging

In Sect. 2 we outlined that the traditional approach to reciprocal averaging involves
the weighted (arithmetic) mean of the elements of the centred row and column pro-
files. There are situationswhere considering a power transformation of these elements
is warrented. For example, it may involve a square root power to help stabilise the
variance of the cell frequencies when overdispersion is present in the data; this may
be arise due to the underlying assumption that cell frequencies are Poisson random
variables. Onemay alsowish to determine the limiting value of such a transformation
as the power approaches zero so that a (natural) logarithmic transformation is con-
sidered. It might be that chi-squared distributed measures of association other than
Pearson’s statistic are used. Such situations were considered by Beh and Lombardo
(2024) although earlier discussions on the role of power transformation involving
contingency tables has been a topic of much discussion. In particular, one may con-
sider the interconnected issues described by Cuadras and Cuadras (2006, 2015),
Cuadras et al. (2006), and Greenacre (2009, 2010) who provide a discussion of the
role of power transformations in the context of correspondence analysis. For more
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general, and earlier, discussions of the power transformation for the contingency
table the interested reader is directed to Anscombe (1953, pp. 229–230), Bishop et
al. (2007, Example 14.6–3) and McCullagh and Nelder (1984, p. 38).

We shall be considering a purely numeric account of the role of power transfor-
mations by examining its role in the context of reciprocal averaging and canonical
correlation analysis. There are two types of transformations that can be considered
and involve:

1. transforming only pi j so that we have pδ
i j where the row and column marginal

totals are defined as:

pi• (δ) =
J∑

j=1

pδ
i j and p• j (δ) =

I∑

i=1

pδ
i j ,

2. defining the transformation of the elements of the profiles such that:

(
pi j
pi•

)δ

and

(
pi j
p• j

)δ

.

Greenacre (2009) also considered transformations related to these and referred to
the first type as the “power family 1” transformation and the second type as the
“power family 2” transformation. A transformation somewhat related to the first
type is examined in the context of reciprocal averaging by Wang et al. (2023) and so
we shall confine our attention in this paper to the second type of transformation. In
doing so, we define Pδ to be the matrix of pδ

i j elements. Similarly, pδ
i• is i th element

of the vector rδ and the (i, i)th element of Dδ
I while the pδ

• j is the j th element of the
vector cδ and the ( j, j)th element of Dδ

J .

4 The Reciprocal Averaging Procedure

4.1 The Setup

Suppose we denote aim (δ) as the i th row score and b jm (δ) to be the j th column
score for a given value of δ. Then, the reciprocal averaging of the power transformed
profile elements involves solving aim (δ) and b jm (δ) so that:

λm (δ) aim (δ) =
((

pi1
pi•

)δ

− pδ
•1

)

b1m (δ) + · · · +
((

pi J
pi•

)δ

− pδ
•J

)

bJm (δ)

=
J∑

j=1

((
pi j
pi•

)δ

− pδ
• j

)

b jm (δ) (7)
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and

λm (δ) b jm (δ) =
((

p1 j
p• j

)δ

− pδ
1•

)

a1m (δ) + · · · +
((

pI j
p• j

)δ

− pδ
I•

)

aIm (δ)

=
I∑

i=1

((
pi j
p• j

)δ

− pδ
i•

)

aim (δ) . (8)

Here
I∑

i=1

pδ
i•aim (δ) = 0,

I∑

i=1

pδ
i•a

2
im (δ) = 1 (9)

and
J∑

j=1

pδ
• j b jm (δ) = 0

J∑

j=1

pδ
• j b

2
jm (δ) = 1, (10)

so that

λm (δ) =
I∑

i=1

J∑

j=1

pδ
i j aim (δ) b jm (δ) (11)

is the correlation between the set of row scores am (δ) = (a1m (δ) , . . . , aIm (δ))T

and column scores,bm (δ) = (b1m (δ) , . . . , bJm (δ))T—weconfirm inSect. 4.3 that,
given the chosen value of δ, λm (δ) is the maximum possible correlation between
am (δ) and bm (δ). We note that when δ = 1, the above equations are equivalent to
those described in Sect. 2.3. That is aim (1) ≡ aim , bim (1) ≡ bim and λm (1) ≡ λm .

Equations (7) and (8) may be expressed in matrix form since they are elements
of:

λm (δ) am (δ) =
(
D−δ

I Pδ − 1I
(
cT

)δ
)
bm (δ) (12)

and
λm (δ) bm (δ) =

(
D−δ

J

(
PT

)δ − 1J
(
rT

)δ
)
am (δ) , (13)

respectively. Properties (9) and (10) can then be expressed as:

(
rδ

)T
am (δ) = 0 and

(
cδ

)T
bm (δ) = 0 (14)

and
am (δ)T Dδ

Iam (δ) = 1 and bm (δ)T Dδ
Jbm (δ) = 1 , (15)

respectively. We now defineAδ to be the I × M columnmatrix containing the vector
of row scores, am (δ), and Bδ to be the J × M column matrix containing the column
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scores bm (δ). Thus, these properties can be defined as:

AT
δ D

δ
IAδ = IM and BT

δ D
δ
JBδ = IM , (16)

where IM is an M × M identity matrix. In the appendix of this paper we outline an R
function called rapower.exe() that performs the reciprocal averaging procedure
described here for m = 1.

4.2 The Eigen-Decomposition Solution

Suppose we pre-multiply both sides of (12) by λm (δ)Dδ/2
I so that we have:

λ2
m (δ)

(
Dδ/2

I am (δ)
)

= λm (δ)Dδ/2
I

(
D−δ

I Pδ − 1I
(
cδ

)T)
bm (δ)

=
[
D−δ/2

I

(
Pδ − (

rcT
)δ

)
D−δ/2

J

] (
λm (δ)Dδ/2

J bm (δ)
)

. (17)

Now, pre-multiplying both sides of (13) by Dδ/2
J gives us:

λm (δ)Dδ/2
J bm (δ)

= Dδ/2
J

(
D−δ

J

(
PT

)δ − 1J
(
rT

)δ
)
am (δ)

=
[

D−δ/2
J

(
Pδ − (

rcT
)δ

)T
D−δ/2

I

] (
Dδ/2

I am (δ)
)

. (18)

We shall show in Sect. 4.3 that, for both (17) and (18), λm (δ) is defined by (11) and
is the maximum (positive) correlation between am (δ) and bm (δ) for a fixed value
of δ.

To simplify (17) and (18), we let:

Zδ = D−δ/2
I

(
Pδ − (

rcT
)δ

)
D−δ/2

J (19)

be the matrix of standardised residuals after a power transformation has been applied
to the profile elements. For example, when δ = 1, (19) simplifies to (6). Therefore,
(17) becomes:

λ2
m (δ)

(
Dδ/2

I am (δ)
)

= Zδ

(
λm (δ)Dδ/2

J bm (δ)
)

(20)

and (18) is:

λm (δ)Dδ/2
J bm (δ) = ZT

δ

(
Dδ/2

I am (δ)
)

. (21)
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Substituting (21) into (20) gives us:

λ2
m (δ)

(
Dδ/2

I am (δ)
)

= ZδZT
δ

(
Dδ/2

I am (δ)
)

which can be expressed as the eigen-decomposition equation:

(
ZδZT

δ − λ2
m (δ) II

) (
Dδ/2

I am (δ)
)

= 0I . (22)

Suppose we now denote:
ãm (δ) = Dδ/2

I am (δ)

then (22) becomes: (
ZδZT

δ − λ2
m (δ) II

)
ãm (δ) = 0I . (23)

Therefore, ãm (δ) can be determined from the eigen-decomposition ofZδZT
δ and is the

mth eigen-vector of the matrix, while λ2
m (δ) is its mth largest eigen-value. Thus the

set of row scores, am (δ) can be determined by performing an eigen-decomposition
of ZδZT

δ and calculating D−δ/2
I ãm (δ).

By following a similar derivation we also get:

(
ZT

δ Zδ − λ2
m (δ) II

)
b̃m (δ) = 0I , (24)

where
b̃m (δ) = Dδ/2

J bm (δ)

is the mth eigen-vector of ZT
δ Zδ so that λ2

m (δ) is also the mth largest eigen-value of
this matrix. Thus, the vector bm (δ) can be determined from the eigen-decomposition
of ZT

δ Zδ by pre-multiplying b̃m (δ) by D−δ/2
J .

Given the property that Aδ and Bδ fulfil—see (16)—the properties met by the
columnmatrices containing ãm (δ) and b̃m (δ)—defined by Ãδ and B̃δ , respectively—
are:

AT
δ D

δ
IAδ =

(
D−δ/2

I Ãδ

)T
Dδ

I

(
D−δ/2

I Ãδ

)
= ÃT

δ Ãδ = IM (25)

and

BT
δ D

δ
JBδ =

(
D−δ/2

J B̃δ

)T
Dδ

J

(
D−δ/2

J B̃δ

)
= B̃T

δ B̃δ = IM . (26)

4.3 A Canonical Correlation Solution

At the heart of reciprocal averaging/dual scaling is the idea that the scores are deter-
mined so that one obtains the maximum (positive) correlation that exists between
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themwhile ensuring that the scores also maximise any differences that exist between
its categories of the row variable and the column variable. We can show that the
correlation obtained from the reciprocal averaging procedure described in Sect. 4.2
is the maximum possible correlation between am (δ) and bm (δ).

Following on from our above discussion, we define the correlation between am (δ)

and bm (δ) by:

λm (δ) = Corr (am (δ) , bm (δ))

= (am (δ) − E (am (δ)))T√
Var (am (δ) − E (am (δ)))

Pδ (bm (δ) − E (bm (δ)))√
Var (bm (δ) − E (bm (δ)))

= (am (δ) − E (am (δ)))T
√

(am (δ) − E (am (δ)))T Dδ
I (am (δ) − E (am (δ)))

Pδ ×

(bm (δ) − E (bm (δ)))T
√

(bm (δ) − E (bm (δ)))T Dδ
J (bm (δ) − E (bm (δ)))

.

At this stage, there is no need to impose any property that am (δ) and bm (δ) must
abide. Although to help simplify the derivations we shall let a∗

m (δ) = am (δ) −
E (am (δ)) and b∗

m (δ) = bm (δ) − E (bm (δ)). Therefore:

λm (δ) = a∗
m (δ)T Pδb∗

m (δ)
√(

a∗
m (δ)T Dδ

Ia∗
m (δ)

) (
b∗
m (δ)T Dδ

Jb∗
m (δ)

) .

Squaring this correlation gives:

λm (δ)2 = (
a∗
m (δ)T Dδ

Ia
∗
m (δ)

)−1 (
a∗
m (δ)T Pδb∗

m (δ)
)2 (

b∗
m (δ)T Dδ

Jb
∗
m (δ)

)−1
. (27)

To maximise this squared correlation we begin by first differentiating it with respect
to am (δ). Doing so is done by noting that:

∂λm (δ)2

∂am (δ)
= ∂λm (δ)2

∂a∗
m (δ)

∂a∗
m (δ)

∂am (δ)
= ∂λm (δ)2

∂a∗
m (δ)

.
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Therefore:

∂λm (δ)2

∂am (δ)
= 2

(
am (δ)T Dδ

I am (δ)
)−1 (

am (δ)T Pδbm (δ)
) (

Pδam (δ)
)

×
(
bm (δ)T Dδ

Jbm (δ)
)−1 − 2

(
am (δ)T Dδ

I am (δ)
)−2 (

Dδ
I am (δ)

)

×
(
am (δ)T Pδbm (δ)

)2 (
bm (δ)T Dδ

Jbm (δ)
)−1

= 0 . (28)

Similarly, differentiating (27) with respect to bm (δ) leads to:

∂λm (δ)2

∂bm (δ)
= 2

(
bm (δ)T Dδ

Jbm (δ)
)−1 (

bm (δ)T Pδbm (δ)
) ((

Pδ
)T

am (δ)
)

×
(
am (δ)T Dδ

I am (δ)
)−1 − 2

(
bm (δ)T Dδ

Jbm (δ)
)−2 (

Dδ
Jbm (δ)

)

×
(
bm (δ)T

(
Pδ

)T
am (δ)

)2 (
am (δ)T Dδ

I am (δ)
)−1

= 0 . (29)

Suppose we now let am (δ) and bm (δ) be subject to (14) and (15). Then (28) and
(29) simplify to:

∂λm (δ)2

∂am (δ)
= 2λm (δ)

(
Pδbm (δ)

) − 2λm (δ)2
(
Dδ

Iam (δ)
) = 0 (30)

∂λm (δ)2

∂bm (δ)
= 2λm (δ)

(
am (δ)T Pδ

) − 2λm (δ)2
(
bm (δ)T Dδ

J

) = 0 , (31)

respectively, while (27) simplifies to:

λm (δ)2 = (
am (δ)T Pδbm (δ)

)2
,

so that taking the square root of both sides gives elements that are equivalent to (11).
We can verify that this is indeed the maximum (squared) correlation between the set
of row scores am (δ) and column scores bm (δ) for the chosen value of δ since, for
all δ �= 0:

∂2λm (δ)2

∂am (δ)2
= −2λm (δ)2 Dδ

I < 0,

∂2λm (δ)2

∂bm (δ)2
= −2λm (δ)2 Dδ

J < 0 .

We can verify that the solution to am (δ) and bm (δ) are just (12) and (13). To show
this, note that (30) and (31) reduce to:

Pδbm (δ) = λm (δ)
(
Dδ

Iam (δ)
)

am (δ)T Pδ = λm (δ)
(
bm (δ)T Dδ

J

)
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for λm (δ) �= 0 which can be alternatively, and equivalently, expressed as:

λm (δ) am (δ) = (
D−δ

I Pδ
)
bm (δ) =

(
D−δ

I Pδ − 1I
(
cδ

)T)
bm (δ)

λm (δ) bm (δ) =
(
D−δ

J

(
PT

)δ
)
am (δ) =

(
D−δ

J

(
Pδ

)T − 1J
(
rδ

)T)
am (δ) ,

since
(
rT

)δ
am (δ) = 0 and

(
cT

)δ
bm (δ) = 0 – see (14). These results are just those of

(12) and (13), respectively. Therefore, canonical correlation analysis yields row and
column scores, am (δ) and bm (δ), respectively, that are identical to those obtained via
reciprocal averaging with λm (δ) being the maximum possible (positive) correlation
between am (δ) and bm (δ).

5 The Solution Using Singular Value Decomposition

Rather than performing two eigen-decompositions to determine the set of row scores
am (δ) and the set of column scores bm (δ)—as (23) and (24) do—we can instead
apply a singular value decomposition (SVD) to the matrix of residuals Zδ defined by
(19). By doing so, we have:

Zδ = D−δ/2
I

(
Pδ − (

rcT
)δ

)
D−δ/2

J = ÃδDδB̃T
δ , (32)

where Ãδ is subject to (25), B̃δ is subject to (26) and Dδ is the diagonal matrix
where the (m, m)th element is λm (δ), the mth singular value of Z̃δ . The advantage
of considering (32) is that the properties underlying Ãδ and B̃δ are those adopted by
the svd() function in R and so it is (32) that is central to the calculations performed
in Sect. 6.3.

The matrix form of the row and column scores that motivated our discussion—Aδ

and Bδ—can be found from the SVD of Zδ , by rescaling Ãδ and B̃δ so that:

Aδ = D−δ/2
I Ãδ and Bδ = D−δ/2

J B̃δ . (33)

Recall that these matrices have the property given by (16).

6 Application: Selikoff’s Asbestos Data

6.1 The Data

Consider the 5 × 4 contingency table ofTable1 that comes froma study undertaken in
1963 andwhose findingswere not published until 1981 (Selikoff 1981). Irvin Selikoff
was a chest physician inNewYork.With his team, Selikoff examined 1117NewYork
constructionworkers that were exposed to asbestos fibres. They established that there
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Table 1 Selikoff’s data for studying the link between years of exposure to asbestos fibres and
severity of asbestosis

Asbestosis grade diagnosed

Occupational exposure
(years)

None Grade 1 Grade 2 Grade 3 Total

0–9 310 36 0 0 346

10–19 212 158 9 0 379

20–29 21 35 17 4 77

30–39 25 102 49 18 194

40+ 7 35 51 28 121

Total 575 366 126 50 1117

was a link between the number of years of occupational exposure to asbestos fibres
and the severity of asbestosis that the worker was diagnosed with; from a preliminary
analysis of the data in Table1, Selikoff posited the “20-year rule” (Selikoff 1981,
p. 948) stating that “it was only after the 20-year point that most reontgenograms
became abnormal”. The impact of being exposed to asbestos fibres on an person’s
health has since been felt internationally withmany countries banning the production
and importation of products containing asbestos fibres; see Beh and Smith (2011),
Tran et al. (2012) and Beh and Lombardo (2014, Sect. 1.4) for a discussion of this
issue fromacategorical data analysis perspective and the referencesmentionedwithin
for additional global contexts.

Table1 cross-classifies 5 different lengths of time that a worker was exposed to
asbestos (in intervals of 10years) and four grades (of severity) of asbestosis that the
workers were diagnosedwith; this data also appears in Table1 of Selikoff (1981) with
a reorganisation of the categories. A chi-squared test of independence of Table1 gives
a Pearson statistic of 648.81 with (5 − 1)(4 − 1) = 12 degrees of freedom. Thus,
there exists a statistically significant association between the years of exposure to
asbestos and the diagnosed level of asbestosis since the p-value of each of these test
statistics is less than 0.001.

One could perform a correspondence analysis to visually identify the nature of
the association that exists between the variables. Although this was comprehensively
done by Beh and Smith (2011) and Beh and Lombardo (2014). Therefore, we shall
confine our attention to the calculation of the singular vectors and singular values
for various values of δ.

6.2 Reciprocal Averaging

Suppose we consider for the moment determining the set of uni-dimensional row
scores:
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Fig. 1 Plot of the row and column scores versus δ ∈ [0.1, 1.5] for Table1

a1 (δ) = (a1 (δ) , · · · , a5 (δ))T ,

and column scores:
b1 (δ) = (b1 (δ) , · · · , b4 (δ))T .

We shall confine our attention to δ ∈ [0.1, 1.5] where the initial set of row scores
that were used were (1, 2, 3, 4, 5) while (1, 2, 3, 4) were used as the set of initial
column scores. The initial value of λ is set to 1.

Figure1 shows the changes in the set of row scores, a1 (δ), and changes in the set
of column scores, b1 (δ), for δ ∈ [0.1, 1.5]. It shows that, irrespective of the value of
δ, the association that exists between specific rows and columns remains unchanged.
For example, a1 (δ) (for the row category 0 - 9years) is always associated with b1 (δ)

(for the column category None). Similarly, the longest years of exposure to asbestos
fibres, a5 (δ) (for the row category 40+ years) is always associated with the most
severe case of asbestosis, b4 (δ) (for the column category Grade 3). However, there
is a change in the sign of the scores around δ = 0.4.

To highlight the changes in the correlation between these row and column scores
as δ shifts from 0.1 to 1.5, Fig. 2 shows λ1 (δ) versus δ. It shows that the maximum
correlation of λ1 (δ) = 0.91755 is achieved δ = 0.506. Thus, while we know that
any given value of δ ensures the correlation between the row and column scores is
maximised for that value of δ, for Table1, it is a square root transformation of profiles
that produces a near maximum possible correlation between them. When δ = 0.506
the row and column scores are:

a1 (δ = 0.506) = (−0.84997, −0.48866, 0.30848, 0.55218, 0.98048)T

and
b1 (δ = 0.506) = (−0.53114, 0.23426, 1.10893, 1.31583)T ,
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Fig. 2 Plot of δ ∈ [0.1, 1.5] versus λ1 (δ) for Table1

respectively. For comparisons, a unitary transformation (δ = 1) produces row and
column scores:

a1 (δ = 1) = (−1.02368, −0.36766, 0.66890, 1.09353, 1.89988)T

and
b1 (δ = 1) = (−0.84693, 0.41606, 1.79902, 2.16057)T ,

respectively. These scores are equivalent to those obtained using the traditional recip-
rocal averaging method and the correlation between them is λ1 (1) = 0.69940. For
these two values of δ (and for others that can be considered), a1 (δ)T Dδ

Ia1 (δ) = 1
and b1 (δ)T Dδ

Jb1 (δ) = 1. Table2 gives the row scores, column scores, and their
correlation (to five decimal places) for Table1. We have selected values of δ ranging
from 0.1 to 1.5 at increments of 0.2. The number of iterations for convergence to five
decimal places to occur is also given.

6.3 SVD Solution

The solutions to a1 (δ) and b1 (δ) in Sect. 6.2 are only one-dimensional but can be
generalised to M dimensions. To discuss these solutions we first consider the matrix
of residuals, Zδ , defined by (19), which are summarised in Table3 for δ = 1, 0.5
and 1.3. Since M = min (5, 4) − 1 = 3 we produce the 5 × 3 matrix of row scores,
Aδ . The elements of this matrix are summarised in Table4 for δ = 1, 0.5 and 1.3.
Similarly, the 4 × 3 matrix of column scores,Bδ , are summarised in Table5 for these
δ values. These scores are calculated by first applying the svd() function in R to
the matrix of elements in Table3. The svd() function produces the the matrices
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Table 2 Row scores, column scores and correlation from the reciprocal averaging for Table1 when
δ ∈ [0.1, 1.5]

δ

Score 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

a1 (δ) 0.88436 0.88524 −0.85037 −0.86900 −0.95510 −1.10872 −1.34407 −1.67244

a2 (δ) 0.55889 0.55418 −0.49058 −0.43428 −0.38887 −0.34791 −0.30275 −0.25517

a3 (δ) −0.03714 −0.15982 0.30424 0.44444 0.59089 0.74958 0.92243 1.09741

a4 (δ) −0.07647 −0.30268 0.54535 0.76408 0.98108 1.20809 1.44709 1.67839

a5 (δ) −0.15030 −0.55994 0.96909 1.33702 1.70770 2.09875 2.48137 2.79853

b1 (δ) 0.05989 0.30163 −0.52581 −0.67306 −0.78959 −0.90696 −1.04524 −1.21570

b2 (δ) −0.05475 −0.15831 0.23231 0.29773 0.37279 0.46255 0.56988 0.68624

b3 (δ) −0.63975 −0.88138 1.10218 1.34617 1.63711 1.96954 2.31247 2.60518

b4 (δ) −0.95244 −1.13114 1.30939 1.57347 1.94098 2.40186 2.91314 3.38770

λ1 (δ) 0.08457 0.73476 0.91743 0.85718 0.75147 0.65094 0.56847 0.50784

Iterations 8 8 7 6 4 4 7 8

Ãδ and B̃δ respectively. To ensure that they have the property AT
δ D

δ
IAδ = IM and

AT
δ D

δ
IAδ = IM we pre-multiply Ãδ byD

−δ/2
I and B̃δ byD

−δ/2
J thereby calculatingAδ

and Bδ; see (33).
When δ = 1, the first dimensional solution to the row and column scores sum-

marised in Tables4 and 5 is equivalent to that obtained using the traditional reciprocal
averaging procedure–see the scores a1 (δ = 1) andb1 (δ = 1) in the previous section.
The scores calculated using reciprocal averaging procedure and the svd() function
are accurate to at least the fourth decimal place.

When δ = 0.5 and 1.3, the row and column scores summarised in Table2 are
exactly the same, to four or five decimal places, with the scores calculated using the
svd() function; see the first column of Tables4 and 5. A similar level of accuracy
can be obtained for other values of δ.

Suppose we now turn our attention to calculating the correlation along the first
dimension of the row and column scores obtained from the svd() function. This
can be achieved using the correlation defined by (11). Table6 summarises these
correlation values and the absolute differencewith those obtained from the reciprocal
averaging procedure. We can see that using the svd() function in R produces
correlation values that are accurate to at least the fifth decimal place.

7 Discussion

Profile transformations are not new to the analysis of contingency tables. One can
consider Beh and Lombardo (2024), Cuadras and Cuadras (2006), Cuadras et al.
(2006) and Greenacre (2009, 2010), especially since their discussion is in terms of
the correspondence analysis of a two-way table. However, very little appears to be
available (at least, that we are aware of) that examines the issue of power transforma-
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Table 3 Residuals, Zδ , using (19) when δ = 1, δ = 0.5 (in parentheses), δ = 1.3 (in brackets)

Asbestosis grade diagnosed

Occupational
exposure (years)

None Grade 1 Grade 2 Grade 3

0.296 −0.217 −0.187 −0.118

0–9 (0.202) (−0.246) (−0.432) (−0.343)

[0.320] [−0.175] [−0.113] [−0.062]

0.036 0.091 −0.154 −0.123

10–19 (0.027) (0.074) (−0.239) (−0.351)

[0.037] [0.088] [−0.104] [−0.066]

−0.089 0.058 0.084 0.009

20–29 (−0.118) (0.069) (0.118) (0.018)

[−0.064] [0.045] [0.059] [0.005]

−0.224 0.144 0.173 0.095

30–39 (−0.273) (0.130) (0.186) (0.131)

[−0.174] [0.132] [0.144] [0.067]

−0.210 −0.222 0.302 0.290

40+ (−0.323) (−0.026) (0.310) (0.336)

[−0.144] [−0.017] [0.260] [0.234]

Table 4 Row scores, Aδ , of Table1 when δ = 1, δ = 0.5 (in parentheses), δ = 1.3 [in brackets]

Dimension

Occupational exposure
(years)

1 2 3

−1.02290 0.94851 −0.38985

0–9 (−0.85037) (0.32697) (0.90201)

[−1.34416] [1.19850] [−1.01459]

−0.36841 −0.91680 0.86632

10–19 (−0.49058) (−1.00021) (0.18633)

[−0.30269] [−0.88181] [−1.30718]

0.66843 −0.58167 −2.72979

20–29 (0.30424) (−0.60267) (0.11576)

[0.92246] [−0.51343] [−0.75616]

1.09292 −0.73852 −0.58441

30–39 (0.54535) (−0.75422) (0.45356)

[1.44713] [−0.61736] [−1.69930]

1.90128 1.71357 1.07537

40+ (0.96909) (0.27742) (1.15320)

[2.48117] [2.84114] [−0.87060]
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Table 5 Column scores, Bδ , of Table1 when δ = 1, δ = 0.5 (in parentheses), δ = 1.3 [in brackets]

Dimension

Asbestos grade
diagnosed

1 2 3

−0.84676 0.47171 −0.05555

None (−0.52581) (0.56963) (−0.87972)

[−1.04526] [0.59196] [−0.95817]

0.41559 −1.33969 0.29055

Grade 1 (0.23231) (−0.89489) (−0.79743)

[0.56992] [−1.32742] [−1.46238]

1.79933 0.87879 −1.96347

Grade 2 (1.10218) (−0.00212) (−0.46582)

[2.31241] [1.82513] [−1.11975]

2.16133 2.16732 3.45997

Grade 3 (1.30939) (1.20810) (−0.19278)

[2.91301] [3.71911] [−1.46567]

Table 6 Maximum correlation of the row and column scores from the SVD ofRδ for Table1 when
δ ∈ [0, 1, 1.5]

Correlation δ

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

λ1 (δ) 0.08456 0.73475 0.91742 0.85718 0.75146 0.65095 0.56848 0.50786

Abs Diff 0.00001 0.00001 0.00001 <0.00001 0.00001 0.00001 0.00001 0.00002

tions from a scaling perspective. Hopefully, this paper fills that void by discussing
it in terms of reciprocal averaging and canonical correlation analysis, and the appli-
cation of Irving Selikoff’s asbestos data in Sect. 6.1. We have methodologically, and
practically, shown that the calculation of the row and column scores can be found
using reciprocal averaging or, for a multi-dimensional solution, from the SVD of
the matrix Zδ defined by (19). While we can also show how such scores and their
correlation relate to the Cressie-Read family of divergence statistics (Cressie and
Read 1984) further work can be undertaken to demonstrate its practical benefits. The
links that exist between this family and correspondence analysis were established by
Beh and Lombardo (2024).

While we do focus on power transformations of the profile elements from the
perspective of reciprocal averaging it is important to keep in mind that reciprocal
averaging involves the arithmetic averaging of the transformed elements of the row
and column profiles. One may also consider other strategies for finding the centre
of the profiles. These include performing reciprocal averaging on the median of
the profile elements, or even a geometric or harmonic averaging of the elements.
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Considering reciprocal averaging in themedian case when examining untransformed
elements was discussed by Nishisato (1984) but can be expanded to the transformed
case by considering the following two equations:

λm (δ) aim (δ) = Mdn j

[((
pi j
pi•

)δ

− pδ
• j

)

b jm (δ)

]

(34)

and

λm (δ) b jm (δ) = Mdni

[((
pi j
p• j

)δ

− pδ
i•

)

aim (δ)

]

. (35)

Here, “Mdn j” is the median of the I elements of the power transformed elements of
the centred row profile, while “Mdni” is the median of the J elements of the power
transformed centred column profile. Note that when δ = 1, (34) and (35) simplify
to Eqs. (5) and (6), respectively, of Nishisato (1984), a technique he referred to as
the method of reciprocal medians (or simply MRM) and was proposed, in part, to
“mitigate the problem of extreme weights” [p. 143].

Rather than determining the row and column scores by considering the weighted
arithmetic mean of the elements of the profiles, or their median, Nishisato et al.
(2021, Chap.8) proposed a few different ways inwhich geometric averaging could be
performed. These methods, referred to as the methods of geometric averaging, were
designed for the untransformed case but can be easily amended when considering
the transformed version of the profile elements. In this case, the row and column
scores, aim (δ) and b jm (δ), can be determined from:

λm (δ) aim (δ) =
⎡

⎣
J∏

j=1

∣
∣
∣
∣
∣

(
pi j
pi•

)δ

− pδ
• j

∣
∣
∣
∣
∣
b jm (δ)

⎤

⎦

1/J

(36)

and

λm (δ) b jm (δ) =
[

I∏

i=1

∣
∣
∣
∣
∣

(
pi j
p• j

)δ

− pδ
i•

∣
∣
∣
∣
∣
aim (δ)

]1/I

. (37)

An alternative set of geometric averaging formulae were also derived, those being:

λmaim (δ) =
⎡

⎣
J∏

j=1

(
pi j

pi• p• j

)δ

b jm (δ)

⎤

⎦

1/J

(38)

and

λmb jm (δ) =
[

I∏

i=1

(
pi j

pi• p• j

)δ

aim (δ)

]1/I

. (39)
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In both cases, there is no guarantee that the row and column scores calculated from
either set of formulaewill be centred at zero or have aunitary variance.However, these
properties can be satisfied once convergence has been achieved. We note that when
δ = 1, then (36)–(37) simplify to (8.4)–(8.5) of Nishisato et al. (2021, p. 162), while
(38)–(39) simplify to Eqs. (8.6)–(8.7) (Nishisato et al. 2021, p. 163). Choulakian
(2023) points out that taxicab correspondence analysis (Choulakian 2006) can be
performed using the framework outline in this paper by adapting (7) and (8) so that:

λm (δ) aim (δ) =
J∑

j=1

((
pi j
pi•

)δ

− pδ
• j

)

sgn
(
b jm (δ)

)

and

λm (δ) b jm (δ) =
I∑

i=1

((
pi j
p• j

)δ

− pδ
i•

)

sgn (aim (δ)) .

Here, sgn (•) is the coordinate-wise sign function such that sgn (x) = 1 if x > 1
and sgn (x) = −1 if x ≤ 0. Choulakian (2023) also points out that the method of
reciprocal medians (Nishisato 1984) can be performed in the context of a taxicab
analysis by replacing b jm (δ) with sgn

(
b jm (δ)

)
on the right-hand side of (34) and

aim (δ) with sgn (aim (δ)) on the right-hand side of (35). Similarly, a taxicab analysis
of the method of geometric averaging can be performed by making a substitution
of sgn (aim (δ)) for aim (δ) in (37) and (39), and of sgn

(
b jm (δ)

)
for b jm (δ) in (36)

and (38).
One unresolved issue with these alternative “averaging” techniques is that, unlike

reciprocal averaging in the classic (untransformed) or transformed case considered
here, their link with eigen-decomposition and singular value decomposition has not
been established. The advantage of any such links is evident in the computational
simplicity that can be achieved (at least inmost cases) inR using thesvd() function.
Although these links, and other research questions that may present themselves, will
be discussed at a later date.

Appendix

We present here the R function rapower.exe() that performs the reciprocal aver-
aging of the elements of the row and column profiles under a power transformation
δ (delta). The input arguments of the function are:

• the contingency table, N which is defined as data,
• the power of the transformation, δ (delta). By default delta = 1,
• a logical argument iters that, if it is set to TRUE (default), prints to screen the
value of each row score, column score and correlation at each iteration.

http://dx.doi.org/10.1007/978-981-99-5329-5_8
http://dx.doi.org/10.1007/978-981-99-5329-5_8
http://dx.doi.org/10.1007/978-981-99-5329-5_8
http://dx.doi.org/10.1007/978-981-99-5329-5_8
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• the initial value of λ1 (δ) (lambda.ini) which, by default, is set equal to 1,
and

• the number of decimal places (acc) until convergence of the correlation is
reached. By default convergence is set to five decimal places:

rapower.exe <- function(data, delta = 1, iters = TRUE,
lambda.ini = 1, acc = 5) {

# This function performs a reciprocal averaging using the
# "power family 2" transformation of Greenacre (2009)

###############################################################
# Some basics #
###############################################################

Inames <- dimnames(data)[1] # Row category names
Jnames <- dimnames(data)[2] # Column category names

I <- nrow(data)
J <- ncol(data)
n <- sum(data)
P <- data/sum(data)
pidot <- apply(P, 1, sum)
pdotj <- apply(P, 2, sum)
R <- diag(pidot, I, I)
C <- diag(pdotj, J, J)

###############################################################
# The algorithm #
###############################################################

a.ini <- c(1:nrow(data)) # Initial value of row scores
b.ini <- c(1:ncol(data)) # Initial value of column scores

if (iters == TRUE){
print(round(c(0, a.ini, b.ini, lambda.ini), digits = acc))

}
# The first iteration of the row and columns scores, and their
# correlation

a.old <- a.ini/sqrt(t(a.ini)%*%Rˆdelta%*%a.ini)[1,1]
b.old <- (1/lambda.ini)*(solve(Cˆdelta)%*%t(Pˆdelta) -

(rep(1, times = J)%*%t(pidotˆdelta)))%*%a.old
b.old <- b.old/sqrt(t(b.old)%*%Cˆdelta%*%b.old)[1,1]
lamb.old <- (t(a.old)%*%Pˆdelta%*%b.old)[1,1]

# The iterative step of the algorithm

counter = 1

if (iters == TRUE){
print(round(c(counter, a.old, b.old, lamb.old), digits = acc))

}

repeat{
a.new <- (1/lamb.old)*(solve(Rˆdelta)%*%Pˆdelta -

(rep(1, times = I)%*%t(pdotjˆdelta)))%*%b.old
b.new <- (1/lamb.old)*(solve(Cˆdelta)%*%t(Pˆdelta) -

(rep(1, times = J)%*%t(pidotˆdelta)))%*%a.new

a.new <- a.new/sqrt(t(a.new)%*%Rˆdelta%*%a.new)[1,1]
b.new <- b.new/sqrt(t(b.new)%*%Cˆdelta%*%b.new)[1,1]

lamb.new <- (t(a.new)%*%Pˆdelta%*%b.new)[1,1]
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counter <- counter + 1

if (iters == TRUE){
print(round(c(counter, a.new, b.new, lamb.new), digits = acc))

}

lamb.comp <- abs(lamb.old - lamb.new)

if (lamb.comp < 10ˆ(-1*acc)) break

a.old <- a.new
b.old <- b.new
lamb.old <- lamb.new

}

###############################################################
# The numerical output . . . #
###############################################################

dimnames(a.new) <- list(paste(Inames[[1]]), paste("row score"))
dimnames(b.new) <- list(paste(Jnames[[1]]), paste("col score"))

list(iterations = round(counter, acc),
a = round(a.new, acc),
b = round(b.new, acc),
lamb = round(lamb.old, acc))

}

Therefore, when asbestos.dat is the R object given to the two-way contingency
table of Table1 and is defined by:

> asbestos.dat <- matrix(c(310, 212, 21, 25, 7, 36, 158, 35, 102,
+ 35, 0, 9, 17, 49, 51, 0, 0, 4, 18, 28), nrow = 5)
> dimnames(asbestos.dat) <- list(paste(c("0-9", "10-19", "20-29",
+ "30-39", "40+")), paste(c("None", "Grade 1", "Grade 2",
+ "Grade 3")))
>
> asbestos.dat

None Grade 1 Grade 2 Grade 3
0-9 310 36 0 0
10-19 212 158 9 0
20-29 21 35 17 4
30-39 25 102 49 18
40+ 7 35 51 28
>

The traditional reciprocal averaging approach may be performed by defining δ = 1
so that:

> rapower.exe(selikoff.dat, iters = F)
$iterations
[1] 3

$a
row score

0-9 -1.02368
10-19 -0.36766
20-29 0.66890
30-39 1.09353
40+ 1.89988
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$b
col score

None -0.84693
Grade 1 0.41606
Grade 2 1.79902
Grade 3 2.16057

$lamb
[1] 0.6994

>

Note that $a and $b are the row and column scores given by a1 (δ = 1) and
b1 (δ = 1), respectively, in Sect. 6.2 while the correlation of 0.69940 appears as
$lamb.

If a similar analysis is performed but with δ = 0.5 then we get the row scores
($a), column scores ($b) and correlation ($lamb) that are summarised in the fourth
column of Table2 so that:

> rapower.exe(selikoff.dat, delta = 0.5, iters = F)
$iterations
[1] 7

$a
row score

0-9 -0.85037
10-19 -0.49058
20-29 0.30424
30-39 0.54535
40+ 0.96909

$b
col score

None -0.52581
Grade 1 0.23231
Grade 2 1.10218
Grade 3 1.30939

$lamb
[1] 0.91743

>
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Dual Scaling of Rating Data

Michel van de Velden and Patrick J.F. Groenen

1 Introduction

The works of Nishisato has shown that dual scaling is a powerful method that can
be applied to solve a wide variety of data analysis problems. Dual scaling is closely
related and, for many practical purposes and applications, equivalent to correspon-
dence analysis. The books of Nishisato (1994) and Greenacre (1984) give a detailed
account of the relationships and origins of the methods. Mathematically, relation-
ships are particularly strong; see, for example, Greenacre (1984) and van de Velden
(2000a). Perhaps, the biggest difference between the methods concerns correspon-
dence analysis’ focus on geometry versus dual scaling’s emphasis on the optimal
scaling properties.

Although both correspondence analysis and dual scaling are often considered for
analysing a contingency table, both methods can be applied to other types of data.
However, with respect to the analysis of such other data types, the approaches do in
fact differ. In this Chapter, we explicitly consider dual scaling and correspondence
analysis of rating data.

For correspondence analysis, the analysis of rating data is explicitly treated in
Greenacre (1984, Chap. 6). However, Greenacre (2017) treats the analysis of rating
data in a chapter titled “Data re-coding” (Chap. 23). The new labelling of the topic is
a direct result of the way the analysis of rating data is defined in the correspondence
analysis literature. That is, for the analysis of rating data, the rating data are first
re-coded in a specific form and subsequently the usual correspondence analysis
calculations are applied to the re-coded data.
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For dual scaling, the analysis of rating data is treated in the context of paired
comparison and successive categories data. The proposed methods in these contexts
also amount to the application of the usual dual scaling calculations (which are
equivalent to the correspondence analysis calculations) to re-coded data. However,
as we show in this paper, the re-coding in dual scaling and correspondence analysis
is different and, consequently, properties of the solutions differ as well. Note that, a
direct analysis of rating data does not appear to exist in the dual scaling literature.
However, as we show in Sect. 4, we can tackle this problem by using a similar
interpretation of the ratings as done in the correspondence analysis literature.

In this paper, we review the existing approaches to the analysis of rating data in
dual scaling and correspondence analysis. We do so by first briefly summarising the
different types of re-coding in Section’s 3 and 4. Furthermore, we propose a method
that allows a more direct treatment of rating data in dual scaling. Next, using the
optimal scaling framework that is fundamental in the works of Nishisato, we provide
insights into the theoretical differences between the methods, and we discuss the
implications of these differences in practise. We illustrate the differences by means
of an example data set taken from Nishisato (1994) and provide some final remarks
in Sect. 7.

2 Dual Scaling

The objective of dual scaling is to find optimal scaling values or scores (or coordi-
nates) for row categories that maximise the between row variance whilst at the same
time finding scores for the column categories that maximise the between column
variance. Here we only give the basic formulas needed to calculate the dual scaling
solution for analysing a two-way data tableF consisting of non-negative integers. For
a complete description of the rationale and a derivation of the dual scaling solution;
see Nishisato (1994).

Let F denote an n × p matrix consisting of non-negative entries and define diag-
onal matricesDr andDc in such a way thatDr1p = F1p = r andDc1n = FT 1n = c,
where generically, 1i denotes an i × 1 vector of ones. Consider the singular value
decomposition:

D−1/2
r

(
F − 1

s
rcT

)
D−1/2

c = U�VT , (1)

where s = 1nF1p, and, without loss of generality, the singular values on the diagonal
of � are in non-increasing order. The k-dimensional optimal scaling values (i.e.
the scores/coordinates) for rows and columns are X = D−1/2

r Uk and Y = D−1/2
c Vk

respectively, where Uk and Vk correspond to the first k columns of U and V.
Note that by defining X and Y in this way, they are standardised such that

XTDrX = YTDcY = Ik . In the correspondence analysis literature, the matrices
X and Y are referred to as standard coordinates. Alternatively, defining G =
D−1/2

r Uk�k and H = D−1/2
c Vk�k gives the solution in so-called principal coordi-
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nates. For more details on the different scalings and their implications on, in partic-
ular, graphical representations of results; see Greenacre (2017).

3 Correspondence Analysis of Ratings (CAr)

LetR denote an n × pmatrix of ratings on a 1 to q scale.We use an artificial example
of n = 4 individuals who each rate p = 3 objects on a q = 5 point rating scale, to
illustrate the different data pre-processing steps required in the different variant. That
is:

R =

⎡
⎢⎢⎣
2 4 5
3 3 1
2 1 4
1 5 3

⎤
⎥⎥⎦ . (2)

Correspondence analysis is concerned with count data. The ratings can be considered
as counts by considering a rating value as the number of times an object was preferred
over the lowest rating number. To achieve this, we simply subtract 1 from the originals
ratings. Let T = R − 1n1Tp , denote the resulting matrix with values from 0 to q − 1.
That is, if the original rating scale consists of q ratings, we first subtract 1 which
leads in our toy example to:

T = R − 141T3 =

⎡
⎢⎢⎣
2 4 5
3 3 1
2 1 4
1 5 3

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣
1 1 1
1 1 1
1 1 1
1 1 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 3 4
2 2 0
1 0 3
0 4 2

⎤
⎥⎥⎦ .

Thus, T can be interpreted as the number of scale points below a given rating, or,
equivalently, as the number of times an object was considered to exceed a threshold
on the original rating scale.

Mathematically, we can apply correspondence analysis to the count data in T.
However, the problem with such a procedure is that the direction of the original
rating scale influences the results; reversing the scale would lead to different results.
That is, if data are gathered on a scale were the lowest rating (1) corresponds to
“bad” and the highest rating (q) to “good”, and we decide to switch the labelling
from 1 = “good” to q = “bad”, the results of the analysis would change. Clearly this
sensitivity to the direction of the scale is an undesirable effect.

To overcome this problem, the data are “doubled”, meaning that the rating data for
both directions of the rating scale are considered simultaneously. In correspondence
analysis, this is done by, for each object, adding a column with the rating on the
reversed scale. Consequently, instead of p columns, we obtain a matrix consisting
of 2p columns. Let S denote the matrix of ratings on the reversed scale, that is,
S = (q − 1)1n1Tp − T. In our running example, we get:
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S = (q − 1)1n1Tp − T =

⎡
⎢⎢⎣
4 4 4
4 4 4
4 4 4
4 4 4

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣
1 3 4
2 2 0
1 0 3
0 4 2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
3 1 0
2 2 4
3 4 1
4 0 2

⎤
⎥⎥⎦ .

We construct a column-wise doubled matrix as Fc = [T | S]:

Fc = [T | S] =

⎡
⎢⎢⎣
1 3 4 3 1 0
2 2 0 2 2 4
1 0 3 3 4 1
0 4 2 4 0 2

⎤
⎥⎥⎦ .

Substituting this doubled matrix Fc for F in the formulas of Sect. 2 yields the corre-
spondence analysis solution.

The specific structure of the doubledmatrixFc results in structured coordinates for
the columns as well. In particular, the points corresponding to the same object, with
the reversed ratings, can be connected through a straight line running through the
origin (however, the distances from the origin of both points differ). Greenacre (2017)
uses this relationship and shows that the resulting lines can be divided into q − 1
equal sized intervals with the endpoints corresponding to the endpoints of the rating
scale. That is, rating q corresponds to the point corresponding to the original rating,
and rating 1 corresponds to the point on the reversed scale. The approximated average
rating value (on the original scale) can then be inferred from this plot by considering
the value on this line at the origin. Furthermore, similar to the case in principal
component analysis, the angles (at the origin) between the lines corresponding to the
different attributes, approximate correlations between the ratings for the attributes.
In fact, as shown in van de Velden (2004, pp. 103–104), the analysis of the doubled
matrix Fc is equivalent to a principal component analysis of a particularly scaled and
double centred version of the original rating data.

4 Dual Scaling of Rating Data

Dual scaling of rating data is not treated as topic of its own in Nishisato (1994).
Instead, in the context of paired comparison and rank order data, Nishisato (1994)
proposes two dual scaling variants that require different re-coding of the data. The
first approach requires re-coding of the ratings as rankings while the second approach
involves a joint ranking of objects and, unobserved, rating boundaries. To these two
approaches, we add a third, more direct, re-coding that relies on an interpretation of
ratings similar to the one used in correspondence analysis and described in Sect. 3. In
the following subsections, we briefly discuss these three types of re-coding as well
as the dual scaling analysis of them. For convenience, we have labelled these dual
scaling variants DS1 up to DS3.
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4.1 Converting Ratings to Rank Order Data (DS1)

For the first variant, rather than considering the observed ratings directly, for an
observation i , one counts the number of times that individual i’s rating for object j
is rated higher than ratings for all other objects. This is equivalent to transforming
the ratings to ranked (from 0 to p − 1) data and requires a way to deal with ties (i.e.
equal ratings). For the data from our running example, that is the matrix R given in
(2), we get:

T∗ =

⎡
⎢⎢⎣

0 1 2
1.5 1.5 0
1 0 2
0 2 1

⎤
⎥⎥⎦ ,

and, on the reversed scale:

S∗ =

⎡
⎢⎢⎣

2 1 0
0.5 0.5 2
1 2 0
2 0 1

⎤
⎥⎥⎦ .

Since the focus is now on the rank of the three objects, not their rating on a 5-point
scale, this method clearly incurs a loss in information as only the direction of the
difference is considered, and not the magnitude.

To analyse the resulting rank order data Nishisato (1994) proposes to construct
a dominance matrix E consisting of the difference between the number of times an
object was preferred over the other objects (T∗) and the number of times it was not
preferred over other object (S∗). For our example we get:

E = T∗ − S∗ =

⎡
⎢⎢⎣

−2 0 2
1 1 −2
0 −2 2

−2 1 1

⎤
⎥⎥⎦ .

So that the sum of each row is zero. Note that the dominance matrix E contains
positive and negative values. Moreover, as the row sums are all zero the usual dual
scaling calculations, as set out in Sect. 2, cannot be applied directly. Nishisato (1994)
resolves this by defining Dr = p (p − 1) In , and Dc = n (p − 1) Ip respectively.
Alternatively, as shown by van de Velden (2000b), one can apply the usual dual

scaling approach to the row-wise doubled matrix Fr =
[
T∗T | S∗T

]T
yielding, for

our example data,



206 M. van de Velden and P. J.F. Groenen

Fr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2
1.5 1.5 0
1 0 2
0 2 1
2 1 0

0.5 0.5 2
1 2 0
2 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Analysing the row-wise doubled matrix yields 2n scores for the n rows. The scores
for the first n rows corresponds to the observations (rankings) on the original scale
while the scores for the second set correspond to the observations (rankings) on the
reversed scale. These two sets of scores, however, are trivially related as the scores
in the second set are simply −1 times those in the first set.

4.2 Converting Rating Data to Successive Category Data
(DS2)

The second approach, introduced in Nishisato (1980) and further developed in
Nishisato and Sheu (1984), requires the introduction of “boundaries”, marking the
difference between rating scale values. To each boundary we assign a rating that lies
between the two values of the rating scale that the boundary represents. The observed
ratings in R and the boundaries in Rbound are jointly ranked, resulting in so-called
successive category data RSCD. Note that, in this way, in addition to the p objects,
q − 1 boundaries are added as columns to the data matrix. In our example, using 1.5
up to 4.5 as “rating” values for the boundaries, we get:

[R | Rbound] =

⎡
⎢⎢⎣
2 4 5 1.5 2.5 3.5 4.5
3 3 1 1.5 2.5 3.5 4.5
2 1 4 1.5 2.5 3.5 4.5
1 5 3 1.5 2.5 3.5 4.5

⎤
⎥⎥⎦ → RSCD =

⎡
⎢⎢⎣

2 5 7 1 3 4 6
4.5 4.5 1 2 3 6 7
3 1 6 2 4 5 7
1 7 4 2 3 5 6

⎤
⎥⎥⎦ .

The resulting n × (p + q − 1) matrix of rank ordered data RSCD can be analysed in
the same way as described above, that is, using the row-wise doubled matrix. Note
that it doesn’t matter what the exact values are that we insert for the boundaries, as
long as they are between the actual ratings.

As the boundaries are always ordered in the same way, the one-dimensional dual
scaling solution for successive category data typically seems appropriate and suf-
ficient in terms of explained variance. Moreover, as the successive category values
for an individual are based on all ratings by the same individual, individual specific
scale use is taken into account. For this reason, this specific coding was used by
Schoonees, van de Velden and Groenen (2015) and Takagishi, van de Velden and
Yadohisa (2019) to construct methods to study response style bias in questionnaires.
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4.3 Converting Rating Data to Count Data (DS3)

Both re-coding methods described in the previous subsections yield individual spe-
cific rankings. Consequently, the transformed rating values are individual specific as
well. This implies that if individual i assigns rating j to an object, and individual l
assigns the same rating value j to that object, the re-coded values do not have to be
the same for both observations. If the actual ratings are considered to be meaningful
and non-individual specific, this may not be a desirable property. To overcome this
problem, one can re-code and interpret the ratings as previously described in Sect. 3
in the context of correspondence analysis, that is, the rating values are re-coded to
T; the number of times an observation exceeds the boundaries on the original rating
scale.

As before, we cannot apply dual scaling directly to T as this would lead to results
that depend on the direction of the scale. Following the dual scaling approach for
rank order data, we can overcome this by constructing a row-wise doubled matrix
Fr = [

TT | ST
]T

and applying dual scaling to this matrix. From here on, we refer to
this DS3 approach as dual scaling of rating data.

5 Optimal Scaling Properties

As seen in Section’s 3 and 4, the difference between dual scaling and correspondence
analysis of rating data amounts to a difference in doubling of the observed ratings
after converting them to a 0 to q − 1 scale. That is, correspondence analysis of ratings
is defined as correspondence analysis of Fc whereas dual scaling of ratings is defined
as dual scaling of Fr . To better understand the implications of these differences, we
briefly review the optimal scaling properties of them.

As shownbyNishisato (1978) andvandeVelden (2004), the object scores obtained
in an analysis of the dominancematrixE, and, hence, the object scores in the analysis
of Fr , are equivalent to the optimal scaling values as defined and derived by Guttman
(1946). As such, these values are determined “so as to best distinguish between
those things judged higher and those judged lower for each individual”; see Guttman
(1946). Both Guttman (1946) and Nishisato (1978) explicitly consider paired com-
parison data. However, crucial in the formulation of the optimal scaling framework
are the matrices T and S. Hence, using these matrices in the context of rating data
where, respectively, the entries represent the times an object rating exceeds or does
not exceed the available rating boundaries, the optimal scaling properties remain
valid. That is, in dual scaling of ratings as defined in Sect. 4.3, the scale values for
the objects are assigned in such a way that they best distinguish between objects.

In Guttman (1946), an optimal scaling solution for the individuals is not con-
sidered. However, we can rephrase Guttman’s (1946) optimal scaling goal towards
finding scale values for the observations/individuals as follows: Find scale values
for individuals so as to best distinguish between individuals that judged an object
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Table 1 Properties of the different variants for the analysis of rating data

Method Intervals Optimal scaling Doubling

DS1 Rank order only Objects Implicit; row-wise

DS2 Successive categories Objects and boundaries Implicit: row-wise

DS3 Differences between ratings Objects Explicit: row-wise

CAr Differences between ratings Individuals Explicit: column-wise

higher and lower, for each object. Where once again higher (lower) indicates how
often a rating exceeded (did not exceed) the boundaries. This “dual” problem was
considered, in the context of paired comparison data, by van de Velden (2004) who
showed that the resulting optimal scaling values for individuals can be obtained by
applying dual scaling/correspondence analysis to the column-wise doubled matrix
Fc. As before, interpreting the entries ofT and S as the times an object rating exceeds
or does not exceed the available rating boundaries, these optimal scaling properties
remain valid in the analysis of Fc. Hence, whereas dual scaling of ratings yields opti-
mal scaling values for the objects, correspondence analysis of ratings yields optimal
scaling values for the individuals.

Note that for the dual scaling analysis of rating data, the optimal scaling values
for the doubled rows (i.e. individuals’ ratings according to the original and reversed
scales) are optimal in the usual dual scaling sense. That is, theymaximise the variation
between the rows of the doubled table. Similarly, for the correspondence analysis
solution, the values for the doubled columns are optimal scaling values (i.e. the
objects rated according to the original and reversed scales). However, when defining
optimal scaling values according to the framework and rationale as presented by
Guttman (1946), the typical duality associated with a dual scaling (and correspon-
dence analysis) solution obtained using the formulas of Sect. 2, does not immediately
carry over when we have rating data. That is, Guttman’s optimal scaling values for
individuals and objects based on rating data cannot be obtained simultaneously.

We summarised some properties of the different variants in Table1.
In summary, the difference between the dual scaling and correspondence analysis

of rating data approaches amounts to a different way of dealing with the direction
of the rating scales. For the dual scaling of rating data, as introduced in Sect. 4.3, a
row-wise doubling is employed. For the correspondence analysis of rating data, a
column-wise doubling is used to resolve the problem. The effect of these different
data pre-processing steps is that in the dual scaling analysis of rating data, the values
for the objects are optimal scaling values whereas in the correspondence analysis of
rating data, the coordinates for the individuals are optimal scaling values.

In order to choose one method over the other, it is important to understand these
differences. Depending on the type of application and the specific research goals, a
choice can be made. Dual scaling of rating data may be more appropriate when one’s
prime concern is a visualisation (or quantification) of a set of objects based on the
observed differences in the ratings for these objects. This could be the case, when, for
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example, relative positions of products based on how they are perceived by a group
of individuals. One the other hand, if one is more concerned with a visualisation (or
quantification) of the individuals, based on differences in rating patterns for a set of
objects, correspondence analysis of rating data may be better equipped to pick up on
the individual differences.

6 Applications

To illustrate the differences between the dual scaling and correspondence analysis of
rating approaches, we analyse an example data set from Nishisato (1994, p. 230) on
perceived seriousness of crimes. In particular, we focus on the effects of the different
doublings; that is, the analysis of a column-wise (CAr) and row-wise (DS3) doubled
matrix of ratings.

A sample of 17 individuals indicated, on a rating scale from 1 (“somewhat seri-
ous”) to 4 (“extremely serious”), the perceived seriousness of the following 8 types
of crimes: Arson, burglary, counterfeiting, forgery, homicide, kidnapping, mugging
and receiving stolen goods. For ease of reproducibility, we included the data here
in Table2. Note that all individuals considered “homicide” to be extremely serious.
For this lack in variation, which leads to a singular Dc matrix in CAr, we removed
this type of crime from our analyses. In the DS3 approach such a singularity does
not occur and Nishisato (1994) analyses the data without removal of this object.

The two-dimensionsal dual scaling solution for the objects (crimes) can be found
in Fig. 1. In accordance with the optimal scaling formulations of Guttman (1946) and
Nishisato (1978) the scaling values are in so-called standard coordinates. The two-
dimensional solution, which is heavily dominated by the first dimension, accounts
for 89% of the variance.

Correspondence analysis of the ratings results in Fig. 2, where in accordance with
Greenacre (2017, Exhibit 23.2, p. 180), the coordinates for the doubled objects are
in principal coordinates, and, for each crime, we connected the points corresponding
to the lower and upper ends of the scale, by axes. The CA solution accounts for 64%
of the variation.

A one-to-one comparison of these two solutions for the objects is complicated due
to the doubling of object points in the correspondence analysis solution. Moreover,
we used standard coordinates in the dual scaling analysis, and principal coordinates
for the correspondence analysis results. Still, comparing Figs. 1 and 2 immediately
does show a better separation of objects (crimes) in the dual scaling approach. In
Fig. 1, we see that the crimes “Counterfeiting” and “Forgery”, which are somewhat
similar in nature, are indeed perceived as more similar by the respondents. On the
other hand, the perceptions of “Mugging”, “Burglary” and “Receiving stolen goods”,
as indicated by the ratings, differ substantially. Note that the first dimension in this
analysis is rather dominant. Moreover, this dimension appears to describe mostly the
perceived seriousness of crimes frommore “serious” (Arson and Kidnapping) on the
left, to less “serious” (Receiving stolen goods) on the right.
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Table 2 Nishisato’s 1994 seriousness of crimes rating data
Individual Arson Burglary Counterfeit. Forgery Homicide Kidnapp. Mugging Rec. st.

goods

1 4 2 2 2 4 3 3 1

2 4 2 2 2 4 4 3 1

3 3 2 2 2 4 3 3 1

4 4 3 2 2 4 4 4 3

5 4 3 2 2 4 4 3 2

6 4 3 3 2 4 4 3 2

7 4 1 2 2 4 4 2 1

8 4 4 2 2 4 4 3 2

9 3 2 1 2 4 4 3 1

10 4 3 3 3 4 4 3 2

11 4 2 3 3 4 4 4 1

12 4 4 3 3 4 4 4 2

13 4 3 3 2 4 4 3 1

14 4 2 2 2 4 3 3 1

15 4 2 1 1 4 4 2 1

16 3 2 2 2 4 3 3 1

17 3 2 2 2 4 4 3 2
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Fig. 1 Dual scaling of ratings (DS3) for the crime perception data. Optimal scaling values for
objects (crimes) in standard coordinates
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Fig. 2 Correspondence analysis of ratings (CAr) for the crime perception data. Objects (crimes)
in principal coordinates

In Fig. 2, we see that the correspondence analysis approach (CAr) visualises that
the ratings of “Arson” and “Kidnapping” are correlated. Furthermore, the ratings
of these two crimes appear to be mostly uncorrelated to the ratings for “Forgery”,
“Mugging”, “Burglary” and “Receiving stolen goods”. Note that the endpoints of
the coloured lines correspond to the end points of the scale. That is, the ‘−’ points
correspond to the lowest rating and the ‘+’ points to the highest ratings. As the origin
in a CA plot corresponds to average profiles, we can infer the approximate mean
ratings for objects directly from the plot. For example, we see that both “Kidnapping”
and “Arson” are rated as “extremely serious” far more often than average. Similarly,
“Receiving stolen goods” tends to receive a lower (less serious) rating more often
than not. For “Burglary”, the results are more varied and the average rating appears
to be close to the middle of the rating scale.

Figure3, for DS3, and Fig. 4, for CAr, give, for both analyses, the corresponding
solutions for the individuals. Hence, for the dual scaling solution, the scores for
the individuals are in principal coordinates whereas for the CA solution they are in
standard coordinates. In addition, the doubled set of “individual” scores for the dual
scaling solution is ignored as these are simply the same coordinates mirrored in the
origin.

Recall that the correspondence analysis solution gives optimal scaling values for
the individuals. Hence, coordinates are determined in such a way that differences in
the indicated rating patterns between individuals is optimally depicted. Superficially
comparing Figs. 3 and 4 may not immediately expose this. However, note that for
the dual scaling solution, depicted by Fig. 3, the points are not spread out along
both dimensions. Instead, they are all concentrated on the negative side of the first
dimension.
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Fig. 3 Dual scaling of crime rating data. Scores for individuals in principal coordinates

Fig. 4 Correspondence analysis of crime rating data. Optimal scaling values for individuals in
standard coordinates

To better appreciate the differences in the solutions, Figs. 5 and 6 give biplots for
both methods. That is, joint plots for rows and columns where projections of one
set of points on the directions of other points (obtained, for example, by drawing
axes from the origin through the points), can be used to reconstruct the values in the
original data table; see Greenacre (1993) for more details. Note that, in both joint
plots objects (crimes) are in standard, and individuals are in principal coordinates.

Interpreting the relative positions of the individuals in Fig. 5 is not so easy. For
these data, differences are small and most individuals give high ratings to all crimes.
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Fig. 5 Dual scaling biplot of crime rating data. Optimal scaling values for objects (crimes) in
standard coordinates

Fig. 6 Correspondence analysis biplot of crime rating data. Optimal scaling values for individuals
in principal coordinates

That is, they tend to find all crimes to be serious. How individual 15 differentiates
from the others, as its location in Figs. 3 and 5 suggests, is not clear from the plot.

The optimal scaling positions of individuals in Fig. 4 appear better separated.
Moreover, the interpretation of the differences in the locations of the individuals is
more straightforward. For example, individuals 15 and 7 are separated from the other
points. In the biplot of Fig. 6, we see that this may be explained by both individuals
giving relatively low ratings (that is, a lower rating than average) for “Mugging”.
Indeed, these two individuals are the only ones that assign a rating 2 to these two
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crimes. All others give higher ratings. In a similar way, differences in positions of
other “outlying” points (e.g. 3, 16, 12, 4) can be explained by observing in what
sense the corresponding rating profiles differ from the average rating profiles. For
the equivalent ratings of individuals 3 and 16, we see that they differ from all other
individuals with respect to their rating for “Arson” and “Kidnapping”. As can be
verified from the data table, they gave a rating of 3 to both of these crimes whereas
all others either gave rating 4 to at least one of these crimes.

7 Conclusion

In this paper, that has been inspired by the works of Nishisato, we introduced a dual
scaling of rating approach.We showed how thismethod relates to the correspondence
analysis of rating data and that the fundamental difference between these two variants
can be attributed to a difference in pre-processing of the data. In particular, the dual
scaling of rating data can be described as dual scaling of a row-wise doubled matrix
whereas correspondence analysis amounts to the analysis of a column-wise doubled
matrix.

The dual scaling framework that has been laid out by Nishisato throughout his
career offers tools to better understand the resulting differences. That is, whereas the
dual scaling of rating data yields (and in fact, was defined to do so) optimal scaling
values for the objects, the correspondence analysis of rating data yields optimal
scaling values for the individuals. Given these rather fundamental differences, saying
that one approach is better than the other, does not make much sense. A choice
between these two variants depends on the research goals. If the goal is to find
scale values (or: a representation) that best separates the objects according to the
observed ratings, the dual scaling of ratings (that is: the analysis of the row-wise
double matrix Fr ) is appropriate. On the other hand, to better distinguish individuals
according to their ratings, correspondence analysis of ratings (that is: the analysis of
the column-wise doubled matrix Fc) is the better alternative.

References

Greenacre, M.J.: Theory and Applications of Correspondence Analysis. Academic Press, London
(1984)

Greenacre, M.J.: Biplots in correspondence analysis. J. Appl. Stat 20(2), 251–269 (1993)
Greenacre, M.: Correspondence Analysis in Practice, 3rd edn. Chapman & Hall/CRC Press, Boca
Raton, FL (2017)

Guttman, L.: An approach for quantifying paired comparisons and rank order. Ann. Math. Stat.
17(2), 144–163 (1946)

Nishisato, S.: Optimal scaling of paired comparison and rank order data: An alternative toGuttman’s
formulation. Psychometrika 43(2), 263–271 (1978)

Nishisato, S.: Dual scaling of successive categories data. Jpn. Psychol. Res. 22(3), 134–143 (1980)



Dual Scaling of Rating Data 215

Nishisato, S.: Elements of Dual Scaling: An Introduction to Practical Data Analysis. Lawrence
Elbaum Associates, Hillsdale, NJ (1994)

Nishisato, S., Sheu, W.: A note on dual scaling of successive categories data. Psychometrika 49(4),
493–500 (1984)

Schoonees, P.C., van deVelden,M., Groenen, P.J.F.: Constrained dual scaling for detecting response
styles in categorical data. Psychometrika 80(4), 968–994 (2015)

Takagishi, M., van de Velden, M., Yadohisa, H.: Clustering preference data in the presence of
response-style bias. Br. J. Math. Stat. Psychol. 72(3), 401–425 (2019)

van de Velden, M.: Topics in Correspondence Analysis. Thela Ph.D. Thesis (2000a)
van de Velden, M.: Dual scaling and correspondence analysis of rank order data. In: Heijmans,
R.D.H., Pollock, D.S.G., Satorra, A. (eds.) Innovations in Multivariate Statistical Analysis, pp.
87–99, Springer, Berlin (2000b)

van de Velden, M.: Optimal scaling of paired comparison data. J. Classif. 21(1), 89–109 (2004)



Whence Principal Components?

Lawrence Hubert and Susu Zhang

1 The Journal of Educational Psychology as a Precursor
to Psychometrika

Before1the establishment of the journal Psychometrika in 1936, the main outlet for
the publication of technical/mathematical material with a psychological bent was,
somewhat surprisingly, the Journal of Educational Psychology (JEdP). JEdP was
founded in 1910, with an opening lead article written by E. L. Thorndike (the second
President of thePsychometric Society after Thurstone). By the time the 1930s arrived,
JEdP was dominated by authors who would later become inaugural members of the
Psychometric Society as well as some of its later presidents. For example, in the 1930
volume, there were quantitative articles written by the familiar names of Cureton,
Dunlap, Holzinger, Spearman, Rulon, Lindquist, Edgerton, Garrett, and Carter. (We
might add that in the 1930s and 40s, Jack Dunlap, one of the six founding members
of the Psychometric Society, was an Editor of JEdP and so was responsible for all
technical/quantitative submissions made for the journal). It may not be completely
surprising then that Harold Hotelling, one of the leading mathematical statisticians
of the 20th century, would publish his method of principal components in JEdP in

1The first author’s connections with Shizuhiko Nishisato go back some forty years and are mainly
editorial and through various positions and activities in the Psychometric Society. Much of this
contact was in the form of being both an Associate Editor as well as a principal referee when I was
the chief editor for the Journal of Educational Statistics (1980–1985) and Psychometrika (1988–
1992). Nishi succeeded me as the editor of Psychometrika (1992–1995); I only hope that I served
Nishi as well as he had served me and our profession over the years.
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1933 (Hotelling 1933).2 What may be more interesting historically, however, is how
Hotelling came to the topic in the first place—that story is the purpose of this short
essay.

2 Harold Hotelling and Truman Lee Kelley

Harold Hotelling (1895–1973) received his doctoral degree in mathematics (and
economics) from Princeton in 1924. Immediately thereafter he became a Research
Associate at the Stanford University Food Research Institute; from 1927 to 1931
he was an Associate Professor of Mathematics, also at Stanford. He moved to the
Economics Department of Columbia University in 1931, and stayed until 1946 when
he left for the University of North Carolina to found the Department of Statistics. He
remained a Professor of Mathematical Statistics at North Carolina until his death.
Judging from a perusal of the Harold Hotelling archives at Columbia University and
those of Truman Lee Kelley at Harvard, Hotelling’s work on principal components,
as well as his subsequent development of canonical correlation (Hotelling 1935) also
published in JEdP, was motivated by his association with Kelley. They overlapped as
colleagues at Stanford from1924 to 1931,whereKelleywas aProfessor of Education.
Kelley moved in 1931 to the Harvard Graduate School of Education at exactly the
same time that Hotelling moved to Columbia. As discussed below, this period of
the early 1930s was a time of sustained interaction between Kelley and Hotelling
that directly led to Hotelling’s development of principal components and canonical
correlation.

The same year that bothKelley andHotelling left Stanford for their respective East
Coast positions atHarvard andColumbia (1931) also saw the formation of theUnitary
TraitsCommittee underE.L.Thorndike,with bothKelley andHotelling as committee
members. Several excerpts are given below from a survey that discusses the work of
this group written by Karl Holzinger in the Journal of Personality (Holzinger 1936),
entitled “Recent research on unitary mental traits”:

2 The technical level of Hotelling’s 1933 JEdP article is quite high and would be unexpected in any
journal devotedmainly to substantivematters. For example,Darrell Bock in his chapter, “Rethinking
Thurstone,” in the book, Factor Analysis at 100 (Bock 2007) comments on Hotelling’s JEdP article
as follows (p. 42):

Speaking of notation, I add that although Hotelling may have derived his iterative procedure
for latent roots and vectors in matrix terms, in consideration of the audience, he confined
his presentation to scalar algebra. Curiously, however, he introduces a notational convention
from tensor calculus — namely, that when an equation is written as say, bi = ai j , it denotes
the summation of the right-hand member with respect to the j subscript. This device is
somewhat unsettling to anyone accustomed to seeing the summation sign in these equations.
Surely, this is the only paper containing tensor notation in the entire psychological literature
and perhaps the statistical literature.

.
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When Professor Spearman conceived the idea that the arrangement of a set of intercorre-
lations could be used to determine factors underlying a set of variables, he opened up an
objective method in psychology that has been gathering momentum ever since. After the
publication of Abilities of Man, in 1927, interest in factor theory began to spread widely
throughout America, engaging the attention of such workers as Professor Truman Kelley
and Professor T. V. Moore. In a book entitled Crossroads in the Mind of Man (1928) Profes-
sor Kelley dealt largely with group factors and new methods for their evaluation. These two
volumes laid the immediate foundation for the formation of the Unitary Traits Committee
in 1931.

Professor E. L. Thorndike, for years a passive onlooker of methods of factorisation, now
became an active promoter. Through his influence a committee was formed to studymethods
of factorization and apply them if possible to large bodies of data. Professor Thorndike named
the committee the Unitary Traits Committee and with his characteristic symbolism, “U. T.
C. for short.”

The Problems and Plans Committee of the American Council on Education empowered
Professor Thorndike to act as chairman of this committee and secured a grant of money from
the Carnegie Corporation for the purpose of preparing a plan to study unitary differential
traits. The early members of this committee included Professors E. L. Thorndike, Charles
Spearman, T. L. Kelley, Clark Hull, Karl Lashley, and Karl J. Holzinger. At later meetings
Professors T. V. Moore, Henry Garrett, and Harold Hotelling were added to the committee.

...

The sub-committees were organized as follows:

1. Mathematical theory and techniques and the improvement of methods of analysis: T. L.
Kelley and Harold Hotelling.

...

During the early meetings of the Unitary Traits Committee some criticism was made of
existingmethods of factorisation, chiefly those of Professor Kelley inCrossroads in theMind
ofMan. ProfessorKelleywas already at work amending these techniques, and enlisted the aid
of Professor Harold Hotelling to further this work. As a mathematical statistician Professor
Hotelling was of great service to the committee. He contributed many valuable suggestions
at meetings, and the factorization technique now known as the Method of Principle [sic]
Components.

The remainder of the present essay can be seen as a series of interesting subtopics
(or at least we hope they are) concerning the introduction of “the method of principal
components” in JEdP (Hotelling 1933). Several of these observations result from
private correspondence and material from the Unitary Traits Committee available in
archives for Kelley and Hotelling at Harvard and Columbia, respectively.

3 Hotelling as a Quantitative Consultant for Psychology

For a period of time in the late 1920s and 1930s, Harold Hotelling was a favored
mathematician to consult when a particularly vexing quantitative derivation task was
at hand. Acknowledgments to Hotelling appeared regularly in JEdP in the early
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1930s; others occurred in several books from around that same time.3 For example,
in Kelley’s Interpretation of Educational Measurements (Kelley 1927), we have the
footnote (p. 213):

I am indebted to Dr. Harold Hotelling for a suggestion which readily led to the evaluation
of this determinant.

Or, in Kelley’s Crossroads in the Mind of Man (Kelley 1928), we have the following
in the actual text (p. 54):

Dr. Harold Hotelling has kindly provided the following set of necessary conditions which
are more readily investigated than are the 12 sufficient equations in Formula 35.

In John Flanagan’s thesis under Kelley at Harvard, Factor Analysis in the Study
of Personality (Flanagan 1935), there is the following paragraph about Hotelling
developing the method of principal components at the behest of the Unitary Traits
Committee:

This brings us directly to the last method of multiple-factor analysis which we shall con-
sider, that of Hotelling. At the request of the Unitary Traits Committee, Hotelling attacked
the problem of obtaining a serviceable solution to the problem proposed by Kelley in 1928
[in Crossroads in the Mind of Man], “first, a determination, having tests A, B, C, of what
the independent mental traits are; and secondly an experimental construction of new tests
measuring these independent traits.” As we have just noted, Hotelling’s least-squares con-
ditions are identical to those in one of the solutions presented by Thurstone. Dr. Hotelling,
however, has supplied a very neat iterative solution for the kth order determinant involved
which makes the solution comparatively short.

The role of theUnitaryTraitsCommittee in facilitating thedevelopment of themethod
of principal components is confirmed by the beginning footnote in Hotelling’s paper
in JEdP (Hotelling 1933):

A study made in part under the auspices of the Unitary Traits Committee and the Carnegie
Corporation.

The author is indebted toProfessorTrumanL.Kelley,whowas responsible for the initiationof
this study and the propounding ofmany of the questions towhich answers are here attempted;
also to Professors L. L. Thurstone, Clark V. [sic; it should be L.] Hull, C. Spearman, and E.
L. Thorndike, who raised some of the further questions treated.

In a four-page single-spaced letter to Kelley fromHotelling (June 2, 1932), which
can be found in the Kelley archives available at the Houghton Library at Harvard,
the approach that Hotelling was to take is spelled out in some detail:

Another line of possible development in tetrad analysis (or rather factor analysis) is to take
as independent factors those linear functions of a number of test scores which correspond to
the principal axes of the ellipsoids of the scatter diagram.

3 It might also be noted that Hotelling was an inaugural member of the Psychometric Society based
on the membership roster published in 1936. For some unknown reason, however, he was no longer
a member as of March, 1939.
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Apparently, this long letter (along with some extensive handwritten notes) served as
a proposal to work for the Unitary Traits Committee for two summer months in 1932
(for $800); Kelley responded to Hotelling with a letter dated June 20, 1932:

This letter is in confirmation of our agreement that youwork for theUnitary Traits Committee
for a period of two months and receive therefore a total of $800.00. It is understood between
us that you are to be free to meet such other obligations during this time as incidentally
arise, and that we upon our part may occasionally call upon you in the future for things not
involving an extended study upon your part.

I am sending a copy of this letter to Dr. Thorndike, chairman of the Committee.

I am returning herewith your notes, for which please accept my thanks.

Hotelling replied on June 25, 1932 (with a notation that a copy was also sent to
E. L. Thorndike):

With your letter of June 20 this will confirm our agreement that I am to work for the Unitary
Traits Committee for two months this summer.

Thank you for the return of my rough notes, which I hope latter to elaborate. During the
past week at Syracuse I have been discussing their contents at considerable length with
L. L. Thurstone, Jack Dunlap, and Ragnar Frisch. Dunlap is going to try the method of
principal axes on some tests he has made of chickens. [sic?; “children”?]

I hope to be at Blackey’s Hotel at Gilmanton Iron Works early in July and to see you
there. Meanwhile I am wrestling with some of the very beautiful and intricate mathematical
problems involved.

This last letter is interesting for several reasons, particularly for the three people
Hotelling mentioned that he had extensive discussions with: L. L. Thurstone, Jack
Dunlap, and Ragnar Frisch. The 1932 Syracuse meeting referred to was of the Amer-
ican Association for the Advancement of Science and its many affiliated societies
(such as the American Psychological Association). At this meeting, Thurstone pre-
sented his own principal axes solution to the problem of factor analysis. As Hotelling
notes in a 1933 JEdP footnote:

Since this was written Professor Thurstone has kindly sent me a pamphlet he has prepared
for class use, in which he uses the same geometric interpretation as in the present section,
and discusses the problem from essentially the same standpoint as that taken in [Part One].
His iterative procedure appears to have no relation to that of [Part Four]. In June, 1932,
Professor Thurstone presented at the Syracuse meeting of the American Association for
the Advancement of Science certain of the considerations which have served as a point of
departure for this paper.

Interestingly, Thurstone abandoned his first principal axes approach because he
thought it did not conform to a “true” and psychologically meaningful factor analytic
model. Themention of JackDunlap inHotelling’s letter is also interesting, because he
was to be the Editor of JEdP overseeing the publication of Hotelling’s 1933 contribu-
tion. Ragnar Frisch, for thosewhomight not know,was the first recipient of theNobel
Prize in Economic Sciences in 1969; he is recognised for founding the discipline of
econometrics and for coining the word pair “macroeconomics/microeconomics” in
1933.
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It is worth mentioning that the debate between the use of principal components
and the reliance on the factor model, which rages to this day, can date back to 1935
in Thurstone’s book, The Vectors of Mind: Multiple Factor Analysis for the Isolation
of Primary Traits (Thurstone 1935). In Chapter IV, “The Principal Axes”, Thurstone
concluded with a summary rejection of principal components as a viable approach
to the factor model (p. 132):

These considerations make it necessary to discard the method of principal axes and also
Hotelling’s special case of this method as solutions to the psychological factor problem.

When the first author has taught modules on principal component analysis (PCA)
and factor analysis (FA) in a Multivariate Analysis class, PCA was introduced with
three introductory points:

(a) PCA deals with only one set of variables without the need for categorizing the
variables as being independent or dependent. There is asymmetry in the discus-
sion of the general linear model; in PCA, however, we analyze the relationships
among the variables in one set and not between two.

(b) As always, everything can be done computationally without the Multivariate
Normal (MVN) assumption; we are just getting descriptive statistics. When
significance tests and the like are desired, the MVN assumption becomes indis-
pensable. Also, MVN gives some very nice interpretations for what the principal
components are in terms of our constant density ellipsoids.

(c) Finally, it is probably best if you are doing a PCA, not to refer to these as “fac-
tors.” A lot of blood and ill-will has been spilt and spread over the distinction
between component analysis (which involves linear combinations of observable
variables), and the estimation of a factor model (which involves the use of under-
lying latent variables or factors, and the estimation of the factor structure). We
will get sloppy ourselves later, but some people really get exercised about these
things.

Four introductory points were made in introducing FA:

(a) In a principal component approach, the emphasis is completely on linear com-
binations of the observable random variables. There is no underlying (latent)
structure of the variables that I try to estimate. Statisticians generally love mod-
els and find principal components to be somewhat inelegant and nonstatistical.

(b) The issue of how many components should be extracted is always an open
question. With explicit models having differing numbers of “factors,” we might
be able to see which of the models fits “best” through some formal statistical
mechanism.

(c) Depending upon the scale of the variables used (i.e., the variances), principal
components may vary and there is no direct way of relating the components
obtained on the correlation matrix and the original variance-covariance matrix.
With some forms of factor analysis, such as maximum likelihood (ML), it is
possible to go between the results obtained from the covariance matrix and
the correlations by dividing or multiplying by the standard deviations of the
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variables. In other words, we can have a certain type of “scale invariance” if we
choose, for example, the maximum likelihood approach.

(d) If one wishes to work with a correlation matrix and have a means of testing
whether a particular model is adequate or to develop confidence intervals and
the like, it is probably preferable to use theML approach. In PCAon a correlation
matrix, the results that are usable for statistical inference are limited and very
strained generally (and somewhat suspect).

4 Hotelling’s Power Method

At the meeting of the Unitary Traits Committee in December of 1932, several papers
were read that were devoted to numerical examples of Hotelling’s iterative strategy
for obtaining the principal components of a correlation matrix. The procedure pro-
posed byHotellingwould today be referred to as (a repeated use of) the powermethod
for finding the dominant eigenvalue of a matrix. Bodewig (1956, p. 250) attributes
the power method to von Mises in 1929, as published in a rather obscure German
language periodical. However, because of the close date to Hotelling’s own use of a
power method and his not referencing von Mises (but he did so later in an Annals of
Mathematical Statistics article in 1943 (Hotelling 1943) entitled “Some newmethods
in matrix calculation” ), the power method itself might just as well be attributed to
Hotelling. In fact, Hotelling’s repeated use of the power method to find all the eigen-
values and eigenvectors of a matrix involves what has now become well-known as
“Hotelling deflation”: these are outer products of an eigenvector with itself, weighted
by the eigenvalue, and subtracted from the starting matrix. We give a summary of
this process taken from Multivariate Statistical Methods (Morrison 1967):

Let A be the p × p matrix of real elements. It is not necessary that A be symmetric. Order
the characteristic roots λi of A by their absolute values:

|λ1| > |λ2| ≥ · · · ≥ |λp|
and denote their respective characteristic vectors as a1, . . . , ap . Initially we shall require that
only |λ1| > |λ2|. Let x0 be any vector of p real components, and form the sequence: x1 =
Ax0; . . . xn = Axn−1 = Anx0 of vectors. Then if the successivexi are scaled in some fashion,
the sequence of standardized vectors will converge to the characteristic vector a1. Probably
the most convenient scaling is performed by dividing the elements by their maximum, with
normalization to unit length merely reserved for the last, or exact, vector. Since Aa1 = λ1a1
the characteristic root itself can be foundbydividing any element ofAa1 by the corresponding
element of a1. The same iterative procedure can be used to compute any distinct characteristic
root ofA. To extract the second largest root and its vector we normalize the first characteristic
vector a1 to unit length, form the p × p matrix λ1a1a

′
1 and subtract it from A to give the

residual matrix A1 = A − λ1a1a
′
1. [A Hotelling deflation]

In the more recent implementations of routines for finding the principal compo-
nents of a covariance matrix (such as in Matlab), Hotelling’s iterative procedure is
not used. Instead, a Jacobi-like algorithm for finding the eigenvalues/eigenvectors of
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amatrix is commonly adopted [wewill come back to this topic shortly]. This replace-
ment may be due in part to the computational difficulties one might encounter with
Hotelling’s approach. As Bodewig (1956, p. 250) notes:

It was R. von Mises ... who found the power method. It was a great achievement. And in
many cases it gives a quick result. But it cannot be denied that in a large number of cases the
convergence is extremely bad, so bad in fact that it can hardly be used at all. The convergence
will be good enough only if the quotient | λ1

λ2
| > 3. But this is only rarely the case.

We might mention that there is one prominent and current application of the power
method for finding a single dominant eigenvalue/eigenvector combination—this is
in Google’s search engine and the use of what is called PageRank.

5 Hotelling’s 1936 Psychometrika Paper: “Simplified
calculation of principal components”

If Hotelling’s seminal 1933 article in JEdP had appeared instead in Psychometrika,
it would be, according to Google Scholar, the second most highly cited article in
Psychometrika after Cronbach’s (1951) survey on “coefficient alpha.” The first co-
editor of Psychometrika, Paul Horst, even relates how he tried to get something
comparable for the first volume of Psychometrika (Horst and Stalnaker, 1986, p. 5):

At Proctor and Gamble we had been working with the applications of the new factor analytic
methods to personnel data. I had learned of a new iterative procedure that Hotelling at
Columbia had developed for finding the principal axis factors of a correlation matrix, and
we were using it at Proctor and Gamble. I saw Hotelling personally at Columbia during this
time, to persuade him to contribute his manuscript for the maiden issue of Psychometrika.
I asked him whether he could give us a manuscript on his new method. He at first was
markedly cool to the idea and I suspected that he was not eager to conceal his production
under the cover of a dubious new journal. I then told him that I verymuchwanted this method
published in this first issue and that, if he did not feel he could do it, I would reluctantly
publish themethodmyself and of course give him full credit.With this, he decided to provide
the manuscript himself (Hotelling 1936), and we remained good friends as long as he lived.

The 1936 Hotelling paper referenced above is based on the simple idea that when
the power method is applied to an integer power of a matrix (say, to A2) instead of
to the original matrix (say, to A), convergence will be faster. Unfortunately, such a
conjecture appears generally unjustified. We give two quotes from Bodewig (1950,
p. 134; 246) that make this point:

Hotelling [in the 1943 Annals of Mathematical Statistics article] therefore, proposes com-
puting the product T and, then to square successively: T, T2, T4, T8 . . ., and then to form
the vector say T16y(1). This method is very elegant.Whether it is suitable, is another matter.
(emphasis added)

...

Powers of Matrices: Many authors such as Kincaid, Aitken, Hammersley, and Hotelling,
recommend successive squaring of A and iteration with A2m on v instead of with A itself.
This is done in order to speed up convergence and to save work. But this proposal cannot be
defended. (emphasis added)
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Bodewig provides a formal proof of this assertion that “this proposal cannot be
defended.” It is based on an elaboration of the following observation: multiplying a
vector x by amatrixA and that resultant vector,Ax, byA again (i.e.,A(Ax)), requires
fewer operations than multiplying A by A, and then using that product matrix, A2,
to multiply x (i.e., A2x).

6 Kelley’s Approach to Principal Components

In Holzinger’s survey of the work completed by the Unitary Traits Committee men-
tioned earlier, the following short excerpt appears:

Very recently ProfessorKelley has published a volume entitledTheEssential Traits ofMental
Life(1935). In this book he has contributed a method of factorization which appears simpler
than that of Hotelling, but which gives the same results. In addition to this new technique
Professor Kelley makes a comparison of current methods of factorization.

In the 1936Hotelling paper solicited byHorst, Kelley’smethod of obtaining principal
components is explicitly commented on as follows (p. 27):

Another method of calculating principal components has been discovered by Professor Tru-
man L. Kelley, which involves less labor than the original iterative method, at least in the
examples to which he has applied it. How it would compare with the present accelerated
method is not clear, except that some experience at Columbia University has suggested that
the method here set forth is the more efficient. It is possible that Kelley’s method is more
suitable when all the characteristic roots are desired, but not the corresponding correlations
of the variates with the components. The present method seems to the computers who have
tried both to be superior when the components themselves, as well as their contributions
to the total variance, are to be specified. The advantage of the present method is enhanced
when, as will often be the case in dealing with numerous variates, not all the characteristic
roots but only a few of the largest are required.

A synopsis is given below ofKelley’smethod for finding the two principal compo-
nents of a two-variable system, taken from his Essential Traits of Mental Life (1935,
p. 2). He showed that by using this method iteratively for all pairs of variables, the
complete set of principal components are retrieved:

If it is desired to create two new variables, x
′
and y

′
, which are completely defined by the

given variables, x and y, ... , all that is necessary is to write x
′ = a1x + b1y; y

′ = a2x + b2y
and assign any values to a1, a2, b1, and b2. Solving these equations for x and y we have

x = b2x
′ − b1y

′

a1b2 − a2b1

y = a1y
′ − a2x

′

a1b2 − a2b1

Of the infinite number of new sets of equivalent variables, x
′
and y

′
, which can be derived

by substituting different values for a1, a2, b1, and b2, that one is considered to have special
merit which is a rotation of the x and y axes to the position of the major and minor axes of
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the ellipse. These particular new variables, which we designate x1 and y1, are given by the
equations

x1 = x cos θ + y sin θ

y1 = −x sin θ + y cos θ

where θ is the angle of rotation and is given by

tan 2θ = 2p

v1 − v2
.

Here, p = σ12, v1 = σ 2
1 and v2 = σ 2

2 . The peculiar merit of the new variables, x1 and y1,
lies in the facts which can be immediately surmised by thinking of the elementary geometry
involved.

(a) x1 and y1 are uncorrelated.

(b) x1 and y1 axes are at right angles to each other.

(c) The variance of x1, distance from the minor axis in the direction of the major axis, is a
maximum, for no other rotation of axes yields a variable with as large a variance.

(d) The variance of y1, distance measured in the direction of the minor axis, is a minimum.

The advantage of (a), lack of correlation, need scarcely be dwelt upon, as it is the essential
purpose of factorization to obtain independent measures.

The advantage of (b), orthogonality, is not quite so obvious. Though a point in two-
dimensional space may be completely defined by distance from two oblique axes, nev-
ertheless the simplicity of thought (and to create such simplicity is a basic purpose of factor-
ization) when a point is defined in terms of perpendicular distance from two perpendicular
axes, should be sufficient to commend the use of such axes.

The advantage of (c) making the variance of one of the new variables a maximum is partic-
ularly apparent when the major axis is much greater than the minor. In this case, much more
about the total situation or the total field wherein variation can take place is known if vari-
ability in any other direction is known. The principle of parsimony of thought recommends
a knowledge of the x1 variable if but a single item of knowledge is available. The operation
of this principle will be much more apparent when thinking of many variables, for here the
variances of some of the smaller ones may be such that entire lack of knowledge of them
will not be serious.

It is obvious from the geometry of the situation that there is but a single solution yielding
variables with the properties mentioned. These constitute the components in the two-variable
problem.4

It is interesting to speculate where Kelley may have come up with his approach
to the calculation of principal components. He gives no explicit reference for his
iterative method in the Essential Traits of Mental Life. In fact, he opens this text
(Chapter I) as follows:

4 As mentioned earlier, one limitation of the power iteration method is slow convergence when
λ1/λ2 is close to 1. Kelly provided the following comment on the advantage of his method: “unlike
Hotelling’s method, approximate equality of variance of two components does not lead to slow
convergence.” (p. 9)
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A New Method of Analysis of Variables into Independent Components: Before attempting
a comparison of different methods of analysis of variables into components, a new method
is presented. The procedure followed is new, but the outcome is identical with that given by
Hotelling’s method of analysis.

One story that is at least plausible comes from a perusal of the Kelley archives at
Harvard. Kelley spent a sabbatical year in the very early 1920s with Karl Pearson,
who was to have a major influence on Kelley’s statistical thinking. For example,
in the preface to Kelley’s well-received 1923 text, Statistical Method, there is the
following acknowledgement to Karl Pearson:

I would, however, say that my greatest inspiration has been the product of that master analyst,
Karl Pearson, and that the English school entire has been most contributive.

There is also a reference in Statistical Method (p. 363) to Karl Pearson’s paper,
“On lines and planes of closest fit to systems of points in space” (Pearson 1901).
As is now well-recognised, this early 1901 paper introduced “the method of prin-
cipal components,” although that particular terminology, introduced much later by
Hotelling in 1933, was obviously not used.

The key “tan 2θ” formula in Kelley’s method for finding the angle of rotation for
the principal axes orientation of a two-variable system is present in Pearson (1901, p.
566). It is conceivable thatKelley could have encountered it there for the first time, but
it is more likely that Kelley knew of it from his undergraduate work inmathematics at
the University of Illinois in the early 1900s. Neither Pearson nor Kelley, for example,
thought it necessary to include any reference for what was presumably a well-known
formula in mechanics that dealt with the axes of an ellipsoid. At Illinois, Kelley
did a Bachelor of Arts thesis (1909) entitled “Graphic Evaluation of Trigonometric
Functions of Complex Variables.” (A Google search on this exact title will retrieve
a copy of the thesis). Kelley’s trigonometric prowess as represented in his thesis
is also well on display in his Essential Traits of Mental Life—an extensive set of
trigonometric equations were derived by Kelley to make the iterative process work.

An interview done in 2006 with Darrell Bock in the Journal of Educational and
Behavioral Statistics (Wainer and Robinson 2006) may shed some more historical
light on the question of “Whence Principal Components?” The excerpts given below
discuss Bock’s visit to the University of Illinois in the 1950s to use the ILLIAC
computer for some eigenvector/eigenvalue computations that he needed done. Note
the name of the graduate student he met at Illinois, Gene Golub; Golub was soon to
become a computational giant of the second half of the 20th century.

I had heard from Charles Wrigley at Michigan State University that the new ILLIAC elec-
tronic computer at Champaign-Urbana had programs for both the one- and two-matrix
eigenproblems. On his advice, I phoned Kern Dickman, who had helped Charles perform
a principal component analysis on the machine, and explained my needs. He invited me to
come down to Urbana and bring the matrices to be analyzed with me. By that time, I had
become sufficiently proficient in using punched card equipment in the business office of the
University—in particular a new electronic calculating punch that could store constants and
performed cumulative multiplications as fast as the cards passed through the machine.
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I arrived in Urbana and found Kern; he took me directly to the computation center to see
the ILLIAC. But there was very little to see—only a photoelectric reader of teletype tape
and a box with a small slit where punched tape spewed from the machine; a few dimly
revealed electronic parts could be seen behind a plate-glass window. Elsewhere in the room
were teletype machines for punching numbers and letters onto paper tape, printing out the
characters of an existing tape, or copying all or parts of one tape to another. My first job
was to key the elements of the two covariance matrices onto tape, which in spite of my best
efforts to avoid errors, took most of the afternoon.

When I finished that task, Kern suggested that we should meet for dinner at his favorite
watering hole in Urbana. When I arrived there I found him sitting with another person whom
he introduced as Gene Golub, adding that Gene had programmed the eigenroutines for the
ILLIAC. At Kern’s suggestion Gene had brought along some papers for me—an introduction
to programming the ILLIAC and the documentation of the eigenroutines. He said that his
code was similar to that of Goldstein, who had programmed the eigen-procedures for the
Maniacmachine built byMetropolis at LosAlamos. It used the Jacobi iterativemethod,which
consists of repeated orthogonal transformations of pairs of variables to reduce the elements
in the off-diagonal of a real symmetric matrix to zero, all the while performing the same
operation on an identity matrix. Although a given element of the matrix does not necessarily
remain zero, the iterations converge to a diagonal matrix containing the eigenvalues, and the
identity matrix becomes the corresponding eigenvectors.

Gene told the story that Goldstein, having heard the Jacobi method described by a colleague,
stopped by John von Neumann’s office to ask if the method was strictly convergent. Gazing
at the ceiling for about five seconds, von Neumann replied “yes, of course.” Goldstein was
amazed, thinking this was another of von Neuman’s [sic] fabled feats of mental calculation,
but as Golub and Van Loan show in their 1996 reference, Matrix Computations, the proof
requires only a few lines of matrix expressions, which von Neumann could have easily
visualized. I already knew of this method, not as Jacobi’s, but as the “method of sine and
cosine transformations” described by Truman Kelley in his 1935 book, Essential Traits of
Mental Life. He presented the method as his own creation, including a proof of convergence
requiring several pages of geometric argument. Considering that Jacobi had introduced the
method in themiddle of the 19th-century, I wondered if Kelley had heard of it from one of his
fellow professors at Harvard. But I found in his 1928 book, Crossroads in the Mind of Man,
that he had already used sine and cosine transformations in connection with Spearman’s
one-factor model, and I now believe that he rediscovered Jacobi’s method independently.

Bock got this a little incorrect. Kelley did not “rediscover” Jacobi’s method. He did
not know, for example, that merely multiplying the pairwise orthogonal rotations
together would give the eigenvectors directly as is done in Jacobi’s method. But still,
Kelley got very close by obtaining all of the eigenvalues of a correlation matrix at the
end of his pairwise iterative process.Kelley generated the corresponding eigenvectors
rather laboriously by keeping track of all the transformations carried out over the
pairwise iterations as expressed in terms of the original variables.
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7 Conclusion

So now to the opening question of “Whence principal components?” The best theo-
retical answer is probablyKarl Pearson, given his 1901 papermentioned earlier.5 The
numerical examples Pearson gave, however, were all extremely small and involved
at most three variables. So, from a computational perspective, the answer to the ques-
tion should probably be Hotelling, based upon his use of an iterative power method
and the introduction of Hotelling deflation. If current computational practice is any
criterion, however, Kelley could be credited with the introduction of a rudimentary
Jacobi-like method. The Jacobi approach became more or less standard practice in
the 1950s and 1960s. As noted by Bock in the earlier excerpts, the method had
been programmed by Golub for the ILLIAC computer before Bock’s visit to Illinois.
From the 1970s to the present, most computer-implemented principal component
computational routines (in Matlab, for instance) rely on a more basic singular value
decomposition (SVD) algorithm developed by that same graduate student Bock met
at Illinois in the 1950s, Gene Golub; see, for example, Golub and Reinsch (1970),
“Singular value decomposition and least-squares solutions.” By way of closing, it is
interesting to note that the Golub-Reinsch SVD routine relies on exactly the same
type of planar rotations (but now called Givens rotations) used by Kelley in his
approach to computing principal components.6
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The Emergence of Joint Scales
in the Social and Behavioural Sciences:
Cumulative Guttman Scaling
and Single-Peaked Coombs Scaling

Willem J. Heiser and Jacqueline J. Meulman

1 Introduction

In his classical textbook Theory and Methods of Scaling, Torgerson (1958) distin-
guished three groups of scaling methods. This distinction was primarily based on the
consideration which part of the variability in responses of subjects (persons, judges)
to stimuli (questions, tasks) was to be regarded as systematic or random. In the first
group, called the subject-centred approach, systematic variation in the observations
is attributed to individual differences in the subjects, while the stimuli are regarded as
replications. In the second group, called the stimulus-centred or judgement approach,
systematic variation in the observations is attributed to differences in the stimuli with
respect to a designated attribute, while the subjects are regarded as replications. In
the third group, called the response approach, systematic variation is attributed to
stable differences in the subjects as well as in the stimuli.We start by briefly outlining
the historical context in which the first two approaches evolved.

1.1 Galton’s Subject-Centred Approach

The first group of scaling methods in Torgerson’s classification originated with Fran-
cis Galton (1822–1911). As noted by HelenWalker, in her impressive dissertation on
the history of educational statistics (Walker 1929), Galton’s book Hereditary Genius
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was the reason for him to become interested in devising standardised ways of report-
ing individual differences in achievement and intellectual ability. She quoted Galton
as follows:

The theory ofHereditary Genius, thoughusually scouted, has been advocated by a fewwriters
in the past as well as in modern times. But I may claim to be the first to treat the subject
in a statistical manner, to arrive at numerical results, and to introduce the ‘law of deviation
from an average’ into discussions on heredity. [...] The range of mental powers between
[...] the greatest and least of English intellects, is enormous. There is a continuity of natural
ability reaching from one knows not what height, and descending to one can hardly say what
depth. [...] I propose in this chapter to range men according to their natural abilities, putting
them into classes separated by equal degrees of merit, and to show the relative number of
individuals included in the several classes. [...] Themethod that I shall employ for discovering
all this, is an application of the very curious theoretical law of ’deviation from an average’.
(Galton 1869, as quoted in Walker 1929, pp. 86–87)

The “curious theoretical law” is the normal distribution of errors, but why would
a theory of errors apply to mental ability? In Chap.3 of Hereditary Genius, Galton
tried to show that it does. He first looked at 200 students who obtained mathematical
honours at Cambridge and found that their average scores on a ‘scale of merit’ given
by several examiners appear to follow the normal distribution, albeit that they show
a longer tail in the higher end of the distribution. He then looked at another example,
inspired by the inquiries of Adolphe Quetelet (1796–1874) on social and moral
statistics—Galton even strongly advises readers to consult the ‘very readable octavo
volume’ Letters on Probabilities (Quetelet 1849). The data were scores obtained by
73 candidates from the admissions test for the Royal Military College at Sandhurst,
December 1868 (see Stigler 1992). For this data set, he found that the frequencies
in ten classes compared with expected frequencies under the normal distribution
according to tables published by Quetelet “accord as closely as the small number of
persons examined could have led us to expect” (Galton 1869, p. 26). In this case, the
tail at the lower end was shorter than expected, which he attributed to an effect of
pre-selection.

Galton did notwant to argue only fromempirical examples.Not long after publica-
tion ofHereditary Genius, he tried to give some theoretical reasons why examination
scores could be expected to be normally distributed (Galton 1875). He first recalled
that to conform to the normal distribution, individual errors of observation were
supposed to be due to the combined effect of different influences that must be all
(1) independent, (2) of equal size, (3) equally likely to push the average upwards or
downwards, and (4) infinitely numerous. He immediately admitted that the first three
of these conditions “may occur in games of chance, but they assuredly do not occur
in vital and social phenomena” (Galton 1875, p. 39). Nevertheless, he then tried to
argue that, when examined more closely, they might still be approximately true at a
more fundamental level. Stigler (1986) came with a stern but just assessment of this
view:

His explanationwas scattered, however; and therefore incomplete. It amounted to two claims
that, although true, did not get to the heart of thematter. Onewas a rearguing of the hypothesis
of elementary errors – large influences would frequently, upon closer inspection, be seen to
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be composed of a large number of smaller influences, and hence the Laplacian conditions
could be safely pushed back a stage, out of sight. The other, upon which Galton put more
emphasis, was that the number of variable influences did not really need to be “infinitely
numerous”; in fact, even for n = 17, a binomial distributionwas normal for practical purposes.
(Stigler 1986, pp. 274–275)

Notwithstanding the somewhat shaky defense of the assumption of normality, the
1875 paper is important for the subject-centred scaling approach, because it elabo-
rated on what Galton called the “common statistical scale” in a letter to Editor of
Nature (Galton 1874). First, by expressing the raw score in deviations from themean,
in standardised scores with unit defined by what was at that time called the “prob-
able error” (before Karl Pearson conceptualised the standard deviation1), different
distributions of all kinds could be made comparable, as well as individuals measured
in different groups or on different occasions. Second, by using the cumulative fre-
quencies of the normal distribution, a curve could be drawn, which he called the
“ogive” by which scale values can be determined that partition the total frequency
into one hundred equal parts—the percentiles. The standardised scale and the per-
centiles (or McCall’s (1922) T-scale that divides individuals in ten equally frequent
classes) became the mainstay of early educational and mental measurement.

The two psychometric branches that developed out of these first steps of the
subject-centred approach became known as classical test theory and factor analysis
on subscale scores of a test. Classical test theory introduced the concept of a system-
atic latent variable, on top of an error variable: “observed score = true score + error”;
it concerns the reliability and validity of subject scores and various ways to establish
and optimise these quality measures. A good recent source for the history of clas-
sical test theory is Clauser (2022). Factor analysis could not have been formulated
before Galton’s path-breaking discovery in the 1880s of the statistical concept of
correlation.2 It is concerned with the structure of correlations between scale scores,
with the aim to identify (possibly overlapping) subsets of scales that are mutually
highly correlated, called common factors. At the occasion of the 100th anniversary
of Charles Spearman’s seminal paper about the structure of intelligence in 2004, the
history of factor analysis was reviewed by leading psychometricians in Cudeck and
MacCallum (2007).

1.2 Fechner’s Stimulus-Centred or Judgement Approach

The second group of scaling methods in Torgerson’s classification started slightly
earlier with Gustav Theodor Fechner (1801–1889), physicist and philosopher with
important contributions to both psychology, psychometrics, and statistics (Stigler

1 According to Yule and Filon (1936), the standard deviation was introduced in Pearson (1894, p.
75). Stigler (1986, p. 328) noted that he already mentioned it in a series of lectures from 31 January
through 3 February 1893. It no longer presupposes that the variability is caused by error.
2 But see Stigler’s (1986, pp. 297–299) interesting comments about theminor role correlation played
in Galton’s own work.
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1986, Chap.7; Murray 2021; Heiser 2023). He is best known for Fechner’s Law,
which relates subjective sensation of stimuli to the logarithm of the amount of objec-
tive stimulation by physical excitation. As a basis, he took Weber’s Law, which states
that the perceived change in a stimulus is proportional to the initial physical value of
the stimulus.

ErnestHeinrichWeber (1795–1878) startedwork on effects of pressure on the skin
in the early 1830s and gave a matured account in Der Tastsinn und das Gemeingefühl
(Weber 1846). According to the eminent historian of psychology Edwin Boring
(1886–1968):

immediately others began trying to establish Weber’s Law for senses other than touch and
for dimensions other than intensity. Weber’s Law was quantitative. It was a measurement in
the sense that it measured in terms of the stimulus: a sensory distance judged quantitatively.
It did not, however, imply a sensory scale. (Boring 1961, pp. 241–242).

Fechner’s most significant contribution to quantitative psychology was that he
showed how to construct a sensory scale in his major work Elemente der Psy-
chophysik (Fechner 1860). The key was to assume that on the psychological scale,
all just noticeable differences (jnds) are equal, and then to take the jnd as the unit of
measurement. By simple addition of jnds, one could find themagnitude of a sensation
above the zero point (called the stimulus limen).

Fechner also formulated three specific experimental designs for establishing jnds:
themethod of reproduction or adjustment, themethod of minimal changes (ormethod
of limits), and the method of constant stimuli; see (Guilford (1936), Chaps. 2, 4, and
6) for a brief overview and Heiser (2023). In the first design, it is the subject who
produces a series of stimulus adjustments to make them subjectively equal to a
fixed comparison stimulus. Here, the difference between the physical value of the
comparison stimulus and the average physical value of the reproduced stimuli is
taken as the jnd. In the second and third designs, it is the experimenter who adjusts
the intensity of a variable stimulus with respect to a constant stimulus in different
ways. Then the task of the subject is merely to indicate which of the two is more
intense than the other (e.g., “louder than” or “heavier than”). Here, the jnd is defined
as the physical stimulus difference that is detected by human observers 50% of
the time. It is important to notice that for the method of minimal changes and the
method of constant stimuli, the actual elementary observations are qualitative: in
a comparison of two stimuli, the subject has to declare that the first dominates the
second, or the other way around (soon it became customary to admit judgements of
equality as well). After several repetitions of the task, by the same subject and/or
other subjects considered as replications, we obtain a number of relative frequencies
for the “greater than” category that tend to increase as a function of the value of the
comparison stimulus.

To determine the 50% point, Fechner (1860, pp. 85–93) proposed to fit a
cumulative-normal distribution to these relative frequencies. It is not the place here
to go into details of different ways of fitting such a curve that were developed in the
next fifty years (see Urban 1907, 1910). However, it should be mentioned that Fech-
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ner’s brilliant idea of fitting a nonlinear model in this context obtained an adequate
name by the end of this period:

A mathematical expression which gives the probability of a judgment as function of the
comparison stimulus, is called the psychometric function of this judgment [...] The term
psychometric function was chosen in imitation of the term biometric function, which is
commonly in use for mathematical expressions which give the so-called probability of dying
as function of age. (Urban 1910, p. 230).

The assumption of the normal distribution on which Fechner’s sensory scale is
based has become known as the phi-gamma hypothesis �(γ ), where �(·) denotes
the normal distribution function. Here, γ = h.� is the product of the measure of
precision in Gauss’ sense h (the steepness of the curve, in Pearson’s terminology
h = 1/σ

√
2, where σ is the standard deviation), and the stimulus increment � cor-

responding to a probability of 0.5 (the inflection point of the curve). For insight-
ful discussions of the phi-gamma hypothesis, see Boring (1917, 1924), Thurstone
(1928a), and Stigler (1986, pp. 244–254).

1.3 The Response Approach: Scaling both Subjects
and Stimuli

That brings us to the third type of psychological scaling, which is the main topic
of this paper. Torgerson (1958) called it the response approach, the early history of
which started in the 1940s and 1950s of the twentieth century. Its main initiators were
Louis Guttman (1916–1987) and Clyde Coombs (1912–1988). The main concept of
the response approach is the joint scale, on which both subjects and stimuli have
scale values (or a rank position), and its main objective is to find these scale values
by an analysis of a single data set with the responses of subjects towards a given set of
stimuli. The Guttman type of joint scale will be discussed in Sect. 2, the Coombs type
of joint scale in Sect. 3, and we will introduce an interesting and useful connection
between the two in Sect. 4.

2 Joint Scales for Multiple Choice Data: Cumulative
Guttman Scaling

Guttman’s theory of a joint scale was based on the format of multiple choice data:
responses of a group of individuals (alternatively called “objects”) to a set of items
(alternatively called “qualitative variables”) with multiple response categories that
are exclusive and exhaustive.3

3 This format was developed during World War I, when mental testing and classification of almost
two million army recruits necessitated group testing with efficient scoring rules, replacing the
customary one-hour individual interviews by a trained psychologist. See Siegel (1992) for the
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2.1 Guttman’s Points of Departure

Apart from the data format that he had chosen to arrive at a joint scale, various
important prerequisites and objectives for Guttman’s scaling work were:

1. To consider the individuals as a sample from a well-specified population, and
the items as a sample from a well-designed universe of items, which should form
what Guttman called a single class of behaviour (Guttman 1941, p. 321).

2. To keep in mind that “a criterion for an attribute to belong in the universe is
not the magnitude of the correlations of that item with other attributes known
to belong in the universe. [...] It will be seen that attributes of the same type of
content may have any size of intercorrelations, varying from practically zero to
unity.” (Guttman 1944, p. 142).

3. To regard the specific selection of categories endorsed by an individual across
items as an individual’s coherent behaviour, and the specific subgroup of individ-
uals who checked the same category as exhibiting a distinctive feature, so that the
entire variability of behaviour is attributed to systematic individual differences.

4. Tokeep away fromany assumption of “a priori notions of ‘units ofmeasurement’,
‘interchangeability of units’, ‘linearity of units’, ‘addition of units’, and the like”
(Guttman 1941, p. 323), by which he distanced himself from the psychophysical
tradition.

5. To work with methods that simultaneously order and/or quantify individuals
and categories on the basis of one and the same data set, in which no a priori
judgment is required whether or not one category should obtain a higher value
than another.

6. To assign a single value (called weight) to each category and a single value
(called score) to each individual, in order to predict responses to other items in
the same universe (but outside the current sample), as well as to other individuals
of the same population.

During the 1940s, Guttman designed several methods to achieve the above objectives
(5) and (6) under prerequisites (1) to (4). The two best-known ones are what Guttman
called his least squares method (Guttman 1941)—the name we also use in this
chapter—and scalogram analysis, of which the basic principles were described in
Guttman (1944, 1950a), while more detailed and practical matters can be found
in Guttman (1947a, b). Let us first look at the major concepts of the least squares
method.

important role of Arthur Otis, a doctoral student at Stanford University under supervision of Lewis
Terman, who created the first multiple choice paper-and-pencil scale for assessing mental ability,
known as the Army Group Examination Alpha.
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2.2 The Least Squares Method

In the introductory section of Guttman (1941), he makes the following fundamental
remark:

It so happens that the “best” answer we shall derive involves rather lengthy, though simple,
numerical calculations; and it can often be usefully approximated by simpler – and even
intuitive – procedures. It is of little value, however, merely to say that one “weighting”
system is as good as another since different weights give approximately the same numerical
answer. It is of primary importance to define first a “best” answer so that one can know what
it is that is being approximated, and that definition is our principal motivation in writing this
paper (Guttman 1941, p. 323)

Hence, his aim was evidently to describe the rationale of applying already known
methods of principal components analysis and reciprocal averaging—to which he
referred in the bibliographical note on pp. 345–347 of his paper—when the data are
qualitative. In fact, he gave three different but related criteria and proved that they
lead to the same solution, after adjustments for normalisation differences. The first
two have in common a new use of the correlation ratio to define quantifications,
while the third uses the familiar correlation coefficient as a measure of consistency
of optimal weights and scores to be found.

2.2.1 Pearson’s Correlation Ratio for Nonlinear Regression

The correlation ratio η had been proposed by Pearson (1905) for the situation of a
nonlinear regression of an observed quantitative variable y upon either a qualitative
or a quantitative independent variable, grouped into a number of classes. The distri-
bution of y for given class x of the independent variable was called an x-array of y’s,
having an average value ȳx . Then η2, the square of the correlation ratio, was defined
as the ratio of the variance of the means ȳx of the x-arrays to the total variance of
y. By what Pearson called “a well-known property of moments,4 the total variance
of y can be decomposed into two parts: the sum of the variance between the means
and the average of the variances within x-arrays. Therefore, when η2 goes to 1.0, we
have perfect nonlinear correlation and no variability around the regression curve. If
η2 equals zero, the variance between the means is zero; i.e., there is no association
of y’s with special classes of x at all. Pearson also proved that η is always greater
than r , the linear correlation coefficient, where he noted:

except in the special case when the means of the x-arrays of y’s all fall on a straight line,
i.e., we have linear regression, and then the two correlation constants are equal. [...] We have
now freed our treatment of correlation from any condition as to linearity of the regression.
(Pearson 1905, p. 11).

4 Particularly, it is a property of the second moment of inertia, a concept from physics that Pearson
started to use a lot in the 1890s. For a historical account of Pearson’s Method of Moments, see
Walker (1929, Chap. III).
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2.2.2 Quantification of the Category Weights

In his first application of the squared correlation ratio, Guttman introduced the impor-
tant new notion to let y correspond to the parameters of his scaling problem, i.e.,
the unknown quantifications of the category weights. The independent variable x
corresponded to subjects, so that an x-array contains subject-specific observations.
Hence, for quantification of the weights, η2 measures the ratio of the variance across
subjects of the mean weights ȳx—of the categories endorsed by each subject—to the
total variance of all weights. For a reason to be discussed shortly, Guttman’s objec-
tive was to minimise the relative variability of the weights within subjects. From
Pearson’s decomposition of the total variance, we can be assured that this goal is in
fact achieved by maximising η2.

Guttman then continued to show that from this point of departure, the solution
involves finding the eigenvector with the largest eigenvalue of a matrix containing all
bivariate cross-tables of the qualitative variables involved in the problem, standard-
ised with respect to the expected frequencies under the hypothesis of independence.
Hence, the matrix from which we calculate the optimal category quantifications has
typical elements involved in the usual chi-square statistic to test for significance of
association. For this reason, Guttman remarks that although the method looks like a
principal component analysis:

There is an essential difference, however, between the present problem of quantifying a class
of attributes and the problem of “factoring” a set of quantitative variates. The principal axis
solution for a set of quantitative variates depends on the preliminary units of measurement of
those variates. In the present problem, the question of preliminary units does not arise since
we limit ourselves to considering the presence or absence of behaviour. But we [...] see that
in a sense a metric has arisen out of our analysis, a metric that we shall call the “chi-square”
metric. (Guttman 1941, pp. 330–331).

So, he underlines that his method satisfies prerequisites (3) and (4) discussed in
the beginning of this section. We are not accounting for variance in the data, but
for variability in qualitative behaviour. The chi-square metric is not assumed but
follows from the aim to minimise the variance of the relevant category weights
within subjects, relative to their total variance.

2.2.3 Quantification of the Subject Scores

In Guttman’s second application of the squared correlation ratio, the dependent vari-
able y corresponds to the unknown quantifications of the position of the subjects on
the joint scale, i.e., the subject scores. The independent variable then corresponds
to categories, so that an x-array contains category-specific observations that identify
subgroups of subjects who share the same behaviour. Now the objective is that the
values of y should be such that subjects who endorse the same category should have
maximally similar scores, while subjects in different categories have maximally dif-
ferent scores. In this set-up, η2 will measure the ratio of the variance across categories
of the mean scores ȳx to the total variance of all scores. By the same argument as
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before, maximising the relative variance of the mean subject scores per category
implies minimising the relative variances of the scores within categories.

The solution to maximise η2 for the scores again becomes an eigenvalue-
eigenvector problem, resulting in standardised scores and in category weights that
are the average of the scores of subjects belonging to or endorsing that particular cat-
egory. It gives the rationale for a common statistical scale with standardised scores,
with all advantages that Francis Galton had in mind, but now for purely qualitative
data and without any distributional assumptions.

2.2.4 Linearising the Regression of Scores and Weights

Finally, Guttman considered a consistency criterion for determining the optimal
category quantifications and optimal subject scores simultaneously. For this criterion,
he selects all pairs of combinations of some subject i endorsing some category j .
This subset of pairs is coded with ones in the binary data matrix M, and the other
pairs are coded with zeros. The problem becomes one of finding scores z = {zi } and
weights w = {w j } that are maximally correlated. Maximal correlation implies that
categories endorsed by people with low scores should have similarly low values on
the joint scale, while categories endorsed by people with high scores should have
similarly high values on the joint scale. Guttman then showed that optimising the
consistency criterion amounts to maximising a bilinear form in terms of z and w
in the metric M, under the restrictions that the variances of z and of w are finite
constants. In addition, he showed that:

1. The quantifications under the consistency criterion solution are equivalent to the
two solutions based on maximising the squared correlation ratio;

2. The optimal correlation coefficient is equal to both optimal correlation ratios;
3. Therefore, due to Pearson’s result quoted earlier, the regressions of the optimal

category weights ŵ on the optimal subject scores ẑ are linear in both directions.

In sum, all three approaches linearise the regression between the two types of scale
values on the joint scale. With these important results, we conclude our summary
of the major features of Guttman’s least squares technique and turn to his remark
cited in the beginning of Sect. 2.2 that it could often be approximated by simpler
procedures.

2.3 Scalogram Analysis

The basic ideas of these simpler procedures were introduced in Guttman (1944)
under the name scalogram analysis. A scalogram is a visualisation of the joint scale,
in which subjects are represented by rank scores x and the new concept is that an
item with its response categories is required to be a simple function of x. Suppose
the m categories of an item V have arbitrary values v1, v2, . . . , vm , which are
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regarded to be just labels. Then item V is said to be a simple function of x if we
can divide the rank scores on the scale into m consecutive intervals, for which the
values within one interval are the same, while they are different from the values
in the other intervals. Thus, all subjects with a score within one interval share the
same unique response category. The intersection of the intervals across items yields
a limited number of response profiles that may occur given the requirement of items
being simple functions.

2.3.1 Definition of a Guttman Scale

Given these preliminaries, here is the explicit definition of the notion that Guttman
called a scale, which was only implicitly playing a role in the least squares approach:

For a given population of objects, the multivariate frequency distribution of a universe of
attributes will be called a scale if it is possible to derive from the distribution a quantitative
variable with which to characterize the objects such that each attribute is a simple function
of that quantitative variable. Such a quantitative variable is called a scale variable. [...]
Obviously any quantitative variable that is an increasing (or decreasing) function of a scale
variable is also a scale variable [...], which is equally good at reproducing the attributes.
[...] Therefore, the problem of metric is of no particular importance here for scaling. For
certain problems like predicting outside variables from the universe of attributes, it may be
convenient to adopt a particular metric like a least squares metric, which has convenient
properties for helping analyze multiple correlations. The interesting mathematics involved
here will be discussed in another paper. (Guttman 1944, pp. 140–141).

The future paper that Guttman anticipates in this quotation is most likely Guttman
(1950b), in which he demonstrates that for a uniform distribution of the response
profiles the least squares technique will produce optimal scores that are linear with
the rank scores—i.e. they are equally spaced. Amonotonically increasing function of
them is obtained for a non-uniformdistribution, depending on the relative frequencies
of people with the same response profile. Furthermore, once the scale variable is
found, there is an unambiguousmeaning to the order of attribute values. One category
of an attribute is higher than another if it characterises objects higher on the scale
(Guttman 1944, p. 150). By ordering the categories in this way, the simple function
becomes an increasing step function for each attribute.

2.3.2 Representations of a Guttman Scale

In a scalogram, the joint ordering of subjects and categories is represented bymarking
the ranked subject scores on a continuum, and then inserting cutting points indicating
the location where one interval borders the next interval. Alternatively, items are
represented as a set of parallel bar charts, with cutting points in proportion to the
marginal frequencies, extended across all items. This construction allows reading off
all possible response profiles accounted for by the joint scale. In the important special
case in which each item has two categories, permuting the rows and columns of the
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binary data matrix M in the order of the scale variable will show a characteristic
parallelogram pattern, which is often also called a scalogram (Guttman 1950b).

In joint scales of binary items, the step function has only one step, located at the
cutting point between the last subject who scored in the lower category and the first
subject who scored in the higher category. It is instructive to compare Guttman’s step
function with functions in probabilistic models that psychometricians also started to
develop in the 1950s and 1960s. Such models are based on a curve that gives the
probability of answering an item correctly, called a trace line (Lazarsfeld 1950)
or item-characteristic curve (ICC; Lord and Novick 1968, p. 366). Initially, the
most popular ICC was exactly Fechner’s (and Galton’s) normal ogive psychometric
function �(γ ) that we discussed in Sect. 1.2. When used as a model for the relation
between ability and item responses (Lord 1952), γ is parametrised as γ = a (θ − b),
where θ is the subject score, the precision parameter a is called the discriminating
power of an item, and b is called the item difficulty, or more generally, item location
parameter. In these terms, the Guttman step function is the limiting case for a grow-
ing without bound, so that items have perfect discrimination. Formally, we obtain
�[∞(θ − b)] = 1 if θ > b and�[∞(θ − b)] = 0 if θ < b. (Lord and Novick 1968,
p. 403). If the subject score is larger than the item difficulty, we are sure the item
will be answered correctly, and when it is smaller we are sure that it will not. That
is why the Guttman scale is called cumulative: it requires some extra ability to pass
the next item on the scale.

2.3.3 Advantages of Scalogram Analysis

Guttman (1944) mentioned three advantages of representing a large amount of data
compactly as a joint scale:

1. It is easier to understand and remember than a large chaotic tabulation (p. 142).
2. In the ideal case,we can reconstruct the entire table from the scale scores, because

that merely requires checking out which interval each score falls in for each item
(p. 142–143).

3. Any outside variable can be predicted equally well from the scale scores alone
as from the set of separate items (p. 150).

These properties made scalogram analysis a very popular method among social
scientists. Unfortunately:

Perfect scales are not found in practice. The degree of approximation to perfection is mea-
sured by a coefficient of reproducibility [...] . In practice, 85 percent perfect scales or better
have been used as efficient approximations to perfect scales (Guttman 1944, p. 150).

It need not surprise us that a quite extensive literature emerged on how to find
good approximate scalograms. Guttman (1947b) proposed the Cornell technique,
which involved repeatedly sorting and rearranging the entries of the raw data matrix,
but this soon becomes bothersome for larger number of subjects and items. Green
(1956) proposed a practical and automatic method that does not involve sorting and
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rearranging and was based on summary statistics to estimate reproducibility. For
a relatively recent overview of many other proposals and extensions of scalogram
analysis, we refer to Clogg and Sawyer (1981).

3 Joint Scales for Preferential Choice Data: Single-Peaked
Coombs Scaling

Coombs’ theory of a joint scale was based on the format of preferential choice data:
rank order responses of a group of subjects (treated as individuals) to a set of stimuli.
Two major examples are (a) what Coombs (1952) called pick k/n data, in which
subjects are asked to select k stimuli out of a set of n stimuli according to personal
preference, and (b) order k/n data, in which the subjects are asked to offer their
1st , 2nd , up to kth choice. When the latter set-up k is fixed equal to n, we obtain a
third type of task for the subject: (c) produce a complete rank order of the stimuli. If
repeatedly pairs of stimuli (n = 2) are presented and the subject is asked which one
is preferred (k = 1), we get (d) the method of paired comparisons.

Coombs called this class of behaviour relative and mentioned that it requires the
use of the Method of Choice, without indicating the origin of that group of methods.
It originated as Fechner’s Wahlmethode, which was introduced for the experimental
study of aesthetics (Fechner 1871); see Guilford (1936, pp. 222–225) for its early
history. What Coombs meant by relative is that the data do not tell us whether or not
the subject actually endorses the chosen object or proposition in an absolute sense.
Rather, it just indicates which one of the stimuli is psychologically closer to the
subject’s evaluation standard.

3.1 Coombs’ Points of Departure

In terms of prerequisites and objectives, Coombs wanted to stay away from any
assumption on the unit of measurement—just like Guttman. In his first paper on the
so-called unfolding technique, he clearly stated his ultimate goal:

But because we may sometimes question the meaning of the definitions and the validity of
the assumptions which lead to a unit of measurement, it is our intent in this paper to develop
a new type of scale not involving a unit of measurement. [...] [It] falls logically between
an interval scale and an ordinal scale [...] ; on the basis of tolerable assumptions and with
appropriate technique we are able to order the magnitude of the intervals between objects.
We have called such a scale an ordered metric. (Coombs 1950, p. 145)

This point of departure is clearly the same as Guttman’s prerequisite (4), with the
added objective to establish a new kind of metric. Coombs also explicitly stated that
“each stimulus has one and only one scale position for all individuals and that each
individual has one and only one scale position for all stimuli” (Coombs 1950, p. 146),
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which corresponds to Guttman’s objectives (5) and (6). However, where Guttman
talks about the advantage to predict the response to all items from the subject score
alone, Coombs phrases it with a twist:

The unfolding technique was explicitly designed to explain preference behaviour. Existing
techniques for scaling such data, as Thurstone’s Law of Comparative Judgement as applied
in his study of Nationality Preferences [...] [Thurstone (1928b)] are procedures [...] which
best represent the preferences of the individuals in a group in some statistical sense such
as least squares (see Mosteller 1951). The objective of the Unfolding Technique is to go
behind the expressed preferences of individuals and to construct a model from which their
preferences may be derived [emphasis in the original]. It is in this sense that the term explain
is used (Coombs 1952, p. 56).

So Coombs, too, aims at constructing a joint scale from which all individual differ-
ences may be reproduced entirely. We have seen for the Guttman scale how to link
subjects with the responses to items, but how are we going to do something like that
for the Coombs joint scale, which has scale values for subjects and for stimuli (or
objects), but not for responses?

3.2 The Unfolding Mechanism

We answer this question by examining the mechanism on which the unfolding model
works. If the scale value of subject i is denoted by Ci , and the scale values of two
stimuli are denoted by Q j and Ql , then the basic assumption is that an individual
will give the response “I prefer stimulus j to stimulus l” if we have |Q j − Ci | <

|Ql − Ci |. In other words, subjects will prefer the stimulus that is closer to their
own scale value. In line with this principle, we expect for the case of pick k/n data
that the individual selects those k stimuli that are closest to Ci (and for order k/n
data, in the order of the distances from Ci ). It follows that the Ci value represents
a hypothetical stimulus that would perfectly represent the evaluation standard of
a subject. For this reason, Ci is usually called the ideal point of subject i . Since
preference monotonically decreases in both directions of the scale, with a peak at
the ideal point, this property of response curves in the unfolding model is known as
single-peakedness (see Coombs and Avrunin 1977, for the theoretical and historical
background of this concept). Perhaps one of the most important consequences is
that, if all preference curves are single peaked, a social or consensus ranking by the
simple majority rule exists, and is equal to the ranking of the median individual on
the Coombs scale (Black 1948).

3.2.1 How the Coombs Scale Limits the Number of Possible Rankings

Coombs called the preferential ordering of the stimulus objects by individual i the I
scale, and the joint scale with scale values for individuals, and stimuli the J scale. He
then introduced a mechanical metaphor to explain how to reconstruct the data (the I
scales) from the model (the J scale), in particular:
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by imagining a hinge located on the J scale at the Ci value of the individual and folding the
left side of the J scale over and merging it with the right side. The stimuli on the two sides of
the individual will mesh in such a way that the quantity |Q j − Ci | will be in progressively
ascending magnitude from left to right. The order of the stimuli on the folded J scale is the
I scale for the individual whose Ci value coincides with the hinge.

It is immediately apparent that there will be classes of individuals whose I scales will be
qualitatively identical as to the order of the stimuli and that these classes will be bounded
by the midpoints between pairs of stimuli on the J scale. (Coombs 1950, p. 147).

It turns out that the midpoints mentioned in this quotation play a major role in the
model, so let us have a closer look at them. In the examples that follow, we use the
customary convention to label the stimuli alphabetically. If there are n stimuli, there
will be 1

2n(n − 1) midpoints in total, which have coordinates on the J scale defined
as QAB = 1

2 (QA + QB), for all pairs (A,B).
Therefore, themidpoints define 1

2n(n − 1) + 1 intervals on the J scale. For the case
of complete rankings, in each of these intervals one unique I scale can be located.
In case of pick k/n data, however, only a subset of the midpoints define feasible
intervals, for a smaller set of I scales. Since complete rankings provide the richest
information and lead to the unfolding technique, we start there and will return to the
analysis of pick k/n data afterwards.

Suppose we have a J scale with four stimulus points, in the order {QA, QB, QC,

QD}. Then the leftmost interval up to midpoint QAB contains the first I scale, denoted
as ABCD. Going to the right, all points in the next interval will be closer to QB than
to QA. Thus, passing the midpoint QAB leads to the I scale BACD; then, by moving
further to the right we obtain BCAD after passing midpoint QAC, and so on. In
general, the transition from one I scale to the next always involves the reversal of
only one adjacent pair of stimuli. After having passed all six midpoints, we end up
in the rightmost interval containing I scale DCBA, exactly the reverse order from
where we started.

3.2.2 How Metric Information Can Be Deduced from Different Subsets
of Rankings

So we see that, although there are 24 (n!) possible rankings of four stimuli, a perfect
joint Coombs scale allows only 7 of them to be present in the data. Of course, with a
different order of the stimuli on the J scale, a different set of I scalesmay be generated.
Nevertheless, even for a given order of four stimuli on the J scale, the subset of I scales
accommodated is not unique. In our example, the I scale in the middle interval may
be either BCDA or CBAD. To understand why, consider the sequence of the three
I scales in the middle: we can either have BCAD—BCDA—CBDA, or BCAD—
CBAD—CBDA. In the first sequence, midpoint AD is passed first, and midpoint
BC is passed next; in the second sequence, the midpoints are passed in the reverse
order. An important consequence is that in the first sequence we have, in terms of
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coordinates, 1
2 (QA + QD) < 1

2 (QB + QC). From this inequality, it follows that we
must have |(QD − QC)| < |QB − QA|, while in the second sequence we find the
reverse.

Apparently, the occurrence of the I scale BCDA in the data indicates that the
interval between stimuli A and B must be greater than the interval between C and D.
Conversely, the occurrence of the I scale CBAD indicates that the distance betweenA
and B is smaller than the distance between C and D.With more than four stimuli, the
variety of different sets of I scales increases rapidly and leads to a substantial amount
of metric information. Coombs (1950) called a J scale with unequally sized intervals
between the scale values of the stimuli a quantitative J scale, with an ordered metric
measurement level.

3.3 Methods to Find Coombs Scales, Including Some
Extensions and Special Cases

We are now in a position to deal with the technical problem of constructing Coombs
scales, starting with early methods for finding a quantitative J scale. Next, we will
indicate how the unfolding model has been extended to the multidimensional case
and to probabilistic versions. The last two subsections are devoted to the analysis of
pick k/n data.

3.3.1 Early Methods to Determine a Quantitative J Scale for a Set
of Rankings

Earlymethods to find a quantitative J scale for a given set of I scales usually consisted
of three steps. The first step starts by heuristically deciding on the order of the stimuli
and then tries to list by trial and error the I scales from left to right, where the transition
from one I scale to the next must involve only one reversal of an adjacent pair of
stimuli (while keeping track of I scales that do not fit or do not occur in the data). This
first step identifies the midpoints and their ordering along the scale. The second step
involves determining metric relations between the stimulus intervals by using the
order in which the midpoints change—as demonstrated earlier; it results in a partial
ordering of a subset of the distances between stimulus scale values. In the third step,
the quantitative J scale has to be derived in such a way that the stimulus intervals
satisfy the metric relations found in the previous step.

A remarkable omission in the Coombs (1950) paper that introduced the unfolding
technique was that Coombs completely skipped a description of the third step. One
reason may have been that he encountered the difficulty that half of the subjects in
his empirical example produced a different partial order of the distances than the
other half. Another reason might have been that he considered this step simply to
be done by trial and error for a small number of stimuli. Next, the monograph that
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contained an extended discussion of the unfolding model and technique (Coombs
1952) did give one empirical example of an unfolded J scalewith the spacing between
adjacent stimulus scale values indicated (Fig. 11 on page 82), but without any further
explanation of how this result was obtained. In Coombs (1953), the unfolding of
preferential choice data are embedded in his emerging theory of data, but again there
is no indication on how to actually obtain the joint scale.5

The firstmethod for solving the problem completelywas provided byAbelson and
Tukey (1959), who proposed a general maximin criterion for regression problems
under a variety of order constraints. For the unfolding case, we consider an ordered
sequence of quantitative scale values {Q1, . . . , Qn}with first differences that satisfy
certain inequalities. The proposed criterion maximises the squared Pearson correla-
tion r2 between any candidate solution {Q̃1, . . . , Q̃n} and another feasible set of
scale values satisfying the same inequalities, chosen to have minimal correlation
with {Q̃1, . . . , Q̃n}. This criterion guarantees that r2 cannot be less than an admit-
tedly pessimistic value between zero and one, which may be viewed as a measure of
how loose or how tight the ordinal constraints on the stimulus coordinate differences
determine the quantitative J scale (cf. Shepard 1966, pp. 288–292). The procedure
used to actually find these maximin solutions was complete enumeration with smart
heuristics, requiring computing equipment for cases with a relatively large number
of stimuli.

In hiswide-ranging treatiseA Theory of Data, Coombs (1964) presented a “pencil-
and-worksheet” method for finding the ordered metric scale values, called the delta
method and developed by his colleague FrankGoode. The presentationwas primarily
by giving examples: one for the unfolding case of seven stimuli (o.c., pp. 96–102) and
two for his ordinal method of similarities (o.c., pp. 359–362 and pp. 450–454). The
delta method did not include a criterion to evaluate the quality of the solution, and all
the rewritings in the worksheets were not easy to comprehend for the general reader
(to put itmildly).Nowonder that unidimensional ordinal unfolding never foundmany
substantial applications, except within the limited circle of Coombs and his students
(e.g. Dawes 1972, pp. 79–80). The same conclusion was reached—reluctantly—by
McIver and Carmines (1981, Chap.6).

5 Interestingly, this chapter also introduced the “Method of Similarities, an adaptation of theUnfold-
ing Technique [...] , [by which] it is possible to take a single individual subject and determine the
structure of the attribute [...] as he perceived it for these stimuli. It can readily be determined
whether his perception [...] satisfies a simply ordered system and what some of the metric relations
are” (Coombs 1953, pp. 479–480). The first published detailed account of this method of similarities
(Coombs 1954) was concerned primarily with a system of data collection procedures for finding
the rank order of distances between pairs of stimuli, in several related designs. So again it turns out
that, in his own words, “procedures for recovering a J space are as yet incompletely developed”
(o.c., p. 193).
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3.3.2 Later Methods for Extensions of Unfolding

It took 25years after his first presentation of the ordered metric scale before Coombs
could offer a practical analytical procedure in the form of the so-called ORDMET
algorithm (McClelland and Coombs 1975). Meanwhile, however, other approaches
to obtain single-peaked joint scales had been invented and successively improved
upon that soon became more popular. We just mention the following two groups of
methods.

The first approach is a special case of the non-metric multidimensional scaling
(MDS) methods that is usually based on the least squares STRESS criterion pro-
posed by Kruskal (1964). In the case of non-metric multidimensional unfolding,
STRESS measures the average discrepancy between the best monotonically increas-
ing transformation of each I scale and the distance between ideal and stimulus points
in a Euclidean space of prespecified number of dimensions. Non-metric MDS and
unfolding have generated a vast literature, with many applications in a wide spec-
trum of domains. For unfolding as an MDS method, we refer for more specifics and
historical overviews to Heiser and Meulman (1983), Heiser and Busing (2004) and
Busing (2010).

The second approach is the group of probabilistic unidimensional unfoldingmeth-
ods in the tradition of item response theory (IRT) modelling. It is important to note
here that these types of methods do not attempt to model preferential choices (i.e.
Coombs data), but multiple choice items (i.e. Guttman data) with binary or graded
agree-disagree responses. In the graded case, the categories are of the ordered Likert
type (Likert 1932), for example: {“strongly agree”, “agree”, “disagree”, “strongly
disagree” }. For a good example of this approach, we briefly look at the generalised
graded unfolding (GGUM) model proposed by Roberts, Donoghue, and Laughlin
(2000). They assume a subjective response process, which is single peaked in terms
of the difference between the item location Q j and the subject location Ci—the
standard unfolding assumption. Then they note that for the observable categories,
subjects can respond with the “disagree” response categories for either of two rea-
sons. If Q j − Ci is negative beyond a certain threshold, then the subject will disagree
with the item “from above”, and if Q j − Ci is positive beyond a certain threshold,
then the subject will disagree with the item “from below”. The implication is that
the response probabilities for the agree categories are single peaked (with different
dispersions), and for the disagree categories, they are bimodal or even single dipped
for items that are far away from the ideal point.

3.3.3 Parallelogram Analysis of Pick k/n Data

We now turn to the analysis of pick k/n data. Note that this type of data is a special
case of rankings, because if we ask a subject to choose a subset of k stimuli out of
a set of size n, the I scale so obtained is equivalent to a tied ranking. There will
be k stimuli in the first tie block and n − k stimuli in the second tie block. From
the assumption of single-peakedness, it follows directly that subjects will choose k
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adjacent stimuli that are all closer their ideal point than any other stimulus. Consider
the case of k = 2 and n = 5, with stimulus points on the J scale in alphabetical
order (Coombs 1953, pp. 496–501). Starting from the left, there are four pairs of
adjacent stimuli: (AB), (BC), (CD), and (DE); in general, the number of subsets is
n − k + 1. So the feasible I scales generated under this data collection design are the
tied rankings {(AB), (CDE)}, {(BC), (ADE}, {(CD), (ABE)}, and {(DE), (ABC)}.
We see that in going from one I scale to the next, the leftmost stimulus in the first tie
block is dropped and replaced by the stimulus in the second tie block that is next on
the J scale. So, only midpoints AC, BD, and CE are “working”—in general, there are
n − k midpoints to differentiate the subjects, a lot less than the 1

2n(n − 1) midpoints
that are working for full rankings. When k grows with respect to n, discriminability
among subjects very quickly deteriorates.

For pick k/n data, we can code a binary data matrix E with elements ei j = 1
if a subject in row i has chosen the stimulus in column j , and ei j = 0 elsewhere.
Then it is not hard to see that if the rows and columns of E are arranged in the order
of subject and stimulus points on the J scale; the rearranged data matrix will show
a parallelogram pattern with k consecutive ones in each row (Coombs 1964, pp.
66–74). So an obvious procedure to analyse pick k/n data—called parallelogram
analysis—is seeking a rearrangement of rows and columns of E that will yield as
closely as possible a solid diagonal band from the top-left to the bottom-right. The
technical problem is identical to seeking a parallelogram pattern in the matrix M of
Guttman’s scalogram analysis for binary items.

3.3.4 Mosteller’s Least Squares Method

Techniques for parallelogram analysis in the early 1940s were heuristic trial-and-
error procedures, which became cumbersome with growing size and error in the
data (regardless how defined). We refer to Hubert (1974) for the early recognition
that parallelogram analysis is formally equivalent to the seriation problem studied
in archeology, for which theoretical results and good approximate solutions were
already available. In addition, we have seen in Sect. 2.2 that the least squares tech-
nique developed by Guttman (1941) gives an optimal solution for scalogram analysis
that is unique and could serve as a criterion to evaluate simpler procedures. But as
first noted by Torgerson:

More recently, Mosteller (1949) has shown that precisely the same reasoning can be applied
to the nonmonotone or point item, the only difference being that, with the monotone items
considered by Guttman, each category is included in the analysis, whereas, with the point
items, only the positive category is included. Other than this, the solutions are equivalent.
[...] We shall follow Mosteller’s (1949) derivation mostly, rather than Guttman’s, since it
seems easier. (Torgerson 1958, pp. 338–339)
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Mosteller’s intention was to formulate a new method of scaling for attitude state-
ments on the basis of binary agreement responses.6 Therefore, we will in the follow-
ing paragraphs call the stimuli we are dealing with in the columns of E statements.
According to the summary in Torgerson (1958, pp. 339–343), the task of the subject
is to check k statements for agreement, relative to the other n − k statements. The
subject score is defined as the average of the unknown weights for the statements
selected. To find these weights, Mosteller used the same criterion as the one used by
Guttman: maximising the squared correlation ratio η2, i.e. the ratio of the variance
of the subject scores, relative to the total variance of all weights. Next, Torgerson
explained in great detail the derivation of the stationary equations for the optimal
weights as a function of E. He also demonstrated that the procedure to obtain these
optimal weights for E is equivalent to the procedure to obtain optimal weights for
Guttman’s binary data matrix M. However, the actual solution based on E is only
the same as the one based on M if the columns of E are supplemented by n addi-
tional columns, with elements {1 − ei j }, which represent the negative categories
(disagreement) in Guttman’s multiple choice format. This supplementation is called
“dédoublement” in the French literature (Benzécri et al. 1973, TII A no 2, Sect. 1.4,
1.5), and “doubling” in the English literature (e.g. Benzécri 1992, pp. 390–392, pp.
513–517, or Nishisato 2007, p. 182). Hence, our conclusion must be that Mosteller
(1949) had not only formulated a new scaling method for non-cumulative or non-
monotone items but had also provided a procedure equivalent to correspondence
analysis of binary data with equal row sums (cf. Heiser 1981, Chaps. 3 and 4) and
was the originator of the concept of dédoublement as well.

The final issue is: in what sense doesMosteller’s least squaresmethod offer a good
solution to parallelogram analysis? The short answer is: if there exists a permutation
of the columns of E that yields the consecutive ones property, then the least squares
method will find it. The correct order is obtained by permuting the columns of E in
the order of the optimal weights. For a longer answer, the reader is referred to Heiser
and Warrens (2008). This paper also discusses the same property for robust methods
of calculating optimal weights, such as the method of reciprocal trimmed means, as
proposed by Nishisato (1987).

4 A Coombs Scale of Preference Rankings Using Least
Squares Guttman Scaling

Five years after his first paper about the least squares quantification ofmultiple choice
data (Guttman 1941; see Sect. 2), Guttman published a second quantification paper,
this time about the scaling of paired comparisons and rank order data (Guttman 1946).

6 Mosteller (1949) is an internal document of Harvard university, entitled “A theory of scalogram
analysis, using noncumulative types of items: a new approach to Thurstone’s method of scaling
attitudes”. As far as we know, it is not publicly available, which is the reason that we rely on
Torgerson’s summary.
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In the introduction, he already outlined what he wanted to achieve: “The judgments
vary from person to person (and possibly within a person), and the problem is to
determine a set of numerical values for the things being compared that will in some
sense best represent or average the judgments of the whole population” (o.c., p. 144).
As always, he wanted to avoid distributional assumptions, for example the existence
of latent discriminal processes that are normally distributed, as in Thurstone’s Law
of Comparative Judgment (Thurstone 1927a, b). However, unlike his earlier work,
which determines subject scores expressing individual differences in response to
questions or statements, this paper was an object-centred type of scaling, which only
aims at an average or consensus scale for the whole group of individuals.

4.1 Coding Paired Comparisons and Rankings in Multiple
Choice Format

Guttman’s first step was to code the paired comparison data or rank orders into the
familiar format of binary items, with response categories “yes” and “no”. Here, the
number of items is 1

2n(n − 1), and they concern the question “Did subject i prefer
stimulus j over l?”, with j, l ranging over all pairs of stimuli. For each subject, the
response “yes” is then coded in the first category, while the response “no” is coded
in the second category.

4.1.1 Recoding into a Dominance Matrix to Incorporate Stimulus
Contrast Restrictions

From this point on, we will follow Nishisato (1978), who gave an alternative to
Guttman’s formulation that is easier to understand and leads to the same solution.
Since the categories of each item specify that object j is preferred over object l or
the reverse, it is natural to require that the quantification of each category is a simple
linear function of the two corresponding object scale values Q j and Ql . If we denote
the category quantifications with y jl1 and y jl2 , then the stimulus contrast restrictions
are y jl1 = Q j − Ql and y jl1 = Ql − Q j .

Nishisato then showed that maximising the correlation ratio under these restric-
tions leads to the same solution as Guttman (1946) and amounts to a principal com-
ponents analysis of a subjects by stimuli matrix S, called the dominance matrix.
This matrix contains in each row the balance of how many times subject i preferred
object j over the other objects, minus how often subject i preferred one of the other
objects over object j . For instance, the rank order ABCDE is represented in S as
[4 2 0 − 2 − 4]. When the paired comparisons contain intransitivities, the rows of
the dominance matrix will contain ties.
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4.1.2 Multidimensional Extension: The Vector Model of Preferences

Guttman also discussed more complicated cases, such as combinations of two things
to be compared, but he did not consider a multidimensional solution. Such an exten-
sionwas soon developed byother psychometricians, as explained inNishisato (1978),
and is known as the vector model of preferences. The most important thing to under-
line in the present context is that Guttman’s one-dimensional solution is not a joint
scale in the same sense as we have seen so far, because it does not give individ-
ual subjects a score from which to predict responses to the same or similar objects.
Indeed, the output is a weighted average of the rows of S as the scale values of the
objects, for the whole group of subjects, and the correlations between this weighted
average and the rank orders of the subjects. These correlations give an indication of
how close or far the subject rankings are from the consensus ranking.

4.2 Least Squares Guttman Scaling on the Original Coding
as a First Step

Nevertheless, it is of course possible to fit a joint scale for paired comparison data
without stimulus contrast restrictions, on the basis of standard least squares Guttman
(1941) scaling (as is done in Heiser 1981, Chap.5). Apart from subject scores, such
analysis gives scale values for subgroups of subjects that prefer one object over
another one, but not scale values for the objects. However, as we will now demon-
strate, with the output of this standard analysis we can proceed with simple calcula-
tions to construct an unfolded Coombs scale. We were inspired by Nishisato (2000),
who offered a dual scaling solution using a classical example of rankings satisfying
a Coombs scale, and we are very happy to follow in his footsteps.

4.2.1 Example: Rankings Satisfying a Perfect Coombs Scale of Six
Stimuli

To describe the rankings of this example, also treated in Coombs (1964, pp. 87–91),
we will refer to Fig. 1. It displays the four steps used in our own analysis, to be
discussed shortly. But we first describe the final result: the vertical scale on the right
side of Fig. 1 showing the stimulus points labelled with {A,B,C,D,E,F}, and the ideal
points of the subjects in the example. The 16 ideal points are labelled in lower case
font by the rank order of the stimuli, following the ordering of the distances from
the ideal point to the six stimulus points. For example, the second ideal point from
the top labelled with bacdef represents the subject with ranking BACDEF, since it is
closest to B, then to A, followed by C, D, E, and F.

The scale on the left of this joint scale (separated for clarity) contains the mid-
points, which bisect the interval between two stimuli and are labelled with the corre-
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sponding pair; these pairs are labelled with a hat, to distinguish them from the labels
in column (2). With six stimuli, there are (6 × 5)/2 = 15 midpoints, which define
14 intermediate intervals between consecutive midpoints plus two end intervals (one
beyond ̂AB and another beyond ̂EF). Each of the intervals contains one ideal point,
giving 16 ideal points in total. Two neighbouring ideal points are different only in
two stimuli identifying the midpoint. For instance, when moving down on the scale,
ideal point bacdef changes into an bcadef when passing midpoint ̂AC.

4.2.2 A One-Dimensional Unfolding Procedure in Four Steps

Our procedure to unfold paired comparison and rank order data on the basis of least
squares Guttman scaling proceeds from left to right in Fig. 1, with the following four
steps:

1. Use standard least squares Guttman scaling on rankings coded with paired
comparison coding as described above, giving category quantifications without
any restrictions. We expect that the subject points will be correctly ordered,
since it is not hard to verify that the columns of the coded paired comparison
matrix of an unfolding scale can be permuted into a parallelogram. If there is
such a structure in data matrix M, then the first principal component will show
it (Guttman 1950b). Category quantifications will be in the correct order for the
same reason. The combined result of this step is displayed in column (1) of Fig. 1.
Note that the subject scores are uniformly distributed, and the same holds for
the category quantifications, which are moving averages of subsets of adjacent
subject scores.

2. Find the cutting points on the scale that separate subjects who scored in the first
category from those who scored in the second category. Recall that cutting points
are characteristic for scalogram analysis and are equal to the location parameter
of the item characteristic curve (ICC) of aGuttman scale, which is a step function
(see Sect. 2). Warrens and Heiser (2006) studied relationships between category
quantifications of the least squares method and location parameters of the ICC.
They concluded that for uniformly distributed subject scores, a good approxi-
mation of the cutting point would be the sum of the category quantifications:
e.g. AB = ab + ba. The result for our example is shown in column (2) of Fig. 1.
As to be expected, the order remains correct, and the spacing remains uniform.

3. Find a transformation of the cutting points on the Guttman scale that turns them
into midpoints on the Coombs scale. For paired comparisons data, a cutting
point AB on the Guttman scale separates all subjects who prefer stimulus A
over stimulus B from subjects who prefer the reverse. But on the Coombs scale
that is exactly what a midpoint does! The only—very helpful—difference is:
midpoints have a restriction that the cutting points do not have: they must satisfy
the additive relation ̂AB = 1

2 (A+B). So we can find the stimulus scale values
and the midpoints on the Coombs scale by simply fitting an additive model
with n parameters to the 1

2n(n − 1) cutting point values. In our example, the
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Extended Guttman analysis of a perfect Coombs scale
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Fig. 1 Reconstruction of the joint plot for a perfect Coombs scale
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fitted values of the midpoints under the additive model are shown in column
(3) and the estimated stimulus scale values in column (4). Clearly, we find a
nonlinear transformation between cutting points and midpoints, which happens
to preserve the order. We used simple least squares here, because we wanted
to restrict ourselves to methods available in the period in which joint scaling
was conceived. But it would also be possible to fit some optimal monotonic
transformation for the dependent variable in this additive model, as was first
done by Kruskal (1965) that would ensure order preservation.

4. Locate ideal points of subjects on the Coombs scale in the middle of the interval
between the two midpoints that separate them from their two neighbours. The
result for our example is shown in column (4). The two extreme ideal points
abcdef and fedcba are exceptions. They could have been placed anywhere
beyondmidpoints ̂AB and ̂EF, but we have arbitrarily chosen themiddle position
between A and ̂AB for abcdef and the middle position between F and ̂EF for
the location of fedcba. Note that by allocating 16 ideal points in intervals that
follow exactly from the stimulus scale values, we can in cases of data with error
simply set aside rankings that do not fit, with some measure of how close they
are to the closest ideal point. That would also enable us to express the fit of the
model as the percentage of rankings accounted for, or a similar measure. Note
that not only stimuli and their midpoints are non-uniformly distributed, but so
too are the ideal points. It testifies to the beauty of Coombs’ orderedmetric scale!

4.2.3 Guttman’s Cutting Points Correspond to Coombs’ Midpoints

The key insight driving the development of the above procedure—which to the best
of our knowledge was not formulated before—is the fact that cutting points of paired
comparison items on the Guttman scale divide subjects into the same two groups as
the corresponding midpoints on the Coombs scale. In data with error, the first two
steps could be replaced by a probabilistic IRTmethod that directly estimates the item
location parameters in the tradition of Fechner’s psychometric function (see Sect. 1);
an example closely related to Guttman scaling is the two-parameter logistic model
(Warrens et al. 2007).

The result of the last two steps is an ordered metric Coombs scale with non-
uniform spacing. Coombs always first derived some of the metric relations with a
paper-and-pencil procedure. If we denote the distance on the scale between stimuli
A and B with d(A, B), then for the example in Fig. 1, Coombs (1964, p. 88) found
the following partial order:

d(C, D) < d(A, B) <

(

d(D, E)

d(E, F)

)

< d(B, C) < d(D, F) < d(A, C) .
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It is not difficult to verify from Fig. 1 that our inter-stimulus intervals satisfy these
order relations between the distances perfectly, even though we did not impose them.
Wemay conclude that simple and standard procedures like the one we outlined above
open new avenues for revival of the one-dimensional unfolding technique.

5 Conclusions and Discussion

In the introduction, we reviewed Galton’s subject-centred approach and Fechner’s
stimulus-centred approach to scaling. They used the same tool for constructing their
scales—the normal ogive (Galton’s term) and the normal psychometric function
(Fechner’s concept). Could it be that Galton was influenced by Fechner’s work?
We know for sure that Galton was familiar with Elemente der Psychophysik, which
preceded Hereditary Genius by almost ten years. According to Coriale (2017), in
her remarkable study of Fechner’s influence on Galton:

Although Elemente was not translated into English until 1966, the book made a powerful
impressionon scientists around theworld as reviews and excerpts circulated inBritish, French
and American periodicals during the early 1870s. [...] After learning of Fechner’s ingenious
experiments in James Sully’s essay [entitled “Recent Experiments with the Senses”, Sully
(1872)] and reading Elemente on his own, Galton began to devise ways of making psy-
chophysics “suitable for other applications”. [...] By 1875, Francis Galton praised Fechner’s
book for “lay[ing] the foundations of a new science” (Coriale 2017, pp. 106–111).

As Coriale convincingly showed, Galton was especially interested in doing psy-
chophysics himself, and in extending it to individual differences in sensory capaci-
ties of large groups of people.7 As to methodology, it is pretty sure that there was no
influence of Fechner on Galton’s work on the statistical scale. We have seen that his
notion to use the normal distribution to describe individual differences was inspired
by Quetelet, who was the first to use the normal distribution as a model for variabil-
ity in human populations. We may conclude that the subject-centred approach and
the stimulus-centred approach to psychological scaling remained separated until the
twenties of the twentieth century (cf. Boring 1961, p. 253).

5.1 Thurstone’s Crucial Role in Preparing the Ground
for the Joint Scale

It was Thurstone (1925) who started developing ideas to locate test questions in
addition to test scores on the same scale, assuming normal distributions for different
groups of increasing ability. He used Fechner’s psychometric function to calculate

7 He reported regularly about the results of his psychophysical experiments, for example about what
he called the “auditory imagination”, something that is available to us when we read silently (Galton
1893).
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item locations and item discriminating power. He also initiated a lot of work on the
construction of attitude scales. His first paper on this topic was called “Attitudes can
be measured” (Thurstone 1928c), where he proposed to construct a joint scale of
attitude items and person scores in two steps:

1. A first group of judges had to assess statements on the position they should have
on the attitude continuum, using the classic psychophysical method of equal
appearing intervals;

2. A second group of subjects had to give an agree/disagree response to all items
that survived a selection procedure, and their scale scores were determined by
the average of the item scale values with which they agreed.

Thurstone’s follow-up was an extensive monograph on attitude scaling, where he
remarked:

“Ideally, the scale should perhaps be constructed by means of voting only. It may be possible
to formulate the problem so that the scale values of the statements may be extracted from
the records of actual voting. If that should be possible, the present procedure of establishing
the scale values by sorting will be superseded.”(Thurstone and Chave 1929).

As we have seen in Sect. 3.3.4, that was exactly what Mosteller (1949) achieved
twenty years later!

5.2 The Fate of the Correlation Ratio

We have also seen that both Guttman (1941) and Mosteller (1949) used Pearson’s
correlation ratio as the criterion to be optimised for obtaining the joint scale. It might
have occurred to the reader that the term correlation ratio is not current anymore in
present-day statistics. Surely, this is true, but Pearson’s index lives on under the
name effect size, with the same Greek symbol η2, or eta-squared. The urge to report
measures like η2 to show how effective interventions have been and to compare them
with previously reported effects—rather than just giving F measures and p-values—
has been booming for the last 25years, and became mandatory for publication in
many journals in many domains. Huberty (2002) provided an overview, rationale
and history of a variety of effect size indices.

5.3 Generalisations of One-dimensional Joint Scales

A final issue to discuss is how joint scales have been generalised in the Guttman-
Coombs tradition to accommodate a richer set of profiles. For the cumulativeGuttman
scale discussed in Sect. 2, an interesting generalisation was to use the conjunction of
two Guttman scales (coded with only positive categories), as described by Coombs
(1964, pp. 251–259). In that case, we have to deal with a special type of partial order,
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which is a directed graph called a lattice. A good example is the structural model
for developmental processes that describes different routes from one developmental
phase to another through different acquisition and deletion sequences (Coombs and
Smith 1973). This model has also been recognised by students of Guttman as one of
the special cases of Partial Order Scalogram Analysis (POSA), called the diamond
scalogram (Shye 1985). Such generalisations of the classical scalogramdeservemore
attention of both theoretical and applied researchers.

For the single-peaked Coombs scale, we have mentioned in Sect. 3 that good
methods for multidimensional unfolding based on Kruskal’s STRESS criterion are
now available. When stimuli are represented by points in two dimensions, the notion
of a midpoint is replaced by the perpendicular bisector of the line segment that
connects ideal pointsA and B (and by separating (hyper)planes in more dimensions).
The intersection of these lines yields a set of so-called isotonic regions, in which all
points have the same rank order of distances towards the stimulus points (Coombs
1964, pp. 140–150). Each isotonic region can contain only one ideal point with a
unique rank order. So, a two-dimensional unfolding representation predicts more
rankings than a Coombs scale but still a limited number. Since for the STRESS-
based technique one-dimensional solutions are known to have serious problems with
local minima (Hubert et al. 2002), the new procedure that we proposed in Sect. 4
could possibly help with that problem, too, by providing a good start configuration.
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A Probabilistic Unfolding Distance
Model with the Variability in Objects

Tadashi Imaizumi

1 Introduction

When preference data for n objects are collected from N subjects, the subjects and
objects are embedded in the same multidimensional space to summarise the infor-
mation in the data.We propose an embeddingmodel in which the points representing
the object are random variables.

Coombs (1950, 1964) introduced the unfolding model for analysing preference
data. Multidimensional unfolding models have been used to discover hidden char-
acteristics associated with subjects or objects in preference data. In this model, we
assume the ideal point representing a hypothetical object is preferred over n objects
for an individual (a subject). Carroll (1972, 1980) introduced the simple unfolding
analysis, the weighted unfolding analysis, and the general unfolding analysis.

Let zi j , for j = 1, 2, . . . , n, denote subject i’s preference for object j and is
measured at least on an ordinal scale. If object j preferred to object k for subject
i , then zi j ≺ zik . So, zi j represents the preferential relationship among objects for
subject i . Table1 gives preference data for five objects from 4 subjects. The most
preferred object for subject 1 is object 4, and that for subject 2 is object 3, and so
on. Our goal is to extract the objects’ and subjects’ characteristics from the N × n
preference matrixZ = [zi j ], for i = 1, 2, . . . , N , and j = 1, 2, . . . , n. We jointly
attempt to embed these N subjects andn objects in the p-dimensional space. Let the N
subject points yi = [yit ], i = 1, 2, . . . , N , t = 1, 2, . . . , p in this p-dimensional
space be represented and object points x j = x jt , j = 1, 2, . . . , n, t = 1, 2, . . . , p
be also represented in this space. We call N × p matrix of N ideal points, Y =
[y1, y2, . . . , yN ]t subject configuration and n × p matrix X = [x1, x2, . . . , xn]t

object configuration. For analysing preference data Z, the ideal point model:
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Table 1 Example of preference data

Subject Object 1 Object 2 Object 3 Object 4 Object 5

1 5 3 4 1 2

2 2 5 1 3 4

3 4 4 2 2 2

4 3 2 4 5 1

Fig. 1 (a) vector model, (b) distance model, and (c) compensatory distance model

di j =
√(

yi − x j
)t (

yi − x j
)
, (1)

has been applied. Borg and Groenen (2005) discussed the characteristics of this ideal
point model. Roskam (1968) discussed two other models, the vector model and the
compensatory distance model. The vector model for analysing preference data is
defined as:

bi j = ytix j .

Coombs (1950, 1964) discussed the compensatory distance model, and Roskam
(1968) explained it explicitly, (a) there exists a unidimensional scale for each subject,
and (b) all n objects are embedded as n points in multidimensional space, (c) when
we represent n objects and N subjects geometrically, each point in p-dimensional
space is projected onto a line that represents a subject, and the compensatory distance
model is defined as:

cdi j =
√(

yi − xtjx j

)2
.

Figure1 gives an illustrative representation of these three models. The vector
modelwill be interpreted as a special case of the distance compensatory distancemod-
els.When the ideal point ||yi || approaches∞, the distancemodelwill be expressed as:

d2
i j = −2ytix j + ytiyi + xtjx ≈ −2ytix j + C j1,

and for the compensatory model:
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cd
2
i j = ytix j − x jx j ≈ ytix j + C j2,

where C j1 and C j2 is a constants, respectively.

2 A Probabilistic Model

Subject i’s preference for object j will include an error ei j . Several probabilistic
models for preference data have been proposed. Schönemann and Wang (1972) pro-
posed the probabilistic model that the error distribution is a normal distribution. De
Soete and Carroll (1983) proposed the wandering ideal point, which assumes that the
ideal points are probabilistic. DeSarbo et al. (1987) proposed themodel assuming the
error distribution is a normal distribution. Mackay (2007) proposed a multivariate
probabilistic unfolding model in which both ideal points and object points are prob-
abilistic. As these models assume that preferences are measured on the interval scale
at least, it is not easy to apply these models when the observed preference data are
ordinal. So, we propose a simple model that can be applied to the ordinal preference
data while estimating the error.

We propose a simple model in which the object points in p-dimensional space of
a random variable such that:

X jt = μ j t + e j , e j ∼ N
(
0, σ 2

j

)
, j = 1, 2, . . . , n, t = 1, 2, . . . , p,

and distance between object j and subject i is:

Di j =
√√√√

p∑
t=1

(
yit − X jt

)2
.

The errors are assumed to be independent of the object so that:

e j ⊥ ek

for any i �= j . An error variance, σ 2
j , is assumed to be small compared with true

distance so that is in Fig. 2.
Now

D2
i j =

p∑
t=1

(
yit − X jt

)2

=
p∑

t=1

(
yit − μ j t − e j

)2

=
p∑

t=1

{
(yit − μ j t )

}2 + pe2j + 2e j

p∑
t=1

(yit − μ j t ) , (2)
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Fig. 2 Distances in the proposed model. The lines with an arrow show that distance will vary

so that:

E
(
D2

i j

) = E

(
p∑

t=1

(
yit − μ j t

)2 + pe2j

)
.

Zinnes and Mackay (1983) discussed this formation. We assume that the non-
centrality parameter:

λi j =
∑p

t=1

(
yit − μ j t

)2
σ 2
j

is large for all (i, j), so that the error variance, σ 2
j , for j = 1, 2, . . . , n, is small

compared with the true distance. By treating the third term on the right-hand side of
the Equation (2) as being 0, we define the quantity between subject i and object j :

d∗
i j =

√√√√
p∑

t=1

(
yit − μ j t

)2 + pσ 2
j . (3)

When a subject is rated his/her preference with uncertainty, this quantity d∗
i j is more

appropriate than di j So, we estimate the set of values {d∗
i j } from the observed pref-

erence data {zi j } for each subject by noting that:

zi j � zik so that d∗
i j ≤ d∗

ik . (4)
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2.1 A Weighted Minimisation Framework

In general, the quantity {d∗
i j } will not satisfy the condition (4). To estimate d∗

i j , for
i = 1, 2, . . . , N and j = 1, 2, . . . , n which satisfy condition (4), we introduce
d̂∗
i j such that:

d̂∗
i j ≤ d̂∗

ik if zi j � zik for j = 1, 2, . . . , n, k = 1, 2, . . . , n (5)

for each subject, i = 1, 2, . . . , N . De Leeuw et al. (2010) proposed the pool adja-
cent violators algorithm framework for finding some quantities under ordered restric-
tion. The disparities d̂∗

i j will be solved using this framework. Preference data are often
treated being row-conditional data so that data are comparable within the same sub-
ject, and we calculate the disparities as they satisfy the condition (5) and minimise:

s∗
i =

n∑
j=1

(
d∗
i j − d̂

∗
i j

)2
for i = 1, 2, . . . , N ,

for a given {d∗
i j , j = 1, 2, . . . , n}. As s∗

i is not invariant under the normalisation
of configuration. So, some normalisation factor is needed. One will be:

t∗1i =
n∑
j=1

(
d∗
i j

)2
.

2.2 Normalising Factor of s∗i

Busing (2006) and van Deun et al. (2005) point out that the degenerated solution in
the multidimensional unfolding model has often occurred, and so some appropriate
normalising factor of s∗

i is needed. We chose:

t∗2i =
n∑
j=1

(
d∗
i j−d

∗
i

)2

as a normalising factor. So, a loss function for each subject will be defined by:

S∗
ir =

√
s∗
i

t∗2i
, for i = 1, 2, . . . , N ,
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and an overall loss function may be defined by:

√√√√ N∑
i=1

S∗
ir .

However, the value of this overall loss function increases as the number of subjects
increases, without any upper limit. We therefore define the overall loss function S2r
by:

S2r =
√√√√ 1

N

N∑
i=1

S∗
2ir =

√√√√ 1

N

N∑
i=1

si
t∗2i

, (6)

where 0 ≤ S2r ≤ 1. The loss function S2r is a variant of stress formula two (Kruskal,
1964) and is discussed by Roskam (1968).

3 Algorithm

For the pre-specified dimensionality, p, the model parameters Xp, Yp, and σ 2 =[
σ 2
1 , σ 2

2 , . . . , σ 2
n

]
will be estimated. An initial object configuration n × p matrix

X(0)
p and subject configuration N × p matrix Y(0)

p are derived as follows:

1. Calculate the initial configurations, X(0)
p and Y(0)

p . This calculation is done by
executing the double-centring transformation for the observed preference data

matrix Z, having double-centred matrix Z+ =
[
z+
i j

]
:

z+
i j = zi j − 1

n

n∑
j=1

zi j − 1

N

N∑
i=1

zi j + 1

Nn

N∑
i=1

n∑
j=1

zi j ,

and applying the singular value decomposition to this transformed matrix Z+:

Z+ = UDVt ,

andUtU = I,VtV = I andD = diag
(
d1, d2, . . . , dmin(N−1, n−1)

)
. We then cal-

culate X(0) and Y(0) so that:

X(0) = VD1/2, Y(0) = UD1/2,

of the dimensionalitymin (N − 1, n − 1).We then adopted a lower-dimensional
approximation using the first p components:
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X̂(0)
p =

⎡
⎢⎣
x (0)
11 · · · x (0)

1p
...

. . .
...

x (0)
n1 · · · x (0)

np

⎤
⎥⎦ , Ŷ(0)

p =
⎡
⎢⎣
y(0)
11 · · · y(0)

1p
...

. . .
...

y(0)
N1 · · · y(0)

Np

⎤
⎥⎦

are adopted them as an initial configuration.
2. Calculate an initial estimate of σ̂ 2

j , denoted by σ̂
2(0)
j , as follows:

σ̂
2(0)
j = 1

N − 1

N∑
j=1

(
z∗
i j −

p∑
t=1

ŷ(0)
i t x̂ (0)

j t

)2

,

and define σ̂ 2(0) =
[
σ̂
2(0)
1 , σ̂

2(0)
2 , . . . , σ̂ 2(0)

n

]
.

3. Iterative optimisation: Before starting the iteration optimisation process, three
convergence criteria are pre-specified. The iterative process will be terminated
when one of the following criteria is satisfied:

• minimum value of S(l)
2r is less than 0.01, where l denotes the iteration number,

• the absolute difference | S(l)
2r − S(l−1)

2r | is smaller than 0.00001,
• the iteration number l is exceeded the number of maximum iterations 100.

a. Calculate the disparities, {d∗(l)
i j }.

b. Check whether the pre-specified convergence criteria are satisfied or not.
If one of the convergence criteria is satisfied, exit the iterative loop

c. Calculate the gradient vectors:
G(l)

X̂
for X̂(l)

p , G(l)

Ŷ
for Ŷ(l)

p , and G(l)
σ̂ 2(l) for σ̂ 2(l).

d. Update the configurations and variance, σ 2, where:

X̂(l+1)
p = X̂(l)

p − step(l)
X × G(l)

X ,

Ŷ(l+1)
p = Ŷ(l)

p − step(l)
Y × G(l)

Y ,

σ̂ 2(l+1) = σ̂ 2(l) − step(l)
σ 2 × G(l)

σ 2 ,

with σ̂ 2(l+1) > 0 where step(l)
X , step(l)

Y , and step(l)
σ 2 are the step-size for each of

X(l)
p , Y(l)

p , and σ 2(l), calculated using the quadratic search method.
e. Repeat steps a. to d.

4 A Simulation Study

We checked the validity of the present procedure through a simulation study. The
data were generated as follows:
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1. Generate true configurations for the dimensionality p = 2:
The true two-dimensional configurations X and Y were generated using a uni-
form distribution on [0,1]. Theywere normalised so that themean of each dimen-
sion is 0, and their total sum-of-squares is n + N . That is:

n∑
i=1

(
x jt + yit

) = 0, t = 1, 2, . . . , p,

p∑
t=1

⎛
⎝

n∑
j=1

x2j t +
N∑
i=1

y2i t

⎞
⎠ = n + N .

2. Add error terms:
An error is added to the above object configuration under a normal distribution
by multiplying the mean of squared distances with a random number that is
generated under the Normal distribution with mean zero and variance equal to

the (erl)2 × d
2
j :

X jt ∼ N
(
x jt , σ 2

j

)
,

σ 2
j = (erl)2 × d

2
j

where

d
2
j = 1

N

N∑
i=1

d2
i j ,

and erl is one of {0.3, 0.5}.
3. Execute analysis:

These distances with errors were used to derive the preference ranks which
served as preference data.

4.1 Simulation Design and Goodness-of-Fit

We combine an error level {0.3, 0.5} with the number of objects n = {10, 20}, the
number of subjects N = {30, 60}, and the solution dimensionality of p = 2. Hence,
under these 2 × 2 × 2 = 8 conditions, we generated 50 preference data matrices for
each combination of conditions.

For a dissimilarity matrix with n objects:
Spence and Ogilvie (1973) performed a Monte Carlo study on the stress formula
one:
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Fig. 3 Histogram of S1r

Stress1 =
√√√√

n∑
j=2

n−1∑
k< j

(
d jk − d̂∗

jk

)2
/

n∑
j=2

n−1∑
k< j

(
d jk
)2

,

and concluded that Stress1 > 0.21 is expected under the null hypothesis of no struc-
ture in the data. Figure3 gives the histogram of the S1r values for our simulation

study. The maximum value of S1r =
√

1
N

∑N
i=1 s

∗
i /t

∗
1r was 0.1776, and the values of

Sir are less than 0.21.
A pseudo-correlation coefficient, r̄ , between preference data and the recovered

preference data is calculated as follows:

1. Calculate the correlation coefficient between preference data and the recovered
preference data of subject i , ri .

2. Transform to Fisher’s z:
ri is transformed to Fisher’s zi so that:

zi = 1

2
ln

(
1 + ri
1 − ri

)
, for i = 1, 2, . . . , N .

3. Calculate the mean of the zi values:

z̄ = 1

N

N∑
i=1

zi .

4. Transform z̄ inversely:
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Fig. 4 Scatter plot between Sr and R2

This mean z̄ is inversely transformed by:

r̄ = e2z̄ − 1

e2z̄ + 1
.

Therefore, we have 400 S2r and 400 r̄ values. The scatter diagram between S2r
and the squares of r̄ , R2 = r2, is shown in Fig. 4; the mean of R2 was 0.8155 and its
first quantile was 0.7813.

The histogram, scatter diagram, and the mean of R2 show that our procedure
recovered the proper configuration.

To find out which factors contribute to the results, we analysed the variance
for 400z̄, of which the mean was 1.8313, and the standard deviation was 0.3405.
However, we need to consider the degrees of freedom of the recovered preference
data, which is n̂∗ = Nn − 2 (n + N − 1) − 2(2+1)

2 − 3. We then adjust the standard
error of z by n̂∗ instead of

√
Nn − 1 where:

z =
(
1

2
ln

(
1 + r

1 − r

))
/
√
n̂∗ .
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Table 2 Table of analysis of variance results

Factor Sum of
squares

df Mean square F p

n 23569.56 1 23569.56 3328.148 <0.001

N 19293.58 1 19293.58 2724.357 <0.001

error level 2668.35 1 2668.35 376.785 <0.001

n · N 476.00 1 476.00 67.214 <0.001

n· error level 1.18 1 1.18 0.166 0.684

N · error level 6.65 1 6.65 0.939 0.333

n · N · error
level

15.84 1 15.84 2.237 0.136

Residuals 2776.10 392 7.08

Total 48807.26 399

Moreover, a summary of results from this ANOVA of the eight simulated conditions
is shown in Table2.

Table2 shows that the number of objects and subjects are critical factors of the
recovery compared with the error level.

5 Application

We applied the present model to a real data set, sushia.5000.order data set, which
was collected by Kamishima (2003), and analysed by using a clustering method that
Kamishima and Akaha (2009) proposed. He collected these data as follows:

1. Selected sushi brands:
Ten sushi brands were selected. They were shrimp, sea eel, tuna, squid, sea
urchin, salmon roe, egg, fatty tuna, tuna roll, and cucumber roll.
In sushi shops in Japan, sea urchin, salmon roe, and fatty tuna are generally
expensive, while cucumber roll, egg, and squid are inexpensive.
The tuna sushi, tuna, fatty tuna, and tuna roll are preferred to other sushi brands,
in general.

2. Number of subjects:
Kamishima and Akaha (2009) randomly selected five thousand subjects to take
part in his study.

3. Data collection:
Subjects were asked to the rank sushi according to their preference for them.

We tried to reduce the number of rows of the data matrix so that the number of
subjects wasn’t too large. We aggregated the 5000 × 10 data matrix by applying
the Ward method based on the squares of the Euclidean distances. The dendrogram
obtained is shown in Fig. 5, and the five thousand subjects are aggregated into 50
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Fig. 5 Dendrogramof 5000 subjects by clustered by thewardmethod inR using the optionward.D2

clusters, and the means of zi j were calculated for each cluster, so that, for the gth
cluster:

z̄g j = 1

Ng

∑
i∈M(g)

zi j ; j = 1, 2, . . . , n, g = 1, 2, . . . , 50,

where Ng is the number of subjects in cluster g and M (g) is the set of member’s
in cluster g. The aggregated data matrix Z̄ = [z̄g j

]
was analysed using the present

model. We analysed this sushi preference data for each of p = 1, 2, . . . , 5 so that
the number of sushi brands is 10. The values of S2r from the 5-dimensional to 1-
dimensional solution were 0.3811, 0.4607, 0.4371, 0.4382, and 0.4427, respectively.
The following values of stress formula one were also calculated by:

S1r =
√√√√ 1

N

N∑
i=1

s∗
i /

n∑
j=1

(d∗)2i j

and these values were 0.0444, 0.0872, 0.05433, 0.0602, and 0.1132, respectively.
We selected a 2-dimensional solution since Kruskal (1964) showed that a solution
with a stress formula one that is less than 0.10 is fair. Each object is represented as
a point, and the estimated standard deviation of the object is represented as a circle
with its radius being equal to the estimated standard deviation of the object in Fig. 6.

The radius of the dashed circle’s around each point is one standard deviation of
the corresponding object. While an orthogonal rotation of this object configuration
is possible, we can easily interpret this object configuration without any rotation. As
sea urchin and salmon roe are positioned on the right-hand side which aligns with
those brands with a high price, cucumber roll and squad are positioned on the left
hand side, where brands with a low price lie. Therefore, Dimension 1 is interpreted
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Fig. 6 Object configuration with standard deviation

Fig. 7 Joint configuration
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Fig. 8 Scatter diagram between distance and the aggregated preference data

as the expensive sushi vs inexpensive sushi dimension. Dimension 2 is interpreted as
the tuna sushi vs other fish (including sushi, shrimp, squid, and sea ell) dimension.

The joint configuration is shown in Fig. 7. In Fig. 7, the open circle represents the
cluster of subjects; hence, we find all subjects near the centre of the configuration.
From Fig. 6, we can see that there are two groups. All subjects prefer sushi on the
dimension 2, a kind of tuna, shrimp, and sea ell, one member of one group prefer the
expensive sushi sea urchin and salmon roe, and the member of the other group does
not like to this expensive sushi. The estimated standard deviations of object show
that (1) there are consistent ratings in preference for cucumber and squid, salmon
roe, and shrimp, (2) but ratings for tuna, sea urchin, egg, and sea ell are more differnt,
likely due to preference. The scatter diagram between distance and the aggregated
preference data is in Fig. 8

The scatter diagram of Fig. 8 shows that the obtained solution of the dimen-
sionality p = 2 is not a degenerated configuration, and an exponential function can
approximate the relation between data and distance.



A Probabilistic Unfolding Distance Model … 275

6 Conclusion

We proposed an unfolding distance model in which preference for the object is
affected by the variability of that object. The obtained solution reveals the preference
structure of ten sushi well. It is easy to modify and apply the present model to the
compensatory model.

Final Comments

Dear Nishisato-sennsei, Happy birthday for your 88th, “Beijyu” in Japanese.

I first met Dr. Nishisato, Nishisato-sennsei, about 35years ago, at an academic
lecture on data analysis at the Institute of Statistical Mathematics when I was still a
young researcher. At that time, I was very impressed with the elegant Dual Scaling
methodology by Nishisato-sensei. In addition to this, Dr. Nishisato’s personality
was charming and kind, and he was willing to answer various questions. He was
always willing to talk with me when I met him at international conferences and other
occasions.
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Analysis of Contingency Table
by Two-Mode Two-Way
Multidimensional Scaling with Bayesian
Estimation

Jun Tsuchida and Hiroshi Yadohisa

1 Introduction

The analysis of contingency tables plays an important role in many research fields.
These methods are particularly useful for analysing data on human behaviour, which
often involves many qualitative variables. Correspondence analysis (Beh and Lom-
bardo 2014) and dual scaling (Nishisato 2022) are representative methods for visu-
alising the relationship between variables using a contingency table. These methods
analyse the residuals when fitting a model that assumes independence of observa-
tions. The residuals are visualised by expressing them as the inner product of coor-
dinate vectors. A model that expresses deviations from a symmetric model, such as
the inner product of coordinate vectors, rather than deviations from a model that
assumes independence, has also been proposed (Beh and Lombardo 2022).

Log-linear models that express interaction terms as distances have also been pro-
posed. For example, a model that expresses the frequency of contingency tables as
a multiplication of the distance and a constant term has been proposed; see Takane
(1987). In addition, when expressing the interaction terms of log-linear models as a
function of distance, multidimensional scaling (MDS) methods (Borg and Groenen
2005) that estimate the coordinate vector that recovers the distances have also been
proposed; see, for example, De Rooij and Heiser (2001, 2003, 2005). These mod-
els represent the distances between categories of row and column variables in the
contingency table. In contrast, these models do not represent the distances between
categories for the same variables. Hence, interpreting the distance between estimated
coordinate vectors of categories for the same variable is difficult because the esti-
mated coordinate vectors do not consider the distances between categories for such
variables. Interpreting the distance between the categories of the same variable is
possible, but how the contingency table depends on the distance remains unclear.
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In this paper, we consider Bayesian estimation of the coordinate vector of MDS.
Using Bayesian estimation, prior knowledge of the distance between categories for
the same variable can be incorporated. When the distance between categories for
the same variable is regarded as a missing value, the computation of the posterior
distribution and missing value imputation can be performed simultaneously in the
framework of Bayesian estimation. The Bayesian estimation method for MDS has
been proposed by Oh and Raftery (2001). Our estimation method is derived based
on Oh and Raftery’s method.

The paper is organised as follows. Section2 describes the model equation and
the estimation method of the proposed method, and describes several extensions
of the proposed method. Section3 describes the numerical experiments conducted
to evaluate the performance of the proposed method. In Sect. 4, we present results
obtained by applying the proposed method to real data and their interpretations.
Section5 summarises the paper and discusses future work.

2 Model and Estimation

In this section, we describe the model formula of the proposed method and the
parameter estimation method, specifically a Markov Chain Monte Carlo (MCMC)
method for parameter estimation.Moreover, some extensions of the proposedmethod
are also described.

2.1 Model Formula

Let D = (
δi j

)
, for i = 1, 2, . . . , R and j = 1, 2, . . . , C be a contingency table.

We assume that δi j is mutually independent and follows a Poisson distribution with
parameter μi j , so that δi j ∼ Po

(
μi j

)
. Therefore, the log-linear model we consider

is:
logμi j = λ + λ

(R)
i + λ

(C)
j − ‖xi − y j‖2, (1)

where λ ∈ R is the intercept, λ(R)
i is the main effect of the i th row category, and λ

(C)
j

is the main effect of the j th column category. The terms xi ∈ R
p and y j ∈ R

p are
the coordinate vectors of the i th row category and j th column category, respectively.
The term p is the number of dimensions of coordinate vectors, which is chosen by
the analyst before applying the proposed method to the contingency table.

The model formula of the proposed method (1) corresponds to the log-linear
model for contingency tables, and is the same as the model described by De Rooij
and Heiser (2003). The difference between the proposed model and the log-linear
model is the interaction term. The interaction term of the proposed method is a
squared Euclidean distance. The similarity between the i th row and j th column



Analysis of Contingency Table by Two-Mode Two-Way Multidimensional Scaling . . . 279

category fi j is defined as fi j = logμi j −
(
λ + λ

(R)
i + λ

(C)
j

)
. The equation fi j =

−‖xi − y j‖2 holds. This equation shows that the model formula of the proposed
method corresponds to classical multidimensional scaling for two-mode, two-way
data.

2.2 Estimation Algorithm

We assume that the prior distributions of parameters are mutually independent. The
prior of λ, λ

(R)
i , λ

(C)
j is assumed as follows:

λ ∼ N
(
0, σ 2

(I)

)
,

λ
(R)
i ∼ N

(
0, σ 2

(MR)

)
, (i = 1, 2, . . . , R)

λ
(C)
j ∼ N

(
0, σ 2

(MC)

)
, ( j = 1, 2, . . . , C)

whereN
(
μ, σ 2

)
is a normal distributionwithmean parameterμ and variance param-

eter σ 2. The terms σ 2
(I), σ 2

(MR) and σ 2
(MC) are hyper-parameters of the variance of

parameters, which are defined before they are applied to the contingency table.
We assume that each prior of xi and y follows a multivariate normal distribution
N (μ, �), where μ ∈ R

p and � ∈ R
p×p are a mean vector and covariance matrix,

respectively. Specifically, no information about the coordinate vector is available,
and so we set the prior distribution of xi and y j as follows:

xi ∼ N (0, �R) , � = diag
(
η2

(R)

)
, (i = 1, 2, . . . , R)

y j ∼ N (0, �C) , � = diag
(
η2

(C)

)
, ( j = 1, 2, . . . , C) .

This is similar to theBayesianMDSofOh andRaftery (2001).Weuse theMetropolis-
Hastings (MH) algorithm to calculate the posterior distribution.We also use a (multi-
variate) normal distribution as the proposal distribution of theMH algorithm follows.

One advantage of using Bayesian estimation pertains to the imputation of missing
data. From the contingency table, we interpret the relationship between the row and
column categorical variables. In contrast, we do not interpret the relationship between
the categories of the same categorical variable from the contingency table.We regard
contingency tables of row categorical variables and column categorical variables
as missing data; then, we impute these missing data. Figure1 illustrates missing
and observed data. Now, we term this contingency table an extended contingency
table, D∗. We assume δ∗

i j represents missing data in the contingency table D∗. The
estimation procedure is the same as the procedure ofDeTibeiro andMurdoch (2010):

• Step 1: The imputation of missing values—impute the missing (i, j)th cell of D∗
by sampling Po

(
μi j

)
.
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• Step 2: The sampling parameter step—sampling parameters given D∗ that have
no missing value.

We calculate the posterior distribution of the parameters by repeating Steps 1 and 2.

Let θ=
(
λ, λ

(R)
1 , λ

(R)
2 , . . . , λ

(R)
R , λ

(C)
1 , λ

(C)
2 , . . . , λ

(C)
C

)
, X= (x1, x2, . . . , xR)′,

and Y = (
y1, y2, . . . , yC

)′
. Since θ is similar to the log-linear model, there is inde-

terminacy, but the effect is not strong, depending on the prior distribution settings.
Even if X and Y are multiplied by the same rotation matrix, the value of ‖xi − y j‖2
does not change. Furthermore, there is no problem if the dimensions are swapped,
which leads to a dimension switching problem. To address this problem, we use the
method of Okada and Mayekawa (2011). To use this method, Z is defined as follows
using X and Y :

Z =
(
X
Y

)
.

Let Z(t) be the t th sample of Z. Then, we find the rotation matrix H (t) that minimises
the following objective function:

g(H (t) | Z̄, Z(t)) = ‖Z̄ − Z(t)H (t)‖2F , (2)

where, Z̄ is the mean of the sample, and ‖ · ‖F denotes the Frobenius norm. Then,
the samples are rotated a posteriori.

Fig. 1 Image of extended contingency table D∗. The missing values are imputed by Bayesian
estimation
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2.3 Some Extensions

Here, we describe some extensions of the proposed method based on the model
formula. The model represents the second-order interaction terms between the vari-
ables to be attached to the distances. Hence, it can be easily extended to a multi-way
contingency table. Indeed, De Rooij and Heiser (2001) attempted an extension to a
ternary contingency table.When a ternary contingency table is one-mode, three-way,
defining triadic distance is necessary. We simply use the triadic distance (Nakayama
2005) and the n-way metric (Warrens 2010).

In the two-mode case, several patterns are possible. We term the variable that is
used to estimate the coordinate vector as a pointing variable, and the other variables
as condition variables. If the contingency table is obtained by pointing variable ×
conditional variable× conditional variable, appending pointing variables is difficult.
This is because the distance between pointing variables must be defined by the main
effect. However, defining the distance is difficult, because distance is defined for pair
of objects. Next, in the case of pointing variable × pointing variable × conditional
variable, the interaction of pointing variable × pointing variable is considered as the
distance. Other combinations can be estimated as in the usual log-linear model.

Two patterns are possible in the three-mode case: in the case of pointing variable
× pointing variable × condition variable, the distance between categories of the
pointing variable are used as the interaction terms. In the case of pointing variable
1 × pointing variable 2 × condition variable, the estimation is the same as in the
presentmethod and in the two-mode case. In the case of pointing variable 1×pointing
variable 2 × pointing variable 3, three pointing variables can be appended by using
the second-order interaction as distance. If we consider the triadic distance as the
third-order interaction, we need to define this distance, as in the one-mode case.

It is also possible to model asymmetric MDS by considering the difference in the
main effects of the i th row and i th column categories as a measure of asymmetry.
when the coordinate matrix X = Y holds, the second-order interaction shows sym-

metry. Hence, log
(
μi j/μ j i

) =
(
λ

(R)
i − λ

(C)
i

)
+

(
λ

(R)
j − λ

(C)
j

)
, and the asymmetry

can be expressed by the difference of the main effects.
Tsuchida andYadohisa (2016) present a symmetricMDS for general n-way tables.

If the distances defined in that study are used, simple Bayesian estimation is possible.
However, it should be noted that the number of parameters increaseswhen the number
of mode and way also increase. Hence, whether to include higher-order interaction
terms is debatable. In addition, for higher-order contingency tables, the number of
zero cells often increases. These can be treated asmissing data, and complementation
may be considered. As an alternative, we use the zero-inflated model.

3 Numerical Example

We conducted a numerical experiment to investigate performance of the proposed
method.Themethods compared are the proposedmethod, themethodofDeRooij and
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Table 1 True distance between variables

X1 X2 X3 X4 Y1 Y2 Y3 Y4

X1

X2 2

X3 1 1

X4 1 1 2

Y1 1 5 4 2

Y2 2 4 5 1 1

Y3 5 1 4 2 8 5

Y4 5 5 2 8 10 13 10

Heiser (2003), and unfolding (e.g. Borg andGroenen 2005)with Bayesian estimation
based on Oh and Raftery (2001). We selected these three methods for comparison
because they enabled us to investigate model performance and estimation methods.
The model formula of De Rooij and Heiser (2003) is the same as the proposed
method. The estimation method of unfolding with Bayesian estimation is similar
to the proposed method. Hence, we investigate the utility of the proposed method
by comparing it with these extant methods. The evaluation index is the correlation
coefficient between the distance based on the estimated coordinate vector and the
true distance. The correlation coefficient was used because the scale of each distance
is different. We calculated the correlations with all distances and those for which
data were available.

The data were generated using the following procedure. First, the elements in
Table1 were set as the true distance di j values. Then, μi j = exp

(
max{6 − di j , 1}

)

was defined. Next, δi j was generated as random numbers from a Poisson distribution
with parameter μi j . Only data corresponding to the rows Y and the columns X in
Table1 were used.

The number of samples selected was set to 20,000. The burn-in time was 10,000.
The initial value of each parameter was generated from the uniform distribution from
−1 to 1. The variance of the prior distribution of each parameter was set to 100. The
posterior mean was used as the estimate.

The first row of Table2 is the mean of the correlation coefficients between the
true distance and the estimated distance for the observed data used. The second row
of Table2 is the correlation coefficient between all distances, including the missing
values. The proposed method has the best result for both correlation coefficients.

Table 2 Mean of the correlation between true and estimated distance for each iteration

Proposed method Bayesian unfolding De Rooij and Heiser

Distance of observed data 0.918 0.747 0.759

All distances including missing
values

0.674 0.577 0.500
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–

Fig. 2 Boxplot of correlation between true and estimated distance for each iteration, for observed
data

Comparing the method of De Rooij and Heiser and unfolding with Bayesian esti-
mation, the correlation coefficient for the observed data is better for the De Rooij
and Heiser model, while Bayesian unfolding is better for all distances. The proposed
method could reflect the advantages of both since the model is the same as that of De
Rooij and Heiser and the estimation method is similar to unfolding with Bayesian
estimation.

Figures2 and 3 show the boxplots of the correlation between the true and the
estimated distance for each iteration. From Figs. 2 and 3, observe that the proposed
method has a smaller interquartile range than the other methods and is more stable.

4 Real Data Example

We used the proposed method to analyse survey data of green tea purchases in Japan.
The survey period was from 1 January 2013 to 31 December 2013, and the target
population was 6000 people aged 20–60 years in the Tokyo metropolitan area. To
investigate the relationships among green tea purchases, age and sex, we defined the
age-sex categories as follows: M1, M2, and M3 as males aged 20–34 years, 35–49
years, and 50–60 years, respectively; and F1, F2, and F3 as females aged 20–34
years, 35–49 years, and 50–60 years, respectively.

Table3 shows the frequency of purchasing green tea brands for each age-sex
category. The frequency of purchase was taken as the total frequency of purchase for
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–

Fig. 3 Boxplot of correlation between true and estimated distance for each iteration for all distances,
including missing values

Table 3 Frequency of purchases of green tea brands in each demographic category

M1 M2 M3 F1 F2 F3

A 148 411 278 46 28 27

B 22 144 150 6 3 3

C 833 1080 1643 279 394 619

D 1321 2075 2739 492 961 1256

E 73 66 162 50 37 55

F 1151 1533 2912 527 602 1345

G 19 85 335 11 15 60

H 46 96 110 37 69 71

I 63 77 91 39 12 38

J 15 57 235 10 2 22

K 1346 1647 3708 567 632 1584

L 187 287 811 81 49 82

those who belonged to each age-sex category. The initial values of the coordinate
vectors were estimated by ordinary unfolding, and the initial values of the intercept
and main effect were estimated by a log-linear model. The variance parameter was
set as 100. The burn-in count was set to 30,000 and the total number of samples to
50,000.

The results are shown in Fig. 4. Several obervations may be made. Firstly, M2 and
M3 are very close to the private label and the inexpensive label of the convenience
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–
–

– –

Fig. 4 Scatter plot of posterior mean of coordinate vector

store. This result is likely because someM2 andM3work on weekdays and purchase
a lunch boxwith green tea at a convenience store. F2 is associatedwith popular brands
and Food for Specified Health Uses (FOSHU). Green tea with FOSHU is currently
very popular in Japan. However, in this survey period, it was not as popular. The
younger age groups of M1 and F1 are relatively close to brand C. Brand C has a
long history in plastic bottle packaging and an association with popular characters.
In 2013, the inclusion of famous characters on the bottle was controversial, which
may have promoted purchasing among the younger generation.

The brands B, H, and G are located far from the age-sex category, and are far from
the main products of the green tea brand. This indicates that the number of purchases
is low. This may be because these brands are not sold in convenience stores and
vending machines, which are the usual channels for green tea purchases (Table 4).
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Table 4 Characteristics of each brand

Brand Characteristic

A Private label of major supermarket

B Low-priced carton green tea

C Major brand made by popular beverage corporation

D Major brand made by popular beverage corporation

E Low-priced major brand

F Major brand made by popular beverage corporation

G Low-priced major brand

H Private label of major supermarket

I Private label of major convenience store

J Private label of major convenience store

K One of the most popular brands of green tee

L FOSHU and high-priced

5 Discussion

In this paper, we propose a Bayesian estimation method for applying MDS to con-
tingency tables. The numerical example shows that the proposed method reproduces
distances in the sense of correlation coefficients better than existing methods do.
This may be because the distance between the categories in the rows and columns is
reproduced appropriately, which may be attributed to the combination of Bayesian
estimation and imputation.

Using aBayesian prior distribution including for the estimated results based on the
contingency table is also possible. Although not performed in this study, calculating
Bayesian credit intervals for the coordinate vectors is also possible. This may provide
useful information, including the stability of the estimation. As mentioned in Sect. 3,
Bayesian estimation can provide useful informationwhen applying asymmetricMDS
or other methods in contingency table analysis.

Three issues are needed to be addressed in the future. The first is the selection of
the number of dimensions, which is required in MDS. One direction is the Oh and
Raftery (2001) method. Whether this method is also applicable to contingency table
analysis must be checked.

The second issue is to clarify the relationship with existing methods. By consid-
ering the inner product model, it would be possible to consider the correspondence
with the applicable extant analysis methods. Since the model of the proposedmethod
uses the square of the Euclidean distance between objects, it would be possible to
naturally rewrite the method as an inner product model by using double centrali-
sation. A further advantage of using an inner product is that negative interactions
can be represented. Furthermore, by incorporating this into the double-centred mod-
elling, it could be written within the constraints of the log-linear model. However,
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the interpretation of imputation would then become difficult. When considered as a
distance model, the relationship with the method of Takane (1987) is also an issue
to be addressed in the future.

The third issue is the relationship betweenmodelling for higher-order contingency
tables and multiple correspondence analysis. In the model of the proposed method,
the main effects can be thought of as a correction term that transforms similarity into
dissimilarity to form MDS. Since correspondence analysis measures the deviation
from independence, it is related to the residuals when the main effects are subtracted
in the independent model. However, whether such a relationship applies for higher-
order contingency tables must be checked.
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What’s in a Name? Correspondence
Analysis . . . Dual Scaling . . .
Quantification Method III . . .
Homogeneity Analysis . . .

Michael Greenacre

1 Introduction

For Nishi’s Festschrift, celebrating his 88th birthday, I thought I would avoid a
technical paper and rather reflect about how we create terms and names for new
methodologies and how these names impact their development and dissemination.
There is no doubt that a name has the characteristics of a brand label for a research
product, and that the“packaging” of the product does influence how it is perceived
and used.

I first give a simple example of how names can affect and clarify subsequent
usage. When I wrote my first book, Theory and Applications of Correspondence
Analysis (Greenacre 1984), in order to avoid the repetition of referring all the time to
“coordinates that have (weighted) sum of squares equal to 1”, I decided to call them
“standard coordinates”. This echoed the idea of standardisation, since the coordinates
that were standardised in the usual sense of “average sum of squares [of deviations
from the mean] equal to 1” were exactly what was meant by the term standard
coordinates. Averaging was equivalent to assigning weights all equal to 1/n, as in
regular principal component analysis (PCA), for example. Or it could just as easily
involve differential weighting with weights summing to 1, as in correspondence
analysis. Similarly, instead of “coordinates that have (weighted) sum of squares equal
to lambda, the eigenvalue that is the variance on a principal axis”, I called these simply
“principal coordinates”, the same as the coordinates in Gower’s principal coordinate
analysis. This might sound like fairly trivial inventions, but the names have stuck
and are now quite generally used in the context of solutions from correspondence
analysis and related methods. Terms with a clear “branding” are recognisable and
assist in the communication process between researchers.
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Talking about branding and correspondence analysis, I find in the marketing lit-
erature that “the key to success will be picking a memorable word with sounds that
convey the right emotions or ideas to your audience”. So I ask: “What’s in a name?”
when it comes to the main subject of this volume.

2 One Method, Many Names

We all know that Benzécri’s correspondence analysis, Nishisato’s dual scaling,
Hayashi’s quantification method III and de Leeuw’s homogeneity analysis, are all
equivalent methods (although homogeneity analysis is usually the alternative name
formultiple correspondence analysis, which has correspondence analysis as a special
case). Sowhy then, at the time of writing, has “correspondence analysis” got 212,000
results on Google Scholar (as of 23 October 2022), “dual scaling” 5190, “quantifica-
tion method III” 262, and “homogeneity analysis” 10,300? For the record, “multiple
correspondence analysis” has 23,900, and “canonical correspondence analysis” has
48,100, which would all no doubt be included among those for “correspondence
analysis”—see Fig. 1A.

The name correspondence analysis, usually abbreviated as CA, comes from the
French analyse des correspondances (Benzécri 1973), or more fully analyse facto-
rielle des correspondances, that is factorial analysis of correspondences—notice the
plural. For Benzécri, a correspondence table, un tableau de correspondance, was
the matrix of nonnegative data, or what is equivalent as far as CA is concerned,
that matrix divided by its grand total. Such a correspondence table, or simply a
“correspondence”, quantified the association between two categorical variables, the
categories of which defined the rows and columns of the table. Thus, analyse des
correspondances, was the analysis of correspondences (plural), and this term had
been in use at least since 1961 when Benzécri worked in Rennes.

In the earliest English publication of Benzécri that I am aware of (in 1969),
“Statistical analysis as a tool to make patterns emerge from data” (Benzécri 1969),
Sect. 3 was indeed titled with the plural, “Analysis of Correspondences (Principles)”,
whereas Sect. 4 used the singular, “Analysis of Correspondence (Examples)”. The
statistical ecologist Mark Hill, in his paper “Correspondence analysis: a neglected
multivariate method” (Hill 1974), says in the abstract that:

R.A. Fisher’s canonical analysis of contingency tables . . . is designated by another author’s
name “correspondence analysis”.

Thus, it seems that Hill converted “analysis of correspondence” by “another author”
(Benzécri) to “correspondence analysis”, and that name has stuck to this day.

Nishisato’s earliest work on the topic seems to be about 1975–1976 with his work
on optimal scaling, with the terms dual scaling emerging in 1978. In fact, in the
recent chapter Personal Reflections, published in the bookModern Quantification
TheoryNishisato et al. (2021) and with this chapter signed by the book’s four editors,
there is a Sect. 1.4Names for Quantification Theorywhere “quantification theory”
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Fig. 1 A Citations in Google Scholar (as of 22 December 2022) of terms related to this essay.
B Citations of more popular statistical terms

is used as a generic term for all the methods mentioned before and even more. Here
is a passage:

Because quantification theory has appealed to a large number of researchers in different
disciplines and countries, it has acquired many aliases such as gradient method, reciprocal
averaging, simultaneous linear regression, Guttman scaling, Hayashi’s theory of quantifi-
cation, optimal scaling, principal component analysis of categorical data, correspondence
analysis, homogeneity analysis, dual scaling and nonlinear multidimensional descriptive
analysis.

The term “quantification theory” has 13,300 mentions in Google Scholar (see
Fig. 1A), but the problem is that the term means something completely different.
The most cited article, “A computing procedure for quantification theory” (4195
citations, almost a third of the total) explains it as a central problem of mathematical
logic, and the Encyclopaedia Britannica defines quantification in logic as the attach-
ment of signs of quantity to a proposition, such as universal quantification (using
the sign ∀, “for all”) and existential quantification (using the sign ∃, “there exists.”).
Clearly, “quantification theory” means something different to a mathematician, and
the term could cause confusion as an example of brand name similarity, and—if we
operated in a business world—trademark infringement! (Howard et al. 2000)

Figure1B shows the number of citations for some of the top terms in statistics,
all an order of magnitude higher, in the millions. The term “principal component
analysis” includes the use of “principal components analysis” in the plural, which is
the less preferred term, being used about a quarter of the time. In the preface of his
book, Joliffe (2002) explains why he chose the termwith “component” in the singular
(for example, “factors analysis” is never used), also pointing out that the growth of
usage of the singular form has been much stronger than the plural form. While on
the topic of singular and plural, in the recent 50th anniversary jubilee edition of
the Journal of Multivariate Analysis, Farebrother (1922) uses “principal components
analysis” and, strangely, “canonical correlations analysis” (the latter being used 0.7%
of the time, compared to 99.3% for the familiar singular form, amongst the 923,000
citations). Finally, another interesting difference in Fig. 1B is the occurrence of the
two versions of the buzzword “learning”. The widely used “machine learning” is set
to outstrip “regression analysis” in the near future. The alternative term “statistical
learning”, introduced by TrevorHastie and co-authors (Hastie et al. 2009; James et al.
2013), and quite rightly so, will probably not do as well, with only about one-sixth of
the citations of “machine learning” at present. This is in spite of their books being the
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best references in the field, and emphasising statistical criteria more than in typical
machine learning applications. Could this be a case of data scientists preferring the
engineering resonance of “machine learning”?

3 The Branding of a Method

When it comes to explain branding in business, it is clear that trying to justify the
name as the correct one for substantive reasons can sometimes be challenging: take
“Apple” as a brand name, for example, where the product has no relation to fruit,
except perhaps appealing to a healthy Californian lifestyle in Silicon Valley (“An
apple a day keeps the doctor away”). In the same chapter mentioned above, the
authors try very hard to justify their preference for the term “dual scaling”:

As of today, many researchers appear to prefer the name correspondence analysis to dual
scaling. However, in the current book, we will see that dual scaling may be a more appro-
priate name than correspondence analysis for two reasons: (1) the optimal weights for rows
and columns are symmetrically scaled (note: symmetrical=dual) and (2) the object of quan-
tification is to find multidimensional coordinates for rows and columns in dual space (to be
defined later).Wewill find it later that the solution to the perennial problem of joint graphical
display can be found in this dual space, not in space for the contingency table, as used in
correspondence analysis.

It is not the purpose of this chapter to defend or justify any name as being bet-
ter than any other, only to point out the present reality that correspondence analy-
sis, originating in Benzécri’s French term, has clearly become the accepted name
for the method. It has been adopted, arguably correctly or incorrectly, in the terms
“detrended correspondence analysis”, “canonical correspondence analysis”, “non-
symmetric correspondence analysis”, “taxicab correspondence analysis”, as well as
“multiple correspondence analysis” rather than homogeneity analysis. For example,
a name such as “nonsymmetric dual scaling” would represent a contradiction of the
symmetry of the optimal weights given as a justification of the term “dual scaling”.
Hayashi’s series of quantification methods, might need something like “Quantifica-
tion method V” to describe this variation of CA. Also, one wonders if practitioners
know (or need to know) anything at all about “dual spaces”. The biplot as a least-
squares approximation of a matrix, sometimes weighted least-squares, is by far the
most digestible way of explaining and interpreting these methods, with all the nice
scaling properties of the biplot coordinates falling out naturally as a consequence,
where everything is in one space.

As for the possible confusion generated by the name “correspondence analysis”,
clearly the method has nothing to do with a linguistic analysis of people’s letters
sent by post or by email or social media! However, CA can actually be used in
the textual analysis of such communications sent by “correspondence”—here lies an
unintended ambiguity that reminds one of the origins of analyse des correspondances
by the linguist Benzécri, who originally used the method to analyse textual data.
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4 Scaling the Results

Reflecting on the “dual space” aspect and the “symmetrical scaling” referred to in
the above quote, my personal experience with correspondence analysis is far from
the simple contingency table applications, rather being totally dominated by results
that are not symmetrically scaled. Most nonnegative data matrices being analysed by
correspondence analysis are naturally asymmetric, with rows being sampling units
and columns being variables, hence playing different roles. Here there is the endless
and tiresome confusion around the joint display and the “scalings” used to define the
row and column coordinates. This variety of choices is divided into several camps:

• The purists who insist on asymmetric scaling where the singular values of the
method are assigned either to the rows or to the columns, to obtain a true biplot—
after many attempts I finally called this plot, with one set (usually the samples,
or rows) in principal coordinates and the other in standard coordinates, an “asym-
metric biplot”.

• A small camp who prefer to assign the square roots of the singular values to rows
and columns, which I call the “symmetric biplot”.

• The pragmatists,mostly French andSpanish,who have no problem in assigning the
singular values to both rows and columns, that is resulting in a joint representation
of two sets of points in principal coordinates. This is not a true biplot and so I
have called this the “symmetric map”, since each configuration is an approximate
distance representation,with the sameweighted variance (i.e. inertia). A true biplot
has a scalar product interpretation between the jointly represented row and column
configurations. The practise of interpreting a symmetric map as an approximate
biplot has been partially justified by Ruben Gabriel (2002).

All of the above terms, asymmetric biplot, symmetric biplot, and symmetric map,
as well as a version of the asymmetric biplot I have called the “contribution biplot”
(Greenacre 2013) (which I mostly prefer, being very useful when there are large
numbers of variables and one wants to downplay those with low contributions), are
applicable to all other methods that use the singular-value decomposition: principal
component analysis (PCA), canonical variate analysis (CVA), redundancy analy-
sis (RDA), canonical correspondence analysis (CCA), logratio analysis (LRA, both
unweighted and weighted), and so on. This has not stopped the proliferation of
other terms, for example in PCA asymmetric biplots are often called either “form
biplots” or “covariance biplots”, depending on whether the rows or columns are
scaled by the singular values. Gabriel originated terms for the same pair of biplots,
respectively called “row-metric-preserving biplots” and “column-metric preserving
biplots”, although these are hardly used today.
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5 More Names that Mean the Same Thing

There is a possible further confusion ofmethodswhen it comes to the topic of “forced
classification” in the dual scaling literature. Forced classification in dual scaling is
achieved by increasing the weight of certain rows of the data so that they are “forced”
into lying on the major principal axes and thus dominating the solution. In corre-
spondence analysis, on the other hand, this is achieved using the concepts of “active”
and “passive” (also called “supplementary”) points (Greenacre 2016), which have
been an integral part of correspondence analysis since its earliest definition (Benzécri
1973). Passive points have zero weight, so play no role in establishing the principal
axes of the solution, which is determined by the active points. In other words, they
make no contribution to the solution, but they still have a position with respect to
the axes and can be visualised. Not being aware of this fact would possibly make
users think forced classification is a completely different method. As a further com-
ment, if the idea is to perform a type of discriminant analysis between group means,
given a classification of the rows, this can be achieved either by adding the means
as additional rows to the data and declaring them active (with weights proportional
to the sample sizes of the groups) and all the individual rows as passive (with zero
weight), or equivalently by performing a canonical correspondence analysis where
the grouping factor is specified as an explanatory (i.e. constraining) categorical vari-
able.

Coming to multiple correspondence analysis, or MCA, this term has been more
widely accepted than homogeneity analysis (see Fig. 1A), although they are equiva-
lent. MCA’s popularity has probably rubbed off from that of correspondence analysis
(CA), an example of brand association. The technical term “homogeneity” is perhaps
not well understood as a concept in the context of categorical data analysis. It is not
clear how dual scaling, with the properties listed above, especially that of “symmet-
rical scaling”, can be extended to more than two categorical variables. In fact, it is
still not crystal clear how CA itself can be extended to more than two variables, since
in its most utilised form, MCA does not have CA as an exact special case. Here too
there has been some confusion. MCA is usually defined as the CA of the samples-
by-categories indicator matrix, which is a matrix of zeros and ones with dummy
variables as columns. Having all the categories as columns led to the heated debate
between Carroll, Green and Shaffer on the one hand (Carroll et al. 1986), and myself
on the other (Greenacre 1989), in the Journal of Marketing Research, where the
former authors proposed a distance interpretation between all the column category
points. I pointed out the fallacy of this type of multidimensional scaling interpre-
tation by actually computing the between-category distances in the “full space” of
the columns, where these distances had little interest, and the percentages of vari-
ance displayed were necessarily very low. As a way of clarifying the interpretation,
I subsequently defined two alternative ways of computing the MCA solution, first
by adjusting the scales of the axes so that the multivariable MCA had bivariable CA
as a special case, and secondly by proposing “joint correspondence analysis” (JCA)
(Greenacre 1987) as the true generalisation of CA, where all two-way cross-tables
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of the categorical variables were jointly optimised in the solution. To cut a long story
short, one should think of MCA (or JCA) as the average analysis of all two-way
CAs, in much the same way as PCA of a covariance matrix is the analysis of all
bivariate covariances. In fact, each two-way cross-table is the categorical analogy of
a covariance.

6 Superfluous Names, Meaningful Names

A correspondence analysis term that I have tended to avoid recently in my classes to
marine biologists and other practitioners, is “inertia”. In French “inertie” was used
by Benzécri to signify the weighted sum of squared distances of the row points, or
the column points, to their respective centroids, where distance was the chi-square
distance. As is well-known, if one computes the Pearson chi-square statistic on a
table of nonnegative numbers, even if the table is not a contingency table, the inertia
is the value of the chi-square divided by the grand total of the table. It measures the
amount of variance in the correspondence table. This term undoubtedly originates
in physics, where the “moment of inertia” of a solid object is defined as the integral
of mass times squared distance to the centroid. Maybe this is a useful concept for
the variation of the point masses (row points or column points) in their respective
spaces, but I have found that students accept the simple term “variance”, or “weighted
variance”without needing a completely newname for theweighted case. Percentages
of explained variance are familiar, whereas percentages of explained inertia are rather
abstract.

The chi-square distance which underlies the geometric spaces in CA is a useful
term, due to Louis Guttman (1941), since it involves standardisation by dividing
by the square root of the mean (i.e. square root of the expected value, as in the
classic chi-square statistic) for ratio-scale data, as opposed to the square root of the
variance (i.e. the standard deviation) for interval-scale data. This distance function
has beautiful properties. It ensures the principle of distributional equivalence: for
example, two rows with the same relative values (i.e. equivalent distributions) can be
simply amalgamated, by summing them, without the chi-square distances between
the columns being affected, and vice versa. Also, as I have shown in a series of
papers, the chi-square distance on power-transformed data, specifically the Box-
Cox transformation, converges to the logratio distance used in compositional data
analysis as the power tends to 0. This surprising result means that the chi-square
standardisation offers an alternative to the logratio transformation, and needs no
replacement of zeros, which are the bane of the logratio approach.

Mentioning the Box-Cox transformation bringsme to a final comment about nam-
ing terms andmethods after people. Box-Cox is an exception, inmy opinion, because
of the rhyming and the combination of two great statisticians’ names. It is clearly
recognisable, especially if one qualifies it as the Box-Cox power transformation.
Otherwise, I am not personally in favour of using people’s names, rather preferring
some technical meaning embedded in the name. I would be unhappy if the chi-square
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distance had been called the Guttman distance or the Benzécri distance. Benzécri
called the horseshoe, or arch, effect in CA, “l’effet Guttman”, which luckily has not
survived in English as the Guttman effect. Working in the field of compositional
data analysis, a field mostly attributed to John Aitchison, I find researchers inventing
terms such as the “Aitchison distance”, “Aitchison space” and “Aitchison geometry”.
Unless you are in the inner circle of this field, these terms convey nothing to you,
and it is not even clear that Aitchison himself favoured his name being used in this
way, since he did not use these terms himself, at least not in his own single-author
publications. Hence, in my writings in this area I prefer the terms “logratio distance”
and “logratio space”, which do conveymeaning, since they are the distance and space
defined on logratio-transformed compositional data.

7 Conclusion

In conclusion, names and terms convey meaning and familiarity with them is impor-
tant for researchers in their understanding and communication with others. Careful
thought is needed when inventing names and terms and new “brands” should not
be advertised to “consumers” unless they serve a useful purpose. Confusion is best
avoided to keep concepts and methods clear and unambiguous.
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History of Homogeneity Analysis Based
on Co-Citations

Jan L. A. van Rijckevorsel

1 Introduction

The prehistory of correspondence analysis (CA) is a confusing period. Different
varieties with mutually different criteria, names, and objectives to be optimised
arose more or less independently of each other. The aliases Homogeneity analysis
(HOMALS) and (multiple) Correspondence analysis (MCA) occur therefore also
interchangeably in this contribution. The development of ideas is obscured due to
selective reporting and the technical possibilities of the time. Before 1970, statisti-
cians had little access to other people’s work compared to now resulting in sparse
citations that were limited to one’s own small circle. It was simply impossible to
cite parallel developments if one was not aware of their existence. In addition, it was
customary to honour the early developers of the technique you were working on as
Nishisato also pointed out in his “personal reflections” on page 8 of Nishisato et al.
(2021). The idea that people stood on each other’s shoulders was part of a tradition
and that this had to be accounted for also played a role. Therefore, the analysis of
“who” was cited and which citations these forefathers had in common in said period
are relevant and interesting. It shows us how knowledge and which knowledge was
spread at the time and how this statistical technique has developed over time.

It is also interesting that the co-citations are analysed by using CA itself. By rear-
ranging rows and columns in such amanner that as muchmarginal weight as possible
is placed on or around the diagonal of the matrix, groups of authors can be identi-
fied whose members have the same co-citation pattern. The technique that optimises
such a diagonalisation happens to be CA. This seems appropriate for a Festschrift in
honour of Shizuhiko Nishisato, one who has a soft spot for historiography himself
given his “personal reflections”.
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After 35 years, I have not gotten the impression that the following historical
analysis based on co-citations has any reputation. The document has never been
available digitally to my knowledge, so relatively few researchers had access to the
content. This does not exclude that the analysis and its results may not be worthwhile
and therefore not quoted. Read and judge for yourself.

2 Other Reviews

The most important reviews on the history of homogeneity analysis in 1987 were De
Leeuw (1973, 1983), Nishisato (1980), Gifi (1981), Benzécri (1977), which later was
included in an edition published byBordas in 1982, andTenenhaus andYoung (1985).
De Leeuw (1973) observes two historically different developments: the principal
components analysis of categorical data and the bivariate analysis of a contingency
table. Nishisato (1980) does not divide the historical development into mainstreams,
instead he gives an interesting account on the history of dual scaling instead which
covers the development of homogeneity analysis as well. Benzécri (1977) and De
Leeuw (1983) discuss the prehistory of homogeneity analysis. In particular, Benzécri
(1977) contains a useful report on the state of the art (in 1977 however!) of French
correspondence analysis and its generalisations. De Leeuw (1983) shows that in
1905, Pearson almost discovered correspondence analysis and, if so, he (Pearson)
probablywould have been a fervent user.Gifi (1981) gives a comprehensive reviewon
nonlinear multivariate analysis with many details but somewhat unevenly scattered
over 300 densely written pages.

Tenenhaus andYoung (1985) discuss four differentmethods all leading to the same
basic characteristic equations: reciprocal averaging, the ANOVA type approach of
maximising variance, principal components analysis of categorical data and gener-
alised canonical correlation analysis. We discuss each of these in turn. First, recip-
rocal averaging is a natural criterion for deriving scores conceived by Richardson and
Kuder in 1933 that stayed largely unnoticed and thus historically not very discrim-
inating. Brigitte Escoffier, also known by her maiden name Cordier (1963, 1965,
1969) and Benzécri (1964, 1969, 1973), made it a cornerstone of their technique and
a guideline in the intuitively attractive interpretation of geometrical representations
in homogeneity analysis, calling it le principe barycentrique; see also Hill (1973,
1974) for this interpretation. The algorithmic aspects of reciprocal averaging already
observed by Fisher (1940) and programmed by Mosier (1946) and by Baker (1960)
came into full use with the availability of the 1970 generation of computers that
could process large arrays effectively in an iterative way; see Hill (1973), De Leeuw
(1976), Lebart et al. (1977) and van Rijckevorsel et al. (1978). Second, manipulating
the data in such a way that a convenient between sum-of-squares is maximised, while
the total sum-of-squares is kept constant, is a general and thus not discriminating way
of presenting least squares problems. Guttman (1941) and Fisher (1940)were the first
to use this formulation in homogeneity analysis. Third, the term “generalised canon-
ical analysis” is proposed by McKeon (1966). One can interpret the first eigenvalue
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of homogeneity analysis of m variables as the average of the squared canonical corre-
lations betweenm sets, each set containing just one variable. Both Fisher (1940) and
Guttman (1941)were familiarwith this interpretation,which is originallymostly used
in the bivariate approach. Gittins (1985) reviews this interpretation of homogeneity
analysis in a general framework of all kinds of canonical analysis. In France, gener-
alised canonical analysis developed into the nonlinear canonical analysis of Masson
(1974, 1980), Dauxois and Pousse (1976), Saporta (1980), and Leclerc (1980).

3 Selecting Papers for a Co-citation Analysis

Instead of reiterating the available material into another historical review, we will
analyse the mutual citations of some selected publications by means of correspon-
dence analysis. The first problem encountered is: Which are the most representative
papers? The basic list of publications is provided by the references of other (histor-
ical) reviews on homogeneity analysis. Because history of referencing and not today’s
state of the art is important here, we start with the publication in 1933 by Richardson
and Kuder and stop in 1975.We have the impression that after, say 1975, things were
not what they used to be in homogeneity analysis. The different approaches were
quickly integrating into a single more general framework during the early 1970s
and the same bundle of papers is cited too often to be of any significance in cita-
tion analysis. Some publications within this interval are not used because of their
relative lack of new relevant material, which is not already covered by other authors
or because of their obscure status (such as being programme descriptions, internal
reports), or last, but not least, because they are not cited by other authors. The latter
does of course also apply to the pioneering papers on homogeneity analysis which
are included in our analysis where possible. The papers that are excluded on the fore-
going grounds are the following: Mosier (1946), Mosteller (1949), Johnson (1950),
Lubin (1950), Slater (1960), Baker (1960), Kendall and Stuart (1973), Shiba (1965),
Nishisato (1972, 1973), and Saito (1973).

Two other well-known papers are also excluded from our analysis because they
are not directly related to homogeneity analysis. The publications in question are
the several editions (1938, 1948, 1955) of Fisher’s book “Statistical Methods for
Research Workers”, and the paper by Maung (1941b). Fisher (1938, pp. 285–289)
is the first one to use the words appropriate scoring when finding numerical scores
for categorical variables that maximise additivity in analysis of variance and not
particularly in the context of maximising the correlation between scores for rows
and columns of a contingency table (i.e. homogeneity analysis). Fisher introduced
the latter idea in his 1940 paper in the Annals of Eugenics. The confusion arises
because optimal scaling or appropriate scoring is not necessarily identical to homo-
geneity analysis; see Nishisato (1980). Bock (1960), for example, refers to Fisher
(1938), Johnson (1950), Lancaster (1957) and Williams (1952) in the same breath.
The first two authors however were interested in scoring for maximal additivity,
whileLancaster andWilliams discuss scoring tomaximise correlation. EvenGuttman
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(1959) included Fisher (1955) in his list of references, while his text mentions neither
Fisher nor maximising additivity. A similar situation exists for two closely dated
papers by KhintMaung (1941a, 1941b) that both appeared in theAnnals of Eugenics.
The first paper deals with discriminant analysis applied on Tocher’s data on the hair
and eye colour of Scottish children (pp. 64–76). As such, it fits into the Fisher (1938)
and Johnson (1950) work on discriminant analysis. In Maung’s second paper that
year, he explicitly applies Fisher’s scoring technique for maximising correlation on
Tocher’s data (pp. 191–223). Both papers byMaung are sometimes referenced indis-
criminately. Fisher (1938, 1948, 1955) and Maung (1941b) are not included in the
citation analysis.

The first French publications on homogeneity analysis by Escofier (1969),
Benzécri (1973), and Naouri (1970) are a problem for a citation analyst because
of their non-standard way of citing. Benzécri refers sparsely to non-French work on
homogeneity analysis in these publications, and he does not include Guttman (1941)
in his list of references. Because it sounds not likely that Benzécri would not have
known Guttman (1941) we searched Benzécri’s (1973) text and on page 25 it reads:

…, Guttman avait d’abord envisage de faire notre analyse (dont l ‘analyse des scalogrammes
est un cas particulier) mais n’en vint jamais aux calculs probablement pour la seule raison
qu’en 1941 (sic) les ordinateurs n’existaient pas

which, when translated to English, reads:

…, Guttman had first considered doing our analysis (of which the analysis of scalograms is
a special case) but never came to the calculations probably for the sole reason that in 1941
(sic) computers did not exist.

This is the most explicit reference to Guttman (1941) made by Benzécri. The
remark itself is not true by the way because the same supplement (no B3) containing
Guttman’s (1941) paper includes a contribution of Ledyard R. Tucker (1941) titled:
A note on a machine method for the quantification of attributes. It is also highly
probable that the term Chi Square Metric used by Benzécri (1973) originates with
Guttman (1941, p. 330). Whether there exists more of such references we do not
know. Benzécri (1973) promises on page 27 to give a complete bibliography but,
apart from scattered references throughout the text, he does not get any further than
an author’s index in Vol. II and we had to wait until 1977 for his more extended
bibliography. The papers by Escofier (1965, 1969) and Naouri (1970) are French
doctoral theses that hardly refer to other work. Occasionally, several papers by one
author are indiscriminately cited as if they carried the same message. Therefore, we
sometimes better speak of an oeuvre, a body of work, that includes several sepa-
rate publications. We consider the following publications as oeuvres: in the citation
matrix, Lancaster refers to Lancaster (1957) and Lancaster (1958); Benzécri refers to
Benzécri (1964), Benzécri (1969), and Benzécri (1973); Hayashi refers to Hayashi
(1950), Hayashi (1952), and Hayashi (1954); De Leeuw refers to De Leeuw (1968)
and De Leeuw (1973); Hill refers to Hill (1973) and Hill (1974); and Lingoes refers
to Lingoes (1963), Lingoes (1964), and Lingoes (1968). These considerations lead
to the following list of publications to be used in a citation analysis in order of time



History of Homogeneity Analysis Based on Co-Citations 305

Table 1 Transactionmatrix between cited (= columns) and citing (= rows) papers on homogeneity
analysis

Ho Ri Hi Ho Fi Gu Ma Bu Gu Ha Wi Bu Gu La Lo To Gu Bo Li Mc Es Na

Guttman
41

1 1 1 3

Maung 41 1 1

Guttman
50

1 1 2

Hayashi 1 1 2

Williams
52

1 1 2

Burt 53 1 1 1 1 4

Guttman
53

1 1 1 1 1 5

Lancaster 1 1 1 1 4

Lord 58 1 1 1 3

Torgerson
58

1 1 1 3

Guttman
59

1 1 1 1 1 1 1 7

Bock 60 1 1 1 1 4

McKeon
66

1 1 1 1 1 1 1 7

Lingoes 1 1 1 4

McDonald
68

1 1 1 1 1 5

Benzécri 1 1 1 1 1 1 6

De Leeuw 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20

Hill 1 1 1 1 1 1 1 1 1 9

Total 3 1 4 6 7 13 5 4 10 2 6 3 5 5 3 5 1 1 1 1 3 2

of publication: Richardson and Kuder (1933), Hotelling (1933), Hirschfeld (1935),
Horst (1936), Fisher (1940), Guttman (1941), Maung (1941b), Burt (1950), Guttman
(1950), Hayashi, Williams (1952), Burt (1953), Guttman (1953), Lancaster, Lord,
(1958), Torgerson (1958), Guttman (1959), Bock (1960), McKeon (1966), Lingoes
(1968),McDonald (1968), Escofier (1969), Naouri (1970), and the work of Benzécri,
DeLeeuw, andHill. Theirmutual citations are collected in a binary transactionmatrix
of citing (rows) versus cited (columns) publications; see Table 1.

4 The Historical Development of Homogeneity Analysis

4.1 An Overview

The visual inspection of the transaction matrix, combined with the interpretation of
the content of the papers, leads to a reconstruction of the historical development of
homogeneity analysis. Figure 1 sketches the developments over the period 1933 to
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1975 that have contributed to homogeneity analysis. It is important to notice that
the independent progress in some quarters remains unobserved in other quarters
during a considerable interval of time. Hirschfeld’s paper on maximising correlation
and linearising regressions from 1935, for instance, is first mentioned by Lancaster
(1958), and the work of Guttman in 1941 is greatly ignored by the bivariate school.

Fig. 1 Sketch of the historical development of homogeneity analysis
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The historical mainstreams are, in our opinion, the bivariate approach that lies
within the English statistical tradition and the multivariate approach that is greatly
oriented to theUSA(including Israel). The latter development can be divided in a one-
dimensional variety (i.e. differential weighting) and in a multi-dimensional variety
(i.e. principal components analysis of categorical data); see De Leeuw (1973).

The first integration of the different approaches begins with Guttman (1959).
Next is McKeon (1966). At the same time, Escofier (1963, 1965) writes her thesis
wherein the French geometric style is introduced and l’analyse des correspondances
(bivariate) and l’analyse des correspondances multiples (multivariate) are combined
into a single framework. Three years later, McDonald (1968) produces his defini-
tive review on differential weighting including the work of Lancaster (1957) on the
bivariate distribution. The first authors to cover the whole field are De Leeuw (1973)
and Benzécri (1973). The last integrator of the interval that we study is Hill (1973,
1974) who, as a representative of the English bivariate school, integrates the French
approach with some American results. Cyril Burt (1950, 1953), the only Anglo-
Saxon (a Scotsman actually), did not fit in to the bivariate tradition at the time. He
discusses factor analysis of categorical data in the psychometric tradition.

We will give a brief characteristic of every member of each school and start with
the bivariate approach.

4.2 The Bivariate Approach

Hirschfeld (1935), better known as H. O. Hartley, discovers that the scores assigned
to the rows and columns of a contingency table to maximise their correlation, also,
linearise their bivariate regressions, which holds for categorical variables, continuous
variables, and for bivariate normals as well. Although he is a founding father of the
bivariate approach, he is not recognised as such until 1957 by Lancaster. Hirschfeld’s
very first result is also due to the second founding father: Louis Guttman (1941). A
third founding father of the bivariate approach is Fisher (1940), who derives homo-
geneity analysis as a special case of multiple regression or, discriminant analysis
with just two variables. Implicitly, Fisher proposes the system of reciprocal aver-
aging equations and realises that there are min (kj, kz) − 1 orthogonal solutions
to the bivariate homogeneity analysis. Fisher does not cite Hirschfeld’s paper, and
so his (Fisher’s) work can be regarded as another independent discovery of homo-
geneity analysis. Maung (1941b) is the first to apply Fisher’s technique. Williams
(1952) refers to Fisher and Maung and elaborates on the relationship with the chi-
square statistic. Lancaster (1957, 1958) continues the development that started with
Hirschfeld and Fisher and shows the relationship between the chi-square statistic,
continuous variables, and bivariate densities. In this way, Lancaster precedes Naouri
and Lancaster’s results relate directly to recent work on order dependence and oscil-
lating eigen-vectors in homogeneity analysis by van Rijckevorsel (1987). McKeon
(1966) is the first to include multivariate results. He also introduces the interpreta-
tion of homogeneity analysis as a form of generalised canonical analysis. He is the
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predecessor to Gittins (1985) and anticipates the French development marked by a.o.
Masson (1974, 1980) and Dauxois and Pousse (1976). Naouri (1970) is the dense,
mathematical French double of Lancaster, includes multivariate results as well, and
refers not to other publications. Hill (1973, 1974) is the first Anglo-Saxon author of
the bivariate school to integrate bivariate and multivariate results with French geom-
etry publishing in an accessible international journal Journal of the Royal Statistical
Society, Series C (Applied Statistics). He reintroduces reciprocal averaging, and he
made reciprocal averaging the cornerstone of his approach, just as Benzécri and
Escofier did before him.

4.3 The Multivariate School

The multivariate school can be divided into the one-dimensional and the multi-
dimensional approach. This distinction is historically not well established, however.
The use of homogeneity analysis as a nonlinear method to obtain optimal weights
that maximise the variance is called differential weighting. The interpretation of the
extraneous solutions of homogeneity analysis as factors or principal components like
in linear principal components analysis is known as the factor analysis or principal
components analysis of categorical data. The multi-dimensional interpretation into
axes or factors is by far the most popular and most flexible interpretation. Notwith-
standing its intuitive appeal as a simple way to represent complex relationships
advocated as such by Burt (1950, 1953), Bock (1960), Lingoes (1963, 1964, 1968),
and Benzécri (1969, 1973), the analytical significance and meaning of these extra-
neous axes have troubled many, an author including Guttman (1941, 1950, 1959), De
Leeuw (1982), Bekker (1983) and Schriever (1985). The problem does not occur in
the bivariate approach whereWilliams (1952) introduces the interpretation of further
axes in terms of chi-square decomposition and in which Lancaster (1958) formulates
the canonical theory to (continuous) marginal distributions.

The multivariate school in MCA started with Hotelling’s historic paper on the
statistical use of principal components as a data reduction technique in 1933. Only
Guttman (1941, 1950) refers to this paper. Guttman (1941, p. 346) was also aware of
differential weighting because he referred to Wilks (1938) and Edgerton and Kolbe
(1936) who showed that homogeneity and discrimination in numerical data are opti-
mised by their principal components. He also refers to Richardson and Kuder (1933)
so hewas familiar with reciprocal averaging. In the same publication, Guttmanwarns
of the undefined analytical meaning of subsequent axes. All in all, Guttman’s (1941)
paper is a comprehensive algebraic treatment of homogeneity analysis that had all
the qualities to be the alpha and omega of homogeneity analysis for the next thirty
years. Ironically, many of Guttman’s results were later to be rediscovered indepen-
dently. Burt (1950) derives homogeneity analysis explicitly as the factorial analysis
of categorical data. His approach is multivariate and multi-dimensional from the
start. The paper is conceived within the framework and tradition of factor analysis in
psychometry, and Burt does not refer to other work on homogeneity analysis. In his
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1950 paper, Guttman gives the complete analytical, theoretical, and practical discus-
sion of the multivariate and multi-dimensional homogeneity analysis of binary data.
Hayashi published several papers on homogeneity analysis in the early 1950s; see
Hayashi (1950, 1952, 1954). Hayashi mentions Guttman but does not refer to him
in the context of scale analysis, intensity analysis, and paired comparisons. We may
safely conclude that Hayashi knew the publications of Guttman on paired compar-
isons in 1946 and on scale analysis in 1950. Only in his 1952 paper did Hayashi
refer to other non-Japanese work on homogeneity analysis. Despite the title Multi-
dimensional quantification with the application to analysis of social phenomena,
Hayashi (1954) does not seem to consider further axes in homogeneity analysis. The
multi-dimensionality that Hayashi refers to does relate to the use of several variables
in partitioning the one-dimensional homogeneity analysis solution.

In his reaction to Burt’s (1950), paper Guttman (1953) explains the dangers
involved when using other than the first axis in homogeneity analysis. The problem
here is the presence of nonlinear regressions on the principal components of cate-
gorical data. The classical interpretation of principal components of categorical data
as independent latent variables can be misleading because of these nonlinearities.
Later work by Lancaster (1958), De Leeuw (1984), and Schriever (1983, 1985)
confirm this argument; see also van Rijckevorsel (1987). Burt replies in 1953 on
Guttman (1953) and he (Burt) defended his use of further axes in homogeneity anal-
ysis in the style of factor analysis with “Why Not?”. However, Guttman had already
answered the “Why Not?” question; see above. This discussion between Guttman
and Burt is important because it links principal components analysis (sometimes
incorrectly called factor analysis) with the scaling of categorical data, and it shows
the first signs of the existence of the horseshoe problem. Torgerson (1958) in his
widely distributed handbook describes homogeneity analysis as a deterministic (as
opposed to probabilistic) way to scale categorical data. His analytical derivation is
based on Mosteller’s (1949) matrix notation of Guttman (1941). Guttman (1959)
is the first member of the American school to mention the Anglo-Saxon bivariate
approach. He refers to Hirschfeld (1935) and to Fisher (1955). It can be regarded
as Guttman’s ultimate report on nonlinear principal components analysis. Together
with his 1941 and 1950 papers, Guttman (1959) covers all of the important devel-
opments up to 1959. Bock (1960) introduces the word optimal scaling with respect
to homogeneity analysis. Lingoes proves throughout his publications between 1963
and 1968 to be the perfect Guttman scholar, who programmed all Guttman’s ideas
into a computer (IBM 7090). Although Lingoes discusses the linearisation of the
bivariate regressions and is the first one to use the characteristic regression plots
of homogeneity scores with both regression lines, he does not refer to the bivariate
approach explicitly. The original (unpublished) thesis by Escofier (then known under
hermaiden nameCordier) in 1965 is based onmaterial developed byBenzécri (1964)
and a mimeo by Cordier (1963) for a course in linguistics in Rennes in 1964 and
1965. Escofier was Benzécri’s programmer, and she is the first to introduce the word
“Analyse Factorielle des Correspondances” in a publication. Her treatment is in the
French geometric style and relates directly to both principal components analysis
and to the bivariate approach. Her thesis was officially published in 1969. Benzécri
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(1973) compiled an enormous erudite compendium of theoretical results and appli-
cations in two lengthy volumes. He refers indirectly to Guttman (1941) and directly
to Hayashi (1952), Guttman (1950), Torgerson (1958), Escofier (1969), and Naouri
(1970). Benzécri rediscovers and reformulates many at that time known facts into the
French framework of for example inertia, clouds of points, metrics, etc. De Leeuw
(1973) covers the whole field in an unpublished doctoral thesis, officially published
in 1984. He coins the term “indicator matrix” and proposes others forms of nonlinear
multivariate analysis in relation to homogeneity analysis and is the direct precursor
to Gifi (1980, 1981). It is the first of a series of textbooks in the English language on
homogeneity analysis during the early 1980s which include Nishisato (1980), Gifi
(1981), Greenacre (1984), and Lebart et al. (1984).

We can be relatively brief on one-dimensional homogeneity analysis called differ-
ential weighting. Richardson and Kuder (1933) wrote down an intuitive technique
to give one-dimensional weights to categories to obtain a scale that measures, which
they called reciprocal averaging. Only Horst (1935) and, through him, Guttman
(1941) initially noticed their paper. Fisher (1940) independently mentioned the same
idea. Horst (1936) gives the basics of differential weighting but does not relate to
homogeneity analysis. The latter is done for the first time by Guttman (1941). Lord
(1958) elaborates on Horst (1936) and Guttman (1941). He (Lord) shows that the
first eigenvalue in homogeneity analysis is directly related to Cronbach’s alpha, the
all-time workhorse in the construction and analysis of questionnaires even today.
McDonald (1968) reviews all the work on differential weighting and links to the
bivariate school.

4.4 The Analysis of Co-citations

In correspondence analysis, we interpret the co-citations as the joint frequencies of
references common to two papers. The data matrix is complete symmetric, and the
numbers of relevant references per paper are on the diagonal; see Table 2. The vectors
with row- and column sums are equal. Because there exists no prevalence of rows
over columns or vice versa, we use the symmetric scaling.

The first axis of the correspondence analysis of the co-citation matrix (the first
scaled eigenvalue equals 0.48) is plotted against the timescale in Fig. 2, and the
resulting graph resembles the earlier historical sketch (Fig. 1).

Because some papers have no common references with other work, we end up
with fewer points than in the historical sketch in Fig. 1. The difference between the
multivariate and the bivariate approach is however easily recognised, while the differ-
ence between the use of one and more dimensions in the multivariate case is lost on
the first axis. The corresponding reordering of rows and columns by correspondence
analysis runs from multivariate to bivariate; see Table 3.

The second axis (second scaled eigenvalue equals 0.37, not given) is dominated
by the ubiquitous early papers of Guttman (1941, 1950). Apart from this effect,
the papers on differential weighting can be discerned as a slightly separated group
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Table 2 Symmetric co-citation matrix of papers on homogeneity analysis

Gu Ma Gu Ha Wi Bu Gu La Lo To Gu Bo Mc Li Mc Be De Hi

Guttman
41

3 1 1 1 1 1 2

Maung 41 1 1 1 1 1 1 1

Guttman
50

1 2 1 1 1 1 1 1 1 1 1 1 2 1

Hayashi 1 2 1 2 2 2 2 2 1 2 1 2 2 1

Williams
52

1 2 2 1 1 1 2 2

Burt 53 1 4 4 1 1 3 1 2 1 4

Guttman
53

1 2 4 5 2 2 4 2 1 3 1 2 5 1

Lancaster 1 2 4 3 1 2 1 4 4

Lord 58 1 1 2 1 2 3 3 2 2 2 2 2 2 3 1

Torgerson
58

1 1 2 1 2 3 3 2 2 2 2 2 2 3 1

Guttman
59

1 2 1 3 4 3 2 2 7 3 2 3 1 2 7 4

Bock 60 1 2 1 2 1 2 2 3 4 3 2 2 2 4 3

McKeon
66

1 1 1 1 1 1 2 2 2 2 3 7 2 5 2 7 5

Lingoes 1 2 2 3 2 2 3 2 2 4 1 3 4 2

McDonald
68

1 1 1 1 1 1 1 2 2 1 2 5 1 5 1 5 3

Benzécri 1 2 1 2 2 2 2 2 2 3 1 6 5 4

De Leeuw 2 1 2 2 2 4 5 4 3 3 7 4 7 4 5 5 20 8

Hill 1 1 1 2 1 4 1 1 4 3 5 2 3 4 8 9

with exclusively positive scores. The latter effect is evoked by the commonly unique
reference to Horst’s paper from 1936 by Guttman (1941), Lord (1958), Torgerson
(1958), McKeon (1966) and McDonald (1968). The distinction between the use of
the first axis/dimension only and the use ofmultiple axes in the PCA tradition, known
from the discussion of Guttman versus Burt from 1953, is not reflected by the citation
behaviour. This is reflected in both the transaction matrix and in the plot of the first
axis against time. It seemed better not to include De Leeuw because his referencing
is too widespread to be called discriminating.
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Fig. 2 First homogeneity axis of co-citations plotted versus the timescale

5 Discussion

One may wonder “What are the benefits of a co-citation analysis?”. The answer is
that citations give the “hard” explicit indication that researchers know and use each
other’s work and when they do not recognise the work of others. One need not to
speculate to infer the convergence of ideas.

But the idiosyncrasy of co-citation analysis is also that key researchers who do
not cite or are not cited are missed. The cells of the co-citation matrix contain the
number of citations two authors have in common. Authors who were not able to
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Table 3 Re-ordered co-citations

Bu Gu Ha Li To Lo Gu Be Gu Bo Gu De Mc Mc Hi La Wi Ma

Burt 53 4 4 1 2 1 1 0 1 0 1 3 4 0 0 0 0 0 0

Guttman
53

4 5 2 3 2 2 1 2 0 2 4 5 1 1 1 0 0 0

Hayashi 1 2 2 2 2 2 1 2 0 2 2 2 1 1 1 0 0 0

Lingoes 2 3 2 4 2 2 1 3 0 2 3 4 1 2 2 0 0 0

Torgerson
58

1 2 2 2 3 3 1 2 1 2 2 3 2 2 1 0 0 0

Lord 58 1 2 2 2 3 3 1 2 1 2 2 3 2 2 1 0 0 0

Guttman
50

0 1 1 1 1 1 1 2 1 1 1 2 1 1 1 0 0 0

Benzécri 1 2 2 3 2 2 1 6 0 2 2 5 1 2 4 0 0 0

Guttman
41

0 0 0 0 1 1 1 0 3 0 0 2 1 1 0 0 0 0

Bock 60 1 2 2 2 2 2 1 2 0 4 3 4 2 3 3 1 0 0

Guttman
59

3 4 2 3 2 2 1 2 0 3 7 7 1 2 4 3 1 0

De Leeuw 4 5 2 4 3 3 2 5 2 4 7 20 5 7 8 4 2 1

McDonald
68

0 1 1 1 2 2 1 1 1 2 1 5 5 5 3 1 1 1

McKeon
66

0 1 1 2 2 2 1 2 1 3 2 7 5 7 5 2 1 1

Hill 74 0 1 1 2 1 1 1 4 0 3 4 8 3 5 9 4 2 1

Lancaster 0 1 0 0 0 0 0 0 0 1 3 4 1 2 4 4 2 1

Williams
52

0 0 0 0 0 0 0 0 0 0 1 2 1 1 2 2 2 1

Maung 41 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

quote anyone from the selection in the transaction matrix, including the forerunners
Hirschfeld, Hotelling, Richardson and Kuder and others or who are not quoted by
anyone during the early this period of the development of homogeneity analysis, are
excluded from further analysis. This exclusion is made regardless of their position
from a historical perspective. If Nishisato (1980) had been included in this citation
analysis, which was not possible due to the time window studied, he probably would
have met the same fate as De Leeuw. Their citations are so widely spread that they
no longer discriminate in the analysis. His location in the plot would be very close
to the origin, just like De Leeuw’s.

Substantive reasonswhy researchers cite selectively are the (school of the) country
in which they work and the native language they speak. Traditions in a field of appli-
cation such as psychometry, biometry, ecology, lexicology, and different technical
starting points, such as geometry, probability, matrix algebra, or combinations of
these, have also influenced citation behaviour.
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On the other hand, analytical differences between statistical methods are not (or
not necessarily) fully reflected in the citation behaviour of their authors. Different
approaches or aliases of CA are not mutually exclusive and can be united in one
person.

Similar studies with “prehistory of CA” in the title differ from this study in the
sense that they are not based on mutual citations, but on the analytical differences
between techniques and thus convergence of ideas. In addition, they are limited
to a specific period—see De Leeuw (1983)—or school—see Benzécri (1977). In a
review of Benzécri (1977) called “Histoire et Préhistoire de l’Analyse des données
par J.P. Benzecri: un cas de généalogie retrospective” (History and Prehistory of
Data Analysis by J. P. Benzécri: a case of retrospective genealogy), Armatte (2008)
shows the idiosyncrasy of language and culture bound ideas in MCA. It is a textbook
example of historiography in statistics. Interestingly, he (Armatte) believes that the
history of statistics should preferably not be studied by statisticians saying (p. 21):

L’histoire des sciences est une discipline bien trop importante pour la laisser aux scien-
tifiques…que l’on veut étudier!

which, in English, says:

The history of science is far too important a discipline to leave it to scientists…that we want
to study!

This quote means there is also a potential flaw of our study. Recent historical
overviews of CA covering a longer period are expansive bibliographies that show
the convergence of ideas to a lesser extent. It may look like the world of CA has
become too large for that. The most recent and comprehensive study on the history
of (variants of) CA by Beh and Lombardo (2019) confirms just how big CA has
become. They come to more than 30 new variants of CA since 1975 and half of them
developed after the turn of this century. In addition, they also formulate new concepts
to structure this proliferation in their commendable effort.

The historical development based on the visual inspection of the transactionmatrix
as illustrated in the sketch in Fig. 1 agrees with the common view of the history of CA
at the time (i.e. in 1987). The sketched development is partly recovered by the first
gradient of the correspondence analysis of the co-citations plotted against time in
Fig. 2 and accounts for nearly half (45.7%) of the inertia. The difference between the
bivariate and themultivariate approach inCA is striking on the first CAaxis. It reflects
the development of the psychometric test and questionnaire tradition on the one hand
and the statistical tradition of the analysis of the contingency table on the other. The
initial emergence of differential weighting and reciprocal averages in psychometrics
was a part of that. Starting with Horst in 1936, and a common denominator for works
by Guttman, Lord, Torgerson, McKeon, and McDonald, differential weighting and
reciprocal averaging are weaker constructs on the first gradient of the citation matrix.
Note that Guttman (1953, 1959) and Burt (1953) have so much in common that their
discussion in 1953 does not show up. The position of De Leeuw near the origin is
caused not only by his extensive citation of others but also by the high degree of
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self-citation compared to others. He often cites informal reports where he recorded
his first ideas.

Understandably, the need to test the table of co-citations for perfect symmetry was
less felt. The analysis of co-citations in this study is limited to just one axis because
only one gradient, namely time, was sought.

Judging by the co-citations, the early days of CA seem to be determined by
multivariate psychometricians and bivariate statisticians. This conclusion fits in with
the existing narrative about the origin of CA discussed by Beh and Lombardo (2012)
and Nishisato et al. (2021), but it is more parsimonious. However, given the selective
limitations of co-citations, it would go too far to follow Ockham’s razor in all its
consequences here.
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Low Lexical Frequencies in Textual Data
Analysis

Ludovic Lebart

1 Introduction

The description of tables cross-tabulating vocabulary and texts is commonly per-
formed through correspondence analysis (CA), well adapted to frequency profiles
and lexical tables, thanks to the distributional equivalence property of the chi-squared
(χ2) distance. CA is then complemented by clustering, often using additive trees
(AT). It is difficult to trace CA’s history accurately, due to its various variants and
names; see, for example, Hayashi (1950), Benzécri (1973), and more recently, the
two genealogy papers of Beh and Lombardo (2012, 2019). Nishisato (1980) has been
a milestone in the history of CA as the first textbook in English, but also because of
its original point of view.

Many francophone linguists use the distances of Evrard (1966) that are based on
the presence or absence of words (or lemmas) and directly derived from the Phi (φ)
coefficient of Yule-Pearson (Yule 1912). Such distances may provide more meaning-
ful representations for discriminating between texts or for authorship attributions.
Brunet et al. (2021) have shown from a large corpus of 50 novels written by 25
authors of the twentieth century (two novels per author) that a flawless pairing of
novels by author could be obtained from the Evrard distance matrix. This matrix is
easily deduced from the correlation matrix of binary variables (presence-absence).
The corresponding binary data table can be described through principal component
analysis (PCA) (Hotelling 1933). Section2 is both a reminder and a review of the
measurement of association between binary variables in exploratory analyses of
text, whereas Sect. 3 deals with some solutions proposed in practise (information
retrieval, open-ended questions in sample surveys, . . .). Section4 shows, with a full
sized example, how PCA can provide a complementary point of view to that of CA,
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emphasising the role played by the presence or absence of words. Finally, we illus-
trate how to modulate the distances according to the dimension of the principal space
(number of kept axes) and thus providing an enrichment of the usual approaches.

2 Pearson-Yule φ and Pearson r

In statistics, the phi coefficient (φ) is a measure of association between two binary
variables. Based on the correlation coefficient r of Pearson (1900), this measure has
been proposed by Yule (1912) who had previously published a similar measure of
association (Yule 1900). This coefficient is closely related to the chi-square (χ2)
calculated on the same contingency table to test the independence between rows and
columns. It coincides with the Pearson correlation coefficient r between two binary
variables.

Two binary variables x and y are considered positively associated if the data
concentrates on the diagonal cells and considered negatively associated if they con-
centrate outside the diagonal. If we have a 2 × 2 table for two texts and adopt the
notations outlined in Table1, the coefficient φ which describes the association of x
and y is given by the following formula, with the notations of Table1:

φ (1, 2) = n11n00 − n10n01√
n1•n0•n•0n•1

. (1)

Note that as early as 1900, Yule proposed a similar formula:

QYule = n11n00 − n10n01
n11n00 + n10n01

. (2)

Cohen (1960) proposed replacing the geometric mean of the denominator of (1)
by an arithmetic mean:

s (1, 2) = 2(n11n00 − n10n01)

n1•n0• + n•0n•1
. (3)

Table 1 2 × 2 contingency table confronting two texts

Words Present in Text2 Absent in Text2 Total

Present in Text1 n11 n10 n1•
Absent in Text1 n01 n00 n0•
Total n•1 n•0 n
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Table 2 Incidence table, X, with general term xi j (xi j = 1 if word i is present in text j)

Words Text1 Text2

Word 1 1 0

Word 2 1 1

Word 3 0 0

Word 4 1 0
.
.
.

.

.

.
.
.
.

Word n 0 1

Total n1• n•1

The reader can consult Warren (2008) and Baulieu (1989) for an overview of the
set of coefficients of association for 2 × 2 tables proposed over the years across many
varying disciplines.

2.1 Link Between φ and χ2

The square of the coefficient r is linked to Pearson’s χ2 statistic for the same 2 ×
2 contingency table by the classical relationship (where n is the total number of
observations: here number of distinct words):

φ2 = χ2

n
(4)

since we have:

nφ2 = n (n11n00 − n10n01)
2

n1•n0•n•0n•1
(5)

being the classical formula of χ2 for a 2 × 2 table, with 1 degree of freedom.

2.2 Equivalence of φ with Pearson’s r

The classic Pearson correlation coefficient r calculated on the binary data of the
incidence table, X, (Table2) (a licit calculation in the case of two variables with two
categories) coincides with the χ2 coefficient:

r12 = 1

n

n∑

i=1

(xi1 − x̄1) (xi2 − x̄2)

s1s2
, (6)
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with

x̄1 = 1

n

n∑

i=1

xi1 = n1
n

, x̄2 = 1

n

n∑

i=1

xi2 = n2
n

and, for instance, for text 1:

s21 = 1

n

n∑

i=1

(xi1 − x̄1)
2 .

From (6) and Table2, we find:

r12 = n11n − n1•n•1√
n1•n0•n•0n•1

and we get (1) by replacing n, n1• and n•1 with their values as functions of n11, n01,
n10 and n00. This equivalence with the classicalχ2 test of independence together with
the identity of φ (1, 2) with the linear correlation coefficient r12 give the coefficient
φ a special position among association measures.

2.3 The Chi-square Distance (χ2)

The chi-square distance (χ2 distance) used in CA is an approximation of a measure
of mutual information (derived from the theory of Shannon (1948)) evaluating the
information provided by an empirical contingency table with respect to the hypoth-
esis of independence of rows and columns; see, for instance, Benzécri (1973). This
distance shares with a few others the property of distributional equivalence which
ensures stability of results by aggregating rows or columns with the same profiles.
CA has become one of the basic tools for describing lexical tables:

d2 (
j, j ′

) =
n∑

i=1

n

ni•

(
ni j
n• j

− ni j ′

n• j ′

)2

. (7)

As shown in (7) the χ2 distance involves inverses of frequencies which can be
problematic1 in the case of very low frequencies (inCA, the criterion of fitwhichgives
each point a weight equal to its frequency partially compensates for this weakness).

1 This can be addressed using the Freeman-Tukey distance measure as Cuadras and Cuadras (2006,
2015), Cuadras et al. (2006), Beh et al. (2018) and Beh and Lombardo (2024) do.
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3 Low Frequencies and Frequency Discrepancies

In this section, we briefly review two approaches which aim to deal with strong
frequency disparities or to involve binary coding of words.

3.1 Logarithmic Analysis

Logarithmic analysis (LA) also complieswith the distributional equivalence property
of CA for any arrays of positive numbers. Kazmierczak (1985) based the LA on the
principle ofYule (1912) according towhich one does not change the distance between
two rows or between two columns of a table by replacing the rows and columns of
this table by other proportional rows and columns (generalisation of distributional
equivalence). In fact, thismethod dates back toAitchison (1983) in a different setting.
Note that similar, but not identical, variant had been proposed initially under the
name of Spectral Analysis by Lewi (1976), then by Greenacre and Lewi (2009). LA
consists in taking the logarithms of the data, after the possible addition of a constant
(the smallest number to ensure values≥ 1) in the case of negative or zero value. After
having centred the data both in rows and in columns, LA submits the obtained table
to an unstandardised principal components analysis (PCA), which coincides in such
a case with a mere singular value decomposition (SVD). IfX is a (n,m) data matrix,
and if A and B are two diagonal matrices respectively of dimensions (n, n) and
(m, m) with positive diagonal elements, the logarithmic analysis of the new array
AXB coincides with that of X. This property of strong invariance, together with the
shrinking effect of the logarithm function, makes this technique robust, well suited
to applications to massive data, for which the frequency disparities (from 1 to 1000
for example) constitute a technical obstacle. Beh and Lombardo (2024) also show
that the total inertia of LA is based on the modified log-likelihood ratio statistic.

3.2 TF-IDF Coefficients and LSA

The elements of the (words × texts) lexical table can be replaced by the coefficient,
Term Frequency × Inverse of Document Frequency, or TF-IDF (Salton and McGill
1983). Popular in Text Mining applications, the coefficient TF-IDF is the product
of the frequency of a term (TF) by the logarithm of the quotient giving the “total
number of documents/number of documents in which the term is present”.2 This
quotient (IDF) therefore involves the inverse of the proportion of documents in which
the term appears. The logarithm, as with the LA method mentioned above, helps to
cushion extreme situations, such as when the term is only present in one document

2 Note that in the context of information retrieval, “term” is often used instead of “word”, and
“document” instead of “text”.
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out of thousands. In other words, the TF-IDF coefficient combines an indicator of
the dominance of the term (TF component) with an indicator of its specialisation in
the corpus (IDF component), the latter indicator varying from 0 (the term is in all the
documents) to a maximum (when the term is in a single document) which depends
on the size of the set of documents. In information retrieval, the aim is to find one
or more documents in a database (where documents are both short and numerous)
using a few terms. One must then penalise the documents which do not contain these
terms (element TF in the formula). If we denote by d the number of documents, d(i)
the number of documents which contain the term i , by fi j the frequency of the term
i in the document j , fi• the total frequency of term i , and f• j the total frequency of
document j , we have:

• frequency of term i in document j :

TF (i, j) = fi j
f• j

,

• logarithm of the inverse of the frequency of documents containing the term i :

IDF (i, j) = log

(
d

d(i)

)
.

Like CA and LA, Latent Semantic Analysis (LSA) [or Latent Semantic Indexing
(LSI)] (Deerwester et al. 1990) is a singular values decomposition (SVD) of a trans-
formed lexical table. Here, SVD applies to the matrix T, the general term of which
is the TF-IDF coefficient:

t (i, j) = fi j
f• j

log

(
d

d (i)

)
. (8)

We also know that CA can be deduced from the SVD of the matrix W with the
general term:

w (i, j) = fi j√
fi• f• j

(9)

Note that it can also be performed using:

α (i, j) = fi j
fi• f• j

(10)

which Goodman (1996), Beh (2004), and Beh and Lombardo (2014, 2021) call a
“Pearson ratio”, whereas Greenacre (2009) calls it a “contingency ratio”. The term
w (i, j) can also be written:
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w (i, j) = fi j
f• j

(√
f• j
fi•

)
. (11)

Equations (8) and (11) differ by the factors represented by their right parentheses
which both penalise the words (index i) that are frequent in the corpus: by the number
of documents d (i) which contain them for t (i, j) in (8), by their overall frequency
fi• for w (i, j) in (11). The concepts of number d of documents and of number d (i)
of documents containing a word i are especially operative for numerous and short
documents.

General remark:

We have seen that low frequencies occur naturally in short texts whether they are
documents or abstracts in a database, fragments or units of context, pages of novels,
or even answers to open questions. Presence-absence coding is then an acceptable
and empirically proven option. It can also be modulated by thresholding (“present”
if more than s occurrences, for example). On the other hand, for applications to large
corpus of texts, coding the presence or absence of a word could be a deliberate option
which provides a specific point of view on the texts of a corpus, complementary to
the global processing of original frequencies.

4 Illustrative Example

To show the relevance of presence-absence coding in textual data analysis, and the
interest of PCA in this case, we will use the classical STATE OF THE UNION
corpus which brings together the speeches on the State of the Union delivered by the
American presidents in office before Congress, from George Washington (1789) to
Barack Obama (2009) [42 speeches].

The corpus used here comprises 1,746,702 occurrences and 25,246 distinct words.
For this methodological example, we will work on the original words (or: word-

forms) of the plain text (without lemmatisation).We are talking here about illustration
rather than application because this corpus ismeant as a benchmark allowing compar-
isons and is not an object of study in itself. Its strong chronological structure means
that other methodologies can be applied with profit, and the problematic authorship
of certain speeches would require interpretative precautions which go beyond the
present example. The process of global description of the corpus after coding in the
form of presence-absence of words will be schematised by five graphical displays
involving repectively PCA (Figs. 1 and 2), CA (Fig. 3) and AT (Figs. 4 and 5).3

3 We specify that the significance of the coordinates of the points, the stability of the observed
patterns in the scattering diagrams of Figs. 1, 2 and 3 have been confirmed through extensive
Bootstrap validations.
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Fig. 1 Sketch of the plane (1, 2) of the PCA of the binary table: superimposition of 10,030 Words
and 42 Presidents (after rescaling the cloud of words). The 10,030 words are not easily readable at
this scale. Only the shape of their scattering diagram is clearly visible. As an example, the cosine
of the angle between the 2 vectors joining the origin to both Presidents 23 and 32 (Hoover and
Roosevelt) is an approximation of their correlation coefficient (related to a χ2 with one degree of
freedom, according to Sects. 2.1 and 2.2)

4.1 Principal Component Analysis of the Binary Table

The lexical table is similar to Table2 (Sect. 1) but has 42 columns (Presidents) and
10,030 rows (distinct words). The number of rows is smaller than the 26,246 distinct
words of the original corpus because the rows must have at least two 1s (presence)
(such constraint eliminates the hapaxes4 and at least two 0s (absence) (this second

4 For many texts, the order of magnitude of the number of hapaxes (words with a single occurrence)
is about half of the number of distinct words. More generally, the frequency of words in some
corpus of natural language follows an empirical distribution known in lexicometrics under the
name of Zipf’s law. It states that the frequency of any word is inversely proportional to its rank in
the frequency table. It accounts for the drastic reduction of the number of words when discarding
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Fig. 2 Sketch of the plane (2, 3) of the PCA of the binary table (10,030 × 42) Words × Presidents

constraint eliminates the terms present in all the texts or absent only in a single text).
Such trimming has the effect of reducing the size of the table by removing many
usual tool-words (or function words) and auxiliaries, as well as a lot of common
terms. The loss of raw information can seem considerable, but the only option that
interests us at this point is to deal with meaningful distances.

4.2 The “Size Factor”, Axis 1 of the PCA

In PCA, the origin of the principal axes is the mean-point of the coordinates of
individuals (here, words) in one space, but it is not the mean-point of the variables
in the other space (one of the important differences between PCA and CA). When
there is a positive correlation between all the pairs of variables (here, Presidents)
we obtain a “size factor”. This is the famous “general aptitude factor” (supposed to
measure intelligence) already described by Spearman (1904): some students have
good marks in all subjects, and the first dimension puts them against those who have
bad marks in all subjects (schematic situation largely discussed since). Here, some
words are common among all Presidents.

the low frequencies; see, for instance, Lebart et al. (1988) for these statistical properties of textual
data.
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Fig. 3 Sketch of the plane (1, 2) from the CA of the lexical table (10,682× 42)Words× Presidents

Figure1 shows that the first axis is a consensus axis (axis absent from a CA
which is based on profiles that are conditional frequencies). This horizontal axis
roughly tells us that the Presidents all speak the same language (share most of the
words, quite simply because these are frequent in the language), while the second
vertical axis tells us that they do not all say the same thing (hence, the chronological
pattern). Out of more that 10,000 words, it is anecdotal to select a few characteristic
words. Let us mention for example , among the words common to all Presidents
(left hand side of axis 1) [treaty, effect, subject, constitution, enterprise, labour,
influence, ...]. Such selection is even more anecdotal on the right hand side which
deals with the numerous unfrequent words [prescription, backgrounds, terrorist,
sanctuary, Kuwait, ...] . In fact, the role of words describing a historical context
is exacerbated on the vertical axis which is strongly chronological. We observe a
mixture of style and historical events. On the top [hereafter, amicable, tribes, Spain,
stipulation, expedient, injurious, liberty] and in the lower part [America, budget,
programme, unemployment, jobs, rural, freedom, Soviet, ... ]. Let us remind that these
few words are quoted simply to illustrate the statistical calculations. They should be
complemented by characteristic lines of texts, or phrases, or repeated segments to take
into account their contexts; see Lebart et al. (1988, 2019). A complete interpretation,
with all the methodological precautions that it implies, would require the volume of
a book or of a dissertaion.
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Although all the Presidents occupy the negative half of axis 1, we can detect how-
ever a slight but significant trend towards the more recent Presidents. The previous
approximation: “they speak the same language” needs to be revised: they do not
speak quite the same language, due to an evolution in the vocabulary. This is evident
given the historical length of the period.

4.3 The Plane (2, 3) of the PCA

Figure2 presents the plane spanned by axes 2 and 3 to ensure a comparison with
the plane (1, 2) of the CA which follows. The parabolic shape of the sequence of
Presidents in Figs. 2 and 3 is not just a pure Guttman effect (or horseshoe effect). The
cloud of 10,030 words (not represented here) has a different shape and the central
area contains many words common to extreme periods. The chronological pattern is
obvious, with some noteworthy irregularities (such as President Carter, on the left
hand side, recognised as a President out of the ordinary). We will not dwell on the
interpretation of other interesting details in the methodological framework of this
contribution. The reader can find more analyses involving the same corpus in Lebart
et al. (2019).

4.4 Comparison with the CA of the Entire Lexical Table

Figure3 shows the principal plane (1, 2) of a CA of the original lexical table (dis-
carding the hapaxes is also mandatory with CA). The sequence of the first twenty
Presidents (right side of the figure) is less clearly represented in this space. The high
disparities between frequencies are not favourable to the distances involved in CA;
see Sect. 2.3. In fact, in the present application, the plane (1, 2) of CA is not exactly
comparable to the plane (2, 3) of PCA. The axis 1 of PCA, dealt with in the pre-
vious subsection, contains pieces of information that cannot be detected from the
conditional frequencies involved in CA.

4.5 Modulations of Additive Trees According to Dimensions

The principles of Additive Tree (AT) date back to Buneman (1971). A useful algo-
rithm has been provided by Sattath and Tversky (1977), under the name ofNeighbour
Joining Algorithm, and a free software implementation by Huson and Bryant (2006).
The fundamental property of AT is the following: The original distance between
two objects (represented by vertices of the additive tree) is, as much as possible, the
length of shortest path in the tree between these two vertices.



330 L. Lebart

The modulations of distances according to the number of principal axes kept
which is described below concern all the principal axes methods mentioned (PCA,
CA, logarithmic analysis, LSA). They contribute here to the clarity of interpretation
of distances on binarised data as complementary to frequency data. The synergy of
additive trees with principal axes techniques allows the researcher to go further on
in the exploration of multidimensional spaces.

Figure4 presents an additive tree (AT) constructed by taking all the main axes
of PCA on presence-absence data.5 These data reconstruct the correlation matrix
built from binary data. The proximities (on the graph) are therefore interpreted in
terms of coefficients φ, given by (1) of Sect. 2, or in terms of coefficient r , given by
(6). φ and r are easier to conceive, conceptualise and interpret than a χ2 distance.
Figure5 produces a similar tree, but the reconstitution of the correlation matrix is
limited to the first 4 axes, making it possible to highlight a specific branch of the tree
(lower left side of the tree) corresponding to a particular period (in this case, period
known as Gilded Age: reconstruction period after the end of the civil war, industrial
development, massive immigration, ...). This period corresponds to Presidents 18
(Grant, 1869) to 27 (Taft, 1913). Among the most characteristic words of this period,
we find: silver, gold, department, tariff, channel, Cuba, Venezuela, Chinese, Indian.
We will now focus on some other noticeable parts of the tree.

The small cluster at the bottom right of the same additive tree comprises the first
four Presidents, the so-called founding fathers, from the first President (Washington,
1790) to the fourth (Madison, 1797). We note an exceptional use of function words
such as the, of , which, phrases such as Gentlemen of the house of representatives
(which also contain the and of ), with also the words tribes, British, Spain, barbary,
execution, squadron, manufactures, fortifications. The pronoun we is almost absent.
It will become the most characteristic word of the corpus after the Second World
War.

For the small branch of the tree going from Presidents 28 (Wilson, 1913) to 31
(Hoover, 1929), the most characteristics words are: prohibition, agriculture, depres-
sion, veterans, railways.

For the upper part of the tree, from Presidents 41 (G. H. Bush, 1989) to 44
(Obama, 2009), the most characteristic words are: we, America, tonight, children,
parents, medicare, health, terrorists, Iraq, ....

The deformations of the additive tree (AT) do not exclude the consultation of
principal planes, but the AT has a considerable advantage over them: it summarises
subspaces having more than two dimensions, as in the space of Fig. 5 generated by
the 4 first principal axes.

5 All the analyses presented here (building of lexical tables from raw texts, PCA, CA, Bootstrap
validations, Additive Tree) have been performed with the free software DtmVic that can be down-
loaded from: https://www.dtmvic.com. An updated version of the Additive Tree software Splitstree
by Huson and Bryant (2006) can also be directly downloaded from https://software-ab.cs.uni-
tuebingen.de/download/splitstree4/welcome.html.

https://www.dtmvic.com
https://software-ab.cs.uni-tuebingen.de/download/splitstree4/welcome.html
https://software-ab.cs.uni-tuebingen.de/download/splitstree4/welcome.html
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Fig. 4 Additive Tree computed from all axes from the CA of the lexical table (10,030× 42)Words
× Presidents

Fig. 5 Additive tree calculated on the first 4 axes of the same CA, highlighting the specificity of
the period 1870–1910 (bottom left of the figure) (modulations of distances according to the number
of kept axes)

5 Conclusion

The use of coefficients φ and r , like that of χ2 (for 2 × 2 tables) makes it possible
to work on the distances derived from the binary coding of the lexical tables, option
imposed by the nature of the texts or deliberately selected to provide a specific point
of view on these texts. At the confluence of several statistical approaches, naturally
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linked to PCA, these distances have a descriptive and discriminating power attested
by numerous applications. The explicit formulation of the coefficients ensures trans-
parency and quality of communication of the results.
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Correspondence Analysis
with Pre-Specified Marginals
and Goodman’s Marginal-Free
Correspondence Analysis

Vartan Choulakian and Smail Mahdi

1 Introduction

We dedicate this contribution to Prof. Nishisato, a pioneer in dual scaling also known
as correspondence analysis. This paper describes a particular development in the
history of correspondence analysis for the analysis of two-way contingency tables.

Correspondence analysis (CA) and logratio analysis (LRA) are two popular meth-
ods for the analysis and visualisation of a contingency table (two-way frequency
counts data having I rows and J columns). Benzécri (1973) is the reference book
on CA and Nishisato (1980) on dual scaling. Beh and Lombardo (2014) present a
panoramic review of CA and its variants.

LRA includes two independent and well-developed methods:

(a) RC associationmodels for the analysis of contingency tables discussed byGood-
man (1979, 1981a, b, 1991, 1996), and

(b) a set of compositional vectors (CoDA); see Aitchison (1986).

CA and LRA are based on three different principles:

(a) Benzécri’s distributional equivalence principle in CA, termed by Nishisato
(1984) as the principle of equivalent partitioning,

(b) RC association models on Yule’s scale invariance principle, and
(c) Aitchison’s subcompositional coherence principle in CoDA.

A recent discussion of these three principles can be found in Choulakian et al. (2023).
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Goodman (1996) referred to his equation (46) as “marginal-free correspondence
analysis” (mfCA) where his principal aim was to reconcile Pearson’s correlation
measure with Yule’s association measure for the analysis of contingency tables.
Underlying mfCA is the assumption that the two categorical variables consist of two
equi-probable categories. In this paper, we show that mfCA is a particular case of CA
with pre-specified marginals, which has been studied since the early 1980s under the
direction of Benzécri. In Benzécri’s edited journal Les Cahiers de l’Analyse des Don-
nées, the following papers appeared; Madre (1980), Choulakian (1980), Choulakian
(1984), Benzécri (1983a, b), Benzécri et al. (1980) and Moussaoui (1987). Further-
more, we show that mfCA is also a particular first-order approximation of LRA
analysis with uniform weights.

This paper is organised as follows. Section2 presents three different basic ways
of representing the concept of association in a contingency table. Section3 discusses
the important consequences of Yule’s scale invariant association index. Section4
presents the main result, and Sect. 5 discusses an example. Finally we make some
concluding remarks in Sect. 6. The R code used to perform the computations is
displayed in the Appendix.

2 Preliminaries on the Analysis of Contingency Tables

We consider a two-way contingency tableN = (
ni j

)
for i = 1, . . . , I , j = 1, . . . J ,

and defineP = N/n = (
pi j

)
that is of size I × J to be the associated correspondence

matrix (probability table) of the contingency table N. We define as usual pi+ =∑J
j=1 pi j , p+ j = ∑I

i=1 pi j , the vector r = (pi+) ∈ R
I , the vector c = (

p+ j
) ∈ R

J ,
andMI = Diag (r) to be the diagonal matrix having elements pi+, similarly,MJ =
Diag (c). We suppose that MI and MJ are positive definite metric matrices of size
I × I and J × J , respectively; this means that the diagonal elements ofMI andMJ

are strictly positive.

2.1 Independence of the Row and Column Categories

(a) If the I row categories and the J column categories are mutually independent,
then:

σi j = pi j − pi+ p+ j = 0 (1)

for i = 1, . . . , I , j = 1, . . . , J and where
(
σi j

)
is the residual matrix of

(
pi j

)

with respect to the independence model
(

pi+ p+ j
)
.

Remark 1 The contingency table N = (
ni j

)
can also be represented (coded) as an

indicator matrix Z = [ZI ZJ ] = [
(zαi )

(
zα j

)
)
]
of size n × (I + J ) where zαi = 0

if individual α does not have level i of the row variable, zαi = 1 if individual α
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has level i of the row variable; zα j = 0 if individual α does not have level j of the
column variable, zα j = 1 if individual α has level j of the column variable. Note that
N = Z′

IZJ and σi j = pi j − pi+ p+ j is the covariance between the i-th column of ZI

and the j-th column of ZJ .

(b) The independence assumption, σi j = 0, can also be interpreted in another way
as:

�i j = 1

p+ j

(
pi j

pi+
− p+ j

)
= 0 (2)

and is the column and row homogeneitymodel. Benzécri (1973, p. 31) named the
conditional probability vector (pi j/p+ j for i = 1, . . . , I and j = 1, 2, . . . , J
fixed) theprofile of the j-th column.Healso referred to the element pi j/

(
pi+ p+ j

)

as the density function of the probability measure (pi j ) with respect to the prod-
uct measure

(
pi+ p+ j

)
. The element pi j/

(
pi+ p+ j

)
is referred to as a Pearson

ratio in Goodman (1996) and Beh and Lombardo (2014, p. 123).
(c) A third way to represent the independence assumption, σi j = 0, and the row and

column homogeneity models, �i j = 0, is via the following weighted loglinear

formulation for
(
wR

i , wC
j

)
and assuming pi j > 0 and defining Gi j = log(pi j ):

λi j = Gi j − Gi+ − G+ j + G++ = 0 . (3)

Here Gi+ = ∑J
j=1 Gi jw

C
j , G+ j = ∑I

i=1 Gi jw
R
i and G++ = ∑I

i=1

∑J
j=1

Gi jw
C
j wR

i ; wC
j > 0 and wR

i > 0, satisfying
∑J

j=1 wC
j = ∑I

i=1 wR
i = 1 are a

priori fixed or data dependent probability weights. Two popular weights

are the marginal weights
(
wR

i = pi+, wC
j = p+ j

)
and the uniform weights

(
wR

i = 1/I, wC
j = 1/J

)
. This is implicit inGoodman (1996, eq. (7)) andGood-

man (1991, eq. (2.2.6)) and is made explicit in Egozcue et al. (2015). Equation
(3) is equivalent to the logratios:

log

(
pi j pi1 j1

pi j1 pi1 j

)
= 0 for i �= i1 and j �= j1,

which Goodman (1979, eq. (2.2)) refers to as the “null association model”.
Equation (3) is also equivalent to:

pi j = exp(Gi+) exp(G+ j )

exp(G++)
,

from which we deduce that under the independence assumption the marginal
row probability vector (pi+) is proportional to the vector of weighted geometric
means (exp ((Gi+)). A similar property is true also for the columns; see, for
example, Egozcue et al. (2015).
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2.2 Interaction Factorisation

Suppose the independence-homogeneity-null association models are not true. Then
each of the three equivalent model formulations (1), (2) and (3) can be gener-
alised to explain the nonindependence-nonhomogeneity-association, named inter-
action, among the I rows and the J columns by adding k bilinear terms, where
k = rank (N) − 1. We designate any one of the interaction indices (1), (2) and (3) by
τi j .

Benzécri (1973, Vol. 2, pp. 31 – 32) emphasised the importance of row and column
weights or metrics in multidimensional data analysis; this is the reason why, in the
French data analysis circles, any study starts with a triplet (X, MI , MJ ), where X
represents the data set, MI = Diag

(
mr

i

)
is the metric matrix defined for the rows

and MJ = Diag
(

mc
j

)
is the metric matrix defined for the columns. We follow the

same procedure here but X is the pre-processed data, where:

(a) In covariance analysis, X = (
τi j

) = (
σi j

)
and:

(MI , MJ ) = (Diag (1/I ) , Diag (1/J ))

(b) In CA, X = (
τi j

) = (
�i j

)
and:

(MI , MJ ) = (
Diag (pi+) , Diag

(
p+ j

))

(c) In LRA, X = (
τi j

) = (
λi j

)
and:

(MI , MJ ) = (
Diag

(
wR

i

)
, Diag

(
wC

j

))
,

with
∑I

i=1 wR
i = ∑J

j=1 wC
j = 1.

We factorise the interactions in (1), (2) and (3) by singular value decomposition
(SVD) or taxicab SVD (TSVD) as:

τi j =
k∑

α=1

fα (i) gα ( j)

δα

, (4)

where fα (i) is the i-th row principal coordinate gα ( j) is the j-th column principal
coordinate along the α-th principal direction. Also δα is the dispersion measure of
the α-th principal axis.

Remark 2 (a) In the SVD case the parameters ( fα (i) , gα ( j) , δα) satisfy the con-
ditions: for α, β = 1, . . . , k:

δ2α =
I∑

i=1

f 2α (i) mr
i =

J∑

j=1

g2
α ( j) mc

j ,
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where
I∑

i=1

fα (i) mr
i =

J∑

j=1

gα ( j) mc
j = 0

and
I∑

i=1

fα (i) fβ (i) mr
i =

J∑

j=1

gα ( j) gβ ( j) mc
j = 0

for α �= β.

(b) In the TSVD case the parameters ( fα (i) , gα ( j) , δα) satisfy the conditions: for
α, β = 1, . . . , k:

δα =
I∑

i=1

| fα(i) | mr
i =

J∑

j=1

| gα( j) | mc
j

where
I∑

i=1

fα (i) mr
i =

J∑

j=1

gα ( j) mc
j = 0

and
I∑

i=1

fα (i) sign
(

fβ (i)
)

mr
i =

J∑

j=1

gα ( j) sign
(
gβ ( j)

)
mc

j = 0

for α > β.

A description of TSVD can be found in Choulakian (2006, 2016).

Remark 3 (a) In the case where
(
τi j

) = (
σi j

)
, the bilinear decomposition (4) is

also named “interbattery analysis” and was first proposed by Tucker (1958).
Later, Tenenhaus and Augendre (1996) reintroduced it within the context of
correspondence analysis, where they showed that the Tucker approach (SVD
of the covariance matrix (σi j )) of some correspondence tables produced more
interesting (interpretable) structure than CA.

(b) In the casewhere
(
τi j

) = (
�i j

)
, theCAdecomposition hasmany interpretations.

Essentially, for data analysis purposes,Benzécri (1973) interpreted it asweighted
principal components analysis of the row and column profiles. Another useful
interpretation of CA, comparable to Tucker’s “interbattery analysis”, is its links
with canonical correlation analysis (Hotelling 1936); see Lancaster (1958) and
Goodman (1991, 1996).

(c) In the case where
(
τi j

) = (
λi j

)
and (MI , MJ ) =

(
Diag

(
wR

i

)
, Diag

(
wC

j

))
,

where
(
wR

i , wC
j

)
are pre-specified; we note this case leads to TLRA or LRA.
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For the important case where (MI , MJ ) = (Diag (1/I ) , Diag (1/J )), we get
uniformly weighted (or taxicab) logratio analysis, or uwLRA (or uwTLRA). For
an example of general pre-specified weights see Egozcue and Pawlowsky-Glahn
(2016).

(d) In the case where
(
τi j

) = (
λi j

)
and (MI , MJ ) = (

Diag (pi+) , Diag
(

p+ j
))
,

where
(
wR

i , wC
j

)
= (

pi+, p+ j
)
are data dependent,wegetmarginallyweighted

(or taxicab) logratio analysis, or mwLRA (or mwTLRA).

3 Yule’s Principle of Scale Invariance

To really understand Yule’s principle of scale invariance, we start by quoting Good-
man (1996, Section10):

Pearson’s approach to the analysis of cross-classified data was based primarily on the bivari-
ate normal. He assumed that the row and column classifications arise from underlying contin-
uous random variables having a bivariate normal distribution, so that the sample contingency
table comes from a discretised bivariate normal; and he then was concerned with the esti-
mation of the correlation coefficient for the underlying bivariate normal. On the other hand,
Yule felt that, for many kinds of contingency tables, it was not desirable in scientific work to
introduce assumptions about an underlying bivariate normal in the analysis of these tables;
and for such tables, he used, to a great extent, coefficients based on the odds-ratios (for
example, Yule’s Q and Y), coefficients that did not require any assumptions about underly-
ing distributions. The Pearson approach and the Yule approach appear to be wholly different,
but a kind of reconciliation of the two perspectives was obtained in Goodman (1981a).

An elementary exposition of these ideaswith examples can also be found inMosteller
(1968).

In the notation of our paper, Goodman’s reconciliation is based on defining the

a priori weights in the association index (3), λi j = λ
(

pi j , wC
j , wR

i

)
, where by

its decomposition into bilinear terms, mwLRA corresponds to Pearson’s approach,
while uwLRA corresponds to Yule’s approach, since:

log

(
pi j pi1 j1

pi j1 pi1 j

)
= λi j + λi1 j1

− λi1 j − λi j1

=
k∑

α=1

( fα (i) − fα (i1)) (gα ( j) − gα ( j1))

δα

, (5)

where the principal factor scores satisfy the marginally or uniformly weighted rela-
tions, see Remark’s 2(a) and 2(b).

We also note that Kazmierczak (1985, 1987) also tried to reconcile CA and
uwLRA by proposing the “generalised principle of distributional equivalence” by
encompassing the principles of Benzécri andYule; for further details, see Choulakian
et al. (2023).
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To have a clear picture of LRA with general a priori pre-specified weights(
wC

j , wR
i

)
, we first study the properties of the association index λi j that distin-

guishes it from the interaction indices (1) and (2).

3.1 Scale Invariance of an Interaction Index

We are concerned with the property of scale dependence or independence of the three
interaction indices (1), (2) and (3). We note that in (1), (2) and (3), pi j depends on ni j

since pi j = ni j/
∑

i, j ni j . To emphasise this dependence, we express an interaction

index by τi j
(
ni j

) = τ
(

pi j , m R
i , mC

j

)
where, in the case of the association index,

τi j
(
ni j

) = λi j is defined by (3). In the case of the nonhomogeneity index τi j
(
ni j

) =
�i j is defined by (2), and in the case of the nonindependence index τi j

(
ni j

) = σi j

is defined by (1). Following Yule (1912), we state the following:

Definition 1 An interaction index τi j
(
ni j

)
is scale invariant if τi j

(
ni j

) = τi j
(
ai ni j b j

)

for arbitrary scales ai > 0 and b j > 0.

It is important to note that Yule’s principle of scale invariance concerns a function of
four interaction terms—see (5)—while in Definition 1 the invariance concerns each
interaction term.

It is evident that neither the interaction indices (1) and (2), nor (3), with data
dependent marginal weights

(
pi+, p+ j

)
are scale invariant.

Concerning the association index (3) we have the following two lemmas:

Lemma 1 The association index (3) with pre-specified weights
(
wR

i , wC
j

)
is scale

invariant.

Proof Let

n∗ =
I∑

i=1

J∑

j=1

ai ni j b j

and wC
j > 0 and wR

i > 0 satisfying:

J∑

j=1

wC
j =

I∑

i=1

wR
i = 1 .

Then
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τi j
(
ai ni j b j

) = λ

(
ai ni j b j

n∗ , wR
i , wC

j

)

= log

(
ai ni j b j

n∗

)
−

J∑

j=1

wC
j log

(
ai ni j b j

n∗

)

−
I∑

i=1

wR
i log

(
ai ni j b j

n∗

)
+

J∑

j=1

I∑

i=1

wC
j wR

i log

(
ai ni j b j

n∗

)

= λ
(
ni j , wR

i , wC
j

)

= λ
(

pi j , wR
i , wC

j

)

= τi j
(
ni j

)

= λ
(
ai pi j b j , wR

i , wC
j

)
. (6)

Lemma 2 To a first-order approximation:

λi j ≈ pi j

wC
j wR

i

− pi+
wR

i

− p+ j

wC
j

+ 1 .

Proof The average value of the density function pi j/
(
wC

j wR
i

)
with respect to the

productmeasurewC
j wR

i is 1. So the I J values of pi j/
(
wC

j wR
i

)
are distributed around

1. By Taylor series expansion of log (x) in the neighbourhood of x = 1, we have the
first-order approximation log (x) ≈ x − 1. Therefore, substituting ai = 1/wR

i and
b j = 1/wC

j into (6), and by using:

log

(
pi j

wC
j wR

i

)

≈ pi j

wC
j wR

i

− 1

we get:

λ
(

pi j , wC
j , wR

i

) = λ

(
pi j

wC
j wR

i

, wC
j , wR

i

)

= log

(
pi j

wC
j wR

i

)

−
J∑

j=1

wC
j log

(
pi j

wC
j wR

i

)

−
I∑

i=1

wR
i log

(
pi j

wC
j wR

i

)

+
J∑

j=1

I∑

i=1

wC
j wR

i log

(
pi j

wC
j wR

i

)

≈ pi j

wC
j wR

i

− 1 −
(

pi+
wR

i

− 1

)
−

(
p+ j

wC
j

− 1

)

+ 0,
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which is the required result.

Remark 4 Lemma2provides afirst-order approximation tomwTLRAanduwTLRA,
where we see that both first-order approximations are marginal-dependent but in dif-
ferent ways.

(a) In the case
(
ai , b j

) = (
1/pi+, 1/p+ j

)
and

(
wC

j , wR
i

)
= (

p+ j , pi+
)
in Lemma

2:
λi j = λ

(
pi j , p+ j , pi+

) ≈ pi j

p+ j pi+
− 1

which implies thatCA (orTCA) is afirst-order approximationofLRA(orTLRA)
with pre-specified weights

(
pi+, p+ j

)
of a data set

(
ai ni j b j

)
where

(
pi+, p+ j

)

are the marginals of
(
ni j

)
, a result stated in Cuadras et al. (2006). Or, it can be

deduced explicitly for data dependent mwLRA by the fact that:

λ
(

pi j , p+ j , pi+
) = λ

(
pi j

p+ j pi+
, p+ j , pi+

)

which can be found in Goodman (1996).

(b) In the case where
(
ai , b j

) = (I, J ) and
(
wC

j , wR
i

)
= (1/I, 1/J ) in Lemma 2:

λi j = λ

(
pi j ,

1

J
,
1

I

)
≈ I J pi j − I pi+ − J p+ j + 1

which implies that the bilinear expansion of the right hand side of TSVD (or
SVD) is a first-order approximation of uwTLRA (or uwLRA).

In this subsection, we discussed the approximation of LRA (or TLRA) to CA
(or TCA) related methods. Greenacre (2009) posed the reciprocal question: “when
do CA related methods converge to LRA?”. To answer this question he stated two
results which we discuss in the following subsection.

3.2 Box-Cox Transformation

Theoretically CA andLRAhave been presented in a unifiedmathematical framework
via the Box-Cox transformation by Goodman (1996), where the bilinear terms have
been estimated by SVD. Goodman’s framework was further considered, among oth-
ers, by Cuadras et al. (2006), Cuadras and Cuadras (2015), Greenacre (2009, 2010)
and Beh and Lombardo (2024).

Consider the triplet (X, MI , MJ ), where X = (
xi j

)
represents the data set with

xi j > 0, and (MI , MJ ) =
(
Diag

(
wR

i

)
, Diag

(
wC

j

))
with

∑J
j=1 wC

j = ∑I
i=1 wR

i =
1. Let α be a nonnegative real number. Following Goodman (1996, eqs. (3), (4) and
(5)), we define the interaction index:
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Int

(
xα

i j

α
, wC

j , wR
i

)
= xα

i j

α
−

J∑

j=1

wC
j

xα
i j

α
−

I∑

i=1

wR
i

xα
i j

α
+

J∑

j=1

I∑

i=1

wC
j wR

i

xα
i j

α

=
(

xα
i j − 1

α

)
−

J∑

j=1

wC
j

(
xα

i j − 1

α

)
−

I∑

i=1

wR
i

(
xα

i j − 1

α

)

+
J∑

j=1

I∑

i=1

wC
j wR

i

(
xα

i j − 1

α

)
. (7)

Using the well-known result based on L’Hôpital’s rule (or the Box-Cox transforma-
tion):

lim
α → 0

(
xα

i j − 1

α

)
= log(xi j )

then (7) converges to:

λ
(
xi j , wC

j , wR
i

) = log
(
xi j

) −
J∑

j=1

wC
j log

(
xi j

) −
I∑

i=1

wR
i log

(
xi j

)

+
J∑

j=1

I∑

i=1

wC
j wR

i log
(
xi j

)
. (8)

We consider two cases of (7) and (8):

(a)

λ
(
xi j , wC

j , wR
i

) = λ
(

pi j , p+ j , pi+
) = λ

(
pi j

p+ j pi+
, p+ j , pi+

)

is the interaction term of mwLRA (or mwTLRA), and equivalent to Result 2 in
Greenacre (2010).

(b)

λ
(
xi j , wC

j , wR
i

) = λ

(
pi j ,

1

J
,
1

I

)
= λ

(
I J pi j ,

1

J
,
1

I

)
(9)

= λ

(
pi j

p+ j pi+
,
1

J
,
1

I

)
(10)

is the interaction term of uwLRA (or uwTLRA); this is similar to Result 1 in
Greenacre (2010).

Equation (7) can also be applied in a general way. To show this, consider the
following argument:

In (7) we replace wC
j and wR

i with:
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wC
j (α) = mc

j

∑I
i=1 mr

i xα
i j

∑I
i=1

∑J
j=1 mr

i mc
j x

α
i j

and

wR
i (α) = mr

i

∑J
j=1 mc

j x
α
i j

∑I
i=1

∑J
j=1 mr

i mc
j x

α
i j

,

respectively, where mr
i > 0, mc

j > 0 and
∑J

j=1 mc
j = ∑I

i=1 mr
i = 1. We see that:

lim
α → 0

wC
j (α) = mc

j .

Similarly
lim

α → 0
wR

i (α) = mr
i .

Therefore, we get:

lim
α → 0

Int
(
xα

i j , wC
j (α) , wR

i (α)
) = λ

(
xi j , mc

j , mr
i

)
,

which is the interaction term of LRA with a priori weight
(

mr
i , mc

j

)
.

Two special cases of this argument are as follows:

Case a) Setting
(

mr
i , mc

j

)
= (1/I, 1/J ) we get:

lim
α → 0

Int
(
xα

i j , wC
j (α) , wR

i (α)
) = λ

(
pi j ,

1

J
,
1

I

)

= λ

(
I J pi j ,

1

J
,
1

I

)

= λ

(
pi j

p+ j pi+
,
1

J
,
1

I

)
,

which is the interaction term of uwLRA (or uwTLRA).

Case b) Setting
(

mr
i , mc

j

)
= (

pi+, p+ j
)
we get:

lim
α → 0

Int
(
xα

i j , wC
j (α) , wR

i (α)
) = λ

(
pi j , p+ j , pi+

)

= λ

(
pi j

p+ j pi+
, p+ j , pi+

)
,

which is the interaction term of mwLRA (or mwTLRA).
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4 CA with Pre-Specified Marginals and Goodman’s mfCA

Suppose we observe a probability tableP = (pi j ) of size I × J . LetQ, of size I × J ,
be an unknown probability table with known marginals qi+ and q+ j . The CA of P
with the pre-specified marginals of Q is done in the following two steps:

Step 1: We construct Q which is in a sense “nearest to P”. Two general criteria are:
(1)

Int
(
qi j , q+ j , qi+

) = λ
(
qi j = ai pi j b j , q+ j , qi+

)

based on (3), or
(2)

min
qi j

J∑

j=2

I∑

i=1

qi+q+ j

(
qi j

qi+q+ j
− pi j

pi+ p+ j

)2

based on (2).

Step 2: We apply CA to the constructed probability Q such that:

qi j − qi+q+ j

qi+q+ j
=

k∑

α=1

fα(i)gα( j)

δα

,

which represents the CA of P with pre-specified marginals
(
qi+, q+ j

)
. Choulakian

(1980) presents an example where both criteria described in Step 1 have been applied
and similar results have been obtained.

In the case where Int
(
qi j , 1/J, 1/I

) = λ
(
qi j = ai pi j b j , 1/J, 1/I

)
, we get

Goodman’s mfCA; see Goodman (1996, eq. (46)).Q = (
qi j

)
is related to P = (

pi j
)

via the strictly positive scales
(
ai , b j

)
that keeps Yule’s association between the i-

th row and the j-th column unchanged. The iterative proportional fitting algorithm
(IPFA) is used to construct Q. That is, the constructed probability table

(
qi j

)
has

uniform marginals q+ j = 1/J and qi+ = 1/I . So in Step 2, the CA representation
is:

I Jqi j − 1 =
k∑

α=1

fα(i)gα( j)

δα

,

which represents a first-order approximation to both uwLRAandmwLRAbyRemark
3. Furthermore, by Remark 2 we see that mfCA can be interpreted both the decom-
positions of Tucker and Hotelling.
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5 Example

We consider the rodent data set of size 28 × 9 found in the R package TaxicabCA.
Its source is in Quinn and Keough (2002). This is an abundance data set of 9 species
of rats in 28 cities in California. Choulakian (2017) analysed it by comparing the CA
and TCA maps; furthermore Choulakian (2021) showed that it has a quasi-2-block
diagonal structure. Here we compare the dispersion results along the first two prin-
cipal dimensions for the 4 methods: CA, TCA, mfCA and mfTCA:

In CA: δ1 = corr ( f1 (i)), g1 ( j)) = 0.864 and δ2 = corr ( f2 (i) , g2 ( j)) = 0.678.
InmfCA: δ1 = corr ( f1 (i) , g1 ( j)) = 0.827and δ2 = corr ( f2 (i) , g2 ( j)) = 0.679.
In TCA: δ1 = 0.478 and δ2 = 0.422.
In mfTCA: δ1 = 0.743 and δ2 = 0.541.

The R code in the Appendix produced the following four maps: CA, mfCA, TCA
and mfTCA. To interpret these maps, essentially, the distances between the profiles
(conditional probabilities) of two columns, or two rows, are assessed.

In CA the chi-squared distance between columns j and j1 is:

I∑

i=1

1

pi+

(
pi j

p+ j
− pi j1

p+ j1

)2

=
k∑

α=1

(gα ( j) − gα ( j1))
2 . (11)

By letting pi+ = 1/I and p+ j = 1/J , and replacing pi j with qi j in (11) we get the
chi-squared distance between columns j and j1 in mfCA:

I
I∑

i=1

(
pi j

1/J
− pi j1

1/J

)2

=
k∑

α=1

(gα ( j) − gα ( j1))
2 . (12)

In TCA the taxicab distance between columns j and j1 is:

I∑

i=1

∣∣∣
∣

pi j

p+ j
− pi j1

p+ j1

∣∣∣
∣ ≤

k∑

α=1

∣∣gα ( j) − gα ( j1)
∣∣ . (13)

The taxicab distance between columns j and j1 in mfCA is:

I∑

i=1

∣∣∣
∣

pi j

1/J
− pi j1

1/J

∣∣∣∣ ≤
k∑

α=1

∣∣gα ( j) − gα ( j1)
∣
∣ . (14)

Comparing these four equations, the last three are similar; (11) is dissimilar when the
weights 1/pi+ are substantially different from 1/I . This fact seems visually apparent
in the four figures (Figs. 1, 2, 3 and 4).
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Fig. 4 mfTCA map of rodent data

6 Conclusion

Goodman (1996) introduced marginal-free correspondence analysis where his prin-
cipal aim was to reconcile Pearson’s correlation measure with Yule’s association
measure for the analysis of contingency tables. We showed that marginal-free corre-
spondence analysis is a particular case of correspondence analysis with pre-specified
weights studied in the beginning of the 1980s by Benzécri and his students. mfCA
seems to be more robust than the ordinary CA; further applications are needed to see
its practical usefulness.

Appendix

The execution of the following R code will produce the four maps displayed in Figs.
1, 2, 3 and 4 for the rodent data set. The code uses the following three packages: the
ipfr package of Ward and Macfarlane (2020), the ca package of Greenacre et al.
(2022) and the TaxicabCA of Allard and Choulakian (2019). The ipfr package
applies the iterative proportional fitting algorithm to produce the table

(
qi j

)
which has

uniform row and column marginals. The ca package performs the CA and produces
the CA map and the TaxicabCA package produces the TCA map.

# install packages
install.packages(c("ipfr", "ca", "TaxicabCA"))

library(TaxicabCA)
dataMatrix = as.matrix(rodent)
nRow <- nrow(dataMatrix)
nCol <- ncol(dataMatrix)
ssize <- sum(dataMatrix)
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# Computation of Q matrix of rodent
library(ipfr)
mtx <- dataMatrix
row_targets <- rep(ssize/nRow, nRow)
column_targets <- rep(ssize/nCol, nCol)
QMatrix <- ipu_matrix(mtx, row_targets, column_targets)

rownames(dataMatrix) <- rownames(QMatrix)
<- paste("", 1:nRow, sep = "")

colnames(dataMatrix) <- colnames(QMatrix)
<- paste("C", 1:nCol, sep = "")

# CA map of rodent dataset
library(ca)
plot(ca(dataMatrix))

# mfCA map of rodent
plot(ca(QMatrix))

# TCA map of rodent
tca.Data <- tca(dataMatrix, nAxes = 2, algorithm = "exhaustive")
plot(
tca.Data,
axes = c(1, 2),
labels.rc = c(1, 1),
col.rc = c("blue", "red"),
pch.rc = c(10, 10, 0.1, 0.1),
mass.rc = c(F, F),
cex.rc = c(0.6, 0.6),
jitter = c(F, T)

)

# mfTCA map of rodent
tca.DataQ <- tca(QMatrix, nAxes = 2, algorithm = "exhaustive")
plot(
tca.DataQ,
axes = c(1, 2),
labels.rc = c(1, 1),
col.rc = c("blue", "red"),
pch.rc = c(10, 10, 0.1, 0.1),
mass.rc = c(F, F),
cex.rc = c(0.6, 0.6),
jitter = c(T, F)

)
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Group and Time Differences
in Repeatedly Measured Binary
Symptom Indicators: Matched
Correspondence Analysis

Se-Kang Kim

1 Introduction

Typically,when a researcher, such as an applied psychologist or statistician, compares
the mean score differences of an outcome in repeated measurements, the researcher
compares the mean score differences of an outcome. Assuming the measurement
scale is interval or ratio, the researcher uses paired t-test or repeated-measures anal-
ysis of variance (ANOVA) to test the mean differences between or among groups.
When measurements are not continuous but dichotomously scored (for instance, “0”
= symptom absent and “1”= symptompresent), it is not possible to use a paired t-test
or a repeated-measures ANOVA. The chi-squared test can be repeated multiple times
to test the group difference for each binary variable (e.g. Binomial test). However, if
the binary variables are significantly correlated, the chi-squared test results for each
binary variable will be biased if they are reported separately.

Furthermore, the Pearson product moment correlation cannot be used to estimate
the correlation between binary variables. Rather, tetrachoric correlation is frequently
estimated using binary variables, with each binary variable’s underlying structure
assumed to be normal (Vaswani 1950). Pearson’s correlation is based on the assump-
tion of bivariate normality, which can be easily tested through the creation of a
histogram or Q-Q plot for each variable. However, no research has investigated how
to test the normality assumption for binary variables’ underlying structure (Demirtas
2016). Consequently, it is impossible to determine whether the bivariate normality
assumption for the tetrachoric correlation is met, and the results with unwarranted
normality may be biased. In addition, estimating relationships between interrelated
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binary variables becomes more challenging when these binary variables are repeat-
edly measured at two different time points (such as admission and discharge in this
study), given that these binary variables are interrelated at each time point and over
time.

In this paper, a novel application of a variant of the conventional correspondence
analysis technique, known as correspondence analysis (CA) of matched matrices
(henceforth referred to asmatched CA), is presented by taking into account the statis-
tical complications that arise when examining the group and time differences and
their relationships in repeatedly measured binary variables. The matched matrices
are constructed from two independent groups that share the same row and column
properties in their two-way contingency tables. In contrast to other CA variants,
the matched CA identifies two types of dimensions: sum dimensions and differ-
ence dimensions. The sum dimensions represent aggregated effects of row/column
properties included in matched groups, while the difference dimensions represent
differences in row/column properties in matched groups, as introduced by Greenacre
(2003) for analysis of independent group differences (e.g. gender).

This study, unlike Greenacre’s original matched CA paradigm, incorporates both
between-and within-group designs, enabling researchers to examine not only poten-
tial differences between two independent groups, but also changes in the members of
each group over time. The utility of matched CA is demonstrated using patients with
anorexia and bulimia who respond to binary indicators of psychiatric symptoms at
admission and discharge. A group of anorexia patients and a group of bulimia patients
are between-group factors, whereas a pre-test condition (admission) and a post-test
condition are within-group factors (discharge). This mixed design aims to examine
not only the impact of different eating disorders (anorexia vs. bulimia) on psychi-
atric symptom indicators, but also the impact of time (admission vs. discharge) on the
same symptom indicators. In fact, the time difference effect describes the efficacy of
treatment upon discharge. This study employs a quasi-experimental between-group
design because patients are not randomly assigned to either type of eating disorder.

When constructing a matched contingency table in a mixed design, the ages are
included as a row categorical variable (e.g. ages 12–14, 15,..., 26–39). In this study,
age is used as a covariate for symptom indicators because it is known tobe a significant
covariate for clinical diagnosis; see, for example, Kim (2020) and Kim et al. (2021b).
Thus, an agegroups× symptom indicators contingency table is created for eachgroup
(anorexia or bulimia) and then used to generate a matched table. A table like this is
created by horizontally stacking anorexia next to bulimia, followed by horizontally
stacking bulimia next to anorexia. From the concatenated table, the group- and time-
difference dimensions are identified, and then their statistical stability is evaluated.
Since group differences (anorexia versus bulimia) and time differences (discharge
versus admission) are scaled to estimate the dimensions, their coordinates can be
interpreted as group and time differences in the binary symptom indicators if the
dimensions are statistically stable; see Kim (2020) for details.

In addition, a biplot with only the statistically stable dimensions is constructed to
visually inspect the association between categories (Gower and Hand 1996; Gower
et al. 2011), and the visually inspected association is estimated with correlation
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coefficients to enhance the interpretation. When conducting differential diagnosis
for patients, the magnitudes of correlation coefficients, such as between their age
groups and specific symptom indicators, would be clinically useful; see, for example,
Kim and Annunziato (2020). In cross-sectional studies, the algorithm for estimating
Pearson’s correlation has been used to quantify intra-and inter-categorical variable
association; see, for example, Kim et al. (2022), Kim et al. (2020, 2021a), Kim and
Grochowalski (2019), and Kim and Frisby (2019). This study applies this correlation
estimation algorithm to the analysis of repeated binary indicator measurements.

2 Method

For analysis of interrelated binary indicators using CA, multiple correspondence
analysis (MCA) may be considered. MCA is analogous to principal component
analysis (PCA) of indicator variables, which is designed to identify latent dimensions
of binary data (Beh and Lombardo 2014, 2021; Le Roux and Rouanet 2010; Lebart
et al. 1984), but not to estimate dimensions of either between-group or within-group
differences. As a result, MCA is incompatible with the objectives of this study.
Among the numerous CA variants (Beh and Lombardo 2021), matched CA is one
that can estimate the between-group andwithin-group differences investigated in this
study.

2.1 Example Data: Binary Psychiatric Symptom Indicators

Sample. This study included female patients with anorexia (n = 1177) and bulimia
(n = 752) who met Diagnostic and Statistical Manual of Mental Disorders (DSM-
IV text revision; APA, 2000) criteria for a primary eating disorder diagnosis at the
Remuda Ranch Programmes for Eating Disorders inWickenburg, Arizona. Anorexia
and bulimia are both eating disorders with symptoms similar to distorted body
image. They are distinguished, however, by distinct food-related behaviours. People
suffering from anorexia, for example, severely restrict their food intake in order to
lose weight. Whereas people who have bulimia eat an excessive amount of food in
a short period of time, then purge or use other methods to prevent weight gain. The
age range was 12–39 years for both anorexia (M = 19.57 years, SD = 5.76) and
bulimia (M = 22.26 years, SD = 6.07). The sample was 93.6% Caucasian, 2.7%
Mixed/Unknown, 2.1% Hispanic, 0.9% Asian, 0.7% African American, and 0.2%
Native American.

Six binary symptom indicators. All anorexia and bulimia patients were assessed
according to the following six psychiatric symptoms: (1) Major depressive disorder
(hereafter denoted as Ma), (2) Depression not otherwise specified (De), (3) Obses-
sive compulsive disorder (Ob), (4) Generalised anxiety disorder (Ge), (5) Anxiety
disorder not otherwise specified (An), and (6) Social phobia (So) are originally
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recorded with (0, 1) indicators, where “0” represents symptom absence and “1”
represents symptom presence. However, to avoid any redundancy, only the symptom
presence indicators are analysed. In correspondence analysis, an absence indicator
for a given symptom represents the opposite of that symptom’s presence indicator.

Discretisation of age. Age is discretised into eight groups in order to include it
as a covariate in a contingency table with the symptom indicators. Anorexia patients
were classified into the following age groups: 12–14 (n = 156), 15 (n = 147), 16
(n = 143), 17 (n = 127), 18–19 (n = 173), 20–21 (n = 127), 22–25 (n = 129),
and 26–39 (n = 175). Bulimia patients were divided into the following age groups:
12–14 (n = 25), 15 (n = 41), 16 (n = 51), 17 (n = 57), 18–19 (n = 139), 20–21 (n
= 108), 23–25 (n = 124), and 26–39 (n = 207). Thus, at admission and discharge,
each group (anorexia or bulimia) would have an 8 (age groups) 6 (symptom presence
indicators) contingency table.

2.2 Matched CA of Two Block Circulant Matrices

Generating concatenated tables for group and time differences. For each time
point, an 8× 6 table is generated for anorexia patients and an 8× 6 table is generated
for bulimia patients. Aad and Bad shall represent the admission tables for patients
with anorexia and bulimia, respectively. For matched CA, Aad is stacked on top of
Bad and then concatenated to create a 16 × 12 concatenated matrix, Cad , for the
admission group, where “ad” refers to admission:

Cad =
[
Aad Bad

Bad Aad

]
. (1a)

Similarly, a second 16 × 12 concatenated matrix, Cdi , is created, where “di”
refers to discharge:

Cdi =
[
Adi Bdi

Bdi Adi

]
. (1b)

Combining these two concatenated matrices yields a 32 × 24 super concatenated
matrix:

C =
[
Cdi Cad

Cad Cdi

]
=

⎡
⎢⎢⎣

Adi Bdi Aad Bad

Bdi Adi Bad Aad

Aad Bad Adi Bdi

Bad Aad Bdi Adi

⎤
⎥⎥⎦. (2)

This new 32 × 24 concatenated matrix C repeats the rows and columns twice
to account for group- and time-difference effects, as well as their interaction. Using
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matched CA, the sum (A + B) and group-difference (A – B) dimensions will be
identified from C for anorexia and bulimia patients. Furthermore, because A and B
are nested within time (discharge and admission), the time-difference (discharge
subtracted by admission) dimensions will also be identified alongside group ×
time interaction dimensions. Since the primary goal of this study is to examine
the differences in symptoms between anorexia and bulimia patients, the sum (A +
B) dimensions will not be investigated further.

Standardising C for singular value decomposition (SVD).C is a super 32× 24
concatenatedmatrix composed of two sub-concatenatedmatrices:Cdi (at discharge),
an AdiBdiBdiAdi circulant matrix and Cad (at admission), an AadBadBadAad circu-
lant matrix. These two block circulant matrices, which are nested with two time
points (discharge and admission), are designed to represent the group differences
(anorexia vs. bulimia). When estimating the group differences, the time variants are
aggregated. When estimating the time differences, the group differences are aggre-
gated. When applying an SVD to C, it has to be standardised because the rows and
columns must be weighted differently; the different weights are relative proportions
of their respective margins or marginal proportions.

The standardisation procedure. Several steps are involved in the standardisation
process. The matrix C is first converted to the correspondence matrix, P = (1/n)C,
where n = 1TC1 is a grand total of C. The i th row and j th column marginal
proportions are defined by ri = ∑J

j=1 pi j and c j = ∑I
i=1 pi j , respectively, so that

r = P1 and c = PT1. Since C is a circulant matrix, the vector of the eight-age
group marginal proportions (as row weights) and the vector of the six psychological
symptom indicator marginal proportions (as column weights) are assigned to each

of four blocks,

[
Cdi Cad

Cad Cdi

]
in Equation (2). The diagonal matrices of the row and

column marginal proportions are also defined as Dr = diag(r) and Dc = diag(c),
respectively. The subsequent definitions and results are given in terms of these relative
quantities P = {

pi j
}
, r = {ri }, and c = {

c j
}
, whose elements add up to 1 in each

case. The standardised matrix C, ZC, is as follows:

ZC = D−1/2
r

(
P − rcT

)
D−1/2

c . (3)

When the difference of these matrices,
(
P − rcT

)
, is close to zero, there is little

association between rows and columns.
Standard and principal coordinates. The row and column standard coordinates

are defined as � = {
φi j

} = D−1/2
r U and � = {

γi j
} = D−1/2

c V, respectively,
from the SVD of the ZC matrix: ZC = U�VT. U and V (where UTU = I and
VTV = I) are the left and right singular vector matrices of (A − B) included in
the ZC. The principal coordinates are numerically equal to the standard coordinates
multiplied by the singular values from the diagonal matrix of the singular values
arranged in descending order. The row categories in a row isometric biplot (Beh and
Lombardo2014;Greenacre 2010) are represented byprincipal coordinates definedby
F = �� = {

fi j
}
, where � = diag(σ) which is the diagonal matrix of the singular
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values of ZC. The column categories are represented by standard coordinates, �,
which are scaled to have a weighed mean of 0 and variance of 1 in each dimension
so that �Dc = 0 and �Dc�

T = I, and references can be made to each row that lies
at the centre of gravity of the associated column vectors, which are represented by
the standard coordinates.

Dimensions of within-group differences. Matched CA is developed to optimise
the scaling of any between-group (e.g. gender) differences in the categorical vari-
ables (e.g. job involvement status); see, for example, Greenacre (2017). However, in
this study, time is included as a within-group factor in addition to a between-group
factor due the repeated measurement of binary response outcomes at admission and
discharge. Thus, within-group dimensions are also identified. Moreover, because
both between- and within-group factors are involved, their interaction dimensions
can be determined.

2.2.1 Test Statistical Stability of Dimensions

Generating random tables. To test the statistical stability of (group or time) differ-
ence dimensions and interaction dimensions, 10,000 random contingency tables of
the same size as the original contingency table C are generated using a series of
permutations ofC. A contingency table is a cross-tabulation matrix comprising rows
and columns of categorical variables. Follow these steps to generate random contin-
gency tables: (a) generate new tables containing rowand column categorical variables
from the original contingency table; (b) independently permute either variable of the
original contingency table; (c) cross-tabulate the permuted data to generate a random
contingency table; (d) repeat steps (a) to (c) 10,000 times to create 10,000 random
contingency tables; (e) perform a matched CA of each random contingency table to
estimate dimensional eigenvalues (also known as principal inertia); and (f) compute
a Monte-Carlo p-value for a given dimension by counting the random eigenvalues
greater than the observed eigenvalue. For example, if 490 randomly simulated eigen-
values (out of 10,000) are larger than an observed eigenvalue (for each dimension)
estimated from the original contingency table, the empirical p-value for the eigen-
value of the corresponding dimension would be 0.049 which is less than a predeter-
mined significance level alpha at α = 0.05, and the dimension is statistically stable
at α = 0.05; however, if there are more than 500 random eigenvalues greater than
an observed eigenvalue for any dimension, the dimension is considered statistically
unstable and its interpretation is excluded.

Interpreting coordinates as differences in binary indicators. Because group
and time differences of the binary indicators of psychiatric symptoms are scaled with
matched CA, their dimensional coordinates (e.g. standard coordinates) can be inter-
preted as group and time differences in binary indicators of psychiatric symptoms.
However, if dimensions are not statistically stable, interpreting their coordinates as
group or time differences becomes problematic. Therefore, only statistically stable
dimensions’ coordinates are interpreted as group and time differences.
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Row isometric biplots with statistically stable dimensions. It is possible to
create a (row isometric) biplot with any pair of dimensions (e.g. Kim and Annunziato
2020), but its interpretation would be suspect if the dimensions were not statistically
stable (Kim and Grochowalski 2019). Therefore, only statistically stable dimensions
will be utilised when creating a biplot. The optimally scaled coordinates of a biplot
maximise the association between rows and columns (Gabriel 1971; Gabriel and
Odoroff 1990; Gower and Hand 1996; Gower et al. 2011; Greenacre 2010; Nishisato
1994, 2007).

To improve the legibility of a row isometric biplot. The conventional row
isometric biplot is formed by jointly displaying the row principal coordinates and the
column standard coordinates. However, the row principal coordinates are weighted
with singular values, and their values aremuch too small in comparison to the column
standard coordinates for visual evaluation in the same biplot. Thus, the row isometric
biplot employed in this study is generated using the row age groups’ principal coordi-
nates of, but the column clinical symptoms’ standard coordinates

{
γ jk

}
aremultiplied

by
{
c1/2j

}
to bring the column coordinate scale closer to the row coordinate scale

(Greenacre 2017, pp. 101–102). The term “improved biplot” will henceforth be used
to describe this particular type of row isometric biplot. This is done without affecting
the statistical properties of the biplot in order to make the row principal coordinates
more readable visually (relative to the column standard coordinates); for a more
detailed explanation, see the following section.

Re-expressing Pearson ratios for the improved row isometric biplot. The
Pearson ratios (Beh 2004) for a row isometric biplot with the first two dimensions
can be expressed without an error term such as: pi j/(r j c j ) − 1 = ∑2

k=1 fikγ jk .
This equation can be rewritten in terms of the j th element of the row profile
as:

(
pi j/ri − c j

)
/c j = ∑2

k=1 fikγ jk . In fact,
∑J

j=1

(
pi j/ri − c j

)
represents how

much row i th. Profile, which is pi = (pi1, . . . , pi J ), deviates from the average
row profile which is the vector of column marginal proportions, c. In the biplot,
each column vertex point defines the line onto which row profile is projected, and(
pi j/ri − c j

)
/c j = (

pi j/ri − c j
)
/
(
c1/2j c1/2j

)
= ∑2

k=1 fikγ jk can be re-expressed

as:
(
pi j/ri − c j

)
/c1/2j = ∑2

k=1 fik
(
c1/2j γ jk

)
, where

(
c1/2j γ jk

)
is used as a column

coordinate for the improved biplot but fik remains the i’s row principal coordinate
along dimension k (Greenacre 2017, p. 102).

Visual inspection of category relationships in an improved biplot. To visu-
ally inspect relationships between row and column categories in an improved (row
isometric) biplot, the column vertex points are typically expressed with projections
from the origin (0, 0) and pass through their standard coordinates, which are depicted
as lines, but the row profiles are depicted as dot points at the locations specified by
their principal coordinates. If imaginary lines from the origin are drawn to the rows’
principal coordinates, the magnitude and direction of the association can be approxi-
mated by examining the angle between rowand columncoordinates; see, for example,
Beh and Lombardo (2014). Trigonometrically:
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• if the angle between fik and c
1/2
j γ jk is close to zero, the correlation is close to +

1;
• if the angle is close to 90◦, the correlation is close to zero;
• if the angle is close to 180◦, the correlation is close to −1;
• if the angle between 0◦ and 90◦, the correlation is between 0 and + 1;
• if the angle is between 90◦ and 180◦, the correlation is between 0 and −1.

The angles between row coordinates and the angles between column coordinates
can be examined as well.

Estimate the category relationship using correlation. The row and column
categories are projected onto this biplot using the formulas fi = ( fi1 fi2) and
fi ′ = ( fi ′1 fi ′2) for the principal coordinates of row category i and i ′, respectively. In
Euclidean geometry, the scalar product of two vectors fi and fi ′ is denoted by fTi fi ′ ,
which is equal to the product of the lengths of the two vectors multiplied by the
cosine of the angle between them, such as fTi fi ′ = ‖fi‖ · ‖fi ′ ‖ · cos θi i ′ , where ‖fi‖
denotes the length of the vector fi and accordingly, cos θi i ′ = fTi fi ′/‖fi‖ ·‖fi ′ ‖, where
cos θi i ′ is the correlation estimate between rows i and i ′. Similarly, the correlation
between columns j and j ′ is estimated in the given plane using the improved stan-
dard coordinates of columns j and j ′, γ̃ j = c1/2j

(
γ j1γ j2

)
and γ̃ j ′ = c1/2j ′

(
γ j ′1γ j ′2

)
so that cos θ j j ′ = γ̃ T

j γ̃ j ′/
∥∥γ̃ j

∥∥ · ∥∥γ̃ j ′
∥∥. Likewise, the correlation between row i and

column j can be estimated. However, because a biplot in this case is row isometric,
the correlation between the row i principal coordinate and the column j improved
(standard) coordinates is calculated using the formula cos θi j = fTi γ̃ j/‖fi‖ · ∥∥γ̃ j

∥∥
(Kim and Grochowalski 2019).

Dimensionality. With 32 rows and 24 columns in the super concatenated matrix,
C, theoretically, min(32 − 1, 24 − 1) = 23 dimensions provide an optimal display
of the association. The 23 dimensions can be divided into four distinct sets: the first is
for the group-difference dimensions, the second for the time-difference dimensions,
the third for the group × time interaction dimensions, and the fourth for the sum (or
average) dimensions.

How to identify group, time, interaction, and sum dimensions. Matched CA
partitions the total inertia of the 32 × 24 matrix into four different types of eigen-
values: group, time, group × time interaction, and sum (or average) dimensions. To
identify each type of dimension, the following sign patterns must be applied to the
pattern of dimensional coordinates.

To help understand these signs in Table 1, the four columns (1, 2, 3, 4), are labelled
as follows: “1” refers to the fact that if the sign of each set of coordinates alternates
(i.e. + – + –) along a dimension, this dimension is defined as a group-difference
dimension; “2” refers to the fact that if the signs of the first two sets of coordinates
are the same, but the signs of the other two sets are opposite to the first two sets (i.e.
+ + – –), this dimension is defined as a time-difference dimension; “3” refers to
that if the sign of the first set of coordinates is the same as the sign of the last set
of coordinates, but the signs of the two sets are opposite to those of the first and the
last sets of the coordinates (i.e. + – – + ) along a dimension, then this dimension
is defined as a group × time interaction dimension; and “4” refers to the fact that
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Table 1 Dimensional coordinate patterns

Dimension

1 2 3 4

Time 1 A + + + +

B – + – +

Time 2 A + – – +

B – – + +

Group (G) Time (T) T × G Sum

if the signs of the four sets of the coordinates are the same (i.e. + + + + ) along
a given dimension, then this dimension is defined as a sum (or average) dimension.
As previously stated, the sum (or average) dimensions that aggregate group and time
differences will not be investigated further because they are irrelevant to the purpose
of this study.

3 Results

3.1 Initial Matched CA Results

Identifying statistically stable dimensions. Since the maximum dimensionality is
23, their observed eigenvalues are subjected to a permutation test to determine the
statistical stability of their respective dimensions. The empirical p-values for the
eigenvalues of the first, second, third, fourth, fifth, and up to the twenty-third dimen-
sions are as follows: p < 0.0001, p < 0.0001, p < 0.0001, p < 0.0011, p =
0.9067, ..., p = 0.9772. The permutation test results show that the first four eigen-
values of the dimensions are statistically significant at α = 0.01, and they will be
further investigated.

Identifying different types of dimensions. To identify the group-difference,
time-difference, and its interaction dimensions, the improved standard coordinates,{
c1/2j γ jk

}
, of the first two dimensions are examined, as they account for largest

amount of the total variance.

• Among the first four statistically significant dimensions, the first and third are
identified as the group-difference (anorexia—bulimia) dimensions and account
for 81.1% of the total variance. These two group-difference dimensions are used
to construct a group-difference biplot.

• The fourth and ninth dimensions are time-difference (admission—discharge)
dimensions that account for 4% of the total variance. The eigenvalue of the fourth
dimension is statistically significant at α = 0.01 (p < 0.0001), but the ninth
dimension is not significant (p = 0.9997) and will not be considered further. A
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time-difference biplot cannot be constructed due to the requirement for two stable
dimensions.

• The sixth and twelfth dimensions are group × time interaction dimensions, but
neither is statistically significant; therefore, they will not be considered further.

3.2 Evidence of Group and Time Differences

The coordinates of group-difference dimensions. Since both group-difference
dimensions, dimensions 1 and 3, are statistically stable, their coordinates represent
group differences (anorexia—bulimia) in the six psychiatric symptom indicators.
The following are the group differences for dimension 1: 0.2890 for {De}, 0.2745
for {An}, 0.0929 for {So}, 0.1524 for {Ob}, 0.1409 for {Ge}, and 0.2004 for {Ma}.
Positive values indicate that all six psychiatric symptoms are more severe in patients
with anorexia than in patients with bulimia, while negative values indicate symptoms
are less severe. This is because CA in this study only scales the psychiatric symptom
present indicators. The group differences for dimension 3 are as follows: 0.2303 for
{De}, 0.1763 for {An}, −0.0203 for {So}, −0.1148 for {Ob}, −0.1927 for {Ge},
and −0.3385 for {Ma}. The negative values for {So, Ob, Ge, Ma} means that these
four symptoms are less severe in anorexic patients than in bulimic patients.

The coordinates of a time-difference dimension. Since only dimension 4 is
statistically stable, its coordinates represent time differences (discharge—admission)
in the six psychiatric symptom indicators. The following are the time differences:
−0.2348 for {De}, 0.0335 for {An}, 0.2459 for {So}, 0.2744 for {Ob}, 0.2261 for
{Ge}, and 0.0812 for {Ma}. Similar to the interpretation of the group-difference
coordinates, the positive values represent symptom deterioration or the absence of
a treatment effect, whereas the negative values indicate symptom improvement or
treatment efficacy. The treatment efficacy is only observed for {De} because it is the
only symptom with a negative time difference.

The group-difference biplot. In Fig. 1, a pair of statistically stable group-
difference dimensions are used to construct an improved biplot, and the association
between age groups and symptom indicators is visually examined. Understanding
such a relationship can aid in diagnosing which age group is associated with which
symptom indicator. Figure 1 shows the group-difference points with bulimia points
anchored at the origin: Therefore, the greater the difference in symptoms between
anorexia and bulimia patients, the longer the projection. Note that for Fig. 1: a1 =
ages 12–14; a2 = age 15; and a3 = age 16; a4 = age 17; a5 = ages 18–19; a6 =
ages 20–21; a7= ages 22–25; and a8= ages 26–39. De=Depression not otherwise
specified; An = Anxiety disorder not otherwise specified; So = Social phobia; Ob
= Obsessive compulsive disorder; Ge = Generalised anxiety disorder; and Ma =
Major depressive disorder.

Since this is a group-difference biplot, the time variant (admission—discharge)
is aggregated and therefore does not appear in the biplot. On the right side of Fig. 1
are the six column projections, {De, An, So, Ob, Ge, Ma}. This demonstrates the
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Fig. 1 The group-difference (Anorexia—Bulimia) biplot

apparent groupdifferences betweenpatientswith anorexia andbulimia ondimensions
1 and 3. Refer to the section titled “The coordinates of group-difference dimensions”;
these group differences account for 81% of the total variance. However, dimension 1
explains themajority of the group differences, as it accounts for 95% (= 77.2/81.1×
100) of the group-difference variance in Fig. 1.

Visual inspection of association in a group-difference biplot. Figure 1 illus-
trates the group differences in the CA-scaled indicators of symptom presence. The
distances of the symptom points from the origin, as well as the symptom points
anchored at the origin for bulimia patients, represent residuals between the responses
of anorexia and bulimia patients (anorexia—bulimia). Although there are age-related
group differences, they are irrelevant to the current investigation because age is
considered a covariable with symptom indicators. The clinical utility of studying the
association between age groups and symptom indicators is of interest. All category
interactions in Fig. 1 should be interpreted in terms of patients with anorexia. For
instance, in Fig. 1, the age group of 20–21 years (a6) is adjacent to the symptoms De
and An, indicating that anorexia patients of this age are positively associated with
the De and An symptoms. Also observed is a strong and positive association between
anorexia patients aged 18–19 (a5) and the three symptoms, Ob, Ge, and Ma. Also,
there is a strong positive association between anorexia patients aged 12–17 (a1 – a4)
and the symptom (So), because the angles between these lines and the symptom
indicators are close to zero if imaginary lines are drawn from the age groups to
the origin. However, if this positive association is interpreted in terms of bulimia
patients, it will be a negative association, which is consistent with the analysis of
an ABBA circulant matrix (where A = anorexia patients and B = bulimia patients).
Similarly, anorexia patients aged 22–25 (a7) and 26–39 (a8) are negatively asso-
ciated with the symptom indicators, So, Ob, Ge, and Ma, due to the obtuse angles
between these categories. For bulimia patients, however, these same age groups of
a7 and a8 would be positively associated with So, Ob, Ge, and Ma. In the following
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section, correlation coefficients will be estimated to verify these visually determined
results.

Correlation analysis to determine visually inspected association structure.
The visual inspection of the category configurations in the group-difference biplot
of Fig. 1 permits the assessment of the nature of association between age groups and
symptom indicators. However, the visual inspection does not provide any numer-
ical summaries of the association’s structure. This section supplements the visu-
ally inspected association structure with correlation coefficients. Table 2 shows a
summary of these coefficients, where the correlation coefficients equal to or larger
than r = 0.71 were highlighted in bold and regarded as significant because they
represented at least 50% (0.712 = 0.50) of the shared variance between categories.

Correlation between age groups and symptom indicators. Consistent with
visual inspection, the angles between a6 and {An, De} in Fig. 1 are virtually zero, so
their respective correlations are r = 1.00 and r = 0.99. Likewise, the angles between
a5 and {Ob, Ge, So} are either zero or close to zero, and their respective correlations
are r = 1.00, r = 0.94, and r = 0.93. In addition, the correlation between {So} and
[a1, a2, a3, a4] ranges from r = 0.93 to r = 0.99, as shown in the “So” column
of Table 2, indicating that anorexia patients aged 12–17 are strongly associated
with social phobia. Remember that these correlations should be interpreted in terms
of anorexia patients, but for bulimia patients, all positive correlations should be
interpreted as negative correlations.

Table 2 The Pearson correlation coefficients between age groups and symptom indicators in the
group difference biplot

Symptom indicator

Ma De Ob Ge An So

a1 (ages 12–14) 0.56 0.74 0.83 0.64 0.81 0.99

a2 (age 15) 0.33 0.89 0.66 0.42 0.93 0.92

a3 (age 16) 0.55 0.75 0.82 0.62 0.82 0.99

a4 (age 17) 0.52 0.77 0.80 0.60 0.83 0.98

a5 (ages 18–19) 0.90 0.30 1.00 0.94 0.40 0.93

a6 (ages 20–21) 0.00 0.99 0.37 0.09 1.00 0.73

a7 (ages 22–25) −0.77 0.74 −0.47 −0.71 0.67 −0.06

a8 (ages 26–39) −0.95 −0.17 −1.00 −0.98 −0.27 −0.87

Note that for Table 2: Ma = Major depressive disorder; De = Depression not otherwise specified;
Ob = Obsessive compulsive disorder; Ge = Generalised anxiety disorder; An = Anxiety disorder
not otherwise specified; and So = Social phobia. The correlation coefficients equal to or larger than
the positive correlation r = 0.71 were bolded and interpreted because they represented at least 50%

(0.712 = 0.5) of the shared variance between categories
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4 Discussion

Clinical Meaningfulness in the Matched CA Results. The weighted Euclidean
distances computed for the symptom indicators represent the differences computed
from the anorexia patients’ residuals of their responses on the binary symptom indica-
tors, after subtracting the responses of the bulimia patients. Therefore, any projected
lines of the symptom indicators from the origin (0, 0) in the group-difference biplot
indicate that the group differences (in the symptom indicators) should be interpreted
in terms of anorexia patients. Similarly, the correlation between the projected age
lines and the symptom indicators must be interpreted in terms of anorexia patients.

Nevertheless, since the circulant matrix C is analysed for matched CA, if the
correlations are to be interpreted in terms of bulimia patients, the signs of the corre-
lation coefficients in Table 2 must be reversed. For instance, the correlations of the
“a6” age group of anorexia patients with {De, An} were r = 0.99 and r = 1.00, but
when interpreted for bulimia patients, they are r = −0.99 and r = −1.00. Note that
correlation coefficients are maintained with two decimal places. When comparing
the severity of symptoms between anorexia and bulimia patients, the majority of
anorexia patient age groups have a strong positive correlation with the symptom
indicators. Therefore, one may conclude that anorexia patients exhibit more severe
psychiatric symptoms than bulimia patients. Nevertheless, the negative correlations
of the age groups 22–25 years (a7) and 26–39 years (a8) indicate that anorexia
patients in these age ranges display less severe psychiatric symptoms (see Ma, Ob,
Ge, and So in Table 2) than bulimia patients in the same age ranges.

When a researcher conducts matched CA with cross-sectional or repeatedly
measured data, the researcher must carefully determine the ordering of the circu-
lant matrix. To examine treatment efficacy for psychiatric symptoms, the responses
of anorexia and bulimia patients at discharge are placed intentionally before their
responses at admission for the analysis of the circulant matrix in this study. Anorexia
patients have more severe eating disorder symptoms, particularly weight loss, than
bulimia patients. Therefore, when examining binary psychiatric symptom indica-
tors, group differences should be interpreted in terms of anorexia patients; bulimia
patients’ response points are anchored at (0, 0), where the origin indicates no group
differences in their responses. Since correlation coefficients are calculated using the
coordinates of the group-difference biplot, they should also be interpreted in terms
of the anorexia patients.

Additional comments on group- and time-difference coordinates. The group-
difference coordinates signify the degree of deviation between the responses of
anorexia patients to binary psychiatric symptom indicators and those of bulimia
patients. However, the first group-difference dimension (dimension 1) accounted
for 95.2% of the total group-difference variance, while the second group-difference
dimension (dimension 3) did only 4.8%of the total group-difference variance. There-
fore, the first dimensional coordinates should be primarily interpreted as group differ-
ences in symptom indicators: The severity of the six symptom indicators experienced
by anorexia patients is found to be significantly greater than that of bulimia patients.
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Only the first one (dimension 4) of the time-difference dimensions is statistically
stable; its coordinates represent the time differences between the symptom indi-
cators. If the coordinate values are negative, these time differences can be used to
evaluate the efficacy of a treatment. Only the coordinate of De (Depression not other-
wise specified) is negative to the findings of the present study. Thus, the psychiatric
symptoms for both the anorexia and bulimia groups do not improve significantly
following treatment, which is somewhat consistent with the findings of a recent
study (Kim and Annunziato 2020).

When researchers apply a matched CA to repeated-measures data, they need
to consider the following five steps: (1) Identify group- and time-difference, and
interaction dimensions; (2) Test the statistical stability of the dimensions with a
permutation test; (3) Interpret the coordinates of the statistically stable dimensions as
groupor timedifferences (in terms of categorical variables of interest); (4)Construct a
biplot with a pair of statistically stable dimensions to visually inspect any association
between the rows and columns; and (5) Complement visually inspected associations
with correlation coefficients to improve interpretation.

Limitation. In this study, matched CA is applied to repeated measurements with
two time points (pre- and post-treatment) and two independent groups (patients with
anorexia and bulimia); however, matched CA can also be used to analyse data with
more than two time points and groups. Nonetheless, a circulant matrix comprised
of multiple time points and groups will be quite large, making it considerably more
difficult to interpret the results. In addition, continuous repeated-measures data must
be properly discretised for matched CA. Discretisation of continuous data has been
performed for correspondence analysis; see, for example, Kim and Frisby (2019),
but when data are discretised, a researcher should consider theoretical justifications
(e.g. Kim et al. 2022).
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Indian J. Stat. 10(3), 269–276 (1950)



Trust of Nations

Represented by Hayashi’s Quantification
Method III

Ryozo Yoshino

1 Introduction: Birth of “Statistical
Mathematics”—Philosophy of Statistics

The late Chikio Hayashi (1918–2002), as a key member of the Institute of Statis-
tical Mathematics (ISM), initiated and developed a longitudinal and cross-national
comparative survey that has lasted formore than six decades from1953 to the present:
“Nihonjin no Kokuminsei Chosa [the Japanese National Character Survey (JNCS)]”
and “Ishiki no Kokusai-Hikaku [the Comparative Survey of People’s Attitudes and
Awareness]”. (See https://www.ism.ac.jp/ism_info_e/kokuminsei_e.html and Note
2). The present author has been a member of the survey team for more than three
decades.

The JNCS was closely linked to the re-organisation of official statistics and the
establishment of statistical public opinion polls to develop Japan’s post-war democ-
racy after theWWII. It also symbolises the development of Japanese statistical philos-
ophy such as “Statistical Mathematics” that began in the field of Japanese statistics
in the early 1940s. Traditional “mathematical statistics” rely on the mathematical
assumptions of probability distribution theory which are almost impossible to verify
directly. Several groups of statisticians criticised this and aimed to develop new
statistical approaches to solving social problems in a practical way (Midzuno 2003).
One group led to the establishment of the Institute of Statistical Mathematics. Since
then, this idea has been successively developed as “Hayashi’s quantification theory”
in the 1950s and 1960s (Hayashi 1950), “Multidimensional Data Analysis”, “Behav-
iormetrics”, and “Science of Survey” in the 1970s and the 1980s, and “Science of
Data” since the late 1980s (Hayashi, 1984, 1998a, b, 2001; Yoshino 2001, 2021;
Yoshino and Hayashi 2002, 2010).
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Some explanation is needed for “Science of Data [Deita no Kagaku in Japanese]”
in this context. This term was coined by Hayashi in the 1980s. At a keynote speech
by the International Federation of Classification Society (IFCS) held in Kobe in
1996, Hayashi explained that conventional hypothesis testing, numerical models,
and statistical models were not suitable to the study of complex and ambiguous
phenomena such as in human sciences and social sciences (Hayashi 1998b). He
proposed to construct a “Science of Data” based on a data-driven, exploratory and
holistic approaches that deals with such complex and ambiguous phenomena in
human and social sciences (Hayashi 2001; Osumi 2003). His idea is closely linked
to Tukey’s “Exploratory Data Analysis” or Benzécri’s approach. In exemplifying
his idea, Hayashi often made use of “Hayashi’s quantification method III (QMIII)”
that he invented in 1950s with Hiroshi Midzuno (Note 3). The method is mathe-
matically the same as Benzécri’s correspondence analysis, Bock’s optimal scaling,
or Nishisato’s dual scaling, although these have all been independently developed
in different fields; see Nishisato (2007), Matsumoto (2022) and Osumi (2003) for a
more detailed explanation while Nishisato (2023) also explains this issue from his
point of view.

In the early 1970s, Hayashi began conducting overseas survey under the paradigm
of “Cultural Link Analysis” in order to study the Japanese national character at a
higher level. It was later developed by the present author as “Cultural Manifold
Analysis” (CULMAN) that has been used for the longitudinal and cross-national
comparative survey under the statistical philosophy of “Science of Data” (Yoshino
2021).

Over the past 65 years, our research teamhas collected statistical random sampling
data of people’s attitudes, opinions and values for the development of our paradigm
to justify longitudinal and cross-national research. The purpose of our research is to
promote global mutual understanding of people’s attitudes, behavioural manners,
religion, values, etc. Mutual understanding is the key to avoiding unnecessary
conflicts between countries and developing a peaceful and prosperous world; see
Fig. 3 for a global manifold of local communities.

This paper, as part of our recent research, presents various applications of
Hayashi’s QMIII on interpersonal trust. Due to page restrictions, I will leave the
details of our paradigm and data analysis to the book (Yoshino 2021), which is a
summary of our long-term research on various topics and discussions. The detailed
discussion on people and trust is therefore not repeated here; see instead Yoshino
(2019, 2021). Nevertheless, I still believe that some of the results presented here on
QMIII provide basic information for readers to develop more sophisticated studies
of trust based on each country’s culture, economy, and political system.
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2 Hayashi’s Quantification Method III and Cross-National
Comparison

Since 1971, the JNCS has been expanded to include cross-national surveys. The
survey items were selected to compare people’s social values, ways of thinking,
emotions, religious attitudes, etc. These aspects may provide information on the
psychological distance between countries or races.

Cross-national surveys need to overcome the multifaceted methodological prob-
lems of cross-national comparability. These include problems concerning:

1. translation (survey questions need to be created to maintain the same meaning
in different languages),

2. the comparison of datasets collected using different sampling procedures in
different countries, and

3. descriptions and characteristics of the compared countries in terms of a common
logic (or framework of thinking).

Comparing people from different cultures makes these problems even more
problematic.

Multidimensional analysis techniques, such as QMIII, may give a specific solu-
tion to these problems. For example, Yoshino (2021) describes the robustness of
multidimensional analysis for slightly different wordings of questions. Furthermore,
Yoshino and Hayashi (2002) show that one can disregard differences in sampling
methods in a total configuration obtained by QMIII when comparing data from
many countries with respect to a group of items in contrast to an examination of
only a single item. In addition, Yoshino (1992a, b, c) showed that one could even
detect falsified data by applying multidimensional scaling, called the “super-culture
model”. The model is closely related to the Cultural Consensus Theory (CCT) by
Batchelder and Romney (1988); a method that the present author contributed to in
the early stages of its development as a research assistant.

QMIII also works to solve the weight adjustment problem for the sampling prob-
abilities of respondents. As an example, take our 1991 Japanese–Brazilian Survey.
For the Brazil data, there was a great deal of bias among Japanese–Brazilian’s due
to the complex ethnicities that made it difficult to find the right weight adjustment.
The weighting coefficients could be large enough to make the data less reliable; i.e.
the variance could become too large (Yamamoto et al. 1993). However, in the QMIII
output, the difference between the dataset with weighting adjustment and the dataset
withoutweighting adjustment is so small that the effect ofweighting can be ignored in
response pattern analysis when comparing data for multiple items in many countries.
Thus, multidimensional analysis may offset differences in item wordings, sampling
methods, and weight adjustments, to provide a stable macro pattern. Multidimen-
sional data analysis provides a consistent overall analysis, losing some of the details
of individual item data. In a sense, QMIII is a reasonably sensitive and reason-
ably insensitive scaling for survey data analysis. This is one of the “principle of
complementarity” in our “Science of Data” (Yoshino 2021).
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In a cross-national comparative survey, comparing completely different countries
from the beginning is not the best way to make a meaningful comparison in our
type of questionnaire survey. By comparing pairs of countries (or groups) with some
similarities and differences, such as language and ethnicity, and identifying simi-
larities and differences in their response patterns, you can reveal more meaningful
statistical comparisons. Gradually connecting these comparison links (country pairs)
will expand the chain of links and ultimately allow for global comparisons. This idea
was developed as a research paradigm called “Cultural Link Analysis” (CLA) and
eventually integrated three types of linkages:

1. longitudinal (temporal) linkage,
2. cross-national (spatial) linkage, and
3. thematic linkage (item-structure linkage).

Furthermore, we have developed a paradigm called “Cultural Manifold Analysis”
(CULMAN) to introduce a hierarchical structure into the three types of linkages. This
study confirms that when comparing response patterns across countries (or across
multiple groups), applying multidimensional analysis to response data for a number
of items from people in multiple countries is effective in obtaining stable results,
even if the response data sets are collected with different sampling methods and in
different languages; see Yoshino (2021, Sect. 3). Such stability couldn’t be obtained
with pairwise comparisons.

Under these research paradigms, our early research in cross-national survey
revealed attitudes and social values particular to the Japanese people, such as interper-
sonal relationships and religion. In addition, some survey results have been reported
on the general response tendency and the degree of self-disclosure particular to
each country. For example, the Japanese people tend to avoid extreme answers and
choose a category near themiddle of the options or say “undecided” or “don’t know”.
French people tend to give negative or critical answers to any question while Indians
in general tend to give positive or optimistic answers. However, it should be noted
that the same Japanese person, for example, may have different response patterns
when in Japan and when abroad. The idea of CULMAN is expected to serve as a
framework for developing empirical social sciences to understand the rise and fall
of a civilisation and promote mutual understanding between different cultures.

3 Trust and People

During the Cold War between the US and Soviet Union (1947–1991), Rotter (1971,
p. 443) stated:

It seems clear that disarmament will not proceed without an increase in trust on one or both
sides of the iron curtain.

The iron curtainwas torndown in1993, but new local conflicts havebeenoccurring
incessantly all over the world. Mutual understanding and mutual respect among
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countries are important for the peaceful development and economic prosperity of the
world, and “trust” is the key to mutual understanding and respect.

In the 1990s the Japanese witnessed significant social change under the rapid
reform of the economic and political system called “globalisation”. This change
brought us the collapse of even basic interpersonal relationships at home, at school,
and at work. This seems to be one of the main reasons why Japan was unable to
recover in almost three decades after the “burst of the bubble economy” from 1991
to 1993. Its aftereffects continue to this day.

Furthermore, our studies of interpersonal trust, institutional trust, and other social
values depicted features of people of several countries and Japanese immigrants
overseas. Some universal social values on human bonds such as the importance
of family was recognised, although the styles of family may be different across
countries or time. On the other hand, our studies have shown that trust scales, and
perhaps subjective scales in general, are not simple across cultures, and that scales
and scale objects are complementary or interactive in their measurement operations
(Yoshino 2001; Yoshino and Hayashi 2002). As Dogan (2000, p. 258) wrote:

decline in trust in authority can sometimes be a sign of political maturity that the critical
spirit of most citizens has improved.

Perhaps trust and distrust may not be diametrically opposed on a one-dimensional
scale. They are closely related to a kind of multidimensional mind structure in each
culture and each social condition.

4 People’s Sense of Trust and CULMAN

Some researchers say that “trust” cannot be measured directly (Fukuyama 1995).
There may probably be no universal measure of trust across cultures and times. Even
if there is one, it may not necessarily be linear with respect to various factors such
as income and social class. In other words, with social factors, as with medicines,
the right amount, neither too much nor too little, is important for a good effect.
However, by properly analysing the longitudinal patterns and cross-national patterns
of questionnaire survey responses, it is possible to identify certain important aspects
of people’s sense of trust. Here it is important to consider the data, taking into
account each country’s social situation and the general response tendency (Yoshino
2021, Sect. 3.4), rather than comparing the data superficially.

The past decades have developed psychological studies of measures of interper-
sonal trust. Among others, a set of three question items from the General Social
Survey (GSS) by National Opinion Research Centre at the University of Chicago
has been often used to measure people’s sense of trust; for some history on their use
of the three items, see Yoshino (2001, 2019, 2021). Although the GSS started as an
American version of JNCS, we have adopted the three items from the GSS for our
survey since 1978. The three question items are stated as follows (for the Japanese
phrasing of the three items, see https://www.ism.ac.jp/kokuminsei/index.html):

https://www.ism.ac.jp/kokuminsei/index.html
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Q36. Would you say that, most of the time, people try to be helpful, or that they
are mostly just looking out for themselves? (1) Try to be helpful, (2) Look out for
themselves,
Q37. Do you think that most people would try to take advantage of you if they
got the chance, or would they try to be fair? (1) Take advantage, (2) Try to be fair,
Q38. Generally speaking, would you say that most people can be trusted or that
you can’t be too careful in dealing with people? (1) Can be trusted, (2) Can’t be
too careful.

These items are often used as measures of reciprocity norms, fairness norms,
and generalised interpersonal trust, respectively. However, as noted previously, the
author is sceptical of using these items as such superficial measures and often pays
attention to multidimensional analysis of response patterns. As for the data of these
three items, Yoshino (2021) considered a multidimensional structure of local charts
(a cluster of countries) that appear according to the degree of similarity between the
countries. Themain purpose of applyingQMIII here is to analyse themutual relations
(similarity/dissimilarity) between countries in the multidimensional structure, rather
than just to discuss the level of “trust” on the unidimensional distribution of responses
for each of the three question items (Q36, Q37, and Q38). In the multidimensional
study, each local chart is created according to the similarity between countries, and all
charts form a manifold (hierarchical structure of local charts). The manifold depends
on the range of question items and the range of countries to be compared. Yoshino
(2016, 2019, 2021) reported some results on the following survey data:

a. The Seven Country Survey (Japan, USA, UK, France, Italy, West Germany, and
The Netherlands [1987–1993]).

b. The East Asian Values Survey (EAVS) (Japan, China [Beijing, Shanghai, Hong
Kong], Taiwan, South Korea, and Singapore [2002–2005]).

c. The Pacific-Rim Values Survey (PRVS) (Japan, China [Beijing, Shanghai,
Hong Kong], Taiwan, South Korea, Singapore, USA, Australia, and India
[2004–2009]).

d. The Asia-Pacific Values Survey (APVS) (Japan, China [Beijing, Shanghai, Hong
Kong], Taiwan, South Korea, Singapore, USA, Australia, India, and Vietnam
[2010–2014]).

For more information on these surveys, simple tabulations of the response data
for each country in each survey, and cross-tabulations by gender, age, etc., one may
visit see the ISM URL: https://www.ism.ac.jp/~yoshino/index_e.html.

I have already described the results from the applications of QMIII to the data
obtained from surveys in some detail; see Yoshino (2019, 2021). Figure 1 shows an
example on the APVS data.

In order to examine the similarity/dissimilarity of people’s sense of trust in these
countries, a group of local charts was created, taking into account the approximate
mutual distancebetween countries on theQMIII output (circles surrounding countries
in each figure), but the structure of the local charts can be considered from various
perspectives, so the representation here should be considered tentative.

https://www.ism.ac.jp/~yoshino/index_e.html
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Fig. 1 Quantification Method III (QMIII) on GSS 3 trust Items in the APVS (2010–2014): Japan,
South Korea, Beijing, Shanghai, Hong Kong, Taiwan, Singapore, USA, Australia, India, and
Vietnam. The clustering in this figure is drawn as an example of a local chart of a manifold, with the
relationships among the countries clustered on a trial basis. Theway amanifold looks depends on the
perspective from which the system is viewed, such as cultural, economic, or political. Eigenvalues
of the first and the second dimension are, respectively, 1.64 and 1.57

QMIII simultaneously analyses the structure of the data obtained from the three
questions. Many of these countries/regions have been repeatedly surveyed in our
studies (see the list of countries surveyed in a, b, c, and d above), allowing long-term
comparisons. However, selections of slightly different countries/regions can result
in sometimes fairly consistent output patterns of QMIII, and sometimes different
patterns. For the details, see Yoshino (2021).

5 Cross-National Analysis of Interpersonal Trust
in Europe, Russia, and Asia

The survey team directed by M. Sasaki, A. Ishikawa, V. Davydenko, A.B. Kprey-
chenko, N. Dryakhlov, Zh.T. Toshchenko, and V.D. Shadrikov (Sasaki 2014) carried
out a trust survey project targeting Russia, the Czech Republic, Finland, Germany,
the United States, Japan, Taiwan, and Turkey. Sasaki (2014, Chaps. 5 and 6) report
on the research and analysis. As a member of the team, I had access to the data. Not
only are some countries geographically distant from each other, but also their cultural
backgrounds and political systems are so diverse that a direct comparison in terms of
CULMANmay not makemuch sense. Therefore, in order to get an idea of the overall
composition in line with CULMAN’s concept, I applied QMIII to the combined
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data of the Sasaki’s survey, Seven Country Survey (1987–1993), and APVS (2010–
2014). (I used SPSS ver.24.0, Optimal Scaling, which is mathematically equivalent
to QMIII).

The result is shown in Fig. 2a and b. The local charts (clusters) are tentatively
drawn to highlight the relative positions of Russia, the Czech Republic, and Turkey
on the hierarchically overlapping local charts of the QMIII output. It has already been
observed that India and Vietnam differ slightly from the other countries surveyed by
PRVS and APVS. These figures may suggest something about the contrast between
previous socialist countries and the other countries. I do not think that certain coun-
tries are more trustful than others (Dogan 2000), but I do believe that the similarities
and dissimilarities of the response patterns are useful for understanding some differ-
ences of attitudes and values on interpersonal trust in many senses. These config-
urations may provide some cues to understand the relationships that have existed
or do exist between countries/regions; for details, see Sasaki (2014, Chap. 9). As
repeatedly observed in our past surveys, clusters of UK and USA, and of France and
Italy are found in these configurations too. Figure 2a and b also suggest that Japan
and Germany are similar in some aspects and different in others. For example, in a
survey of seven countries, it was observed that in interpersonal relations at home and
at work the two are similar, but in attitudes towards science to overcome psycholog-
ical and social problems, Germany is positive and Japan is negative (Hayashi et al.
1998).

Note that Sasaki’s survey data is several years old, and that the three GSS items are
not directly linked to geography or international politics. However, given the current
international situation in Russia and Ukraine, the position of France, Italy, Russia,
and Turkey in these configurations may appear to be closely related to complex
international political relations, including economic sanctions against Russia.

For the eight countries in Sasaki’s project, he developed a data analysis that
included three items of trust as well as many items of trust and distrust, concluding
his findings with the following four observations (Sasaki 2014, p. 262):

1. For all the eight countries compared, the parental socialisation of trust/distrust is
the most important factor for the children to develop their sense of trust in later
lives.

2. For all the eight countries, various degrees of parents keeping promises during
childhood are related with parental socialisation of trust/distrust in childhood.

3. For five of the countries (USA, Finland, Germany, the Czech Republic, and
Taiwan), experience of being betrayed is linkedwith later development of sense of
trust distrust. But the combined data of eight countries, the effect is not significant.

4. In each of the six countries, with the exception of the USA and Germany, there
was no significant relationship between the extent to which parents kept their
promises to their children during childhood and the subsequent development of
children’s sense of trust. However, a modest significant correlation was found in
the data for the eight countries combined.

Overall, we confirmed several preceding studies that children’s experience of
observance with parents leads to their sense of trust or distrust.
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a

b

Fig. 2 a Quantification Method III (MMIII) on GSS 3 trust items for the combined data of the
seven country survey (1987–1993), the APVS (2010–2014) and the Russian Survey Project (2008–
2012) (Russia, the Czech Republic, Finland, US, Japan, Taiwan, and Turkey Survey): the first and
third dimension. Note: (R) indicates part of a Russian research project. The clustering in this figure
is drawn as an example of a local chart of a manifold by trial clustering the relationships among
countries. The way a manifold looks depends on the perspective of the system, such as the cultural,
economic or political system. Eigenvalues of the first dimension and the second are, respectively,
1.80 and 1.66. b Quantification Method III (QMIII) on GSS 3 Trust Items for the combined data of
the Seven Country Survey (1987–1993), the APVS (2010–2014) and the Russian Survey Project
(2008–2012) (Russia, the Czech Republic, Finland, US, Japan, Taiwan, and Turkey Survey): the 1st
and the 3rd dimension. See this figure with Fig. 2a. Note: (R) indicates part of a Russian research
project. Eigenvalues of the first dimension and the third are, respectively, 1.80 and 1.46
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Fig. 3 An illustration of global manifold of local communities. Adapted from p. 17 of
“General commentary towards an economic partnership agreement: formulation of the disci-
pline” (in Japanese) https://www.meti.go.jp/shingikai/sankoshin/tsusho_boeki/fukosei_boeki/rep
ort_2019/pdf/2019_03_00.pdf

6 Unidimensional Scaling of Interpersonal Trust

Sasaki (2014, Chap. 8) explored a possibility of unidimensional scaling on the three
GSS items of trust (Q36, Q37, and Q38) for the data set across the eight countries.
It shows an example of application of QMIII to construct a unidimensional scale as
I now describe.

For all possible combinations of each pair of choices of the three GSS items on
trust, 2 × 2 × 2 = 8 patterns are possible. For each of all eight countries, those
who gave all optimistic responses to the three items are less than some 5%, whereas
those who gave all pessimistic responses to the three items vary across the countries
such as 4.7% of respondents in Turk, 6.1% in USA, 11.5% in Germany, 12.1%
in the Czech Republic, 12.6% in Russia, 19.2% in Finland, 20.9% in Taiwan, and
29.4% in Japan. Note that “1”, “2”, and “1” to Q36, Q37, and Q38, respectively,
are optimistic responses whereas “2”, “1”, and “2” are pessimistic responses. Here,
for convenience to explore possible Likert scales let’s change the coding so that “1”
is an optimistic response and “2” is the pessimistic response. Sasaki examined the
validity of constructing a Likert scale such that Type A includes “111”, “112”, “212”,
and “222” (in that order) and Type B (“111”, “211”, “212”, and “222”) with help by
Fumi Hayashi who is another member of our survey project. As a QMIII technical
specialist, FumiHayashi was ChikioHayashi’s assistant for decades before his death.
They share the same surname but have no kinship.

https://www.meti.go.jp/shingikai/sankoshin/tsusho_boeki/fukosei_boeki/report_2019/pdf/2019_03_00.pdf
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Sasaki applied QMIII to the data of the eight response patterns across the eight
countries, and the result yielded three clusters: Germany and USA; the Czech
Republic, Turkey, and Russia; Japan, Finland, and Taiwan. He then applied QMIII
to the raw data of the three items for the eight countries and found that Finland
and Taiwan are located far away from the other six countries. After some trials and
errors, he concluded that Likert scale can be constructed as a unidimensional scale
of the three items of trust (A or B type) in each of the six countries except Finland
and Taiwan. Although the three items of the GSS are often used in many countries,
Sasaki’s study cautions us to use them as a trust scale across all countries. This is
consistent with our past studies of comparative surveys that covered Asia–Pacific
countries, European countries, India, and USA as well as Japanese immigrants in
Hawaii, on the West Coast of USA, and Brazil (Yoshino 2021).

7 For a Peaceful and Prosperous World

Finally, Fig. 3 shows an illustration of the Global Manifold of local communities as
of 2021. On this manifold, each local chart (local community) represents a dynamic
change in international relations. New local charts emerge and others disappear; two
local charts may merge into a larger local chart. Several pairs of local charts overlap
and as a whole constitute a global manifold. In order to maintain stable, peaceful,
and prosperous development, a set of “soft” rules linking pairs of local charts, rather
than a single restrictive global regulation, is necessary. The leaders of the modern
world need to be mediators, resolving regional conflicts not through military force
but through global cooperation and harmony.

I sincerely hope that our survey research can contribute to our mutual under-
standing for the development of world peace and prosperity.

Appendix

Note (1) This paper is a revision of some parts of Yoshino (2019, 2021), with the
addition of a new data analysis.
Note (2): For details of our past surveys, please refer to the series of ISM Survey
Reports and the following related websites:

• http://www.ism.ac.jp/editsec/kenripo/index.html (ISM Survey Research
Reports in Japanese).

• http://www.ism.ac.jp/editsec/kenripo/index_e.html (ISM Survey Research
Reports in English)

• http://www.ism.ac.jp/ism_info_j/kokuminsei.html (JNCS in Japanese)
• http://www.ism.ac.jp/ism_info_e/kokuminsei_e.html (JNCS in English)
• http://www.ism.ac.jp/~yoshino/ (ISM Cross-National Studies in Japanese)

http://www.ism.ac.jp/editsec/kenripo/index.html
http://www.ism.ac.jp/editsec/kenripo/index_e.html
http://www.ism.ac.jp/ism_info_j/kokuminsei.html
http://www.ism.ac.jp/ism_info_e/kokuminsei_e.html
http://www.ism.ac.jp/~yoshino/
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• http://www.ism.ac.jp/~yoshino/index_e.html (ISM Cross-National Studies in
English)

For a detailed list of related publications https://www.ism.ac.jp/~yoshino/
references_e.html

Note (3): As mention in the text, in Japan, a series of statistical philosophies,
starting with “Statistical Mathematics”, followed by “quantification theory”,
“Behaviormetrics”, “Survey Science”, and “Science of Data”. Hayashi’s quan-
tification theory was originally developed to solve important social problems
related to economic reconstruction and post-war democratisation after the defeat
in the WWII. His theory produced several techniques called Hayashi’s Quan-
tification Method I, II, III, IV, etc. that deal with categorical data for solving
problems concerning reform of the Japanese language, personnel assessment in
state-owned enterprises, market surveys, etc. (Komazawa et al. 1998). The 1970s
and 1980s saw numerous applications of the quantification methods by many
Japanese researchers. This proceeded in parallel with the development of the
Behaviormetric Society of Japan, which was established in 1972. During this
period, some researchers attempted to publish papers in foreign journals, but
unfortunately, these were rarely accepted as there was little understanding of
Hayashi’s quantification theory among foreign researchers.

Hayashi’s quantification theory was eventually sublimated into Hayashi’s
“Science of Data”, and from around the late 1980s, discussions with researchers
from various countries began to develop at International Federation of Classification
Society (IFCS) (Hayashi 1998b).

For Hayashi’s research team, the “science of data” means gathering comprehen-
sive information on research topics that should lead to solutions to important social
issues, in a series of processes from survey design, sampling design, preliminary
survey, main survey, data cleaning, data analysis, and research reports for policy
making. Our research is refined by repeating this series of processes and getting feed-
back at each stage. We believe that approaches such as hypothesis testing, computer
simulations with virtual data and simple theory building are too naïve to deal with
complex phenomena in the human and social sciences. Therefore, we emphasise
statistical survey data-driven research (not “big data”, which cannot be assessed for
statistical accuracy) and holistic approaches. In this respect, QMIII is used diversely
and effectively (Yoshino 2021).
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Deconstructing Multiple Correspondence
Analysis

Jan de Leeuw

1 Notation

Let us start by defining some of the notation used in this paper.We have i = 1, . . . , n
observations on each of j = 1, . . . , m categorical variables, where variable j has
k j categories. We use k� for the sum of the k j , while the maximum number of
categories over all variables is k+ = max (k1, . . . , km). We also define ms , with
s = 1, . . . , k+, where ms is the number of variables with k j ≥ s. Thus both m1 and
m2 are always equal to m. Also

∑k+
s=1 ms = k�. The fact that variables can have a

different number of categories is a major notational nuisance. If they all have the
same number of categories k then k+ = k, k� = mk, and all ms are equal to m.

Thedata are coded asm indicatormatricesG j ,with {G j }ik = 1 if andonly if object
i is in category k of variable j and {G j }ik = 0 otherwise. The G j are n × k j , zero-
one, and column-wise orthogonal (because the categories are mutually exclusive). If
we concatenate theG j horizontally we have the n × k� matrixG, which we also call
the indicator matrix; in French data analysis it is the “tableau disjonctif complet”,
in Nishisato (1980) it is the “response-pattern table”. The Burt table (“tableau de
Burt”), is the k� × k� cross product matrix C = n−1G′G. The univariate marginals
are in the diagonal matrix D = diag (C). The normalised Burt table is the matrix
E = m

1
2D− 1

2CD− 1
2 .

Although we introduced G, C, D and E as partitioned matrices of real numbers,
it is also useful to think of them as matrices with matrices as elements. Thus C, for
example, is an m × m matrix with as elements the matrices C j� = G′

jG�, and G is
an 1 × m matrix with as its m elements G j . Note that because we have divided the
cross product by n, all C j�, and thus all D j = C j j , add up to one.
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In the paper we often use the direct sum of matrices. IfA and B are matrices, then
their direct sum is:

A
⊕

B =
[
A 0
0 B

]

, (1)

and if Ar are s matrices, then
⊕s

r=1 Ar is block-diagonal with the Ar as diagonal
submatrices.

2 Introduction

Multiple CorrespondenceAnalysis (MCA) can be introduced inmany differentways.
Mathematically:MCA is the Singular Value Decomposition (SVD) ofm− 1

2Gy =√
λx and m− 1

2G′x = √
λDy, the Eigen Value Decomposition (EVD) Ey = λ2y for

the normalised Burt table, and the EVD of m−1G′D−1Gx = λ2x, the average pro-
jector. Usingm in the equations seems superfluous, but it guarantees that 0 ≤ λ ≤ 1.

Statistically: MCA is a scoring method that minimises the within-individual and
maximises the between-individuals variance, it is a graphical biplot method that
minimises the distances between individuals and the categories of the variables they
score in, it is an optimal scaling method that maximises the largest eigenvalue of
the correlation matrix of the transformed variables, and that linearises the average
regression of one variable with all the others. It can also be presented as a special case
of Homogeneity Analysis, Correspondence Analysis, and Generalised Canonical
Correlation analysis; see, for example, the review article by Tenenhaus and Young
(1985).

It is of some interest to trace the origins of these various MCA formulations, and
to relate them to an interesting exchange in the 1950s between two of the giants of
psychometrics on whose proverbial shoulders we still stand. In 1950 Sir Cyril Burt
published, in his very own British Journal of Statistical Psychology, a great article
introducing MCA as a form of factor analysis of qualitative data (Burt 1950). There
are no references in the paper to earlier occurances of MCA in the literature. This
promptedLouisGuttman to point out in a subsequent issue of the same journal that the
relevant equations were already presented in great detail in Guttman (1941). Guttman
assumed Burt had not seen the monograph (Horst 1941) in which his chapter was
published, because of the communication problems during the war, which caused
“only a handful of copies to reach Europe” (Guttman 1953). Although the equations
and computations given by both Burt and Guttman were identical, Guttman pointed
out differences in interpretation between their two approaches. These differences
will especially interest us in the present paper. They were also discussed in Burt’s
reaction to Guttman’s note (Burt 1953). The three papers are still very readable and
instructive, and in the first part of the present paper we’ll put them in an historical
context.
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3 History

3.1 Prehistory

The history of MCA has been reviewed in De Leeuw (1973), Benzécri (1977b),
Nishisato (1980, Sect. 1.2),Tenenhaus and Young (1985), Gower (1990), and Lebart
and Saporta (2014), each from their own tradition and point of view. Although there
is agreement on the most important stages in the development of the technique,
there are some omissions and some ambiguities. Some of the MCA historians, in
their eagerness to produce a long and impressive list of references, do not seem to
distinguishmultiple from ordinary Correspondence Analysis (CA), one-dimensional
from multidimensional analysis, binary data from multicategory data, and data with
or without a dependent variable.

What we call “prehistory” isMCAbeforeGuttman (1941), andwhat we find in the
prehistory is almost exclusively Reciprocal Averaging Analysis (RAA). We define
RAA, in the present paper, starting from the indicator matrix G. Take any set of trial
weights for the categories. Then compute the score for the individual by averaging
the weights of the categories selected by that individual, and then compute a new set
of weights for categories by averaging the scores of the individuals in the categories.
These two reciprocal averaging steps are iterated until convergence is attained, that
is when weights and scores do not change any more (up to a proportionality factor).

In various places it is stated, or at least suggested, that RAA (both the name and
the technique) started with Richardson and Kuder (1933). This seems incorrect. That
paper has no trace of RAA, although it does document a scale construction using
Hollerith sorting and tabulation machines. What seems to be true, however, is that
both the RAA name and the technique started at Proctor and Gamble in the early
1930s, in an interplay between Richardson and Horst, both Proctor and Gamble
employees at the time. This relies on the testimony of Horst (1935), who does indeed
attribute the name and basic idea of RAA to Richardson:

The method which he suggested was based on the hypothesis that the scale value of each
statement should be taken as a function of the average score of the men for whom the
statement was checked and, further, that the score of each man should be taken as a function
of the average scale value of the statements checked for the man.

The definition given by Horst is rather vague, because “a function of” is not
very specific. It also does even mention the iteration of RAA to convergence (or,
as Guttman would say, internal consistency). This iterative extension again seems
to be due either to Horst or to Richardson. Horst was certainly involved at the time
in the development of very similar techniques for quantitative data (Horst 1936;
Edgerton and Kolbe 1936; Wilks 1938). For both quantitative and qualitative data
these techniques are based on minimising within-person and maximising between-
person variance, and they all result in computing the leading principal component of
some data matrix. Horst (1935), starting from the idea to make linear combinations
to maximise between individual variance, seems to have been the first one to realise
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that the equations defining RAA are the same as the equations describing Principal
Component Analysis (PCA), and that consequently there aremultiple RAA solutions
for a given data matrix.

There are some additional hints about the history of RAA in the conference paper
ofBaker andHoyt (1972). They alsomostly credit Richardson, although theymention
he never published a precise description of the technique, and it has been used
“informally” without a precise justification ever since. They also mention that the
first Hollerith type of computer implementation of RAA was by Mosier in 1942, the
first UNIVACprogrammewas byBaker in 1962, and the first FORTRANprogramme
was by Baker and Martin in 1969.

We have not mentioned in our prehistory the work of Fisher (1938, 1940)
and Maung (1941). These contributions, basically contemporaneous with Guttman
(1941), clearly introduced the idea of optimal scaling for categorical data, of Cor-
respondence Analysis of a two-way table, and even of non-linear transformation of
the data to fit a linear (additive) model. They also came up with the first principal
component of a Gramianmatrix as a solution, realising there aremultiple solutions to
their equations. However, as pointed out by Gower (1990), they do not useMCA as it
is currently defined. And, finally, although Hill (1973) seems to have independently
come up with the RAA name and technique, its origins are definitely not in ecology.

3.2 Guttman 1941

RAA was used to construct a single one-dimensional scale, but Horst (1935) indi-
cated already its extension to more than one dimension. The first publication of the
actual formulas, using the luxuries of modern matrix algebra, was Guttman (1941),
ironically in a chapter of a book edited by Horst. This is really where the history of
MCA begins, although there are still some notable differences with later practise.

Guttman starts with the indicator matrix G, and then generalises and systema-
tises the analysis of variance approach to optimal scaling of indicator matrices. He
introduces three criteria of internal consistency: one for the categories (columns),
one for the objects (rows), and one for the entire table. All three criteria lead to the
same optimal solution, which we now recognise as the first non-trivial dimension of
MCA. We now also know, because we have been exposed to more matrix algebra
than was common in the 1940s and 1950s, that this merely restates the fact that for
any matrix X the non-zero eigenvalues of X′X and XX′ are the same, and moreover
they are equal to the squares of the singular values of X. The left and right singular
vectors of X are the eigenvectors of X′X and XX′.

For our purposes in this paper the following quotation from Guttman’s section
five is important. When discussing the multiple solutions of the MCA stationary
equations he says (pp. 330–331):

There is an essential difference, however, between the present problem of quantifying a class
of attributes and the problem of “factoring” a set of quantitative variates. The principal axis
solution for a set of quantitative variates depends on the preliminary units of measurement
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of those variates. In the present problem, the question of preliminary units does not arise
since we limit ourselves to considering the presence or absence of behaviour.

Thus Guttman, at least in 1941, shows a certain reluctance to consider the addi-
tional dimensions in MCA for data analysis purposes.

In addition to the stationary equations of MCA, Guttman also introduces the chi-
square metric. He notes that the rank of C, and thus of E, is that of the indicator G,
which is at most 1 + ∑m

j=1

(
k j − 1

) = k� − (m − 1). ThusC has at leastm − 1 zero
eigenvalues, inherited from the linear dependencies in G. In addition E has a trivial
eigen pair, independent of the data, with eigenvalue equal to 1. Suppose the vector e
has all its k� elements equal to+1. ThenCe = mDe and thusEy = y, with y = D

1
2 e.

If we deflate the eigenvalue problem by removing this trivial solution then the sum
of squares of any off-diagonal submatrix of C is the chi-square for independence of
that table.

Guttman also points out that the scores and weights linearise both regressions
if we interpret the indicator matrix as a discrete bivariate distribution. This follows
directly from the interpretation of MCA as a CA of the indicator matrix, because CA
linearises regressions in a bivariate table. Of course interpreting the binary indicator
matrix G as a bivariate distribution is quite a stretch. Both the chi-square metric and
the linearised regressions were discussed earlier by Hirschfeld (1935) in the context
of a single bivariate table. Neither Hirschfeld nor Fisher are mentioned in Guttman
(1941).

There are no data and examples in Guttman’s article. Benzécri (1977b) remarks:

L. Guttman avait défini les facteurs mêmes calculés par l’analyse des correspondances. Il ne
les avait toutefois pas calculés; pour la seule raison qu’en 1941 les moyens de calcul requis
(ordinateurs) n’existaient pas.

Translation: L. Guttman has defined the same factors as calculated by Correspondence Anal-
ysis. He did not calculate them, however, for the simple reason that in 1941 the necessary
calculation tools (computers) did not exist.

That is not exactly true. In Horst (1941) the chapter by Guttman is followed by
another chapter called “Two Empirical Studies of Weighting Techniques”, which
does have an empirical application in it. It is unclear who wrote that chapter, but the
computations, which were carried out on a combination of tabulating and calculating
machines, were programmed by nobody less than Ledyard R. Tucker.

3.3 Burt 1950

Guttman was reluctant to look at additional solutions of the stationary equations
(additional “dimensions”), but Burt (1950) had no such qualms. After a discussion
of the indicator matrix G and its corresponding cross product C (now known as the
Burt table) Burt suggests a PCA of the normalised Burt table, i.e. solving the eigen
problem Ey = mλy. By the way, Burt discusses PCA as an alternative method of
factor analysis, which is not in line with current usage clearly distinguishing PCA
and FA.
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Most of Burt’s references are to previous PCA work with quantitative variables,
and much of the paper tries to justify the application of PCA to qualitative data. No
references to Guttman, Fisher, Horst, or Hirschfeld are given. The justifications that
Burt presents are from the factor analysis perspective: C is a Gramian matrix, E is a
correlation matrix, and the results of factoring E can lead to useful classifications of
the individuals.

In the technical part ofBurt’s 1950paper he discusses the rank, the trivial solutions,
and the connectionwith the chi-squares of the bivariate subtables thatwe have already
mentioned in our “Guttman (1941)” section.

3.4 Guttman 1953

As we saw in the introduction Guttman (1953) starts his paper with the observation
that he already published the MCA equations in 1941. He gives this a positive spin,
however, stating (p. 1):

It is gratifying to see how Professor Burt has independently arrived at much the same for-
mulation. This convergence of thinking lends credence to the suitability of the approach.

I will now insert a long quote from Guttman(1953, p. 2), because it emphasises
the difference with Burt, and it is of major relevance to the present paper as well.
Guttman really tells it like it is:

My own article goes on to point out that, while the principal components here are formally
similar to those for quantitative variables, nevertheless their interpretation may be quite
different. The interrelations among qualitative items are not linear, nor even algebraic, in
general. Similarly, the relation of a qualitative item to a quantitative variable is in general
non-algebraic. Since the purpose of principal components–or any other method of factor
analysis–is to help reproduce the original data, one must take into account this peculiar
feature.

The first principal component can possibly fully reproduce all the qualitative items entirely by
itself: the items may be perfect, albeit non-algebraic, functions of this component. *Linear*
prediction will not be perfect in this case, but this is not the best prediction technique possible
for such data. Therefore, if the first principal component only accounts for a small proportion
of the total variance of the data in the ordinary sense, it must be remembered that this ordinary
sense implies linear prediction. If the correct, but *non-linear*, prediction technique is used,
the whole variation can sometimes be accounted for by but the single component. In such a
case, the existence of more than one principal component arises merely from the fact that a
linear system is being used to approximate a non-linear one. (Each item is always a perfect
linear function of *all* the principal components taken simultaneously).

This was written after the publication of Guttman (1950) in which the MCA
of a perfect scale of binary items is discussed in impressive detail. The additional
dimensions in such an analysis are curvilinear functions of the first, in regular cases
in fact orthogonal polynomials of a single scale. Specifically, the second dimension
is a quadratic, or quadratic-looking, function of the first, which creates the famous
“horseshoe” or “arch” (in French: the “effect Guttman”). Since a horseshoe curves
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back in at its endpoints that name is often not appropriate, and we will call these non-
linearities the Guttman effect. It seems that the second and higher curved dimensions
are just mathematical artefacts, and much has been published since 1950 to explain
them, interpret them, or to get rid of them (Hill and Gauch 1980).

In the rest of Guttman (1953) gives an overview of more of his subsequent work
on scaling qualitative variables. This leads to material that goes beyond MCA (and
thus beyond the scope of our present paper).

3.5 Burt 1953

Burt (1953, p. 5), in his reply to Guttman (1953), admits there are different objectives
involved:

If, as I gather, he cannot wholly accept my own interpretations, that perhaps is attributable
to the fact that our starting-points were rather different. My aim was to factorise such data;
his to construct a scale.

This does not answer the question, of course, if it is really advisable to apply PCA to
the normalised Burt matrix. It also seems there also are some differences in national
folklore, since Burt (1953, p. 6) goes on to say:

In the chapters contributed to *Measurement and Prediction* both Dr. Guttman and Dr.
Lazarsfeld draw a sharp distinction between the principles involved in these two cases.
Factor analysis, they maintain, has been elaborated solely with reference to data which is
quantitative *ab initio*; hence, they suppose, it cannot be suitably applied to qualitative data.
On this side of the Atlantic, however, there has always been a tendency to treat the two cases
together, and, with this double application in view, to define the relevant functions in such a
way that they will (so far as possible) cover both simultaneously. British factorists, without
specifying very precisely the assumptions involved, have used much the same procedures
for either type of material. Nevertheless, there must of necessity be certain minor differences
in the detailed treatment. These were briefly indicated in the paper Dr. Guttman has cited;
but they evidently call for a closer examination. I think in the end it will be found that they
are much slighter than might be supposed.

Burt then goes on to treat the case of a perfect scale of binary items, previously
analysedbyGuttman (1950).Hepoints out that aPCAof a perfect scale gives (almost)
the same results as those given by Guttman, and that consequently his approach of
factoring a table works equally well as the approach that constructs a scale. Indeed,
the differences between qualitative and quantitative factoring are “much slighter than
might be supposed”. AlthoughBurt is correct, he does not discuss where theGuttman
effect comes from, and whether it is desirable and/or useful.
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3.6 Benzécri 1977

French data analysis (“Analyse des Données”) views MCA as a special case of CA
(Le Roux and Rouanet 2010). Benzécri (1977a) discusses the CA of the indicator
matrix and gives a great deal of credit to Ludovic Lebart. Lebart (1975,1976) are usu-
ally mentioned as the first publications to actually use “analyse de correspondences
multiples” and “tableau de Burt”.

Benzécri also gives Lebart the credit for discovering that a CA of the indicator
matrix G gives the same results as a CA of the Burt table C, which restates again
our familiar matrix result that the singular value decomposition of a matrix gives
the same results as the eigen decomposition of the two corresponding cross product
matrices:

L. Lebart en apporta la meilleure justification: les facteurs sur J issus de l’analyse d’un tel
tableau I x J ne sont autres (à un coefficient constant près) que ceux issus de l’analyse du
véritable tableau de contingence J x J suivant: k(j, j’) = nombre des individus i ayant à la fois
la modalité j et la modalité j’. Dès lors on rejoint le format original pour lequel a été conçue
l’analyse des correspondances.

Translation: L. Lebart has given the best justification: the factors on J from an analysis
of an I x J table are the same as those from the analysis of the actual J x J contingency table
with k(j, j’) = the number of individuals i that are both in category j and j’. And thus we are
back in the original format for which Correspondence Analysis was designed.

Benzécri also mentions the surprising generality and wide applicability of MCA:

Le succès maintenant bien compris des analyses de tableaux en 0,1 mis sous forme disjonc-
tive complète invite à rapprocher de cette forme, par un codage approprié, les données les
plus diverses.

Translation: The success, which we now understand well, of the analysis of (0,1) tables
in disjunctive complete form invites us to apply this form, by suitable coding, to the most
diverse forms of data.

This generality was later fully exploited in the book by Gifi (1990), which builds a
whole system of descriptive multivariate techniques on top of MCA.

3.7 Gifi 1980

Gifi (1990) wasmostly written in 1980–1981 from lecture notes for a graduate course
in non-linear multivariate analysis, and builds on previous work in De Leeuw (1973).
Throughout, the main engine of the Gifi approach to multivariate analysis minimises
the meet-loss function:

σ (X; Y1, . . . , Ym) =
m∑

j=1

tr
(
X − G jY j

)′ (
X − G jY j

)
, (2)
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over the n × p matrices of scores X with X′X = nI and over the k j × p matrices
of loadings Y j that may or may not satisfy some constraints. Gifi calls this general
approach Homogeneity Analysis (HA). Loss function (2) was partly inspired by
Carroll (1968) who used this least squares loss function in generalised canonical
analysis of quantitative variables.

The different forms of multivariate analysis in the Gifi framework arise by impos-
ing additivity, and/or rank, and/or ordinal constraints on the Y j . See De Leeuw and
Mair (2009) for a user’s guide to the R package homals, which implements min-
imisation of meet-loss under these various sets of constraints.

If there are no constraints on the Y j then minimising (2) computes the p dominant
dimensions of an MCA. What makes the loss function (2) interesting in our compar-
ative review of MCA is the distance interpretation and the corresponding geometry
of the joint biplot of objects and categories. Gifi minimises the sum of the squared
distances between an object and the categories of the variables that the object scores
are in. If we make a separate biplot for each variable j it has n objects points and k j

category points. The category points are in the centroid of the object points in that
category, and if we connect all those objects with their category points we get k j star
graphs in what Gifi calls the star plot. Minimising (2) means making the joint plot
in such a way that the stars are as small as possible.

The homals package of De Leeuw andMair (2009) actually computes the propor-
tion of individuals correctly classified if we assign each individual to the category it
is closest to (in p dimensions). In this way we can indeed find, like Guttman, that a
single component can account for all of the “variance”.

There are indications, especially in Gifi (1990, Sect. 3.9), that they are somewhat
uncomfortable with the multidimensional scale construction aspects of MCA. They
argue that each MCA dimension gives a quantification or transformation of the vari-
ables, and thus each MCA dimension can be used to compute a different correlation
matrix between the variables. These correlation matrices, of which there are k� − m,
can then all be subjected to a PCA. So the single indicator matrix leads to k� − m
PCA’s. Gifi calls this “data production”, and obviously does not like the outcome.
Thus, as an alternative to MCA, they suggest using only the first dimension and
the corresponding correlation matrix, which is very close to RAA and to Guttman
(1941).

In the Gifi system the data production dilemma is further addressed in two ways.
In the geometric framework based on the loss function (2) a form of non-linear PCA
is defined in which we restrict the k j × p category quantifications of a variable to
have rank one, i.e. the points representing the categories of a variable are on a line
through the origin. Gifi shows that this leads to the usual non-linear PCA techniques
(De Leeuw 2006; Young et al. 1978). The second development to get away from
the “data production” in MCA is the “aspect” approach (De Leeuw 1988a, b, 2004;
Mair and De Leeuw 2010; De Leeuw et al. 1999). There we look for a single quan-
tification or transformation of the variables that optimises any real valued function
(or aspect) of the resulting correlation matrix. Non-linear PCA is the special cases
in which we maximise the sum of the first p eigenvalues of the correlation matrix,
and MCA chooses the scale to maximise the dominant eigenvalue. Other aspects
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lead to regression, canonical analysis, and structural equation models. In this more
recent methodology based on aspects Guttman’s one-dimensional scale construction
approach has won out over Burt’s multidimensional factoring method.

4 Deconstructing MCA

4.1 Introduction

We are left with the following questions from our history section, and from the
Burt-Guttman exchange:

1. What, if anything, is the use of additional dimensions in MCA?
2. Where does the Guttman effect come from?
3. Is MCA really just PCA?
4. How many dimensions of MCA should we keep?
5. Which “variance” is “explained” by MCA?
6. How do we handle the “data production” aspects of MCA?

In De Leeuw (1982) several results are discussed that are of importance in answering
these questions, and more generally for the interpretation (and deconstruction) of
MCA. Additional, and more extensive, discussion of these same results is in Bekker
and De Leeuw (1988) and De Leeuw (1988a).

To compute the MCA eigen decomposition we could, for example, use the Jacobi
method, which diagonalises E by using elementary plane rotations. It builds up Y
by minimising the sum of squares of the off-diagonal elements. Thus E is updated
by iteratively replacing it by JstEJst , where Jst with s < t is a Jacobi rotation, that
is, a matrix that differs from the identity matrix of order k� only in elements (s, s)
and (t, t), which are equal to u, and in elements (s, t) and (t, s) which are +v and
−v, where u and v are real numbers with u2 + v2 = 1. We cycle through all upper-
diagonal elements s < t for a single iteration, and continue iterating until the E
update is diagonal (within some ε).

We shall discuss a different three-step method of approximately diagonalising
E, which, for lack of a better term, we call Deconstructed Multiple Correspondence
Analysis (DMCA). It also works by applying elementary plane rotations toE, but it is
different from the Jacobi method because it is not intended to exactly diagonalise any
arbitrary real symmetric matrix, or any normalised Burt matrix for that matter. It uses
its rotations to eliminate all off-diagonal elements of all m2 submatrices Ekl , where
k, l = 1, . . . , m. If it cannot do this perfectly, it will try to find the best approximate
diagonalisation. If DMCA does exactly diagonalise all submatrices, then some rear-
ranging and additional computation finds the eigenvalues and eigenvectors of E, and
thus theMCA. The eigenvectors are, however, ordered differently (not by decreasing
eigenvalues), and provide more insight in the inner workings of MCA. If an exact
diagonalisation is not possible, the approximate diagonalisation often still provides
this insight.
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We first discuss some theoretical cases in which DMCA leads to the MCA, and
after that some empirical examples are described in which the diagonalisation is only
approximate and DMCA and MCA differ. As you will hopefully see, both types of
DMCA examples show us what MCA as a data analysis technique tries to do, and
how the results help in answering the six questions given above, arising from the
Burt-Guttman exchange.

4.2 Mathematical Examples

4.2.1 Binary Data

Let’s start with the case of binary data, i.e. indicator matrices for which all k j are
equal to two. The normalised Burt table E = m−1D− 1

2CD− 1
2 consists of m × m

submatrices E j� of dimension 2 × 2. Suppose the marginals of variable j are p j0

and p j1. For each j make the 2 × 2 table:

K j =
[+√

p j0 +√
p j1

+√
p j1 −√

p j0

]

, (3)

and supposeK is the direct sum of theK j , i.e. the block-diagonal matrix with theK j

on the diagonal. Then F = K′EK again has m × m submatrices of order two. For
each j, l = 1, . . . , m the matrix F j� = K′

jE j�K� is diagonal, with element (1, 1)
equal to +1 and element (2, 2) equal to the point correlation (or phi-coefficient)
between binary variables j and � (and thus also equal to +1 if j = l).

This means we can permute rows and columns of F using a permutation matrix P
such thatR = P′FP is the direct sum of two correlationmatricesR11 andR22, both of
orderm.R11 has all elements equal to+1,R22 has its off-diagonal elements equal to
the phi-coefficients. We collect the (1, 1) elements of all F jl , which are all+1, inR11

and the (2, 2) elements in R22. Suppose L1 and L2 are the normalised eigenvectors
of R11 and R22, and L is their direct sum. Then � = m−1LRL is diagonal, with
on the diagonal the eigenvalues of E and with KPL the normalised eigenvectors
of E. Thus the eigenvalues of E are those of m−1R11, i.e. one 1 and m − 1 zeros,
together with those of m−1R22. This restates the well-known result, mentioned by
both Guttman (1941) and Burt (1950), that an MCA of binary data reduces to a PCA
of the phi-coefficients.

4.2.2 Correspondence Analysis

Now let us look at Correspondence Analysis, that is, MCAwithm = 2. There is only
one single off-diagonal p × q cross table C12 in the Burt matrix. Suppose without
loss of generality that p ≥ q . DefineK as the direct sum of the left and right singular
vectors of E12. Then:
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F = K′EK =
[
I �

� ′ I

]

, (4)

where � is the p × q diagonal matrix of singular values of E12, and:

R = P′FP =
{

q⊕

s=1

[
1 ψs

ψs 1

]}
⊕

I, (5)

where the identity matrix at the end of Eq. (5) is of order p − q.
Thus the eigenvalues of E are 1

2 (1 + ψs) and 1
2 (1 − ψs) for all s, and DMCA

indeed diagonalises E. The relation between the eigen decomposition of E and the
singular value decomposition of E12 is a classical result in Correspondence Analysis
Benzécri (1977a), and earlier already in canonical correlation analysis of two sets of
variables (Hotelling 1936).

4.2.3 Multinormal Distribution

Suppose we want to apply MCA to an m-variate standard normal distribution with
correlationmatrixR = {ρk�}.Not to a sample,mindyou, but to thewhole distribution.
This means we have to think of the submatrices C j� as bivariate standard normal
densities, having an infinite number of categories, one for each real number. Just
imagine it as a limit of the discrete case (Naouri 1970).

In this case the columns of theK j , ofwhich there is a denumerably infinite number,
are the Hermite-Chebyshev polynomials h0, h1, . . . on the real line. We know that
for the standard bivariate normal E j�(hs, ht ) = 0 if s �= t and E j�(hs, hs) = ρs

j�.
Thus F = K′EK is anm × m matrix of diagonal matrices, where each Fkl submatrix
is of denumerably infinite order and has all the powers of ρk� along the diagonal.
Then R = P′FP is the infinite direct sum of elementwise powers of the matrix of
correlation coefficients, or:

R = P′FP =
∞⊕

s=0

R(s), (6)

and � = L′RL is diagonal, with the first m eigenvalues of R(0) = ee′, then the
m eigenvalues of R(1) = R, then the m eigenvalues of R(2) = {ρ2

jl}, and so on to
R(∞) = I. Each MCA solution is composed of Hermite-Chebyshev polynomials of
the same degree. Again, this restates a known result, already given in De Leeuw
(1973).

These results remain true for what Yule called “strained multinormals”, i.e. mul-
tivariate distributions that can be obtained from the multivariate normal by separate
and generally distinct smooth monotone transformations of each of the variables. It
also applies to mixtures of multivariate standard normal distributions with different
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correlation matrices (Sarmanov and Bratoeva 1967), to Gaussian copulas, as well as
to other multivariate distributions whose bivariate marginals have diagonal expan-
sions in systems of orthonormal functions (the so-called Lancaster probabilities, after
Lancaster (1958, 1969).

Themultinormal is a perfect example of theGuttman effect, that is, the eigenvector
correspondingwith the second largest eigenvalue usually is a quadratic function of the
first, the next eigenvector usually is a cubic, and so on.We say “usually”, becauseGifi
(1990, pp. 382–384) gives a multinormal example in which the first two eigenvectors
of an MCA are both linear transformations of the underlying scale (i.e. they both
come fromR22). However, the Guttman effect is observed approximately in many (if
not most) empirical applications ofMCA, especially if the categories of the variables
have some natural order and if the number of individuals is large enough.

4.2.4 Common Mathematical Structure

What do our three previous examples have in common mathematically? In all three
cases there exist orthonormalK j and diagonal 
 j� such that E j� = K j
 jlK′

�. Or, in
words, the matrices E j� in the same row-block of E have their left singular vectors
K j in common, and matrices E j� in the same column-block of E have their right
singular vectors K� in common. Equivalently, this requires that for each j the m
matrices E j�E�j commute.

Another way of saying this is that there are vectors y1, . . . , ym so that C j�y� =
ρ j�D jy j , i.e. so that all bivariate regressions are linear (De Leeuw 1988a). Not
only that, we assume that such a set of weights exist for every dimension s, as
long as k j ≥ s. If k j = 2 then trivially all regressions are linear, because you can
always draw a straight line through two points. Ifm = 2 all CorrespondenceAnalysis
solutions linearise the regressions in a bivariate table. In themultinormal example the
Hermite polynomials provide the linear regressions. Simultaneous linearisability of
all bivariate regressions seems like a strong condition, which will never be satisfied
for observed Burt matrices. But our empirical examples, analysed below, suggest it
will be approximately satisfied in surprisinglymany cases.At the very least, assuming
simultaneous linearisibility is a far-reaching generalisation of assuming multivariate
normality.

In all threemathematical examples we used the direct sum of theK j to diagonalise
the E j�, then use a permutation matrix P to transform F = K′EK into the direct sum
R = P′FP of correlation matrices, and then use the direct sum L to diagonalise
R to � = L′RL. This means that KPL has the eigenvectors of E, but not ordered
by decreasing or increasing eigenvalues. It also means that the eigenvectors have a
special structure.

First, F is an m × m matrix of matrices F j�, which are k j × k�. If all k j are equal
to, say, k, then R is a k × k matrix of matrices Rst , which are all of order m. If
the variables have a different number of categories, then R is a k+ × k+ matrix of
correlation matrices, withRst of orderms × mt , wherems is defined as before as the
number of variables with k j ≥ s.
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KP is an orthonormal m × k+ matrix of matrices, in which column-block s is
the direct sum of the ms column vectors K jes , with es unit vector s (equal to zero,
except for element s, which is one). In a formula {KP} js = K jese′

s and {KP} jsLs =
K jese′

sLs . Matrix {KPL} js is the k j × ms outer product of column s of K j and row
s of Ls . Each Rss is computed with a single quantification of the variables, and there
are only k+ − 1 different non-trivial quantifications, instead of the k� − m ones from
MCA.

That the matrix KPL is blockwise of rank one connects DMCA with non-linear
PCA, which is MCA with rank one restrictions on the category quatifications. We
see that imposing rank one restrictions on MCA forces non-linear PCA to choose its
solutions from the same Rss , thus preventing “data production”.

5 The Chi-Square Metric

In the Correspondence Analysis of a single table it has been known since Hirschfeld
(1935) that the sum of squares of the non-trivial singular values is equal to the chi-
square (the total inertia) of the table. Although both Burt and Guttman pay homage
to chi-square in the context of MCA, they do not really work through the conse-
quences. In this section we analyse the total chi-square (TCS), which is the sum of
all m (m − 1) off-diagonal bivariate chi-squares.

De Leeuw (1973, p. 32), shows that the TCS is related to the MCA eigenvalues
by the simple equation:

∑ ∑

1≤ j �=�≤m

X 2
j� = n

∑

s

(mλs − 1)2 , (7)

where the sum on the right is over all k� − m non-trivial eigenvalues. The same
formula was given by Benzécri (1979). Equation (7), the MCA decomposition of the
TCS, gives us a way to quantify the contribution of each non-trivial eigenvalue.

We now outline the DMCA decomposition of the TCS. An identity similar to (7)
is: ∑ ∑

1≤ j �=�≤m

X 2
j� = tr E2 − (K + m (m − 1)) . (8)

Equation (8) does not look particular attractive, until one realises that the constant
subtracted on the right is the number of trivial elements in F = K′EK (and thus
in R = P′K′EPK) equal to one. There are K elements on the main diagonal, and
m (m − 1) elements from the off-diagonal elements of the trivial matrix R11g.

Thus the TCS can be partitioned using R, which is a k+ × k+ matrix of matrices
into (k+ − 1)2 non-trivial components. Themost interesting ones are the k+ − 1 sums
of squares of the off-diagonal elements of the diagonal submatricesR22, . . . , Rk+k+ ,
which is actually the quantity maximised by DMCA. And then there are the
(k+ − 1) (k+ − 2) sums of squares of the off-diagonal submatrices of R, which is
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actually what DMCA minimises. The sum of squares of each diagonal block sepa-
rately is its contribution to the DMCA fit, and total contribution to chi-square over
all diagonal blocks shows how close DMCA is to MCA, i.e. how well DMCA diag-
onalises E. In the mathematical examples from Sect. 4.2 DMCA is just a rearranged
MCA, and all of the TCS comes from the diagonal blocks.

6 Computation

So, computationally, DMCA works in three steps. All three steps preserve orthonor-
mality, guaranteeing that if DMCA diagonalisation works we have actually found
eigenvalues and eigenvectors of E, i.e. the MCA solution.

In thefirst stepwe compute theK j by approximately diagonalising all off-diagonal
E j�. This is is done in the mathematical examples by using known analytical results,
but in empirical examples by Jacobi rotations that minimise the sum of squares of
all off-diagonal elements of the off-diagonal K′EK (or, equivalently, maximise the
sum of squares of the diagonal elements).

EachK j is k j × k j and square orthonormal. We always set the first column ofK j

equal to n− 1
2
√
d j , with d j the marginals of variable j , to make sure the first column

captures the non-zero trivial solution. This is done by setting the initialK j to the left
singular vectors of row-block j of E and not rotating pairs of indices (s, t) when s
or t is one. This usually turns out to be a very good initial solution.

In the second step we permute the rows and columns of F = K′EK into direct
sum form. The (1, 1)matrixR11 inR = P′K′EKP has the (1, 1) elements of all F j�,
the (1, 2) matrix R12 has the (1, 2) elements of all F j�, and so on. Thus, if the first
step has diagonalised all off-diagonal E j�, then all off-diagonal matrices in R are
zero. The square symmetric matrices along the diagonal, of which there are k+, are
of order m, or of order ms if not all k j are equal. The first two, R11 and R22, are
always of order m. R11 takes care of all m trivial solutions and has all its elements
equal to one.

Then, in the third step, we diagonalise the matrices along the diagonal of R
by computing their eigenvalues and eigenvectors. This gives � = L′RL, which is
diagonal if the first step succeeded in diagonalising all off-diagonal E j�. All the
loss that can make DMCA an imperfect diagonalisation method is in the first step,
computing both P and L does not introduce any additional loss. Note again that the
direct sums of K and L and the permutation matrix P are all orthonormal, and thus
so are KP and KPL.

Finally we compute Y′KPL, with Y the MCA solution, to see how close Y and
KPL are, and which Rss the MCA solutions come from. Note that Y′KPL is also
square orthonormal, which implies sums of squares of rows and columns add up to
one, and squared elements can be interpreted as proportions of “variance explained”.

DMCA has an interesting relationship with the OrderedMultiple Correspondence
Analysis (OMCA) of Lombardo and Meulman (2010). DMCA choose the K j that
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make the E jl as diagonal as possible, in order to concentrate as much of the TCS
in the diagonal correlation matrices Rss . In OMCA the K j are chosen as orthogonal
polynomials for variable j of degrees 0, . . . , k j − 1, with againK their direct sum.
Then computeF = K′EK andR = P′FP and� = L′RL as inDMCA.This gives the
same type of partitioning of the TCS, and the same blockwise rank one approximate
eigenvectors KPL, but of course with less of the total TCS concentrated on the
diagonal. In the case of binary data and a continuousmultinormalOMCAandDMCA
are the same. If there are only two variables they are different, and the OMCA
results are a rearrangement of those in Beh (1997). Of course if the K j computed
by DMCA are not polynomials, for example if categories are unordered nominal,
the two methods can give very different results. But a more detailed comparison on
various real examples would be useful. The web directory https://jansweb.netlify.
app/post/code/ also has R code for MCA and OMCA.

6.1 The Programme

For the empirical examples in the present paper we use the R functionDMCA, a further
elaboration of the R function jMCA from De Leeuw and Ferrari (2008). The pro-
gramme, and all the empirical examples with the necessary data manipulations, can
be downloaded from https://jansweb.netlify.app/post/code/. The programme max-
imises the percentage of the TCS in the diagonal blocks of the DMCA. It is called
with arguments:

• burt, the Burt matrix,
• k, the number of categories of the variables,
• eps, iteration precision, defaults to 1e-8,
• itmax, maximum number of iterations, defaults to 500,
• verbose, prints DMCA fit for all iterations, defaults to TRUE,
• vectors, DMCA eigenvectors, if FALSE only DMCA eigenvalues, defaults to
TRUE,

and it returns a list with

• kek, the matrix K ′EK ,
• pkekp, the matrix P ′K ′EK P ,
• lpkekpl, the matrix L ′P ′K ′EK PL ,
• k, the block-diagonal matrix K ,
• p, the permutation P ,
• l, the block-diagobal matrix L ,
• kp, the matrtix K P ,
• kpl, the matrix K PL ,
• chisquares, the m (m − 1) chi-squares
• chipartition, the DMCA chi-partition,
• chipercentages = chipartition / TCS,

https://jansweb.netlify.app/post/code/
https://jansweb.netlify.app/post/code/
https://jansweb.netlify.app/post/code/
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• itel, the number of iterations,
• func, the optimum value of trace of chipercentages

7 Empirical Examples

We analysed DMCA in our previous examples by relying solely on specific mathe-
matical properties. There are some empirical examples in the last section ofDeLeeuw
(1982), but with very little detail, and computed with a now tragically defunct APL
programme. Showing the matrices K, P,L as well as F, R and � in this paper
would take up too much space, so we concentrate on how well DMCA reproduces
the MCA eigenvalues. We also discuss which of the correlation matrices in R the
first and last MCA vectors of weights (eigenvectors) are associated with, and we give
the partitionings of the TCS.

7.1 Burt Data

The data for the example in Burt (1950) were collected by him in Liverpool in or
before 1912, and are described in an outrageously politically incorrect paper (Burt
1912). Burt usedm = 4, with variables hair-colour (fair, red, dark), eye colour (light,
mixed, brown), head (narrow, wide), and stature (tall, short) for 100 individuals
selected from his sample. This is not very interesting as a DMCA or MCA example
because the data are so close to binary and thus there is not much room for DMCA
to work with. We include the Burt data, using the Burt table from Burt (1950), for
historical reasons.

TheBurt table is of order k� = 10, so there are k� − m = 6 non-trivial eigenvalues.
DMCA takes one single iteration cycle to convergence to fit 0.9462 from the initial
SVD solution. Figure1 plots the sorted MCA and DMCA non-trivial eigenvalues. In
these plots we always remove the trivial points (0, 0) and (1, 1) because they would
anchor the plot and unduly emphasise the closeness of the two solutions.

The matrix R has two diagonal blocks, R11 and R22, of order four and one block,
R33, of order two. Thus the ms are (4, 4, 2). The first non-trivial MCA solution
correlates 0.9997 with the first non-trivial DMCA solution, which corresponds with
the dominant eigenvalue of R22. The second MCA solution correlates -0.7319 with
the second DMCA solution from R22 and -0.3749 and -0.5675 with the two DMCA
solutions from R33. The fifth and sixth MCA solutions (the ones with the smallest
non-trivial eigenvalues) correlate 0.9824 and 0.9937 with the remaining two DMCA
solutions from R22. Thus, almost all the variation comes from R22, because with the
k j as small as (3, 3, 2, 2) we are very close to the case where all variables only take
two values and all the variation is in the phi-coefficients in R22.



400 J. de Leeuw

0.1 0.2 0.3 0.4 0.5

0.
1

0.
2

0.
3

0.
4

0.
5

MCA

D
M

C
A

Fig. 1 Burt MCA/DMCA eigenvalues

We can further illustrate this with the chi-square partitioning. Of the TCS of
156.68 the diagonal blocks R22 and R33 contribute, respectively, 148.1664 (95%)

and 0.08237 (0.05%), while the off-diagonal blocks contribute 8.4319 (5%).

7.2 GALO Data

TheGALOdata (Peschar 1975) are amainstayGifi example. The individuals are n =
1290 sixth grade school children in the city of Groningen, The Netherlands, about to
go into secondary education. The m = 4 variables are gender (2 categories), IQ (9
categories), teachers advice (7 categories), and socio-economic status (6 categories).
The Burt matrix is of order k� = 24, and thus there are k� − m = 20 non-trivial
dimensions. Matrix R = P′FP has 9 diagonal correlation blocks, with R11 and R22

of order four, R33, . . . , R66 of order three, R77 of order two, and R88 and R99 of
order one. DMCA takes 37 iteration cycles to a fit of 0.8689. The 20 sorted non-trivial
MCA and DMCA eigenvalues are plotted in Fig. 2.

The strong Guttman effect in the GALO data is reflected in the close correspon-
dence between the MCA and DMCA solutions. The first non-trivial MCA solution
correlates 0.9967 with the dominant DMCA solution fromR22, and the secondMCA
solution correlates 0.9915 with the dominant DMCA solution from R33. After that
correlations become smaller, until we get to the smallest eigenvalues. TheworstMCA
solution correlates −0.9882 with the solution corresponding to smallest eigenvalue
of R22, and the next worst correlates -0.9794 with the solution with the smallest
eigenvalue of R33.

To illustrate graphically how close MCA and DMCA are we plot the 24 category
quantifications on the first non-trivial dimension of the MCA solution (MCA dimen-
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sion two) and the first non-trivial dimension of DMCA (dimension five) in Fig. 3.
Note the dominant MCA dimension is always the trivial one, so we need the second
MCA dimension. For DMCA the first four dimensions correspond with the trivial
R11, and thus the first interesting dimension is number m + 1, corresponding with
the dominant eigenvalue of R22. In Fig. 4 we plot the corresponding MCA dimen-
sion three and DMCA dimension 2m + 1 = 9, corresponding with the dominant
eigenvalue of R33.
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Table 1 GALO TCS percentages

DMCA2 DMCA3 DMCA4 DMCA5 DMCA6 DMCA7 DMCA8 DMCA9

DMCA2 0.5631 0.0020 0.0215 0.0172 0.0146 0.0024 7e-04 1e-04

DMCA3 0.0020 0.1638 0.0003 0.0001 0.0011 0.0001 0e+00 4e-04

DMCA4 0.0215 0.0003 0.0831 0.0003 0.0010 0.0001 0e+00 4e-04

DMCA5 0.0172 0.0001 0.0003 0.0492 0.0016 0.0008 0e+00 1e-04

DMCA6 0.0146 0.0011 0.0010 0.0016 0.0058 0.0001 5e-04 0e+00

DMCA7 0.0024 0.0001 0.0001 0.0008 0.0001 0.0041 0e+00 0e+00

DMCA8 0.0007 0.0000 0.0000 0.0000 0.0005 0.0000 0e+00 0e+00

DMCA9 0.0001 0.0004 0.0004 0.0001 0.0000 0.0000 0e+00 0e+00

The chi-square partitioning tells us the diagonal blocks of DMCA “explain” 87%
of the TCS, with the blocks R22, . . . , R77 contributing 56, 16, 8, 5, 0.5, and 0.4%.
The complete partitioning is summarised in Table1.

7.3 BFI Data

Our final example is larger, and somewhat closer to an actual application of MCA.
The BFI data set is taken from the psychTools package (Revelle 2021). It has
n = 2800 observations on m = 25 personality self report items. After removing
persons with missing data there are n = 2436 observations left. Each item has k = 6
categories, and thus the Burt table is of order m × k = 150. Matrix R, excluding
R11, has five diagonal blocks of order 25. DMCA takes 54 iterations for a DMCA
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Table 2 BFI TCS percentages

DMCA2 DMCA3 DMCA4 DMCA5 DMCA6

DMCA2 0.4877 0.0153 0.0059 0.0055 0.0041

DMCA3 0.0153 0.3302 0.0053 0.0037 0.0035

DMCA4 0.0059 0.0053 0.0394 0.0049 0.0042

DMCA5 0.0055 0.0037 0.0049 0.0206 0.0046

DMCA6 0.0041 0.0035 0.0042 0.0046 0.0081

fit of 0.8860. The sorted non-trivial 125 MCA and DMCA eigenvalues are plotted
in Fig. 5.

The percentages of the TCS from the non-trivial submatrices ofR are summarised
in Table2.

8 Discussion

Our mathematical and empirical examples show that in a wide variety of circum-
stances MCA and DMCA eigenvalues and eigenvectors are very similar, although
DMCA uses far fewer degrees of freedom for its diagonalisation. This indicates
that DMCA can be thought of, at least in some circumstances, as a smooth version
of MCA. The error is moved to the off-diagonal elements in the submatrices of
R = P′FP and the structure is concentrated in the diagonal correlation matrices.

We have also seen that DMCA is like MCA, in the sense that it gives very similar
solutions, but it is also like non-linear PCA, because it imposes the rank one restric-
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tions on the weights. Thus it is a bridge between the two techniques, and it clarifies
their relationship.

DMCA also shows where the dominant MCA solutions originate, and indicates
quite clearly where the Guttman effect comes from (if it is there). It suggest the
Guttman effect, in a generalised sense, does not necessarily result in polynomials or
arcs. As long as there is simultaneous linearisation of all bivariate regressions E is
orthonormally similar to the direct sum of the Rss , and the principal components of
the Rss will give a generalised Guttman effect.

This allows us to suggest some answer for questions coming from the Burt-
Guttman exchange. In many cases the principal components of MCA (beyond the
first) come from the generalised Guttman effect, and should be interpreted as such.
Thus the first principal component does have a special status, and thus justifies
singling out RAA and Guttman scaling from the rest of MCA.

DMCA also reduces the amount of data production. Instead of k� − m non-trivial
correlations matrices of order m with their PCA’s, we now have k+ − 1 non-trivial
correlation matrices of orders given by the ms . That is still more than one single
correlation matrix, as we have in non-linear PCA and the aspect approach, but the
different correlation matrices may either be related by the Guttman effect or give
non-trivial additional information.

We also mention some other attempts, besides (7) and DMCA, to deal with the
influence of the diagonal blocks on the MCA solution. The first is Greenacre’s Joint
Correspondence Analysis or JMCA (Greenacre 1988), which minimises E − UU′
not only over all K × pmatricesUwithU′U = I, but in addition over them diagonal
blocks of E. In JMCA the dominant trivial dimension is first removed. JMCA uses
a variation of the Thomson’s alternating least squares algorithm for least squares
factor analysis, alternating the minimising over U for given C and the minimising
over the diagonal blocks of C for given U. The first minimisation is an MCA of
the modified Burt matrix with the current diagonal blocks, the second minimisation
replaces the diagonal blocks of C with the corresponding ones of UU′. As a result
JMCA does optimise the fit to the TCS without the adjustments of (7). Nevertheless
there are some problems with JMCA. It fixes the dimension p at a low value, and can
compute separate un-nested solutions for each p. Thus it tends to “data production”
in our sense, because we have to find a way to relate the solutions for different p. As
in DMCA and MCA it would be advantageous to have a complete and simultaneous
nested solution by always choosing p = K − m. The second problem with JMCA is
that, when p becomes larger, Heywood cases may become more common, i.e. cases
in which the reduced Burt matrix is no longer positive semi-definite. This potentially
leads to complex numbers and negative variances.

The second way of dealing with the undesirable dimensionality and explained
variances aspects of MCA is not to require U′U = I but U′

jU j = I for all j . This
is sometimes called strong orthogonality (Dauxois and Pousse 1976). We could call
the resulting technique strong multiple correspondence analysis of SMCA. If m = 2
SMCA still gives MCA, and thus also CA and JMCA, but if m > 2 SMCA is only
MCA or JMCA if we have simultaneous linearisability. SMCA tends to make all
variables equally important; see the discussion in Nishisato and Sheu (1980). SMCA
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also has its problems. The constraintU′
jU j = I limits the dimensionality of the non-

trivial quantifications for variable j to k j − 1, and it is unclear what to do with the
higher dimensions in E. In DMCA strong orthogonality constraints are imposed on
theK j , but the columns of theK j are distributed over different correlation matrices,
and the resulting U j are of rank one, but no longer orthonormal. The mathematical
properties of both JMCA and SMCA deserve some further study.

This also seems the place to point out a neglected aspect of MCA. The smallest
non-trivial solution gives a quantification or transformation of the data that max-
imises the singularity of the transformed data, i.e. the minimum eigenvalue of the
corresponding correlationmatrix.We have seen in our empirical examples thatMCA
and DMCA often agree closely in their smallest eigenvalue solutions, and that may
indicate that it should be possible to give a scientific interpretation of these “bad”
solutions. In fact, the smallest DMCA andMCA eigenvalues can be used in a regres-
sion interpretation in which we consider one or more of the variables as criteria and
the others are predictors.

A complaint that many users of MCA have is that, say, the first two components
“explain” such a small proportion of the “variance”, by which they mean the trace
of E, which is K, the total number of categories, and which, of course, has nothing
to do with “variance”. Equation (7) indicates how to quantify the contributions of
the non-trivial eigenvalues. For the BFI data, for example, the first two non-trivial
MCA eigenvalues “explain” 0.0832 percent of the “variance”, but they “explain”
0.6305 percent of the TCS. Moreover DMCA shows us that we should really relate
the eigenvalues to theRss they come from, and see how much they “explain” of their
correlation matrices. It is even better to evaluate their contributions using the TCS
and its partitioning described in Sect. 5 of this paper.
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Generalised Canonical Correlation
and Multiple Correspondence Analyses
Reformulated as Matrix Factorisation

Kohei Adachi, Henk A. L. Kiers, Takashi Murakami, and Jos M. F. ten Berge

1 Introduction

Nishisato’s (1980) pioneering book on dual scaling is included in the literature which
interested the authors of this paper in multiple correspondence analysis (MCA) for
multivariate categorical data. In this paper, we address its relationships to generalised
canonical correlation analysis (GCCA) for multivariate numerical data rather than
categorical data.

Let X = [X1, . . . ,Xm] be an n-observations × K-variables block data matrix,
whose j th block X j is an n × K j matrix for j = 1, . . . ,m with K = ∑

j K j and
n > K j . GCCA refers to a multivariate analysis procedure for exploring the inter-
relationships among the m sets of variables in X = [X1, . . . ,Xm], when X contains
numerical variables, particularly with m ≥ 3. GCCA was originally proposed by
Carroll (1968) and later formulated in some different manners as optimising func-
tions of the correlations/variances defined for the linear composites of the variables,
as reviewed by Kettenring (1971), van de Geer (1984), and Tenenhaus and Tenen-
haus (2011). However, those authors have not treated least squares formulations of
GCCA, which are considered in this paper.
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The least squares (LS) formulation of GCCA is restricted to:

min fH(F,W) =
m∑

j=1

∥
∥X jW j − F

∥
∥2

s.t.
1

n
F′F = Ip (1)

that is, minimising the LS loss function fH(F,W) over a K × p matrix W =[
W′

1, . . . ,W
′
m

]′
and an n × p matrix F subject to its column-wise orthonormality

(Gifi 1990). Here, “s.t.” is an abbreviation for “subject to”, p is the specified dimen-
sionality with p ≤ min(n, K ), W j is a K j × p matrix, and Ip denotes the p × p
identity matrix. Problem (1) can be called a homogeneity (HMG) problem, asX jW j

is matched to a matrix F in (1) so thatX jW j are homogeneous across j = 1, . . . ,m.
The formulation of GCCA with (1) is also found in Dahl and Næs (2006), Takane,
Hwang, and Abdi (2008), van der Burg, de Leeuw, and Dijksterhuis (1994), Van de
Velden and Bijmolt (2006), and Van de Velden and Takane (2012).

As illustrated on the left of Fig. 1, a purpose of this paper is to show that GCCA
can be reformulated as two LS matrix factorisation problems. The first is:

min fF(F,W) = ∥
∥XC−1/2 − FW′C1/2

∥
∥2

s.t.
1

n
F′F = Ip. (2)

Here

C =
⎡

⎢
⎣

C1

. . .

Cm

⎤

⎥
⎦ = 1

n

⎡

⎢
⎣

X′
1X1

. . .

X′
mXm

⎤

⎥
⎦

is the K × K block diagonal matrix whose jth block C j = n−1X′
jX j of dimension

K j × K j is supposed to be positive definite. We call (2) a full matrix factorisation
(FMF) problem to distinguish it from the second LS problem we now describe.

The second LS problem is formulated as follows:

minF,W ||XC−1/2−FW′C1/2||2

s.t. n−1F′F = Ip

minF,A,Q ||XQ−FA′||2

s.t. n−1F′F = Ip; Q′CQ = IR

minF,W Σj||XjWj −F||2

s.t. n−1F′F = Ip

minF,A,Q ||XQ−FA′||2

s.t. JF = F; n−1F′F = Ip; Q′CQ = IR

minF,W Σj||XjWj −F||2

s.t. JF = F; n−1F′F = Ip

minF,W ||XC−1/2−FW′C1/2||2

s.t. JF = F; n−1F′F = Ip

HMG

GCCA   MCA

FMF

RMF

minF,W ||JXC−1/2−FW′C1/2||2

s.t. n−1F′F = Ip

Fig. 1 Overview of the formulations of GCCA and MCA whose equivalence is to be shown
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min fR(F,A,Q) = ∥
∥XQ − FA′∥∥2 =

m∑

j=1

∥
∥X jQ j − FA′

j

∥
∥2

,

s.t.

1

n
F′F = Ip andQ′CQ = IR or, equivalently,Q

′
jC jQ j = IR j . (3)

Here, R = ∑
j R j , A = [

A′
1, . . . ,A

′
m

]′
is an R × p matrix whose jth block is an

R j × p matrix A j , and:

Q =
⎡

⎢
⎣

Q1

. . .

Qm

⎤

⎥
⎦

is a K×R block diagonalmatrixwhose j-th block is a K j×R j matrixQ j .We suppose
R j ≤ min

(
p, K j

)
and R ≥ p.We refer to (3) as a reducedmatrix factorisation (RMF)

problem in contrast to our calling (2) the FMF problem, since the number of columns
in the matrix XC−1/2 factorised in (2) is the same K as in X, while that number for
XQ in (4) is reduced to R ≤ ∑

j min
(
p, K j

) ≤ K .
The model part FA′ fitted to data-based XQ in the RMF problem (3) takes the

same form as the model part in the principal component analysis (PCA) formulated
as a lower rank approximation of a data matrix (Eckart and Young 1936). In that
formulation of PCA, a data matrix is approximated by the lower rank matrix FA′,
with F and A called PC score and loading matrices, respectively. Analogously, XQ
is approximated by FA′ in (3). However, XQ is the product of data and unknown
parameter matrices.

MCA is performed for X = [X1, . . . ,Xm], when X is a binary matrix with
X j1K j = 1n (Benzécri 1973; Greenacre 1984). Here, 1n is the n × 1 vector of
ones. In parallel with our discussions of GCCA, how MCA is formulated in terms
of the HMG, FMF, and RMF problems will be discussed in this paper, as illustrated
on the right of Fig. 1. There we can find two differences in the MCA versions from
their GCCA counterparts. One difference is that MCA has two FMF formulations,
and the loss function in one of them (furthest on the right of Fig. 1) differs from
its GCCA counterpart in that XC−1/2 is pre-multiplied by the n × n centring matrix
J = In−n−11n1′

n . This formulation was derived byAdachi (2004) usingGreenacre’s
(1988) formulation of the correspondence analysis for contingency tables. Another
difference is that the additional constraint F = JF is included in the problems for
MCA except the above one of FMF formulations. The HMG formulation of MCA
has been presented in Gifi (1990) and also described in ten Berge (1993), while
the RMF formulation was proposed by Murakami et al. (1999). The formulation of
Murakami’s (2020) procedure can also be considered as a variant of the RMF one.

Nishisato’s (1980) dual scaling is also performed for the above binary X and the
resulting solution is equivalent to the MCA solution. However, the formulation of
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dual scaling is different from that of MCA to be described in this paper, and dual
scaling can be applied to paired comparison and rank order data other than X treated
in this paper (Nishisato 1978).

GCCA and MCA are treated in the following two sections, respectively. In each
of them, we show how the HMG, FMF, and RMF problems are equivalent, but they
provide different goodness-of-fit (GOF) indices. In the final section, we discuss the
implications of the matrix factorisation problems (2) and (3) with those of the MCA
counterparts.

2 Generalised Canonical Correlation Analysis

In this section, we first show that GCCA can be reformulated as the FMF problem
(2), which is followed by presenting the explicit form of the GCCA solution. Next,
we will show that GCCA can be reformulated as the RMF problem (3). Finally, we
will discuss how goodness-of-fit (GOF) indices and their behaviours differ among
formulations (1), (2), and (3). Here, we let r(X) = K and r

(
X j

) = K j with r(X)

being the rank of X. It may be considered that GCCA is typically performed for a
column-centredX (Gifi1990), but the facts to be shown in this section are independent
of whether X is column-centred or not.

The next theorem shows that GCCA can be reformulated as (2):

Theorem 1 The solution of (1) is equivalent to that of (2).

Proof The loss function in (1) is expanded as:

fH(F,W) = tr

⎛

⎝
∑

j

W′
jX

′
jX jW j

⎞

⎠ − 2tr

⎛

⎝
∑

j

W′
jX

′
jF

⎞

⎠ + nmp

= n tr
(
W′CW

) − 2tr
(
W′X′F

) + nmp, (4)

while the function in (2) is expanded as:

fF(F,W) = nK + ntr
(
W′CW

) − 2tr
(
W′X′F

)
, (5)

where
∥
∥XC−1/2

∥
∥2 = tr

(
C−1X′X

) = ntr(IK ) and the constraint n−1F′F = Ip
has been used. Here, (4) and (5) are identical except for the constants indepen-
dent of parameter matrices. Furthermore, (4) and (5) have the same constraint. This
completes the proof.

The FMF problem (2) is the approximation of XC−1/2 by the lower rank matrix

FW′C1/2 with r
(
XC1/2

) = min(n, K ) ≥ p ≥ r
(
FW′C1/2

)
. Thus, the optimal

FW′C1/2 for (2) is given explicitly through the singular value decomposition (SVD)
of XC−1/2 defined as:
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XC−1/2 = K�L′. (6)

See Adachi (2020, pp. 402–403), and Eckart and Young (1936). Here, K (n × K )

andL (K × K ) satisfyK′K = L′L = IK , and� is the K×K diagonal matrix whose
diagonal elements are the singular values ofXC1/2 and arranged in descending order.
The optimal FW′C1/2 is given by F̂Ŵ′C1/2 = Kp�pL′

p, where Kp n × p and Lp

K × p contain the first p columns ofK and L, respectively, and �p is the first p× p
diagonal block of �. The above F̂Ŵ′C1/2 = Kp�pL′

p can be decomposed as:

F̂ = n1/2KpT, (7)

Ŵ = n−1/2C−1/2Lp�pT,

i.e.

Ŵ j = n−1/2C−1/2
j Lp�pT, (8)

for j = 1, . . . ,m, so that F̂ satisfies n−1F̂′F̂ = Ip, with T being an arbitrary p × p
orthonormal matrix and Ŵ j corresponding to W j . Thus, the optimal F and W in
GCCA are given by (7) and (8), respectively.

Recall that R j ≤ min
(
p, K j

)
was defined in Sect. 1.We replace R j ≤ min

(
p, K j

)

by more restrictive R j = min
(
p, K j

)
in this section. The next theorem shows that

GCCA can be reformulated as the RMF problem (3).

Theorem 2 The solution of (1) is equivalent to that of (3), and the optimal F, Q j ,
and A j in (3) are given by (7):

Q̂ j = U jR j�
−1
j T j and Â j = T′

j� jR′
j� jV′

j (9)

respectively, with T j an R j × R j orthonormal matrix. Here, U j
(
K j × R j

)
, R j(

R j × R j
)
, � j

(
R j × R j

)
, � j

(
R j × R j

)
, and V j

(
p × R j

)
are obtained from the

SVD of Ŵ j and the eigenvalue decomposition (EVD) of U′
jC jU j as follows:

Ŵ j = U j� jV′
j andU

′
jC jU j = R j�

2
jR

′
j , (10)

with � j and � j being diagonal and U′
jU j = V′

jV j = R′
jR j = R jR′

j = IR j .

Proof We start with showing that (3) is equivalent to:

min f ∗
H(F,A,Q) =

m∑

j=1

∥
∥X jQ jA j − F

∥
∥2

s.t.
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1

n
F′F = Ip andQ′CQ = IR or equivalentlyQ′

jC jQ j = IR j . (11)

This equivalence can be found as follows: Using the constraints n−1F′F = Ip and
Q′CQ = IR in (3) and (11), we can rewrite the loss function in (3) as:

fR(F,A,Q) = nR + ntr
(
AA′) − 2tr

(
Q′X′FA′) (12)

and the function in (11) as:

f ∗
H(F,A,Q) = n

∑

j

tr
(
A′

jQ
′
jC jQ jA j

) − 2
∑

j

tr
(
A′

jQ
′
jX

′
jF

) + nmp

= n
∑

j

tr
(
A′

jA j
) − 2tr

(
A′Q′X′F

) + nmp

= n tr
(
AA′) − 2tr

(
Q′X′FA′) + nmp.

This equation and (12) are identical except the constants independent of parameter
matrices. Thus, our remaining task is to show the equivalence of (1) and (11).

We can rewrite Q jA j in (11) as W j , so that the loss function in (11) is the same
as that in (1). However,Q j in (11) is constrained asQ′

jC jQ j = IR j ( j = 1, . . . ,m),
whileW j in (1) is unconstrained. That is, (11) is amore strongly constrained problem

than (1), which implies f ∗
H(F,A,Q) ≥ fH

(
F̂, Ŵ

)
. The equality between these two

functions holds for F = F̂ and Q jA j = Ŵ j , i.e. the equivalence of (1) and (11) can
be found if F̂ can be substituted into F in f ∗

H(F,A,Q), and the solution of Ŵ j in (8)
can be decomposed as Ŵ j = Q jA j whose Q j satisfies constraint Q′

jC jQ j = IR j .

The substitution of F̂ into F follows from the equivalence of the constraint on F
between (1) and (11). The latter decomposability of Ŵ j is shown next.

Since R j = min
(
p, K j

)
andŴ j is of size K j×p then r

(
Ŵ j

)
≤ R j , and sowecan

decompose Ŵ j asU j� jV′
j ; see (10). This can be rewritten as Ŵ j = U jS jS−1

j � jV′
j

with S j an R j × R j non-singular matrix. Here, U jS j and S−1
j � jV′

j can be set to be
equal to Q j and A j :

Q j = U jS j andA j = S−1
j � jV′

j , (13)

which lead to Ŵ j = Q jA j , or equivalently, Ŵ = QA. Furthermore, Q j = U jS j

can satisfy Q′
jC jQ j = IR j , if S j satisfies S′

jU
′
jC jU jS j = IR j . Such S j is given by

S j = R j�
−1
j T j through the EVD of U′

jC jU j in (10). The use of S j = R j�
−1
j T j

in (13) gives (9). Here, the non-singularity of � j follows from the fact that C j is

non-singular, thus r
(
U′

jC jU j

)
= r

(
U j

) = R j . This completes the proof.
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Theorems 1 and 2 showed the equivalence of the solution among the HMG, FMF,
and RMF problems. However, GOF indices and their behaviours are different among
the problems, as discussed in the remainder of this section.

In order to derive the indices, we start by considering the minimum of the loss
function in each problem. Using the GCCA solutions (7) and (8) in (4) and (5),
we can find that the minimums in the HMG and FMF problems are expressed as

fH
(
F̂, Ŵ

)
= nmp − tr

(
�2

p

)
and fF

(
F̂, Ŵ

)
= nK − tr

(
�2

p

)
, respectively. The

minimum function value in the RMF problem can be obtained from the following
facts: Q′CQ = IR in (3) and Ŵ j = Q jA j (i.e. Ŵ = QA) in the above proof allow
(12) to be expressed as:

fR(F,Q,A) = nR − 2tr
(
Q′X′FA′) + ntr

(
AA′Q′CQ

)

= nR − 2tr(W′
∧

X′ F̂) + ntr
(
W′
∧

CW
∧)

.

Using (7) and (8) in the above equation, the minimum function value is found to

be fR
(
F̂, Q̂, Â

)
= nR − tr

(
�2

p

)
. The equations for fH

(
F̂, Ŵ

)
, fF

(
F̂, Ŵ

)
, and

fR
(
F̂, Q̂, Â

)
allow us to define their GOF indices as:

GOFH(p) = tr
(
�2

p

)

nmp
for the HMG problem (1), (14)

GOFF(p) = tr
(
�2

p

)

nK
for the FMF problem (2), (15)

GOFR(p) = tr
(
�2

p

)

nR
for the RMF problem (3), (16)

each of which lies within the interval [0, 1]. It should be noted that the denominator
R = ∑

j R j in (16) is a function of dimensionality p, i.e. R depends on p, since
R j = min

(
p, K j

)
.

The next theorem shows that (14)–(16) behave differently with changes in p:

Theorem 3 The following inequalities and equalities hold:

GOFF(p) ≤ GOFF(p + 1), (17)

GOFH(p) ≥ GOFH(p + 1), (18)

GOFR(p) ≥ max(GOFH(p),GOFF(p)), (19)

GOFR(p) = GOFH(p) for p ≤ min1≤ j≤mK j , (20)
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GOFR(p) = GOFF(p) for p ≥ max1≤ j≤mK j . (21)

Proof Since tr
(
�2

p+1

)
> tr

(
�2

p

)
, (17) follows from (15). On the other hand, (18)

can be derived as follows:

GOFH(p) − GOFH(p + 1) = tr
(
�2

p

)

nmp
− tr

(
�2

p+1

)

nm(p + 1)

= (p + 1)tr
(
�2

p

) − ptr
(
�2

p+1

)

nmp(p + 1)
.

The numerator on the right side of this is rewritten as:

p
p∑

s=1

λ2
s +

p∑

s=1

λ2
s −

(

p
p∑

s=1

λ2
s + pλ2

p+1

)

=
p∑

s=1

λ2
s − pλ2

p+1 =
p∑

s=1

(
λ2
s − λ2

p+1

) ≥ 0

Inequalities (19)–(21) are derived from R j = min(p, K j ). That is, R = ∑
j R j =∑

j min(p, K j ) ≤ ∑
j p = mp and R = ∑

j min(p, K j ) ≤ ∑
j K j = K imply:

GOFR(p) = tr
(
�2

p

)

nR
≥ GOFH(p) = tr

(
�2

p

)

nmp
,

GOFR(p) ≥ GOFF(p) = tr
(
�2

p

)

nK

so that we have (19). If p ≤ min1≤ j≤mK j , then R = ∑
j min

(
p, K j

) = mp, thus:

GOFH(p) = tr
(
�2

p

)

nmp
= GOFR(p) = tr

(
�2

p

)

nR
,

i.e. (20). If p ≥ max1≤ j≤mK j , then R = ∑
j min

(
p, K j

) = K , thus:

GOFF(p) = tr
(
�2

p

)

nK
= GOFR(p),

i.e. (21). This completes the proof.
Inequalities (17) and (18) imply that an increase in dimensionality p increases

the value of GOFF(p) in (15), but decreases the value of GOFH(p) in (14). The
latter decrease can be viewed as peculiar, if the value of a rational statistical GOF
index should increase with the dimensionality of parameter matrices. By comparing
(20) and (21) with (17) and (18), we can find that the value of GOFR(p) in (16)
changes with p in an non-monotonous manner when min1≤ j≤mK j ≥ 2: an increase
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in p decreases the GOFR(p) value for p ≤ min1≤ j≤mK j but increases that value
for p ≥ max1≤ j≤mK j .

3 Multiple Correspondence Analysis

MCA is performed if X = [X1, . . . ,Xm] consists of binary indicator matrices; each
row of X j

(
n × K j

)
for j = 1, . . . ,m is filled with zeros except only one element

taking one. This implies that:

X j1K j = 1n andX1K = m1n (22)

and C j = n−1X′
jX j is diagonal, thus C is also diagonal. These properties further

lead to:

nC j1K j = X′
j1n and nC1K = X′1n. (23)

Because of (22) and J1n = (
In − 1

n 1n1
′
n

)
1n = 0n with 0n the n × 1 zero vector, the

K j columns of JX j are linearly dependent. From this property and n > K j , we can
find that r

(
JX j

) ≤ K j − 1 and r(JX) ≤ ∑
j r

(
JX j

) ≤ K − m. In this section, we
assume that X does not include a zero column with C being positive definite and
r
(
JXC−1/2

) = K −m ≥ p. On this assumption, we show the equivalence of the four
problems for MCA in Fig. 1, then discuss how GOF indices and their behaviours
differ among the problems, and finally discuss the role of the additional constraint
F = JF.

As in Fig. 1, the HMG problem for MCA is formulated as:

min fH(F,W) =
m∑

j=1

∥
∥X jW j − F

∥
∥2

s.t.F = JF and
1

n
F′F = Ip. (24)

For the distinction of the two FMF problems for MCA in Fig. 1, we refer to:

min fF(F,W) = ∥
∥XC−1/2 − FW′C1/2

∥
∥2

s.t.F = JF and
1

n
F′F = Ip (25)

simply as an FMF problem and call:

min fFC(F,W) = ∥
∥JXC−1/2 − FW′C1/2

∥
∥2

s.t.
1

n
F′F = Ip (26)

a full centred-matrix factorisation (FCMF) problem, as the factored matrix JXC−1/2

is column-centred. The equivalence of the three problems is now proven.

Theorem 4 The solution to (24)–(26) are identical.
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Proof Since the FCMF problem (26) is the approximation of JXC−1/2 by the lower

rank matrix n−1FW′C1/2 with r
(
JXC−1/2

) = K − m ≥ p ≥ r
(
n−1FW′C1/2

)
, the

solution for (26) is given through the SVD of JXC−1/2 defined as:

JXC−1/2 = K̃�̃L̃′. (27)

Here, K̃ (n × (K − m)) and L̃ (K × (K − m)) satisfy K̃′K̃ = L̃′L̃ = IK−m and �̃ is
the (K − m) × (K − m) diagonal matrix, whose diagonal elements are the singular
values of JXC−1/2 and arranged in descending order. The optimal FW′C1/2 is given
by F̃W̃′C1/2 = K̃p�̃pL̃′

p, where K̃p (n × p) and L̃p (K × p) contain the first p

columns of K̃ and those of L̃, respectively, and �̃p is the first p × p diagonal block
of �̃. The above F̃W̃′C1/2 = K̃p�̃pL̃′

p can be decomposed as:

F̃ = n1/2K̃pT, (28)

W̃ = n−1/2C−1/2L̃p�̃pT, i.e. W̃ j = n−1/2C−1/2
j L̃p�̃pT, (29)

for j = 1, . . . ,m, so that n−1F̃′F̃ = nIp is satisfied. We should note that (28)
also satisfies F̃ = JF̃, because of JJ = J and the fact that (28) can be rewritten

as F̃ = n1/2K̃�̃L̃′L̃p�̃
−1
p = n1/2JXC−1/2L̃p�̃

−1
p from (27). The equality F̃ = JF̃

implies that (26) is equivalent to:

min fFC(F,W) = ∥
∥JXC−1/2 − FW′C1/2

∥
∥2

s.t.F = JF and
1

n
F′F = Ip (30)

In the remainder, we show that (28) and (29) are also the solutions for (24) and (25).

Using n−1F′F = Ip, F = JF, and tr
(
X′XC−1

) = ntr(IK ), the loss functions in
(24) and (25) are rewritten as:

fH(F,W) = ntr
(
W′CW

) − 2tr
(
X′JFW′) + nmp, (31)

fF(F,W) = nK + ntr
(
W′CW

) − 2tr
(
X′JFW′), (32)

respectively. Using n−1F′F = Ip and J = In − n−11n1′
n , the loss function in (26) or

(30) is rewritten as:

fFC(F,W) = tr
(
X′JXC−1

)
− 2tr

(
X′JFW′) + ntr

(
W′CW

)

= tr
(
X′XC−1

)
− 1

n
tr
(
X′1n1′

nXC
−1

) − 2tr
(
X′JFW′) + ntr

(
W′CW

)
.

This can further be rewritten as:
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fFC(F,W) = ntr(IK ) − ntr
(
C1K1′

KCC
−1

) − 2tr
(
XJFW′) + ntr

(
W′CW

)

= nK − nm + ntr
(
W′CW

) − 2tr
(
X′JFW′), (33)

using (23), tr
(
X′XC−1

)
= ntr(IK ), and 1′

KC1K = n−11KX′1n = n−1m1′
n1n = m

derived from (22) and (23). We can find that (31)–(33), i.e. the rewritten versions
of the functions in (24)–(26), are identical except for the constants independent of
parameter matrices. Furthermore, (24), (25), and the Eq. (30) which is equivalent to
(26) have identical constraints. This completes the proof.

Here, we present two equations associated with (27)–(29). The first equation
follows from (28) and (29) satisfying W̃ j = n−1C−1

j X′
j F̃ (Gifi 1990). This Eqs. (22),

(23), C j = n−1X′
jX j and JF = F lead to 1′

K j
C jW̃ j = n−11′

K j
X′

j F̃ = n−11′
nJF̃ =

0′
p, which implies r

(
W j

) ≤ min(p,K j − 1). The second equation is:

∥
∥
∥�̃

∥
∥
∥
2 = ∥

∥JXC−1/2
∥
∥2 = n(K − m), (34)

since

∥
∥JXC−1/2

∥
∥2 = tr

(
C−1/2X′XC−1/2

)
− 1

n
tr
(
C−1/2X′1n1′

nXC
−1/2

)

= ntr(IK ) − ntr
(
C1K1′

KCC
−1

)
.

Here, we have used tr
(
X′XC−1

)
= ntr(IK ) and 1′

KC1K = m following from (22).

As in Fig. 1, the RMF problem for MCA is formulated as:

min fR(F,A,Q) = ∥
∥XQ − FA′∥∥2 =

m∑

j=1

∥
∥X jQ j − FA′

j

∥
∥2

s.t. JF = F,
1

n
F′F = Ip, andQ′CQ = IR orQ′

jC jQ j = IR j (35)

See Murakami et al. (1999) for more on this formulation. The condition R j ≤
min

(
p, K j

)
in Sect. 1 is replaced by more restrictive R j = min

(
p, K j − 1

)
in this

section. This differs from R j = min
(
p, K j

)
in Sect. 2. The equivalence of the RMF

and HMG problems for MCA is shown in the next theorem:

Theorem 5 The solution of (24) is equivalent to that of (35), and the optimal F,
Q j , and A j in (35) are given by (28),

Q̃ j = Ũ j R̃ j�̃
−1
j T̃ j , and Ã j = T̃′

j�̃ j R̃′
j�̃ j Ṽ′

j , (36)

respectively, with T̃ j an R j × R j orthonormal matrix. Here, Ũ j
(
K j × R j

)
, R̃ j(

R j × R j
)
, �̃ j

(
R j × R j

)
, �̃ j

(
R j × R j

)
, and Ṽ j

(
p × R j

)
are obtained from the
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SVD of W̃ j in (29) and EVD of Ũ′
jC j Ũ j as follows:

W̃ j = Ũ j�̃ j Ṽ′
j and Ũ

′
jC j Ũ j = R̃ j�̃

2
j R̃

′
j , (37)

with �̃ j and �̃ j being diagonal and Ũ′
j Ũ j = Ṽ′

j Ṽ j = R̃′
j R̃ j = R̃ j R̃′

j = IR j .

Proof The proof is analogous to that for Theorem 2. At first, the equivalence of (35)
to:

min f ∗
H(F,Q,A) =

m∑

j=1

∥
∥X jQ jA j − F

∥
∥2

s.t. JF = F,
1

n
F′F = Ip, andQ′CQ = IR

(38)

is shown as follows: We can rewrite the loss function in (35) as:

fR(F,Q,A) = nR + ntr
(
A′A

) − 2tr
(
Q′X′JFA′) (39)

and f ∗
H(F,Q,A) in (38) as ntr

(
A′A

) − 2tr
(
Q′X′JFA′) + nmp, using the constraints

for F and Q. Thus, it remains to show the equivalence of (24) and (39). This task
can be attained if W̃ j in (29) can be decomposed as W̃ j = Q jA j withQ j satisfying
Q′

jC jQ j = IR j , i.e. Q
′CQ = IR in (38). The decomposition of W̃ j can be found

as follows: The inequality r
(
W j

) ≤ min(p,K j − 1) = R j shows that W̃ j can

be decomposed as Ũ j�̃ j Ṽ′
j in (37). This implies that Q̃ j and Ã j in (36) can be

substituted intoQ j andA j in W̃ j = Q jA j . Further, Q̃ j in (36) can be substituted into

Q̃ j in Q′
jC jQ j = IR j , since we have T̃

′
j�̃

−1
j R̃′

j Ũ
′
jC j Ũ j R̃ j�̃

−1
j T̃ j = T̃′

j T̃ j = IR j

using (37). Here, the non-singularity of �̃ j follows from the non-singularity of C j

implying r
(
Ũ′

jC j Ũ j

)
= r

(
Ũ j

)
= R j . This completes the proof.

Murakami et al. (1999) stated Theorem 5 but did not provide a formal proof of it.
To derive the GOF indices for MCA, we consider the minimums of the loss

functions in problems (24)–(26) and (35). First, using MCA solutions (28) and (29)
in (31)–(33), we can find that the minima of the functions in (24), (25), and (26)

are expressed as fH
(
F̃, W̃

)
= nmp − tr

(
�̃

2
p

)
, fF

(
F̃, W̃

)
= nK − tr

(
�̃

2
p

)
, and

fFC
(
F̃, W̃

)
= n(K − m)− tr

(
�̃

2
p

)
, respectively. Next, the minimum of the function

in (35) can be obtained from the following facts: W̃ j = Q jA j , i.e.W̃ = Q̃Ã, and
Q′CQ = IR in the above proof allow (39) to be expressed as:

fR
(
F̃, Q̃, Ã

)
= nR − 2tr

(
Q′X′JFA′) + ntr

(
AA′Q′CQ

)

= nR − 2tr(W̃′X′F̃) + ntr
(
W̃′CW̃

)
.
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Using (28) and (29) in the above equation, the minimum of the function is found to

be fR
(
F̃, Q̃,Ã

)
= nR − tr

(
�̃

2
p

)
. Those minimum function values allow the GOF

indices to be defined as follows:

GOF∗
H(p) =

tr
(
�̃

2
p

)

nmp
for theHMGproblem (24), (40)

GOF∗
F(p) =

tr
(
�̃

2
p

)

nK
for the FMFproblem (25), (41)

GOF∗
FC(p) =

tr
(
�̃

2
p

)

n(K − m)
for the FCMFproblem (26), (42)

GOF∗
R(p) =

tr
(
�̃

2
p

)

nR
for the RMFproblem (35), (43)

ObviouslyK > K − m, thus GOF∗
F(p) < GOF∗

FC(p). Other inequalities and
equalities are proved next.

Theorem 6 The following inequalities and equalities hold:

GOF∗
F(p) ≤ GOF∗

F(p + 1), (44)

GOF∗
FC(p) ≤ GOF∗

FC(p + 1), (45)

GOF∗
H(p) ≥ GOF∗

H(p + 1), (46)

GOF∗
R(p) ≥ max

(
GOF∗

H(p),GOF∗
FC(p)

)
, (47)

GOF∗
R(p) = GOF∗

H(p) for p ≤ min1≤ j≤mK j − 1, (48)

GOF∗
R(p) = GOF∗

FC(p) for p ≥ max
1≤ j≤m

K j − 1 (49)

Proof Theproof of these results is analogous to that forTheorem3. Inequalities (44)–
(46) are proven in an analogousmanner to how (17) and (18) are proven.Wecanderive
(47)–(49) using R j = min

(
p, K j − 1

)
and R = ∑

j R j = ∑
j min

(
p, K j − 1

)
as

follows: R ≤ ∑
j p = mp and R ≤ ∑

j

(
K j − 1

) = K − m implying:

GOF∗
R(p) =

tr
(
�̃

2
p

)

nR
≥ GOF∗

H(p) =
tr
(
�̃

2
p

)

nmp
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GOF∗
R(p) ≥ GOF∗

FC(p) =
tr
(
�̃

2
p

)

n(K − m)
,

respectively, i.e. (47), while R = mp for p ≤ min1≤ j≤mK j − 1 and R = K −m for
p ≥ max1≤ j≤mK j − 1 lead to (48) and (49), respectively. This completes the proof.

The MCA solution is given through the SVD of JXC−1/2 in (27) rather than
the SVD of XC−1/2 that leads to the GCCA solution. The latter SVD for X in this
section gives (7) and (8) whose first columns are trivially filled with ones. This fact
is formally proved next.

Theorem 7 If X j satisfies (22), then K, �, and L defining the SVD of XC−1/2 in
(6) are expressed as:

K =
[

1√
n
1n, K̃

]

,� =
[√

nm
�̃

]

,L =
[

1√
m
C1/21K , L̃

]

, (50)

with K̃, �̃, and L̃ defining the SVD of JXC−1/2 in (27). Through (7) and (8), (50)
gives f1 = 1n and w1 = 1K , with f1 and w1 being the first column’s of F̂ and Ŵ in
(7) and (8), respectively.

Proof Using (23) we have JXC−1/2 = XC−1/2 − n−11n1′
nXC

−1/2 = XC−1/2 −
1n1′

KXC
1/2. This is decomposed using SVDas in (27):XC−1/2−1n1′

KC
1/2 = K̃�̃L̃′,

which can be rewritten asXC−1/2 = K̃�̃L̃′ +1n1K ′C1/2 = K�L′, whereK,�, and
L are defined as (50). This being the SVD of XC−1/2 is proven from the following
three facts:

1. Obviously
∥
∥n−1/21n

∥
∥ = 1, and

∥
∥m−1/2C1/21K

∥
∥ = 1 follows from (22) and (23)

implying m−11′
KC1K = (nm)−11′

nX
′1K = n−11′

n1n.
2. 1′

nK̃ = (
C1/21K

)′
L̃ = 0′

K−m is found as follows: We have 1′
nK̃ = 0′

K−m since

of 1′
nJ = 0′

n and K̃ = JXC−1/2L̃�̃
−1

is derived from (27), while
(
C1/21K

)′
L̃ =

0′
K−m follows from the fact that (22) and (27) imply L̃ = C−1/2X′JK̃�̃

−1
and

(
C1/21K

)′
C−1/2X′J K̃�̃

−1 = 1′
KX

′J K̃ �̃
−1 = m1′

nJ K̃ �̃
−1 = 0′

K−m .
3. Let λ1,k1, and l1 denote the first diagonal element of �, the first column of K,

and that of L in (6), respectively. For p = 1, (7) and (8) show that the solution
of (1) is given by F̂ = n1/2k1 and Ŵ = n−1/2λ1C−1/2l1. Substituting these into
F andW in (1), we have fH(F,W) = nm − λ2

1 ≥ 0. This implies λ1 = (nm)1/2,
k1 = n−1/21n , and l1 = m−1/2C1/21K .

This completes the proof.

Theorem 7 shows that the additional constraint JF = F in (24), (25), and (35)
serves to avoid a solution with trivial columns: F with f1 = 1n does not satisfy
JF = F. On the other hand, JF = F is not required in the FCMF problem (26) which
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is the lower rank approximation of JXC−1/2 rather than XC−1/2. Theorem 7 also
allows us to find the following property of the GOF index (41): its maximum, though
n(K − m)/(nK ) < 1 from (34), can be one, if constraint JF = F is excluded
from (25). This fact is found by the comparison of (50) with (34), which shows
‖�‖2 = nK ; that is, the exclusion of JF = F equalises (25) to (2) and the solution
of (25) is given through (50), then the maximum of index (41) for (25) can be
‖�‖2/(nK ) = 1, though the solution includes trivial columns.

4 Discussion

In this paper,we have shown thatGCCAandMCA, defined as homogeneity problems
(Gifi 1990), can be reformulated as full matrix factorisation (FMF) and reduced
matrix factorisation (RMF) problems. Each problem is regarded as approximating a
transformed data matrix by a lower rank matrix, as illustrated in Fig. 2. Though the
FCMF problem for MCA is not mentioned in the following discussions, they can
cover that problem by pre-multiplying X1C

1/2
1 , . . . ,XmC

1/2
m by J.

In the FMF problem, the transformed data matrix is XC−1/2 =[
X1C

−1/2
1 , . . . ,XmC

−1/2
m

]
, an n × K matrix whose block X jC

−1/2
j corresponds to

the jth set of variables. To be noted is that each block is column-orthonormal, i.e.

n−1
(
X jC

−1/2
j

)′
X jC

−1/2
j = IK j , from the definition ofC. This property can be called

within-blocks orthonormality, as shown at the centre in Fig. 2. In contrast, between-
blocks are not orthogonal: the columns of X jC

−1/2
j are not orthogonal to those

of XkC
−1/2
k (k �= j) in general. As the orthogonality implies (inter-column linear)

independence, the above contrast shows that between-blocks dependence exists, but
within-blocks dependence does not exist in XC−1/2. This matrix is approximated

by a lower rank matrix FW′C1/2 =
[
FW′

1C
1/2
1 , . . . ,FW′

mC
1/2
m

]
. As a result, the

between-blocks dependence, which can be restated as relationships among the m
sets of variables, can be expected to be summarised by FW′C1/2.

Fig. 2 Graphical illustration of FMF and RMF problems
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Also for the RMF problem, the argument in the last paragraph holds with C−1/2
j

and W′
jC

1/2
j replaced by Q j and A′

j , respectively; that is, each block of the trans-
formed data matrix XQ = [X1Q1, . . . ,XmQm] is within-blocks orthonormal as in
(3) and (35), but the columns ofX jQ j are not orthogonal toXkQk(k �= j) in general.
Thus, the matrix XQ, which has between-blocks dependence without within-blocks
dependence, is approximated by lower rank FA′ = [

FA′
1, . . . ,FA

′
m

]
, so that the

relationships among the sets of variables can be expected to be summarised by FA′.
However, theRMFproblemdiffers from theFMFone in the following three points,

as found in Fig. 2: (1) The columns of the transformed data matrix are reduced
from those of the original data matrix; (2) Q j in the transformed data matrix is
the parameter to be estimated; and (3) the lower rank matrix is the product of two
parametermatricesF andA′ as in PCA,which differs from the FMF problemwith the
lower rank matrix being the product including data-based C1/2

j . These points show
that F,A, and Q1, . . . ,Qm are jointly estimated so that the reduced transformed
matrix XQ is well approximated by the model part FA′ in the RMF problem.

Finally, we must remark on a slight difference of MCA from GCCA in
the transformation from the original X = [X1, . . . ,Xm] into XC−1/2 =[
X1C

−1/2
1 , . . . ,XmC

−1/2
m

]
or XQ = [X1Q1, . . . ,XmQm], namely, that X j is not

column-orthogonal in GCCA, but X j is column-orthogonal in MCA with X′
jX j

diagonal from X j being binary and (22). That is, the transformation in GCCA is
within-blocks orthonormalisation, while that in MCA is to normalise orthogonal X j

into X jC
−1/2
j and X jQ j , i.e. the within-blocks normalisation.
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High-Dimensional Mixed-Data
Regression Modelling Using the Gifi
System with the Genetic Algorithm
and Information Complexity

Suman Katragadda and Hamparsum Bozdogan

1 Introduction and Purpose

Statistical analysis is very much dependent on the quality and type of the data set.
There are three types of data sets: continuous, categorical and a mix of the two.
A continuous data set is one in which all the variables are in continuous form. A
categorical data set is one in which all the variables are either ordinal (ordering
of the categories exist) or nominal (no specific ordering of the categories exist).
A particular form of categorical data set (e.g. yes/no, presence/absence) are coded
as a 0 or a 1. A mixed data set is a data set in which some of the variables are
in continuous form and the remainder of the variables are in categorical form. In
other words, a mixed data set is a combination of continuous and categorical data
variables. Statistical analysis would have been easy if data set is purely continuous
or purely categorical. In reality, most of the data sets are neither purely continuous
nor purely categorical but are in mixed form which makes the statistical analysis and
modelling quite difficult. For instance, most of the data sets in the finance, insurance
and medical sectors are of the mixed type.

Researchers in statistical data analysis usually face problems if the data are of
the mixed data type. Most of the classical univariate and multivariate statistical con-
cepts deals with continuous data or with categorical data but not mixed data. The
usual statistical analysis done with the presence of many qualitative variable(s) in the
data set containing other quantitative variables might not give accurate results. For
instance, in the medical sector where the classification of the data is very important,
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the presence of many categorical and continuous predictors or variables results in
poor modelling since the underlying probability distributional assumptions are vio-
lated. In the insurance and finance sectors, lots of categorical and continuous data
are collected on customers for targeted marketing, detection of suspicious claims,
actuarial modelling, risk analysis, modelling of financial derivatives, detection of
profitable zones, credit scoring, etc.

In this paper, we address the problem of discovering interesting patterns from a
mixed data set. Since a mixed data set is a combination of continuous and categor-
ical variables, we transform the non-linear categorical variables to a linear scale by
a mechanism called the “Gifi system” or “Gifi transformations” (Gifi 1990). Once
the non-linear variables are transformed to a linear scale (in an Euclidean space),
we carry out regression modelling using the genetic algorithm (GA) and informa-
tion complexity (ICOMP) criterion of Bozdogan (1988, 1990a, b, 2004) (Bozdogan
2024) as our model selection criteria to choose the best subset of variables. The
advantage of this transformation is that it has a one-to-one mapping property. In
other words, the scaling is preserved and it is invariant, unlike the usual Reproduc-
ing Kernel Hilbert Space (RKHS)-based methods in machine learning. Hence, the
transformed set of continuous value(s) can be remapped to a unique set of categorical
value(s) in the original space. In this paper, we show the implementation of multiple
regression to generate good models using the Gifi system.

2 What Is the Gifi System and Transformation?

As discussed in Katragada and Bozdogan (2008), the Gifi system is a clever and
flexible technique that transforms categorical variables into continuous variables.
If the data is of a mixed type, the Gifi system maps the categorical variables to a
continuous scale so that all the data become continuous for the subsequent analysis.
The Gifi system uses two main algorithms. They are:

(a) The Optimal Scaling Method (OSM) which optimally scales the categorical vari-
ables, thus making the data set purely continuous. Hence for the optimally scaled
version, p-dimensional categorical variables are transformed to a p-dimensional
continuous variables, and

(b) Linear Combination Method (LCM) takes the linear combination of the cate-
gories of the categorical variables and thus maps it into a 1-dimensional contin-
uous space.

Hence, for the LCM, p-dimensional categorical variable is transformed to a
1-dimensional continuous space. The OSM might be useful when there are a few
categorical variables in the data set whereas the LCM is useful when the number of
the categorical variables is very large.
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2.1 Coding of Categorical Data

A categorical variable (also known as a qualitative variable) is a type of data which
may be divided into categories or groups. For instance, the variable gender has only
two categories; namely “male” and “female”. Categorical variables are discrete in
nature. There are two types of categorical variables namely ordinal and nominal. An
ordinal variable is a type of categorical variable where the categories of that variable
can be ordered or ranked (e.g. “disagree”, “neutral”, “agree”) (Tamhane andDunlopet
2003). A nominal variable is a type of categorical variable whose categories simply
represent distinct labels (e.g. “red”, “green”, “black”).

2.2 Data Representation

Let us assume that there is a finite number of m categorical variables h j , for
j = 1, 2, . . . , m. Also assume that each variable h j has k j distinct categories.
Suppose that these m categorical variables are observed on a finite set of n objects
(or individuals). We represent the data matrix H as an n × m matrix with elements
hi j giving the category of variable h j for object i . That is:

H =

⎡
⎢⎢⎢⎣

h11 h12 · · · h1m

h21 h22 · · · h2m
...

...
. . .

...

h1n h2n · · · hnm

⎤
⎥⎥⎥⎦ . (1)

2.2.1 Indicator Matrix

An n × k j binary matrix G j for each variable h j is defined as G j (i, t) = 1, for
i = 1, . . . , N and t = 1, . . . , k j , if object i belongs to category t , andG j (i, t) = 0
if it belongs to someother category.G j is called the indicator matrix of h j . Thematrix
G = (

G1, . . . , G j , . . . , Gm
)
of dimension n × ∑m

j=1 k j is a collection of such
matrices and is also called a super-indicator matrix. Now, we illustrate an example of
a super-indicator matrix. Consider a data matrixH, with 10 observations (or objects)
and 3 categorical variables, given in Table 1. Each of the 3 categorical variables
has two categories. The frequency of the data matrix H is given in Table 2 and the
summary of the frequency ofH is given in Table 3. The indicator matrixG is given
in Table 4.
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Table 1 Data matrix H

p x a

p x b

p x a

q x a

q x b

p y b

q y a

p x b

q x a

p x a

Table 2 Frequency of H

p x a 3

p x b 2

p y a 0

p y b 1

q x a 2

q x b 1

q y a 1

q y b 0

Table 3 Summary of frequency of H

p x a 3

p x b 2

p y b 1

q x a 2

q x b 1

q y a 1

2.2.2 Complete Indicator Matrix

The indicator matrixG j is said to be complete if each row ofG j has only one element
equal to unity and zeros elsewhere, so that row sums of G j are equal to unity Gifi
(1990). In vector form, we can represent this as G j u = u where u is a n × 1 vector
of length n. If all G j are complete, their combined super-indicator matrix G is also
said to be complete. In vector form, we can writeGu = mu since the rows ofG add
up to m. For further properties of a complete indicator matrix we refer the readers to
Gifi (1990).
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Table 4 Indicator matrix G for the data matrix H

p q x y a b

1 0 1 0 1 0

1 0 1 0 0 1

1 0 1 0 1 0

0 1 1 0 1 0

0 1 1 0 0 1

1 0 0 1 0 1

0 1 0 1 1 0

1 0 1 0 0 1

0 1 1 0 1 0

1 0 1 0 1 0

2.2.3 Quantification

Thequantification of a categorical variable h j is a process of converting its categorical
value to a continuous scale so that the classical techniques of multivariate analysis
can be applied. The quantification of categories of the variable h j implies that these
k j categories are mapped as the k j numerical values of a vector y j . Let the quantified
variable, q j = G jy j be a single vector which gives a numerical result for each object
with respect to h j .

Let us define x = m−1 ∑
j q j , the mean vector of all q j ’s. Then x contains the

quantification of the objects or, in other words, the induced score of objects. We
define the quantification of a category as the averaging of the scores of those objects
that are mapped into that category. Mathematically, we write it as y j = D−1

j G′
jx.

The vector x is of size n × 1 and the vector y j is of size k j × 1.

3 Homogeneity Analysis: HOMALS

Categorical PCA (HOMALS) is a particular form of non-linear PCA that is based
on a categorical coding of variables using their indicator matrix form. As described
in Sect. 2.2.1,G j is an indicator matrix for variable h j . The quantification of objects
and of categories for a set of complete indicator matrices {G1, . . . , G j , . . . , Gm}
should satisfy the following:

x ∝ 1

m

m∑
j=1

G jy j (2)

y j ∝ D−1
j G′

jx, (3)
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whereD j = G′
jG j is the k j × k j diagonalmatrix containing the univariatemarginals

of variable h j . In (2) and (3), x is the vector of object scores and y j is the vector of
the quantifications of the categories of variable h j .

We note that (2) and (3) are very much the same as the formulae of Professor
Nishisato—see, for example, Nishisato (1994)—in his seminal work who developed
his dual scaling, and other similar methods like reciprocal averaging. This shows the
parallels that exist between the Gifi system and dual scaling.

Let X be the n × p matrix (usually p ≤ m) containing the object scores and Y j

be the k j × p matrix containing the category quantification of variable h j . Since
the quantification process incurs some loss of information, a typical loss function is
given as:

σ (X; Y1, . . . , Ym) = m−1
m∑

j=1

SSQ
(
X − G jY j

)

= m−1trace
[(
X − G jY j

)′ (
X − G jY j

)]
, (4)

where SSQ (◦) denotes the sum of squares of the elements of the matrix X. The loss
function in (4) is at the heart of theGifi (1990) system.Wewant tominimise the above
loss function simultaneously over X and Y j ’s. By imposing various restrictions on
the category quantifications Y j and, in some cases, the coding of the data, different
types of analysis can be derived.

In the process of minimising the loss function of (4), we impose two further
constraints in order to avoid the trivial solution corresponding toX = 0 , andY j = 0
for every j . The two constraints are:

X′X = nI and Xu = 0, (5)

where u′ is a vector of ones with dimension p × 1. The constraint (5) standardises
the squared length of the object scores to be equal to n. Further, in two or higher
dimensions it requires the columns of X to be orthogonal. In addition, the second
constraint basically makes the plot to be centred around the origin.

We minimise the above loss function simultaneously overX andY j ’s by employ-
ing an Alternating Least Squares (ALS) algorithm. We start the process with a uni-
formly random choice of X (X �= 0), with a mean zero, normalise it so that its sums
of squares is n (rather than 1), so that the scores have variance 1. We compute a first
set of category quantification Y j by:

Ŷ j = D−1
j G′

jX, (6)

whereD j = G′
jG j is the k j × k j diagonalmatrix containing the univariatemarginals

of variable h j .
In the second step of the algorithm, the loss function in (4) is minimised with

respect to X for fixed Y j ’s . It is given by:
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X̂ = 1

m

m∑
j=1

G jY j . (7)

In the third step of the algorithm the object scoresX are columncentred by settingB =
X̂ − u

(
u′X/n

)
, and then orthonormalised by the modified Gram-Schmidt procedure

X = √
n GRAM (B), so that both the normalisation constraints in (5) is satisfied. See

Trefethen and Bau (1997) for more details.
The usual normalisation condition used in ALS is given by:

X = X
(
X′X

)−1/2
. (8)

The problemwith the usual normalisation condition in (8)might arisewhen p is large.
When p is large this method could become quite expensive from a computational
point of view. It can be replaced with the cheaper Gram-Schmidt method. The Gram-
Schmidt method starts with unit normalising the first column of X, then projects the
second column ofX onto the space orthogonal to the first column, replaces the second
column by the unit normalised anti-projection, next projects the third column of X
onto the space orthogonal to the new second column, and so on. This process can be
summarised by stating that X is decomposed as X = UT, with U′U = I and where
T is an upper triangular matrix. The matrix U is scaled by the

√
n and the resulting

matrix is taken as the new X.
TheALSalgorithmcycles through these three steps until the convergence criterion

is met. Equation (6) expresses the first centroid principle (a category quantification is
in the centroid of the object scores they belong to it), while (7) shows that an object
score is the average of the quantifications of the categories it belongs to. Hence,
this solution accomplishes the goal of producing a graph with objects close to the
categories they fall in and categories close to the objects belonging in them. One
can review Gifi (1990) and Michailidis and de Leeuw (1996) for more details on the
working of HOMALS algorithm.

4 Optimal Scaling and Linear Combination Algorithms

4.1 Optimal Scaling Algorithm

The Optimal Scaling Algorithm (OSA) fits a multiple regression model for a contin-
uous response and a mixed set of predictors, X. It also selects the optimal predictors
that explain most of the variation in the response. We briefly explain the steps of
the OSA using the genetic algorithm (GA) for a five variable regression model as
follows:

(1) Run the Gifi transformation on the data X and optimally scale the categorical
variables. A categorical variable h j is optimally scaled by multiplying its indi-
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cator matrix, G j , with its optimal weight (score) vector, y j . Suppose if the data
contains variables [x1, x2, x3, x4, x5]. Let x1 and x4 be continuous and x2, x3,
and x5 be categorical. Let G2 and y2 be the indicator matrix and the optimal
weight vector for the categorical variable x2, respectively. Similarly,G3,G5 and
y3, y5 are the indicator matrices and optimal weight vectors of the categorical
variables x3 and x5, respectively. Therefore, the data matrix in the Gifi space will
be of the form

[
x1, G2y2, G3y3, x4, G5y5

]
.

(2) Generate a random population of size N and dimension p, where p is the num-
ber of predictors in the model. Consider each row of the population to be a
chromosome.

(3) For each chromosome in the population:

• Build a new predictor data matrix, Xnew.
• Perform multiple regression analysis with y as the response and Xnew as pre-
dictors and compute the desired information criteria.

(4) Sort the chromosomes in the population according to the ascending order of
their information score. The chromosome with the lowest information score is
considered to be the best chromosome among the N − 1 other chromosomes.

(5) Stop if the stopping criteria is met and return the best model from the current
population or else:

• Perform crossover andmutationwith pCrossover, pMutation and the crossover
type to generate a new population. Always include the best model in the new
population.

• Go to Step (3).

4.2 Linear Combination Algorithm

The Linear Combination Algorithm (LCA) fits a multiple linear regression model to
a continuous response given a mixed set of predictors, X. It also selects the optimal
predictors that explain most of the variation in the response and works as follows:

(1) Generate a random population of size N and dimension p, where p is the num-
ber of predictors in the model. Consider each row of the population to be a
chromosome.

(2) For each chromosome in the population:

• Build a new predictor data matrix, Xnew . Since Xnew might be a mixed data
set, we split the Xnew matrix into Xcon and Xcat where Xcon is the data on
the continuous predictors and Xcat is a 1-dimensional continuous data of the
categorical predictors. Hence Xnew can be represented as Xnew = [Xcon Xcat].
Suppose, if the current chromosome selects x1, x2, x3, x4 which are a subset
of the original set of predictors x1, . . . , xp where p ≥ 5. Suppose x1 and
x3 are continuous and x2, x4 and x5 are categorical. We perform the Gifi
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transformation on x2, x4 and x5 and transform it to a 1-dimensional continuous
variable, Xcat. Since x1 and x3 are continuous, Xcon = [

x1 x3
]
. Therefore,

Xnew = [Xcon Xcat].
• Perform multiple regression analysis with y as the response and Xnew as the
set of predictors and compute the desired information criteria for each chro-
mosome.

(3) Sort the chromosomes in the population according to the ascending order of
their information score. The chromosome with the lowest information score is
considered to be the best chromosome among the N − 1 other chromosomes.

(4) Stop if the stopping criteria is met and return the best model from the current
population or else:

• Perform crossover andmutationwith pCrossover, pMutation and the crossover
type to generate a new population. Always include the best model in the new
population.

• Go to Step (2).

5 Regression Modelling Using the Gifi System

In this section, we present the regression modelling of data using the OSA and LCA
by making the data purely continuous.

Following Bozdogan (2004, 2024), we consider the multiple linear regression
model given by:

y = β0 + β1X1 + · · · + βkXk + ε , (9)

or, in a more compact matrix form, we have:

y = Xβ + ε (10)

where

y =
⎡
⎢⎣

y1
...

yn

⎤
⎥⎦ , X =

⎡
⎢⎣

x11 . . . x1k
...

. . .
...

xn1 . . . xnk

⎤
⎥⎦ , β =

⎡
⎢⎣

β1
...

βk

⎤
⎥⎦ , and ε =

⎡
⎢⎣

ε1
...

εn

⎤
⎥⎦ ,

so that:

• y is a vector of (n × 1) observations on a dependent variable,
• X is a full rank (n × q)matrix of nonstochastic predetermined predictor variables,
• β is a (q × 1) coefficient vector, and ε is an (n × 1) vector of unknown random
error (or noise) term.

Often thefirst columnofX consists of ones.That is, (x11, . . . , xn1)
′ = (1, . . . , 1)′

to signify the presence of an intercept in the regression model.
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Given the model in (9), under the assumption of normality, we can analytically
express the density function of regression model as:

f
(
yi | xi ,β, σ 2

) = (
2πσ 2

)− 1
2 exp

[
−

(
y − x′

iβ
)2

2σ 2

]
. (11)

The likelihood function for a random sample of n observations is:

L
(
β, σ 2 | y,X) = (

2πσ 2
)− n

2 exp

[
− (y − Xβ)′ (y − Xβ)

2σ 2

]
, (12)

and the log likelihood function is:

l
(
β, σ 2) = −n

2
log (2π) − n

2
log σ 2 − (y − Xβ)′ (y − Xβ)

2σ 2
. (13)

Using matrix differential calculus, the maximum likelihood estimates (MLE’s)
(β̂, σ̂ 2) of

(
β, σ 2

)
are given by:

β̂ = (
X′X

)−1
X′y, (14)

and

σ̂ 2 =
(
y − Xβ̂

)′ (
y − Xβ̂

)

n
= RSS

n
. (15)

The maximum likelihood (ML) covariance matrix of the estimated regression coeffi-
cients is given by:

̂Cov
(
β̂
)
MLE

= σ̂ 2
(
X′X

)−1
(16)

without centreing and scaling.
To study the sampling performance of β̂ and σ̂ 2, we compute the estimated Fisher

information matrix (FIM) given by:

F̂ =
[

X′X
σ̂ 2 0
0 n

2σ̂ 4

]
. (17)

To derive the information complexity, ICOMP, of the estimated inverse Fisher
information matrix (IFIM), we have:

̂Cov
(
β̂, σ̂ 2

)
= F̂−1 =

[
σ̂ 2

(
X′X

)−1
0

0′ 2σ̂ 4

n

]
(18)
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which is a biased covariance matrix of the estimated parameters. The covariance of
the unbiased estimators β̂ and σ̂ 2 is:

̂Cov
(
β̂, σ̂ 2

)
= F̂−1 =

[
σ̂ 2

(
X′X

)−1
0

0′ 2σ̂ 4

n−k−1

]
. (19)

When themodel ismisspecified,we define a consistent estimator of the covariance
matrix Cov

(
θ∗

k

)
given by:

̂Cov
(
θ̂
)
Misspec

= F̂−1R̂F̂−1
. (20)

This is often called the “sandwich covariance” or “robust covariance” estimator,
since it is a correct variance regardless whether of the assumed model is correct or
not.

In (20) R̂ is the meat and the two F̂−1
’s are the two slices of the bread. When the

model is correct we get F̂ = R̂, and the formula reduces to the usual inverse Fisher

information matrix, F̂−1
(White 1982).

The estimated outer-product form of the Fisher information matrix is given by:

R̂ =
[ 1

σ̂ 4X′D2X X′1 Sk
2σ̂ 3(

X′1 Sk
2σ̂ 3

)′ (n−q)(K t−1)
4σ̂ 4

]
, (21)

where D2 = diag
(
ε̂21, . . . , ε̂2n

)
and X is a (n × q) matrix of regressors or model

matrix, Sk is the estimated residual skewness, K t the kurtosis, and 1 is a (n × 1)
vector of ones. That is:

Sk =
(
1
n

∑n
i=1 ε̂3i

)

σ̂ 3
(22)

and

K t =
(
1
n

∑n
i=1 ε̂4i

)

σ̂ 4
. (23)

Hence, the “sandwich covariance” or “robust covariance” estimator is given by:

̂Cov
(
θ̂
)
Misspec

= F̂−1R̂F̂−1

=
[

σ̂ 2
(
X′X

)−1
0

0′ 2σ̂ 4

n

] [ 1
σ̂ 4X′D2X X′1 Sk

2σ̂ 3(
X′1 Sk

2σ̂ 3

)′ (n−q)(K t−1)
4σ̂ 4

] [
σ̂ 2

(
X′X

)−1
0

0′ 2σ̂ 4

n

]
.

(24)

Note that this covariance matrix should impose greater complexity than the inverse
Fisher information matrix (IFIM). It also takes into account presence of skewness
and kurtosis.
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Next, we show several derived forms of ICOMP and other information criteria
for model selection in multiple regression models.

5.1 Derived Forms of Information Criteria for the Regression
Model

Here, we briefly give the derived forms of various information criteria for themultiple
regression model with k predictors.

5.1.1 AIC and AIC-Type Criteria

Akaike (1973) AIC for the regression model to be used as fitness function in the GA
is given by:

AIC(Regression) = n log (2π) + n log
(
σ̂ 2) + n + 2 (k + 1) . (25)

Applying the finite sample correction to AIC, we have:

AICc(Regression) = n log (2π) + n log
(
σ̂ 2

) + n + 2
n (k + 1)

n − k − 2
. (26)

The consistent AIC (CAIC) of Bozdogan (1987) for the regression model is given
by:

CAIC(Regression) = n log (2π) + n log
(
σ̂ 2) + n + k

[
log (n) + 1

]
. (27)

Similar toCAIC, theBayesian criterion (SBC)proposedbySchwarz (1978) is defined
by:

SBC(Regression) = n log (2π) + n log
(
σ̂ 2

) + n + k log (n) . (28)

5.1.2 ICOMP Based on IFIM

If we use the estimated inverse Fisher information matrix (IFIM), then we define
ICOMP(IFIM) as:

ICOMP(IFIM)Regression = −2 log L
(
θ̂
)

+ 2C1

(
F̂−1

)

= n log (2π) + n log
(
σ̂ 2

) + n + 2C1

(
F̂−1

)
, (29)

where C1

(
F̂−1

)
is the maximal entropic complexity of IFIM given by:
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C1

(
F̂−1

)
= s

2
log

⎡
⎣ trace

(
F̂−1

)

s

⎤
⎦ − 1

2
log

∣∣F̂−1∣∣ . (30)

For the regression model, C1

(
F̂−1

)
is given by:

C1

(
F̂−1

)
= (q + 1)

2
log

⎡
⎣ trace

(
σ̂

(
X′X

)−1 + 2σ̂ 4

n

)

q + 1

⎤
⎦

− log
∣∣∣σ̂ 2

(
X′X

)−1
∣∣∣ − log

(
2σ̂ 4

n

)
. (31)

Similarly, using the second order equivalent measure of complexity to the original
C1(◦) measure, that is:

ICOMP(IFIM)Regression = n log (2π) + n log
(
σ̂ 2

) + n + 2C1F

(
F̂−1

)
, (32)

where C1F

(
F̂−1

)
is given by:

C1F

(
F̂−1

)
= 1

4λ
2
a

s∑
j=1

(
λ j − λa

)2
, (33)

and where λ j , j = 1, 2, . . . , s, are the eigenvalues of F̂−1
and λa is the arithmetic

mean of the eigenvalues.
We note that C1F (◦) is a second order equivalent measure of complexity to the

original C1 (◦) measure. Also, we note that C1F (◦) is scale-invariant and C1F (◦) ≥
0 with C1F (◦) = 0 only when all λ j = λa . Also, C1F (◦) measures the relative
variation in the eigenvalues.

Further in the inverse Fisher information matrix (IFIM), as the number of param-
eters increases (i.e. as the size of X increases), the error variance σ̂ 2 gets smaller
even though the complexity gets larger. Also, as σ̂ 2 increases,

(
X′X

)−1
decreases.

Therefore, C1

(
F̂−1

)
achieves a trade-off between these two extremes and helps to

avoid multicollinearity.

5.1.3 ICOMP Under Misspecification

When the model is misspecified, we define ICOMP under misspecification as:
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Table 5 Summary of model selection criteria used in genetic algorithm (GA)

1. AIC(Regression) = n log (2π) + n log
(
σ̂ 2

) + n + 2 (k + 1)

2. CAIC(Regression) = n log (2π) + n log
(
σ̂ 2

) + n + k
[
log (n) + 1

]

3. SBC(Regression) = n log (2π) + n log
(
σ̂ 2

) + n + k log (n)

4. ICOMP(IFIM) = n log (2π) + n log
(
σ̂ 2

) + n + 2C1

(
F̂−1

)

5. ICOMP(IFIM) = n log (2π) + n log
(
σ̂ 2

) + n + 2

[
1

4λ
2
a

∑q
j=1

(
λ j − λa

)2]

6. ICOMP(IFIM)Misspec = n log (2π) + n log
(
σ̂ 2

) + n + 2C1

(
̂Cov

(
θ̂
)
Misspec

)

ICOMP(IFIM)Misspec = n log (2π) + n log
(
σ̂ 2

) + n + 2C1

(
̂Cov

(
θ̂
)
Misspec

)
,

(34)
where

̂Cov
(
θ̂
)
Misspec

= F̂−1R̂F̂−1
(35)

is a consistent estimator of the covariance matrix Cov
(
θ∗

k

)
. For further details on

information criteria, we refer the readers Bozdogan (1988, 1990a, b, 2004, 2024).
In summary, we score any one of the following information criteria using the

genetic algorithm (GA) to carry out subset selection of variables in multiple regres-
sion model (Table5).

6 Genetic Algorithm

A Genetic Algorithm (GA) is a stochastic approach search algorithm which is based
on concepts of biological evolution and natural selection that can be applied to solving
problems where a vast number of possible solutions exist. Unlike conventional opti-
misation techniques, the GA requires no calculation of the gradient of the objective
function and is not restricted to local optima (Goldberg 1989). GA treats informa-
tion as a series of codes on a binary string, where each string represents a different
solution to a given problem. These strings are analogous models to the genetic infor-
mation coded by genes on chromosome. A string can be evaluated according to some
fitness value, for its particular ability to solve the problem. In our case, we use the
information criteria as our fitness function. On the basis of the fitness values, strings
are either retained or removed from the analysis after each run so that, after many
runs, the best solution has been identified. One important difficulty with any GA is
in choosing an appropriate fitness function as the basis for evaluating each solution.
For a detailed review on GAwe refer the readers to Goldberg (1989), Forrest (1993),
and Marczyk (2004).
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In GA, mating of chromosomes is performed as a crossover process (Bozdogan
2004). A model chosen for crossover is controlled by the crossover probability or
the crossover rate. During the crossover process, we randomly pick a position along
each pair of parent models (strings) as the crossover point. For any pair of parents,
the strings are broken into two pieces at the crossover point and the portions of the
two strings to the right of this point are interchanged between the parents to form
two off spring strings.

There are three different crossover methods including single point crossover, two
point crossover and uniform crossover. In single point crossover, one crossover point
is selected; a binary string from beginning of the chromosome to the crossover point
is copied from one parent, the rest is copied from the second parent. In two point
crossover, two crossover points are selected; binary string from the beginning of the
chromosome to the first crossover point is copied from one parent, the part from the
first to the second crossover point is copied from the second parent and the rest is
copied from the first parent. Finally in the uniform crossover, the bits are randomly
copied from the first or from the second parent. In our algorithm, the user has the
option of choosing any one of the three crossovers.

Mutation
Mutation of models is used in GA as a way of creating new combinations of variables
so that the searching process can jump to another area of thefitness function landscape
instead of searching in a limited area. By mutation, a randomly selected locus can
change from 0 to 1 or from 1 to 0. Thus, a randomly selected predictor variable is
either added to or removed from the model.

6.1 Steps of GA: Pseudo Code

(1) Generate a random population of N random regression models y = Xβ + ε.
(2) Evaluate each model by using the fitness function (i.e. your favourite informa-

tion criterion).
(3) Sort the models in increasing order of the fitness function; the model with the

minimum fitness function is the first model considered.
(4) Since the population has N models, we choose the first N/2 models for the

crossover operation.
(5) Crossover operation is performed on each of the models in the population from

2 to N/2 − 1 with the first model.
(6) The newpopulation always contains the firstmodel in the population; themodel

having the minimum information criteria used as the fitness function.
(7) The N − 2 offspring’s produced in step 4 go in to the new population. At this

point we have N − 1 models in the new population.
(8) To generate the new population of size N , we perform a crossover using the

first model and the N/2 + 1 model from the old population. Since there will
be two offspring’s produced from this crossover operation, we randomly select
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one offspring and place it in the new population. Hence the new population
contains N models.

(9) Perform the mutation operation with a mutation probability on the models in
the new population.

(10) If the stopping criteria is met, return the best solution (which is the first model)
from the current population

(11) Go to Step (2).

7 A Real Numerical Example and the Computational
Results

We use the Gifi transformation on a real mixed data set and transform the categorical
predictor variables to create a continuous variable. Then we fit a multiple regression
model using the genetic algorithm (GA) to select the best subsets of the predictor
variables. We show the results LMC and OSM in Sects. 7.1.1 and 7.1.2, respectively.

7.1 Analysis of Beta-Carotene Data Set

Observational studies have suggested that low dietary intake or low plasma con-
centrations of retinol, beta-carotene, or other carotenoids might be associated with
increased risk of developing certain types of cancer. However, relatively few studies
have investigated the determinants of plasma concentrations of these micronutri-
ents. A cross-sectional study was designed to investigate the relationship between
personal characteristics and dietary factors, and plasma concentrations of retinol,
beta-carotene and other carotenoids. Study subjects (n = 315) were patients who
had an elective surgical procedure during a three-year period to biopsy or remove
a lesion of the lung, colon, breast, skin, ovary or uterus that was found to be non-

Table 6 GA parameter input

Maximum iteration maxIter

Probability of cross over pCrossover

Probability of mutation pMutation

Cross over type Uniform, single point, two point

Population size N

Predictor data X

Continuous response data y

Information score AIC, ICOMP, ICOMPIFIM, CAIC, SBC
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Table 7 Beta-carotene data set

Variable names Description of variables

AGE Age (years)

SEX (1 = male, 2 = female)

SMOKSTAT (1 = never, 2 = former, 3 = current smoker)

QUETELET Quetelet
(
weight/

(
height2

))

VITUSE (1 = Yes, fairly often, 2 = Yes, not often, 3 =
No)

CALORIES Number of calories consumed per day

FAT Grams of fat consumed per day

FIBRE Grams of fibre consumed per day

ALCOHOL Number of alcoholic drinks consumed per week

CHOLESTEROL Cholesterol consumed (mg per day)

BETADIET Dietary beta-carotene consumed (mcg per day)

RETDIET Dietary retinol consumed (mcg per day)

BETAPLASMA Plasma beta-carotene (ng/ml)

RETPLASMA Plasma retinol (ng/ml)

cancerous. We display the data for only two of the analytes (BETAPLASMA and
RETPLASMA) (Table7). This data has not been published yet but a related reference
is Nierenberg et al. (1989).

7.1.1 Beta-Carotene Data: Using Linear Combination Method

Since the variables SEX, SMOKSTAT and VITUSE are categorical, we use the
Gifi transformation to generate an optimal weight (score) vector that is used for
transforming each of the categorical variables to a continuous variable. Some of the
pair-wise kernel density estimates of this data is shown in Fig. 1 using the Gaussian
kernel with bandwidth, h = 0.5.

We fit a multiple regression model with y = RETPLASMA as the dependent
variable and the variables AGE, SEX, SMOKSTAT, QUETELET, VITUSE, CALO-
RIES, FAT, FIBRE, ALCOHOL, CHOLESTROL, BETADIET and RETDIET as
independent variables. We also include the intercept term in this model. We assume
that the residuals are normally distributed. We use GA for variable selection with
maximum iterations of 100, population size of 20, probability of crossover of 0.75,
probability of mutation of 0.10 and crossover type as uniform. ICOMPC1 is used as
the fitness function.
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Fig. 1 Kernel density estimate of beta-carotene data

The best subset of variables selected by GA and its associated information score
is given by:

Model: Intercept AGE SEX SMOKSTAT QUETELET
FAT ALCOHOL RETDIET

where ICOMP = 4233.376. The estimated coefficients for the above set of variables
is given by:
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β̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

500.7981
2.5039
1.0760

−0.5323
−0.2685
−0.0118
37.2665

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The RMSE for this model is 200.3348. The optimal weights (scores) associated
with the categories of the variable SEX and SMOKSTAT are:

wSEX =
[

1.7298
−0.2661

]
wSMOKSTAT =

⎡
⎣

−0.6169
0.5241
0.8508

⎤
⎦ .

Hence, the estimated regression model can be written as:

ŷ = RETPLASMA

= 500.7981 + 2.5039 × AGE + 1.0760 × QUETELET − 0.5323 × FAT

−0.2685 × ALCOHOL − 0.0118 × RETDIET + 37.2665 × catX,

where catX is the linear combination of the weights (scores) of the categories of the
variables SEX and SMOKESTAT, respectively.

For instance, if the categorical variable SMOKSTAT takes value 1 and the categor-
ical variable SEX takes value 0. The corresponding weight associated with a value of
1 for the categorical variable SMOKSTAT is 0.5241 and the corresponding weight
associated with a value of 0 for the categorical variable SEX is 1.7298. Therefore,
the value of catX would be:

0.5241 + 1.7298 = 2.2539 .

The best value of ICOMP at the end of each iteration of the GA process is shown in
the Fig. 2.

The best subset of variables selected by AIC with same set of GA parameters is
given by:

Model: Intercept AGE SEX SMOKSTAT FAT

The AIC score for this model is 4241.647. The estimated regression coefficients for
the model chosen by AIC is:
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Fig. 2 Beta-carotene (RetPlasma): plot of ICOMP versus number of iterations in GA

β̂ =

⎡
⎢⎢⎣
527.5606
2.4593

−0.6243
36.5431

⎤
⎥⎥⎦ .

We note that the AIC suggests the omission of two important predictor variables:
ALCOHOL and RETDIET. We consider the model selected by ICOMP as our best
fitting model for this data using the LCM with GA, since ICOMP = 4233.376 is
much smaller then the AIC value.

7.1.2 Beta-Carotene Data: Using Optimal Scaling Method

The categorical variables are transformed and optimally scaled. We fit a multiple
regression model with RETPLASMA as the dependent variable and the variables
AGE, SEX, SMOKSTAT,QUETELET,VITUSE,CALORIES, FAT, FIBRE,ALCO-
HOL,CHOLESTROL,BETADIETandRETDIET as independent variables.We also
include the intercept term in this model. We assume that the random error is nor-
mally distributed. We use GA for variable selection with maximum iterations of 100,
population size of 20, probability of crossover of 0.75, probability of mutation of
0.10 and crossover type as uniform. ICOMPC1 is used as the fitness function.
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The best subset of variables selected by GA and its associated information score
is given by:

Model: Intercept AGE SEX SMOKSTAT VITUSE

The ICOMP score for this model is 4244.857. The estimated coefficients for the
above set of variables is given by:

β̂ =

⎡
⎢⎢⎢⎢⎣

469.2317
2.6634
41.0245
26.9100

−22.4476

⎤
⎥⎥⎥⎥⎦

.

Hence the estimated regression model is given by:

ŷ = RETPLASMA

= 469.2317 + 2.6634 × AGE + 41.0245 × SEX

+26.9100 × SMOKSTAT − 22.4476 × VITUSE .

The best value of the above fitness function at the end of each iteration of the GA
process is shown in the Fig. 3.
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Fig. 3 Beta-carotene (RETPLASMA): plot of ICOMP versus number of iterations in GA
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Fig. 4 Beta-carotene: plot matrix of the best predictors in the model RETPLASMA

The best subset of variables selected by using the AIC with the same set of GA
parameters is given by:

Model: Intercept AGE SEX SMOKSTAT FAT

The AIC for this model is 4243.2061. The estimated coefficients for the above model
is given by:

β̂ =

⎡
⎢⎢⎢⎢⎣

537.5733
2.2938
45.5978
27.1234
−0.6466

⎤
⎥⎥⎥⎥⎦

.

We note that the AIC allows to choose the same subset of variables using both
the LCM and OSM with GA.

We choose the model selected by the ICOMP as our best fitting model since there
is not much difference between AIC and ICOMP. Figure4 shows the plot matrix of
the best predictors in the model RetPlasma.
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8 Conclusion

In this paper, we presented the idea of transforming the mixed data to a pure contin-
uous data by a transformation known as Gifi transformation (Gifi, 1990). Since the
transformed data set is purely continuous, one can implement the classical statistical
analysis and modelling. We presented two algorithms by which one can perform
multiple regression along with the genetic algorithm (GA) using the information cri-
teria as the fitness function. The OSM optimally scales the categorical variables, thus
making the data set purely continuous. The LCM generates a linear combination of
the categories of the categorical variables thus making it a 1-dimensional continuous
variable. The OSM is useful when there are a few categorical variables in the data set
whereas LCM is useful when the number of the categorical variables is very large.
We showed our results on a benchmark real data set. Our analysis shows that the
results using the Gifi system is new when one has many categorical variables in their
data sets.
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Complex Difference System Models
for Asymmetric Interaction

Naohito Chino

1 Introduction

Asymmetric relationships between objects are frequently observed in the phenomena
observed in various branches of sciences. A typical example in psychology would
be a one-sided affection among members of any informal group. The amount of
migration from one region to another in geography is another example. These data
can be arranged in matrix form called a sociomatrix. For such a matrix, its rows
(say) indicate the raters, and its column denotes the ratees. Such a data matrix is
generally asymmetric. We call such a relational data matrix an asymmetric similarity
matrix.We shall hereafter abbreviate it as theASMbetween objects. Here, objects are
sometimes called nodes in graph theory. Suppose that we have a set of longitudinal
asymmetric similarity matrices. This type of data belongs to two-mode three-way
data, because the rows and columns belong to the same category, i.e., objects or
nodes, and time belongs to the second category. Broadly speaking, this type of data
can be said to be a three-way data.

Two-mode three-way data, including a set of longitudinal ASM’s, can be analysed
using several statistical and/or mathematical models; see, for example, Desarbo et al.
(1992), Grorud et al. (1995), Okada and Imaizumi (1997, 2005), Zielman (1991),
and Zielman and Heiser (1991). These models can be thought of as extensions of the
individual differences MDS proposed by Carroll and Chang (1970) to ASM’s. To be
precise, these models reduce differences or changes in an ASM between objects or
nodes to the individual differences. In other words, a major concern of these models
can be said to obtain some static structures of asymmetric relationships among
objects or nodes.

In contrast, there have been some models which are intended to obtain some
dynamic structures of these asymmetric relationships among objects or nodes; see,
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for example, Chino (1990),Gregerson andSailer (1993), Tobler (1976), andYadohisa
andNiki (1999). For example, Chino (1990) fitted a set of two-dimensional nonlinear
differential equations to a set of longitudinal sociomatrices gathered by Newcomb
(1961), and obtained several qualitative patterns of the trajectories of the vector fields
in which members interact with each other. Here, the vector field at each point in
time is estimated from the data. In other words, a major concern of this model is to
obtain some dynamic structures of asymmetric relationships among members. Thus,
this model can be said to be a dynamical system scaling and we call it DYNASCAL.
Gregersen and Sailer (1990) examined a meta-model of two-person social systems
described by a set of real two-dimensional nonlinear difference equations, and found
curious chaotic behaviours. These equations includeMandelbrot’s set. Tobler (1976)
proposed a “wind” model for the interaction between geographical areas. In his
model, the ASM is, for example, the amount of migration from place i to place j .
The wind is interpreted as facilitating the interaction between geographical areas
in particular directions. Tobler estimates a special vector filed on a map from the
data, then decomposes it into divergence- and curl-free parts, and finally calculates
the scalar and vector potentials. Yadohisa and Niki (1999) proposed a vector field
representation of asymmetric proximity data, especially the scalar potential of the
field.

Among these models, DYNASCAL has excellent features since it utilises qualita-
tive theories of dynamical system, such as those of singularities, structural stability,
and bifurcations of vector field. As a result, given the longitudinal AMS’s between
members, it draws a two-dimensional vector field on the estimated configuration of
members at each time. Furthermore, it depicts singularities and several fundamental
solution curves peculiar to each of the vector fields. This enables interpretation of
global and local dynamical properties of the group structure at each time. However,
DYNASCAL has several disadvantages, too, of which we describe four of them.
Firstly, it presupposes asymmetric relationships between members but the estimated
relationships are symmetric. Secondly, it might not be fully justified mathematically
to administer the Procrustes rotations to the neighbouring pairs of configurations. The
reason for this is that DYNASCAL assumes a deterministic, nonlinear solution curve
of each member in a state space as an underlying dynamics which cannot be some-
times congruent with the Procrustes rotations. Thirdly, DYNASCALwill not capture
the so-called chaotic behaviours since it is restricted to a two-dimensional differen-
tial system. Fourthly, it is not possible for DYNASCAL to examine the behaviours
of the system theoretically, since it merely estimates the solution curves using spline
functions (Chino 2005).

In this paper, we shall discuss complex difference system models for asymmetric
interaction which were first proposed at “The International Conference on Measure-
ment and Multivariate Analysis” held on May 2000 in Banfff, Canada in order to
overcome those difficulties pointed out above and subsequently developed further
by the author; see Chino (2000, 2001, 2002, 2003, 2005, 2006, 2014, 2015a, b).
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2 Earlier Version of the Complex Difference SystemModels

The complex difference systemmodels we proposed elsewhere (Chino, op. cit.) have
several assumptions. Firstly, the state space in which we embed members (objects,
nodes) is assumed to be a finite-dimensional Hilbert space or an indefinite-metric
space. If we restrict our attention to a one-dimensional space, then an indefinite-
metric space may be identified with a Hilbert space. This assumption can be justified
by the Hermitian form model (abbreviated to HFM) which is underpinned by the
Chino-Shiraiwa theorem (Chino 1993). In fact, for the HFM, any ASM, say, S, is
decomposed into two parts as follows:

S = 1

2
(S + St ) + 1

2
(S − St ) = Ss + Ssk, (1)

where S is a square asymmetric matrix of order n which is the number of objects, and
Ss and Ssk are called the symmetric part and the asymmetric part (to be precise, the
skew-symmetric part), respectively. This decomposition has been used extensively
in the literature; see, for example, Beh et al. (2022), Bove (1992), Constantine and
Gower (1978), Escoufier and Grorud (1980), Gower (1977), and Greenacre (2000).

The HFM is deduced by reinterpreting the eigenvalue problem of the Hermitian
matrix H , which is constructed uniquely from the observed real square asymmetric
matrix S, from the view point of asymmetric MDS, or, stated another way, from a
geometric view point. Here, the Hermitian matrix H is simply computed as follows:

H = Ss + i Ssk, (2)

where i is the imaginary number, that is, a square root of −1. Equation (2) is nothing
but the definition of the Hermitian matrix. If H is Hermitian, then the conjugate
transpose of H is H ; see, for example, Wilkinson (1965). It should be noted that, in
general, St

sk is equal to −Ssk . H is thought of as a complexification of a real matrix
S, and there is a one-to-one correspondence between them. Escoufier and Grorud
(1980) also utilises this equation in their asymmetric MDS. However, they do not
solve the eigenvalue problem of H defined by this equation directly. Instead, they
solve it by defining a real symmetric matrix of order 2n such that:

H =
(

Ss −Ssk

Ssk Ss

)
.

Let us rewrite the eigenvalue problem of H , so that Hu j = λ ju j , as follows:

H = U1�pU∗
1 . (3)

Here, the p × n matrix U∗
1 is the conjugate transpose of the n × p matrix U1. Of

course, the p × p matrix �p is a real diagonal matrix �p = diag
(
λ1, . . . , λp

)
consisting of the non-zero eigenvalues of H arranged in descending order. Thematrix
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U1 consists of the p eigenvectors corresponding to these non-zero eigenvalues. If
we define an n by n matrix U which is composed of the eigenvectors associated with
all the eigenvalues including zeros of H as:

U = {u1, . . . , up︸ ︷︷ ︸
p

, up+1, · · · , un︸ ︷︷ ︸
n − p

} = (U1, U2) , (4)

then U1 is the first part of the unitary matrix U corresponding to the non-zero
eigenvalues.

Let us now rewrite (3) as:

h jk = ϕ
(
τ j , τ k

) = τ j�pτ
∗
k , (5)

then ϕ
(
τ j , τ k

)
satisfies the properties ofHermitian form (Cristescu 1977; Lancaster

and Tismenetsky 1985), where τ j is a p-dimensional row vector corresponding to
the j th row of U1. Furthermore, (5) associates h jk with a Hermitian form.

Chino (1993) proved that n objects are embedded in a finite-dimensional complex
(f.d.c.)Hilbert space if H is positive semi-definite (p.s.d.) (or negative semi-definite
(n.s.d.)), whereas they are embedded in an indefinite-metric space if H is indefinite.

Another assumption is composed of the following basic principles of interpersonal
behaviours:

(1) The asymmetric sentiment relationships among members make their affinities
change.

(2) If a member has a positive sentiment towards another member, then he or she
approaches to the target member.

(3) If a member has a negative sentiment towards another member, then he or she
departs from the target member.

There exist two minor principles in this family, as listed below:

(1) The magnitude of change in coordinate of members is proportional to the sine of
the difference in angles (arguments) between two members in a complex plane.

(2) The magnitude of change in coordinate of members is proportional to the norm
of the coordinate in a complex plane.

The complex difference systemmodels were defined under the above assumptions
as follows:

z j,n+1 = z j,n +
q∑

m=1

N∑
k �= j

D(m)
jk,n f

(m)
(
z j,n − zk,n

) + z0, j = 1, 2, . . . , N , (6)

where

f (m)(z j,n − zk,n) =
((

z(1)
j,n − z(1)

k,n

)m
,
(
z(2)
j,n − z(2)

k,n

)m
, . . . ,

(
z(p)
j,n − z(p)

k,n

)m)t
, (7)
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and
D(m)

jk,n = diag
(
w

(1,m)
jk,n , w

(2,m)
jk,n , . . . , w

(p,m)

jk,n

)
, (8)

w
(l,m)
jk,n = a(l,m)

n r (l,m)
j,n r (l,m)

k,n sin
(
θ

(l,m)
k,n − θ

(l,m)
j,n

)
, (9)

for l = 1, 2, . . . , p and m = 1, 2, . . . , q . Here, z j,n denotes the coordinate vec-
tor of member j at time n in a p-dimensional Hilbert space or a p-dimensional
indefinite-metric space. Moreover, m denotes the degree of the vector function
f (m)

(
zk,n − z j,n

)
in (7), which is assumed to have the maximum value of q. z0

is a complex constant. Furthermore, a(l,m)
n is a real constant coefficient of the term(

z(l)
j,n − z(l)

k,n

)m
, r (l,m)

j,n and θ
(l,m)
j,n are, respectively, the norm and the argument of z j,n

at time n on dimension l. Usually, both of r (l,m)
j,n and θ

(l,m)
j,n are independent of m.

At this point, we shall briefly explain how these results in (6) through (9) relate
to S, H , U (especially, U1), and τ ’s introduced previously. The matrix S in (1)
consists of observed similarities, s jk , between objects, and thus, it is a real matrix.
On the other hand, the matrix H in (2) consists of hypothetical similarities, h jk ,
between objects, and it is a complex matrix. It is apparent that there is a one-to-one
correspondence between S and H .

In HFM, we decompose H into �p and U1 which are composed of the non-zero
eigenvalues and eigenvectors corresponding to these eigenvalues of H , as shown
in (3). According to the Chino-Shiraiwa theorem, objects are embedded in a p-
dimensional Hilbert space if H is p.s.d., and are embedded in an indefinite-metric
space if H is indefinite which means that H has both positive and negative eigenval-
ues. In any case, τ j and τ k in (5) are p-dimensional row vectors corresponding to the
j th row and kth row, respectively, of U1 in (3). Therefore, τ j and τ k are coordinate
vectors of objects j and k, respectively in a p-dimensional Hilbert space if H is p.s.d.
From (1) through (5), it is apparent that these coordinate vectors (eigenvectors) and
eigenvalues explain the hypothetical similarities, h jk , and corresponding observed
asymmetric similarities, s jk , between objects.

In our complex difference system models, we model the changes in observed
asymmetric similarities, s jk , over time. Since there is a one-to-one correspondence
between S and H , and since the eigenvalue problem of H gives us the complex
coordinate vectors of objects in a Hilbert space if H is p.s.d., we consider these
vectors as state vectors of objects which change over time. Here, we assume that
hypothetical asymmetric interactions between objects exist which cause the changes
in state vectors over time. The w

(l,m)
jk,m are parameters concerned with these hypothet-

ical asymmetric interactions. The z j,n in (6) is nothing but these state vectors at time
n in a p-dimensional Hilbert space. It should be noticed that the second right-hand
side of (6) is a vector function since D(m)

jk,n defined in (8) is a p × p diagonal matrix

and f (m)
(
zk,n − z j,n

)
is a p-dimensional column vector defined in (7). As a result,

each element of the vector function represented by the second right-hand side of (6)
is a complex polynomial function of

(
z j,n − zk,n

)
whose degree is q. Finally, z0 is a



458 N. Chino

Fig. 1 Changes in configurations of two members in a one-dimensional Hilbert space at iterations,
1, 20, 60, and 100 in a simulation study

complex constant since the location of object j , z j,n , in (6), which is embedded in a
p-dimensional Hilbert space, is a complex vector.

Figure1 shows an example of simulations using a special case of the above dif-
ference systems in which we show changes in configurations of two members in a
one-dimensional Hilbert space. This special case is written as follows for n-iteration:

⎧⎪⎨
⎪⎩

w jk,n = a
(|z j,n||zk,n|)a sin (

θk,n − θ j,n
)
,

z j,n+1 = z j,n + w jk,n
(
z j,n − zk,n

)2
,

zk,n+1 = zk,n + w jk,n
(
z j,n − zk,n

)2
,

where a is a scaling factor of the configuration which controls the domain (i.e., the
coordinate at time n) and range (i.e., the coordinate at time n + 1) of the configuration
and is a special case of a(l,m)

n in (9). In this simulation, it was set equal to 1/50.
Moreover, the degree of the polynominal of z j,n − zk,n in (6) was assumed to be 2,
as can be seen from the above equations. Furthermore, in this case the p-dimensional
vector z j,n in (6) becomes a scalar z j,n , because we assume here that p = 1. Finally,
we set the initial configuration (z j,1, zk,1) of the above difference systems equal to (1,
i/2). The reason for setting this configuration is that the skewness of the similarities
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Fig. 2 Changes in self-similarities of two members as well as the angles between them in a one-
dimensional Hilbert space over 200 iterations in a simulation study

between two members j and k is theoretically the largest of all, if the angle between
two members in the complex space is π/2; see, for example, Chino (2020a). In
Fig. 1, we denote z1,n and z2,n simply by A and B, respectively. Moreover, time is
identified with iteration. Thus, for example, A and B in Fig. 1a indicate z1,1 and z2,1,
respectively, in the initial configuration of members. Since the angle between two
members at iteration 1 is π/2, this means that member B likes member A very much
but member A does not like member B at all at iteration 1. As for the interpretation
of the configuration of objects in HFM; see Chino (2020a). Finally, the complex
constant z0 in (6) was set equal to zero.

Figure2 shows the changes in self-similarities of twomembers and those in angles
over 200 iterations. In Fig. 2c, one can see that the angle between two members
approaches π as the iterations increase. Figure3 illustrates changes in locations of
two members over 200 iterations in a one-dimensional Hilbert space. In this figure,
A1 and B1 indicate initial points of members j (= 1) and k (= 2), respectively. To
be precise, coordinates of A1 and B1 in this complex plane are (1, 0) and (0, i/2),
respectively.

Similarly, if we set a non-zero value to z0 in (6), we can obtain more curious
patterns of changes in locations of members over iteration than those in Fig. 3. How-
ever, there is a serious drawback in the complex system described by (6), (7), (8),
and especially in (9). That is, the function w

(l,m)
jk,n in (9) is not holomorphic (Chino

2014), since both r and θ are the functions of z and the conjugate of z, i.e., z̄. Here,
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Fig. 3 Changes in locations of two members over iterations in a one-dimensional Hilbert space

holomorphic means complex differentiable; see, for example, Ebeling (2007). The
complex differentiability of a complex-valued function is a natural extension of the
differentiability of a real-valued function in a real space to that of a complex-valued
function in a complex space. As a result, we cannot examine mathematical properties
of the above different system models using complex differential calculus. The late
K. Shiraiwa (personal communication, March 3, 2014), who had long been one of
my colleagues, pointed out this drawback. Therefore, we have discarded (9) in our
complex difference system models since then. The next section discusses a revised
version of the complex difference system models which are composed of holomor-
phic functions.

3 Revised Version of the Complex Difference System
Models

The revised version of the complex difference systemmodels which are composed of
holomorphic functions (Chino 2016a, b, 2017) is nothing but a simplified version of
the earlier version without (9) in the previous section. As a result, all the w

(l,m)
jk,n in (8)
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become complex constants, and the corresponding minor principles in the previous
section are no longer necessary. Thus, we have the following complex difference
system models in a strict sense:

z j,n+1 = z j,n +
q∑

m=1

N∑
k �= j

D(m)
jk,n f

(m)
(
z j,n − zk,n

) + z0, j = 1, 2, . . . , N . (10)

Here

f (m)(z j,n − zk,n) =
((

z(1)
j,n − z(1)

k,n

)m
,
(
z(2)
j,n − z(2)

k,n

)m
, . . . ,

(
z(p)
j,n − z(p)

k,n

)m)t
,

(11)
and

D(m)
jk,n = diag

(
w

(1,m)
jk,n , w

(2,m)
jk,n , . . . , w

(p,m)

jk,n

)
. (12)

Equations (10) through (12) are the same as (6) through (8), but no constraints
are imposed on the elements of the diagonal matrix D(m)

jk,n in (12). In other words,
in the revised version, we have discarded the weight constraints (9) in the earlier
version. Therefore, w(1,m)

jk,n , w
(2,m)
jk,n , . . . , w

(p,m)

jk,n are considered as free parameters in
the revised version. This means that we may assume any values in these parameters.

Chino (2017) added a control term g
(
u j,n

)
to the right-hand side of (10). In

general, a control term in a control theory (e.g., Elaydi 1996) is a forcing term which
controls a (difference or differential) system from its outside. In (10), the control can
be applied to affect directly each of the state variables z1,n, z2,n, . . . , zN ,n . In this
case, (10) is revised as follows:

z j,n+1 = z j,n +
q∑

m=1

N∑
k �= j

D(m)
jk,n f (m)

(
z j,n − zk,n

) + g
(
u j,n

) + z0, j = 1, 2, . . . , N ,

(13)
where g

(
u j,n

)
is a control; see Elaydi (1996) and Ott, Grebogi and Yorke (1990).

Moreover, we assume in the revised version that members obey only the three
basic principles of interpersonal behaviours discussed in Section 2. It should be
noted that we discarded the two minor principles discussed there. Figure 4 shows
another example of simulations using a special case of the above difference systems,
in which we show changes in configurations of two members in a one-dimensional
Hilbert space (Chino 2016a). This case is written as follows for n-iteration:

⎧⎨
⎩

w jk,n = 0.01 (1 + i) , wk j,n = −0.02 (1 + i) ,

z j,n+1 = z j,n + w jk,n
(
z j,n − zk,n

)
,

zk,n+1 = zk,n + wk j,n
(
zk,n − z j,n

)
.

The initial coordinates of two members, z j,1 and zk,1, were set equal to 1 and i/2,
whichmeans that the initial configuration ofmembers is the same as that in the exam-
ple shown in Section 2. However, in this example, the system is linear in contrast
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Fig. 4 Changes in configurations of two members in a one-dimensional Hilbert space at iterations,
1, 20, 60, and 100, in another simulation study

with the system shown in Section 2. In general, a wide class of linear difference equa-
tions can be solved explicitly and the qualitative behaviours of the solution curves
in these equations are simple. However, most nonlinear difference equations cannot
be solved explicitly; see, for example, Cull (2005) and Elaydi (1996). Moreover, the
elements of the diagonal matrix D(m)

jk,n in (12) are assumed to be (complex) constants
in marked contrast to those of the diagonal matrix in the earlier version. Note that in
the earlier version, the elements of the diagonal matrix vary with time n according
to (9). Finally, the reason why we consider here a linear system as an example of
the above revised version is that we can solve this kind of linear system analytically.
In fact, we can prove that, for example, the above system has a fixed point using a
familiar method called the Putzer algorithm in difference equations; see, for exam-
ple, Cull (2005) and Elaydi (1996). If we apply this algorithm to the above system,
we can compute its fixed point as 2 − 0.5i , although we shall not show its proof here
because it is beyond the scope of this paper. In the following, we shall check whether
the fixed point of the above system approaches to this value.

Figure 5 shows the changes in self-similarities of two members as well as angles
over 1000 iterations. In Fig. 5c, one can see that the angle between two members
approaches 0 as iteration proceeds. Figure 6 illustrates changes in locations of two
members over 1000 iterations in a one-dimensional Hilbert space. In this figure, A1
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Fig. 5 Changes in configurations of two members in a one-dimensional Hilbert space over 1000
iterations in another simulation study

and B1 indicate initial points of members j and k, respectively, as in Fig. 3 in the
previous section. As can be seen in this figure, the speed of convergence became
slower and slower as locations of two members approach the fixed point. Even after
500 iterations these locations did not reach the fixed point. However, after 1000
iterations, those of members A and B reached 2.0 − 0.5000i and 2.0 − 0.5001i ,
respectively. This means that two members become deeply in love with each other
as the iteration proceeds.

In this way, we can find various patterns of dynamics which are generated by
the asymmetric interactions among members. Such a job might be said to be a
classification of dynamics generated by the complex interactions among objects.
This type of classification of dynamics may be contrasted with a classification of
the static structures among members obtained by applying a traditional two-mode
three-way asymmetric MDS to a longitudinal set of asymmetric matrices.

4 Discussion

The complex difference system models for asymmetric interaction discussed in this
paper were first proposed by the author at “The International Conference on Mea-
surement and Multivariate Analysis” held on May, 2000, in Banff, Canada, and have
been revised since then, as introduced in Sects. 2 and 3. In these sections, we have
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Fig. 6 Changes in locations of twomembers in a one-dimensionalHilbert space over 1000 iterations
in the above difference system

been mainly concerned with social interactions. However, asymmetric interaction
can be observed ubiquitously not only in our daily lives but also in vivo, in vitro,
and studies in the field, in various disciplines of science. For example, pecking order
among hens and cocks is a special asymmetric interaction in ethology [e.g. Masure
andAllee (1934)]. Biosynthetic pathway of proteins inmammals has one-sided paths
and cycles [e.g. Imai andGuarente (2014)],which canbe considered as an asymmetric
interaction among proteins. Weight matrix among hidden layers in neural networks
represents asymmetric interactions in the brain [e.g. Goodfellow et al. (2016)].

Considering these phenomena as well as the relation between weight matrix and
directed graph (abbreviated as digraph), we have recently renamed our complex
difference system models with holomorphic functions dynamic weighted digraph
(abbreviated as DWD) (Chino 2018a, b, 2019, 2020, 2021). Here, if a number is
associated with an edge of a graph, these numbers are called weights, and a matrix
with these numbers is called aweight matrix. In a digraph, the weight matrix is gener-
ally asymmetric. Therefore, in DWDasymmetric interactions are no longer restricted
to social interactions.As discussed inChino (2018a, b), theweighted digraph inDWD
is a digraph with weights specified at time n, which are attached to each directed
arc (or edge, link) between nodes (or vertices) as well as each loop of the digraph.
Moreover, our elementary theory of DWD assumes that the weight matrix denotes
the proximity strengths among nodes at any instance of time, and that it varies as
time proceeds. As a result, we obtain a set of longitudinal ASM introduced in the
introductory section.
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As in the complex difference system models with holomorphic functions, the
state space in which we embed members (objects, nodes) is assumed to be a finite-
dimensional Hilbert space or an indefinite-metric space. It should be noted here that
the state space is a hypothetical or latent space and cannot be observed directly.
Furthermore, we assume that the configuration of nodes varies according to the
mutual interactions among nodes as time proceeds. Parameters related to these
mutual interactions are specified a priori as certain functions of α

(1,m)
jk , α

(2,m)
jk , . . .,

α
(p,m)

jk , described by (12) in which w
(p,m)

jk are replaced by α
(p,m)

jk .
As also pointed out in Chino (2018a, b), the purpose of DWD is two-fold. One

is theoretical, and the other practical. For the theoretical purpose, we compute the
trajectories of the nodes using (10), by setting an arbitrary initial configuration of the
nodes. Then, we recover the longitudinal digraphs associated with these similarity
matrices. We can classify the patterns of changes in digraphs over time (or iteration)
according to the patterns of trajectories of nodes over time (or iteration). For practical
purposes, it will be possible to demonstrate the ideas above using empirical examples.
For example, if we apply HFM to an observed asymmetric similaritymatrix at a point
in time, we can compute a p-dimensional configuration of members (objects, nodes).
If the Hermitian matrix H computed from the observed similarity matrix is p.s.d., we
can embed a p-dimensional configuration of members in a Hilbert space. Then, we
can use the configuration thus obtained as initial values of DWD, if we assume the
hypothetical complexweights in (12). Finally, if we apply (10) to the configuration of
members with initial values and these hypothetical weights, we can examine various
scenarios of solution curves like those in Fig. 6. These tasks remain to be done for
future works. We shall go further with details of DWD in a book to be published in
the near future.
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1 Introduction

In the seventeenth century, Galileo Galilei set himself the task of measuring what is
measurable and making measurable what is not. Our goal here is to make measur-
able the notions of “concordance” and “discordance” often used between behaviours,
events, ideas, results, etc. Each entity or object is subject to internal or external vari-
ations in time and/or space. We thus consider that each object is a class of units
of a population �. These units are described by classical numerical or qualitative
variables, but the description of the classes of units requires taking into account the
variability of the units that constitute them. This is why, to express this variability,
we are led to use variables with interval values, histograms, probability distribu-
tions, character sequences and the like. These data are called “symbolic” because
they cannot be manipulated as numbers. For example, anyone knows what the multi-
plication between two ormore numbers is, but themultiplication between intervals or
histograms is not evident. Therefore, the description of a class is a vector of symbolic
values expressing the variability of each variable for this class.

On the other hand, what is the representation of a class? The representation x
of a class c is any entity obtained from the descriptive variables of the units, for
which a fit can be measured with the class c. Hence, a class can be represented,
for example, by a category, a mode, a mean, a probability density, a cumulative
distribution, a regression, a hierarchy or a pyramidal clustering, a factorial axis from
aprincipal component analysis (PCA), a dual analysis (also knownas correspondence
analysis), a canonical analysis and the like. There are several methods able to provide
the representations of the best fit with the classes of a given collection of classes of
� such as the expectation–maximisation (EM) algorithm (Dempster et al. 1977).
For example, the dynamic clustering method (DCM) (Diday 1971, 1973; Diday and
Schroeder 1976; Diday and Simon 1980) provides a family of algorithms associated
with each form of representation, tending to improve in successive steps the fit of
each class, of a collection of classes of empty intersection of the population �, to
its representation. In the particular case of the popular clustering algorithm called
K-means, the representation is a mean. Many (DCM) methods were then developed
based on this duality between classes and representation; see, for example, regression
(Charles 1977; Spath 1979), probability density (Diday et al. 1979) and canonical
analysis (Diday 1986).

A broad overview of the s-concordance consists in a class c that is all the more
“concordant” (i.e. in concordance) with a collection of classes P for a given repre-
sentation that the proportion of classes of P, having a fit and a representation close to
that of c, is large. The “discordance” can bemeasured in different ways. For example,
by considering that it is all the greater, the weaker is the concordance (this will be
the generally our choice) or by considering the proportion of classes c′ of P that the
representation and (or) fit to c′ deviate too much from the representation and (or) fit
to c.

Suppose, for example, thatwe have a qualitative variablewhose categories express
different causes of mortality including that of COVID-19. Class is represented by
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this category “COVID-19”. Let � be the population of the European countries and
define P to be a partition of this population consisting of each European country.
To what extent can it be said, over a given period, that a European country with a
proportion of the COVID-19 category denoted fc (COVID-19) is in “concordance”
or in “discordance” with the other European countries (i.e. with P)? In this case,
the concordance (resp. discordance) measure can be considered to be proportional
to the proportion of European countries c ∈ P having a proportion of deaths fc′

(COVID-19) close (resp. distant) to fc (COVID-19). This proportion is denoted gc
(COVID-19, P). An illustrative example using data from an international teaching
and learning survey is summarised in Korenjak-Černe et al. (2022).

Since we want to know if a class is “concordant” with a collection of classes
for a given representation, we are led to use the symbolic data that describe each of
these classes and their representation. The “concordance” and “discordance” used by
Kendall (1975) aim to compare the ranking of two ordinal variables. Therefore, both
kinds of concordance and discordance have nothing to see together as they measure
two things completely differently; the first compares a class to a collection of classes
while the second compares two ordinal variables. That is why we will use the terms
“s-concordance” and “s-discordance” (“s” for symbolic) for the kind of concordance
measure discussed in this paper.

Similarities and dissimilarities are defined by Axioms that express our perception
of reality. Analogously, we define “s-concordance” and “s-discordance” by Axioms.
We do this in order to measure the concordance or discordance of a class c with
a collection of classes, P , for a representation defined by the value x of a given
variable.

We first introduce in Sect. 1, two basic functions fc and gx , where fc(x) expresses
the fit of the representation x with c and gx(c, P) expresses the proportion of classes
c′ of P having a fit and a representation close to that of c. Sections 2 and 3 give the
axiomatic definitions of a s-concordance and a s-discordance. Section 4 gives exam-
ples of s-concordance and s-discordance families. Section 5 shows the links between
concordances and copulas. Section 6 gives a general formulation of the classical like-
lihood taking into account the concordance when a collection of P classes is given
(like in the case with the European countries). In the case where P is unknown at
the beginning, Sect. 7 gives a general formulation of mixture decomposition (by the
DCM method) taking into account the concordance or discordance and allowing to
construct P and the probability density representation of each of its classes. Section 8
gives a way to visualise (in 2D or 3D) clusters of classes of P .

Regarding useful publications for a better understanding of s-concordance and
s-discordance, let us mention Afonso et al. (2018), the review article published
by Diday (2016) and the first article where the notions of s-concordance and
s-discordance are introduced, Diday (2020).
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2 The Two General Basic Functions

The first basic function we define, denoted fc(x) ∈ [0, 1], expresses the fit between
a representation x and a class c (like fc (COVID-19) in the preceding example). In
the case of a categorical variable, fc(x) expresses the proportion of the category x in
the class c. In the case of a numerical variable, fc is a probability density and fc(x)
is the density of the pair (c, x).

The second basic function is denoted by gx(c, P), where P is a collection of given
classes and is in the case of qualitative variables, the proportion of classes c′ of P
whose representation x ′ and fit fc′(x ′) are close to those of c (x and fc(x)), like gx
(COVID-19, P).

In the case of a numerical variable, gx is a probability density, and gx(c, P) is the
density of the pair (c, x). To help simplify our discussion, we impose the assumption
that fc(x) and gx(c, P) vary between 0 and 1.

Knowing these two basic functions, the s-concordance and s-discordance can be
built. For a class c, a collection of classes P , and a representation x , the s-concordance
and the s-discordance are denoted by Sconc(c, P, x) and Sdisc(c, P, x), respectively.
In other words, Sconc and Sdisc are functions defined from P(�)P(P(�))M to the
set of positive numbers, where P(�) is the power set of � (i.e. the set of all classes
of �) and M is the set of all possible representation of any class.

3 Axiomatic Definition of Similarities and Dissimilarities

Similarities and dissimilarities are notions which exists since they have long been
understood, for example, in the Organon of Aristotle around 4 centuries BC. Other
famous names can be mentioned including Buffon (1707–1788), Adanson (1727–
1806), Lamarck (1744–1829), Cuvier (1769–1832) and Darwin (1809–1882). More
recently, Gower (1971), Sneath and Sokal (1973), Anderberg (1973) provide a thor-
ough review of measures of association including “similarities” of different kinds.
The formal Axioms which define the similarities can be found in Benzécri (1973,
p. 72); the similarities and dissimilarities are formally defined in Diday et al. (1982)
and in Jain and Dubes (1988). The Axioms that define a similarity (denoted “sim”)
or a dissimilarity (denoted “diss”) associate to a similarity for any pair of units (i, j)
a positive number which satisfy the following Axioms:

sim(i, j) ≥ 0, sim(i, i) = sim( j, j) = 0, sim(i, j) ≥ sim( j, i)(symmetry).

These Axioms are as follows for a dissimilarity:

diss(i, j) ≥ 0, diss(i, i) ≤ diss( j, j), diss(i, j) = diss( j, i)
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Intuitively, the similarity Axioms express mainly the fact that someone is more
similar to themself than to any other. The dissimilarity Axioms express the fact that
someone is less dissimilar to themself than to anyone else.

The Axiomatic definition of s-concordance and s-discordance will imply prop-
erties similar to those of the Axioms which define similarities and the dissimilar-
ities. Moreover, it is shown (at the end of Sect. 4) that a similarity (resp. dissimi-
larity) can become (under some special conditions), a case of s-concordance (resp.
s-discordance).

Before diving into the Axiomatic definition of the s-concordance and s-
discordance, we give the following practical example.

Example. The population is constituted by the European people described by socio-
demographic variables and the classes are the subpopulation of each European
country. Our aim is to use dual scaling analysis (Nishisato 1994, 2014), related to
correspondence analysis (Lebart et al. 1995) to find the concordance of each Euro-
pean country with other European countries in order to obtain their ranking from
the highest to the lowest concordance or discordance. We start with a contingency
table of n countries described by the p categories of a categorical socio-demographic
variable. A dual analysis is applied to the subpopulation of each European country
(i.e. class). The representation of each class are the factors associated to the two first
axes with highest inertia of the dual analysis. The factors, denoted V1c and V2c, are
for i = 1, 2 vectors Vic = (

vic1, . . . , vicp
)
which allows for the projection of any

class into the plane defined by the axis with the highest inertia associated to these
both factors. The similarity between two classes c and c′ can be defined, for example,
by:

sim(c, c′) =
p∑

l=1

2∑

i=1

|vicl − vic′l |.

Knowing the collection of classes P (i.e. the European countries), the fit of each
class to its representation (i.e. factor) and the similarity between representations, we
have all that we need to get the s-concordance and the s-discordance, as a result of
their Axiomatic definition (given in the next Section). For example, Sconc and Sdisc
can be defined by Sconc(c, P, x) = fc(x)gx(c, P)which means that the concordance
of a European country to the other European countries increases with fc(x) and
gx(c, P). The discordance can be defined by Sdisc(c, P, x) = fc(x)/(1 + gx(c, P))

which means that the concordance of a European country to the other European
countries increases with fc(x) and decreases when gx(c, P) increases. This provides
a concordance (or discordance) ranking of all European countries following their
socio-demographic description.
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4 Axiomatic Definition of s-concordance and s-discordance

4.1 Axiomatic Definition of s-concordance

As for standard similarities and dissimilarities (or the Euclidean geometry, the set
theory, etc.), the s-concordance denoted Sconc and the s-discordance denoted Sdisc
also satisfy natural Axioms, derived from our intuition. They are expressed for any
triplet (c, P, x) ∈ P(�)P(P(�))M in the form of the following three Axioms, for
s-concordance:

(a) Sconc(c, P, x) ≥ 0.
(b) Sconc(c, P, x) is a function of gx(c, P) and can also be a function of fc(x) and

gx(c).
(c) Sconc is an increasing function of gx(c, P).

These Axioms are based on our intuitive perception of the word’s “concordance”
and “relevance” in this context. The higher our intuitive “concordance” of c to P
for a representation x , the higher is the proportion gx(c, P) of P classes c′ having
close fit fc′

(
x ′) and representation x ′ to the c ones ( fc(x) and x). A first consequence

is given in Axiom (b) that says Sconc(c, P, x) must be expressed as a function of
gx(c, P). Moreover, the s-concordance can be a function of fc(x) and gx(c, P) in
order to take care of our intuitive perception of the fc(x) “relevance” which increases
with fc(x). The second consequence is expressed in Axiom (c) where our intuitive
“concordance” of a class c to a collection of classes P for a representation x is an
increasing function of gx(c, P). Notice that a measure of s-concordance Sconc is
very different from a measure of similarity “sim” since Sconc aims to measure the
relation between a class and a collection of classes, whereas “sim” aims to measure
the relation between two units. Therefore, the Axioms which define a similarity are
not satisfied by a s-concordance save in very particular cases (where c is reduced to
a unit and P is reduced to a unique class) that we consider here under in this section.

Axiom (a) is compatible with the condition that Sconc(c, P, x) ∈ [0, 1], fc(x) ∈
[0, 1] and gx(c, P) ∈ [0, 1]. In the following, it is assumed for simplicity that
the density functions fc and gx take their values in the interval [0, 1]. This is the
assumption that we will generally accept to be satisfied.

Axiom (b) means that there is a function denoted “conc”, [0, 1]2 → [0, 1], such
as:

Sconc(c, P, x) = conc( fc(x), gx (c, P))

or, more precisely,

Sconci (c, P, x) = conci ( fc(x), gx (c, P)).

Subsequently, this application will be called “concordine” if and only if
conc( fc(x), gx(c, P)) satisfies the three Axioms that define a concordance. When
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fc(x) does not appear, (e.g. when fc(x) is constant), the concordine is denoted as
conc(gx(c, P)).

Axiom (c) means that:

conc( fc(x), gx (c, P)) ≤ conc
(
fc(x), gx

(
c′, P

))

if gx(c, P) ≤ gx
(
c′, P

)
.

To say that Sconc is an increasing function of fc(x) means that:

conc( fc(x), gx (c, P)) ≤ conc( fc′(x), gx(c, P)) if fx (c, P) ≤ fx
(
c′, P

)
.

As the concordance becomes more significant when f c(x) increases and
approaches 1, we say that the “concordance is relevant” when Sconc is also an
increasing function of fc(x).

From these three Axioms, we can deduce the following two properties showing
that in the very special case where P is reduced to a unique class, an s-concordance
satisfies Axioms that define a standard similarity:

The first property states that Sconc(c, {c}, x) ≥ Sconc
(
c,

{
c′}, x

)
for any x ∈ M ,

c ∈ P(�) and c′ ∈ P(�). This property means that the concordance of a class
c ∈ P(�) with itself (i.e. with a collection of classes P reduced to the class c itself)
is greater than the concordance of c with any other class c′. It can be proved as
follows:

We have, gx(c, {c}) = 1 because P is reduced to a single class which is the class
c itself. Then, we have 1 = gx(c, {c}) ≥ gx

(
c,

{
c′}). Therefore, from Axiom (c), we

get:

Sconc(c, {c}, x) ≥ Sconc
(
c,

{
c′}, x

)
.

Note that, unlike the case of similarities, the condition Sconc(c, {c}, x) =
Sconc

(
c′,

{
c′}, x

)
is not necessarily satisfied for any c′ ∈ P(�). This seems consistent

with our intuitive perception of the words “concordance” and “similarity” where it
seems normal that the concordance of an individual with themself can differ from one
individual to another, while the value of the similarity of an individual with themself
remains the same for all individuals.

The second property concerns “symmetry”. We have the following symmetry
property:

Sconc
(
c,

{
c′}, x

) ≥ Sconc
(
c′, {c}, x) under the conditions that fc(x) and x are,

respectively, close to fc′
(
x ′) and to x ′ or the condition that fc(x) or x are, respectively,

not close to fc′
(
x ′) and to x ′.

This can be proved as follows: if fc(x) and x are respectively close to fc′
(
x ′) and

to x ′, then 1 = gx
(
c,

{
c′}) ≥ gx

(
c′, {c}) and therefore:

Sconc
(
c,

{
c′}, x

) ≥ Sconc
(
c′, {c}, x)
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due to Axiom (c).
If fc(x) and x are, respectively, not close to fc′

(
x ′) or to x ′, then 0 = gx

(
c,

{
c′}) =

gx
(
c′, {c}) and therefore:

Sconc
(
c,

{
c′}, x

) = Sconc
(
c′, {c}, x).

Therefore, the symmetry condition is satisfied in the considered cases.

4.2 Axiomatic Definition of a s-discordance

Analogous to s-concordance, the s-discordance is defined by three Axioms. The first
two Axioms (a′) and (b′) that define discordance are the same as Axioms (a) and (b)
which define the concordance. The third Axiom becomes:

(c′) Sdisc is a decreasing function of gx(c, P).

Axiom (b′) is equivalent to saying that there is an application [0, 1]2 → [0, 1],
denoted “disc” and called “discordine” such that:

Sdisc(c, P, x) = disc( fc(x), gx(c, P)),

satisfies the Axioms that define a discordance. When fc(x) does not appear, the
discordine is denoted disc(gx(c, P)). In the case where Sdisc is increasing when
fc(x) is decreasing, we say that the “discordance is irrelevant” since, when fc(x)
decreases, the relevance decreases too.

From Axiom (c′), we can deduce the following property: Sdisc(c, {c}, x) ≤
Sdisc

(
c,

{
c′}, x

)
which means that the discordance of a class with itself is smaller

than its discordance with any other class. It can be proved as follows: we have:
1 = gx(c, {c}) ≥ gx

(
c,

{
c′}). Therefore, Axiom (c’) leads to:

Sdisc(c, {c}, x) ≤ Sdisc
(
c,

{
c′}, x

)
.

The symmetry property Sdisc
(
c,

{
c′}, x

) = Sdisc
(
c′, {c}, x) is satisfied in the same

condition than in the case of a s-concordance.

5 Examples of Families of s-concordances
and s-discordances

A family of s-concordance is defined by a measure of concordance Sconci (c, P, x) =
conci ( fc(x), gx (c, P)) and its different possible variants satisfying the three Axioms
(a), (b), (c). Each s-concordance can be associated with at least the s-discordance
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Table 1 Six examples of concordines and their associated discordines

Concordine Discordine

conc1( fc(x), gx (c, P)) = fc(x) · gx (c, P) disc1( fc(x), gx (c, P)) = 1 − fc(x) · gx (c, P)

conc2( fc(x), gx (c, P)) = 1 − fc(x)
1+gx (c,P)

disc2( fc(x), gx (c, P)) = fc(x)
1+gx (c,P)

conc3( fc(x), gx (c, P)) = 1− fc(x)
1+gx (c,P)

+ fc(x)
2 disc3( fc(x), gx (c, P)) = fc(x)

1+gx (c,P)
− fc(x)

2

conc4( fc(x), gx (c, P))

= 1 − ( fc(x) + gx (c, P) − fc(x) · gx (c, P))

disc4( fc(x), gx (c, P))

= fc(x) + gx (c, P) − fc(x) · gx (c, P)

conc5( fc(x), gx (c, P))

= fc(x)·gx (c,P)
fc(x)+gx (c,P)− fc(x)·gx (c,P)

disc5( fc(x), gx (c, P))

= 1 − fc(x)·gx (c,P)
fc(x)+gx (c,P)− fc(x)·gx (c,P)

conc6(gx (c, P)) = gx (c, P) disc6( fc(x), gx (c, P)) = 1 − gx (c, P)

obtained by: Sdisci (c, P, x) = 1 − Sconci (c, P, x) (which is our choice hereunder).

Other possibilities are for example by inversion Sdisci (c, P, x) = (
Sconci (c, P, x)

)−1

or by:

Sdisci (c, P, x) = e−Sconci (c,P,x).

Table 1 gives six families of concordances and discordances that can be
considered.

In the case of conc1 and conc6 where, moreover, all the fit between each class
of P and its representation are equal the s-concordance Sconc

(
c,

{
c′}, x

)
(resp.

Sdisc
(
c,

{
c′}, x

)
) become proportional to a similarity (resp. dissimilarity) between the

representation x of c and the representation x ′ of c′. Therefore, Sconc
(
c,

{
c′}, x

) =
sim

(
x, x ′) is a solution for these two concordines. This means that under these condi-

tions the similarities constitute a case of s-concordance. Analogously, under special
conditions dissimilarities become a case of s-discordance.

6 s-concordance and Copulas

6.1 The Random Variables f Z f
, f Zg

and their Link

Let be a random variable be denoted by Z f and defined from � to P(�)M with
density fZ f which is associated with (c, x) ∈ P(�)M so that fZ f (c, x) = fc(x).
Let be Zg the randomvariable from� to P(�)M with density fZg which is associated
with (c, x) ∈ P(�)M so that fg(c, x) = gx(c, P). The density fZ f (resp. fZg ) can
be itself considered as a random variable from P(�)M to [0, 1] associating to any
couple (c, x) with the value fc(x) (resp. gx(c, P)). Let fZ fg

be the random variable
from [0, 1] to [0, 1], which associates to each fc(x) value its gx(c, P) density. Hence,
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fZ fg
( fc(x)) = gx(c, P). Therefore, the random variables fZ fg

link to the random
variables fZ f and fZg by fZ fg

(
fZ f (c, x)

) = fZg (c, x)which gives fZg = fZ fg

(
fZ f

)
.

6.2 The “Copuline” and the “Copulas Concordance”

The joint probability of the two random variables fZ f and fZg is an application
H : [0, 1]2 → [0, 1] such that:

H( fc(x), gx (c, P)) = Pr
(
fZ f ≤ fc(x), fZg ≤ gx(c, P)

)
.

Sklar (1959) demonstrated that under certain conditions, there is a unique function
called a “copula” connecting the joint distribution to its marginal distributions; see
also Nelsen (2006). In the case of the random variables Z f and Zg , this result is
written as follows:

H( fc(x), gx (c, P)) = Pr
(
fZ f ≤ fc(x), fZg ≤ gx(c, P)

) = CC(u, v),

where H is the joint distribution of u = Pr
(
fZ f ≤ fc(x)

)
and v =

Pr
(
fZg ≤ gx(c, P)

)
, and CC is a special copula since it is obtained from the random

variables fZ f and fZg . CC stands for “concordant copula” and is an application
[0, 1]2 → [0, 1] called “copuline”, which associates to any couple ( fc(x), gx(c, P))

the value H( fc(x), gx (c, P)).

Proposal 1

A copuline is a concordine but a concordine is not necessarily a copuline.

Proof Todemonstrate this proposition, it is sufficient to verify that a copuline induces
a function defined on P(�)P(P(�))M which is a s-concordance. Let S(c, P, x) =
CC(u, v). The Axioms (a) and (c) are satisfied by S since from the definition of
a copula CC(u, v) = Pr

(
FZ f ≤ fc(x), FZg ≤ gx(c, P)

)
and therefore S is indeed

an increasing function of gx(c, P). Axiom (b) is also satisfied since by definition,
u is a function of fc(x) and v is a function of gx(c, P). Therefore, a copuline is a
concordine.

Aconcordine is not necessarily a copuline since, bydefinition, a copuline increases
with fc(x) which is not necessarily the case for a concordine.

The s-concordance which has been induced by a copuline CC and is denoted
by S (in the proof of the Proposal 1) can be denoted Scopconc and called a “copulas
concordance”. It is characterised by:

Scopconc(c, P, x) = H( fc(x), gx (c, P))

= Pr
(
fZ f ≤ fc(x), fZg ≤ gx(c, P)

)

= CC(u, v).
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Hence, the “copulas concordance” is the joint probability of the random variables
Z f and Zg .

The copulas satisfy a number of properties that apply, of course, to the case of the
concordant copula. This is the case with the Fréchet-Hoeffding inequality:

Max(u + v − 1, 0) ≤ CC(u, v) ≤ Min(u, v).

This can be written as:

Max
(
Pr

(
fZ f � fc(x)

) + Pr
(
fZg � gx(c, P)

) − 1, 0
)

� Scopconc(c, P, x)
� Min

(
Pr

(
fZ f � fc(x)

)
,Pr

(
fZg � gx(c, P)

))
.

This inequality constitutes the concordance related version of the Fréchet-
Hoeffding inequality.

7 A Generalisation of the Standard Likelihood Theory
to the Case Where Underlying Classes Exist

In this section, a collection ofP classes is known and the objective is to take them into
account when calculating a likelihood function and when estimating its parameters.
This is the case where, for example, � is the European population and the classes
are the populations of each European country. From a sample s = (w1, . . . , wn)

of the given population � where the class of wi is C(wi ) = ci , its representation
is X(wi ) = xi , the parameter of fc (resp. gx ) is αci (resp. βci ) and the likelihood
function generalised by s-concordance is written as:

Lconc
(
w1, . . . , wn;αc, βc

) =
n∏

i=1

Sconc
(
ci , P, xi ;αci , βci

)
,

where αc = (
αc1 , . . . , αcn

)
and βc = (

αc1 , . . . ,αcn

)
. Using the concordine:

conc1
(
fc(x;αc), gx

(
c, P; βc

)) = fc(x;αc) · gx
(
c, P; βc

)
,

one obtains:

Lconc1

(
w1, . . . , wn;αc, βc

) =
n∏

i=1

fc
(
xi ;αci

) · gx
(
ci , P;βci

)
.

The following proposition proves that the likelihood function Lconc1 becomes the
standard likelihood function when there are no underlying classes.
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Proposal 2

The classic likelihood function is a special case of the likelihood with concordance:
Lconc1 .

Proof Recall that Z f is the random variable from � to P(�)M with density FZ f ,
which is associated to (c, x) ∈ P(�)M so that FZ f (c, x) = fc(x;αc). In the case
where ci = � for ∀i , this is transformed into the random variable Z f of � in �M
with density FZ f (�, x) = f�(x;α), denoted f (x;α) which is the density with the
vector of parameters α of length n of x over the whole population �.

In the case where ci = � for ∀i , we have P = � and the likelihood function
Lconc1 is written as:

Lconc1

(
w1, . . . , wn;αc, βc

)

=
n∏

i=1

f�
(
xi ;αci

) · gxi
(
�, {�};βci

)
.

=
n∏

i=1

f�(xi ;α)

=
n∏

i=1

f (xi ;α),

because gxi
(
�, {�};βci

) = 1. Hence:

Lconc1(w1, . . . , wn;α, β) =
n∏

i=1

f (xi ;α),

which is the standard likelihood function L(w1, . . . , wn;α) where α is a vector of
unique parameters as there are no underlying classes (i.e. there are all identical to
�).

So, the standard likelihood function,L, is the special case of the likelihood function
resulting from the concordance of concordine conc1 with ci = � for ∀i , (i.e. P is
identical to �).

The estimate of α = (
αc1 , . . . , αcn

)
and β = (

αc1 , . . . ,αcn

)
is obtained by

maximising Lconc1(w1, . . . , wn;α, β) with respect to α and β. When there are no
underlying classes (i.e. there are all identical to �), the vector of unique parameters
α is obtained by maximising the standard likelihood function L(w1, . . . , wn;α).

Having thus obtained α and β when there are underlying classes, there are four
applications available from this result:

1. A density law can be built from the conc1( fc(x;α), gx (c, P; β)) values when x
varies in a representative sample of� and c in P. From this law, a test can be built
to say whether or not a class c is concordant with a collection of classes P for a
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value x , at a given threshold. More empirically, we can proceed as follows: start
with a representative sample s = (w1, . . . , wn) of� and calculate the percentage
of elements of this sample having a smaller value than fc(x;αc) · gx

(
c, P; βc

)
.

If this percentage is below a given threshold ε, then the concordance of c with P
for the value x is rejected. The choice of ε can be more or less severe depending
on whether it takes the value 1/10, 1/100 or 1/1000 and so on.

2. The second result is that this approach takes into account concordances by giving
aweight to the values fci (xi ;αc) proportional to the value taken by gxi

(
ci , P; βc

)
.

This expresses the fact that fci (xi ;αc) is more relevant and significant if many
classes c′ of P take values fc′

i
(xi ;αc′) close to fc(x;αc). Intuitively, by giving

more weight to fci (xi ;αc) than gxi
(
ci , P; βci

)
, the estimate is supposed to be

more relevant which means that the parameters values of laws of high density
(i.e. not flat) will tend to be surrounded by parameters values of laws of other
classes of P of close parameter values. Taking this information into account
when there are underlying classes can lead to an estimate quite different from
that which would be obtained if it were not taken into account by using a standard
likelihood function. Much must be done in that direction of research in order to
compare the likelihood function with concordance and the standard likelihood
function.

3. The third result is to consider, in any population (without classes known a priori),
a sample cut into a collection P of classes of the same size and drawn at random.
We can then use a likelihood function with concordance consistent with this P,
in the hope of obtaining more relevant (insightful) and faster results than by the
standard approach.

4. The fourth result is to be able to compare fc(x;αc), gx
(
c, P; βc

)
and f (x;α)

using different informative criteria. For example, consider the following criterion:

I (w) = ( fc(x;αc) − f (x;α))gx
(
c, P; βc

)
,

where C(w) = c is the class of w and its value is X(w) = x . The largest
positive values of I (w) means that the density of x in class c is greater than in
the population� and, moreover, that the concordance of c with P for the x value
is large, in the sense of the concordine conc6.

8 The Case of Large Masses of Data

In the case of large masses of data, Beranger et al. (2023) had the economic idea of
cuttingM into k blocks B1, . . . , Bk of values in order to make an estimate based on
k blocks rather than on a sample s of size n. The advantage is that one can get the
estimate much faster with a k much smaller than n. For this purpose, it is necessary
to set:
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pi (α) =
∫

Bi

fc(x;αc)dx .

The classic likelihood for the purpose of saving calculations is then so written:

L(w1, . . . , wn;α) =
n∏

i=1

pi (α)

= (p1(α))n1 · · · (pk(α))nk ,

where ni is the number of times an element wi of the sample belongs to Bi .
This approach can be generalised by using the likelihood from concordine conc1

by posing this time:

pi (α, β) =

∫

Bi

fci
(
xi ;αci

) · gxi
(
ci , P; βci

)
dcdx

∫

P(�)M
fci

(
xi ;αci

) · gxi
(
ci , P; βci

)
dcdx

,

from which results:

Lconc1(w1, . . . , wn;α, β) =
n∏

i=1

pi
(
αci , βci

)

= (
p1

(
αc1 , βc1

))n1 · · · (pk
(
αck , βck

))nk
,

where ni is the number of times an element wi of the sample belongs to Bi .
As Beranger et al. (2023) says, if we assume that the sample s follows a multino-

mial distribution of parameters (p1(α), . . . , pk(α)), then the probability of obtaining
(n1, . . . , nk) for the parameter α is:

Pr(n1, . . . , nk;α) = n!
n1! . . . nk ! (p1(α))n1 · · · (pk(α))nk

= n!
n1! . . . nk ! L(w1, . . . , wn;α).

This is generalised using the likelihood from conc1 by:

Pr(n1, . . . , nk;α) = n!
n1!...nk ! (p1(α, β))n1 · · · (pk(α, β))nk

= n!
n1! . . . nk ! Lconc1(w1, . . . , wn;α, β),
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from which by optimisation of the parameters n1, . . . , nk , α and β can be obtained.
Note that the third application given above can be used in the economic approach of
Beranger et al. (2023), with the hope to obtain an estimate even more relevant and
even faster.

9 Generalisation of Mixing Decomposition by Concordance
or Discordance

In this section, we are interested in the case where P is unknown and is to be
constructed by an iterative improvement of the fit between each class and its represen-
tation. More precisely, the objective of mixture decomposition, is to find a partition
P = (P1, . . . , Pk) whose classes P� are in good fit with the probability densities
f (·, a�) defined by a given model (Gaussian, for example) of a vector of parame-
ters a� that represent them. Let there be a sample s = (w1, . . . , wk) of the given
population � where the class of wi is C(wi ) = ci and its value is X(wi ) = xi .

In this context, the dynamic clustering method (Diday 1971, 1973, 1979; Billard
and Diday 2020) provides the partition P by an algorithm based on a phase of
representation of each class P� (drawn at random at the beginning, for example) by a
law f (·, a�) whose parameters a� are estimated by maximising the likelihood. This
is followed by an allocation phase where each wi of the given sample s is allocated
to the class � of highest density f (xi , a�) .

This algorithm can be generalised by introducing s-concordances as follows. The
representation space of a partition P = (P1, . . . , Pk) is the set Ak = (a1, . . . , ak)
of the possible values of the parameters on which the densities depend. Note A an
element of Ak . The criterion to be maximised is:

W (A, P) =
k∑

�=1

log
(
Lconc1(P�, a�)

)
,

where

Lconc1(P�, a�) =
∏

xi∈P�

fP�
(xi ; a�) · gxi (P�, P; b�),

where fP�
(xi ; a�) measures the s-concordance of the class P� with the classes of the

partition P in xi and where gxi is the probability density gxi (P�, P; b�) of parameter
b�.

Note that we come back to the standard method in the special case where in the
formula g(xi ; b�) = gxi (P�, P; b�) , P is replaced by {P�} since in this case we get
gxi (P�, {P�}; b�) = 1 .

The justification of the use of likelihood with concordance in mixture decomposi-
tion is based on the assertion that fc(x;αc) is more relevant (useful, pertinent) if it is



484 E. Diday

high than if it is low. Moreover, fP�
(xi ; a�) · gxi (P�, P; b�) is considered more rele-

vant than fP�
(xi ; a�) since we give more weight to fP�

(xi ; a�) if there are numerous
classes P ′ ∈ P such that fP ′(xi ; a�) is close to fP�

(xi ; a�) . Hence, if fP�
(xi ; a�) is

isolated, it is considered to be less relevant. Intuitively, the iterative process of the
DCM and EM methods will advantage the close laws of high density and tend to
agglomerate them. Therefore, the parameters value of such laws will tend to be close
and so more relevant. It can be interesting to apply alternatively EM and DCM to see
if the agglomerative effect converges towards a reduced number of laws and classes.
Much remains to be done in this direction in order to compare the concordant and
the standard approach of mixture decomposition.

10 Clustering of Classes Characterised by their
Concordance or Discordance in 2D or 3D Visualisation

First, we recall the assumption that fc(x) and gx(c, P) vary in the interval [0, 1]
and that x is fixed. In this way, we can construct a [0, 1] × [0, 1] square whose
abscissa (resp. the ordinate) represents the values fc(x) (resp. gx(c, P)). When c
varies, we can represent in this square at all the points ( fc(x), gx (c, P)). When
two points are close in the square, it implies that their concordances are close.
Suppose we have the concordine conc1: conc1( fc(x), gx (c, P)) = fc(x) · gx(c, P)

and conc1( fc′(x), gx (c′, P)) = fc′(x) · gx(c′, P) are close if ( fc(x), gx (c, P)) and(
fc′(x), gx

(
c′, P

))
are close points in the square. We can thus see (if there exist)

clusters of points associated with a high or low concordance. For example, a cluster
at the top right of the square gathers classes c that for the value x have a large concor-
dance with P . This concordance can be represented in 3D by adding a concordance
axis associating to each pair ( fc(x), gx (c, P)) its concordance fc(x) ·gx(c, P) value.
We can also calculate the s-concordance of a cluster by defining it as the surface of
the smallest rectangle (parallel to the axis) containing this cluster. If this rectangle is
defined by its lowest point on the left denoted (a1, b1) and the highest point on the
right denoted (a2, b2) where ai = fci (x) and bi = gxi (ci , P), then it is easy to see
using the 2D visualisation that the concordance of this cluster is given by:

a2b2 − a1b2 − a2b1 + a1b1,

where aibi is the concordance associated with the concordine conc1 of class ci with
the collection of classes P for the value x .
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11 Conclusion and Outlook

We gave an Axiomatic definition of s-concordance and s-discordance and then
showed their links with copula theory, estimation by maximisation of likelihood
and decomposition of mixtures. Other links exist, for example, with the Tf-Idf which
constitutes a special case of discordance, with the Latent Dirichlet Allocation (LDA)
which makes it possible to “create” a class having a good concordance with a collec-
tion of given classes, with the Kullback–Leibler divergence in order to construct
hierarchical or pyramidal classifications of concordant or discordant classes. As
a result of any method leading to local classes and models, we now have a tool,
taking into account s-concordances or s-discordances, that allows for one to obtain
an estimate of the parameters more in accordance with the data than by conven-
tional approaches, in the case where the classes are known or by generalised mixing
decomposition when they are not. The classes can then be ordered according to their
concordance or discordance with the parameters thus estimated. All this offers new
avenues of research in data science with great potential for applications, theoretical
and practical development.
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Discrete Functional Data Analysis Based
on Discrete Difference

Masahiro Mizuta

1 Introduction

Functional data analysis (FDA) began with a paper by Ramsay with the challenging
title “When the data are functions” (Ramsay 1982). Since then, various studies have
been published, and books on FDA have been published; see, for example, Ramsay
(2002) and Ramsay and Silverman (2005). Many theoretical studies, methodological
developments, and applications have been promoted up to the present day. Functional
data are rarely directly available. Therefore, in the ordinary approach of FDA, anal-
ysis is performed after functionalization, in which discretely obtained numerical
values are transformed into functions. In the functionalization, objects are repre-
sented as functions using various basis functions. For these functions, registration,
computation of the basic statistics as functions, and the application of extendedmeth-
ods of ordinary multivariate analysis are performed. In particular, differentiating the
functions allows the characteristics possessed by the objects to be examined from
a different perspective. Furthermore, it may be possible to describe the structure of
an object with differential equations. So far, numerous methods have been devel-
oped and actually used as functional versions of conventional multivariate analysis
methods, such as functional regression analysis, functional discriminant analysis,
functional principal component analysis, and functional multidimensional scaling.

In this paper, we focus on the fact that the input data are discrete and examine how
to treat it as a discrete function without converting it into a (continuous) function.
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2 Overview of Functional Data Analysis

Suppose n objects {xi j , i = 1, 2, . . . , n} with multiple variables are obtained. If
the number of each variable is constant (say p), then this is ordinary p-dimensional
data of size n. However, if each variable depends on time or other variables, it is
inappropriate to treat it as conventional multidimensional data. In the following, for
the sake of simplicity, we assume that the data take multiple values that depend on
time t . However, this need not be limited to time, but can be spatial coordinates,
the order of experiments or observations, or conditions expressed numerically. From
now on, the data set is denoted {xi (t j )}.

In FDA, {xi (t j )} is transformed into a function {xi (t)} for each object i . This is
called functionalisation. In Ramsay and Silverman (2005), it is shown that trigono-
metric functions, Legendre polynomials, wavelets, etc., can be used as basis func-
tions. Originally, the degrees of freedom (dimension) of the general functions are
infinite, but once the basis function system is determined and functionalised, the
function can be represented by a finite number of real numbers. Furthermore, if the
basis functions are orthonormal, those finite real numbers can be treated in the same
way as ordinary Euclidean space points.

For example, in functional multiple regression analysis, where the scalar is the
objective variable, the usual calculation methods of multiple regression analysis
can be applied by considering the coefficient vector as the explanatory variables
(Shimokawa et al. 2000; Yamanishi and Tanaka 2001). In functional principal com-
ponents analysis, each object is represented as a point in the low-dimensional space
by finding the variance–covariance matrix for the coefficient vector of each object
and solving its eigenvalue problem. Functional principal component analysis was
applied to temperatures in Canada to derive factors that can be interpreted as a mode
of variation, a measure of uniformity, etc. (Ramsay and Silverman 2005). Other than
that, most methods of multidimensional data analysis, such as discriminant analysis,
cluster analysis (Mizuta 2002, 2003a, b; Tarpey and Kinateder 2003) and multidi-
mensional scaling methods (Mizuta 2000, 2005) can be extended to functional data
analysis methods. However, methods of use, interpretation of results, and statistical
tests must be devised for each.

The use of the derivative of a function is an effective approach in FDA. Functions
based on linear combinations of basis functions are higher-order differentiable, and
the differentiated functions are also new functional data. Deriving the relationship
between these functions yields the differential equation. In many cases, the structure
of the data can be clarified.

3 Discrete Difference and Uncorrelated Discrete Difference

The derivative of a function is a useful tool in FDA. In this chapter, we introduce the
method of treating a function as a discrete function instead of a continuous function.
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The concept that corresponds to the derivative of a continuous function for a discrete
function is discrete difference. We explain the discrete difference and then propose
an uncorrelated discrete difference. The uncorrelated discrete difference in this paper
is an improved version of Mizuta (2006).

We consider discrete difference operators to the discrete functional data. Discrete
differences include forward, backward, and central finite differences, but for the sake
of simplicity, we will use forward differences here. However, in the latter part of this
section, we will follow the central approach. In the following, again for simplicity,
we will examine one function from the functional data.

Let us consider x(t); t ∈{. . . , t−1, t0, t1, t2, . . .} as a discrete function.We assume
that ti − ti−1 are constant (equally spaced) for convenience. Usually, the first-order
discrete differences d(1) (t) are defined as d(1) (ti ) = x (ti ) − x (ti−1). The second-
order discrete differences are defined as the discrete differences of the first-order
discrete differences and so on:

d(0) (ti ) = x (ti )

d(1) (ti ) = x (ti ) − x (ti−1)

d(2) (ti ) = x (ti ) − 2x (ti−1) + x (ti−2)

d(3) (ti ) = x (ti ) − 3x (ti−1) + 3x (ti−2) − x (ti−3)

d(4) (ti ) = x (ti ) − 4x (ti−1) + 6x (ti−2) − 4x (ti−3) + x (ti−4) .

In the case that we treat them statistically, however, a problem arises in these discrete
differences.

Consider the most random situation. Suppose x (ti ) follows a standard normal
distribution with i.i.d. x (t) or d(0) (t), {d(k)} are expected to be uncorrelated. How-
ever, Cov

(
d(0) (ti ) , d(2) (ti )

) �= 0 andCov
(
d(1) (ti ) , d(3) (ti )

) �= 0 etc. The pairwise
scatter plot of x = {

d(0), d(1), . . . , d(4)
}
is shown in Fig. 1. In other words, using

conventional discrete difference of x (t), which is completely random, misleads us
as if some structure exists.

Wemodify the conventional discrete differences to bemutually independent under
the previous condition. The proposed discrete difference (we call them k-th uncor-
related discrete differences) d(k)∗ (ti ) is a linear combination of k-th conventional
discrete differences:

d(k)∗ (ti ) =
i+m∑

l=i−m

ωld
(k) (tl) ,

wherem is a positive integer, the variance of d(k)∗ is one, and d(k)∗ (ti ) , k = 0, 1, . . .

are uncorrelated if x (ti ) follows is an i.i.d. standard normal random variable.
The following is a brief outline of how to determine ωl . Create a simultaneous

equation for ωl , given that it is uncorrelated with d(k1)∗ for which k1 < k. Solve the
simultaneous equations sequentially under m as small as possible.
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Fig. 1 Discrete function and its pairwise scatter plot of conventional discrete differences

Here are concrete uncorrelated discrete differences;

d(0)∗ (ti ) = x (ti )

d(1)∗ (ti ) = x (ti+1) − x (ti−1)√
12 + 12

d(2)∗ (ti ) = x (ti+2) − x (ti+1) − x (ti−1) + x (ti−2)√
12 + 12 + 12 + 12

d(3)∗ (ti ) = 2x (ti+3) − 3x (ti+2) + 3x (ti−2) − 2x (ti−3)√
22 + 32 + 32 + 22

d(4)∗ (ti ) = 7x (ti+5) − 16x (ti+4) + 9x (ti+3) + 9x (ti−3) − 16x (ti−4) + 7x (ti−5)√
72 + 162 + 92 + 92 + 162 + 72

.

The pairwise scatter plot of x, d(1)∗, . . . , d(4)∗ of the discrete functions in Fig. 1 is
shown in Fig. 2.
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Fig. 2 Pairwise scatter plot of uncorrelated discrete differences

4 Detection of Relations Among Discrete Differences

Uncorrelated discrete differences of discrete functions are defined in the previous
section. Ifwe canfind out relations among discrete function x and discrete differences
d(1)∗, d(2)∗, d(3)∗, d(4)∗, . . . , the characteristic of the functional data can be detected.
Ramsay and Silverman (2005) describedDerivative and functional linear models (in
chapter “17”), Differential equation and operators (in chapter “18”), and Principal
differential analysis (in chapter “19”). They use differential operators and high-order
differential operators effectively.

These ideas can be applied to discrete difference operators.We presented amethod
for detection of relations among discrete uncorrelated differenceswith principal com-
ponent analysis (Mizuta 2006). By defining discrete uncorrelated differences appro-
priately as mentioned before, x , d(1)∗, . . . , d(k)∗ become independent under the
condition that x (t) are completely random.We regard x (ti ), d(1)∗ (ti ), . . . , d(k)∗ (ti ),
for i = 1, . . . , n, as (k + 1)-dimensional data and apply principal component anal-
ysis to them. The structure can be found outwith thismethod, in the case that there are
some relations among x, d(1)∗, . . . , d(k)∗. Principal components with small eigen-
values represent the structure of the linear combination of x, d(1)∗, . . . , d(k)∗.

5 Concluding Remarks

In this paper, we have improved upon the paper of Mizuta (2006) titled “Discrete
Functional Data Analysis”. In this paper, we showed that discrete difference is a
powerful tool. However, ordinary discrete difference has a correlation even if the
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discrete function is completely random.Therefore,weproposeduncorrelated discrete
difference. Other types of discrete difference are the subject of future work.
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Probability, Surprisal, and Information

James Ramsay

1 Introduction

For those of us like my great friend Nishi and I embedded in social science depart-
ments, choice data are of primary importance by virtue of the number of tests and
scales that appear each year, and by the millions of people, young and old, who
complete them. Choice is an easy crop to sow, but the yield is rather limited. This
is in part due to using only counts of right answers for tests, and the subjectivity
of a priori weights assigned each choice limits what the data can tell us and raises
serious bias concerns. We both asked ourselves whether we could do better, and we
both spent much of our careers trying to discover how.

Nishi and I met often at conferences, and I really admired (and envied) his gentle
and kindlyway of communicating his ideas.My favourite recollection of ourmeeting
involves a train to Toronto that was delayed three hours by an accident and left me
wandering along Bloor Street at 11PMwondering how I could secure a hotel given a
big football game the next day. There he was, no doubt after committing his evening
to preparing for the meeting the next day! What a lovely time this hapless guest
enjoyed in his beautiful home!

1.1 Information Theory

Information theory is central to signal processing where an error-prone system trans-
mits a message and the receiver must contend with the static. A recent and readable
text is Cover and Thomas (2006). In multiple choice testing, the message is the test
taker’s choice and the noise arises the lack of certainty about which choice is right.
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In my earlier career as a telegrapher on the railway, there were 36 choices for a tele-
graph key stroke, and it was by no means certain that what was sent or received was
correct for this neophyte, given that hotshots on the line like my Dad were capable
of speeds of 60 words per minute, or about eight key strokes per second.

Let P = (p1, . . . , pM) be a probability vector with no zeros. The central concept
in information theory is entropy:

I (P) = −
M∑

m=1

pm log pm . (1)

Entropy is a measure of information, in the sense that I (P) measures the amount of
information that is required to perfectly predict or identify a transmitted message.
Entropy is maximised when pm = 1/M for all m and is minimised to zero when all
but one of the probability values are 0.

1.2 Surprisal

Note that if we define:

sm (pm) = loga pm so that pm (sm) = a−sm , m = 1, . . . , M , (2)

then entropy is simply the expected value of s in P, and therefore of necessity itself
an information value.

We define S(P) = − logP and, in principle, the base of the logarithm can be any
number larger than one. It will be convenient to use the length of P as the base and
use the notation:

SM (P) = − logM P and P = M−SM . (3)

For example, for P = (0.05, 0.95) we have that S2 (P) = (4.322, 0.074) and for
P = (0.01, 0.99) that S2 (P) = (6.644, 0.0145).

In information theory sm is called self-information (Cover and Thomas 2006),
but also surprisal since, as the probability goes to zero, surprisal increases without
limit, and for probability one is at its lower limit zero. Figure1 displays how surprisal
increases as the probability goes to zero for a variety of values of the length M of
the multinomial vector P.

Imagine a roulette wheel with M pockets. Then, SM (1/M) = 1 indicates the
probability that the ball will land in a specific pocket for a single spin of thewheel, and
SM = 2 the probability of same pocket landing in two consecutive spins. Surprisal
is, therefore, a count of a sequence of surprising events. More generally, for any
positive real P value, SM (P) can be defined as the expected count:

SM (P) = λSM−1 (P) + (1 − λ) SM (P) , 0 ≤ λ ≤ 1 , (4)

where M − 1 is the largest integer such that 1/ (M − 1) ≥ P .
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Fig. 1 Relation between surprisal or information and probability for various values of logM

1.3 The Surprisal Metric

As a continuous counting variable, SM has all the metric qualities of a ratio scale
or any other magnitude. Its unit is SM (1/M) = 1, and can be called the M-bit,
extending the 2-bit used in computer science. Surprisal values can be multiplied by
any positive real number, added, subtracted if the difference is non-negative, and
most importantly of all a fixed difference means the same thing at all positions of the
surprisal scale. That is, surprisals think like we do and are therefore much easier for
us to interpret, unlike probabilities with their fading differences at each boundary.

The surprisal transform is already extensively used by statisticians in the form of
the log-odds transform, negative log-likelihood and deviance. There is a substantial
literature using surprisal in other fields: early work within statistics by Kullback
(1959), in thermodynamics where the term was introduced by Tribus (1961), and in
the theory of choice in mathematical psychology in Luce (1959) where surprisal is
referred to as the “strength” of choice.

This paper attempts to demonstrate that switching from probability to sur-
prisal/information brings many benefits to the study of social science data defined
by choice data. The most important of these is the ratio scale quality of informa-
tion.1 Useful judgements of the size of magnitudes requires that, no matter where
one directs one’s focus, a specified interval has the same meaning. Clearly, a count
of independent events satisfies this property.

In order to avoid subscript clutter, we will drop the M subscript on S and logM .

1 The mathematical status of true measures or ratio scales in the social sciences has been as century-
long debate stimulated by the writings Stevens (1946) and was studied in depth in the three volumes
of Krantz et al. (1971). It appears that such a measure was within easy reach all along.
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2 Probability and Surprisal ManifoldsMP andMS

A manifold is a low dimensional structure embedded within a high-dimensional
space. Because 1′P = 1, vectors P and S correspond to points within their respec-
tive manifolds of dimension M − 1. For example, for M = 3 the manifold is a flat
equilateral triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1).

The parameterisation of a manifold requires a one-to-one mapping, called a chart,
that indexes positions within the manifold. ManifoldsMP andMS are conveniently
charted as follows. Let the M by M − 1 matrix Z satisfy the conditions Z′1 = 0
and Z′Z = I, where 1 is a column vector of M ones, and 0 and I are a column of
M − 1 zeros and the identity matrix of order M − 1, respectively. There are many
ways to construct matrices Z with this orthonormal structure, including using the
full QR-decomposition of 1 and the Fourier and polynomial orthonormal series.

LetX be an arbitrary real vector of length M − 1. Then, P can be defined in terms
of X as:

P = MZX

1′MZX
. (5)

Division by 1′MZX is a retraction operation which pulls arbitrary positive M-vectors
into the M − 1 dimensional manifold of probability vectors of length M .

The surprisal analogue of (5) for the surprisal manifold MS is:

S = −ZX + 1
(
log

(
1′MZX))

, (6)

and the retraction operation that maps a positive M-vector into surprisal space is now
the addition of the second term.

Figure2displays a two-dimensional surprisalmanifoldwithin a three-dimensional
ambient space. This was constructed by applying (6) to X = (x1, x2)

′ where one of
the elements was fixed and other interval varied over [−3, 3]. The black coordinates
lines are from one element being zero. The curved surprisal manifold hugs the planar
boundaries of the positive three-dimensional orthant, and the point within the mani-
fold closest to zero is [0, 0, 0]. Inside the manifold, the cartesian coordinate system
is reproduced exactly within two dimensions instead of three.

3 Probability and Surprisal Functions P(θ) and S(θ)

Item response theory (IRT) andmany other methods require multinomial vectors that
evolve over a score indexing variable of one or more dimensions, usually called a
latent variable, and/or over one or more dimensions of observed values. These curves
can be defined by converting the indexing vectors X to vector function X (θ).
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Fig. 2 Two views of the two-dimensional surprisal surface defined by the retraction (6) of a three-
dimensional lattice constructed from 21 equally-spaced numbers spanning [−3, 3]. The black lines
contain the transformed points on the coordinate lines in the original surface

3.1 Constructing Surprisal Functions with Splines

It is assumed here that θ is defined over the already familiar closed interval [0, 100].
A natural and convenient approach to parameterising these functions is to use a B-
spline basis system Bk (θ) , k = 1, . . . , K and to define X (θ) as weighted linear
combinations

∑
k ck Bk (θ) of these basis functions. The splines must have at least

three basis functions along with an order of at least three in order to assure that
resulting probability and surprisal functions are differentiable. My colleagues and
I find that seven B-spline basis functions and order five provide about as much
flexibility as required for large data sets, but smaller sample sizes, such as 200 or
so, will benefit from using the fewer basis functions and an order closer to the lower
limit of three. Figure3 displays (3-basis/order-3) and (7-basis/order-5) B-spline basis
functions.

3.2 Probability and Surprisal Functions for a Test Item

Figure4 displays the probability and surprisal curves estimated from the choices of
about 55,000 examinees on each of 80 items in a Swedish SAT test of quantitative
aptitude. The correct answer curve is blue, and the others are red. Also shown are
53 point estimates constructed by binning the data. The vertical dashed lines specify
locations of the 5, 25, 50, 75, and 95% percentiles for the examinee score index
values. The near-zero probability curve and the flat surprisal curve with value about
4 are for missed or illegitimate responses.

This is a difficult question, only the top 25% of examinees are likely to get it right.
The curves tell a complex storey. The bottom 10% or so of examinees tend to guess,
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Fig. 3 Two spline bases. The left is appropriate for small subject sample sizes and the right for
large samples

Fig. 4 Probability and surprisal curves for a test item along with point estimates. Blue curves are
the correct answer and the others for wrong answers. Dashed lines indicate 5, 25, 50, 75, and 95
percentiles in the index distribution
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so that all four options are chosen with equal values. Examinees tend to believe that
choosing 3 or C is their best chance if they have no idea, and this produces an isolated
peak in the right answer C around the 25%marker. On the other hand, just below the
median score index a wrong answer seems especially attractive, producing a dip in
the right answer choice. Examinees in the 75–95% range are not entirely convinced
that choice C is right. The correct curve is not monotonic, and our analyses that
strictly monotonic correct curves are more rare than not. All this detail is possible
because all choices are modelled, rather than the usual procedure in IRT ofmodelling
only the correct answer.

3.3 The Score Index Estimate θ̂ and Expected Test Scores
μ(θ̂)

Maximum likelihood estimation was used for estimating test taker j’s score index
θ̂ j conditioned on the estimated surprisal functions, assuming that, conditional on θ ,
option choices are independent. The negative log-likelihood H in terms of surprisal
and its derivative with respect to θ are:

H (θ) =
n∑

i=1

U′
j iSi (θ) and

dH

dθ
=

n∑

i=1

U′
j i

dSi
dθ

= 0, (7)

where U j i is a 0/1 choice indicator vector of length Mi for examinee j and item i .
The simplicity of these equations in comparison with their counterparts for prob-

ability is an important by-product of switching to surprisal. Now, we see that the
fitting criterion H is simply an inner product of binary indicator values Ujim and
their surprisal counterparts. Thus, the estimation problem has the characteristics of
a one-predictor linear model, and the gradient equation is a linear combination with
weights dsim/dθ . The best value of θ is simply that in which, for the chosen items, the
sums of the negative and positive weights cancel. By contrast, the probability equa-
tions involve the ratio (dpim/dθ) /pim (θ), which can cause convergence problems
if pim (θ) approaches 0.

3.4 The Arc Length of Surprisal Functions

For any item, the function values P (θ) and S (θ) will fall along one-dimensional
curveswithin the ambient space of dimensionM but are actually vectors of dimension
M − 1 for all θ . For any smooth strictly monotone function with values h (θ), the
use of the transformed item response functions p∗

m (θ) = pm
[
h−1 (θ)

]
and s∗

m (θ) =
sm

[
h−1 (θ)

]
for all m, and thus leaves this space curve invariant. For this reason, the
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Fig. 5 Left panel contains three simple surprisal curves, with the blue curve behaving like a correct
answer. The right panel shows how the three curve vary jointly within the surprisal surface. The
initial point on the curve is indicated by a circle

phrase “indexing system” is to be preferred to “latent variable” since θ is neither a
fixed variable nor latent.

Progress along the manifold provides a one-dimensional space curve for item i
that can be called its item information. Progress is measured inM-bits, and arc length
dSi (θ) along the curve is defined by the indefinite integral:

dSi (θ) =
θ∫

0

√√√√
Mi∑

m=1

[
dsmi

du

]2

du, (8)

and is also invariant with respect to strictly monotonic transformations of θ .2 Since
dSi (θ) is a measure of distance, it has the metric property that a fixed increase in
distancemeans the same thing everywhere along the curve, so that arc lengthdistances
can be added, subtracted, and subjected to scale changes as required.

Figure5 illustrates the information curve concept with a toy example. The left
panel displays three surprisal curves, of which the blue one behaves like a correct
answer since it declines to zero. The right panel displays how the red information
curve varies within the surprisal surface defined by the three simple surprisal curves.

Themaximumarc length dS(100) for the simultaneous evolution of all item curves
is a measure of the information covered by the whole test and can be viewed as the
perfect information score, and arc length dSi (100) restricted to item i is a natural
measure of the amount of information required to get that item correct. The higher
dSi (100) is, the more effective it is as a contribution to the total surprisal test score.
We can also integrate over sub-intervals of θ , such as, for example, the top 10% of

2 Information can also be normalised to a fixed value such as 100, and the resulting proportion
manifold retains its status as a measure with unit proportional bit max(dS)/100.
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the test takers; the items with the longest arc lengths are those that provide the most
information about relative rankings within this upper range.

It follows, too, that surprisal values can be compared legitimately across two
different tests, two tests of different lengths, two different samples of examinees,
and even across tests of different knowledge classes. A fixed surprisal interval can
serve as a unit of effort required to advance information by that amount.

3.5 Estimating the ManifoldMS and Score Indices θ

While the number of items n is in most tests does not exceed 100, the number of
examinees N can be in the thousands or even millions.3 An alternating optimisation
strategy common in high-dimensional problems both in psychometrics and else-
where was used. Given initial estimates θ̂ , an optimisation cycle involved estimating
surprisal curves followed by re-estimating score index values conditional on current
surprisal values. It was observed that about ten cycles were sufficient to reach near
optimal results and to reveal the important structure in the data. Point-wise confidence
limits for the surprisal curves for a test item using the delta method conditional on
previously estimated values of θ̂ j were found to reasonablymatch confidence regions
computing using data simulation.

Further details on the estimation procedure can be find in Li et al. (2019), Ramsay
and Wiberg (2017), Ramsay et al. (2020a), Ramsay et al. (2020b), and Ramsay et al.
(2022).

4 The Swedish SAT Test Information Manifold

The Swedish SAT test had a total of 412 surprisal curves, and as they all evolved
over θ , the test information curve was traced out, and the total arc length of the curve
was about 75.

Figure6 displays a histogram and smooth representations of the distribution of
the arc length test information scores. These are strongly partitioned into five peaks,
and the scores for the top 5% are much more spread out than those for bottom
5%. Only two examinees out of over 55,000 achieved perfect sum scores and no
examinees achieved sumscores below10, but by contrast 66 examineeswere assigned
information scores of 0 and 119 the top information score value of 75.

Figure7 shows how arc length measure was related to the expected test scores
on the left and to the score index on the right. The expected test score, which is the
sum of an examinee’s probabilities of choosing only the right answer, is severely
biassed against the top test takers, and also biased in favour of the weakest cohort

3 Few test users will be interested in scores more accurate than the first decimal place and, conse-
quently, fast computation as opposed to accuracy is the prime consideration.
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Fig. 6 Density function for the test information scores. The vertical lines indicate the locations of
the five percentage markers. The open circles at the beginning and end of the scores indicate the
proportions of students achieving the two boundary scores

Fig. 7 Relations of expected test score and of score index to test information

by rewarding guessing. The examinees that the universities of Sweden are most
interested in have scores that are both compressed relative to the test information
score and underestimate their proficiency because the high end performers were
negatively affected by deficient items.

The score index θ begins at zero as one would expect, and progresses roughly
in proportion to test information up to the 90% percentile. But we see that it also
compresses the variability of the top 10%, whereas the test information spreads these
out. The dashedmarker per cent lines indicate that the top 25%of examinees absorbed
much more of the test information than those in the first three quartiles.

Although the test information manifold is embedded in a space of 412 surprisal
vectors, 98.9% of its shape variation can be viewed by using the first two principal
components of the space curve.4 Figure8 displays two test information manifolds

4 The mean of the function values was not subtracted.
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Fig. 8 Solid line is the test information space curveMSviewed in the space spanned by its first two
rotated singular value functions and using all of the data. The dashed line is the analogous result
using only 200 randomly selected test takers. The dots indicate the percentages of the examinees
at or below their position on the curve

MS for the SweSAT-Q test in these two dominant dimensions, after some rotation to
enhance graphical clarity. The solid curve was estimated from all the data and dashed
from only 200 randomly chosen examinees, and we see that the basic features of full
data curve are well reflected in its small sample version.

The test manifolds have four distinct sections. The first 5% of the examinees have
command of only a tiny amount of the information covered by the test. The next
20% are moving from pure guessing to a point where the choices are correct for
only the easiest items requiring rudimentary mathematical skills. There are changes
in direction at the 50%, and this is the point at which examinees can begin to use
mathematics to solve problems. The third quartile makes as much progress as the
first two combined, and finally, the top 25% and especially the top 5% possess more
information than the first three quartiles combined. What we see is what most of
us who teach mathematics tend to believe; learning may be slow at first as basic
literacy is acquired but is afterwards a positively accelerating process in terms of the
information metric.

5 Discussion and Conclusions

The most important benefit of the information-based analysis is the test informa-
tion curve, displayed for two sample sizes in Fig. 8. Its ratio scale metric makes
information the ideal substrate for representing acquired knowledge. With this as the
abscissa, we can see much more detail in plots such as Fig. 6, included a view of
the accelerating learning speed among top performing examinees. As these plots are
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scanned horizontally, fixed differences can be compared across any set of locations.
This ratio scale benefit is also observed in the surprisal plot in Fig. 4 for vertical
scanning over surprisal, which is also has the information metric. These features are
possible because all choices are used, including if necessary a choice not to respond.

The surprisal transformation is easily understood as a count of events, such as
is already routine in describing climate risks in terms of one hundred-year events.
Note, too, that by expressing (7) in terms of surprisal, we see a simple relation of
performance variation to the shape of the first derivative of the surprisal functions.
For a particular location, a decreasing curve acts to push a candidate θ upwards, but
downwards for an increasing curve, and not at all for no slope. The optimal score
index is at a location where these pushes and pulls cancel each other out to provide
a zero total slope. Moreover, the effect of guessing is nullified because a guessed
response near a location yields a flat surprisal interval.

5.1 Software Resources

We have developed a free open-source stand-alone application called TestGardener
and a web-based version available at http://testgardener.azurewebsites.net/ that is
suitable for teaching and analyses of small to moderate sample sizes. The application
was introduced in Li et al. (2019). The stand-alone version (currently for Microsoft
Windows systems) and the web version implement convenient interfaces and display
results primarily by graphs. A book-length introduction to better test scoring for
secondary school test takers and teachers that is also a manual on how to run the
application is available from the Website. An R package called TestGardener
is on the CRAN for advanced users who need more control over parameter settings
and displays; see https://cran.r-project.org/web/packages/TestGardener/index.html.
A MATLAB toolbox is also available on GitHub. All three versions processed the
55,000 SweSAT choices in about 20min on a laptop computer.
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