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Foreword

“What is so special about someone’s 88th birthday?’ might a non-Japanese person
ask. Sure, it is a venerable age, and remaining active in academic life is worth a
tremendous compliment, but to publish aspecia book to honour aperson on his 88th
birthday seems a bit excessive. Doesn't it?

However, thisisnot true in Japan. In Japanese culture, the 88th birthday, or Beiju
(K#F), is the celebration of along life and represents purity and wholesomeness.
Thefirst kanji character of Beiju can be deconstructed as 8, 10, and 8 on top of each
other:

Shizuhiko Nishisato istheideal personto celebrate Beijufor. During hisacademic
lifetime that spans nearly 60 years, he has been an influential scientist inspiring an
innumerable number of colleaguesin categorical dataanalysis, the academic love of
his life. He also produced many content-related results by sharing his insights into
categorial data through teaching and executing analyses in numerous disciplines.
That he was well loved and appreciated as a person in the scientific community
shines through in the pictorial tributein this book.

His life has played itself out primarily in North America. Clearly, he foresaw a
glittering career on that continent, but this book showsthat he never lost hislove for
his native Japan. A Canadian document on the Internet referred to him as

Vi



viii Foreword

Dr. Shizuhiko Nishisato. The expert from Japan is involved in research in psycholog-
ical scaling theory. (Ph.D., North Carolina). Professor in psychometrics and analysis of
categorical data [dual scaling] [Toronto Star 28/9/1967]

In the book Modern Quantification Theory (Springer, 2021) written by Nishisato
together with the editors of the present Festschrift, afull account is provided by him
of his academic career, which started of course in Japan with Masanao Toda and
Chikio Hayashi, continued with athesis at the University of North Carolina under
the direction of R. Darrell Bock. After a brief interlude back in Japan, he made the
definitive step to North America, in particular Canada. After only about a year at
McGill University, he made his final move to the University of Toronto, where he
and his career came to afull bloom.

Nishi published awealth of books both on his own and with his colleagues, asis
elaborated in his chapter in this Festschrift. Next to hisbooks, Nishi (asknownto his
friends) produced over 100 other academic publications. His early book Analysis of
Categorical Data: Dual Scaling and its Applications (University of Toronto Press,
1980) has around 1000 citations (search date: April 2023) and shows that Nishisato
has made a lasting mark in the world of categorical data analysis.

Detailed accounts of the various aspects of hiswork on quantification theory and
applicationsthereof are dealt with in the above-mentioned books and of courseinthe
ensuing papers. The appreciation for his work goes on relentlessly and the authors
of the papersin this Festschrift acknowledge this abundantly and wholeheartedly.

Leiden, The Netherlands Pieter Kroonenberg
April 2023



Preface

This book marks a celebration of the career and influence of our dear colleague and
friend, Prof Shizuhiko Nishisato, or “Nishi” as we call him, in honour of his 88th
birthday. Such a milestone deserves a moment to sit back and reflect upon a life
filled with happiness, hope, at times sadness, but with love and passion for all that
drives us forward. So it is with this Festschrift that we all celebrate Nishi’s career
and the influence (both personal and professional) he has had on usal. It isalso our
opportunity to thank him for all he has done for us as editors, and for everyone who
was able to contribute to his Festschrift and those who were unable to do so.

Our connection to Nishi dates back about 20 years and so it is relatively young,
certainly in comparison with many of those who have contributed to thisbook. A key
moment was the first face-to-face meeting of the Nishi/Clavel and Beh/Lombardo
teams at the IFCS (International Federation of Classification Societies) Conference
in Tokyo in 2017. From this meeting came the 2021 Springer book that we had
the pleasure to co-author with Nishi titled Modern Quantification Theory: Joint
Graphical Display, Biplotsand Alternatives. So, it came asapleasant surprisein late
February 2022 that we were invited to edit his Festschrift. Of course, we said “yes”.
We would like to acknowledge the early involvement of Prof. Yasumasa Baba who
isalong-term dear friend of Nishi and who was originally committed to this project
but, unfortunately, was unable to continue in the role.

Nishi’s career spans a great many achievements that are laid out in many of the
papers of this book, and so we leave it to you to peruse the pages and appreciate
the depth of work he has committed a lifetime of passion to. It is safe to say his
impact on quantification theory, and the vast array of research avenuesthis covers, is
profound. Therefore, this Festschrift is a celebration of many of these avenues and
isdivided into four broad topics. Thefirst, “Data Theory” providesamix of written
and pictorial accounts of Nishi’slife and hiswork. It also gives some perspective of
Nishi’s influence in the context of the career of Prof. Chikio Hayashi, an early and
highly influential pioneer of quantification theory. The next major part of this book
is titled “On Associations and Scaling Issues’ and includes papers that celebrate
Nishi’s impact on the numerical issues concerned with dual scaling and its related
methods, as well as providing new insights into this area of research. A more visua
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appreciation of the scaling issues is explored in “On Correspondence Analysis and
Related Methods’. Here, the papers discuss a range of issues including the naming
conventions used in the past, exploring the anatomy of correspondence analysis and
detailing extensions of correspondence analysisfor analysing various datastructures.
The fina part of Nishi’'s Festschrift is titled “General Topics’ and includes papers
that are not necessarily related to issues concerned with quantification theory but
are here because of the close professional and personal connections that Nishi has
shared with the authors over the years.

This celebration of Nishi's career is a collection of 29 papers where al the
corresponding authors and some of their co-writers were all personaly invited to
contribute. We must also acknowledge those who were invited to contribute to this
collection and prepared an early version of their work for inclusion but, ultimately,
were unable to do so. Every one of those who have been invited to contribute to
this collection all share a personal and professional bond with Nishi. These papers
are written by 45 authors that come from al corners of the globe; in aphabetical
order, Australia, Barbados, Canada, England, France, Germany, India, Italy, Japan,
the Netherlands, Scotland, Spain, Switzerland, and the USA.

The preparation of Nishi's Festschrift would not have been possible without
the help and support of Springer. So, we thank them, and especially Sridevi
Purushothaman, for the many email queries that were patiently responded to. We
aso extend our heartfelt appreciation to Pieter Kroonenberg, our close persona
friend and of Nishi’s, for writing the Foreword to this book. Our biggest thanks goes
to each of the authors who have contributed to this collection of celebratory papers.
It has been an immense pleasure communicating with each and every one of you and
the email conversations that have followed. We thank you for your commitment to
this book and for helping to celebrate Nishi as the kind and endearing person that he
isand for the role he has played over the decades as aresearcher who has committed
himself to the devel opment of quantification theory and its related methods.

No one succeeds in life without the love of those around them. While we have
all provided various degrees of professional and/or personal help and support over
many years (and decades), his successesrest primarily with hiswife Lorraine. So, on
apersonal note, wethank Lorrainefor her support and love asNishi hascarved awide
long path through hisacademic career, apath that many of ushavetravelled alongside
Nishi or behind him. Whether you subscribe to the phrase of Scott Fitzgerald behind
every great man there is a great woman or Tariq Ramadan’s behind every great man
is not a woman, she is beside him, she is with him, not behind him, or even Jim
Carrey’sbehind every great manisawoman rolling her eye, L orraine’sinfluence has
been ablessing to usall. So, thank you Lorraine. Finally, we thank Nishi for inviting
usto edit hisFestschrift and wish him continued health, happiness and love asheand
those around him continue to mould and direct the next generation of researchers.

Newcastle, Australia Eric J. Beh
Naples, Italy Rosaria Lombardo
Murcia, Spain Jose G. Clavel

June 2023
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Gratitude: A Life Relived )

Check for
updates

Shizuhiko Nishisato

1 To Begin with

First of all, my heartfelt appreciation goes to Prof. Akinori Okada for his considerate
thoughtfulness in conceiving my Festschrift. I was overjoyed with his proposal, but
frankly speaking, this excitement was followed with mixed feelings of great honour
and a definitive sense of the finale of my research career. It was indeed a long and
enjoyable career spanning over 60 years. What a wonderful group of researchers I
have had the privilege to meet and know!

I am also very grateful to the co-editors Eric J. Beh, Rosaria Lombardo, and José
G. Clavel who kindly accepted the very time-consuming task of editing all those
contributions into a fine book. My work with the three co-editors resulted in our joint
book, published in 2021 (age 86), which was one of the highlights of my career. Of
course, I am exceptionally grateful to all the contributors, too. One of them said:
“What a wonderful feeling it is to be brought back together with those old timers!”
Yes—many of them represent my good old days.

I am not only fortunate to have been surrounded by many wonderful researchers,
but also blessed with the luxury of my family’s tireless support, those in Canada and
those in Japan.

In an attempt to acknowledge all those people, I would like to reflect on my
personal life with photos (only those which I managed to find—many pre-digital
photos, old negatives and slides are long gone).

2 Bygone Days and Memories

I was born on June 9, 1935, in Sapporo, Hokkaido, Japan (Fig. 1). The Second World
War started when I was 6 years old. My family moved from Sapporo to Obihiro and
then to a small mountain village of Urahoro in Hokkaido, where my father was born

S. Nishisato ()
Ontario Institute for Studies in Education, University of Toronto, Toronto, ON, Canada
e-mail: shizuhiko.nishisato @utoronto.ca

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 3
E. J. Beh et al. (eds.), Analysis of Categorical Data from Historical Perspectives,
Behaviormetrics: Quantitative Approaches to Human Behavior 17,
https://doi.org/10.1007/978-981-99-5329-5_1
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Fig.1 Childhood; hobby; graduation from Hokkaido University

and passed away when I was only in grade 1 (age 6). Those ten years in Urahoro
exposed me to an extreme hardship of life as well as firmly established lifelong friends
who still meet annually at a nearby hot spring hotel (except during the COVID-19
pandemic). The museum in Urahoro has a special corner of permanent exhibits of
my books, papers, and photos.

On April 3, 1952, a sunny spring day, an earthquake of magnitude 8.3 struck
Urahoro and its neighborhood, destroying almost everything in sight. It changed my
life forever. Moving back to my birth place of Sapporo served as a springboard for
the next stage of my life.

After graduating from Sapporo Minami High School, I entered Hokkaido Univer-
sity in 1955 (age 20). Foreign languages were my major interest, and I took courses
in English, French, German, Latin, Greek, and Esperanto. In my first year at the
university, I founded the Esperanto Association and became its first President. I was
the Esperanto interpreter when a Yugoslavian anthropologist gave a lecture on his
lifework on the dawn of the human race at Sapporo City Hall.

Another equally strong hobby of mine was classical guitar, and I played the instru-
ment in Circolo Mandolinistico Aurora of the university: I used to enjoy playing such
pieces as Recuerdos de la Alhambra (Tarrega), Danza Espanola N° 5 (Granados)
and Asturias (Albeniz) (Fig. 1). Much later, we old-timers met in Sapporo (Fig.2).
I continued this hobby until some 30 years ago. My old colleague R. P. McDonald
once called it Nishi’s latent ability.

In choosing my major field of study, an English professor discouraged me from
pursuing linguistics with the view that I would never be able to compete with those
Europeans who were raised bilingual or multilingual. In 1959, with my BA thesis
on Factor Analysis of Anxiety (Supervisors M. Toda, Y. Takada, and Y. Sugiyama), I
finished my undergraduate program in experimental psychology and represented my
graduating class at the graduation ceremony (Fig. 1). Two years later, I completed
my MA thesis there titled Human Reaction Time as a Function of Anxiety and Stress
(Supervisor Y. Sugiyama). A short paper based on this thesis (Nishisato, 1966) is
one of my most frequently cited papers. I was blessed with excellent mentors (M.
Toda, Y. Takada, T. Oyama, and Y. Sugiyama) and friends (Fig. 3).
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Fig. 2 Ex-musicians of Hokkaido University

Fig. 3 Friends in experimental psychology, Hokkaido University

Fig. 4 1963 International Congress of Psychology; Spring in Chapel Hill

On September 6, 1961 (age 26), thanks to a fulbright scholarship, I arrived at the
Raleigh-Durham airport in North Carolina, where my host family Mr and Mrs A.
Ringwalt met me and drove me to Chapel Hill. I can never thank them and their family
enough for their kind care and support during my four-year stay in Chapel Hill. The
father of Mrs. Ringwalt, Dr. Rudolph Teusler, was the founder of St. Luke’s Hospital
in Tokyo, where coincidentally I had my physical examination for my entrance
into the USA. The University of North Carolina in Chapel Hill (UNC) (six smaller
photos in Figs. 4 and 5) was an academic paradise for me with super mentors (R. D.
Bock, L. V. Jones, D. Adkins-Woods, T.G. Thurstone, E. Shuford, and H. F. Kaiser)
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Fig. 5 1965 Williamsburg International Assembly; UNC; Graduation; Back Home

and wonderful fellow students (A. Rapoport, E. Abbe (née Niehl), S. Zyzanski, D.
Messick, L. Gordon, N. Cole (née Stooksberry), B. Mukherjee, S. Das Gupta, T.
Smith, J. and M Nakahara, S. Suzuki, M. Novick and H. Kusama).

During my Chapel Hill days, memorable events took place: In the fall of 1961,
the newly elected President of the USA, John F. Kennedy, gave his famous nei-
ther red nor dead speech at the University Day in Chapel Hill; the Cuban Missile
Crisis in 1962 (age 27); Dr. Martin Luther King’s March to Washington with a quar-
ter of a million demonstrators gathered in front of the Lincoln Memorial in 1963
(on that day, I was attending the International Congress of Psychology in Washing-
ton, D.C. (Fig.4) and we were cautioned not to go outside the Mayflower Hotel);
John F. Kennedy’s assassination in 1963; the Tokyo Olympics in 1964; the Annual
Williamsburg International Assembly of Foreign Students in 1965 (I was one of the
two Japanese representatives; the student delegate from Norway was Gro Harlem
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Fig. 6 Old Friends at OISE, University of Toronto, Canada

Brundtland who later served three terms as the prime minister of Norway and the
director general of the World Health Organization) (Fig.5). After completing my
PhD thesis titled Minimum Entropy Clustering of Test Items (Supervisor R. D. Bock)
and the final oral examination, I returned to Japan in September of 1965 (age 30)
(Fig.5).

An unexpected failure in finding a job anywhere in Japan was extremely devas-
tating, but it was an unbelievable fortune in disguise. I was immediately offered a
position in the Department of Psychology, McGill University, Montreal, Canada, by
G. A. Ferguson, D. Bindra, and W. Lambert. There I met two persons who steered my
life and career toward fulfillment: my future wife Lorraine A. M. Ford from South
Africa, and Ross E. Traub.

Thanks to R. E. Traub, I was recruited in 1967 (age 32) to a new research center,
the Ontario Institute for Studies in Education (OISE) at the University of Toronto,
my home base until my retirement on June 9, 2000 (Fig. 6, some old timers). In 1967,
I married Lorraine Ford, who continued to help me and my students with editorial
work, the task she used to do for Bindra at McGill University.

At OISE, R. E. Traub (test theory; Princeton University), R. P. McDonald (fac-
tor analysis and structural equation modeling; University of Queensland, Australia),
R. P. Bhargava (multivariate analysis of discrete and continuous variables; Stanford
University) and myself (measurement theory and scaling; University of North Car-
olina) together established one of the world centers of psychometrics. In this process,
I also served as the chairman of the Department of Measurement and Evaluation,
OISE from 1971 to 1976 (age 36-41) (Fig.6).

In those days, the East and the West were politically divided without much scien-
tific communication between them. On the Western side from 1970 (age 35) onwards,
I participated in many international meetings in France, Germany, the Netherlands,
Italy, Spain, and Japan (Figs. 7, 8, and 9). I greatly benefited from those INRIA (Insti-
tut National de Recherche en Informatique et en Automatique) meetings in France,
annual meetings of the German Classification Society, French-Japanese meetings,
German-Japanese meetings, and M. J. Greenacre’s CARME (Correspondence Anal-
ysis and Related Methods) conferences. I extend my sincere appreciation to the
organisers of those conferences.
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Fig. 7 International Conferences in European Countries

Fig. 8 German-Japanese Conference in Kyoto
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Fig. 9 International Conference of Psychometric Society in Tokyo

On the Eastern side, I was lucky to be invited to Moscow, USSR, in December
of 1990 (age 55). B. Mirkin and S. Adamov were hosts to a group of international
researchers that included W. Gaul, H. H. Bock, H. Bozdogan, W. Day, and myself.
Those were the last days of the Soviet Union since only a few weeks later the Soviet
Union collapsed in 1991.

Another experience in the Eastern world preceeded the Moscow visit. In the sum-
mer of 1986 (age 51), V. Zudravkov of Sofia, Bulgaria, invited me, together with
J. C. Gower, P. van der Heijden, E. van der Burg, and T. Saito, to give lectures on
quantification theory to Bulgarian researchers. I was happily surprised when several
Bulgarian researchers asked me to autograph copies of my 1980 book, entitled Anal-
ysis of Categorical Data: Dual Scaling and Its Applications (University of Toronto
Press). Bulgaria was still a communist country.

International trips were not easy then with visa restrictions and limited funds, but
surprisingly researchers knew many others abroad through exchanging postcards to
request reprints of published papers, a custom we no longer have.

As for international conferences, I organised three major ones: the annual meeting
of the Psychometric Society in Toronto with R. E. Traub, the annual meeting of the
Psychometric Society in Banff, Alberta, Canada, and the International Conference
on Measurement and Multivariate Analysis in Banff with Y. Baba (Fig. 10).

My professional services for academic organizations and awards are:

Psychometric Society: President, Editor of Psychometrika and trustee.

e Classification Society of North America (CSNA): Trustee.

German Classification Society (GfKl): Editorial Board for Studies in Classifica-
tion, Data Analysis, and Knowledge Organization, Springer-Verlag.

e International Federation of Classification Societies (IFCS): Chair of Award Com-
mittee.

American Statistical Association: Fellow.

Japanese Classification Society: Fellow, Lifelong Achievement Award.
Behaviormetric Society: Honorary Member, Lifelong Achievement Award, Pub-
lication Award.
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Fig. 10 International Banff Conference, Alberta, Canada

e The University of North Carolina: Distinguished Alumnus Award of the UNC
Psychology Alumni Association.

Outside the academic world, I engaged with several organizations, including:

e Metropolitan Toronto Japanese Family Services (JES): First President (The JFS
was established by my close friend S. Thurlow, a recipient of the Nobel Peace
Prize).

e Volunteer of the Year Award from the Government of Ontario.

e Toronto Hokkaido Association: First President (T. Fuse and I founded this orga-
nization in 1972 (age 37).

So, together with academic and non-academic work, I have lived a busy life.
In retrospect, there are a few matters that come to my mind:

[1] Greatest regret: The translation of my 1980 book (Fig. 14) into Russian never
materialised, solely due to the collapse of the Soviet Union (USSR). There was a
signed agreement between the University of Toronto Press and Finansi Statistika
Publisher in Moscow on its publication, and the translation had been completed by
B. Mirkin and S. Adamov by 1990 when the aforementioned Moscow meeting took
place. This translation included an addendum to the original 1980 book, namely
some key developments since 1980.
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Fig. 11 Mentor Bock, his wife and student; distinguished alumnus with friends

[2] Proud moments in research: (a) In 1997 (age 62), The American Psychological
Association awarded the Distinguished Contribution Award to my mentor R. D. Bock
and I chaired his memorial lecture; on the same day, Bock chaired my invited lecture.
I celebrated the occasion with my mentor and Mrs. Bock (Fig. 11); (b) in 2000 (age
65), I was honoured as Distinguished Alumnus by the UNC Psychology Alumni
Association (Fig. 11).

[3] Busy life after retirement: In 2000, I retired as Professor Emeritus from the
University of Toronto and then worked part time for one to six months a year as
Visiting Professor at Kwansei Gakuin University and Doshisha University in Japan
and University of Murcia in Spain until 2007 (age 72) (Fig.12). My wife and 1
enjoyed many international travels.

[4] Blessed with co-authorships. There are seven books written with co-authors
(Fig. 13) and ten books by myself (Fig. 14). As for the co-authored books, I joined
Iwamoto and Nakahara for the translation of the book by Penfield and Rasmussen
Cerebral Cortex of Man into Japanese (the main work was done when we were
students at Hokkaido University). Three books were written with my son Ira Nishisato
who wrote the entire package of “DUAL3” dual scaling software with me. The Banff
conference resulted in the proceedings with Baba, Bozdogan, and Kanefuji as the
co-editors. And although this is not co-authorship, I translated my grandson Lincoln
Dugas-Nishisato’s first book, written when he was 8 years old, into Japanese. To solve
the perennial controversy over the joint graphical display of quantification theory, I
was joined for the book by Beh, Lombardo, and Clavel (Fig. 13).



12 S. Nishisato

Fig. 12 Activities of life after retirement
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Fig. 13 Co-authors and books; the three co-authors of the last book are the editors of the current
Festschrift

Fig. 14 Single-authored books; the last book is Nishisato, S. Measurement, Mathematics and New
Quantification Theory: Springer (2023) (age 88)
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[5] Edwin Diday: Regarding a great contribution of the late Edwin Diday, I once
made the following remark; see page 560 of Nishisato, S.: Gleaning in the field of
dual scaling. Psychometrika 61, 61, 559-599 (1996):

Considering the abundance of publications and the outstanding contributions to the field by
French researchers, it was hardly surprising when Edwin Diday, a leading French statistician,
casually remarked that correspondence analysis had been exhaustively investigated by 1975,
and that he and his colleagues were moving to the next stage of innovation, symbolic data
analysis (Diday, personal communication, September 23, 1991). To his mind and many
others, correspondence analysis must have seemed mathematically transparent; hence there
was nothing more to discover about it.

Whether Diday was right is a matter of opinion. There is still plenty of grain left by the
reapers in the field of quantification, and continued gleaning can shed further light on a
number of missing links between the mathematics of quantification theory and the validity
of its applications. The main object of this paper is therefore to further the current under-
standing of quantification theory by bringing to the surface a number of its buried or implicit
characteristics.

This paper was based on my Presidential address of the Psychometric Society, deliv-
ered at its annual meeting held in Banff, Canada, in 1996.

[6] Lifelong Support 1: My wife Lorraine greatly helped me with editorial work
in my early days; my son Ira wrote a major portion of my computer programs; my
grandson Lincoln Dugas-Nishisato kept his grandfather working (i.e., translation)
until recently. I am very proud of both my family and extended families. Lincoln
has been extensively involved in volunteer work with his mother Samantha and his
other grandparents André and Gillian Dugas to help a countless number of those less
fortunate in our community. Far from Canada, my siblings (Fig. 15) lived in Japan,
to whom I also owe very much.

[7] Lifelong Support 2: I would like to mention another lifelong support of two
groups of friends from my elementary school (Fig.15) and Hokkaido University
(Fig. 16).

[8] Lifelong Support 3: Expatriates all share hard experiences through a foreign
language. I would like to mention four close friends who left Japan many years ago
and overcame language barriers to achieve super careers: Setsuko Thurlow (the first
photo, a recipient of the Nobel Peace Prize, Executive Director of the Japanese Fam-
ily Services where I served as its first President), Yoshio Takane (the second photo
of Fig. 17, Professor, University of Victoria, Former President of the Psychometric
Society, one of the most influential psychometricians of the past 100 years, also
a graduate of my alma mater University of North Carolina in Chapel Hill, whose
first job was at McGill University as mine was), Akira Kobasigawa (the third photo,
an internationally famous academic in child development; Professor Emeritus, Uni-
versity of Windsor, a gate-ball (croquet) buddy), Takashi Asano (the fourth photo,
Recipient of the Stockholm Water Prize, Professor Emeritus, University of California
at Davis, my high school and university friend who played the guitar together with
me at Hokkaido University; see Fig.2).
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Fig. 15 With my siblings; elementary school friends in Urahoro

Fig. 16 Friends of Hokkaido University from the first year

15
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Fig. 17 Super expatriates from Japan, my dear friends

[9] Lifelong Support 4: There are many researchers to whom I owe much gratitude,
in particular those involved in quantification theory. I am pleased to share a few
photos of them which I managed to find (Fig. 18). I must admit with regret, however,
that I could not find photos of many other equally important friends.

Before I end my thanks and gratitude to my family and friends, I acknowledge
that I have been exceptionally lucky to have lived my tumultuous early life in Japan,
my hardworking student days at Hokkaido University, Sapporo, Japan, and at the
University of North Carolina, Chapel Hill, North Carolina, USA, and my highly
fulfilling research and teaching life first in Montreal and then Toronto, Canada. In
May 2000, one month before my retirement from the University of Toronto, John C.
Gower told me “Life exists after retirement” (see /4.1.1 John C. Gower in Nishisato,
2022). His words encouraged me to work all the time until today.

In retrospect, when I first arrived in the USA as a student, the most remarkable
novelty was the interdisciplinary pursuit of research, as exemplified by the joint sem-
inars at the University of North Carolina’s Departments of Statistics and Biostatistics
and the Psychometric Laboratory. How lucky I was to be able to listen to talks by
such eminent scholars as Hotelling, Roy, Bose, Madow, Chakrabarti, Grizzle, Sen,
Koch, Hoeffding, Bock, Jones, Kaiser, Thurstone, Gabriel, Quade, Glaser, Donnely,
and Shuford from my own university campus! A countless number of top invited
speakers from all over the world also enriched my student life. The new trend of
interdisciplinary research spread to other countries as well. The birth of the Japanese
Behaviormetric Society fifty years ago is another timely example in response to
interdisciplinary research. My academic life is deeply rooted in this revolutionary
change of academia when researchers with different academic backgrounds worked
together.

Thank you all for a wonderful life for this very lucky person!
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Fig. 18 With mentors and colleagues in my research domain, past and present
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3 Lifelong Publications: 1960 (age 25)-2023 (age 88)

Books

1.

2.

10.

1.

12.

13.

14.

15.

16.

17.

Nishisato, S.: Applications of Psychological Scaling: Analysis of Qualitative
Data and Interpretations. Seishin Shobo Press, Tokyo (1975) (in Japanese).
Nishisato, S.: Analysis of Categorical Data: Dual Scaling and Its Applications.
The University of Toronto Press Mathematical Expositions No. 24, Toronto
(1980). ISBN 0-8020-5489-7.

. Nishisato, S., Nishisato, I.: An Introduction to Dual Scaling. MicroStats, Toronto

(1984). ISBN 0-9691785-0-6.

. Nishisato, S.: Quantification of Qualitative Data: Dual Scaling and Its Applica-

tions. Asakura Shoten, Tokyo (1984) (in Japanese).

. Iwamoto, T., Nakahara, J., Nishisato, S.: (Japanese translation of Penfield, W.,

Rasmussen, T.: Cerebral Cortex of Man. McMillan, New York (1950)). Fuku-
mura Shuppan, Tokyo (in Japanese).

Nishisato, S., Nishisato, I.: DUAL3 Users’ Guide. MicroStats, Toronto (1986).
ISBN 0-9691785-2-6.

Nishisato, S.: Quantification of Categorical Data: A Bibliography 1975-1986.
MicroStats, Toronto (1986). ISBN 0-9691785-2-6.

Nishisato, S., Nishisato, I.: Dual Scaling in a Nutshell. MicroStats, Toronto
(1994). ISBN 0-9691785-3-6.

Nishisato, S.: Elements of Dual Scaling: An Introduction to Practical Data Anal-
ysis. Lawrence Erlbaum Associates, Hillsdale, NJ (1994). ISBN 0-8058-1209-1.
(Retirement, June, 2000)

Nishisato, S., Baba, Y., Bozdogan, H., Kanefuji, K. (eds.): Measurement and
Multivariate Analysis. Springer, Tokyo (2002). ISBN 4-431-70338-1.
Nishisato, S.: Insight into Data Analysis: The Necessity of Quantification.
Kwansei Gakuin University Press (2007) (in Japanese). ISBN 978-4-86283-
014-2.

Nishisato, S.: Multidimensional Nonlinear Descriptive Analysis of Categorical
Data. Chapman & Hall, London (2007). ISBN 1-58488-612-9.

Nishisato, S.: Data Analysis for Behavioral Sciences: Applications of Methods
Appropriate for Information Retrieval. Baifukan, Tokyo (2010) (in Japanese).
ISBN 978-4-563-05218-8.

Nishisato, S.: Japanese translation of (Dugas-Nishisato, L.: Finding Greatness.
Kids for Kids Books, Toronto (2018)). ISBN 978-1-926863-93-1). Hokkaido
Shuppan Kikaku Center Press, Sapporo (2019). ISBN 978-4-8328-1911-5.
Nishisato, S., Beh, E.J., Lombardo, R., Clavel, J.G.: Modern Quantification
Theory: Joint Graphical Display, Biplots and Alternatives. Springer, Singapore
(2021). ISBN 978-981-16-2469-8.

Nishisato, S.: Optimal Quantification and Symmetry. Springer, Singapore (2022).
ISBN 978-981-16-9160-0.

Nishisato, S.: Measurement, Mathematics and New Quantification Theory.
Springer, Singapore (2023).
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Selected Research Papers

e Nishisato, S.: Factor analytic study of anxiety. Jpn. J. Psychol. 31, 228-236 (1960)
(in Japanese).

e Oyama, T., Sugiyama, Y., Nishisato, S.: Discrimination between schizophrenic
patients and neurotic patients: proposal of a simplified method and proposal of a
new RRS score. Rorschachiana Japonica 4, 65-79 (1961) (in Japanese).

e Nishisato, S.: A simple method of time series analysis. Festschrift for Professor
Kin-ichi Yuki, pp. 102-111. Yamafuji Press, Sapporo (1965) (in Japanese).

e Nishisato, S.: Reaction time as a function of arousal and anxiety. Psychonomic
Sci. 6, 157-158 (1966).

e Nishisato, S., Wise, J.S.: Relative probability, inter-stimulus interval and speed of
same-different judgment. Psychonomic Sci. 7, 59-60 (1967).

e Bindra, D., Donderi, D.C., Nishisato, S.: Decision latencies of same and different
judgments. Percept. Psychophys. 3, 121-130 (1968).

e Nishisato, S.: Probability estimation of dichotomous response patterns by logistic
fractional-factorial representation. Jpn. Psychol. Res. 12, 87-95 (1970).

e Nishisato, S.: Structure and probability distribution of dichotomous response pat-
tern. Jpn. Psychol. Res. 12, 62-74 (1970).

e Nishisato, S.: Transform factor analysis: a sketchy presentation of a general
approach. Jpn. Psychol. Res. 13, 155-166 (1971).

e Nishisato, S., Torii, Y.: Effects of categorizing continuous normal variables on
product-moment correlation. Jpn. Psychol. Res. 13, 45-49 (1971).

e Nishisato, S., Torii, Y.: Assessment of information loss in scoring monotone items.
Multivariate Behav. Res. 6, 91-103 (1971).

e Nishisato, S.: Information analysis of binary response patterns. In: Takagi, S. (ed.)
Modern Psychology and Quantification, Chap.2. Theory of Measurement and
Applications, pp. 73-92. University of Tokyo Press, Tokyo (1971) (in Japanese).

e Nishisato, S.: Analysis of variance through optimal scaling. In: Proceedings of the
First Canadian Conference in Applied Statistics, pp. 306-316. Sir George Williams
University Press, Montreal (1971).

e Nishisato, S.: Analysis of variance of categorical data through selective scaling.
In: Proceeding of the 20th International Congress of Psychology, p. 279. Science
Council of Japan, Tokyo (1972).

e Nishisato, S.: Optimal Scaling and Its Generalizations, I: Methods. Measurement
and Evaluation of Categorical Data Technical Report (MECDTR) No. 1. Depart-
ment of Measurement & Evaluation (ME), Ontario Institute for Studies in Educa-
tion (OISE), Toronto (1972).

e Nishisato, S., Inukai, Y.: Partially optimal scaling of items with ordered categories.
Jpn. Psychol. Res. 14, 109-119 (1972).

o Nishisato, S.: Optimal Scaling and Its Generalizations, II: Applications. MECDTR
No. 2, ME, OISE, Toronto (1973).

e Nishisato, S.: Elements of Applied Scaling. Department of Measurement & Eval-
uation, OISE, Toronto (1973).
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e Nishisato, S., Yamauchi, H.: Principal components of deviation scores and stan-
dardized scores. Jpn. Psychol. Res. 16, 162-170 (1974).

e Nishisato, S., Arri, P.S.: Nonlinear programming approach to optimal scaling of
partially ordered categories. Psychometrika 40, 525-548 (1975).

e Nishisato, S., Leong, K.S.: OPSCAL: A FORTRAN IV Program for Analysis of
Qualitative Data by Optimal Scaling. MECDTR No. 3, ME, OISE, Toronto (1975).

e Nishisato, S.: Optimal Scaling as Applied to Different Forms of Data. MECDTR
No. 4, ME, OISE, Toronto (1976).

e Nishisato, S.: Recent developments in scaling and related areas: a bibliographic
overview. Jpn. J. Behav. 4, 74-95 (1977).

e Nishisato, S.: Recent developments in scaling and related areas: multidimensional
scaling. Jpn. J. Behav. §, 37-55 (1978).

e Nishisato, S.: Psychometrics: international trends. Math. Sci. 183, 69-73 (1978).

e Nishisato, S.: Optimal scaling of paired comparison and rank order data: an alter-
native to Guttman’s formulation. Psychometrika 43, 263-271 (1978).

e Nishisato, S.: An Introduction to Dual Scaling. MECDTR No. 5, ME, OISE,
Toronto. (1979).

e McDonald, R.P., Torii, Y., Nishisato, S.: Some results on proper eigenvalues and
eigenvectors with applications to scaling. Psychometrika 44, 211-227 (1979).

e Nishisato, S.: Dual scaling and its historical development. Math. Sci. 190, 76-83
(1979).

e Nishisato, S.: Dual scaling and its variants. In: Traub, R.E. (ed.) New Directions
in Testing and Measurement, pp. 1-12. Josey Bass, San Francisco (1979).

o Nishisato, S., Sheu, W.J.: Piecewise method of reciprocal averages for dual scaling
of multiple choice data. Psychometrika 45, 467-478 (1980).

e Nishisato, S.: Dual scaling of successive categories data. Jpn. Psychol. Res. 22,
134-143 (1980).

e Nishisato, S.: Mathematical expositions of dual scaling. In: Chaubey, Y.P., Dwivedi,
T.D. (eds.) Topics in Applied Statistics, pp. 629-640. Concordia University Press,
Montreal (1981).

e Nishisato, S., Sheu, W.J.: A note on dual scaling of successive categories data.
Psychometrika 49, 493-500 (1984).

e Nishisato, S.: Dual scaling by reciprocal medians. Estratto Dagli Atti della XXXII
Riunione Scientifica, Sorrento, Italy, pp. 141-147 (1984).

e Nishisato, S.: Forced classification: A simple application of a quantification
method. Psychometrika 49, 25-36 (1984).

e Nishisato, S.: Generalized forced classification for quantifying categorical data. In:
Diday, E. (ed.) Data Analysis and Informatics, IV, pp. 351-362. Elsevier Science
Publishers B. V., North Holland, Amsterdam (1986).

e Nishisato, S.: Classification with a variety of categorical data. In: Gaul, W.,
Schader, M. (eds.) Classification as a Tool of Research, pp. 353-359. Elsevier
Science Publishers B. V., North Holland, Amsterdam (1986).

e Weingarden, P., Nishisato, S.: Can a method of rank ordering reproduce paired
comparison? An analysis by dual scaling (correspondence analysis). Can. J. Mar-
ket. Res. 5, 11-18 (1987).
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Nishisato, S.: Robust techniques for quantifying categorical data. In: MacNeil,
I.B., Umphrey, G.J. (eds.) Foundations of Statistical Inference, pp. 209-217. D.
Reidel Publishing Company, Dordrecht, The Netherlands (1987).

Nishisato, S.: Dual scaling: its development and comparisons with other quantifi-
cation methods. In: Proceedings of the Annual Meeting of the German Society of
Operations Research, Berlin, pp. 376-389 (1988).

Nishisato, S.: Assessing quality of joint graphical display in correspondence anal-
ysis and dual scaling. In: Diday, E., Escoufier, Y., Lebart, L., Page, J., Schektman,
Y., Tommasone, R. (eds.) Data Analysis and Informatics, V., pp. 409—416. North
Holland, Amsterdam (1988).

Nishisato, S.: Market segmentation by dual scaling through generalized forced
classification. In: Gaul, W., Schader, M. (eds.) Data, Expert Knowledge and Deci-
sions, pp. 268-278. Springer, Berlin (1988).

Nishisato, S.: Forced classification procedure of dual scaling: its mathematical
properties. In: Bock, H.H. (ed.) Classification and Related Methods, pp. 523-532.
North Holland, Amsterdam (1988).

Nishisato, S., Gaul, W.: Marketing data analysis by dual scaling. Int. J. Res. Market.
5, 151-170 (1989).

Nishisato, S., Lawrence, D.R.: Dual scaling of multiway data matrices: Several
variants. In: Coppi, R., Bolasco, S. (eds.) Multiway Data Analysis, pp. 317-326.
North Holland, Amsterdam (1989).

Nishisato, S., Gaul, W.: An approach to marketing data analysis: The forced clas-
sification procedure of dual scaling. Journal of Marketing Research 27, 354-360
(1990).

Nishisato, S.: Dual scaling of designed experiments. In: Schader, M., Gaul, W.
(eds.) Knowledge, Data and Computer-Assisted Decisions, NATO ASI Series F:
Computers and Systems Science Vol. 61, pp. 115-125. Springer, Berlin (1990).
Nishisato, S.: Standardizing multidimensional space for dual scaling. Proceedings
of the 20th Annual Meeting of the German Operations Research Society, pp. 584—
591. Hohenheim University, Germany (1991).

Yamada, F., Nishisato, S.: Several mathematical properties of dual scaling as
applied to item category data. Japanese Journal of Behaviormetrics 20, 56-63
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Nishisato, S.: On quantifying different types of categorical data. Psychometrika
58, 617-629 (1993).

Bean, G., Nishisato, S., Rector, N.A.: The psychometric properties of the Compe-
tency Interview Schedule. Canadian Journal of Psychiatry 39, 368-376 (1994).
Nishisato, S.: Graphical representation of quantified categorical data: Its inherent
problems. Journal of Statistical Planning and Inference 43, 121-132 (1995).
Nishisato, S.: Optimization and data structure: Seven faces of dual scaling. Annals
of Operations Research 55, 345-359 (1995).

Nishisato, S., Ahn, H., When not to analyze data: Decision making on missing
responses in dual scaling. Annals of Operations Research 55, 361-378 (1995).
Nishisato, S.: An overview and recent developments in dual scaling. In: Gaul, W.,
Pfeifer, D. (eds.) From Data to Knowledge, pp. 73—85. Springer, Berlin (1995).
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Academic Press, London (1997).
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Check for
updates

Pieter M. Kroonenberg

1 Introduction

This chapter contains photographs rather than words to show Prof Shizuhiko
Nishisato’s psychometric world. This contribution is made up of photographs of
him and his colleagues as they appeared in front of the lens of my camera. Obviously
not all of them are present, as at the time neither they nor I knew that they had a role
to play in the Festschrift for Nishi’s 88th birthday. Given selfies came only in vogue
after 2012, I had to include my own existence captured by other, to me unknown,
photographers. I am afraid this mostly precludes giving proper acknowledgements
(Fig. 1).

Fig. 1 Nishisato at the European Psychometric Conference, 1995; Leiden

P. M. Kroonenberg (B<1)
Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands
e-mail: p.m.kroonenberg @fsw.leidenuniv.nl
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I have tried to contact the persons displayed, but not all have responded to my
email. Those that did, were all in favour of their portrayal, and some have kindly send
me a photograph of themselves. The symbol T indicates that the person is deceased,
as far as I know; when known, the year is provided.

2 Nishisato: The Man Himself

(a) Nishisato at IMPS2005 (b) Nishisato at IMPS2007
(Willem Heiser in the background)

(c) Nishisato at IMPS2015 (d) Nishisato at IMPS2015

Fig. 2 Nishisato at conferences: IMPS2005, IMPS2007 and IMPS2015
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(a) Nishisato at IFCS2017 (b) Nishisato at IFCS2017

Fig. 3 Nishisato at conferences: IFCS2017

3 Nishisato and Colleagues

(a) With William Stout, Haruo Yanai, (b) With David Thissen, William Stout,
Ivo Molenaar Haruo Yanai

Fig. 4 Nishisato and friends: IMPS2001

(a) With Wim van der Linden (b) With Hiroshi Ikeda

Fig. 5 Nishisato and friends: IMPS2007
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(a) With Terry Ackerman; Su- (b) With Larry Hubert (c) With Sy Miin Chow and
san Rees at the back Sophia Rabe Hesketh

Fig. 6 Nishisato and friends: IMPS2015

(a) With Helga Gaul; IFCS2017 (b) With Yasumasa Baba, 2013;
Photo courtesy of Nishisato

(c) With Michel van de Velden, Rosaria Lombardo, Eric Beh and Pieter Kroonenberg;
IFCS2017

Fig. 7 Nishisato and friends, IFCS2017
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4 Japan
(a) Kohei Adachi, 2015; (b) Haruo Yanai, 2007; (c) Chikio Hayashi, 1998;
Osaka 12013 2002

Fig. 8 Nishisato’s Japanese colleagues: Part I

(a) Kentaro Hayashi, 2007; (b) Tadashi Imaizumi, 2017; (c) Yukio Inukai, 1997,
Manoa, Hawaii Tama, Tokyo Nagoya

Fig. 9 Nishisato’s Japanese colleagues: Part 11

(a) Akinori Okada, 2005; (b) Shuichi Iwatsubo, 1997 (c) Yutaka Kano, 2007; Osaka
Rikkyo, Tama, Tokyo

Fig. 10 Nishisato’s Japanese colleagues: Part III
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(a) Kazuo Shigemasu, 2007; (b) Tatsuo Otsu, 2007,
Tokyo NCUEE, Komaba

Fig. 11 Nishisato’s Japanese colleagues: Part IV

5 North America

(d) Terry Ackerman, 2015;  (e) Darrell Bock, 2008;
UNCG, Greensboro, USA thesis supervisor; T 2021

Fig. 12 Nishisato’s North-American colleagues: Part I

(a) Ulf Bockenholt, 2006;  (b) Robert Cudeck, 2006;
Kellog, Evanston, USA Columbus, USA

Fig. 13 Nishisato’s North-American colleagues: Part II

P. M. Kroonenberg

(¢) Takashi Murakami, 2016;
Nagoya, Chukyo

(f) Peter Bentler, 2017,
UCLA, USA

(c) Norman Cliff, 2017,
USC, USA
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(a) Vartan Choulakian, 2015; (b) Yoshio Takane, 2007; (c) Jim Ramsay, 1995;
Moncton, Canada Victoria, Canada Montreal, Canada

Fig. 14 Nishisato’s Canadian colleagues: Part II1

(a) David Thissen, 2006; (b) Larry Hubert, 2016;
Chapel Hill, USA Urbana-Champaign, USA
Fig. 15 Nishisato’s North-American colleagues: Part IV

6 Europe

(a) Wolfgang Gaul, 2017; (b) Gerhard Fischer, 2017, (c) Hans-Hermann

Bonn, Germany Vienna, Austria 2010; Aachen, Germany

Fig. 16 Nishisato’s European colleagues: Germany, Austria
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(a) Brigitte Le Roux, 2015; (b) Gilbert Saporta, 2011; (c) Ludovic Lebart, 2015;
Paris Paris Paris

Fig. 17 Nishisato’s European colleagues: France

(a) Jan de Leeuw, 2011; (b) Willem Heiser, 2017; (c) Jacqueline Meulman,
UCLA, USA Leiden 2019; Leiden

Fig. 18 Nishisato’s European colleagues: Leiden, The Netherlands

(a) Pieter Kroonenberg, (b) Wim van der Linden, (c) Peter van der Heijden, 2006;
2012; Leiden 2016; Twente Utrecht

Fig. 19 Nishisato’s European colleagues: The Netherlands
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(a) Ivo Molenaar, 1995; 1 (b) Jos ten Berge, 2005 (¢) Henk Kiers, 2006
2018

Fig. 20 Nishisato’s European colleagues. Groningen: The Netherlands

(a) Patrick Groenen, 2005; (b) Michel van de Velden, (c) Helmut Vorkauf, 2021;
Rotterdam 2017; Rotterdam Switzerland; Courtesy of HV

Fig. 21 Nishisato’s colleagues: The Netherlands

(d) John Gower, 1999; (e) Frank Critchley, 2019;  (f) David Hand, 2010;
2019; UK Milton Keynes, UK Imperial College London, UK

Fig. 22 Nishisato’s European colleagues: Great Britain
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(a) Karl Joreskog, 2008; (b) Michael Greenacre (c) Eeke van der Burg,
Uppsala, Sweden 1999; Barcelona, Spain 2008; Leiden T 2019

Fig. 23 Nishisato’s European colleagues: Sweden, Spain, Switzerland

(d) Michel Tenenhaus, (e) Jan van Rijckevorsel, (f) Ineke Stoop, 2021;
2011; Paris, France 2017; Amsterdam Courtesy of Ineke Stoop
Den Haag, The Netherlands

Fig. 24 Nishisato’s European colleagues: France, The Netherlands

7 South Africa

(g) Johané Nienkemper (h) Niel Le Roux, 2010; (i) Sugnet Lubbe, 2010;
2017, Stellenbosch Stellenbosch Stellenbosch

Fig. 25 Nishisato’s South African colleagues
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8 Nishisato with Many Friends

(a) Top row: Caussinus, Rouanet, Zarraga, Nishisato, Pagés, Galindo, Saporta, Friendly,
Heiser, Kroonenberg, Lewi, Gower. Bottom row: Takane, Cuadras, Lauro, Ter Braak,
Lebart

Fig. 26 Nishisato and friends: CARME2003

9 The Distinguished Editors

(a) Eric J. Beh, 2013; (b) Rosaria Lombardo, (c) Jose G. Clavel, 2016;
Newcastle, Australia 2013; Capua, Italy Murcia, Spain

Fig. 27 Editors of this volume
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My Recollections of People in the World )
of Data Science i

Shuichi Iwatsubo

1 Prologue

[ felt very honoured to be asked to contribute to the Festschrift of Professor Emeritus
Shizuhiko Nishisato. At the same time, however, I hesitated before I could write
anything. Why? Well, Nishisato has absorbed himself in the world of multivariate
methods for categorical data and has contributed greatly to these areas; but my main
interest changed a long time ago from developing data analysis utilised to clarify
universal human behaviour to investigating individual human personality. Then I
recalled how lucky I have been to know Nishisato, who is so open-minded, kind,
and generous, a man who loves people. I have also had the fortune to get to know
many attractive scientists, not only in Japan but also overseas, directly and indirectly,
including those Nishisato has known very well. I felt that this might be a valuable
opportunity to inform scientists living abroad about some aspects of the past activities
of Japanese data scientists, which will most likely be largely unknown to them. And
I'have to admit that I have personally felt great pleasure to be a member of this world.
So, I decided to take the plunge...

I would like to share my humble but precious memories of the great scientists
I met, mainly, during the 1960s, “70s, and ‘80s however fragmental they may be. I
firmly believe that a happy family originates from the warmest humanity, so I would
also like to mention their families that I have had a chance to get to know very
well. I will be happy if my memories can offer some previously unfamiliar episodes
featuring distinguished scientists of multivariate categorical data analysis and the
data sciences.

S. Iwatsubo ()
Research Division, The National Center for University Entrance Examinations, Tokyo, Japan
e-mail: iwatsubo@waseda.jp
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2 Chikio Hayashi’s ‘Type III’ Method

The history of science sometimes reveals the interesting fact that similar methods
are sometimes discovered and developed independently and almost simultaneously.
It was in the spring of 1968 that I learned about one of Chikio Hayashi’s quantifi-
cation methods called ‘Type III’. It was later recognised to be similar to the ‘Dual
Scaling’ developed by Shizuhiko Nishisato (Nishisato 1975, 1980), the ‘Correspon-
dence Analysis’ developed by J.P. Benzécri (Benzécri 1973), and the ‘Reciprocal
Averaging Method’ described by M. O. Hill (Hill 1973).

In 1968, I was a member of the research section of the Electro-Technical Labora-
tory (ETL) in Tokyo. Hirohiko Nishimura, my senior colleague, sent me to Dentsu,
Japan’s largest commercial advertising company. The idea was to learn Hayashi’s
Methods that were utilised there and to train in the techniques of manipulating the
FORTRAN computer programming language.

At Dentsu’s Marketing Research Division at that time, a computerised method
was under construction to predict TV audience ratings based on categorical data
characterised from a new planned TV programme. Hayashi’s ‘Type I’ Method, which
formally corresponds to the multi-correlation method for categorical data, had been
adopted. Meiko Sugiyama of NHK, Japanese semi-public broadcasting company,
had already been struggling energetically to predict the audience ratings of radio and
TV programmes.

I was handed a copy of the small textbook prepared for seminar attendants that
had been written by Toshio Uematsu, who was then a member of the Institute of
Statistical Mathematics (ISM) in Tokyo. Produced using a kanji-character typewriter,
it was designed to make Hayashi’s Methods easy to understand. I immediately got
absorbed in them, especially ‘Type III".

The following is a brief sketch of “Type III’ with the data to which the method
was applied for the first time: ‘Thirty Persons by ten Designs of Cans’ binary data
are given, where ‘1’ of the binary data represents a person likes one design and ‘0’
where that person who does not. Hayashi put x; to design i and y; to person j. Then
{X|x;,i =1,...,30}and {Y]y;, j = 1,..., 10} are adjusted so that the correlation
coefficient between X and Y is maximised. The result leads to the simultaneous
construction of one-dimensional scaling with regard to persons and designs.

Soon after I returned to ETL, Nishimura and I started to give both words and
sentences numerals, determined by applying “Type III’ to ‘words by sentences’ binary
data. Sixty-one sentences were selected from four areas: software and hardware
papers in computer sciences and two American literary works by John Steinbeck
and Saul Bellow. Forty-one words were selected according to the running occur-
rence frequency order occurring in sixty-one sentences. The considerable results of
applying ‘Type III’ to 61 by 41 binary data led to our contribution to a scientific
magazine (Nishimura and Iwatsubo 1970), the percept of which was sent to Chikio
Hayashi at ISM. That launched our close communication.
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3 The Behaviormetric Society (BS)

The Behaviormetric Society (BS) was established in Japan in 1973. Its members, who
belonged to a broad range of scientific fields, were methodologically very interested
in statistical methods, especially such multivariate methods as factor analysis, MDS,
Hayashi’s Methods, etc. Chikio Hayashi was the first President and Haruo Yanai
was the Secretary. Yanai was supported by several young members, one of whom,
Kumiko Maruyama, enthusiastically persuaded many people to participate in this
new interdisciplinary society.

I helped Yanai to dispatch scientific journals, newsletters, and so on to members.
After our busy work was over, we often enjoyed a break together. As soon as we sat
down for a cup of coffee, Yanai would ask me to listen about how he had obtained
his recent new results, most of which were theorems and lemmas concerning mainly
projector, generalised inverse of matrices.

Can you spare me a few minutes? Five minutes will be alright. No, no! Just three minutes
will be enough! Please listen carefully!

Then he would vividly and cheerfully continue for half an hour, or sometimes
more than one hour, to tell me how to infer new propositions and deduce a lot of
lemmas. He would do this by writing down hard-to-decipher symbols and formulae
very quickly on any small sheet of paper available!

Yoshio Takane was one of the students who was taught multivariate statistical
analysis by Yanai at the University of Tokyo. I believe that Takane was encouraged a
great deal by Yanai to study multivariate methods. In fact, I feel it would be no exag-
geration to say that his professional life was basically determined by meeting Yanai.
In 1986, Takane was the 1st prize winner of the Hayashi Chikio Award (Achievement
Award) from the Behaviormetric Society as a great methodological contributor to
behaviormetric research. It was Yanai who had earnestly recommended him.

4 University of California, San Diego

In the summer of 1975, J. D. Carroll and Taro Indow organised a US-Japan Seminar
on ‘Theory, Methods and Applications of Multidimensional Scaling and Related
Techniques’. Sponsored by the National Science Foundation, U.S.A. and the Japan
Society for the Promotion of Science, it was held at the University of California, San
Diego (UCSD), from the 19th to the 23rd of August. I remember that was soon after
the end of the Vietnam War.

The participants from Japan were Taro Indow, Chikio Hayashi, Masaaki Yoshida,
Meiko Sugiyama, Akio Kameoka, Keiko Matsushima (now Keiko Watanabe),
Akinori Okada, and myself. Participants from the U.S.A. were J. D. Carroll, J.
J. Chang, J. B. Kruskal, Myron Wish, Norman Cliff, James C. Lingoes, R. N.
Shepard, W. S. Torgerson, L. R. Tucker, and other well-known researchers. Jean-
Marie Bouroche was the only participant from France. It was thanks to him that four
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years later we got the opportunity to be in contact with French scientists and to meet
J. P. Benzécri.

When we arrived at UCSD on the 19th of August, three hippie-style North Carolina
gentlemen appeared. They were Forest Young, Jan de Leeuw and Yoshio Takane.
The young Takane was long-haired and wearing sunglasses. According to the notes I
wrote at the time, I invited him to my room in Tioga Hall of UCSD one evening and
we kept talking until 1 a.m. It was the day before he left for the University of North
Carolina, Chapel Hill, where he was to spend two years. The only thing I remember
now from all that talking was that Takane had enjoyed seeing the movie Jaws, which
was then enjoying great popularity in the U.S.A!

In September 1980, J. B. Kruskal came to Japan as an invited speaker at the
Annual Meeting of the Behaviormetric Society held at the Hiyoshi Campus of Keio
University. He gave us a lecture on ‘Analysis of Data by Geometric and Multilinear
Methods’ with splendid interpretation by Takane, who was then at McGill University
in Canada.

5 ISI Session, New Delhi

In 1977, Haruo Yanai and I attended the 41st Session of the International Statistical
Institute (ISI) in New Delhi. We shared a room at a hotel in New Delhi, very near
Old Delhi. Another important purpose for Yanai to visit to India was to meet C. R.
Rao, who had recently retired from his position as Director of the Indian Statistical
Institute to concentrate on his research. After the ISI Session, Yanai remained in New
Delhi to contact Rao. I remember that one day after returning from a discussion Yanai
was in his room making great efforts to solve problems proposed by Rao. I suppose
it meant that he had to carefully prepare answers ready for the next discussion a few
days later! Their discussions culminated in the following statistical papers: Rao and
Yanai (1979, 1985).

After returning to Japan, Yanai told me that the Japanese Ambassador to India
had invited him as a guest to both the Christmas and New Year parties at the Japanese
Embassy, and in lotteries at them he had won a large traditional Indian wooden table
(Christmas) and a TV set (New Year)! The Embassy staff and their families had
apparently been very envious! The generous Yanai donated his prizes to Embassy
staff.

I can never forget Yanai’s deep kindness to me during the visit I made to Calcutta
despite his busy days with Rao. Thanks to him, then the Director of the Indian Statis-
tical Institute, Gopinath Kallianpur, invited me as a guest researcher. In Calcutta, I
called on Mrs Mahalanobis, who was a friend of my parents-in-law. She led me to the
spacious drawing room where R. A. Fisher once enjoyed talks with her late husband,
P. C. Mahalanobis. I presented the gentle old lady with a Kabuki Theatre calendar
which featured woodblock prints of famous scenes from Kabuki performances. She
turned the calendar sheets one by one and asked me the meaning of every scene. In
particular, she wanted to know why most of the characters looked angry. I discovered
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afterwards that Kabuki actors pause to pose dramatically for a few seconds to empha-
sise their character’s actions, especially when punishing the wicked, and naturally
their eyes are widely opened, which makes them look very angry. I felt sad that the
combination of my poor English and my lack of knowledge about a traditional art of
my country prevented me from giving Mrs Mahalanobis a satisfactory answer.

In 1979, on his way back from the 42nd ISI Session held in Manila, Yanai consulted
with B. N. Mukherjee, one of his co-authors, about the publication of their book The
Foundation of Multivariate Analysis. It was published in 1982 and received a high
evaluation (Takeuchi et al. 1982).

6 International Symposium at Versailles

I have to admit that, at first, we all supposed that ‘J. P. Benzécri’ was not actually
a personal name but a collective one just like ‘Nicolas Bourbaki’. We later realised
that we had been mistaken! Many bright young scientists actively collaborated with
Professor Benzécri as honourable members of the ‘Banzécri Clan’. One of them,
Ludovic Lebart, told us that Benzécri had written his two-volume L’analyse des
Données in old-style French. We were familiar with Benzécri’s legendary refusal
to travel by air, which prevented him from attending international meetings abroad.
Apparently, he spent most his time meditating on data analysis at his mysterious
lodge 200 km’s from Paris, so the fact that Chikio Hayashi managed to realise a
meeting with him in Paris in October 1979 was a rare achievement indeed (Fig. 1).

The 2nd International Symposium on Data Analysis and Informatics (ISDAI)
was held at Versailles, France, in the autumn of 1979. The Japanese attendants

Fig. 1 Sketch by the author on 22 Oct. 1979
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were Chikio Hayashi, Setsuko Takakura (a good French speaker), Meiko Sugiyama,
Noboru Ohsumi, Fumi Hayashi (no relation with Chikio Hayashi, but his very reli-
able research collaborator), and myself. I had the honour of shaking hands with
Benzécri at his meeting with Hayashi. The delicate softness of the genius’ hand was
unforgettable. (In strong contrast, Gilbert Saporta’s handshake was so strong it left
my right hand numb; I felt it embodied the dynamism of young French scientists!)
Besides Lebart and Saporta, we could also meet Edwin Diday, Y ves Escoufier, Michel
Jambu, Alain Morineau, Maurice Roux, Jean-Pierre Nakache, and other active French
scientists.

It was also my great pleasure to meet Jean-Marie Bouroche again. He invited us
to visit his apartment in Paris, and we met his three beloved young daughters. When
he attended the 46th ISI Session held in Tokyo in 1987, I welcomed him and his
wife to my house. My father, who had learnt to speak French in his youth, sang La
Marseillaise accompanied by my mother on the piano. Mr and Mrs Bouroche were
so pleased to hear their national anthem, they sang an old French song in beautiful
harmony to thank my parents.

Ever since that time, Ludovic Lebart has been extending kindness to Japanese data
scientists. A deep friendship of trust between Ludovic and Noboru Ohsumi began
and has continued right up to the present. Ohsumi later spent one year at ENST,
Ludovic’s institute, as a visiting scientist. In 1994, Ohsumi and Yasumasa Baba
were the co-authors of a Japanese book (Ohsumi et al. 1994) which was basically
a translation of the book written by Lebart, Morineau, and Warwick (Lebart et al.
1984) and with additional contents. It was warmly welcomed in Japan. In the Preface,
Ohsumi expressed his gratitude to Kinji Mizuno (ISM), who had offered his survey
data for the book, and to Haruo Yanai for his detailed comments on the manuscript.

Ludovic loves The Little Prince by Antoine de Saint-Exupéry and collects the
versions published in other countries, so when he came to Japan he made sure to
find a Japanese edition! He is also very interested in Japanese culture. He once told
me how much he enjoyed reading I am a Cat written by Soseki Natsume, one of
Japan’s greatest novelists, which is often compared in Japan to E. T. A. Hoffmann’s
Lebensansichten des Katers Murr.

In October 1985, Haruo Yanai participated in the Sth International Symposium
on Data Analysis and Informatics at Versailles as an invited speaker. He told me
that his book The Foundation of Multivariate Analysis might be of interest to the
French organisers of the Symposium. I also attended the Symposium on my way to
the UK. We shared a room at a small hotel near Pont Mirabeau on the Seine, the
bridge which features in Le Pont Mirabeau, the famous love poem by Guillaume
Apollinaire. One evening we were standing on the bridge in the autumn twilight
gazing at the salmon-pink sky. Yanai suddenly asked me to give him some advice. He
had been offered a professorship from The National Centre for University Entrance
Examinations (DNC) in Tokyo, to which I belonged. I expressed my opinion that
he would probably rather have more freedom at his university than at DNC. Then
next spring in the UK I heard from a DNC colleague that Yanai had in fact joined
DNC! He was such a great figure who contributed to both activities for DNC and
the development of data analysis. In July 2007, he presided over the International
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Psychometric Meeting held in Japan. After retiring from DNC, he belonged to St.
Luke’s International University, a nursing university in Tokyo and made great efforts
to establish a system of common entrance examinations for nurses.

Haruo Yanai sadly passed away in December 2013 at the age of only seventy-
three. A condolatory telegram from C. R. Rao expressing deep sadness was read at
the funeral. Yanai was indeed a highly distinguished scientist who was loved by so
many people both in Japan and abroad. For me he will remain forever just as if he
were my kind elder brother.

7 John C. Gower

From the autumn of 1985 to the summer of 1986, I was a visiting scientist at the
Statistics Department of Rothamsted Experimental Station. I owed that happy spell
in the UK to the kindness of Akinori Okada who willingly took over as Secretary of
the Behaviourmetric Society, to which I had succeeded from Kinji Mizuno.

I stayed at the Rothamsted Manor House, built of sturdy English oak in the seven-
teenth century, which offered accommodation to visitors. Staying there were many
students and researchers not only from the UK but from all over the world. I made
friends with a doctorate student from Germany who studied entomology. During
World War 11, a treaty was forged between Japan and Germany to fight against the
UK, but now, in the UK, I was able to forge a private friendship between Japan and
Germany, a friendship that has continued right up to the present. That made me think
how wonderful peace is. My German friend was a pious evangelist and he introduced
me to his British evangelist friends, including Keith Goulding, who was in the RES
Soils Division.

Needless to say, the English ‘tea break’ took place every morning and afternoon.
I envy British people being able to enjoy those tea breaks, although I have known
some people (even British gentlemen) call it an ‘infamous’ custom... Well, I believe
that most of the best aspects of British culture might have originated from it!

It was during those breaks that I met Pete Digby, Alan Todd, Simon Harding,
Gavin Ross, Peter Lane, Rodger Payne, and other fine people. At one of them, Gavin
Ross told me that it was very difficult in the UK to find a mug with an ape on it. Well,
I decided to surprise him if I could, so I searched for one every weekend, sometimes
wandering all around London. But it was all in vain... Gavin sympathised with me
when I told him, and he kindly presented me with a mug he happened to have acquired
with a monkey hanging from a tree branch by its tail. It is now one of my favourites
in my collection of eleven mug cups decorated with various figures of apes.

What led me to go to RES was my interest in John Gower’s general coefficients
of similarity (Gower 1971) rather than his principal coordinates analysis. John had
just succeeded to the position of Head of the Biomathematics Division from John
Nelder, who had encouraged the members to complete GENSTAT. John and I were
very soon on first name terms and I was also welcomed by his wife Janet and their
children Sally and James. Janet was a splendid cook and the Gowers invited me to
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dinner at home while I was staying at the Manor House. I still clearly remember
the delicious taste of the soft, juicy roast lamb I was served. James, who was then
sixteen, loved tortoises, tropical fishes, and other little creatures. He told me that he
was not very interested in the biology lessons he received at school, so I gave him a
paperback titled The Green Year, the story of a boy who loves natural history, written
by A. J. Cronin.

My family went to the UK in May 1986. After detailed investigation, Keith
Goulding introduced us to a lovely small elementary school for my two young daugh-
ters. Their teacher, Christopher Rowlatt, of whom our girls grew very fond, was later
successful as a marbling artist, and we still keep in touch.

In April 1987, John attended the 46th ISI Session held in Tokyo. Janet accom-
panied him, and one day my wife took her sightseeing in Tokyo. They visited the
famous Senso-ji Temple in Asakusa and tasted some small Japanese cakes baked at
a traditional confectionary shop while strolling along Nakamise Street. After taking
lunch at Tatsumi-ya, a long-established Japanese restaurant, they went on a boat
trip down the Sumida River to Hama-Rikyu Gardens. On their way, Janet saw some
people eating and drinking under the cherry trees on the riverbank, even though it was
quite a cold day. They had probably expected to enjoy full blossoms, but despite the
cold and being disappointed that only a few flowers were in bloom they had decided
to go ahead with their cherry-blossom-viewing party! Janet was amused and took
some photos of them. The two ladies took a pleasant ramble around the Hama-Rikyu
Gardens and then enjoyed tea and cakes at Shiseido Parlour, a popular café in Ginza.
Janet really appreciated the beautiful cakes subtly decorated with a net of thin starch
jelly strings and took a photo of them.

The Gowers’ son James grew up to became a very successful exhibition organiser.
One Sunday when I was visiting the UK in 1989, I telephoned John from St. Pancras
Station in London. The Gowers were all out at a local school where an exhibition
organised by James was being held, but, as luck would have it, just at that moment
John happened to return home to fetch something he’d forgotten. He invited me to
join them, so by chance I had the honour of participating in James’s debut exhibition!

The Great Hanshin Earthquake occurred in 1995 just when James and his wife Jo
were staying with us in Tokyo. Janet quickly telephoned us from the UK to confirm
their safety. In 1996 James very kindly offered accommodation to our two daughters,
then university students, when they visited the UK. In February James often took
my elder daughter to an underground station to pay visits to London. In summer
travelling by car in Spain with James and Jo still remains vividly in my younger
daughter’s mind thanks to many amusing events caused from their rigid rule never to
reserve accommodations in advance, interesting conversations with local Spaniards
who could not speak English, etc.

In the summer of 1999, I went to the UK again on business and stayed a few
days with James and Jo at Hatfield near London. John and Janet had moved to
Nailsworth, a town in Gloucestershire not far from Wales. James presented me with
a CD of compositions by Michael Greenacre, his father’s good friend, titled You,
Woman. 1 must confess that the moment I heard it I was so fascinated by the music
that I could hardly believe that the composer Michael Greenacre was really the same
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person as the distinguished South African data analyst! When I listened to the CD
again later, I discovered that it was Michael himself who sang ‘Cradle Song’, one of
the thirteen songs, so beautifully. I apologise to him for misunderstanding up to then
that all the tracks were sung by Gurdeep Stephens.

John was a keen lover of natural orchids. His delight in seeing a rare one was for
him just as if he found a new property in his algebraic studies of multivariate methods!
He had been greatly affected by the wild flowers he saw in a wood near Selborne,
made famous by Gilbert White’s The Natural History of Selborne, where John spent
his elementary school days during World War II. When he visited Japan in July 2001,
we went to Lake Shirokoma located in the mountainous Nagano Prefecture. To my
great surprise, on our way to the lake he quickly spotted a little orchid, Dactylostalix
ringens Reichb.f., blooming quietly in the dark wood. In June 2013, when my wife
and I took a two-week journey around the UK, he escorted us (fellow wild orchid
lovers!) to a natural grass field with fine red British wild orchids. During our stay in
the UK, we were able to lodge for a few days in the same room (The Pink Room) of
the Manor House as I had inhabited for six months around thirty years earlier. At that
time I was also to stand before the memorial monument to Pete Digby built after his
early death. It’s near the former building of the Statistics Department and the Manor
House (Figs. 2 and 3).

After retirement from RES, John remained very active in his studies. He stayed in
the Netherlands for a few years. Janet accompanied him wherever he went. He wrote
two books (Gower and Hand 1996; Gower and Dijksterhuis 2004). Everyone who
acquired ‘Procrustes Problem’, one of two books, from him as a complimentary copy
would see on the back cover, ‘I hope you enjoy some Procrustes bedside reading’
and John’s autograph.

In July 2001, John visited DNC and introduced to us the Open University system
of certification. He also presented us a video of R. A. Fisher produced by RES.
One weekend afternoon, John and I called in at the National Museum in Ueno Park

Fig. 2 Dactylostalix ringens Reichb.f.
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Fig. 3 Orchis mascula in the UK

in Tokyo. When we came out, John stopped on the steps to look at several people
lingering to look at the sunset. ‘I like to see people lingering...” John murmured. I'm
not sure why, but I was so impressed by the sound and meaning of the word ‘linger’
that I have made it a habit to collect any sentence in which the word appears!

John Gower, a very happy man who was dearly loved by friends all over the world,
passed away in May 2019 soon after his birthday. And a very sad mail came from
Sally telling us that Janet, his greatest supporter, had peacefully followed him in
October. My younger daughter and her husband had been able to meet John, Janet,
and their family in the summer of 2018 before the onset of the COVID-19 pandemic.
It is a precious memory.

8 French Connections

On our way back home from the UK in the summer of 1986, we dropped into
France. Ludovic Lebart picked us up and took us to see the night view of Paris from
Montmartre. Fifteen years later, from 2001 to 2002, my younger daughter was in a
graduate course at Nottingham Trent University in the UK studying art. When she
took a holiday in France, Ludovic kindly welcomed her to stay with him in Paris.
During our 1986 trip, Yves Escoufier and his wife invited us to supper at their home
in Montpellier near the Mediterranean Sea. My elder daughter still says that the salad
served by Mrs Escoufier on that occasion was one of the two most delicious dishes
she has ever tasted in her life: tomato and paprika-based bouillabaisse risotto with
mussels, shrimps, octopus, other seafood, containing onions, and garlic tomatoes,
mussels, harmoniously blended with white wine as a secret ingredient. (She insists
that her memory is precise with a probability of seventy per cent!) By the way, her
other favourite dish was served at a small restaurant in Bath, the beautiful English
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town known for its Roman bath and ‘Beau’ Nash: sliced duck filet, lightly browned,
served with roasted duck with orange juice, Grand Marnier, white wine, and orange
zest in a brown sauce.

In March 1987, the Japanese-French Scientific Seminar on ‘Recent Developments
in Clustering and Data Analysis’ was held at the Institute of Statistical Mathematics
(ISM) in Tokyo. The French participants were Edwin Diday, Michel Jambu, Yves-
Max Schektman, Alain Morineau, Maurice Roux, Isrdel C. Lerman, Yves Escoufier,
Brigitte Escofier, Ludovic Lebart, Guy Der Megreditchian, and Jean-Pierre Nakache.
I enjoyed the beautiful flowing French of Megreditchian’s lengthy address at the
welcome party. After returning home, he kept sending me his papers. When I heard
of his death after a battle with cancer, I really missed him and understood why he
had earnestly continued sending his papers to a lot of scientists: he must have been
writing papers in defiance of his physical condition.

9 Kinji Mizuno

Kinji Mizuno was one of Chikio Hayashi’s great research supporters from his twen-
ties (Iwatsubo 2018). After belonging to the Institute of Behavioural Sciences (IBS)
in Tokyo and the University of Nagoya, he moved to ISM in 1973. He took over from
Haruo Yanai as Secretary of the BS, which was then headed by Chikio Hayashi as
President. I sometimes went to his office at ISM and helped him prepare materials
for delivery to BS members. I was soon moved by his sincere personality, and my
respect for him grew day by day. I would go so far as to say I have never seen such
a gentleman like him who devoted himself so much to public welfare.

Mizuno contributed a great deal to the nationwide survey of the Japanese national
character conducted by ISM every five years, especially in 1978 (Res. Committee
for the Study of the Japanese National Character 1982). Each survey has been based
on face-to-face interviews regarding 50 items. To facilitate comparisons, the same
questions have been included for a long time. Between 3000 and 6000 Japanese
nationals aged twenty and over was selected at random by a stratified three-stage
probability sampling method based on voter lists. Mizuno struggled to maintain the
reliability of the survey but the number of respondents who rejected the interviews
increased year after year, which caused him great stress.

In March 1981, I accompanied Mizuno when he visited Atami, the well-known
Japanese resort, to survey the awareness and attitude of citizens regarding the widely
anticipated Tokai Earthquake. I had kept asking him to give me a chance to partic-
ipate in his surveying activities and on that occasion he allowed me to join him.
Following his instructions, I interviewed some citizens. It taught me how impor-
tant, and also how difficult, it is to collect reliable data. My experiences in Atami
considerably influenced my attitude towards research. I sometimes said to myself,
‘Of course it’s very important to develop data analytic methods mathematically with
computer programmes. But aren’t good methods, including a set of questionnaires
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and interviewing to collect reliable data, indispensable and important as a major
premise?’

Mizuno’s study was developed into disaster preparedness education for school
children (Iwatsubo 2002). In his elementary school days, he had read a story in a
Japanese language textbook about an old village headman who helped to save his
villagers from a tsunami disaster. One day, he felt a strong earthquake and noticed
that the sea waves were changing. He immediately set fire to sheaves of the precious
new rice that had just been harvested near his house on the hill. The villagers all
stopped working and rushed up the hill, thinking that the headman’s house was on
fire. Just as they reached it, a terrific tsunami surged in and swallowed up the fields
they had just been working in.

Titled Burning the Rice Sheaves (Inamura no Hi), the story had been written by
an elementary school teacher, Tsunezo Nakai, with reference to Lafcadio Hearn’s A
Living God. In fact, the story was based on an actual earthquake and tsunami that
occurred in 1854. The village headman was a real person named Go-ryo Hamaguchi.
Nakai’s words were so simple, clear, and vivid that not only Mizuno but also most
of his fellow pupils were impressed, and the message “Whenever you feel a strong
earthquake near the seashore, run to higher ground as soon as possible’ was engraved
forever on their young minds. Mizuno made great efforts to make it possible for
Tsunezo Nakai to be awarded the Japanese government’s prize for contributing to
disaster prevention in 1987.

Hyon-Jun Rho from South Korea, who came to ISM from 1987 to 1988 and
belonged to Mizuno’s research section, is still very grateful for the deep kindness
shown to him by Mizuno. He studied Hayashi’s methods and introduced them to
data scientists in South Korea. He also made a large contribution to the development
of quality control techniques in his country. After retirement from his university, he
started writing books on modern politics and history. We used to meet every time he
came to Japan and enjoyed many happy moments. Since the end of 2019, it is a great
shame that the COVID-19 pandemic prevented us from meeting.

It was my great pleasure to hear that Mizuno was going to move from ISM to DNC
in 1991. Sadly, however, he passed away in 1999; eight years after his move. At the
memorial gathering for him in 2000, Chikio Hayashi presented an hour-long speech
to express how much he missed the indispensable partner in his studies. Hayashi
greatly appreciated the fact that Mizuno had shown us how quickly he acquired
essentials from data, and he promised to establish his own data science as soon as
possible, meeting Mizuno’s expectations. His book for Data Science published in
2001 (Hayashi 2001), was dedicated to two late young comrades, one of whom was
Kinji Mizuno.

We never imagined that Hayashi would be following Mizuno only two and a
half years after that memorial party, leaving a wealth of works on the data sciences.
Ryozo Yoshino, the editor of the Bulletin of Data Analysis of Japanese Classification
Society, provided us with many invaluable words he had heard from Hayashi in
2001 (Takahashi 2021). In 2021 Kumiko Maruyama published a biography of Chikio
Hayashi (Maruyama 2021).
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Both Hayashi and Mizuno retained their great passion for inquiring into human
behaviour, never losing a fresh interest in human beings. In other words, I would
say it’s very clear that they both loved people. Mizuno highly evaluated two younger
scientists, Takashi Murakami and Ei-ichiro Nojima, to whom he taught computer
programming techniques in their undergraduate days. Since retiring from his univer-
sity, Murakami has continued to enjoy his studies, sometimes writing scientific
papers for journals. Nojima, who became the head of the Waseda University School
of Human Sciences, kindly made efforts for me to move from DNC to Waseda
University.

10 Waseda University and Walking the Hakone Ekiden
Course

I am rather afraid that the following section may be too personal and drifting some
distance away from Nishisato. However, I beg for your forgiveness to let me include
it as a personal example of someone who moved away from developing categorical
data analysis.

In April 2005, I moved from DNC to Waseda University. I feel it was appropriate
for me to leave DNC since my interest had been gradually changing from ‘education
before entrance examinations’ to ‘education affer entrance examinations’. I started
to present lectures on elementary statistics which in fact continued for eight years
(later I lectured to graduate students on multivariate methods for categorical data).
There were nearly 500 students every year, many of whom, unfortunately, were less
than excited about studying mathematics!

I kept doing my best to prepare materials for my lectures, giving a small test after
every lecture and encouraging their application of statistical analysis to their own
data collection efforts. This took me some distance from my BS duties as I was very
short of multivariate ability.

Despite all my efforts, I must say now that my teaching was not successful. I set a
minimum requirement to be learnt by students: a deep understanding of variance as a
fundamental source of information. I’'m not sure that even my minimum requirement
was met. Eventually, most students did not seem to be interested in statistics and data
analysis.

I did, however, get to know some students who sympathised with my desperate
efforts, and we started communicating frequently. One of them was a runner in the
Hakone Ekiden marathon race held every New Year which features twenty university
teams of ten runners. The race consists of five stages run between Otemachi in Central
Tokyo and Hakone Mountain on the first day and the same five stages in reverse
back to the finish line in Ohtemachi on the second day. The total distance of the
ten courses is around 207 km’s. As a kind of challenge to encourage the Waseda
University team, in 2011 my wife proposed that between September and December
every year we should walk all ten stages, at a pace of one stage a day. We finally ended
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our annual walking mission in 2020, meaning we had walked a total of 2070 km’s,
which is about one twentieth of the way around the Earth. Unfortunately, despite
all our efforts, the Waseda University team did not win the race in any of those ten
years!

Around 2005, I suppose my interest was gradually moving away from the devel-
opment of categorical data analysis. Soon after I knew about Hayashi’s ‘Type III’
Method, I was interested in the method applying to three-way categorical data. Natu-
rally I got a method that gives optimal numerals (xi, Vi, zk) to a point (i, j, k) of
three-way binary data by means of the maximisation of multiple correlation coef-
ficients. It is easily generalised to the case of n(n > 3)-way binary data (Iwatsubo
1978) and led to the methods by the maximisation of canonical correlation coeffi-
cient as anyone may conclude. I think that the investigation of linear relationships
latent in multi-way binary data is reduced to the inquiry into the properties of canon-
ical correlation coefficient. I sensed that might be the reason why John Gower had
concentrated on writing a book on canonical analysis until just before he passed
away.

The vast world of non-linear relationships latent in categorical data is opened
before us. I once proposed the method for three-way binary data in terms of
the maximisation of the third correlation coefficient, inspired by Kei Takeuchi’s
paper (Takeuchi 1974). I expected that the method might detect the tendency to
gradual changes of people’s sense of value inversely with the lapse of time by applying
to some cohort categorical data. Tadashi Yoshizawa generalised my method into the
analysis of multiple contingency tables (Yoshizawa 1988).

Those very busy days at Waseda University seemed to make me, day by day, more
and more remote from the development of multivariate methods for categorical data.

11 Shizuhiko Nishisato

Although Shizuhiko Nishisato had been a familiar name since he published the book
on applied psychometric scaling in 1975, it was unfortunate that I had few chances
to see and talk with him either in Japan or abroad. I was there when he presented a
lecture in the autumn of 1986 for the 6th International Symposium on Data Analysis
and Informatics (ISDAI) at Versailles, but I was so busy preparing for my session and
another meeting that I had little time to talk with him. Due to a previous appointment,
I'had also lost a good opportunity to have the honour of being one of the commentators
at an annual meeting of BS, which Yasumasa Baba, the organiser of a special session
for Nishisato, had invited me to accept.

So, it was a great pleasure that I could have a long talk with Nishisato when he
came to Japan in June 2019 to receive the Award from Annual Meeting of Japanese
Classification Society and present a lecture. It reconfirmed for me his sincere person-
ality—open-minded, kind and generous—but also impressed on me the importance
of friendship. Since he returned to Canada, we have continued communicating by
e-mail.
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I was also very happy and surprised to get to know Nishisato’s grandson, Lincoln
Dugas-Nishisato. At the age of nine, Lincoln wrote a science fiction book which was
published thanks to the warm support of his family and his teachers, with a translation
into Japanese by his beloved grandfather. The book tells how the grown-up Lincoln,
a physicist, is carried by a time-machine to meet great figures from the past. The
humble but kind suggestions, encouragement and help Lincoln gives them help to
trigger their great achievements. For example, in the Netherlands he meets Anne
Frank and suggests she should buy a diary on her birthday, which will surely be read
by countless people all over the world. Lincoln deeply laments that he was unable
to save her as historical facts can never be altered.

At the age of twelve, Lincoln organised a cooking class designed for children
with disabilities, and donations to a rehabilitation hospital are requested. Not only
children but also many adults enjoyed making cakes and learning new recipes at
his kitchen or via Zoom following his instructions. He loves cooking using various
recipes of the places where he has enjoyed travelling with his parents. Ever since
he was five, whenever he sees people who are unhappy, he has never hesitated to
volunteer to help them. It seems to me that Lincoln shares that ‘unbearable pity for
the suffering of mankind” which was one of the three passions that Bertrand Russell
said governed his life.

There is a café in Tokyo called ‘Avatar Robot Café DAWN’ where the bedridden
or housebound can serve and communicate with guests in the café through the robots
developed by my young friend Kentaro Yoshifuji, who studied engineering at Waseda
University. Each robot is manipulated by a PC operated by a disabled person far from
the café. To assist people with much more serious disabilities, Yoshifuji has recently
been facing the challenge of developing a system for operating a PC using only brain
waves.

It gives me feelings of both considerable relief and considerable hope that, in spite
of all the anxieties filling the world today, we never fail to see such young people as
Lincoln and Yoshifuji, who love human beings and offer themselves to improve the
happiness of mankind.

12 Postscript

Every autumn for several years, I have stood in front of the graves of Chikio Hayashi,
Kinji Mizuno, and Haruo Yanai. Those of Hayashi and Yanai are located not so far
apart, so I can visit them on the same day. While offering sincere gratitude to all three
of them, I also apologise for not having fulfilled my duties for the BS as they had
expected me to do, and for not repaying their great kindness. I beg their forgiveness. ..
Silence. They seem to be complaining to me, but have finally dared to permit me
at least as being a humble seeker of the answer to that everlastingly difficult but
fascinating question: ‘“What is a human being?” Well, so I believe...

I cannot help but notice once again that in this contribution to the Shizuhiko
Nishisato Festschrift, I have talked too much about myself rather than about him.
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It is, however, certain that I could never have met and known such splendid people
as I have been talking about here if I had not been interested in the multivariate
methods for categorical data and related topics which Shizuhiko Nishisato has loved
throughout his life. I will be extremely happy if, just as a record of some episodes
in the lives of great data scientists, my memories might be permitted to slip into the
Festschrift of a man I highly respect.
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On Association and Scaling Issues



A Straightforward Approach )
to Chi-Squared Analysis of Associations oo
in Contingency Tables

Boris Mirkin

1 Introduction

A two-way contingency table, or cross-classification, is a type of data relating two
sets of categories, usually being mutually exclusive values of two nominal or ordinal
features. This data structure has attracted considerable attention from researchers for
the analysis of interrelations between the features.

A number of loglinear models were proposed, as were low-rank approximations
of the tables such as dual scaling, and common-sense considerations; for the latest
descriptions see, for example, Agresti (2019), Bland (2020), Goodman (1991) and
Nishisato (1994). Yet Pearson’s chi-squared independence test remains the most
popular approach to analysing contingency tables. There is an issue inherent to
this approach, though: it gives a global assessment of whether the hypothesis of
“global” independence between features should be rejected or not. Whenever the
independence hypothesis is rejected, an open issue remains of investigation of those
associations between categories that cause the rejection. Sharpe (2015) puts the issue
as a blunt question:

Chi-square test is statistically significant: Now what?

He proceeds to review the main approaches to the analysis of associations
between individual categories. They all establish a fact of statistical dependence
but fail to evaluate that quantitatively. The only exception is the so-called odds-ratio
in 2 x 2 contingency tables. This is a case at which both features have only two
categories each. Therefore, one may compare one category of a feature with respect
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to the other feature by comparing respecting probabilities in the categories. This,
however, is not directly applicable to larger contingency tables. Therefore, in larger
contingency tables, the researcher can move on to a heuristic analysis of differences
between observed probabilities and those corresponding to the independence case,
standardised by the analogues of their standard deviations (standardised residuals).

This author argues that, in larger contingency tables, one should compare proba-
bilities at one category not with those at another category but rather with the average
probabilities at the entire dataset. There is nothing new in this proposal. In fact, that
value—the change of the probability of a category when a category of the other
feature becomes known—was proposed at the very dawn of the era of statistics
research by its founding father, Adolphe Quetelet (1796—1874); see Quetelet (1832)
and Mirkin (2001). Currently, there is not much interest in the Quetelet index as is
among statistics researchers. For example, it is mentioned, in passing, by Goodman
(1991, Eq. (2.2.3)) before moving on to more interesting subjects. Perhaps, the only
exceptions from the rule are Greenacre (2009) and Beh and Lombardo (2014).

This author has discovered that there is an interest in the Quetelet index as is.
It relates to the Pearson’s chi-squared statistic. In fact, the values of the Quetelet
index averaged over the bivariate probabilities total to the phi-squared, the Pearson’s
chi-squared related to the number of elements. This shows that the Pearson’s chi-
squared has an operational meaning. The index value is proportional to the average
change of probability of a category of one feature when a category of the other feature
becomes known. Moreover, the averaging formula represents a decomposition of the
chi-squared statistic in contributions by individual pairs of feature categories. This
allows for both capturing important contributions and assigning them operational
meaning. This is a novel tool for the analysis of contingency tables.

The remainder of this paper is structured as follows. Section 2 describes the
conventional concepts of Pearson’s chi-squared statistic and standardised residuals
in their relation to the former using an example from Sayassatov and Cho (2020).
Section 3 introduces the concept of the Quetelet index and relates it to the Pearson’s
chi-squared statistic using the very same example to point out the strongest associa-
tions together with their quantitative values. Section 4 provides three more examples
from the literature to illustrate the action of Quetelet indexes. Section 5 provides
some final remarks.

2 Pearson Chi-Squared Index and Association Patterns

2.1 Statistical Independence and Pearson’s Statistic

The contingency table is a conventional way of representing bivariate distributions.
Given a set of objects /, and a set of categories over / indexed by symbols k = 1, 2,
..., K and of categories over I indexed by [ = 1, 2, ..., L, a contingency table T is
defined as a K x L matrix, the (k, [)th entry of which is the number Ny; of objects
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from [ falling in category k and category / simultaneously, that is, the frequency of
(k, 1) pair. Any reasonable analysis of contingency tables involves a nonoverlapping
of the categories constraint: no object may fall in two categories k1, k2 such that k1
#k2,kl,k2=1,2, ..., K, nor in two categories /1, [2 such that /1 # 2, /1,12 =
1,2, ..., L. This, basically, means that the categories k = 1, 2, ..., K belong to one
nominal feature over set I, and [ = 1, 2, ..., L, to another. This is assumed further on
in this text.

Then the category frequencies, frequently referred to as marginal frequencies are
defined so that:

L

K K L
Nk-&-:ZNkl» N-H:ZNkl» ZNH:ZNH:N,
k=1 k=1 =1

=1

where Ny, and N, is the marginal frequency for row category k, and column cate-
gory [, respectively, and N is the total number of objects in /. By dividing these by N,
one arrives at similar equations for the relative frequencies (empirical probabilities):

L K K L

Pt =) Pus PH=) Pus Y Pk = pu=l (1
=1 =1

1=1 k=1 k

Two features represented by the categories are referred to as statistically
independent if the equations:

Pkl = Dk+ D+ 2)

hold for all pairs (k, [).

The most popular tool for the analysis of associations via a contingency table
is what is called Pearson’s chi-squared statistic, frequently referred to as Pearson’s
index in the computer sciences. This index measures the summary deviation of the
observed frequencies from the statistical independence.

Given a category pair (k, ), its deviation from the statistical independence is
convenient to measure with what is referred to as the standardised residual:

kl — Pk+P+i

p
k,l)= 3
st Pk+P+1 ©)

This is the difference between the real and “ideal” frequencies moderated by their
size in the denominator.

The Pearson’s chi-squared index is defined as N times the sum-of-squares of these
values:
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K L K L (o — %
X2=NY Y st =N Y P PPT “)
k=1 I=1

=1 =1 Pk+P+i

The presence of factor N is justified by a theorem proven by Pearson (1904)
(see also Pearson (1948)): If a contingency table is based on a sample of objects
randomly and independently drawn from a population in which the statistical inde-
pendence holds (so that all deviations are due to just randomness in the sampling),
then the probabilistic distribution of X> converges, at N tending to infinity, to the
chi-square distribution with (K — 1)(L — 1) degrees of freedom. K. Pearson defined
the probabilistic chi-square distribution (with p degrees of freedom) as a distribution
of the sum-of-squares of p independent random variables, each distributed according
to the standard Gaussian N(0, 1) distribution. This leads to a simple universal crite-
rion for testing the hypothesis of statistical independence between the features (see
any statistics textbook or statistical distribution tables). Still, one should not overesti-
mate the universality of this criterion: first, the sample size N should not be too small;
second, no zero entries Ny, are permitted in the table when the marginal probabilities
are not zero. As all concerned know getting around this latter commandment requires
some fantasy and rigour in modelling more suitable candidates for the zeros; see, for
example, Agresti (2019) and Devore (1995).

Pearson’s theorem focuses on the testing of the statistical independence hypothesis
and implies no instructions for the analysis of statistical ‘dependence’ or ‘associa-
tion” in a case at which a chi-squared value is greater than an accepted indepen-
dence threshold. Therefore, in such situations, researchers use various heuristics for
capturing associations behind the failure of the independence test. A most popular
heuristic comes from observation of the standardised residuals defined by (3): posi-
tive associations correspond to positive values in (3), and negative associations, to
negative values in (3). The larger the absolute value of a standardised residual, the
greater the association; see Sharpe (2015) and Sayassatov and Cho (2020).

2.2 Example

To see, how this may work, let us use an example from Sayassatov and Cho (2020).
This paper analyses the association between two features that the authors evaluate
of their sample of 40 students. The authors accept a classification of learning styles
from Mumford and Honey (1986). According to this view, there are four different
approaches people take to learning new information. Their labels are listed below
together with the main characteristics of them, in parentheses:

Activists (Learn by doing and happy to jump),

Reflectors (Learn through observation and reflecting on results),

Theorists (Like to understand the theory behind action),

Pragmatists (Need to be able to see how they apply their learning to the real
world).
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The second feature under study is the student’s preferences among artifi-
cial “Internet of Things” devices (IoT). There were four artificial devices under
consideration defined by Sayassatov and Cho (2020) and described as follows:

e D1: Smart Organised Backpack. This device has certain sensors to help students
not to lose their college belongings.

e D2: Smart Voice Recorder for Group Discussions. This device helps students at
group meetings or discussions.

e D3: Smart Headset for Concentration. This device helps students to be more
concentrated at individual studies.

e D4: Smart Education Storage Ring. By wearing this device, students keep all their
education related data in its memory card.

The authors cross-classified the students according to their learning style and
preferred artificial IoT device; see Table 1. The value of X 2 for this table is 30.498,
which leads to the rejection of the independence hypothesis with a confidence level
greater than 99.9%.

Sayassatov and Cho (2020) then engage in an investigation of meaning behind
this value. They first turn to a natural version of X2, the so-called phi-squared which
is X2 without the factor N:

K L( B )
=ZZ Pkl — Pk+P+1 (5)

=1 =1 Di+P+1

The values that (5) can take lie within the interval between O (at statistical inde-
pendence) and the minimum of K — 1 and L — 1. The latter value is reached for a
contingency table in which every row k (at K > L) has just one non-zero entry, in
a column I(k). In this case, the pattern of association between the features can be
expressed as a purely logical implication rule k = (k) (k =1, 2, ..., K) from k to
I(k). Unfortunately, for Table 1, neither value of g02, nor the value of its derivative,
called Cramér’s V, can provide any information on the association pattern between
the learning style and an IoT model of preference (Sayassatov and Cho 2020).

Therefore, the authors turn to an analysis of the residuals (3) as presented on the
left in Table 2

Table 1 Cross-classification of learning styles and preferred artificial IoT devices from Sayassatov
and Cho (2020)

Device preferred Learning style Total
Activist Reflector Theorist Pragmatist

D1 8 2 1 1 12

D2 1 6 1 1

D3 1 1 5

D4 1 2 1 10

Total 11 11 8 10 40




64 B. Mirkin

Table 2 Standardised residuals for the data in Table 1 (left part) and the Quetelet index values (part
on the right)

Device Learning style Learning style

preferred | A ¢ qiyigt ‘ Reflector | Theorist | Pragmatist | Activist ‘ Reflector ‘ Theorist ‘ Pragmatist
Standardised residuals Quetelet index values

D1 0.4091 | —0.1132 | —0.1429 | —0.1826 1.4242 | —0.3939 | —0.5833 | —0.6667

D2 —0.1482 0.3543 | —0.0943 | —0.1318 — 0.5960 1.4242 | —0.4444 | —0.5556

D3 —0.1482 | —0.1482 0.3771 | — 0.0264 —0.5960 | — 0.5960 1.7778 | —0.1111

D4 —0.1669 | —0.0715 | —0.1118 0.3500 —0.6364 | —0.2727 | —0.5000 1.4000

One can see that all the standardised residuals here are negative, except for those
on the diagonal (highlighted in bold) which shows an exceptionally clear-cut pattern
of associations. Each learning style one-to-one corresponds to a specific IoT device
preferred: Activist to D1, Reflector to D2, Theorist to D3, and Pragmatist to D4.
There is no quantitative evaluation of the degree of association, though (Sayassatov
and Cho 2020).

3 Quetelet Indexes for a Comprehensive Analysis
of Associations

In fact, there is a similar normalised difference expression, both related to the chi-
squared statistic and having a very clear meaning. This is what we refer to as Quetelet
index, due to Quetelet, the founding father of statistics; see Quetelet (1832) in our
paper Mirkin (2001).

The Quetelet index is defined as the relative difference between (empirical) condi-
tional probability P(I/k) = pu/pk+ that category [ occurs under condition k and
the (empirical) probability that category / occurs at all, P(l) = p,; = Ny;/N (Mirkin
2001):

P(/k)y— P(
/) = D0, ©

That is, the Quetelet index expresses association between categories k = 1, 2, ...,
Kandl=1,2, ..., L as the relative change in the probability of / when k is taken
into account; see also an earlier description in Lebart and Mirkin (1993).

With a little algebra, one can derive simpler expressions:

g(/k) = Prl — Pk+DP+1 _ P 1, 6

Pik+D+1 DPk+D+i
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which do not differ that much from the standardised residuals in (3). The difference
in semantics, however, is huge: Quetelet indexes in (6) and (6’) have a clear-cut quan-
titative interpretation as the relative probability changes, whereas the standardised
residuals have no operational meaning.

It may seem somewhat odd that g(//k) = q(k/I), the change in the probability
is a same in both directions, / under condition k and k under condition /, as follows
from the right part of (6"). This means one may use symmetric notation g (k, /) for
asymmetric g (k/[) and g (I / k). In this author’s view, this symmetry can be considered
as a mathematical expression of the idea that static data, by themselves, can give no
information of casual dependencies—those must be derived from beyond the table.

Quetelet indexes for Table 1 are presented on the right of Table 2. Obviously, the
patterns of plus/minus signs in the left and right parts of Table 2 coincide because the
numerators in (3) and (6) coincide. However, in contrast to the entries in the table
of standardised residuals, these entries are meaningful. One can see that attending to
‘Pragmatist’ learning style increases the probability of choosing D4 IoT device by
140%, and attending to ‘Theorist’ learning style increases the probability of choosing
D3 10T device by 178%.

Now one can take an averaged Quetelet index:

K

L L K L 2
Zpkzqa,k):ZZpk,( bu —1)=Z Py )

1 1=1 =1 =1 Pik+P+1 =1 =1 Pk+P+

Q:

K
k=

and interpret it as the average change in the probability of a random object to fall
into k-category when its [-category becomes known.

It is well-known, though, that the expression in (7) on the right is equal to the
phi-squared of (5), so that Q = ¢?. Therefore, the chi-squared statistic does have
an operational meaning. Its structural part, 9> = X?/N, is the average change in the
probability of a random object to fall into k-category when its /-category becomes
known. One should draw attention to this claim. It contradicts conventional claims
that the chi-squared is but a statistical criterion for testing the statistical independence.

Moreover, the left-side of (7) gives a meaningful decomposition of Pearson’s
chi-squared statistic in the sum of relative Quetelet indexes, py;q (k, [). The relative
Quetelet index takes into account both the probability py; of (k, [) and its prognostic
power g (k, I). Although the pattern of £ signs does not change at the set of relative
Quetelet indexes, as can be seen in the right part of Table 3, the values do change, so
that the total, in this case Q = (pz =0.7625, is always non-negative. This value shows
that, for any category, information of a category of the other feature increases, on
average, the category’s probability by 76.25%. Moreover, all within-row and within-
column sums are positive as well (proven in Mirkin 2001). The within-row sums
in the column “Total” of Table 3 shows what part of the total relative probability
change, 76.25%, comes from each row category. For example, 23.39% are provided
by the preference for D1 device.

The decomposition (7) shows that the total probability change is the difference
between the sum of its positive entries, 0.9307 in Table 3, and the sum of its negative
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entries, 0.1682 in Table 3. The former (0.9307) reflects the positive associations
between categories and the latter (0.1682), the negative associations. Distinguishing
between positive and negative category-to-category associations may be a subject in
the area of data engineering, but this author has nothing to say about it as yet.

4 More Examples

4.1 Sleeping Pills Action

Consider an example from Nishisato (1989) that involves a contingency table—see
Table 4—summarising the answers of 140 individuals to the following two questions:

e Q.1: “How do you feel about taking sleeping pills?” with a range of answers:
strongly for, for, neutral, against, strongly against;

e Q.2: “Do you sleep well every night?” with answers of either (1) never, (2) rarely,
(3) sometimes, (4) often, (5) always.

Nishisato (1989) analyses this dataset with respect to the dual scaling. That is,
he assigns categories with quantitative values so that the correlation between these
quantified features becomes maximum. We apply the Quetelet index approach to the
table, so that Table 5 summarises the Quetelet pairwise indexes.

Table 5 shows that opinions on usage of sleeping pills strongly correlate with the
level of sleep disorders. Those always sleeping well are 175.86% more likely than
the average to be strongly against sleeping pills, whereas those never sleeping well
are more likely, 177.78%, than the average to be strongly for them. Medium sleeping
disorders bring forward more moderate probability changes such as, say, 45.83%
increase for the pair Q1.sometimes/Q2.against.

Table 6 presents the relative Quetelet values for the partition of the phi-squared for
this dataset. What is interesting about this is that the value Q = ¢ here is just 0.5581,
which is far smaller than the maximum possible value of 4 (for 5 x 5 contingency
tables), less than 14% of the maximum value. A similar value for Table 1, 0.7625,

Table 4 Cross-classification of the answers to Questions 1 and 2 below by 140 respondents
Q2 Ql Total

1. Never 2. Rarely 3. Sometimes 4. Often 5. Always
Strongly for |15 8 3 2 0 28
For 5 17 4 0 2 28
Neutral 6 13 4 3 2 28
Against 0 7 7 5 9 28
Strongly ag. | 1 2 6 3 16 28
Total 27 47 24 13 29 140




68 B. Mirkin

Table 5 Quetelet index values for data in Table 4 (those greater than 0.35 are highlighted in bold)

Q2 Q1

1. Never 2. Rarely 3. Sometimes 4. Often 5. Always
Strongly for 1.7778 — 0.1489 —0.3750 —0.2308 — 1.0000
For —0.0741 0.8085 —0.1667 — 1.0000 — 0.6552
Neutral 0.1111 0.3830 —0.1667 0.1538 — 0.6552
Against — 1.0000 — 0.2553 0.4583 0.9231 0.5517
Strongly ag. | — 0.8148 — 0.7872 0.2500 0.1538 1.7586

Table 6 Relative Quetelet index values for data in Table 4 (those highlighted are greater than 0.05)

Q2 Q1 Total Total,
1. Never |2. Rarely 3. Some 4. Often 5. Always %

Strongly 0.1905 | — 0.0085 —0.0080 —0.0033 0 0.1706 |30.6
for

For —0.0026 0.0982 —0.0048 0 — 0.0094 0.0814 | 14.6
Neutral 0.0048 0.0356 —0.0048 0.0033 — 0.0094 0.0295 | 5.3
Against 0 —0.0128 0.0229 0.0330 0.0355 0.0786 | 14.1
Strongly | — 0.0058 | —0.0112 0.0107 0.0033 0.2010 0.1979 |35.5
ag.

is just about 25% of the maximum value. That means that the association between
two features here is rather weak, according to the holistic estimate, whereas there is
a clear-cut association between sleeping disorders and opinions on pills described
above.

Another interesting feature of the decomposition of Q = ¢? according to Table 6 is
that zeros in it are just zeros, meaning no contribution to Q = ¢*>—and that is all. This
drastically contrasts the treatment of zeros according to formula (5) for ¢2. Indeed,
(5) is to test the hypothesis that py; = piry p4s. Since piy and p,; are positive, the
value of py; must be positive, too!. This implies that “continuity correction” of zero
counts in contingency tables is needed in conventional research projects; see, for
example, Devore (1995).

4.2 Voting Preferences

Table 7 presents voting preferences of USA citizens as related to their incomes
according to a survey undertaken by the Pew Research Centre in 2014. They classified
household income in 4 groups: (1) Less than $30,000, (2) More than $30,000 but
less than $50,000, (3) More than $50,000 but less than $100,000, and (4) $100,000
or more. Voter party affiliation is defined as either R (Republican or leaning to
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Table 7 Contingency table income-party voting (left part) and its Quetelet index values (part on
the right)

Income Party Total Party
R U D R U D
Respondent counts Quetelet index values
1 2388 2034 4423 8845 —0.3034 0.4629 0.0985
2 2286 938 2696 5920 — 0.0037 0.0079 0.0004
3 3885 1126 3712 8723 0.1491 —0.1788 — 0.0652
4 3258 695 3049 7002 0.2005 — 0.3686 —0.0435

Table 8 Relative Quetelet index values for data in Table 7

Income Party

R U D
1 —0.0238 0.0309 0.0143
2 —0.0003 0.0002 0
3 0.019 — 0.0066 —0.0079
4 0.0214 — 0.0084 — 0.0043

Republican) or U (Undecided) or D (Democrat or leaning to Democrat). Although
the Quetelet index values do not reach the highs seen in Table 5, one can easily see
that the richer people tend to lean to that identify as being Republican, 14.91% and
20.05% in group (3) and group (4), respectively, over the proportions in the entire
population. On the other hand, the group of poor (1) do not like Republicans at all
(— 30.34% with respect to the proportion on the total sample), while remaining
mostly Undecided (+ 46.29%).

The relative Quetelet index values for Table 7 are summarised in Table 8. The sum
of positive entries in this table is 0.0859, and its negative entries sum to — 0.0513. The
totalis Q = <p2 = 0.0345, which is just above 1% of its maximum value 3. However,
this is quite enough to warrant rejection of the independence hypothesis with 99.9%
confidence according to the Pearson’s chi-squared independence test because of a
large number of respondents.

4.3 Marital Status Versus Medical Treatment

Table 9 presents a contingency data from DeViva (2014) who compared the treatment
status of military veterans and their marital status (Married or Not). The treatment
categories are: (1) never seen for therapy, (2) seen but not completing therapy, and
(3) completed therapy.
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Table 9 Contingency table for treatment versus marital status (left part) and its Quetelet index
values (on the right, those positive highlighted in bold)

Marital | Treatment Treatment

status Never seen | Seen, Completed | Total | Never seen | Seen, Completed
didn’t didn’t
complete complete

Counts Quetelet index values

Not 57 53 11 121 0.1650 | —0.057 |—0.3068

married

Married |17 32 13 62 | —0.3219 0.1112 0.5988

Table 10 Relative Quetelet index values (on the left) and Quetelet values (on the right)

Marital Treatment Total Treatment
status Never seen Seen, didn’t Completed Never seen Seen, didn’t Completed
complete complete

Relative Quetelet index values Quetelet index values
Not 0.0514 —0.0165 —0.0184 0.0164 0.1650 —0.0570 —0.3068
married
Married —0.0299 0.0194 0.0425 0.0321 —0.3219 0.1112 0.5988
Total 0.0215 0.0029 0.0241 0.0485

The Quetelet index values on the right of Table 9 show that being married highly
increases the chance of getting their treatment completed—by 59.88%—whereas
being not married decreases that chance by 30.68% and increases the chance of never
seeing a doctor by 16.5%. This explanation gives a clear picture of the associations in
the data, in contrast to the analyses given in Sharpe (2015) where only some general
claims of statistical dependence are made.

The relative Quetelet index values are provided on the left of Table 10. The total
increase of category probabilities by the positive Quetelet index values, 0.1134, is
drastically reduced by the negative total, — 0.0648, leading to the summary Q =
@> value of 0.0485 which is so small, that the resulting X> = No? = 8.8774 it is
not enough to reject the independence hypothesis at 99% confidence level (critical
chi-squared value is 9.210 at 2 degrees of freedom), yet quite enough at the 95%
confidence level (critical value 5.991). Once again we see that the global indepen-
dence testing turns a blind eye to the local dependencies clearly visible when using
the Quetelet index values.

4.4 Aspirin and Heart Attacks

Table 11 is a contingency table from Agresti (2019, p. 30), on the relation between
the usage of aspirin and Myocardial infarction in a medical survey.
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Table 11 Cross-classification of Aspirin/Placebo use and having or not Myocardial infarction (on
the left) and its Quetelet and relative Quetelet values on the right

Aspirin use | Myocardial infarction
Yes No Total Yes No Yes No
Counts Quetelet index Relative Quetelet
Placebo 189 10,845 | 11,034 0.2903 | — 0.0039 0.0025 | —0.0019
Aspirin 104 10,933 11,037 | —0.2902 0.0039 | —0.0014 0.0019
Total 293 21,778 22,071 0.0011 0.0000

In spite of a rather small value of ¢?> = 0.0011 here, the chi-squared is X? =
25.0139 which, at 1 degree of freedom, leads to the rejection of the independence
hypothesis at more than 99.9% confidence level (the critical value is 10.828). To
follow a conventional advice, one should take a look at the odds-ratio here; see
Bland (2020). The odds-ratio is 1.83 meaning that the estimated odds of Myocardial
infarction are 83% higher for the Placebo group than for the aspirin group (Agresti
2019). The odds-ratio counterposes the two groups, whereas the Quetelet index
compares any group rates with the grand mean. One can see that use of the Placebo
increases the risk of the illness by 29.03% in comparison to the average risk.

5 Conclusion

In contrast to conventional wisdom that Pearson’s chi-squared statistic is a criterion of
statistical independence, rather than a measure of association, this paper demonstrates
that the Pearson’s chi-squared indeed is a measure of association between nominal
or ordinal features if the scaling N factor is removed. Its normalised version, the
phi-squared, is the average change of the probability of a category of a feature when
a category of the other feature becomes known. Associations between individual
categories are captured with indexes introduced by the celebrated Belgian statistician
Adolphe Quetelet quite early, not later than 1832. Even at smaller values of the phi-
squared for the total association, contributions of individual category pairs can be
significant.
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Contrasts for Neyman’s Modified )
Chi-Square Statistic in One-Way ek
Contingency Tables

Yoshio Takane and Sébastien Loisel

1 Introduction

This and its companion paper (Loisel and Takane 2022) were initially conceived as a
paper dealing with “A theory of contrasts for Pearson’s chi-square statistic” for mul-
tiple comparisons in the analyses of contingency tables (Lancaster 1949; Loisel and
Takane 2016; Lombardo et al. 2020; Takane and Jung 2009). While we were working
on this topic, we gradually came to realise that Pearson’s statistic was not ideal for
use in multiple comparisons, because in this statistic, mean and variance-covariance
structures assumed on observed frequencies (proportions) are closely connected to
each other. This means that if parts of mean structure are rejected, the corresponding
parts of variance-covariance structure are also rejected. To illustrate, let there be C
response categories, and let p. denote the C-component vector of their true proba-
bilities. Let pc denote the observed counterpart of pc. Define D¢ = diag(pc), where
the diag operator turns a vector into a diagonal matrix. Then, Pearson’s statistic can
be stated as:

XFo = n(Bc — Pc)'De! (Be — o), (1)

where n indicates the total sample size (the number of independently replicated
observations) to calculate pc. This statistic is known to follow an asymptotic chi-
square distribution with C — 1 df (degrees of freedom) when the prescribed pc is
correct. Note that nDE1 is a g-inverse (generalised inverse) of the variance-covariance
matrix of pc, denoted by X /n, where:

Y¢ =D¢ —pepe. 2)
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Notice that X ¢ is completely determined by p¢. This means that if hypotheses about
Pc are rejected, the corresponding parts of X are also rejected. As a consequence,
any subsequent tests that assume X ¢ is correct become invalidated. We need a statistic
in which mean structure and variance-covariance structure can be specified indepen-
dently. A statistic that satisfies this requirement and that immediately comes to our
mind is Neyman’s modified chi-square statistic (Neyman 1949). In this paper, we
develop a theory of contrasts for Neyman’s statistic to be used for multiple compar-
isons in one-way tables. We refer to Loisel and Takane (2022) for a similar theory
in two-way and higher-order contingency tables.

The plan of this paper is as follows. In the following section (Sect.2), we intro-
duce Neyman’s modified chi-square statistic, and show how the variance-covariance
structure assumed of Pc is free from its mean structure pc. Like Pearson’s statistic,
Neyman’s statistic (Yszal) is a global index of overall discrepancies between observed
and prescribed mean vectors. In Sect. 3, we introduce the notion of contrasts useful
in multiple comparisons. Contrasts capture specific aspects of the overall discrepan-
cies. We also introduce orthogonal contrasts, and how to generate them when a set of
non-orthogonal contrast vectors are given. Orthogonal contrasts partition the overall
discrepancies into non-overlapping components, each of which represents a unique
aspect of the overall discrepancies. In Sect.4, we show the existence of a contrast,
denoted by Viax, Which captures the entire variation in Y3 . The existence of such
a contrast justifies Schéffe’s type of post-hoc tests by Goodman (1964). Section5
deals with a special case in which homogeneous cell probabilities are postulated for
pc- This special case is important because it is deemed to cover a majority of appli-
cations in the analysis of one-way tables. In Sect. 6, we briefly touch on the subject
of statistical issues by presenting results from small Monte-Carlo studies examining
statistical properties of Neyman’s statistic. Section7 concludes the main topic of
the paper. Throughout this paper, a numerical example is provided to illustrate the
computations involved. An additional section, Sect. 8, briefly discusses Nishisato’s
influences on our work in the past.

2 Neyman’s Modified Chi-Square Statistic

Consider a one-way table of observed cell probabilities. It could also be a one-
way marginal table derived from a higher-order contingency table or a slice of a
conditional probability table at a particular level of a conditioning variable. Neyman’s
modified chi-square statistic is stated as:

Y"lgotal = I’l(ﬁc - pC)/ﬁEI (ﬁC - pC)a (3)
Wherg ﬁc = diag(pc) is the observed counterpart to D¢. Here it is tacitly assumed

that D¢ is nonsingular. That is, there are no empty cells in the table. This statistic
is known to follow asymptotically the same distribution as Pearson’s statistic. The
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difference is that in Pearson’s statistic, Dgl is used as the weight matrix, while in
Neyman’s statistic, its sample estimate, ﬁgl is used. An important point is that DE1
is completely determined by p¢, while ﬁgl is not, although the latter is expected
to approach the former as the sample increases indefinitely (]A)E1 is a consistent
estimate of its population counterpart, Dgl). Note that nﬁgl is a g-inverse of the
variance-covariance matrix of p¢, namely e /n, where:

2c =Dc - Pcbe “)
(Compare (4) with (2)). Provided that f)gl exists, it can be easily verified that (3) is

invariant over the choice of a g-inverse of e /n with nﬁgl being just a special case.

Note 1. While we have never seen a formal proof of this invariance in Neyman’s
statistic, Puntanen et al. (2011, p. 120) shows a similar invariance in Pearson’s statis-
tic. The proof for Neyman'’s statistic should not be difficult, following a similar line
of proof for Pearson’s statistic by Puntanen et al. (2011).

For later use, it is convenient to rewrite (3) as:

Y"lgotal =n(a—1), (5)

where .
a=p-D;:'pc. (6)
This follows trivially from (3) by simply expanding its terms.

An illustrative example: Assume that the following frequency table is observed:
F = (4050 10)" with C =3 and n = 100. The corresponding table of observed

proportions is given by pc = (0.4 0.5 0.1 )/. It is postulated that the true proba-

bilities of the three cells in the table are pc = (0.5 0.2 0.3 )/. The value of Y7,
is found to be 60.5000, and a = 1.6050. This data set will be used in the following
discussion to exemplify various aspects of multiple comparisons in one-way tables.

3 Contrasts

Let v be a C-component nonzero vector such that:
v € Ker(p,) @)

where Ker(p.) indicates the null space of p,.. That is, the space spanned by vectors
x such that p-x = 0. A linear function of p¢ of the form:

¢(v) =V'pe (8)



76 Y. Takane and S. Loisel

is called a population contrast associated with the contrast (weight) vector v. An
analogous function:

(V) = Ve 9)

with pc in (8) replaced by its observed counterpart pc is called a sample contrast.
The size of the effect due to a contrast is measured by:

Yj =n(VPc)?/VEcv. (10)

Obviously, the size of the effect of a contrast is invariant over the transformation of
v of the form dv for any nonzero scalar d.

Note 2: We typically require (7) on v. This, however, is not an absolute necessity. For
example, we may wish to test p; = 0.5. For that, we define w = (1 0 0), and test
the hypothesis that w'pc = 0.5. Obviously, this w does not satisfy (7), as indicated
by the fact that w'pc # 0. This w is still admissible if its effect size is measured by:

Y3 = n(W (Bc — pc)* /W Ecw, (11)

which generalises (10). Is it then just a matter of convenience to require (7)? No,
because the word “contrast” implies comparing two quantities. How do we compare?
By taking a difference between the two and checking if the difference is significantly
different from zero. The difference of zero is typically postulated as the null hypoth-
esis to be tested. Also, note that the above w can always be turned into an equivalent
v that satisfies (7) by the following transformation:

v=(~c—1cpp)w = (Ic — 1c(A:Dcle) '1Dc)w. (12)

If we apply this transformation to the above w, we obtain v « (1 -1 -1 )/, and
Y} = Y4 The hypothesis to be tested is also turned into v'pc = 0, which is
equivalent to (7). It may sound a bit surprising at a first glance to find that p; = 0.5
and p; — p» — p3 = O represent the same hypotheses, but this makes perfect sense
because if p; = 0.5, p, + p3 = 0.5, so that p; — p — p3 = 0. That Yé(w) = Y;(v)
can be easily verified.

A pair of contrasts are said to be )Alc—orthogonal (or simply orthogonal) if and
only if V;-f;CV ; =0, where v; and v; (i # j) are two contrast vectors. The effect
sizes of the two orthogonal contrasts evaluated separately by (10) add up to the size
of the joint effects of the two contrasts obtained by:

Y(Z(V) = npV(V'EcV)'Vie, (13)

where V = [v;, v;].

A setof K contrasts are said to be orthogonal if every pair of contrasts in the set are
mutually orthogonal. When the contrasts are orthogonal, the size of their joint effects
can be obtained by adding the effect sizes of the contrasts calculated separately. The
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size of the joint effects of more than one contrasts can generally (whether they are

orthogonal or not) be calculated by (13), where V is redefined as V = [vy, ..., vg].
fK=C—1Yy =Yiu
Let U=[uy,...,ux] (K < C — 1) be a matrix of non-orthogonal but linearly

independent vectors. These vectors can be successively orthogonalised by the fol-
lowing procedure. We assume that U already satisfies the condition (7). If not, we
simply apply (12) to U to satisfy the condition.

Step 1. Set vy = u; and set V = v;. . .
Step2. Fork=2,...,K,setvy, = (Ic — V(V'XcV) 'V X )uy, and append V
by vg.

In the end V contains a set of orthogonalised contrast vectors. Obviously, the above
sequential process will produce different results if the columns of U are arranged
differently. In general, v, indicates the effect of u; eliminating all previous effects,
u; through u;_;, and ignoring all subsequent effects, u; through ug.

An example continued: Consider two contrasts defined by v; = (1 —1 —1)" and

vy = ( 03 —2)/. The first one is the same as the one discussed in Note 2 above. The
second one concerns the ratio of p, to p3 is 2/3,i.e. p»/p3; = 2/3, which turns into
3p> =2ps3 or 3p, —2p3 = 0. We find that Y(g(v]) = 4.1667. We also find ng(vz) =
52.6480. These two Y2 values do not add up to Y2, = 60.5000 because the two
contrasts are not orthogonal. If v, is orthogonalised with respect to v, using the proce-
dure given above, v, eliminating vy, is given by v, |v| (0.4333 0.7667 —1.2333 )/,
and its Y2 value by Yq%(levl) = 56.3333, so that Y(gm) + Y;(Vzh’l) = 60.5000 = Y%Ota,,
as expected. If, on the other hand, v, is orthogonalised with respect to v,, v,
eliminating v, is given by v;|v, (4.0000 —0.1121 6.5919)/ with the Y? value
of Y3y, = 7.8521, so that Y3\ + Y}, |, = 60.5000 = Y, as expected. So
here we have two sets of two mutually orthogonal contrast vectors, [vy, v»|v;] and

[Vilva, v2].

4 The Contrast That Captures the Whole Variations
. 2
n YTotal

In Loisel and Takane (2022), it was shown that there exists a contrast that captures

the entire interaction effects in two-way contingency tables. An analogous contrast

that captures the entire between-cell effects in one-way tables also exists, and can be

defined in a similar manner, namely:

Viax = S(S'Z8)™'S'Pe, (14)

where S is a matrix of linearly independent bases vectors spanning Ker(p;.), and e
is as defined in (4). We want to show that:
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2 _ / A 2
Y (e = WVmaxPC = Yoqar- (15)

The proof of (15) is much more difficult than the analogous proof in Loisel and
Takane (2022), since: .
Sp(Z¢) O Sp(S), (16)

(where D indicates the space on the lefthand side of O includes the space on the
righthand side) does not necessarily hold (unless pc € Sp(1¢)), and consequently
Khatri’s (1966) extended theorem:

~ e A+ a4 A+ 1, at
SSZcS) 'S =20 — X pc(PZepe) P2, (17)

ot . . a .
where X - is the Moore-Penrose (MP) inverse of X ¢, does not necessarily hold. As
aresult, we need to take a somewhat different route to prove (15).

Using (4), we can rewrite nv,,_ Pc as:

¢ = npeSS'DeS — S'PcpS)~'S'Pe
= np.S[(SDcS)™ — (S'DeS) 'SPl
x (1 = peS(SDcS)™'S'Pe) PSS DcS) 18 Pe
=nb+b*/(1 —b)) =nb/(1 —b), (18)

max p

where . ,
b = pS(S'DcS)'S'Pe = v pe, (19)

and v* = S(S'DcS)~'S)~'S'pc. The second equality in (18) holds; see, for example,

Rao (1973, p. 33, Complements and Problems 2.8). Using Helmert-Khatri’s original
lemma (Khatri 1966; Takane 2016), we can rewrite (19) as:

b=p.MD: —D:'pcp Dz'pe) 'pDHpe = 1 — 1/a, (20)

where a is as given in (6). Note that whereas (17) does not necessarily hold, a more
restricted version (which we call Helmert-Khatri’s original lemma):

S(SDcS)™'S' =D — D' pe(pD:'pe) ' peDE! 1)

holds. Compare (21) and (17). While ﬁc is assumed nonsingular, ic is bound to be
singular. Putting the expression of b given in (20) into (18), we obtain:

. (a—1)/a
Y3 ) = MViaxPe = " @=Dja n(a—1) = Yo, (22)
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as anticipated. This implies that the asymptotic distribution of Y qf is the same as

(Vmax)
that of Y2, if the hypothesised mean structure pc is correct. It in turn implies that no
matter how many comparisons are made, the joint « level, the probability of making
a Type 1 error in at least one of the tests performed, never exceeds a prescribed o
level if each test is performed with the same critical value as in the test of Y2,
i.e. the critical value of chi-square with C — 1 df and a prescribed « level. This is
because if nv, pc is smaller than this critical value, no other contrasts can exceed
the critical value (Maxwell et al. 2018). It may be noted in passing that vp,x = av*,

sothat Y;, | =Yj ., where the latter is calculated by n(v*Pe)?/vF T ev*,

An example continued: For the example data set we are using, Vm,x is found to

be Vinax = (0.3550 1.2050 —1.3950)/, and Y;(Vmax) = 60.5000 = YTzotal, as expected.

For every hypothesised pairwise ratio, v3 = (2 =5 0)’, v4 = (30 —=5)", and vs =
(O 3 —2)/ (this is the same as the v, in the previous numerical illustration), we
have Y(gm) = 25.7806, Yq%M) = 8.7344, and Y;WS) = 52.6480. These values are to
be compared with the critical value of chi-square with 2 df (the same df as in the test
of Y2 .) and a prescribed o level. With & = 0.05 the critical value is found to be
5.9915, and with @ = 0.01 it is 9.2103. Compare these critical values with 3.8415
and 6.6349, respectively, for planned comparisons. The differences are not so large in
this example, because C = 3 is rather small. (Note that ¥?’s due to pairwise ratios do
not add up to Y2, because the corresponding contrast vectors cannot be orthogonal
to each other).

5 The Special Case in Which po = 1¢/C

We now hypothesise equal cell probabilities for p¢, i.e.:

pc =1¢/C. (23)

This is a special case of the more general case treated above, but it may be more

predominant in practical applications. One prominent difference this assumption

makes is that now(16) holds, so that (17) holds, and so:

SSES)IS =3, - 110 1LE] (24)

(Khatri 1966); this is just (17) with p¢ replaced by 1¢/C. Since ZAJJCFIC = 0, it follows
that: . -

Y3 ey = MDSES EcS) ™' Spe = npeE o pe (25)

. ot
Since X can be expressed as:

= QcﬁE]Qc, (26)
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(Tanabe and Sagae, 1992), where Q¢ = Ic — 1¢1(./C, we obtain:
, ot ;A
npEepe = n(1D'1c/C* — 1) =n(a* — 1) = Y . 27)

as expected. Here, a* = 1’Cﬁgllc /C? is a special form of a defined in (6) with
pc =1¢/C.

An example continued: With the same data set as before, but with the new hypothesis
of pe=(1/31/31/3), we obtain Y2, =61.1111, and V=
(0.7778 0.9444 —1 .7222),. The value of Yq%(vmz.x) is 61.1111, as expected. We test
all possible pairwise differences among three cells, 1 versus 2 (with the associ-

ated contrast vector of vg = (1 -1 0)/), 1 versus 3 (with the contrast vector of

V7 = ( 10-1 ),), and 2 versus 3 (with the contrast vector of vg = (O 1 -1 ),). The
values of Y2 for the three contrasts are, respectively, 1.1236, 21.9572, and 36.3636.
Again, these values do not add up to Y2, because the corresponding contrast vectors
are not mutually orthogonal in this case.

6 Some Statistical Concerns

So far, our discussion has mainly focused on algebraic properties of contrasts. In
this section, we briefly discuss some statistical issues concerning Neyman'’s statistic,
namely the problem of sample size needed for Neyman’s statistic to achieve its
asymptotic distributional properties. We remind the reader that all the tests discussed
in this paper are based on a large sample theory, as we assumed throughout the
analyses of the example data set. But was this really justifiable? Recall that the
example data set has n = 100. The first question we ask is if it is considered large
enough to rely on the asymptotic theory.

6.1 A Monte-Carlo Study with n = 100

A small-scale numerical experiment was conducted to address the above issue. One
thousand replicated data sets were generated with n = 100 according to a set of
prescribed cell probabilities, pc = (0.5 0.2 0.3)’ (the same as the example data

2 2 2 Z 2 2
set). For each data set, Y3 ., Y, ) and Y Bvalv) = Yia — Y s(v) Were calculated,

where v| = (1 -1 —1 )/, and v, = (O 3 —2)/. (These contrasts vectors were also
the same as in the example data set). Note that v; is not orthogonal to v; in Neyman’s
statistic, while it is so in Pearson’s statistic. (The symbol v,|v; indicates the effect
of v, eliminating the effect of v;). The quantile values of these quantities were
plotted against the theoretical chi-square quantile values to obtain Q-Q plots, which
are presented in the first column of Fig. 1. For comparisons, analogous X2 values
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Fig. 1 Q-Q plots of Neyman’s modified chi-square statistic (the first column) and Pearson’s chi-
square statistic (the second column) for n = 100 and with theoretical chi-square quantiles on the

x-axis, and observed quantiles on the y-axis. a Y2 ., b X3 . ¢ qu(w)’ d Xi(w) e Y(g(vz‘vl), and

f Xé(vz), where v; and v, are given in the main text. Of two vertical lines in each plot, the left
one indicates the 95% theoretical and the right one the 99% theoretical quantiles used as critical
values in planned comparisons. With n = 100, C = 3, and no cell probabilities radically close to 0,
observed and theoretical distributions show a fairly close match, and little differences are observed
between the two statistics

were also calculated, and their Q-Q plots are displayed in the second column. Q-
Q plots visually indicate how good an agreement there is between observed and
theoretical distributions. In Fig. 1, agreements are good in all cases. This means that
the asymptotic theory holds reasonably well for the example data set.

6.2 A Monte-Carlo Study with n = 50

Our next question is how much we can reduce the sample size without compromising
the asymptotic theory. Another numerical experiment similar to the one above was
conducted with the sample size cut down to one half of the original size (i.e. n = 50).
Results are presented in Fig. 2. We find that agreements are still good for X?’s, while
they are not as good for Y2, particularly for quantile values beyond 95%. This means
that we can still use the asymptotic theory for Neyman’s statistic with a sample size
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Fig.2 Q-Q plots of the two statistics for n = 50, Neyman’s modified chi-square in the first column,
and Pearson’s chi-square statistic in the second column. The basic construction of Fig. 2 is identical
to that of Fig. 1. With n = 50, the asymptotic chi-square theory barely holds up to 95% quantiles
for Neyman’s statistic, while it upholds relatively well all the way for Pearson’s statistic

of n = 50, if the test is performed at the significance level of 0.05, but not at the level
of 0.01. It is understandable that Neyman’s statistic needs a larger sample size to
achieve its asymptotic properties than does Pearson’s statistic, since the former uses
e /n as an estimator of the variance-covariance matrix of pc/n, whereas the latter
uses its true population value, i.e. X ¢ itself. But exactly how much lager sample is
necessary is difficult to determine from this small study. More systematic studies are
necessary to obtain more generalisable results.

What can we do if the asymptotic theory fails? We may ignore the asymptotic
theory altogether, and we may focus on empirical distributions only, which are derived
as intermediary results to construct the Q-Q plots. We can directly evaluate how rare
the observed value of Y? is against its empirical distribution. If it is smaller than a
prescribed « level, the null hypothesis is rejected. There have been vigorous attempts
to minimise the number of evaluations of key statistics in simulated data (Hope 1968;
Langeheine et al. 1996; Feng and McCulloch 1996) rather than deriving an entire
range of empirical distributions.
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When the sample size is so small that the minimum expected cell frequency is less
than 5, it gets increasingly more difficult to obtain a reliable empirical distribution
due to increased numbers of simulated data sets with zero frequency cells. Read
and Cressie (1980, p. 75) proposed a correction formula for Y2 for small samples.
This formula is convenient because it can be used without deriving an empirical
distribution by a simulation study.

7 Concluding Remarks

This paper presented a theory of contrasts for Neyman’s (1949) modified chi-square
statistic for one-way tables. This complements an earlier paper by the same authors
(Loisel and Takane 2022) on a similar theory for the tests of (part) interaction effects
in two-way and higher-order contingency tables.

The method proposed in this paper analyses the departure from hypothesised mean
structures by postulating linear models on observed proportions. A comment is in
order on what will happen if nonlinear transformations are applied to the observed
proportions. In recent literature on correspondence analysis (CA), considerable atten-
tion has been paid to applying nonlinear transformations to the observed proportions,
e.g. the log transformation (Greenacre 1984), and power transformations (Beh and
Lombardo 2023; Beh et al. 2018; Greenacre 2010). A simple solution to this problem
is already available due to Grizzle et al. (1969), which only involves replacing e

at(pc) lpe— pc] is

the matrix of the first derivatives of the transformations t(p¢) with respect to their
arguments evaluated at p C For example, if t is the element-wise logarithmic trans-
formations of Pc,. J = Dc , and if it is the element-wise square-root transformations

(n times the covariance matrix of Pc) in (4) by J ) cJ, where J = [

of pe,J = (1/ 2)DC 2 This asymptotic covariance matrix of t(p¢) (multiplied by n)
can be justified by the delta method; see, for example, Rao (1973, pp. 385-391). Some
preliminary analysis on the numerical example used earlier indicates that Grizzle et
al.’s method works very well in the present context.

8 About Nishi and His Work

In what follows, “T” refers to Yoshio Takane. Nishi is exactly ten years older than
I. So he was already a full-fledged psychometrician when I started my career. Since
then, I learned a lot from him. Indeed, I wrote book reviews (Takane 1982 1994)
on two of his monographs on dual scaling (Nishisato 1980, 1994). This means that
I read at least two of his books very closely. Here, dual scaling means simple and
multiple correspondence analysis (Greenacre 1984) as well as other variants of scal-
ing methods for ranking and pair comparison data. Although Nishi’s influences on
my subsequent work are many and profound, I may point out the following three,
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optimal scaling, analysis of sorting data, and incorporations of external information,
as particularly important.

When I arrived at University of North Carolina (UNC) at Chapel Hill in 1973 as a
new graduate student, my first duty as aresearch assistant was to “nonmetrise” various
linear multivariate analysis methods, such as ANOVA, regression analysis, principal
component analysis (PCA). Incorporating optimal monotonic transformations into
the traditional multivariate analysis techniques fitted very nicely to the idea of dual
scaling, that of assigning numbers to the subjects according to their patterns of
responses to item categories. This basic idea has served as a landmark for many
important developments in scaling that followed in the past forty years (Takane 2005).

In 1980, I published a paper on a method of analysis of sorting data (Takane 1980).
In sorting data, a group of subjects are asked to sort a set of stimuli into several groups
according to their similarity. The method finds an optimal representation of stimulus
points as well as the centroids of sorting clusters in a joint multidimensional space.
This method can be regarded as my first and concrete contribution to the area of dual
scaling. It has turned out that the method is essentially equivalent to dual scaling of
multiple-choice data arranged in such a way that the rows correspond with stimuli,
and the columns with sorting clusters elicited by the subjects (Nishisato 1994).

The third point concerns how to incorporate external information in dual scaling.
Nishisato (1980) proposed two alternative methods. One simply takes the product
of the main data matrix and the matrices of external information regarding the rows
and/or columns of the data matrix. The product is then subjected to the singular value
decomposition (SVD) for further analysis. The second method, on the other hand,
first projects the data matrix onto the spaces spanned by the matrices of external
information, which is then subjected to SVD. Nishisato seemed to favour the first
method on the ground that the second method involves the SVD of a larger matrix.
Takane and his collaborators (Takane and Shibayama 1991; Takane and Hunter 2001;
Takane et al. 1991; see also Takane 1994) argued, on the contrary, that the second
method is superior on the ground that it is scale-invariant, and that there is a simple
way to get around the computational problem pointed out by Nishisato (1980).
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From DUAL3 to dualScale: )
Implementing Nishisato’s Dual Scaling L

Jose G. Clavel and Roberto de la Banda

1 Introduction

Nishisato (1980) presented dual scaling as a technique for finding measurements
through their regression on data. Dual scaling is a versatile technique that handles
not only multiple-choice data but also other types of data formats for categorical
data (e.g. contingency tables, rank-order data, sorting data, paired comparison data
and successive categories data), all of which are used to explore the hidden structure
of the association between the categorical variables. Mathematically, dual scaling is
equivalent to such quantification methods as optimal scaling, Hayashi’s quantifica-
tion theory, correspondence analysis (CA) and homogeneity analysis. For a complete
historical overview of these quantification methods see Nishisato (2007) while Beh
and Lombardo (2014) gave a detailed view of scaling specifically related to CA.

To cover a variety of categorical data, Nishisato and Nishisato (1994) provided
a software package called DUAL3 in Basic for (1) the total-space quantification of
multiple-choice data, sorting data, paired comparison data, rank-order data and suc-
cessive categories data and (2) subspace quantification, also referred to as forced
classification. Our proposal is launched in order to ‘power up’ their DUAL3 into
a completely new programming language, i.e. (R R Core Team 2013), to meet the
demands of current practises of data analysis. This present paper provides a descrip-
tion of the this new dual scaling package.

The package dual Scal e (Clavel, Nishisato and Pita 2014) examines the kind
of incidence data that was also analysed by other functions such as

e MCA() in the Fact oM neR package (Husson, Josse, Le and Mazet 2014),
e nj ca() in the ca package (Nenadic and Greenacre 2007),

e nta() inthe MASS package (Venables and Ripley 2002),

e dudi . acm() in the ade4 package (Dray and Dufour 2007),
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e CA3vari ant s package which performs a whole range of correspondence anal-
ysis and multi-way components analysis techniques for nominal/ordinal contin-
gency tables (Lombardo and Beh 2016; Lombardo, van de Velden and Beh 2023),
and

e homal s() from the package of the same name (de Leeuw and Mair 2009).

Our package is easy to use and powerful enough to handle a large data set. It is
therefore particularly attractive and useful for those students, teachers and researchers
who are involved in social, political, health, medical and educational studies. It
can also be used to examine general opinion polls and marketing research where
questionnaires are typically used to collect data and data sets are generally large. As
we know, an ingredient for a popular programme is that it should be easy to follow
with a clear rationale. This is exactly what the current paper aims to provide.

In Sect. 2, the R functions used to perform a dual scaling of a contingency table
will be introduced. In Sect. 3, the functions used for multiple-choice data are pre-
sented. Special attention is given to the function dSFC() which is used to per-
form forced classification and its use is demonstrated using several examples, that
will be presented with several examples. Following Nishisato (1996), the R package
dual Scal e creates ds objects for the analysis of the following types of categorical
data:

e Incidence data, where the elements are either the presence or absence of an
attribute, and a chi-squared metric is used to reflect distance relationships. It
includes:

— contingency/frequency data
— multiple-choice data.

e Dominance data: formed from ordinal measurements. Here the scaling is to find
a multidimensional configuration of row variables and column variables such that
the information in the data is best approximated in a low-dimensional space. This
type of data includes:

— paired comparison data
— rank-order data.

Due to space constraints, we will present here only the functions related with inci-
dence data analysis: ds_cf () and ds_nt().

2 Dual Scaling of Contingency Tables: ds_cf ()

Contingency or frequency tables are the most straightforward type of data to handle
with dual scaling. In summary, given a table with categorical information contained
in its rows and columns, dual scaling will determine weights for the rows y; and
weights for the columns x; in such a way that the correlation between the rows and
the columns is maximised (Nishisato 1994).
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Included in our R package is the object name cur ri cul a that Nishisato and
Nishisato (1994) used in their package. The data we analyse is from Hollingshead
(1949) and examines how the youth of a small Midwestern community called Elm-
town from different social classes would enrol in different curricula. There are 390
students classified into four social classes and three curricula: college preparation,
general and commercial. The following gives the R object containing this data:

> curricula
s.classl s.class2 s.class3 s.class4

col | egPrep 23 40 16 2

gener al 11 75 107 14

commer ci al 1 31 60 10

Let f;; be the frequency of responses inrow i (fori =1, 2, ..., I) and column
Jj(forj=1,2,..., J)of an x J contingency table. Let f.; be the sum of the

responses of row i, f.; be the sum of the responses of column j and f. the total
number of responses in the table ( f.. = 390 respondents in our example). The trivial
solution coincides with the expected value of each frequency when the row and
column variables are independent—i.e. there is statistical independence between
curricula and social class. In this case, the expected values are:

> ds_cf (curricul a) $appr o0

Di stribution of Order 0 Approxination
Vi V2 V3 V4

1 7.2692 30.3231 38.0077 5.4

2 18.5769 77.4923 97.1308 13.8

3 9.1538 38.1846 47.8615 6.8

Dual scaling analyses the portion of the data which is free from the effect of the
trivial solution, fi}f.This isreflected in whatiscalled Di stri buti on of order
0 Residual Matrix withelements f;; — £, where:

Jio X [
—

For the data in cur ri cul a these values can be found using the command:

fig— 1= fij —

> ds_cf (curricul a) $resi dual 0

Di stribution of Order 0 Residual Matrix
V1 V2 V3 V4

1 15.7308 9.6769 -22.0077 -3.4

-7.5769 -2.4923 9.8692 0.2

3 -8.1538 -7.1846 12.1385 3.2

N
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Next, we extract the most dominant pattern of the association. The first solution
set, including y;;, x;; and p; (a measure of association), minimises the sum-of-
squares discrepancies reflected on the above Or der 0 Resi dual Matri x or,
in other words, the first solution is the one that maximally explains the variationin f7.
Assuming that the first solution (y; 15 X1, ,01) does not explain all of the association
captured in the f; elements, dual scaling will analyse the unexplained portion of
association by finding the second most dominant pattern, and continue until all of the
association will be accounted for. In our example, only two dimensions are needed
to explain the data:

> ds_cf (curricul a) $out

Conponent Ei genval ue Si ngVal ue Delta CumbDelta
1 0.1765 0. 4202 99.2289 99.2289
2 0. 0014 0.0370 0.7711 100. 000

where:

e Ei genval ue is the squared correlation ratio p} and indicates the proportion of
information one can gain from the rows given our knowledge of the data in the
columns, and vice versa;herek =1, 2, ..., K,where K = min (I, J) — 1. The
sum of the squared correlation ratios is the total of variance contained in the data;

e Si ngVal ue isthe positive square root of the eigenvalue, also call p;, and indicates
the amount of linear relationship between the responses weighted by the row
weights y;; and by the column weights x j;;

e Del t adenotes the §; values and is the percentage of the total association explained
by solution k. It also reflects its relative importance in the full set of solutions.

Following the terminology of Nishisato (1980), both normed and projected weight
vectors are provided. The normed weights y; (and x;) are scaled in such a way that
the sum-of-squares of the set of row weights by y; (and column weights x ;) is equal
to f... For example, the normed weights for the columns (the four social class in our
example) for solutions one and two is:

> ds_cf (curricul a) $nor m opt
V1 V2

1-2.6785 1.1522

2 -0.4133 -0.7654

3 0.7216 -0.0568

4 0.8474 3.1465

Since the total number of elements in each of the social classes (columns) is
(35, 146, 183, 26), then for the first solution:

4
> Viifir = —2.6785 x 35 — 0.4133 x 146 + -+ + 0.8474 x 26 = 390

j=1
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and the same is obtained for the second solution: }; y;» fj> = 390. The projected
weights are given by pyy;x and prxj; so that the sum-of-squares of the responses
weighted by them is equal to p} f. thus reflecting the importance of that solution.

3 Dual Scaling of Multiple-Choice Data: ds_mc ()

3.1 An Overview of Dual Scaling

Multiple-choice data consist of a table of N rows (subjects) by n columns (items)
of chosen response option numbers. For quantification purposes, the data are trans-
formed into the ‘N subjects’-by-‘total number of response options’ table of response
patterns of 1’s and 0’s, where 1 indicates a choice of that option and O is a non-choice.
We use m ; to indicate the number of response options of item j and m to show the
total number of options of all the items. For our package, we assume that each person
selects only one response option per item. Thus, the response-pattern matrix for item
J is expressed as a N x m; matrix F; such that each of the N rows—for example,
0, 1, 0, ..., O)—contains only one choice, coded as 1, out of the m; options. The
entire data matrix for the N subjects and n items is therefore expressed as an N x m
matrix, which we denote by F so that:

F=[F, F, .., F,]

with

n
m = E mj.
J=1

The task of dual scaling is to determine m option weights as the least-squares regres-
sions on the input data F (Nishisato 1980), so as to optimise mathematically equiv-
alent criteria. For example, the variance of the subjects’ weighted scores being a
maximum, or the average inter-item correlation is maximised. These equivalent cri-
teria lead to a generalised eigen-equation, yielding K orthogonal components. Since
the rank of F is m — n + 1, assuming that N >> m — n + 1 and there exists the so-
called trivial component, dual scaling typically provides K = m — n components.
In other words, dual scaling typically yields m — n sets of option weights.

The function dS_nt carries out dual scaling, using the following steps:

1. Calculate the matrix C = F'D; 'F where D, is the diagonal matrix of row totals
of F (the number of responses from individual subjects, which are equal to n when
no missing responses are involved).

2. Obtain A = D~1/2CD~1/2 — D211D2 Here, f denotes the m x 1 vector of
columns totals of F so that D = d'irag (f) is the diagonal matrix of column totals
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of F, and f; is the sum of the elements of F, which is equal to n N, provided that
no missing responses are involved.

Carry out a singular value decomposition on A. That is, solve (A — ,021) D!/’x =
0 where p? is the maximum eigenvalue and its square root, p, is the singular
value. The singular vector D'/?x is then converted to x, which is referred to as the
normed vector of weights for the columns (response options) of F.

There exist dual relations—see Nishisato (1980)—such that:

oy =D, 'F'x
px =D, 'Fy

where y is the normed score vector for the rows (subjects) of F, py is the vector
of projected scores for subjects, and px is the vector of projected weights for the
options.

From the above computations we obtain m — n set of components: one consisting
of m — n non trivial eigenvalues, singular values, reliability coefficients (Cron-
barch’s «), and delta coefficients § (see Nishisato (2007) for an explanation of
the terms), together with weights for the options, x; and p;x;, and scores for the
subjects, y; and p;y;.

Compute the inter-item correlation matrix, based on the optimal scores, for com-
ponent k, r;;x), and the item-total correlation ;) as expressed by:

TRT
- X; Fj Fx

ity = ,

/X;DJXJ'XTFTFX

where X is the vector of weights for the options of item j on component &, FjT is
the m; x N matrix of response patterns for item j, D; is the diagonal matrix of
the column totals of FjT See Nishisato (1994) for a number of interesting roles
that the item-total correlation can play in data analysis.

(1

3.2 An Application: Singapore 1985

In the R package we are describing here, the function dS_nt is used to carry out
ordinary dual scaling of multiple-choice data. Let us use the Si hgapor ean data
set that is included in the package to explain the output features of this function. This
data set, presented in Nishisato and Nishisato (1994), contains the responses of 23
subjects to a 4-item questionnaire on the view that adults aged 20 years and older
have to Singaporean children. The data were collected at Nishisato’s workshop in
Singapore in 1985. The four items are:
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1. How old are you?
(1) 20-29; (2) 30-39; (3) 40 or over

2. Children today are not as disciplined as when I was a child.
(1) agree; (2) disagree; (3) I cannot tell

3. Children today are not as fortunate as when I was a child.
(1) agree; (2) disagree; (3) I cannot tell

4. Religion should be taught at school.
(1) agree; (2) disagree; (3) indifferent

All four items have 3 options each, so that m = 12. The total number of possible
components ism —n = 12 — 4 = 8. To obtain the m option weights (weights of the
different categories) for each component we can use the R command
ds_nt(si ngapor ean) . The following output is given using the default options,
and other possible outputs are controlled by using the pri nt () for dual Scal e:

> ds_nct(si ngapor ean)
Conponent Ei genval ue Si ngVal ue Delta CunDelta Al pha

1 1 0. 6476 0.8047 32.3780 32.3780 0.8186
2 2 0. 4407 0. 6638 22.0333 54.4113 0.5769
3 3 0.3170 0.5631 15.8520 70.2633 0.2819
4 4 0. 2136 0.4622 10.6806 80.9439 -0.2271
5 5 0.1843 0.4293 9.2134 90.1573 -0.4756
6 6 0. 1157 0.3402 5.7852 95.9425 -1.5476
7 7 0. 0528 0.2297 2.6380 98.5804 -4.9847
8 8 0.0284 0.1685 1.4196 100.0000 -10.4072

The first part of the output contains the 8 eigenvalues, ,o,f, of matrix A, which sum
to:

——n=——-1=2.

n 4

Other outputs include the corresponding singular values pg, Al pha (the Kurder-
Richardson generalised reliability coefficient, or Cronbach’s «), and values of delta
(the percentage of information accounted for by component k, i.e. the percentage of
the eigenvalue divided by the sum of all the eigenvalues). These statistics are obtained
for all components. As Nishisato (1994) discusses, theoretically, the coefficient «
is the ratio of the expected values of two positive quantities, hence it is expected
to be positive. The formula we use is an approximation to this theoretical quantity,
and can become negative. Besides, Nishisato (1994) has shown that « becomes
negative when the corresponding eigenvalue becomes smaller than 1/x. He suggested
that we should consider only those components with non-negative values of « for
interpretation. If this strategy is adopted, the above values of Del t a and CunDel t a
can be redefined for those adopted set of components. For example, since only the
first three eigenvalues of the Singaporean data are greater than 1/n = 1/4 we would
only consider the first three components. The redefined Del t as for the first three
components are then adjusted to 46.09%, 31.35% and 22.56%, respectively, so that
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these three components account for 100% of the total information. The values of
CunDel t as should then also be adjusted accordingly.

Because of the orthogonality of the components, the total number of components
is synonymously referred to as dimensions. Let us define by ’,2: () the information of
item j on component k. Then, the distribution of information over the kK components
is given as follows:

> ds_nt(si ngapor ean) $i nfo
Di stribution of Information Over 8 Conponents

Conp Itenl Itenm2 ItenB Itemd Avge
1 0.8615 0.7022 0.3637 0.6629 0.6476
2 0.7418 0.1904 0.0185 0.8120 0. 4407
3 0.0124 0.4541 0.7370 0.0646 0.3170
4 0.0758 0.1967 0.5174 0.0646 0.2136
5 0.1664 0.2640 0.2644 0.0423 0.1843
6 0. 0062 0.1298 0.0710 0.2558 0.1157
7 0.0709 0.0392 0.0235 0.0774 0.0528
8 0. 0651 0.0237 0.0044 0.0205 0.0284

The last column lists the average item contribution to component k, which turns
out to be equal to the eigenvalue of the component; see Nishisato (1980) for an
explanation of this feature. The statistic r_]?, indicates the extent to which item j is
correlated with component k: the higher the value, the greater the relevance of the
item to that component. In our case, Item 1 contributes the most to component 1
(rlzt(]) = 0.8615), and Item 4 to component 2 (rft(z) = 0.8120). Another interesting
aspect of this statistic is that its column sum is equal to the number of options of
the items minus 1. For the current example, this is 2 for each column; for example,
0.8615 4 0.7418 + - - - 4+ 0.0651 = 2 for the first item. This is the total contribution
of the item.

The next output offers & tables of inter-item correlations for the components, 7 x).
These values indicate the amount of linear relationship (defined by their product-
moment correlation) between two items, of which the options are optimally scaled,
usually through nonlinear transformations. Note that dual scaling determines option
weights so as to maximise the sum-of-squares of all the inter-item correlations. For
the Singapore data, eight correlation matrices are produced but only one of them is
shown below:

> ds_nt(singaporean)$rij[,, 1]

Inter Item Correlation for Conponent 1:
Iteml Iten2 ItenB Itemd

Iteml 1.0000 0.8005 0.3856 0.7033

Iten2 0.8005 1.0000 0.3303 0.4795

ItenB8 0.3856 0.3303 1.0000 0.3983

Itemd 0.7033 0.4795 0.3983 1.0000
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One should keep in mind a very important feature of these correlation coefficients:
since each correlation coefficient is optimised for all option weights, each coefficient
is dependent on what other items are involved in the data set. In other words, the
correlation coefficient between items 1 and 2 of component 1 will change if another
item is discarded or additional items are added to the data set. Nishisato (2007) inves-
tigated this problem, and considered the projection of one item onto the space of the
other item as the basis for assessing the correlation between two items in multidi-
mensional space. To this end, he used his forced classification procedure (Nishisato
1984) and derived his coefficient v; ;. One remarkable aspect of his derivation is
that he went one step further and proved successfully that his coefficient v; ; is, in
spite of its different appearance, identical to Cramér’s coefficient V; ;.. That is:

[,
Vo= —2LL0  —y. )
N A=

where p is the smaller number of options of the two items, j and j’, and x(zj‘ ) is
the Pearson chi-squared statistic calculated from the contingency table consisting of
the options of item j and item j’. For the Singaporean data, we obtain the following
matrix v or, equivalently, V:

1.000 0.579 0.292 0.682
0.579 1.000 0.308 0.394
0.292 0.308 1.000 0.332
0.682 0.394 0.332 1.000

Thus, in multidimensional space, the correlation between Item 1 and Item 4 (v4 =
0.682) is the highest. The result is also available with the command:

> ds_nt(si ngapor ean) $Cr aner

More specific information from ds_nt () can be obtained from names() . The
output of dual Scal e is structured as a list-object. For example, the normed option
weights are obtained by:

> ds_nt(si ngapor ean) $nor m opt

while one can obtain a more general series of output by:

> sunmmar y(ds_nt(si ngaporean))



96 J. G. Clavel and R. de la Banda

3.3 Visualising the Results

The function ds_nt() produces a dual Scal e object, which includes optimal
scores for the subjects and optimal weights for the options. The scores are projected
or normed weights; for an explanation of the distinction of these two ideas; see
Nishisato and Clavel (2003). Lebart, Morineau and Warwick (1984) pointed out
that:

A great deal of caution is needed in interpreting the distance between a variable point and
an individual point because these two points do not belong to the same space.

This leads to a perennial problem of constructing a joint graphical display of both
option weights and subject scores in the same space. In our package, a measure of the
row-column space discrepancy (Nishisato and Clavel 2010) is provided to assist the
user and should be used as a precaution for making a direct interpretation of a sym-
metric graph that is constructed using the projected scores of subjects and projected
weights of options. If the separation angle is large, the data points corresponding
to the rows and columns should not have coordinates on a single continuum of the
component.

Following the approach of Clavel and Nishisato (2012), dual Scal e provide
three kinds of plots that are available through the argument t ype. They are:

e Plots for one type of elements: type = "Sub" for only subjects and
type = "Ite" for only item options. They are the projected subject scores
and the projected option weights.

e Plots for two types of elements called asymmetric plots: t ype = " Asyl" for
joint plots of normed row weights and projected column weights (the default
option)andt ype = " Asy2" forjointplots of projected row weights and normed
column weights. Although these options are logically correct, the projected quan-
tities always have a smaller norm than the other set of quantities, and this differ-
ence in norms would typically make it difficult to make between-set (rows versus
columns) comparison. This might be the main reason why many researchers still
use the symmetric plot in spite of the fact that the symmetric display is an erroneous
representation of two sets of variates. By default, an asymmetric graph (Asy1)
for the first and second component is plotted. For example, the asymmetric plot
of the si ngapor ean data set is created with the following command:

> plot.ds(ds_nt(singaporean))

When choosing other combinations of components we must indicate those compo-
nents. For example:

> plot.ds(ds_nt(singaporean), dim = 2, din2 = 4)

produces a plot that is constructed using the first two components and is shown in
Fig. 1. The symbol A is given to the subjects, labelled with an S. and a number.
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Fig. 1 Asymmetric plot for the Si ngapor ean data set using components 1 and 2

The symbol - is given to the options. They are labelled with a . and two numbers
separated by a colon. The first number indicates the item and the second number is
the option within that item. For example, (. 2: 1 is the label given to the first option
of Item 2. To facilitate the reading of the plot, all the options of the same item are
shown with the same colour. The plots also show the type of graph and the percentage
of the total variance explained by each component.

For Fig. 1, the cumulative § is 54.40%, and it shows that some distinct clusters
can be identified. In the upper right quadrant are located those subjects aged 40 or
over (4. 1: 3) who think that religion should be taught (q. 4: 1). In the upper left
quadrant we find it dominated by those subjects age 20-29 years who are indifferent
about the issue of religion at school and don’t believe that the children today are less
disciplined than before.

3.4 Forced Classification Analysis: ds_ncf ()

Sometimes, we are interested in the analysis of a particular item of the questionnaire,
rather than the entire set of items. Suppose one collects data on a father’s education,
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mother’s education, the student’s enrolment or non-enrolment in kindergarten and
the student’s graduation from high school or drop-out half way. From the policy
makers point of view, the last item (the one referring to drop-out) may be of utmost
interest. If this is the case, our analysis should be focussed on this particular point
with an aim to see how the response to this item is related to the responses to the first
three questions of the questionnaire. This is akin to examining how to scale weights
for the response options of the other items in such a way that the correlation between
the item of interest with each of the remaining items is maximised. This kind of
focused analysis can be carried out by forced classification of dual scaling, and it is
in essence equivalent to discriminant analysis of multiple-choice data.

The function ds_ntf () inthe dual Scal e package provides this analysis. To
define the item of interest (called the criterion item) dominant in the data matrix,
Nishisato (1984) proposed to modify the input response-pattern matrix by multiply-
ing the criterion item, say p, by a large enough constant K, called the forcing agent.
That is, modify F = [F|, F5, ... . F,, ... \F,JtoF=[F, F,, ..., KF,, ...,
F,l], and perform the dual scaling analysis on it. Nishisato (1984) has shown that this
analysis converges to the analysis of the original response-pattern matrix F projected
onto the subspace spanned by the columns of the criterion item, as the value of K
approaches positive infinity. Thus, asymptotically, it is equivalent to the dual scaling
of P,F, where P, =F, (F;F p)_1 F; The asymptotic properties of this process are
captured by the following relations:

lim 2 =1
K—o00 pt
lim p2 =1
K—o0 p

For Item p with m, options, the first (m p— 1) components attain the above
asymptotic results. These components are called the proper components of forced
classification, and item p is referred to as the criterion item. The mathematics of
forced classification is presented in Nishisato (1984), and its applications and further
characteristics are discussed in Nishisato (1986, 1988, 1994) and Nishisato and
Baba (1999). Due to the forcing agent K, the criterion item determines the main
components, meaning that option weights for non-criterion items are determined so
as to maximise their correlations with the criterion item (Nishisato 2007).

The results provided by executing the package are essentially the same as
those obtained with ds_nt () with some new features. Let us examine again the
si ngapor ean data set. Suppose we are interested in whether or not religion should
be taught at school. Then, we should select Item 4 as the criterion and we can carry
out forced classification by using the following command:

> ds_ncf (si ngaporean, crit = 4)

The output of this command is:
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Call: ds_ncf(input = singaporean, crit = 4)

Type of Analysis: ds_ncf

Resul ts:

Dual Scaling---Dual Scaling---Forced multiple-choice data anal ysis
Forced classification of the criterion item (type A)

Conponent Ei genval ue SingVal ue Delta CunDelta
1 0. 3074 0.5544 63. 41 63.41
2 0.1773 0.4211 36.59 100. 00

Since the criterion item has three options—(1) agree, (2) do not agree, (3)
indifferent—the number of proper components is m, — 1 = 3 — 1 = 2. Remember,
too, that the asymptotic aspect of forced classification, where the eigenvalues of the
modified data matrix do not provide statistics proportional to the contributions of the
proper components to forced classification, needs an alternative measure of within
relationships. Nishisato and Baba (1999) derived the following formula to calculate
the exact correlation ratios in the subspace of the criterion variable:

2
2 Ty — |

n—1

3)

i =

The function ds\ _ncf () provides these adjusted correlation ratios for forced clas-
sification. The statistic § for each of the proper components is redefined accordingly.
The vectors of the projected subject scores and projected option weights, associated
with these proper components have special significance to the interpretation of the
forced classification outcomes. From the output this command produces, we will
present only those vectors for components 1 and 2:

> ds_ncf (singaporean, crit = 4)$proj _opt_a

Vi V2
1 -0.5500 0.1214
2 0.0791 -0.3286
3 0.4484 0.3011
4 0.1744 -0.0096
5 -0.4354 0.2688
6 -0.3709 -0.1631
7 0.3841 0.1206
8 0. 0597 -0.0561
9 -0.4096 0.0960
10 0.4964 0.4364
11 0.1594 -0.5112
12 -0.9011 0.1849

> ds_ncf (singaporean, crit = 4)$proj _sub_a
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Vi V2
0.5561 0.3356
-0.1113 -0.3022
. 2552 -0.5623
-0.6601 0.4169

AW N R
o

22 0.2552 -0.5623
23 -0.7590 0.0542

These option weights of non-criterion items are optimal in the sense that they pro-
duce maximally discriminative scores of subjects who chose different options of the
criterion item, and these scores of subjects produce maximally discriminative option
weights for the criterion item.

The remaining output produced using the ds_ntf function is similar to the
output already seen from ds_nt() . The Di stri bution of Information
of the components consists of the squares of the product-moment correlation between
item j and the total scores (in the first n columns) and the average of these statistics
in the last column:

Di stribution of Information Over 8 Conponents:
Itenl Iten? ItenB Itemd Avge

1 0.506 0.227 0.189 1.000 0.481
2 0.419 0.080 0.034 1.000 0.383
3 0.225 0.559 0.662 0.000 0.361
4 0.217 0.769 0.070 0.000 0. 264
5 0.169 0.036 0.652 0.000 0.214
6 0.225 0.210 0.302 0.000 0.184
7 0.151 0.079 0.088 0.000 0.079
8 0.087 0.041 0.004 0.000 0.033

As expected, the criterion item (Item 4) has a perfect squared correlation with
the first two components and a zero correlation with the other components. In other
words, the criterion item is accounted for by the first two proper components and
the remaining components do not contain any information about the criterion item.
Considering that the sum of the two proper eigenvalues is 0.307 + 0.177, and that
Item 4 contributes to the total proper subspace by 2, we can say that about the 25%
of Item 4 (that is (0.484/2) x 100 = 24.2%) can be explained by first, second and
fourth items.

Now, let us look at the inter-item correlation, using the function:

> ds_ncf (singaporean, crit = 4)%rij_a

Inter-l1tem Correl ation for Conponent 1:
(.11 .21 [.3] [.4]

[1,] 1.0000 0.7769 0.3169 0.7115
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[2,] 0.7769 1.0000 0.2607 0.4763
[3,] 0.3169 0.2607 1.0000 0. 4344
[4,] 0.7115 0.4763 0.4344 1.0000

Inter-ltem Correl ation for Conponent 2:
[.1] [.2] (.31 [.4]
[1,]7 1.0000 O0.1288 -0.0578 0.6472
[2,] 0.1288 1.0000 -0.2082 0.2820
[3,] -0.0578 -0.2082 1.0000 0.1831
[4,] 0.6472 0.2820 0.1831 1.0000

In forced classification, the criterion variable (Item 4) is perfectly correlated
with the total score, and the item-total correlation is identical to the item-criterion
correlation. As we can see, the correlation coefficient of the other three items
with the criterion item in Component 1—that is, 0.7115, 0.4763 and 0.4344—are
equal to the square roots of the corresponding values in the Di st ri buti on of
I nf or mat i on table above: 0.7115 = +/0.506, 0.4763 = +/0.277 and 0.4344 =
+/0.189. The magnitude of the correlation is a clear reference for which item will be
better predicted by the criterion item. In our case, Item 1—how old are you?—has
the highest correlations with the first two components (i.e. 0.7115 and 0.6472).

Using the plots already presented in Sect. 3.3, Fig.2 is obtained from the output
of a forced classification analysis where Item 4 is the criterion. See the location of
the items options in this case. The figure shows the plot of the options using their
weight of the proper components as coordinates. As Item 4 is the criterion item,
its options are located in the vertices of the triangle that define the projected space
and all the non-criterion options are projected onto the space of the criterion item.
Option 3 of Item 1 (i.e. q. 1: 3, the age group 40 or over) is close to (. 4: 1 (agree
that religion should be taught). Similarly, . 1: 1isclosetoq. 4: 3 and q. 1: 2 is
closeto q. 4: 2. The points in the middle (i.e. q. 3: 2 and g. 2: 1) do not contribute
greatly to the interpretation of the results.

3.4.1 Eliminating Versus Ignoring the Effects of the Criterion Item

The first two components of our previous example are relevant to the criterion item,
and asymptotically those proper components are dual scaling results obtained from
the data projected onto the subspace of the criterion item. That is, dual scaling is
performed on the matrix P,F. The remaining components can tell us how other
non-criterion items behave in the absence of the influence of the criterion item,
and it corresponds to dual scaling of the complimentary space of the criterion item.
That is, dual scaling is performed on the matrix (I — Pp) F. Since the analysis of
complimentary space is as important as the analysis of the criterion item subspace,
a convincing explanation is in order.
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Fig. 2 Plot for forced classification of si ngapor ean data when item 4 is the criterion

Suppose that health survey data were collected from several municipal hospitals
where many senior patients are involved. Do we not wonder then if the dominance
of senior patients somehow affects the outcome of survey results? One can then
decompose the data into the analysis of the subspace for senior patients and the
analysis of the complimentary space of senior patients. The former reflects how senior
patients data affect the results of the survey, and the latter tells us what happens if we
remove the contributions of senior patients from the analysis. In practise, there are
many cases in which some variables are not taken into consideration for control, and
the current two-way analysis of subspace and complimentary space can be effectively
used to investigate if some uncontrolled variables have any substantial effects on the
outcome of data analysis. To this end, we recommend the following strategy:

1. Suppose that age is the variable of concern. If so, carry out a forced classification
and retain the results from the complimentary space. That is, we perform a dual
scaling on the matrix (I — P, ) F. Let us call this analysis: ‘Eliminating the effect
of the criterion item.’
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2. Remove the age item from the data set, and subject the remainder of data to
ds_nt() . Let us call this analysis as: ‘Ignoring the effect of the criterion item.’

Both analyses yield the same numbers of components. When we compare the
corresponding eigenvalues with the squared item-total correlations, we would expect
that those values associated with ‘ignoring’ are larger than those from ‘eliminating,’
the reason being that the former may capture the hidden influences of the criterion
item on results by not controlling its effects. This is a useful application of forced
classification since it can be used to identify some hidden variables that influence the
data analysis. To show this, let us look at a numerical example. Suppose we analyse
the si ngapor ean data once again but carry out forced classification using the age
(Item 1) as the criterion. That is:

> ds_ncf (si ngaporean, crit = 1)

We are interested in the information distribution pertaining to the non-proper forced
classification components, that is, in rows 3-8 of the following table:

Di stribution of Information Over 8 Conponents:
g.-1 g.2 g.3 g.4 Avge

1 1 0.645 0.157 0.498 0.575
2 1 0.024 0.017 0.428 0.367
3 0 0.583 0.643 0.053 0.320
4 0 0.210 0.659 0.146 0.254
5 0 0.150 0.376 0.404 0.233
6 0 0.144 0.071 0.254 0.117
7 0 0.178 0.038 0.087 0.076
8 0 0.066 0.039 0.129 0.059

By discarding the contributions of the proper components from Table 1, we now
need new mean values of the squared correlation coefficients. That is, we now must
divide the sums of the item-total correlation coefficients by 3, not 4. This revised
table of information distribution should be compared with the corresponding table
obtained from the second data set, that is, the data set without the age item. This can
be easily obtained with the command:

ds_nt(si ngaporean[-1,]) $out
or alternatively, using the function ds_ncf ()
> ds_ncf (si ngaporean, crit = 1)$out_b

In our case, the new data set will consist of three items; Item 2: Children today are
not as disciplined as when I was a child, Item 3: Children today are not as fortunate
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Table 1 Non-proper components of dSFC versus dsMC components ignoring criterion item

dsFCresults dsMCresults

Compon. | q.2 q.3 q4 Average | Compon. |q.2 q.3 q.4 Average
3rd 0.583 0.643 0.053 0.426 Ist 0.598 0.537 0.682 0.605
4th 0.210 0.659 0.146 0.338 2nd 0.779 0.276 0.257 0.437
Sth 0.150 0.376 0.404 0.310 3rd 0.016 0.574 0.601 0.397
6th 0.144 0.071 0.254 0.156 4th 0.309 0.363 0.072 0.248
7th 0.178 0.038 0.087 0.101 Sth 0.128 0.164 0.216 0.169
8th 0.066 0.039 0.129 0.078 6th 0.169 0.086 0.173 0.143

as when I was a child, and Item 4: Religion should be taught at school, each with 3
options. Thus the number of possible components, without the criterion item, is now
(m —n) = (3 x3) — 3 =6. Using the ds_nt() function produces the following
output:

Conponent Ei genval ue SingValue Alpha Delta CumDelta

1 0. 606 0.778 0.674 30.275 30. 275
2 0. 437 0.661 0.357 21.872 52. 147
3 0. 397 0.630 0.240 19.849 71. 996
4 0. 248 0.498 -0.516 12.399 84. 395
5 0.169 0.411 -1.454 8.464 92. 859
6 0.143 0.378 -2.001 7.141 100.000

Let us now present the information distributions from the two analyses, one from
the complimentary space analysis of forced classification (that is, by eliminating
the effects of the criterion item) and the other from dual scaling of the data set
reduced by dropping the criterion item from the data set; see Table 1. Notice that
the eigenvalues, indicated by Avge, from dual scaling are always larger than those
from forced classification because the former values contain the contributions of
the criterion item as a hidden contamination variable, while forced classification
results on the latter were obtained by eliminating the effects of the criterion variable
completely. Remember that the data set fords_nt () does not have the age question,
but that the data set is nonetheless under the influence of the age in a hidden way.

4 Summary

In this paper we have presented some functions of the R package dual Scal e for
dual scaling analysis. This package contains all the features of the former commer-
cially available software (DUAL3) plus various important new features, especially
those related with the forced classification approach; such features include adjusted
eigenvalues, analysis of complementary subspace, match-mismatch tables and more.

The three functions ds_ct (), ds_nt() and ds_ntf () produce a class of
objects named ds that can be easily represented by specifically created plots by the
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programme using the pl ot () method for ds objects. Since this book is a Festschrift
to celebrate Nishisato’s career, the authors have decided to present their results using
Nishisato’s traditional data sets, and notation. The final goal is to include all of
the findings of Nishisato fruitful career in dual Scal e thereby making it easily
available for future generations.
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Confounding, a Nuisance Addressed )

Check for
updates

Helmut Vorkauf

1 Introduction

I got to know Shizuhiko Nishisato in 1996 as the editor of Psychometrika, not as
the editor of the nagging sort that one has to fight to get a paper published but as a
friendly and resourceful helper. It is thus a great pleasure to honour such a friend by
contributing to his Festschrift.

I happen to have a long history of problems with non-orthogonal data designs.
As a teenager, still in school, I worked in an educational research institute and was
assigned the task to calculate an analysis of variance with a mechanical calculating
machine (no computers at that time in the 1950s), following the rules from a book
by Edwards on analysis of variance (sorry, no exact recollection). As I know now,
the rules were for orthogonal designs and my data were non-orthogonal survey data.
When I ran the calculations using Edwards’ rules and arrived at negative sums of
squares for various sources of variation, my boss was ready to fire me for evident
incompetence. I insisted he do some calculations himself, and he also got negative
sums of squares. I was not involved in the discussions thereafter, since I was just a
teenager earning some pocket money. But I kept the job.

In my professional life, problems with non-orthogonality re-surfaced often.

2 Confounding Is Not the Data’s Fault, but of the Analysis
with Aggregation

Recently I encountered data (Table 1) from von Kiigelgen, Gresele and Scholkopf
(2021) containing all confirmed COVID-19 cases in China (up to February 2020)
and Italy (to March 2020).
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Table 1 COVID-19 case fatality rate in China and Italy

Age Italy China Case fatality rate
Alive Died Alive Died Italy China Higher in
0-9 43 0 0 0 0.000 ? ?

10-19 85 0 548 1 0.000 0.002 China
20-29 296 0 3612 7 0.000 0.002 China
30-39 470 0 7582 18 0.000 0.002 China
40-49 890 1 8533 38 0.001 0.004 China
50-59 1450 3 9878 130 0.002 0.013 China
60-69 1434 37 8274 309 0.025 0.036 China
70-79 1671 114 3606 312 0.064 0.080 China
80-89 1330 202 1200 208 0.132 0.148 China
Total 7669 357 43233 1023 0.044 0.023 Italy

Unequal cell sizes led to spurious results, due to our routine practice of aggregat-
ing the data to arrive at column totals to estimate an independent variable’s effect,
ignoring that unequal cell sizes can lead to skewed results.

In these COVID-19 data, the erroneous result demonstrates the well-known Simp-
son paradox, where aggregation reverses the uniform trend of a higher fatality rate
of Chinese patients in each of the age groups into an astonishing higher fatality rate
of Italian patients in the aggregated total (bold-faced in the table).

The reason for this paradoxical result is the confounding variable Age. Chinese
patients being younger than Italian patients, the many older Italian patients with a high
fatality rate determine the column total and thus produce the paradox. In this example
of low dimensionality, it is not difficult to identify Age as the responsible confounder.
In an epidemiological case—control study, however, with maybe 30 potential causes
of an infection it is certainly less easy to single out one of the 30 causes or one of
the 435 pairs of causes as responsible for any confounding effect. The confounder
might even be a triple or a higher n-tuple of causes.

It is clear that the source of the error is the summing-out of factors to arrive at
marginal sums when these sums are erroneously influenced by differently skewed
distributions. This problem did not exist in the early times of analysis of variance
when a planned experimental design was orthogonal with equal cell frequencies.
Confounding could rear its ugly head only when data started to be collected in
surveys where unequal cell sizes are normal.

Alas, the change from orthogonal experimental designs to survey sampling
(almost necessarily non-orthogonal) was not accompanied with a corresponding fun-
damental change of the method of analysis. Programs like BMDP, which I used in
the late 1960s, refined the analysis to arrive at positive sums of squares, but did not
eliminate confounding and its rare extreme outcomes like Simpson’s paradox. Tra-
ditional analyses rely not only on the original individual cell frequencies, but also on
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marginal sums, ignoring Fisher’s (1958) demand to use all of the data, not aggregated
sub-tables:

In inductive reasoning the whole of the data, or the available axioms, or the available obser-
vations, has to be taken into account.

3 An Approach Based on the Data, Not Marginal Sums

Searching for an analysis liberated from confounding effects, one has to look for a
way to avoid the use of aggregation which is replacing original data with marginal
sums. These sums have as their aim the isolation of variables and their effects. Could
there be a way to isolate the effect of one variable on another variable without
replacing the original data with partial sums and thus losing the original data?

A way was found to eliminate the association between two variables without any
summing out, leaving all frequencies intact. This is done by combining the categories
of two variables into one composite variable. Any association of, e.g., Sex = [M, F]
and Department = [1, 2, 3] is eliminated by combining the values of Sex and
Department into the composite variable Sex Dep = [M1, M2, M3, F1, F2, F3].

This simple operation is not new and has certainly found its uses in the past. But
the approach presented here makes novel use of the removal of interdependence
of X; and X ;; we gave it the name uncoupling.

H, the entropy of a categorical distribution with k categories, is at the basis of a
proposed alternative analysis and defined by:

k
H==3 pixInp).
i=1

for p; > 0. When H = 0, there is no variation since all cases are concentrated on a
single category; H reaches the maximum of In (k) for a rectangular distribution over
the k categories. H, a measure of uncertainty, can readily be interpreted as a measure
of variance for categorical variables.

The uncoupled composite variable Sex Dep has less entropy than the cross-
tabulation of Sex and Department; this loss of entropy is due to the association
between Sex and Department. We need a way to express this loss of association
as a component part of the total of the associations between all variables. We could
gain a quantitative partitioning of the total of all correlation into the contribution of
every pair of variables to the total correlation, i.e. an “analysis of entropy”.

This total of all correlation’s between all variables in a data set can be computed
with the coefficient of ferseness ¢ (zeta)' introduced by Preuss and Vorkauf (1997).

' We collaborated for the publication, but the derivation of the total correlation is almost entirely
the work of Lucien Preuss.
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Table 2 Original three-dimensional 9 x 2 x 2 table, regrouped as a two-dimensional 9 x 4 table
by uncoupling Country and Fatality

Age Uncoupled pair of variables
Italy China
Alive Died Alive Died

0-9 43 0 0 0
10-19 85 0 548 1
20-29 296 0 3612 7
30-39 470 0 7582 18
40-49 890 1 8533 38
50-59 1450 3 9878 130
60-69 1434 37 8274 309
70-79 1671 114 3606 312
80-89 1330 202 1200 208

¢ is a coefficient of the closeness of relations between a complete set of M variables,
or a coefficient of total correlation and is defined as:

. Zlﬂi] H(XI|X17 ey Xi717Xl'+17 ey XM)
H(X1, X2, X3,..., Xu)

¢=1 :
and is valid for tables with any number of dimensions; it is normalised to 1, indepen-
dent of the base of the logarithm and independent of the sample size N. Therefore, it
is comparable for tables of different size and dimensionality, a quality that is highly
desirable.

For the analysis of the COVID-19 data in Table I we first compute o for the
three-dimensional total table and then the reduced ¢ for each of the two-dimensional
sub-tables in which a different pair of variables is uncoupled (an uncoupled pair is
indicated by square brackets).

1. [country, fatality] x age which eliminates the correlation of country and
fatality, shown as Table?2,

2. [country,age] x fatality which eliminates the correlation of country and
Age,

3. lage, fatality] x country which eliminates the correlation of age and fatality.

Note that the tables with a pair of variables uncoupled contain the same 9 x 2 x 2
frequencies of the original table, the calculations are based on only these frequencies,
with none of the marginal sums that can lead to erroneous interpretation.

The key difference is the structural interpretation, with the two-dimensional cross-
tabulation of two correlated variables being replaced by the one-dimensional com-
posite variable, thus losing the information of correlation. That is:
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contains the correlation, whereas:

ignores it.

The original three-dimensional Table 1 produces a {ro = 0.025893.

We calculate the ¢ of each of the three two-dimensional sub-tables and subtract
from oty producing:

AL = ITotal — Subtables

which is the contribution to the total correlation of the pair of variables that are
uncoupled.

1. The table uncoupling country and age produces A¢ = 0.017717, aloss of 68%.
We recognise that the dominant effect contained in the data is the overwhelming
difference of the age distribution of the two countries, the cause of the confound-
ing.

2. The table uncoupling fatality and age produces A¢ = 0.007758, aloss of 30%;
fatality increases considerably with age.

3. The table uncoupling country and fatality produces A¢ = 0.000146, a negli-
gible coefficient and a negligible loss of 1%. The disturbing Simpson’s paradox
has vanished as the confounder was given no chance to exert its influence.

4 Byssinosis, an Epidemiological Example

Let us now turn to a more complex data set with six variables by Higgins and Koch
(1977) as shown in Table 3.

The complete 3 x 3 x 2 x 2 x 2 x 2 table is difficult to assess. When one tries
to find the main factors leading to byssinosis, a lung disease caused by exposure to
cotton dust, one has to take into account many interrelationships that exist between the
possibly illness-inducing variables. Higgins and Koch (1977) devised a laborious y 2-
based set of rules designed to find the important factors; they concluded that dustiness
of the workplace is the most important determinant of illness, gender of employee
and smoking following next. From the content of the study, it seems curious that the
length of employment and therefore the length of exposure to dust came in fourth
place only. Could it be that some confounder has suppressed the relation between
length of employment and byssinosis?> The A¢ values summarised in Table 4 should
provide an answer to this question.

2 Higgins and Koch’s division of x2 by degrees of freedom might also have played a role.
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Table 3 Byssinosis by dustiness, employment, smoking, gender and race

Employ | Smoke | Sex Race Dustiness of workplace
Most Medium Least
No Yes p No Yes p No Yes P
<10 Yes M White 37 3 0.0750 | 74 0 0.0000 | 258 2 0.0076
Other | 139 25 0.1420 | 88 0 0.0000 | 242 3 0.0122
F White 5 0 0.0000 | 93 1 0.0106 | 180 3 0.0164
Other 22 2 0.0833 | 145 2 0.0136 | 260 3 0.0114
No M | White 16 0 0.0000 | 35 0 0.0000 | 134 0 0.0000
Other 75 6 0.0741 | 47 1 0.0208 | 122 1 0.0081
F White 4 0 0.0000 | 54 1 0.0182 | 169 2 0.0117
Other 24 1 0.0400 | 142 3 0.0207 | 301 4 0.0131
10-20 | Yes M White 21 8 0.2758 | 50 1 0.0196 | 187 1 0.0053
Other 30 8 0.2105 5 0 0.0000 | 33 0 0.0000
F White 0 0 7 33 1 0.0294 | 94 2 0.0208
Other 0 0 77 4 0 0.0000 3 0 0.0000
No M White 8 2 0.2000 | 16 1 0.0588 | 58 0 0.0000
Other 9 1 0.1000 0 0 7 7 0 0.0000
F White 0 0 77 30 0 0.0000 | 90 1 0.0110
Other 0 0 77 4 0 0.0000 4 0 0.0000
>20 Yes M White 77 31 0.2870 | 141 1 0.0070 | 495 12 0.0237
Other 31 10 0.2439 1 0 0.0000 | 45 0 0.0000
F White 1 0 0.0000 | 91 3 0.0319 | 176 3 0.0167
Other 1 0 0.0000 0 0 7 2 0 0.0000
No M White 47 5 0.0962 | 39 0 0.0000 | 182 3 0.0162
Other 15 3 0.1667 1 0 0.0000 | 23 0 0.0000
F White 2 0 0.0000 | 187 3 0.0158 | 340 2 0.0058
Other 0 0 7 2 0 0.0000 3 0 0.0000

From an epidemiological point of view, it is reassuring that in this analysis the
order of pairs that include the dependent variable byssinosis is dust, length of employ-
ment, smoking, gender and race. This order appears more plausible for a lung disease
than Higgins and Koch’s (1977) order: dust, gender, smoking, length of employment
and race.

But the largest value of A¢ occurs for the uncoupling of race and length of
employment; the much higher turnover of non-white employees is responsible for
almost half of the terseness ¢ = 0.0984 of the whole table.

Table 5 shows this difference of turnover to have the effect that the clear increase
of byssinosis with length of employment (and therefore exposure) seen within race,
especially within other race, is reduced when race is summed out. This confounding
has not affected the A¢, however, they are immune.

Here, the collapsing of the table by summing out race was not yet an error produc-
ing a reversal of trend as in Simpson’s paradox, but it is an error that led Higgins and
Koch to underestimate the effect of length of employment on developing a byssinosis;
the confounding was just not extreme enough to produce a rather rare Simpson’s
paradox.
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Table 4 Byssinosis: terseness when uncoupling pairs of variables

Terseness of the full table ¢ = 0.0984

AL % Loss Pair of uncoupled variables
0.0486 49 Race, length of employment
0.0137 14 Gender, dust

0.0102 10 Gender, smoker

0.0066 7 Race, dust

0.0060 6 Gender, length of employment
0.0057 6 Byssinosis, dust

0.0027 3 Smoking, length of employment
0.0027 3 Dust, length of employment
0.0026 3 Race, gender

0.0009 1 Byssineosis, length of employment
0.0008 1 Smoker, dust

0.0006 1 Byssinosis, smoker

0.0006 1 Race, smoker

0.0005 1 Byssinosis, gender

0.0003 0 Byssinosis, race

Table 5 Percentage of byssinosis: within race versus total

Years employed White Other Total
<10 1.1 3.1 23
10to 19 2.8 8.3 3.7
>20 34 9.5 3.8

For the analysis with A¢, the overwhelming size of race and employment is just
an effect to recognise, but we need not fear its confounding influence on the A¢ of
byssinosis and dust. If you continue to analyse with accepted procedures like logistic
regression, you might use the analysis to guide you to appropriate steps to counter
the confounding.

5 Conclusion

This is a short first presentation of a method of analysis of entropy that can provide an
alternative to procedures like ANOVA, regression analysis and log-linear modelling.
The method promises, first of all, relief from the perennial problem of confounding,
as it is free from the practice of estimating effects from marginal sums.
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It needs no distinction between methods for binary and multi-category variables;
there is also no need to correct by dividing by degrees of freedom for multi-category
variables.

It contains only straightforward calculation and so needs no lengthy iterations to
arrive at a solution.

It is robust against sparse tables; there is no need to add a bothersome and slightly
falsifying “correction” like adding 0.5 to every cell frequency.

In its simplicity and easiness, the analysis can be used by, e.g., an epidemiologist
with limited statistical training when confronted with a study involving a larger
number of variables. Yes, using traditional methods, he or she might get help from a
statistician who can identify confounding variables by running a number of restricted
logistic regression models, yet the proposed simple “analysis of entropy” could give
this epidemiologist some autarchy.

6 Closing Remarks

The method is clearly oriented to A¢ as the effect size, not statistical significance. I
am not alone in rejecting significance as the criterion for model building.

Significance is important, however, it tells me if I can be confident that an effect
can be expected to return in a repetition of my study or if it is more likely to have
occurred by chance. Studying the significance of A¢ needs a standard error for
which I, being a psychologist with exhaustive data analysis experience and not a
mathematical statistician, am unable to derive a formula. So I rely on bootstrapping
to obtain standard errors, and bootstrapping rewards me with the additional freedom
to adapt the bootstrap sampling to clustered or other non-srs samples.

The simplicity of uncoupling allows me, using the same procedures, to try an
aimed search for confounders, such as looking for variables that both the dependent
variable and a further variable depend on, a standard definition of a confounder. In
my experience, the basic table of A¢ has already given me the necessary information.

My program for the analysis (available on request) is written in MS Visual FoxPro.
It relies on simple SQL queries, not much more, so it should be translatable into other
languages that know SQL (for that purpose, the source code is also available).

7 A Reluctant Dedication

Dear Nishi, I am rather old (about your age) and tired. I tried to publish this, with
different accents, in good journals. The results were negative (“nothing new”) or
simply neutrally negative (“already too many papers”). A less renowned journal
published one such paper (Vorkauf, 2016), but it evoked only deafening silence.
So, in contributing this paper to your Festschrift after several futile attempts to
get an idea published, I am still certain to have an important point to make on the
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topic of Analysis of Categorical Data, even if it did not convince some editors. I feel
confident that you, as an editor, would have helped me find a more palatable way to
bring it to paper.
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1 Introduction

In surveys, respondents are frequently asked to indicate their opinions and prefer-
ences on rating scales. It is well known that the responses on rating scales can be
influenced by factors not related to the content of the items. In particular, when intro-
ducing the well-known range—frequency theory, Parducci (1963, 1965) and Parducci
and Wedell (1986) showed in several experiments how the “rating context” can influ-
ence how respondents select the available categories for the ratings. For example,
exposing respondents to a “skewed” set of objects to be rated (e.g. a few small and
many large objects) affected systematically the ratings for subsequent objects, regard-
less of their underlying true values. These authors studied these contextual effects
utilising controlled distributions of the objects’ physical properties and showed that
ratings can be seen as a weighted average of a range and a frequency factor. The
range factor captures the objects’ physical dimension range, and the frequency part
captures how often each object is displayed.

Although many studies are available demonstrating the effectiveness of the range—
frequency theory in accounting for contextually induced biases in observed ratings,
little work is available to de-bias the ratings for these contextual factors. In this
chapter, we show that the dual-scaling work on successive categories introduced in
Nishisato (1980) and Nishisato and Sheu (1984) provides the foundation for such a
de-biasing method. We also consider further extensions by Schoonees et al. (2015)
and Takagishi et al. (2019). Specifically, we study the extent to which the individual-
specific correction methods introduced in Takagishi et al. (2019) can be used to de-
bias observed ratings that have been subject to range and frequency manipulations.
We examine the performance of the correction methods using simulation studies that

M. van de Velden (X))
Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands
e-mail: vandevelden @ese.eur.nl

U. Bockenholt
Kellogg School of Management, Northwestern University, Evanston, IL, USA
e-mail: u-bockenholt@kellogg.northwestern.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 117
E. J. Beh et al. (eds.), Analysis of Categorical Data from Historical Perspectives,
Behaviormetrics: Quantitative Approaches to Human Behavior 17,
https://doi.org/10.1007/978-981-99-5329-5_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5329-5_8&domain=pdf
mailto:vandevelden@ese.eur.nl
mailto:u-bockenholt@kellogg.northwestern.edu
https://doi.org/10.1007/978-981-99-5329-5_8

118 M. van de Velden and U. Bockenholt

mimic previous settings of experimental studies on range—frequency theory and show
that it can be used effectively to control for range and frequency effects in ratings.

In the following parts of this paper, we first review briefly the range—frequency
theory (Parducci 1963, 1965), and we present the key features of the proposed bias
correction for contextual effects. In a simulation study, we investigate the perfor-
mance of the proposed approach and show that it can reduce effectively rating biases
introduced by contextual variations.

2 Range-Frequency Theory

According to range—frequency theory, the rating of an object is affected by the distri-
bution of other objects to be rated. In particular, the observed ratings are a compromise
between range and frequency effects: The range effects amounts to distributing the
ratings over the range of the objects to be rated, whereas the frequency effect con-
cerns the tendency to evenly distribute ratings over the available rating categories.
Category ratings according to the range—frequency model are a weighted average of
their range and frequency values. We can formalise these concepts as follows. Let:
. (©)
RO — Mij T Xmin (1)

ij (©) (c)
Xmax — Xpin

denote the range value of individual i for object j in context ¢. Here x;; denotes
individual i’s rating of object j, xrs;)n and x{©) denote, respectively, the lowest and
highest ratings of all objects in context c. Hence, the range value normalises the
ratings with respect to the range of the items in a context. On the other hand, the
frequency value Fl.(jc) of individual i for object j in context c is defined as:

fi('C) _ 1

B =5— @

where fiﬁ.c) is the rank (with 1 indicating the lowest ranked item) of item j in context
c and N, is the number of items in context c. According to range—frequency theory,
an individual’s rating value is a weighted sum of these range and frequency values.
In particular, rating yi(;), of an individual i, for item j in context c is:

where o € (0, 1).
Figure 1 provides ten illustrations of object distributions on a seven point rating
scale, that have been considered in range—frequency studies. For example, respon-
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dents who are exposed to an object distribution with mostly “large” objects as in Con-
text 5 tend to adjust their ratings to discriminate more among “large” than “small”
objects.

3 Contextual Bias Correction

Based on the dual-scaling work on successive categories of Nishisato (1980) and
Nishisato and Sheu (1984), Takagishi et al. (2019) proposed a method that corrects
for response styles in rating data exhibited by different subgroups of the raters.
Response styles are defined as scale usage that is independent of item content. For
example, some respondents may tend to use only the extremes of the category rating
scales (extreme responding), or, respondents may tend to use predominantly the
middle of the scale (midpoint scaling) or only use the lower (nay-saying) or upper
(yea-saying) parts of rating scales.

Rather than considering group-specific response tendencies, we implement a sim-
plified version of the scaling method proposed by Takagishi et al. (2019) to obtain
and correct for individual-specific response tendencies that could arise due to range—
frequency theory. In the following, we refer to this approach as contextual bias
correction (CBC).

A crucial step in CBC is the transformation of the observed rating data to succes-
sive categories data as described in Nishisato (1980) and Nishisato and Sheu (1984).
That is, in addition to the rated items, we add “thresholds” that define the differences
between ratings. Thus, for a r point rating scale, r — 1 thresholds are considered.
The thresholds capture the transitions from rating “1 to 2”, “2to 3” up to “r — 1 to
r”. Next, item ratings and thresholds are jointly ranked, by sorting them from small

to large. For ties, the average rank is assigned.

As an example, consider three items, A, B and C that are rated on a 5-point
rating scale as 1, 4 and 5, respectively. For a 5-point rating scale, we get 4 thresh-
olds, say 7y, ..., 74. Jointly sorting the three item ratings and r — 1 thresholds
results in the sequence: A < 171 < T» < 13 < B < 17y < C. By assigning zero to the
lowest ranked item or threshold, we can code this as:

ABCt112t3‘L’4
0O 4 6 1 2 3 5

In CBC, the normalised threshold values (i.e., for the example above, the last four
columns) are approximated using I-spline basis functions. That is, let f;; denote the
rank-ordered threshold values divided by the number of items and thresholds for
individual i. Then, fori = 1,...,nand j =1,...,r — 1:

i (2).
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where

3
¢ () =) BieM, (x) .

s=1
and

3
Y Bi=1. Bu=0 (s=123).

s=1

Here, the first three I-spline basis functions are:

2t (x—L)—(x*—L?)

M;(x) = -0 (L<x<t)
0 (t<x=<U)
=L (L<x<n)

_ ) t-L)U-L) =

M2 (x) - (t[,L) 2U(X—L)—(x2—t2) ;< <U (4)
() onw-n t=x=U)

Ms (x) 0 (L<x<t)

3(X) = 2

o t=x=U)

and x € [L, U], t =L+ 0.5(U — L). See, for example, Ramsay (1988) for more
details on these I-splines. For convenience, and without loss of generality, we use
L =0 and U = 1. Nonnegative conditions, 8;; > 0 (s = 1, 2, 3), are required for
¢; to be a monotone-increasing function.

The individual-specific smoothing functions ¢; can be seen as estimates of
individual-specific and context-related scale usage. Moreover, the functions can be
used to estimate threshold values and derive “corrected” rating data. For more details
on the model and its estimation, see Takagishi et al. (2019).

In Takagishi et al. (2019), the estimation of the response functions is combined
with a cluster analysis to detect groups of individuals exhibiting a similar response
behaviour. Here, rather than assuming cluster-specific preferences or response pat-
terns, we assess whether the method can be used to identify and correct for contextual
effects. We investigate the performance of this approach using a simulation study.

4 Simulation Study

We conduct several simulation studies to examine if it possible to correct for range—
frequency response effects. For this purpose, we generate individual-specific con-
tinuous preferences for a set of items. These continuous preferences are discretised
to map onto the rating scale by using the individual-specific “threshold” values.
We consider different spacings of the threshold values to induce various contextual
response effects. The frequency effect is induced by considering different spacings
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of the thresholds over a fixed interval. For example, increasing the intervals between
the thresholds (i.e. the lower threshold are closer to each other than the higher ones)
mimics discrimination at the lower end of the preference continuum. In the range—
frequency framework, this corresponds to a scenario where individuals are asked to
rate a set of items where most items are “small” and only a few items are “large”.

For our simulation, we draw individual-specific threshold values from 10 differ-
ent distributions, each corresponding to a different “context”. We also consider an
11°th case where all 10 contexts are equally often present in a data set. In addition,
range effects are incorporated by using the range of individual-specific preferences
to translate the threshold values to a scale compatible with the underlying prefer-
ences. For the 10 context and the 11’th multi-context cases, we map the underlying
preferences onto the rating scale. Finally, we apply CBC to the resulting rating data
and assess how well CBC is able to recover the underlying preferences.

4.1 Study Design

In our simulation studies, we first generate the underlying true population prefer-
ences. We then add individual specific effects by drawing from a normal distribution
to obtain the “true” underlying preferences. Finally, these underlying preferences are
mapped onto the rating scale by considering context and individual-specific threshold
values. Thus, our data-generating process follows these four steps:

1. Generate underlying preference values:
Generate a p-dimensional mean preference vector u by drawing from p indepen-
dent standard normal distributions.

2. Add individual-specific effects:
For each individual, add random noise ¢;, from a N (0, o) distribution, to all
elements of the mean preference vector p to obtain individual specific preferences
m; = i + €;1, where 1 denotes a p-dimensional vector of ones.

3. Generate individual- and context-specific threshold values:
For each context draw r — 1 thresholds from a uniform distribution, where r
indicates the largest rating. The intervals that we draw the r — 1 thresholds from,
and hence their spacing, depend on the contextual specification. In Table 1, the
intervals for a 7-point rating scale, for the 10 considered contexts, are given. In
this table, the columns represent the threshold positions and the entries the [r,
r + 1] pairs. For example, for Context 2, the first threshold is drawn from the
interval [0, 1/6], the second threshold from the interval [1/6, 1/3], etc. Note that
when intervals are overlapping—as, for example, in the case of Context 1—the
threshold values are drawn simultaneously and then ordered. Thus, for Context
10, we draw 6 threshold values from the interval [1/6, 1/3] and then order them
to reflect their different positions on the underlying preference continuum.
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Table 1 Threshold intervals for considered contexts for a 7-point rating scale. Contexts in rows,
threshold intervals in columns

Context 7] %) 3 171 T5 T6

1 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]
2 [0. 4] [§ 5] (3. 3] (5. 3] 33 3.1
3 [0. 5] (53] [zl |[enl |54 3.1
4 (53] (3. 3] [3.3] 35 (3. 3] 5. 3]
5 0.4  [&d 4 L3l (B4 .4
6 L&l 3 &3 3] B8 3]
7 [0. %]] [‘} %1] [01, %1]1 [ 1] [ 3] [15.1]
8 [O’F] [z!lrz] [i’sz] [%vll] [%’}] [%sll]
9 [g’ 3] [2’ 3] [2’ 3] [2’ 3] [2’ 3] [27 3]
10 [3.1] [3.1] (5. 1] [3.1] [5.1] [5.1]

For the multi-context case, we randomly select one of the 10 contexts for each
observation so that, on average, data sets are comprised of an equal number of
observations for each of the 10 single-context scenarios.

. Transform the thresholds to a scale commensurable with the observed preference

scale:

Since the individual-specific thresholds generated in the previous step are between
0 and 1, we multiply them by the range of an individual’s preferences (m;) and
subtract the smallest preference in absolute value. We then apply an inflation
factor to the resulting thresholds so that the smallest and highest preferences do
not automatically receive the smallest and highest ratings.

. Transform the preferences to discrete ratings:

Using the thresholds, we map the preferences onto the discrete rating scale. This
yields, for each context, a matrix of observed ratings

There are several factors that we control for in our set-up. In particular:

The number of observations. We consider two cases: n = 50 and n = 200.

The number of items. We consider three cases: p = 10, p = 20 and p = 50 items.
The size of individual-specific effects, controlled through o in step 2. We con-
sider three cases: 0 = 0, 0 = 2/r and ¢ = 1, corresponding, respectively, to no,
medium and high individual effects.

The resulting design leads to 2 x 3 x 3 = 12 matrices of underlying preferences

each with 11 (the number of contexts and the multi-context case) corresponding sets
of observed ratings. We consider 100 replications for each setting.
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4.2 Measures

Our simulation framework allows us to generate rating data sets where the observed
ratings are biased due to contextual effects. This makes it possible to study how
contexts affect observed ratings, and how this impacts the recovery of the underlying
preferences. Moreover, by applying CBC to the simulated data sets, we are able
to study the effects of the dual-scaling bias-correction method. In particular, we
consider whether and under which circumstances the correction method results in a
better recovery of the underlying preferences.

To appraise the results of the correction method, we calculate for each vector of
simulated ratings:

e R?: The squared correlation between observed ratings and underlying preferences.

e R?: The squared correlation between CBC corrected ratings and underlying pref-
erences.

e MAD,: The mean (over the items) of the absolute differences between the CBC
corrected ratings and the normalised underlying preferences.

e MAD,: The mean (over the items) of the absolute differences between the nor-
malised observed ratings and the normalised underlying preferences.

For each of the 100 generated data set, we collect the means of the above measures.

4.3 Results

Note that in Fig. 1, the distributions for contexts 1, 2 and 3 are similar. There are,
however, important differences between them. For context 1, all thresholds are drawn
from uniform [0,1] distributions. For context 2, the thresholds are selected from
equispaced intervals corresponding to the number of thresholds. For context 3, the
middle two thresholds are drawn from wider intervals, whereas the lowest and high-
est thresholds are equivalent to those in context 2. The differences between these
three contexts are primarily related to the variance of the threshold distributions. In
particular, in context 2, there is very little variation in the threshold distributions and
true preferences are mapped onto an equal-spaced rating scale. On average, these
three contexts all lead to equispaced threshold distributions, however, as the under-
lying preferences are generated using normal distributions, they result in bell-shaped
frequency distributions of the observed ratings.

To appraise the performance of the CBC analysis, we consider the measures
described in Sect.4.2. In particular, for each combination of the factors that are
varied in the simulation study, we calculate, for each generated data set, the mean
values for the measures described in Sect.4.2. Boxplots of the results of the 100
replications can be found in Figs. 2, 3, 4 and 5.
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where ‘c’ and ‘o’ refer to ‘corrected’ and ‘observed’ respectively
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The results across conditions paint a rather consistent picture concerning the
effectiveness of the CBC corrections. In particular, with the exception of context 2
(equispaced threshold distribution), the correction leads to an improved relationship
with the underlying preferences. Furthermore, the performance improves with an
increasing number of items and seems to be more effective for the skewed contexts.
We also note that the CBC method is beneficial in the multi-context case when all
10 contexts are considered.

For the scenario with 200 observations, 20 items and medium individual effects,
Figs. 6 and 7 depict how the mean absolute differences between the observed ratings
and the underlying preferences (left panels) and the CBC-corrected ratings and the
underlying preferences (right panels) are related to the underlying preferences. We
note the strong and systematic differences between the observed ratings and generated
preferences. These differences are much reduced and less systematic for the CBC-
corrected ratings demonstrating the usefulness of the CBC methodology. However,
we stress that the CBC correction does not fully account for all of the contextual
effects. This is especially so for scenarios with extreme skewness, where the CBC
approach does not fully correct for these contextual effects.
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Fig. 6 Observed and corrected ratings against underlying preferences for contexts 1 (top) to 5
(bottom). The plots in the left panels depict the mean absolute differences with normalised observed
ratings. The plots in the right panels show the mean absolute differences with the CBC corrected
ratings
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Fig. 7 Observed and corrected ratings against underlying preferences for contexts 6 (top) to 10
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5 Conclusion

This paper studied whether the impact of contextual effects introduced by the range—
frequency mechanism can be overcome by recent extensions of the dual-scaling work
on successive categories of Nishisato (1980) and Nishisato and Sheu (1984). Using
the approach of Schoonees et al. (2015) and Takagishi et al. (2019), we presented the
results of several simulation studies that demonstrated that it is possible to recover
the underlying preferences that gave rise to the ratings even when ratings are elicited
from respondents who are exposed to different contexts. This is an important finding
because it shows that CBC can improve the comparability of ratings from different
respondents when rating differences across individuals are caused by contextual
variations.

Importantly, we could demonstrate the superiority of the CBC in the case of a sin-
gle contextual distribution and in the more realistic scenario of multiple contextual
distributions. Thus, even when each individual is exposed to different item distribu-
tions, the observed ratings can be corrected for these item distribution differences.
These corrections can prove to be useful in subsequent analyses of the ratings. Such
item statistics as mean item differences or item correlations may be estimated more
accurately when rating data are corrected for contextual influences.
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Old and New Perspectives on Optimal )
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Hervé Abdi, Agostino Di Ciaccio, and Gilbert Saporta

1 Introduction

Qualitative variables are ubiquitous in many fields, but genetic and human sciences
(especially psychology) have been some of the first disciplines to routinely incorpo-
rate qualitative variables in their practice. This importance of qualitative variables
prompted the psychologist Stevens (1946) to create the now classic typology of mea-
surement scales. In this typology, qualitative (also called categorical) variables come
in two varieties:

e Nominal variables, so called because the modalities—also named levels or
categories—of a nominal variable are “names.” Formally, a nominal variable cor-
responds to a partition of a set.

e Ordinal variables (a nominal variable whose modalities are ordered); formally, an
ordinal variable corresponds to a pre-order on a set.

Because most multivariate statistical methods are designed for quantitative vari-
ables (in Stevens’s typology: interval and ratio scales), an obvious problem is to
optimally transform a qualitative variable into a quantitative variable. This problem
being relevant for several disciplines, similar procedures to solve it were indepen-
dently developed multiple times and therefore come under different names with
scaling, quantification, coding and encoding being favourites. So, a nominal or ordi-
nal variable is quantified, (en)coded, or scaled when its modalities are replaced by
numbers having at least the properties of an interval scale.
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Note that the terms coding and encoding are ambiguous because they can refer
either to the transformation of a qualitative variable into a numerical variable (quan-
tification) or to a way of representing a qualitative variable such as, for example,
disjunctive coding.

The problem of transforming qualitative variables into quantitative variables has
a long history. In statistics, its history goes back to the early contributions of major
figures such as Hirschfeld (1935), Horst (1935), who coined the named “reciprocal
averaging”, Fisher (1940) and Hayashi (1950). In psychology (and of course psycho-
metrics) early contributions of other major figures include Guttman (1941, 1944),
Festinger (1947) and even Coombs (1964) in his classic work a Theory of Data,
see also Coombs (1948). The statisticians were mostly interested in maximising the
(squared) correlation between sets of variables; but the psychologists (influenced by
factor analytic models) were concerned about scaling (i.e. estimating a quantitative
latent variable or factor from qualitative measurements). The maximisation approach
of the statisticians would lead to (simple) correspondence analysis, whereas the fac-
torial approach of the psychologists would lead to multiple correspondence analysis;
see, for details, the historical review of Lebart and Saporta (2014).

This early work matured in the 1970s and early 1980s, which were the years of
the search for optimal codes (called factor scores or scaling scores) in supervised or
unsupervised contexts, an endeavour where researchers such as de Leeuw (1973),
Nishisato (1980), Takane (1980), Tenenhaus (1988) and Young (1976, 1978, 1981),
see also Tenenhaus and Young (1985) distinguished themselves. This research was
then implemented by commercial software with procedures such as PRINQUAL and
TRANSREG for SAS, or CATEGORIES for SPSS.

In the next 30 years or so, after this first foray in the theory of optimal scaling,
the topic did not generate much research: routine applications involved computing
predictive scores, such as risk scores in banking and insurance. However, recent
interest in the scaling problem was reignited by the availability of massive data sets.
Nowadays, machine learning researchers and practitioners need to handle categor-
ical data (which are ill-suited for most machine learning algorithms such as neural
networks) that often have large numbers of modalities (e.g. from dozens or even
hundreds of modalities, such as postal codes; for details, see, for example, Hancock
and Khoshgoftaar 2020).

This new interest in qualitative data stimulated the development of several coding
methods—mostly developed in the ignorance of the early work of statisticians and
psychometricians. As an illustration of this trend, Di Ciaccio (2023) recently reported
that the popular Python package scikit-1learn offers 17 different methods that
he categorised into three groups:

e methods where the encoding of a variable does not depend on the other variables,
in particular the response (e.g. hash encoding),

e methods where the encoding only depends on the response (e.g. conditional mean),
and

e One-Hot Encoding (OHE), which is nothing more than the usual disjunctive rep-
resentation with as many indicators as modalities; see Eq. (2).
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The large size of certain categorical data sets raises problems of stability and
over-fitting, problems that were neglected in classical statistical applications where
the number of modalities was typically small and the learning-testing methodology
rarely used. Because of their different view points, the confrontation of the early
approach of the statisticians and psychometricians with the newer approach from
data scientists could foster a renewal of coding methods for qualitative data; for
details, see Meulman et al. (2019).

The rest of the chapter is organised as follows: Sects.2 and 3 are devoted to nota-
tions and to the mathematical structures of quantifications. Section4 describes early
works from 1935 till the 1960s. Section 5 is devoted to the “golden seventies” dom-
inated by optimal scaling (performed with alternating least squares) and Nishisato’s
dual scaling. Section 6 describes how machine learning has taken over the problem
of encoding, with its connection to multivariate statistics and how this can foster a
re-interpretation of correspondence analysis from a nonlinear point of view.

2 Matrix Representation of Categorical Encoding
and Notations

When dealing with I observations, it is often practical to represent a nominal variable
as a binary group matrix (called a complete disjunctive coding matrix) denoted by
X whose rows are observations and whose columns represent the modalities of the
nominal variable.'

For example, consider a sample with I = 5 observations, denoted {Si, . .., Ss},
and a nominal scale with J = 3 modalities: {1, 2, 3} that could be, for example,
{disagree, neutral, agree}, with the following answers for these five observations:

X=1[1,2 31,217, 9]

then the group matrix would be equal to:

Sir100
S$[010
S3[ 001
X="3 = (14, 1,, 1 2
s l100 [ ) 3] (2)
SsLO010
where, for example, 1, = [1, 0, 0, 1, O]T is the indicator variable for the first cate-

gory.

1 As noted above, and developed later on, this is a procedure rediscovered in machine learning under
the name of one hot encoding.
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In this chapter, the following notations are used:

1 is the number of units/observations {1, 2, ..., i, ..., I},

X is a nominal variable, namely a sequence of / modalities,

X is a quantification of X (i.e. a real vector of length 7),

K is the number of nominal variables,

J is the number of modalities of a variable, {1, 2, ..., j, ..., J},

Ji is the number of modalities of the kth variable (when K > 1),

X is the disjunctive matrix (of dimensions / x J) for variable X,

L is the dimension of a vector space {1, 2, ..., ¢, ..., L},

a; is the single category quantification of variable k (i.e. a real vector of length
Ji),

e A is the category quantification array on L dimensions (of dimensions J; x L),
e (, is the vector of a single quantified variable k, (a real vector of Length 7),

e Q, is the quantified array of variable X (of dimensions / x L) for L dimensions.

3 The Structure of Quantifications

Quantifying or encoding a categorical variable can be written using simple transfor-
mations that we explicitly define in the following sections.

3.1 Categorical Encoding

Let X be a nominal variable with J unordered modalities {1, ..., j, ..., J}andx
a quantification of X using at most J distinct values {al, e, A, ..., J}. Then,
if 1; denotes the indicator variable of the jth category, we have:

J
x=)Y a;l;. 3)
j=1

Quantifying X boils down to defining a linear combination (with the weights a; called
the code or scale values) of the indicator variables. When there is no constraint on
the a; weights, the set of possible quantifications x is a vector subspace V¥ with
dimension J.

Because:

1 =1, @)
j=1
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(with 1 begin a commensurable vector of 1’s) the set A of constant variables (which
is a one-dimensional subspace) is included into V. If x is required to have zero mean,
then:

xe{Atnw}. (5)

Note that the encoding from (3) is redundant because the value of any 1; variable
can be deduced from the values of the other (J — 1) variables. Another possibility
could be to use only J — 1 indicator variables as done, for example, with the dummy
coding scheme used in the general linear model and logistic regression. We will not
use this coding scheme here so that all modalities play the same role.

3.2 Ordinal Encoding

If there is a natural order between the modalities (i.e. a pre-order on the set of
responses), it is natural to require that:

ay=<a=---=ajy.

Let us consider the following reparamaterisation:

a1 =bi.ay=bi+bycooag=bi ot byt bywith |1
25,0y >0
(6)
then
J
X:Zaj]lj
j=1
=bili+b1+b) 1o+ + (b1 +by,...) 1
=bi(Li+1+--+1)+b(I2+---+1)+---+bs1,
=bi+by(Iy+---+1,)+---+bs1,
J
= b +ijZj (7
j=2

where

J
zj =Y 1. (8)
t=j

The variable x is thus a linear combination of J — 1 variables with non-negative
coefficients, which is the definition of a convex polyhedral cone (see, for example,
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Tenenhaus 1988), plus one unconstrained constant term. In other words, x belongs
to the direct sum of A and a (J — 1) convex polyhedral cone, C;_;, and so:

XE{AGBijl}. (9)

Note: if we also require that x has zero mean, the constant b; will be negative.

3.3 Two Simple Optimal Scaling Problems

Let Y be a numerical response variable. What is the optimal way to quantify a
qualitative variable X in order to best predict Y in the least-squares sense?

If X is categorical, the solution” is given by the projection of ¥ onto the subspace
W spanned by the set of the indicator variables 1;. In other words, the optimal
solution is obtained by performing a multiple regression without the intercept of Y
onto the set of the 1;. Because the 1; are orthogonal, the solution is easily found:
The optimal scores {a;} are the conditional means for each modality y;.

If X is ordinal, the solution is less straightforward because we have to project
Y onto a polyhedral cone instead of a vector subspace. However, because the cone
is convex (cf. (8)), the solution is unique and boils down to computing a multiple
regression:

J
Y=b+)Y bz, (10)
j=2

with positivity constraints for the b; coefficients for j > 1; see (7). The solution of
this constrained optimisation problem can be found using some efficient numerical
methods such as the pool adjacent violators algorithm; see, for example, Kruskal
(1964), Tenenhaus (1988) and de Leeuw et al. (2009).

3.4 Crisp Coding, Fuzzy Coding, Spline Coding

Transforming a numerical variable into a qualitative variable by splitting it into
classes, and then recoding this variable according to the previously mentioned prin-
ciples, is a low cost way of nonlinearly transforming a numerical variable.

Coding with (3)—called here crisp-coding—has the disadvantage of introducing
discontinuities that can loose some information from the original variable. To allevi-
ate this problem, various kinds of fuzzy encodings can be used—a procedure equiv-
alent to defining membership functions for neighbouring intervals. Crisp-coding and
piecewise-linear encoding (which is a form of fuzzy coding) are particular cases of

2 Called target encoding in machine learning.
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Fig. 1 Basis spline functions of degrees 0 and 1

Fig. 2 Trapezoidal encoding (from Gallego 1982)

linear combinations of spline functions as illustrated in Fig. I that shows examples of
splines of, respectively, degrees 0 and 1 associated to (discontinuous) crisp-coding
and piecewise continuous linear transformations.

An additional example of spline function is suggested by Ramsay (1988) who
advocates the use of monotonous spline functions. Gallego (1982), who also consid-
ers fuzzy coding, uses trapezoidal encodings as illustrated in Fig. 2.

4 Early Works

Quantifying a qualitative variable on its own makes little sense if it is not linked
to a goal, such as explaining another variable. Statisticians were concerned very
early on with the search for nonarbitrary quantifications by seeking to optimise
specific criteria (which were, most of the time, expressed as maximising squared
scalar products such as correlations). The early works were naturally concerned with
the case of two categorical variables and their associated contingency table.
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4.1 The Case of Bivariate Distributions

Hirschfeld (1935, p. 520)—better known under his American identity of Hartley—is
apparently the first researcher to ask the following question (and to answer it):

It is well known that the correlation theory for such a distribution gives much better results if
both regressions are linear [...]. Given a discontinuous distribution p,, is it always possible
to introduce [...] new values for the variates x,, y,, such that both regressions are linear?

Later on (and without reference to Hirschfeld), as summarised by Lancaster (1957,
pp- 289-290):

In 1940, Fisher considered contingency tables from the point of view of discriminant analysis.
Suppose that ‘scores,’ i.e. arbitrary variate values, are assigned to the rows and also to the
columns of a contingency table: what are the best scores to assign to the rows so that a linear
function of them will best differentiate the classes determined by the columns, and vice
versa. This turns out to be a problem in maximising the correlation between the scores and
the required correlations are those known as ‘canonical’ in the sense of Hotelling (1936).

Lancaster was referring to the algorithm described by Fisher (1940, p. 426), and
now considered as an early example of alternating least squares or dual scaling,
applied to the (now) famous table cross-tabulating the eye and hair colours of Scottish
schoolchildren (from the county of Caithness):

...starting with arbitrarily chosen scores for eye colour, determining from these average
scores for hair colour, and using these latter to find new scores for eye colour.

This “optimal coding” algorithm converges to the solution given by the coordinates
of the rows and columns along the first axis of the correspondence analysis of the
contingency table.

Maung (1941, p. 200)—who was interested in the higher order encodings corre-
sponding to the successive pairs of canonical variables—attributes to Fisher a formula
giving the value of each cell in the contingency table from the margins, the canonical
correlations and the successive codings. This formula—also called the RC canoni-
cal correlation model—is none other than the well-known reconstitution formula of
correspondence analysis.

Williams (1952) is also a notable reference about the development of significance
tests for canonical correlations.

Further details on the relationship between optimal scaling and correspondence
analysis are given in Saporta (1975), Nishisato (2006, Chap. 3), Lebart and Saporta
(2014) and many others, including Hill (1974), and Beh and Lombardo (2014).

4.2 Lancaster’s Theorem

The search for optimal scores is unexpectedly related to the problem of transforming
a given probability distribution into a normal distribution. Lancaster (1957) showed
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that the (squared) correlation coefficient between the two components of a bivariate
normal vector cannot be increased regardless of the (nonlinear) transformations that
can be applied to them.

This result inspired the following comments to Kendall and Stuart (1961, pp.
568-569):

We may ask: What scores should be allotted to the categories in order to maximise the
correlation coefficient between the two variables? Surprisingly enough, it emerges that these
‘optimum’ scores are closely connected with the transformation of the frequencies in the
table to bivariate normal frequencies [...] And the theoretical implication of the [Lancaster’s]
result is clear: if we seek separate scoring systems for the two categorised variables such as to
maximise their correlation, we are basically trying to produce a bivariate normal distribution
by operations upon the margins of the table.

4.3 Quantifying More Than Two Attributes: Guttman,
Hayashi

Guttman (1941), in a famous paper, referred to the method of reciprocal averaging
(as described by Horst 1935) and proposed to simultaneously quantify K categorical
variables in such a way that they are as similar as possible and that their means are as
dispersed as possible. The rationale behind this criterion was that such an approach
would be optimal when the K variables, collected in a multiple choice questionnaire,
measured more or less the same construct (as in a factor analysis model with only
one latent variable). When the total variance is fixed, this amounts to maximising the
measure of internal consistency as described below.

Let X = [Xj]...|Xk|...|Xk] be the super-matrix of all K disjunctive matrices,
a,, the category quantification vector of variable X, a the super-vector concatenating
all category quantifications, z; = Xay the corresponding vector of object scores and:

K
= —szz—Xa, (11)

the vector of average object scores.

Guttman (1941) showed that the scores, which maximise the variance of z under
a scaling constraint for a, are given by the coordinates of the modalities of the K
variables along the first axis of what will later be called multiple correspondence
analysis (MCA). On this occasion, Guttman coined the term “chi-square metric”
now routinely associated with correspondence analysis.

Independently, Hayashi (1950) developed an approach similar to Guttman’s under
the name of Type III quantification. Three other types of quantification using (or not)
an external response variable were also developed by Hayashi. Tanaka (1979), and
Takeuchi et al. (1982, Chap. 8) are useful references for the Japanese contributions.
A bit later Slater (1960) proposed a method to analyse personal preference data that
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represents these data in a multi-dimensional space where observations and stimuli
can be represented simultaneously and, as noted by Nishisato (1978, p. 263), his
approach was “essentially the same as Guttman’s, but the close relationship between
them was apparently left unnoticed.”

5 The Golden Seventies

The 1970s were a particularly fertile period for the development of optimal scaling
and the journal Psychometrika was the privileged venue for publishing on this topic
with no less than 145 articles appearing between 1968 and 1982 using the keywords
“Optimal Scaling” (799 using the same keywords without dates and 199 using only
the keywords “Dual Scaling”). It is therefore impossible to be exhaustive.

5.1 The Alternating Least Squares (ALS) Approach
Jor Optimal Scaling

In his 1981 Presidential Address to the Psychometric Society’s Spring Meeting,
Young (1981) returned at length to his work carried out in collaboration with, on one
hand de Leeuw and Takane and with, on the other hand, Tenenhaus. He reflected that
these collaborations constituted an important new stream because:

Optimal scaling is a data analysis technique which assigns numerical values to observation
categories in a way which maximises the relation between the observations and the data
analysis model while respecting the measurement character of the data (Young 1981, p. 358).

A large number of algorithms were then developed using the alternating least squares
(ALS) approach, which consists in separating the parameters of the problem into two
sets:

1. the model parameters, and
2. the data parameters (the codings).

The optimisation then proceeds by obtaining the least squares estimates of the model
parameters while assuming that the data parameters are constant. One then switches
to the other set: obtaining the least squares estimates of the data parameters given
the model parameters and so on until convergence. Even though convergence to a
local optimum is guaranteed, convergence to a global optimum is not guaranteed
because convergence depends upon the initial values (i.e. there are multiple local
optima where the search could converge). Note that the ALS approach can also be
applied to regression or predictive type problems which are now called supervised
approaches, whereas the pioneers were not particularly interested in these methods.

MORALS-type algorithms (Young et al. 1976) make it possible to carry out mul-
tiple regressions by transforming both a response Y and the predictors Xy, ..., Xi,
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., Xk with monotonic or nonmonotonic optimal transformations according to the
nature of the variables by using successions of projections on vector subspaces or
cones. Denoting by ¥ and ¢y, ..., ¢k the transformations of the original variables,
the optimisation problem is the following:

max  R[¥ (Y): @1 (X1), ¢2(X2), ..., 9k (Xp)] . (12)
V01,02, 90K

Transformed variables are usually constrained to be standardised in order to avoid
degeneracy.

The PRINQUAL (Bouroche et al. 1977) and PRINCALS (Young et al. 1978)
algorithms implement a principal component analysis of K coded qualitative vari-
ables while respecting the nominal or ordinal nature of these variables. However, the
optimality criterion is not as obvious as is the maximisation of the (squared) multiple
correlation in multiple regression, because this is an unsupervised problem. The most
commonly used criterion maximises the percentage of variance explained by the first
L principal components Cy, ..., Cr;the default value is L = 2 in the PRINQUAL
procedure of SAS because two-dimensional displays are the ones most frequently
used. Formally, the maximisation problem can be expressed as the solution of:

max%ZZr (px (X1), Co) (13)

..... Cr k=1 ¢=1

Note that if L = 1, the solution for K nominal variables is identical to the solution
provided by the first dimension of multiple correspondence analysis, (i.e. this is
the solution of the problem from Guttman 1941). However, there is a fundamental

codings of the categorical variables—and the algorithms of the MCA and HOMALS
types—which look for as many codings as the number of dimensions of the data; for
more, see Tenenhaus and Young (1985) Gifi (1990).

In the late 1980s, van Buuren and Heiser (1989) developed GROUPALS, a method
for optimising simultaneously a clustering of units and quantifications of categorical
variables, which was taken up almost 30 years later by van de Velden et al. (2017)
for their development of cluster correspondence analysis.

5.2 Dual Scaling: Nishisato’s Synthesis

In the 1970s Nishisato (originally a psychologist, later turned into a psychometri-
cian) revisits the problem of the quantification of qualitative variables (both nominal
or ordinal) and integrates the two quantification traditions (i.e. statistics and psy-
chometrics). Faced with so many names for equivalent methods, Nishisato preferred
the appellation of dual scaling. In his early book, Nishisato (1980) presents an early
synthesis of these two branches in the first chapter dedicated to the history of the
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“scaling” problem for qualitative variables—a review that remains one of the best
sources for its origins and early efforts but that also often suggests future develop-
ments. Nishisato anchors dual scaling in the early psychometric approach of Horst
(1935) and Guttman (1941), but also integrates Maung’s (1941) and Fisher’s contri-
butions; that is, his “additive scoring” (Fisher 1940). Nishisato describes dual scaling
as a maximisation problem as previously defined by Bock (1960) as an approach that:

assign[s] numerical values to alternatives, or categories, so as to discriminate optimally
among the objects (Bock 1960, p. 1).

From this definition, Nishisato generalised and adapted the dual scaling methodology
to a wider set of data types whose extension can only be compared to the, then,
contemporary, French developments. For the specific problem of quantifying a set
of nominal variables, Nishisato uses the super matrix approach described in (11) and
derives from there the equations and properties of multiple correspondence analysis.

5.3 A Success Story: Credit Scoring

Credit scoring techniques are used to check if a loan applicant is worthy of credit.
Using historical data on whether or not debtors have correctly repaid their instal-
ments, the problem reduces for numerical predictors to an application of a supervised
classification method such as discriminant analysis or logistic regression.

However, for individual applicants, most of the predictors are categorical variables
such as gender, marital and employment status. Scoring methods assign a score to
each modality of a variable so that the addition of these partial scores best separates
the two groups. Because the quantification of each predictor is equivalent to defining a
linear combination of the indicators of its modalities, the optimal solution is obtained
from a discriminant analysis using the columns of the associated disjunctive table as
predictors:

X=[Xq]...[Xkl...[ Xkl . (14)

Because X is not of full rank, Bouroche et al. (1977) proposed to replace it by
the P best components z,, of the multiple correspondence analysis of X. Here “best
components” means the components that best predict the target, instead of the ones
with the largest eigenvalues. Fisher’s linear discriminant function is then computed as
and redecomposed as a linear combination of all indicator variables which gives the
optimal scores—a procedure similar to “principal component regression” for qual-
itative instead of quantitative variables. The previous method known as DISQUAL
(see Niang and Saporta 2006, for a detailed illustration of DISQUAL) as well as
logistic regression (which eliminates an indicator in each Xj) are routinely used by
banks, insurance companies and so on: Optimal coding has become transparent!

The interest of scores compared to black box approaches is to lead to easily
interpretable decision rules—a feature now socially required.
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6 Machine Learning and Variable Encoding

In the machine learning terminology, the modality quantification (or encoding) can
be obtained by “embedding” the modalities in a low-dimensional space. For neural
networks, a well-known embedding is called word-embedding; see, for example,
Bengio et al. (2003). Embedding in Natural Language Processing (NLP, which is
the set of techniques that use machine learning to analyse textual data) is a vector
representation of the words in such a way that words which frequently appear in
similar contexts are close to each other. It is possible to use the same approach for
representing modalities in a vector space, in order to use models that require numer-
ical data. Using neural networks, interesting connections appear with the optimal
scaling methods described in the previous paragraphs. One of the advantages of the
approach showed here is the ability to analyse categorical variables with hundreds
of modalities, as long as the number of observations is adequate.

It is convenient to distinguish the supervised case, in which we need to predict a
quantitative target Y, from the unsupervised case, in which we do not have a target
variable. In the supervised case, quantification is only a tool for applying the model
to qualitative data and generally has no interest in itself: The best quantification
is the one that best predicts the target. By contrast, in the unsupervised case, the
interest is precisely in the quantifications of the modalities: here the embedding of
the modalities, and eventually of the units, should best represent the information
present in the data.

6.1 Traditional Encoding Methods

In addition to the approaches described in the previous paragraphs, other methods
have been proposed to encode categorical variables; for details, see the review by
Hancock and Khoshgoftaar (2020). These are simple and popular methods because
they can be used for qualitative data with both classical models and machine learning
algorithms. These methods either:

1. only use the target,
2. consider the target and other variables, or
3. do not consider any other data than the variable to be quantified.

In the latter case (i.e. ignoring the data), a criterion is chosen that does not use other
data and the result is usually a single numeric variable. This way, there is no risk
of over-fitting, but the encodings obtained cannot be unambiguously interpreted.
Such methods include: The label encoder—which assigns a different integer to each
modality—and the ordinal encoder—which constrains the assignments to respect
the natural modality order. The hash encoder uses a hash function to embed the J
modalities of a variable into a small number of dimensions, but multiple values can
be represented by the same hash value—an effect known as a collision. Because
this encoder is extremely efficient, it is sometimes used with big data sets when the
number of modalities of some variables is very high. But, in these cases, it is not
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possible to perform a reverse lookup to determine what the input was and so the
quantifications provided by collision could be meaningless.

There are many methods that use the target to obtain a numerical coding of the
modalities in such a way that the availability of other explanatory variables does not
influence the coding. The result of such a procedure can be either:

1. a single numeric variable for regression tasks (whose dimensionality would be
the same as the dimensionality of the original data), or
2. multiple numerical variables that can then be used for classification.

Applying target-based encoding often produces data leakage—a problem leading to
over-fitting and poor predictive performance. To correctly work, this method needs
large amounts of data, a small number of categorical variables and the same target
distribution in training and test data sets. To overcome data leakage, it has been
suggested to add noise, or to use cross-validation techniques, or other forms of
regularisation. The simple target encoder—a popular method for regression tasks—
belongs to this group. This method assigns the conditional mean target value to each
modality of the explanatory variable.

For classification tasks, where the target is also categorical, the explanatory cate-
gorical variable is encoded with J new variables (where J is the number of classes
of the target). These variables contain the relative conditional frequencies of each
class given the modality of the categorical variable.

Other methods in this approach are based on the contrast between some modalities
and other modalities of the variable; these methods are called contrast encoders
(an approach often used in the general linear model framework for testing specific
predictions). For example, the Helmert encoder requires a quantitative target and
ordered levels of the categorical variable; this encoder generates a set of contrasts
where each modality is compared in turn to all the subsequent ones. This method is
also routinely used in multiple regression and analysis of variance.

A favourite method to analyse qualitative variables is the, previously mentioned,
one hot encoding which assigns one indicator matrix to each variable. Note that OHE
differs from dummy coding that excludes one modality of the variable (to avoid mul-
ticollinearity). But, when applying machine learning models it is necessary to include
all the modalities, otherwise the omitted modality disappears—a standard problem
(called “the dummy variable trap”) in multiple regression when using dummy coding;
see, for example, Darlington and Hayes (2017).

In fact, one hot encoding is not a real quantification method, but just a binary
transformation of the original data. Using OHE makes it possible to take into account
the other explanatory variables because the quantifications are obtained as parameters
of a model. The main drawback of OHE follows from the tendency of indicator
variables to cause over-fitting. Moreover, if a variable has many modalities, OHE
generates a large number of new features and a sparse array in which the new indicator
variables are perfectly independent—an unrealistic assumption. OHE is used in the
optimal scaling approach (see MORALS in Sect. 5) but is also widely used in machine
learning.
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6.2 Nonlinear Encoding in the Supervised Case

In the supervised case, modality quantifications are generally just a tool for applying
a predictive model. The best quantification will therefore be the one that gives the
best predictions for the model used.

As shown in Sect. 5.1, MORALS makes it possible to perform a multiple regres-
sion considering optimal transformations of the variables. Let X; (of dimensions
I x Ji) be the indicator matrix of variable k, and Y a numerical response variable.
If we have K categorical explanatory variables, MORALS defines the residual sum
of squares (RSS) as:

2 2

, 15)

RSS =

K
Y= D BXeax
k=1

K
Y= Bk
k=1

where q; = Xja, is the vector of the quantified kth variable, a; is the vector with the
(single) quantification of the modalities of the kth variable, with the centering and
normalisation constraints:

1
=0, —qg=1 k=12 .. K. (16)

The algorithm then defines the following optimisation problem, solved by an alter-
nating least squares algorithm:

2

K
o min |y = AiXea (17)
Bi,Bi,-...Bk k=1

With only explanatory nominal variables—unless a different normalisation of the
parameters is used—MORALS essentially corresponds to a linear regression with
OHS. This approach is likely to over-fit data sets with few observations or when
variables have many modalities. It is also possible to obtain multiple quantifications
by creating copies of the variables; see, for example, Gifi (1990). However, this
approach would increase the number of free parameters and having more parameters
to fit the data would worsen the over-fitting problems of MORALS.

In machine learning, and specifically for neural networks, OHE encoding is often
used to analyse categorical variables. All the dummies of all the variables, put
together, constitute the input of the network. However, this method is not an optimal
choice because it greatly increases the size of the dataset by adding orthogonal binary
variables.

A different and more adequate strategy (proposed by Di Ciaccio 2020) is described
below. Let L be the chosen dimensionality of the embedding space. To explicitly
introduce the quantification of modalities in a neural network, it is possible to define
an architecture which provides a distinct input for each categorical variable. Each
input will be of the OHS type and will be followed by a “dense layer” (the classical
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Fig. 3 Supervised neural network for two nominal explicative variables

fully connected layer) with L neurons without bias and with a linear activation func-
tion. Layers and activation functions are the basic elements of a neural network; for
definition of these terms see, for example, Abdi et al. (1999), or Bengio et al. (2003).
The output of this step is an array Qy (of dimensions I x L) for each variable, which
gives the L-dimensional quantification of X, while the modality quantifications are
given by Ay. In the next layer, the outputs, coming from all the variables, must be
concatenated. At this point, we can add the classical layers of a neural network, for
example, one dense layer with S neurons and activation function o (usually nonlin-
ear, chosen by the researcher), and one output dense layer with only one neuron and
a linear activation function ¢ (if Y is quantitative). The final network architecture is
shown in Fig. 3. The corresponding neural network can be defined as:

S K L
Y=ho+Y Bo (szkak@wm +w0s)~ (18)

s=1 k=1 £=1

Conversely, in the classical OHE encoding:

N K
?=ﬁ0+2ﬂsa (Zkaks+w05)- (19)

s=1 k=1
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The function o is the activation function of the dense layer with S neurons and is
usually nonlinear. The embedding dimension is given by L, while S is the number
of neurons which determines the adaptive capacity of the network. In (18), Xy a,, is
equal to qx¢, which is the £th column of Q.

A relevant difference between the two expressions is the different number of
parameters. If the qualitative variables have more than two modalities and if L = 2,
there are fewer parameters in (18). Even if the variables have many modalities (for
example, 100 or 200), the embedding of (18) makes it possible to perform the analy-
sis without difficulty because it involves a smaller number of parameters. Di Ciaccio
(2023) showed how this approach—compared to OHS or target encoding—Ileads,
with neural networks, to much better predictions. Other works that consider a com-
parison between different techniques in the supervised approach are, for example,
Di Ciaccio (2020), and Potdar et al. (2017).

6.3 Nonlinear Encoding in the Unsupervised Case

In the unsupervised case, the quantifications can be the true goal of the analysis and
must therefore highlight the information present in the data. The modalities can be
represented in a vector space obtaining multiple quantifications, as in the case for
HOMALS and MCA.

With HOMALS or MCA, the modalities are “optimally” encoded by using the
eigenvectors with the largest eigenvalues of the cross-product matrix. In MCA, the
problem is solved analytically, while in HOMALS, the problem is solved numer-
ically. This numerical variant offers great flexibility in machine learning. The
MCA/HOMALS approaches are linear methods that give a map where both units
and variables are represented in a low L-dimensional Euclidean space in such a way
that an observed unit is relatively close to the modalities that characterise it and away
from the modalities that do not. In this representation, the modality embeddings are
the centres of gravity of the units that share the same modality.

Let Z (of dimensions I x L) be the score matrix (the observations coordinates
on the vector space), X; (of dimensions I x Ji) the indicator matrix of variable &,
Ay (of dimensions J;, x L) the multiple quantification of the modalities, and Uy the
unitary matrix (of dimensions L x L). The HOMALS loss finds the object scores Z
and the quantifications Ay so that:

K
min  LOSS = Z — X, Aq |1, 20
N ; I Z — XA | (20)

with the centring and normalisation constraints u'Z =0,72"7Z = IU, to avoid the
trivial solutions: Z = 0, A, = 0. The LOSS function in (20) can be written as:
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M=

K
LOSS = Y 1 Z - XAg 2= Y | Xk — zA] |
k=1 k=1
K ~ I K 5
=D X=X T =D (v —Fug) @D
k=1 i=1 k=1 j=1

where )?k is the best “reconstruction” of X; and A,‘: the Moore—Penrose inverse of
Ak . Considering that, to minimise this loss, Z has to be the mean of the K matrices
XAk, the modality quantifications Ak are the only parameters to estimate.

The previous expression suggests an alternative formulation as an auto-encoder
neural network. An auto-encoder (also called an auto-associator) associates a pattern
to itself, often as a way of de-noising a signal; an auto-encoder can also be seen
as a nonlinear version of principal component analysis; for more, see Bengio et al.
(2003). Within our framework, an auto-encoder is a particular neural network able
to minimise the LOSS:

min L (X, o (¢ (X))), (22)
0.9

where ¢ and o introduce some constraints in the reconstruction of X and the LOSS
penalises the difference between X and X. Using the residual sum of squares (RSS),
(22) becomes:

min | X — o (9 (X)) 1% (23)

where ¢ maps the indicator array X to an L-dimensional latent space (the bottleneck),
o maps this representation to the output, which is the same as the input. Considering
only linear ¢, o, and a low embedding of dimension L, the architecture of the
corresponding auto-encoder for only two nominal variables is shown in Fig. 4. This
neural network includes only dense layers (also called standard or fully connected
layers).

The first layer is composed by two dense sublayers with L neurons for each
variable and linear activation function. The output layer has two dense sublayers
with as many neurons as the number of modalities of the corresponding variable and
a linear activation function. The auto-encoder produces the modality quantification
A and A; on L dimensions (usually L = 2 or 3). The score matrix, Z, is the mean
of the quantified variables Q; and Q, on L dimensions. To obtain the same results as
HOMALS, the score matrix, Z, needs to be orthonormalised and column centred. Of
course, actually performing all these computations would not make sense, because
with much less effort we can use the elegant analytical solution provided by MCA
or the alternating least squares algorithm of HOMALS.

The neural network architecture shown in Fig. 4 highlights two constraints:

1. the weights of the output layer are the inverse weights of the first layer, and
2. for all layers, the activation function is linear.
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Fig. 4 An auto-encoder that reproduces HOMALS

Moreover, the LOSS function of HOMALS is based on the classical RSS, which
may not be the best choice to compare X, to X;. Itis possible to extend the previous
approach by eliminating these two constraints and introducing a better LOSS func-
tion. The new architecture of the auto-encoder for only two nominal variables and
dimension L is shown in Fig.5.

Note that in the output layer there is a new parameter matrix W (of dimensions
L x Ji) and the activation function is now Softmax (see Bengio et al. 2003)—the
same function as used in multinomial logistic regression. Specifically, Softmax is a
function, denoted o : RY — (0, l)J , defined as:

o) =—F—— j=1....0, v=(, v, ...,v)" . (29

This way, ik contains, for each unit, the estimated probability of assuming the
different modalities of variable k. Then, the categorical cross-entropy H (Xk, )/ik)
(also called logistic LOSS) is more appropriate to compare the reconstructed array
to the indicator array X;:

K K

K 1
YOHXe X)) ==Y Y xulogfiy =—y Y log(o mWo)xy,

k=1 i=1 k=1 j=1 k=1 i=I
(25)

-
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Fig. 5 Auto-encoder to extend HOMALS to nonlinear encoding

where z; is the ith row vector of Z (with length L). Then the minimisation problem
becomes:

K
min > H Xy 0 (ZWy)). (26)
K k=1

Considering that, by definition, Z is the mean of X; A, the modality quantifica-
tions Ag and the weights Wg are the parameters to estimate. The nonlinear encod-
ing achieved in this way can be much more effective than the encoding provided by
HOMALS/MCA. Note that both methods (i.e. HOMALS and its nonlinear exten-
sion) use the same OHE coding of the categorical variables as its input. However, the
parameterisation is different, and the extension includes more parameters, a nonlinear
transformation and a different objective function. As a simple example, consider only
two categorical variables, X and Y, each with 5 modalities denoted (respectively) by
(A, B, C, D, E) and (a, b, c, d, e), which, together, produce the contingency
table shown in Table 1 (from Di Ciaccio 2023). The strong associations of the pairs
of modalities (A, a), (B, b), (C, ¢), (D, d), (E, e) are evident because of the
dominant cell frequencies that appear in the main diagonal of the table.

We would therefore expect a representation on two components that highlights
these associations: a representation where strongly associated pairs are close to each
other and equally far away from the other modalities. By applying MCA, the first four
components have the same eigenvalue and are all necessary to obtain a satisfactory
representation of the modalities. This is a feature of the matrix being symmetric;
see Beh and Lombardo (2022). Figure 6 shows the result obtained from the first two
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Table 1 A contingency table showing the association between variables X and Y

XY a b c d e Total
A 801 100 100 100 100 1201
B 100 800 100 100 100 1200
C 100 100 800 100 100 1200
D 100 100 100 800 100 1200
E 100 100 100 100 800 1200
Total 1201 1200 1200 1200 1200 6001
Correspondence Analysis Non-Linear Extension
c
e A
0.5 < £
2 a
A E
S K d e
[7] [7]
3 g o
g 05 £
a a
B
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b o b
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Dimension 1 Dimension 1

Fig. 6 Categorical encoding for CA (left) and nonlinear extension (right) on data of Table 1, first
two components

components of MCA (on the left) and with the nonlinear version just described (on
the right). Note how—with the presence of only one more unit for the pair (A, a)—
MCA creates, on the first two dimensions, a configuration that is hard to interpret.
By contrast, a nonlinear extension shows, with only two axes, a representation of the
associations very consistent with the data in the table.

7 Conclusion and Perspectives: Towards a Renewal
of Optimal Coding Methods

Transforming qualitative variables into numerical variables is once again a hot topic in
part because the profusion of (qualitative) variables with a large number of modalities
often found in big data analytics applications.

The statisticians who developed optimal scaling methods were not very concerned
about the over-fitting and instability issues that could arise from the use of a large
number of indicators because these statisticians often worked with low-dimensional
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data (they, however, developed very efficient algorithms in the linear case). The
DISQUAL method is certainly a method of regularisation by projection onto a low-
dimensional subspace, but this aspect remained secondary to the objective of calcu-
lating scores. Similarly, the work of Russolillo (2012) uses optimal scaling to apply
PLS regression and PLS path modelling to qualitative data without really focusing
on the regularising effect of projection onto the PLS components.

It is only very recently (see Meulman et al. 2019) that regularisation by Ridge,
LASSO or Elastic Net has been combined with MORALS-type optimal scaling
regression—a combination that opens up many new opportunities.

Largely independently, machine learning practitioners confronted with these high-
dimensional problems have developed—without always being concerned with opti-
mality or robustness—a large number of techniques, some of them arbitrary, or
some of them being a rediscovery of known techniques. However, we have noticed
that an approach based on neural networks leads to satisfactory results not only in
supervised but also in unsupervised approaches. In the latter case, an auto-encoder
network minimising the cross-entropy with the consideration of nonlinear links may
give better results than the least-squares minimisation at the origin of the alternating
least-squares methods.
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Marketing Data Analysis by the Dual )
Scaling Approach: An Update and a New | @
Application

Daniel Baier and Wolfgang Gaul

1 Introduction

Dual scaling and related methods like quantification theory, correspondence analysis,
or homogeneity analysis (in the following shortly summarised as the dual scaling
approach) have a long history in data analysis and statistics; see Nishisato et al.
(2021, pp. 5-25) for a recent review. After the first attempts by Karl Pearson and
others to quantify categorical data at the beginning of the twentieth century, Shizuhiko
Nishisato and others formalised and advanced this approach from the 1960s under
different names. From the start, the dual scaling approach was successfully applied
in various disciplines; see Malhotra et al. (2005). Also in marketing, it demonstrated
its usefulness. Well-known and often cited are the early articles on applications in
marketing by Franke (1985) and Hoffman and Franke (1986). They applied dual
scaling for copytesting print advertisements and correspondence analysis for market
structuring. Nishisato and Gaul (1988) summarised early applications of dual scaling
in marketing and demonstrated its usefulness by referring to analysing complex and
varied data (e.g. paired comparisons, preferences, ratings). They argued that the dual
scaling approach—at least in marketing—no longer should be called the “neglected
multivariate method” with a reference to Hill (1974).

However, thirty years later, at least in marketing, other methods seem to be pre-
ferred: So, Orme (2019) argues on the basis of a yearly survey among industrial
users of Sawtooth Software (the market leader for conjoint analysis software) that
conjoint analysis is applied more than 27,000 times a year in large-scale commer-
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cial contexts. Baier and Brusch (2021) support these findings by analysing a large
sample of conjoint analysis applications of a major European market research insti-
tute. Articles with overviews on applications of conjoint analysis (Green and Srini-
vasan 1978, 1990) are among the most often cited articles in marketing research
journals, in contrast to the mentioned articles on applications of the dual scaling
approach. Additionally, when the goal is to analyse complex and varied data—a
known advantage of dual scaling—the most often applied methods according to polls
among data scientists (e.g. https://www.kdnuggets.com/2016/09/poll-algorithms-
used-data-scientists.html) are regression, cluster analysis, and decision trees. Visu-
alisation is ranked fourth in this poll, but the dual scaling approach is not referred to
as a solution for this task.

The paper is structured as follows: In Sect. 2, we take a closer look at applications
of the dual scaling approach in marketing and the potential reasons of less usage.
Section 3 shows dual scaling results of well-known paired comparisons data using
recent software developments. In Sect.4, we introduce and analyse a new dataset
with preferences of a large sample of online shop customers. The paper closes with
an outlook in Sect. 5.

2 Marketing Data Analysis by the Dual Scaling Approach

Collecting data and analysing them with advanced statistical methods has a long tradi-
tion in marketing (see, Ferber 1949). However, in a recent review, Wedel and Kannan
(2016) argued that the spread of these methods firstly gained impact in the 1960s
when developments and practical applications were published in respected journals
like Journal of Marketing and Journal of Marketing Research or additionally—from
the 1980s—International Journal of Research in Marketing and Marketing Science.
Inspired by these articles, cluster, conjoint, correspondence, and discriminant anal-
ysis, dual scaling, logit analysis, multidimensional scaling, regression analysis, and
many other methods were further developed and applied to solve real-world market
segmentation, product positioning, and pricing problems.

Roberts et al. (2014) analysed the diffusion of these methods in marketing theory
and practice. Based on a citation analysis and three surveys among researchers, medi-
ators, and practitioners, they determined that some methods were outstanding in this
regard. So, publications on developments and applications of conjoint analysis (e.g.
Green and Srinivasan 1978, 1990) were most often cited and had the highest impact.
On the other side, publications on developments and applications of the dual scaling
approach—see Table 1 for an overview—also show a high number of citations. But,
compared to other methods, the application numbers of the dual scaling approach
are still low and corresponding publications not among the top 100 publications with
outstanding impact; see Roberts et al. (2014). At least in marketing and in contrast
to the expectations of Nishisato and Gaul (1988), the dual scaling approach must
further be referred to as a “neglected multivariate method”.
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Table 1 Overview on applications of the dual scaling approach in marketing

Marketing task

Data (sample size)

Method applied

Reference

Copytest a print ad for
women’s shoes

Ratings of 18 attributes
w.r.t. the ad (n = 30)

Dual scaling of response
frequencies

Franke (1985)

Structure the overnight
delivery market

15 attributes describing
one’s shipper (n = 252)

Carroll-Green-Schaffer-
Scaling

Carroll et al. (1986)

Structure the beverage
market (cola, non-cola)

Weekly consumption of 9
brands (yes/no, n = 34)

Correspondence analysis
with French plot

Hoffman and Franke (1986)

Position cognac brands by
print ads

Paired comparisons of 10
print ads (n = 69)

Dual scaling of the
dominance matrix

Nishisato and Gaul (1988)

Position cognac brands by
print ads

Ratings of 7 attributes w.r.t.
10 print ads (n = 69)

Forced classification on
dominance matrix

Nishisato and Gaul (1988)

Segment cosmetics markets
(hypothetically)

Ratings of brands w.r.t.
attributes by consumers

Forced classification on
dominance matrix

Nishisato (1988)

Segment cosmetics markets
(hypothetically)

Preferences of consumers
w.r.t. brands

Forced classification on
dominance matrix

Nishisato (1988)

Position cigarette brands by
print ads

Ratings of 14 attributes
w.r.t. 8 ads (n = 126)

Forced classification on
dominance matrix

Nishisato and Gaul (1990)

Measure attribute impact
on destination choice

12 paired comparisons of
fictive dest. (n = 157)

Multiple correspondence
analysis

Kaciak and Louviere
(1990)

Track periodic beverage
consumption (t = 1,...,4)

Allocation of brands to
occasions (n = 800)

Correspondence analysis
with French plot

Higgs (1991)

Improve the perceived
safety of small cars

Results of 24 cars w.r.t. 4
objective tests

Multiple correspondence
analysis

Hoffman and De Leeuw
(1992)

Position hospitals in the
eyes of referrers

Referrals of physicians
(n = 1086) for diseases

Correspondence analysis
with French plot

Javalgi et al. (1995)

Position banks in the eyes
of customers

Allocation of 25 features to
10 banks (n = 364)

Correspondence analysis
with French plot

Yavas and Shemwell (1996)

Position retailers w.r.t.
purchase patterns

Allocation of motives to
products (n = 319)

Correspondence analysis
with French plot

Yavas (2001)

Position cigarette brands in
the eyes of men

Allocation of 12 brands to
11 attributes (n = 100)

Correspondence analysis
with French plot

Cholakian (2006)

Position airline brands in
the eyes of customers

Allocation of brands to
attributes (n = 381)

Correspondence analysis
with French plot

Wen et al. (2008)

Sell luxury goods online
and/or in-store

Reasons to shop online
resp. in-store (n = 55)

Text mining and
correspondence analysis

Liu et al. (2013)

Segment software markets
w.r.t. preferences

Preferences w.r.t. 12 design
attributes (n = 128)

Correspondence analysis
with French plot

Wang (2016)

Measure effectiveness of
online marketing

Usage frequencies of 5
tools (n = 313)

Correspondence analysis
with French plot

Krizanova et al. (2019)

Find big five personality
trait segments

Scores on big five
personality traits (n = 27)

Correspondence analysis
with French plot

Pitt et al. (2020)

Position plant-based meat
alternatives

Evoked associations by
consumers (n = 1039)

Correspondence analysis
with French plot

Michel et al. (2021)

Improve online shops w.r.t.
sustainability

Preferences w.r.t. 9
improvements (n = 4411)

Dual scaling of
ranking data

This paper

Abbreviation w.r.t. = with respect to
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The reasons for this neglect seem to be many-fold. Here, we only discuss two
concerns often raised when talking to marketing researchers, mediators, and practi-
tioners: (1) The lack of powerful software for the dual scaling approach that makes
it easy to collect and analyse data as needed in a market research or consulting
project as well as (2) the lack of a convincing case study where the application of
the dual scaling approach leads to a measurable impact from a marketing manager’s
or decider’s point of view.

So, concerning (1), it is often argued that conjoint analysis and structural equation
modelling are very successful since powerful and dedicated software is available.
Sawtooth Software offers Lighthouse for conjoint analysis, a system that handles
the whole market research process from designing advanced online questionnaires,
data collection, analysis, simulation, and optimisation as well as final presentation
of results to marketing managers and deciders. The software is constantly improved
in close collaboration with researchers, managers, and deciders. The same holds for
smartPLS, a currently widespread structural equation modelling software that allows
the analyst to perform acceptance analyses of new technologies in an advanced man-
ner. For dual scaling, at a first glance, this availability of powerful and dedicated
software also holds: Beh (2004), Malhotra et al. (2005) as well as Lombardo and
Beh (2016) discuss a large number of procedures and packages. Shizuhiko Nishisato
and Ira Nishisato developed Dual3 for dual scaling which is based on the work
of Nishisato (1980). Nowadays, Dual3 is no longer available, but the R package
dualScale by Clavel et al. (2014) helped to fill this gap. For related methods like
correspondence analysis, the availability of software packages and procedures is even
greater. All statistical software systems (e.g. BMBP, SAS, and SPSS) offer at least
simple correspondence analysis. Moreover, Lombardo and Beh (2016) not only dis-
cuss their own powerful R package CAvariants, butalso 12 further R packages for
correspondence analysis: ca by Nenadic and Greenacre (2007) and FactoMineR
by L& et al. (2008), as well as ade4, anacor, cabootcrs, CAInterprTools,
cncaGUI, ExPosition, homals, MASS, PTAk, and vegan. Most of these
packages receive a yearly update and/or constant improvements; see Lombardo and
Beh (2021), Greenacre et al. (2020), and Husson et al. (2020). Lombardo and Beh
(2016) conclude that these packages cover broad areas from a methodological and
an application-oriented point of view. However, the close collaboration between the
software (and methodological) developers and the marketing research practice seems
to be limited at the moment. Here, maybe, more exchange between researchers,
mediators, and practitioners during conferences (e.g. COMPSTAT, ECDA, IFCS,
INFORMS Marketing Science) could be a solution.

Concerning (2), dual scaling still lacks a convincing marketing case study with
a convincing managerial impact from a practical point of view. At a first glance,
Table 1 contains a large number of advertising testing, brand management, or market
segmentation applications. Graphical displays of two modes of objects (e.g. indi-
viduals and brands or brands and attributes) are employed. However, the often used
“French plot” in these applications is problematic since the coordinates of the two
modes of objects come from two different subspaces. The visualisation is helpful
for exploration, but it does not allow to relate inter-mode distances to market shares



Marketing Data Analysis by the Dual Scaling Approach ... 159

or profits. Consequently, modifications (e.g. modified brand positions) can not be
evaluated in terms of future market shares and profits. Many recent publications pro-
pose alternative joint graphical displays and biplots included in freely downloadable,
easy-to-use, and comprehensive software packages; see Lombardo and Beh (2016)
for an overview and an excellent R software package. But—up to now—there is a
lack of marketing applications of these packages that lead to a measurable impact
from a managerial point of view.

In the next two sections, we try to show that these concerns are exaggerated.
In Sect. 3, we analyse the well-known paired comparisons data from Nishisato and
Gaul (1988) with a newer R package (FactoMineR). In Sect. 4, we apply the same
analysis to a large dataset with preference data from n = 4411 online shop customers.

3 Analysing the Nishisato and Gaul (1988) Paired
Comparisons

In their review article on marketing applications of dual scaling, Nishisato and Gaul
(1988) analysed the paired comparisons data first published in Gaul and Schader
(1988). Each of the 69 customers who took part in the study was asked (forced
choice) to indicate for all possible pairs of presented ads which ad he/she prefers.
The ten ads used in data collection were two each for the five cognac brands Remy
Martin, Hennessey, Courvoisier, Bisquit, and Martell, leading to 10 - (10 — 1)/2 =
45 possible pairs of presented ads. In the following, we reanalyse this data using
the R package FactoMineR. First, following a proposal by Torres and Greenacre
(2002), we transfer them to count data as given transposed in Table 2. Each customer
is represented by two rows: One row counts her/his indicated dispreferences for each
ad (“—"), one row counts her/his indicated preferences for each ad (‘“+”).

Cell (i—, j) indicates how often customer i did not prefer j to another ad (i =
I,...,69and j =1, ..., 10). Cell (i+, j) indicates how often customer i preferred
J to another ad. Note that the sum of (i—, j) and (i+, j) is always nine since j is
contained in nine ad pairs. The additional rows All— and All4+ summarise the counts
across all customers (summing up to 69 - (10 — 1) = 621 for each ad as the number
of presentations of pairs with the ad contained). It can be easily seen that—across all
69 customers—ad Martell (1) was the most preferred in a paired comparison (419
times), whereas ad Hennessey (1) was the least preferred (186 times).

The organisation of the paired comparisons data as described has the advan-
tage that the count data (without the additional rows All— and All4+) now can
be analysed using correspondence analysis software; for example, FactoMineR
or CAvariants. Nevertheless, the same results emerge as if dual scaling and
Dual3 would have been applied; see Torres and Greenacre (2002). For this anal-
ysis, Nishisato and Gaul (1988) constructed a so-called dominance matrix from the
paired comparisons data with customers as rows (69 rows) and ads as columns (10
columns) where each cell counts the number of times a customer preferred the ad
minus the number of times a customer dispreferred the ad. Note that dual scaling and
Dual3 are able to deal with negative cells (in contrast to correspondence analysis).
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Table 3 Summary of statistics when dual scaling is applied to the paired comparisons data from
Nishisato and Gaul (1988)

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6
Eigenvalue | 0.123 0.064 0.046 0.032 0.024 0.018
Singular 0.350 0.254 0.215 0.178 0.156 0.136
value
Accounted |36.401 19.119 13.751 9.428 7.222 5.492
for (%)
Cum. 36.401 55.520 69.271 78.699 85.921 91.413
accounted
for (%)
Discrepancy | 69.494 75.293 77.566 79.730 81.023 82.179
angle (°C)

Abbreviation Comp. = component, cum. = cumulative

Table 3 summarises the results of applying FactoMineR to the datain Table 2. As
expected, the eigenvalues, singular values, and variances accounted for are identical
to the results presented in Nishisato and Gaul (1988). Two components account for
55.520% of the inertia. The calculated high discrepancy angles for each dimension—
see Nishisato et al. (2021, p. 49) for a discussion—additionally indicate that the usual
joint graphical display (French plot) as given in Fig. 1 must be used with caution.
Overlaying the row (customer) and the column (ad) subspaces is inaccurate. However,
Nishisato et al. (2021)’s discussion of the discrepancy angles and their consequences
allows the analyst to read the French plot in an appropriate way.

Taking these caveats into consideration (a topic that has always been at the core of
Shizuhiko Nishisato’s talks), Fig. I is able to provide some interesting insights. First,
the graphical display of the ads is identical to the graphical display in Nishisato and
Gaul (1988). Note the different sign in dimension 1 is irrelevant from an analytical
point of view. The low distance between the two ad points of the same cognac brand
indicates again that they are very similarly judged by the customers. Moreover,
similar ads with respect to the presented motifs are near-by positioned: Courvoisier
and Martell as well as Remy Martin (1) show exclusive convivial moments, whereas
the others show exclusive solitude with or without a lonesome brand ambassador.

Moreover, now, in contrast to Nishisato and Gaul (1988), Fig. 1 shows one point
for each customer’s preferences (rows i +, displayed by a “+”). The point for a single
customer’s dispreferences (rows i —, displayed by a “—”) is suppressed for readabil-
ity reasons. Due to the dependence of the corresponding counts (the cells for “+” and
“—""in Table 2 sum to the number of ads minus one for each ad), each dispreferences
point (“~") would have a mirrored at the origin position to the corresponding pref-
erences point (“+7). The many “+” in the direction of the Courvoisier and Martell
ads demonstrate that many customers prefer these ads. Even if we are aware of the
discrepancies of the two subspaces (for ads and customers) and take the increasing
distance from the origin into account, the graphical display gives useful insights into
the competition between brands. We demonstrate the advantages of this graphical
display in the next section with an even larger sample of customers.
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Fig.1 Graphical display when dual scaling is applied to the paired comparisons data from Nishisato
and Gaul (1988), “+” displays a customer’s preferences, “—" displays a customer’s dispreferences
(“+” and “—" are mirrored points at the origin, “—" points are suppressed for readability reasons)

4 Analysing Sustainable Online Shop Improvement
Preferences

During the last decade, sustainability has developed from a marginal to a mainstream
topic in many industries; see Baier et al. (2020) and Rausch et al. (2021) for more
on this development. Consumers are increasingly environmentally conscious and
expect from their business partners the same. So, Rausch et al. (2021) showed in two
surveys (with n = 1770 and n = 1678) that customers of a major German apparel
online retailer (BAUR, www.baur.de) favour durable products, especially when they
are manufactured using low-emission technologies as well as fair wages and working
conditions. Baier et al. (2020) additionally found in a large survey with ADIDAS
customers that consumers—on average—would accept a price increase for sustainable
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apparel and sportswear of about 15-20%. In spring 2021, the BAUR surveys were
repeated, with a focus on potential online shop improvement options (in the following
shortly: options).

A list of options was developed based on Baier et al. (2020), Rausch et al. (2021),
and the references there as well as workshops with 23 BAUR customers and ten
experts (the retailer’s senior staff for website design, for corporate sustainability, and
for customer service). Table 4 reflects the final nine options with short names (used
later in this paper) and a shortened description of each option with sample images to
make the options clearer for the customers (text in German).

An online questionnaire—developed and hosted using the software Qualtrics
(see www.qualtrics.com)—contains these descriptions and the invitation to sort the
described options according to decreasing preference (“Please indicate by ranking
which of the discussed options are most important to you. Please arrange the nine
options from top to bottom, starting with the most important. To do this, simply
drag the respective option to the desired position while holding down the mouse but-
ton.”). The questionnaire also asked for socio-demographic information and for the
respondent’s past sustainable and non-sustainable buying behaviour. The question-
naire was tested with a sample of ten customers. According to their understanding
of the descriptions, some phrasing was slightly modified.

The questionnaire was distributed among BAUR customers via the company’s
June 2021 newsletter. Recipients of the newsletter were asked to participate in an
improvement survey of the shop and for participating they were offered a raffle
with five vouchers at 20 Euro. Within one week, n = 4411 completely filled out
questionnaires were collected. Gender distribution (female: n = 3502, 73.4%, male:
n =900, 18.9% male, diverse: n = 9) and age distribution (up to 29 years: n =
199, 4.5%, 30-39 years/30s: n = 529, 12.0%, 40s: n = 873, 19.8%, 50s: n = 1509,
34.2%, from 60 years: n = 1301, 29.5%) of the sample reflects quite well gender and
age distribution of the online retailer’s newsletter recipients with about 75% female
and 25% male customers, most of them 45+ years old. Of course, as with many other
customer surveys using newsletters for distribution, the sample is biased in so far that
we expect that especially loyal and less critical customers participated in the survey.
Moreover, only 2% of the newsletter recipients answered.

The collected rank-order preferences were—as in the last section—transformed
into count data as given and summarised in Table 5. Cell (i —, j) indicates how often
customer i ranked option j less important than another option (i =1, ...,4411,
Jj=1,...,9).(Gi+, j)indicates how often customer i ranked option j more important
than another option. The sum of (i —, j) and (i+, j) is always eight (the number of
options minus 1) since in each ranking the rank of option j can be compared with the
rank of eight other options. Again, All— and All4+ summarise the counts across all
4411 respondents. It can be easily seen that—across all respondents—product traffic
light is the most preferred option (22,915 times), followed by labelled images, visible
filter, and brand traffic light. Note that again, the sum of the All— and All4 counts
in each row is the number of customers (here: 4411) times the number of options
(here: 9) minus 1 (here: 4411 - 8 = 35,288). Analysing this count data (again without
the rows All— and All+4) using FactoMineR leads to the results in Table 6. Two
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Table 4 Potential sustainable online shop improvement options for an online apparel retailer

Short name

Description in the questionnaire (shortened, with explanatory images)

Product traffic light

Please imagine that there was a traffic light
system in the BAUR online shop, with
which the individual products were
labelled with regard to their sustainability.
With the help of the traffic light system,
you as a customer receive a simple
assessment of whether the product in
question meets the three sustainability
criteria (ecology, economy, social issues)

Brand traffic light

Please imagine that there was a traffic light
system in the BAUR online shop with
which the brands behind the products are
identified with regard to their
sustainability. With the help of the traffic
light system, you receive a simple
assessment of whether the respective brand
meets the three sustainability criteria
(ecology, economy, social issues)

Labelled images

Please imagine BAUR labelling the
product images in the online shop with the
word “sustainable”. When shopping, you
can see at first glance whether a product
has been manufactured sustainably or not

‘Webpages

Please imagine that BAUR would show
very transparently on its website how the
company is committed to more
sustainability, for example, “Which
specific sustainability projects are
supported?”, “What seals are there in the
BAUR online shop?”, etc. On this page you
could also read general information about
sustainability, for example, “Why is
sustainability important?”

Seal

Please imagine that BAUR would use
different seals to label products in the
online shop in order to show which criteria
for sustainability a certain product met

Visible filter

Please imagine that the BAUR online shop
gave you the option of filtering products
directly according to the “sustainability”
criterion. The associated filter is directly
visible and clickable, so you can filter for
all sustainable products with just one click

(continued)



Marketing Data Analysis by the Dual Scaling Approach ... 165

Table 4 (continued)
Short name Description in the questionnaire (shortened, with explanatory images)

Detailed filter Please imagine you could filter the
products in the BAUR online shop
according to various sustainability criteria.
The filter criteria are explained in a simple
and understandable way

Project filter Please imagine you could filter the products
in the BAUR online shop according to
various sustainability criteria. The filter
criteria would be named after specific
projects that are supported. You can find
more information about the projects on
their own information page on baur.de
Product details Please imagine that BAUR went into more
detail about the sustainability of these
products in the details and descriptions of
the individual sustainable products in the
online shop

components account for 42.011% of the inertia. Again, the high discrepancy angles
for each dimension (see, Nishisato et al. 2021, p. 49, for a discussion) indicate that
the joint graphical display should be used with caution.

Again, taking these caveats into consideration, Fig.2 is able to provide some
interesting insights. First, the graphical display helps to understand how similar
the options were ranked by the customers. Product traffic light and brand traffic
light seem to be similarly preferred, the same holds for labelled images and visible
filter. Again, as in the last section, the “+” reflect single customer’s preferences,
whereas the “—” that reflect single customer’s dispreferences are suppressed for
better readability. The grouping of many “+” on the left side of the display indicates
that the above mentioned options—product traffic light and brand traffic light but
also labelled images and visible filter—are preferred options whereas the similar
options webpages and project filter are dispreferred.

In order to analyse whether these preferences depend on the grouping of the
customers (e.g. age and gender as a priori groups or groupings derived by clustering),
an advantage of dual scaling is to position supplementary variables in the display.
Here, the aggregate counts of the age and the gender groups were formed similar
to the All— and All4 rows in Table5, and their positions were calculated using the
FactorMineR package. Figure3 shows the derived graphical display. Note that
here (for better interpretation), the single customers’ “+” were suppressed also.

Itcan easily be seen that the age and gender group’s preferences and dispreferences
are very similar to the observed overall preferences and dispreferences in Fig.2. All
“+” are on the left side of the display, all suppressed “—" are on the right side.
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Table 6 Summary of statistics when dual scaling is applied to the sustainable online shop improve-
ment preference data

Comp.1 |Comp.2 |Comp.3 |Comp.4 |Comp.5 |Comp.6
Eigenvalue 0.115 0.060 0.051 0.048 0.041 0.038
Singular value 0.394 0.246 0.226 0.219 0.202 0.194
Accounted for (%) |27.504 14.506 12.285 11.471 9.786 9.075
Cum. accounted for 27.504 42.011 54.297 65.768 75.554 84.629
(%)
Discrepancy  angle 70.213 75.768 76.924 77.372 78.350 78.787
(°C)
Abbreviation Comp. = component, cum. = cumulative
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Fig. 2 Graphical display when dual scaling is applied to the sustainable online shop improvement
preference data, “+” displays a customer’s preferences, “—" displays a customer’s dispreferences

(suppressed for readability reasons)
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Fig. 3 Graphical display when dual scaling is applied to the sustainable online shop improvement
preference data, “+” displays a customer group’s preferences, “—" displays a customer group’s
dispreferences (suppressed for readability reasons); positions of customer groups are calculated via
supplementary variables (gender groups: female and men, age groups: up to 29 years, 30s,40s, 50s
and above 60 years, all other positions are the same as in Fig.2

However, a slight indication is available that male and elder customers tend a bit
more to the options in the lower part of the display (product traffic light and brand
traffic light), whereas female and younger customers tend more to the options in
upper part of the display (labelled images and visible filter). Further analyses have
of course been conducted, but we will stop here with our discussion due to space
restrictions.
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5 Conclusions and Outlook

In this paper, we discussed the diffusion of the dual scaling approach in marketing
and discussed a new application. The number of applications has recently consider-
ably increased; however, for playing a major role in marketing applications, some
further successful applications and convincing case studies are needed. The available
software has made major progress and offers many possibilities to analyse complex
and varied data (answers to open questions, associations, cross-tabulations, discrete
choices, preferences, ratings) a deciding asset of dual scaling from the beginning.

At this point of reflections, the authors would like to say a big thank you to
Shizuhiko Nishisato for his never-ending effort to make dual scaling popular among
us and other marketing researchers. We are looking forward to even more joint work
in the near future that helps to demonstrate the inspiring elegance and practical
usefulness of these methods.
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Power Transformations and Reciprocal m
Averaging L

Eric J. Beh, Rosaria Lombardo, and Ting-Wu Wang

1 Personal Reflections and Outline

Professor Shizuhiko Nishisato has dedicated his career to the development and dis-
semination of ideas concerned with many areas of Statistics. Much of it has focused
specifically on a vast array of issues concerned with quantification theory and cat-
egorical data analysis. We, therefore, consider it an honour and a privilege to not
only be asked to contribute to this special collection of papers designed to celebrate
his career but to also (in the case of the first two authors) to edit it. Our humble
addition to this collection will focus on a variation of a key area of research that has
garnered much of Nishisato’s attention throughout his career. However, before we
discuss more on the nature of this variation, we feel it is appropriate to view through
a wide-field lens the contributions he has made.

Nishisato’s work in quantification theory has been predominantly on quantifying,
for largely categorical data, scores that help to reflect the association between the
variables as well as understanding how specific categories compare. In Chap.2 of
his book titled Multidimensional Nonlinear Descriptive Analysis (Nishisato 2007),
Nishisato outlines a variety of different ways in which quantification theory can
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be approached. These include using the method of reciprocal averaging (which is
our favoured option), through a one-way ANOVA framework, by maximising the
bivariate correlation between the variables (a technique related to canonical corre-
lation analysis) and by approaching the method through geometric means. He also
discusses a least squares approach that involves minimising the sum-of-squares of
the difference between an observed cell frequency and its estimated value obtained
from an association model. Interestingly, he starts the chapter (Sect.2.1) with the
question:

Is Likert-Type Scoring Appropriate?

Such a question is certainly relevant when viewed from the point of view we have
taken for much of our joint and independent work concerning ordinal variables.
Indeed, Likert-type scores (we’ve referred to them as natural scores in the past—
see, for example, Beh and Lombardo (2014, 2021))—are used as a basis for the
construction of orthogonal polynomials when defining the structure of ordinal cat-
egories. While Nishisato does not immediately answer the question, he does state
more recently (Nishisato et al. 2021, p. 39) that:

. . . the Likert scale is nowadays useful only as a coding method, and it no longer serves as
a scoring method.

For the range of contributions Nishisato has given to quantification theory, much
of his energy has been dedicated to developing dual scaling—a term he coined in
1976 but proposed to the scientific community in his book titled Analysis of Cate-
gorical Data: Dual Scaling and its Applications (Nishisato 1980a). One may refer to
Nishisato (2007, Sect.3.3.4) for more information on the genesis of the term. While
papers in this Festschrift provide a comprehensive discussion of his career and its
many highlights, his work on dual scaling spans an extensive array of publications
that specifically deal with this area of research, including the books Elements of
Dual Scaling (Nishisato 1994), Dual Scaling in a Nutshell (Nishisato and Nishisato
1994) and, of course, Analysis of Categorical Data: Dual Scaling and its Applica-
tions (Nishisato 1980a). He has also examined the role of dual scaling on ordered,
and partially ordered, categories—see Nishisato (1980b, 2000), Nishisato and Arri
(1975), Nishisato and Wen-Jenn (1984) and Nishisato and Inukai (1972)—which has
been a topic that we (Beh and Lombardo) have independently, and jointly, focused
much of our attention to since the late 1990s. More recently, Nishisato has written
extensively about some of the pit-falls inherit in using the scores obtained from quan-
tification theory to visualise the relationship between variables (as correspondence
analysis does for categorical variables); see Nishisato (1988a, 1995) and Nishisato
and Clavel (2003, 2010) for an array of discussions on this matter. While we have
been greatly influenced by Nishisato’s early work on the analysis of ordinal categor-
ical variables—especially of Nishisato and Arri (1975)—it is through his concerns
raised on the topic of visualisation that cements our collaboration and friendship.
The Nishisato/Clavel and Beh/Lombardo teams may be on opposite sides of the
visualisation spectrum, something we were open about in the Preface of Nishisato
et al. (2021), but this only helped to strengthen our friendship and mutual respect
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of each other’s work. However, to avoid any potential “rift” (we say with a smile
on our face) we refrain from discussing the role of data visualisation in quantifica-
tion theory. Instead, we shall describe in this paper the variation to dual scaling that
we alluded to in the first paragraph. This variation involves investigating the role
of power transformations using an analogous technique to dual scaling—commonly
referred to as reciprocal averaging—for two categorical variables. Such an approach
is very much related to the issue of power transformations described from a corre-
spondence analysis perspective by Michael Greenacre (Greenacre 2009, 2010) and
the methods of Beh and Lombardo (2024), Cuadras and Cuadras (2006, 2015) and
Cuadras et al. (2006) although we focus purely on the scaling aspects here instead
of the geometric/visual elements.

To describe the role of power transformations from a reciprocal averaging per-
spective, this paper is divided into six further sections. Section 2 introduces the nota-
tion of a two-way contingency table that we shall be using throughout this discussion
(Sect.2.1), as well as defining the profile of arow and column of this table (Sect.2.2).
An overview of the traditional approach to reciprocal averaging as outlined by many,
including Hill (1974) and Beh and Lombardo (2014), is also described (Sect.2.3).
Section 3 provides a discussion of the role of power transforming the elements of
the row and column profile. Greenacre (2009) describes two types of transformation
that can be considered and does so from the perspective of correspondence analysis.
We shall be focusing our attention on the role of reciprocal averaging on his “power
family 2” although one may consider Wang et al. (2023) for a related discussion on
its role in a third type of power transformation. Section4 provides the core discus-
sion of this paper where we derive the reciprocal averaging procedure to determine
a one-dimensional set of row and column scores when a power transformation is
applied to the profile elements (Sect.4.1). We also show how eigen-decomposition
can be performed to obtain a multi-dimensional orthogonal set of row and column
scores (Sect.4.2). We show in Sect. 4.3 that the correlation between the set of row and
column scores thatis obtained is the maximum possible correlation along each dimen-
sion. Section 5 outlines the role of singular value decomposition (SVD) for obtaining
the row and column scores. The practical equivalence of the scores obtained using
the reciprocal averaging procedure and through the SVD of a matrix of residuals is
demonstrated in Sect. 6. We study the asbestos data of Irving Selikoff (Selikoff 1981)
which is described in Sect. 6.1 and then calculate the one-dimensional row and col-
umn scores using reciprocal averaging for various power transformations (Sect. 6.2).
We then describe the application of SVD to obtain equivalent one-dimensional scores
and, more generally, multi-dimensional scores in Sect. 6.3. Some final comments are
left for Sect.7 where we also describe how one may perform alternative reciprocal
averaging methods to obtain row and column scores under a power transformation of
the profile elements. Such methods advance the arithmetic averaging of the elements
on which the traditional reciprocal averaging is based, but also include a modified
version of method of reciprocal medians (Nishisato 1984) and geometric averaging
(Clavel 2021, Chap.8) which considers the geometric average of the profile ele-
ments. At the end of the paper we include an appendix which gives an R function
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rapower .exe () that performs the one-dimensional reciprocal averaging proce-
dure described in Sect. 4.

2 An Overview of Reciprocal Averaging

2.1 Notation

Suppose we consider an / x J two-way contingency table, N, where the (i, j)th
cell entry has a frequency of n;; fori =1,2, ..., ITand j =1, 2, ..., J.Letthe
grand total of N be n and let the matrix of relative frequencies be P so that its (i, j)th
cell entry is p;; = n;;/n where Zi[:l Zj]'=1 pij = 1. Define the ith row marginal
proportion by p;, = ZJJ'=1 pij so that it is the ith element of the vector r and the
(i, i)thelement of the diagonal matrix D;. Similarly, define the jth column marginal
proportion as p,; = Z{:] pij so that it is the jth element of the vector ¢ and the
(j, j)th element of the diagonal matrix D;.

2.2 Definition of a Profile

Before we provide a broad discussion of reciprocal averaging, it is important to
understand the quantities we are working with when we calculate row and column
scores and the interpretation they provide when comparing the row scores or the
column scores. The quantities of interest to us here are the profile of a chosen row or
column category. The profile of the ith row category is defined as the set of relative
cell frequencies of that row so that the profile takes the form:

(nil nis njj nil)_(pil Pi2 Pij Pu)
Nie Nje Nie Nie Die Die Die Die

Similarly, the profile of the jth column profile is:

<ﬂ o M M) _ (Plf Py . Pi Pff)
n.j 1) n.j ’ £ n.j b ’ n.j p.j ’ p.] ’ ’ p.j ’ ) p.j
If there is no association between the row and column variables, such that p;; =

PieDej, foralli=1,2, ..., I and j=1, 2,..., J, then the ith row and jth
column profiles simplify to:

(p.lv p.z’ Tt pojs MR p.])

and
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(plo, PZoy R pi.7 Y p[.) )

respectively, so that the ith centred row profile is:
Pi1 Pi2 Pij PiJ
— —Pel, — — Da2y = — Dej, s — — Pey | -
Die Die Die Die

Similarly, the jth centred column profile is:

Pij P2j Pij Pij
(—j—pl., j—pz.,-“, U_Pio,"'» j—p1.>.

Pej Pej Pej Pej

In both cases, if there is complete independence between the row and column cate-
gories, both sets of centred profiles will consist of zeros.

2.3 Reciprocal Averaging

Reciprocal averaging, like dual scaling and other analogous quantification methods,
determines row and column scores that do two things. First, they are calculated to
best discriminate between differing profiles and highlight those with a similar struc-
ture. Secondly, they are calculated to maximise the association that exists between
the row and column variables. Once these scores are determined they can be used
for visually exploring the nature of this association rather than relying solely on
numerical summaries. Correspondence analysis is the most common approach that
adapts these quantities for such a purpose and many of Nishisato’s friends who have
contributed to this collection have dedicated much of their career to the development
of correspondence analysis and its related methods.

Before we describe the reciprocal averaging of power transformed profiles we
provide a broad overview of the traditional approach to the reciprocal averaging of
the profile elements. Such an overview is not new and has been described numerous
times throughout the quantification literature including, for example, Hill (1974) and
Hirschfeld (1935), and in various forms in many of Nishisato’s publications.

Suppose we define the ith row score by a;,, while the jth column score is denoted
by bj, form =1, 2, ..., M; the subscript m is typically included to reflect the
quantity along the mth dimension of a visualisation of the association although,
while we make no such comment on this, it is important to note that such dimensions
are orthogonal to each other. There are many accounts given that show how reciprocal
averaging can be performed to determine these scores, most of which do so by stating
that the scores are subject to the following properties:

1 1
E(ain) = Zpioaim =0 Var(an) = Zpi.a,-zm =1 (1)

i=1 i=1
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J J

E(bjm) =Y pejbjm =0 Var(bjm) = pebs, =1. )
j=1 j=1

We refrain from referring to (1) and (2) as the constraints of a;,,, and b j,,, as has often
been done in the quantification literature. This is largely because Gower (1989, p.
222) states that properties of the type defined by (1) and (2) are “conveniences that
should not be regarded as constraints”.

Reciprocal averaging involves determining the row score, a;,, and column score
bjm, by considering the weighted (arithmetic) mean of the elements of their centred
profiles so that:

AmQim = (211 - pol) blm +---+ <plj - p'!) bfm

Z(”” —p.,»)b,-m 3)

—1 \Die

~

and

P1j Pij

)\mbjm = ( ! —P1.> aym +--- +< L — pl.) Aim
p.j p'/
1

Dij
(—’ - p,-.) Gim - “)
1 \Pej

The X, term in these two equations is the maximum (positive) correlation between
the mth set of row and column scores so that:

1

i
Ap = E DijQimbjm -
i=1 j=1

Equations (3) and (4) can be expressed in matrix notation by:

Amay = (D7'P —1;¢7) b,

and
—1pT T
Amby = (D7'PT —1,r")a,
where
T
am = (all’l’h oy Aimy v, alm)
and

bmz(blm’ oy bjm, bjm)r,
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The solution to a,, and b,, can be obtained by solving the eigen-decomposition
equation:

(zz" —21,) (D} a,) = 0;. 5)

where
Z=0;"2(P-r")D;"? (6)

and I, is an / x [ identity matrix. Note that the (i, j)th element of Z is Pearson’s
standardised residual:

7. = plj - pi.poj
Y /\/piopoj

so that \/nZ;; is asymptotically standard normally distributed. By denoting a,, =
1/2
D, “a,, then (5) becomes:

(zZ" — 1. 1;)a, =0,

so that &,, is the mth eigen-vector of ZZ” and 12 is the mth largest eigen-value of
this matrix. A similar derivation obtains the eigen-decomposition equation:

(Z"Z - 321,) b, = 0;,

where f)m = Dl/ 2am is the mth eigen-vector of Z' Z.

3 Linear Transformations and Reciprocal Averaging

In Sect.2 we outlined that the traditional approach to reciprocal averaging involves
the weighted (arithmetic) mean of the elements of the centred row and column pro-
files. There are situations where considering a power transformation of these elements
is warrented. For example, it may involve a square root power to help stabilise the
variance of the cell frequencies when overdispersion is present in the data; this may
be arise due to the underlying assumption that cell frequencies are Poisson random
variables. One may also wish to determine the limiting value of such a transformation
as the power approaches zero so that a (natural) logarithmic transformation is con-
sidered. It might be that chi-squared distributed measures of association other than
Pearson’s statistic are used. Such situations were considered by Beh and Lombardo
(2024) although earlier discussions on the role of power transformation involving
contingency tables has been a topic of much discussion. In particular, one may con-
sider the interconnected issues described by Cuadras and Cuadras (2006, 2015),
Cuadras et al. (2006), and Greenacre (2009, 2010) who provide a discussion of the
role of power transformations in the context of correspondence analysis. For more
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general, and earlier, discussions of the power transformation for the contingency
table the interested reader is directed to Anscombe (1953, pp. 229-230), Bishop et
al. (2007, Example 14.6-3) and McCullagh and Nelder (1984, p. 38).

We shall be considering a purely numeric account of the role of power transfor-
mations by examining its role in the context of reciprocal averaging and canonical
correlation analysis. There are two types of transformations that can be considered
and involve:

1. transforming only p;; so that we have pfj where the row and column marginal
totals are defined as:

J 1
pe@® =) _p} and p; &) =) p,
=1 i=1

2. defining the transformation of the elements of the profiles such that:

() = ()

Die Pej

Greenacre (2009) also considered transformations related to these and referred to
the first type as the “power family 1” transformation and the second type as the
“power family 2” transformation. A transformation somewhat related to the first
type is examined in the context of reciprocal averaging by Wang et al. (2023) and so
we shall confine our attention in this paper to the second type of transformation. In
doing so, we define P? to be the matrix of pfj elements. Similarly, pf. is ith element
of the vector r and the (i, i)th element of D} while the p; is the jth element of the
vector ¢’ and the (j, j)th element of D‘i.

4 The Reciprocal Averaging Procedure

4.1 The Setup

Suppose we denote a;,, (§) as the ith row score and b}, (8) to be the jth column
score for a given value of 8. Then, the reciprocal averaging of the power transformed
profile elements involves solving a;,, (§) and b}, (§) so that:

1\ ? NS
Mmmmmw)=(<“ﬁ —pﬁ)mm@)+~-+((”f)—pz>mm®)
Die Die
§:<<§”) - )bwmﬁ )
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and

¢ N9
A (8) bjm (8) = ((p”) - pf.) A (8) 4 - + ((’”’) - p?.) arm (8)
Pej Pej

1 B )
=y (ﬁ) - p?.) i (8) . ®)

i=1 Dej
Here
I I
> phain ) =0, > plal, 6) =1 ©)
i=1 i=1
and
J J
Do plbim ) =0 > plibi, ) =1, (10)
j=1 j=1
so that
1 J
dn (8) =YY Plitim (8) bjm (8) (1)
i=1 j=1
is the correlation between the set of row scores a,, (8) = (aim (8), ..., am ()7
and column scores, b, (8) = (b (8), ..., bym (8))T —we confirmin Sect. 4.3 that,

given the chosen value of §, A,, (§) is the maximum possible correlation between
a,, (§) and b,, (§). We note that when § = 1, the above equations are equivalent to
those described in Sect.2.3. That is a;,, (1) = aj, bim (1) = biy, and Ay, (1) = Ay,

Equations (7) and (8) may be expressed in matrix form since they are elements
of:

o (8) 8y, (8) = (D;‘SP‘s —1, (cT)a) b,, (8) (12)

and
o (8) b,y (8) = (D;5 (")’ -1, (rT)‘S) a, (5) . (13)

respectively. Properties (9) and (10) can then be expressed as:
s\T s\T
(r ) a,(8)=0 and (c ) b, () =0 (14)

and
a, (5)' Dja, () =1 and b, ) Dib, ) =1, (15)

respectively. We now define A; to be the / x M column matrix containing the vector
of row scores, a,, (§), and B; to be the J x M column matrix containing the column
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scores b, (6). Thus, these properties can be defined as:

AIDIA; =1y and B]D)B; =1, (16)
where Iy isan M x M identity matrix. In the appendix of this paper we outline an R

function called rapower . exe () that performs the reciprocal averaging procedure
described here for m = 1.

4.2 The Eigen-Decomposition Solution

Suppose we pre-multiply both sides of (12) by A, (8) D';/ ? 5o that we have:
32,6 (D} an )
= (5) DY (D;5P8 —1, (cS)T) b, (8)
- [D;S/Z (PS - (rcT)8> D ;‘W] (,\ ) D%, (5)) . (17)
Now, pre-multiplying both sides of (13) by DSJ/ : gives us:
Jan (8) Db, (8)
_ s 8
=D} (D7° (")’ — 1, (")) 2, ®)
T
_ [D;W (P5 - (rcT)B) D,“W] (D‘j/zam (5)) . (18)
We shall show in Sect. 4.3 that, for both (17) and (18), A, (§) is defined by (11) and
is the maximum (positive) correlation between a,, (§) and b,, (8) for a fixed value

of 8.
To simplify (17) and (18), we let:

Zs=D;"" (P“ - (rcT)S) D’ (19)

be the matrix of standardised residuals after a power transformation has been applied
to the profile elements. For example, when § = 1, (19) simplifies to (6). Therefore,
(17) becomes:

32 (8) (Diﬂam (5)) — 7 (xm 8)D"p,, (5)) (20)

and (18) is:
Jon ©) Db, 8) = Z] (D}, ®)) . @
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Substituting (21) into (20) gives us:

12,0) (0)%an ) = 2] (D) an )
which can be expressed as the eigen-decomposition equation:

(ZZ] — 32 O 1) (D)8, ®) =0;. (22)

m

Suppose we now denote:
ﬁm (3) = 5/2am (5)

then (22) becomes:
(ZgZ(;T - )»31 () I,) a, (6)=0;. (23)

Therefore, a,, (§) can be determined from the eigen-decomposition of ZsZ! and is the
mth eigen-vector of the matrix, while Afn (8) is its mth largest eigen-value. Thus the
set of row scores, a,, (§) can be determined by performing an eigen-decomposition
of ZSZ(ST and calculating D;a/ zﬁm (8).

By following a similar derivation we also get:

(Z1Z5 — 22 (8)1;) by, (8) = 0y, (24)

where ~
b, (8) = DY/b,, (5)

is the mth eigen-vector of Z Zs so that A2, (8) is also the mth largest eigen-value of
this matrix. Thus, the vector by, (§) can be determlned from the eigen-decomposition
of ZI'Zs by pre-multiplying b, (8) by D

leen the property that A; and B; fulﬁl—see (16)—the properties met by the
column matrices containing a,, () and b,, (8)—defined by A; and B, respectively—
are:

N\T o o
ATDA; = (D,“S/ZA(;) D (D, ‘*/ZAB) = ATA; =1y (25)
and ;
B/D}B; = (D,"B;) D) (D;”’B;) = BIB; =1y (26)
4.3 A Canonical Correlation Solution

At the heart of reciprocal averaging/dual scaling is the idea that the scores are deter-
mined so that one obtains the maximum (positive) correlation that exists between
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them while ensuring that the scores also maximise any differences that exist between
its categories of the row variable and the column variable. We can show that the
correlation obtained from the reciprocal averaging procedure described in Sect. 4.2
is the maximum possible correlation between a,, (§) and b, (§).

Following on from our above discussion, we define the correlation between a,;, (§)
and b, (§) by:

hon (8) = Cort (@ (8) . by (8))
_ @@ -E@®)" o (b () —Eb, ()
VVar @, (8) —E (@, 8)) v/ Var (b, (8) —E (b, (5)))
_ (@ (8) — E (an ()" P«
V(@ ) —E @ )" D} @, ) — E (a ()
(b, (8) — E (b ()"

b, )~ E®,, 6))7 D) (b, 3) ~ E by, 6)))

At this stage, there is no need to impose any property that a,, (§) and b, (§) must
abide. Although to help simplify the derivations we shall let a’ (§) = a,, () —
E (a,, (8)) and b}, (§) = b, (§) — E (b, (§)). Therefore:

a’, ()" P°by, (3)

Am (8) = .
V(@ )7 Dia;, ) (b, &) Db, 9)

Squaring this correlation gives:
dn (8)> = (a2 ()T Diar, () (a% ()7 PPy, (8)” (b, ()T DEbE () . (27)

To maximise this squared correlation we begin by first differentiating it with respect
to a,, (§). Doing so is done by noting that:

m (8)> Oy (8)> 02, (8) DAy (8)°
da, (8)  dar (8) da, (5)  dar ()
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Therefore:

I (8)

— T b -1 T o8 5
e @y~ 2 (a0 @ Djan @) (a0 0T Pby ) (P 9)

< (b )7 D3 ) =2 (a0 9 Dl ) (Dl )

x (am )7 P’b,, (3))2 (bm &7 Db, (5))7l

=0. (28)
Similarly, differentiating (27) with respect to b,, (§) leads to:

dhm (8)2

i =2 (b ) Db ) (b )7 Py ) () )

% (a0 ©7 Djan ) =2 (b &7 Dibu @) (D7D )

-1

x (bm &7 () a, (8))2 (am )7 Dla,, (a))
=0. (29)

Suppose we now let a,, (§) and b,, (§) be subject to (14) and (15). Then (28) and
(29) simplify to:

I () s B . )
Fa ) = 2o ©) (P (8)) = 24, ()% (Dja (8)) = 0 (30)
I (8)

ab,, (8) = 2Ap (8) (am (5)T P5) — 2 (5)2 (bm (5)T Di) —0. a1

respectively, while (27) simplifies to:
hn (8 = (an )7 Pby, (3)’,

so that taking the square root of both sides gives elements that are equivalent to (11).
We can verify that this is indeed the maximum (squared) correlation between the set
of row scores a,, (§) and column scores b,, (§) for the chosen value of § since, for
all § # O:

9% A (8)°

o ((5))2— = ~2h (9’ Dj <0,
an

9%k (8)°

TR ((5))2 = —24u (8)*D) < 0.

We can verify that the solution to a,, (§) and b,, (8) are just (12) and (13). To show
this, note that (30) and (31) reduce to:

P’b,, (8) = A (8) (D7, (8))
a, (8)" P* =%, (8) (b (6)" DY)



186 E.J. Behetal.

for A,, (§) # 0 which can be alternatively, and equivalently, expressed as:

o (8) 2 (8) = (D7"P*) by, ) = (D7'P = 1, (¢")" ) b (9)
Jn 8 b ) = (D3* (7)) 2 &) = (D7 (P)" = 1, () ) 2 ®),

s1nce( ) a, (8 =0 and( ) b, (§) = 0—see (14). These results are just those of
(12) and (13), respectively. Therefore, canonical correlation analysis yields row and
column scores, a,, (§) and b,, (§), respectively, that are identical to those obtained via
reciprocal averaging with X, (6) being the maximum possible (positive) correlation
between a,, (§) and b,, (§).

5 The Solution Using Singular Value Decomposition

Rather than performing two eigen-decompositions to determine the set of row scores
a,, (8) and the set of column scores b,, (§)—as (23) and (24) do—we can instead
apply a singular value decomposition (SVD) to the matrix of residuals Z;s defined by
(19). By doing so, we have:

z, =0, (P - (rc")") D, = &, D8] (32)

where A; is subject to (25), B; is subject to (26) and Dj is the diagonal matrix
where the (m, m)th element is 1,, (§), the mth singular value of Zs. The advantage
of considering (32) is that the properties underlying A; and B; are those adopted by
the svd () function in R and so it is (32) that is central to the calculations performed
in Sect.6.3.

The matrix form of the row and column scores that motivated our discussion—A
and Bs;—can be found from the SVD of Z;, by rescaling A,g and ﬁg so that:

As=D°?A; and B;=D,"’B;. (33)

Recall that these matrices have the property given by (16).

6 Application: Selikoff’s Asbestos Data

6.1 The Data

Considerthe 5 x 4 contingency table of Table 1 that comes from a study undertaken in
1963 and whose findings were not published until 1981 (Selikoff 1981). Irvin Selikoff
was a chest physician in New York. With his team, Selikoff examined 1117 New York
construction workers that were exposed to asbestos fibres. They established that there
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Table 1 Selikoft’s data for studying the link between years of exposure to asbestos fibres and
severity of asbestosis

Asbestosis grade diagnosed
Occupational exposure | None Grade 1 Grade 2 Grade 3 Total
(years)

0-9 310 36 0 0 346
10-19 212 158 9 0 379
20-29 21 35 17 4 77
30-39 25 102 49 18 194
40+ 7 35 51 28 121
Total 575 366 126 50 1117

was a link between the number of years of occupational exposure to asbestos fibres
and the severity of asbestosis that the worker was diagnosed with; from a preliminary
analysis of the data in Table 1, Selikoff posited the “20-year rule” (Selikoff 1981,
p. 948) stating that “it was only after the 20-year point that most reontgenograms
became abnormal”. The impact of being exposed to asbestos fibres on an person’s
health has since been felt internationally with many countries banning the production
and importation of products containing asbestos fibres; see Beh and Smith (2011),
Tran et al. (2012) and Beh and Lombardo (2014, Sect. 1.4) for a discussion of this
issue from a categorical data analysis perspective and the references mentioned within
for additional global contexts.

Table 1 cross-classifies 5 different lengths of time that a worker was exposed to
asbestos (in intervals of 10 years) and four grades (of severity) of asbestosis that the
workers were diagnosed with; this data also appears in Table 1 of Selikoff (1981) with
areorganisation of the categories. A chi-squared test of independence of Table 1 gives
a Pearson statistic of 648.81 with (5 — 1)(4 — 1) = 12 degrees of freedom. Thus,
there exists a statistically significant association between the years of exposure to
asbestos and the diagnosed level of asbestosis since the p-value of each of these test
statistics is less than 0.001.

One could perform a correspondence analysis to visually identify the nature of
the association that exists between the variables. Although this was comprehensively
done by Beh and Smith (2011) and Beh and Lombardo (2014). Therefore, we shall
confine our attention to the calculation of the singular vectors and singular values
for various values of §.

6.2 Reciprocal Averaging

Suppose we consider for the moment determining the set of uni-dimensional row
scores:
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Fig. 1 Plot of the row and column scores versus § € [0.1, 1.5] for Table 1

a; (8) = (@ (8), -+, as(®)",

and column scores:
by (8) = (b1 (8), -+, ba(¥) .

We shall confine our attention to § € [0.1, 1.5] where the initial set of row scores
that were used were (1, 2, 3, 4, 5) while (1, 2, 3, 4) were used as the set of initial
column scores. The initial value of A is set to 1.

Figure 1 shows the changes in the set of row scores, a; (§), and changes in the set
of column scores, by (§), for § € [0.1, 1.5]. It shows that, irrespective of the value of
8, the association that exists between specific rows and columns remains unchanged.
For example, a; (8) (for the row category 0 - 9years) is always associated with b (§)
(for the column category None). Similarly, the longest years of exposure to asbestos
fibres, as (8) (for the row category 40+ years) is always associated with the most
severe case of asbestosis, b4 (§) (for the column category Grade 3). However, there
is a change in the sign of the scores around § = 0.4.

To highlight the changes in the correlation between these row and column scores
as ¢ shifts from 0.1 to 1.5, Fig.2 shows A (§) versus §. It shows that the maximum
correlation of A (6) = 0.91755 is achieved § = 0.506. Thus, while we know that
any given value of § ensures the correlation between the row and column scores is
maximised for that value of §, for Table 1, it is a square root transformation of profiles
that produces a near maximum possible correlation between them. When § = 0.506
the row and column scores are:

a; (8 = 0.506) = (—0.84997, —0.48866, 0.30848, 0.55218, 0.98048)”

and
b, (8 = 0.506) = (—0.53114, 0.23426, 1.10893, 1.31583)7 ,
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Fig. 2 Plotof § € [0.1, 1.5] versus A; () for Table 1

respectively. For comparisons, a unitary transformation (§ = 1) produces row and
column scores:

a; (8 = 1) = (—1.02368, —0.36766, 0.66890, 1.09353, 1.89988)”

and
by (6 = 1) = (—0.84693, 0.41606, 1.79902, 2.16057) ,

respectively. These scores are equivalent to those obtained using the traditional recip-
rocal averaging method and the correlation between them is A; (1) = 0.69940. For
these two values of § (and for others that can be considered), a; (§)7 D‘}al ¥ =1
and b; (8)7 D§b1 (8) = 1. Table?2 gives the row scores, column scores, and their
correlation (to five decimal places) for Table 1. We have selected values of § ranging
from 0.1 to 1.5 at increments of 0.2. The number of iterations for convergence to five
decimal places to occur is also given.

6.3 SVD Solution

The solutions to a; (§) and by (§) in Sect.6.2 are only one-dimensional but can be
generalised to M dimensions. To discuss these solutions we first consider the matrix
of residuals, Zs, defined by (19), which are summarised in Table3 for § = 1, 0.5
and 1.3. Since M = min (5, 4) — 1 = 3 we produce the 5 x 3 matrix of row scores,
A;. The elements of this matrix are summarised in Table4 for § = 1, 0.5 and 1.3.
Similarly, the 4 x 3 matrix of column scores, B;, are summarised in Table 5 for these
8 values. These scores are calculated by first applying the svd () function in R to
the matrix of elements in Table3. The svd () function produces the the matrices
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Table 2 Row scores, column scores and correlation from the reciprocal averaging for Table 1 when
8 €[0.1, 1.5]

)

Score 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

ap (8) 0.88436 0.88524 | —0.85037 | —0.86900 | —0.95510 | —1.10872 | —1.34407 | —1.67244
ap (8) 0.55889 0.55418 | —0.49058 | —0.43428 | —0.38887 | —0.34791 | —0.30275 | —0.25517
az (8) —0.03714 | —0.15982 0.30424 0.44444 0.59089 0.74958 0.92243 1.09741
ay (8) —0.07647 | —0.30268 0.54535 0.76408 0.98108 1.20809 1.44709 1.67839
as (8) —0.15030 | —0.55994 0.96909 1.33702 1.70770 2.09875 2.48137 2.79853
by (8) 0.05989 0.30163 | —0.52581 | —0.67306 | —0.78959 | —0.90696 | —1.04524 | —1.21570
by (8) —0.05475 | —0.15831 0.23231 0.29773 0.37279 0.46255 0.56988 0.68624
b3 (8) —0.63975 | —0.88138 1.10218 1.34617 1.63711 1.96954 2.31247 2.60518
by (8) —0.95244 | —1.13114 1.30939 1.57347 1.94098 2.40186 291314 3.38770
A1 (8) 0.08457 0.73476 0.91743 0.85718 0.75147 0.65094 0.56847 0.50784
Iterations 8 8 7 6 4 4 7 8

A;s and By respectively. To ensure that they have the property AIDA; =1y and
ATD}A; = Iy we pre-multiply A;s by D;s/ ? and B; by D;S/ 2 thereby calculating A
and Bg; see (33).

When § = 1, the first dimensional solution to the row and column scores sum-
marised in Tables 4 and 5 is equivalent to that obtained using the traditional reciprocal
averaging procedure—see the scoresa; (§ = 1) andb; (§ = 1) in the previous section.
The scores calculated using reciprocal averaging procedure and the svd () function
are accurate to at least the fourth decimal place.

When § = 0.5 and 1.3, the row and column scores summarised in Table?2 are
exactly the same, to four or five decimal places, with the scores calculated using the
svd () function; see the first column of Tables4 and 5. A similar level of accuracy
can be obtained for other values of §.

Suppose we now turn our attention to calculating the correlation along the first
dimension of the row and column scores obtained from the svd () function. This
can be achieved using the correlation defined by (11). Table6 summarises these
correlation values and the absolute difference with those obtained from the reciprocal
averaging procedure. We can see that using the svd () function in R produces
correlation values that are accurate to at least the fifth decimal place.

7 Discussion

Profile transformations are not new to the analysis of contingency tables. One can
consider Beh and Lombardo (2024), Cuadras and Cuadras (2006), Cuadras et al.
(2006) and Greenacre (2009, 2010), especially since their discussion is in terms of
the correspondence analysis of a two-way table. However, very little appears to be
available (at least, that we are aware of) that examines the issue of power transforma-
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Table 3 Residuals, Zs, using (19) when § = 1, § = 0.5 (in parentheses), § = 1.3 (in brackets)

Asbestosis grade diagnosed

Occupational None Grade 1 Grade 2 Grade 3
exposure (years)

0.296 -0.217 —0.187 —0.118
0-9 (0.202) (—0.246) (—0.432) (—0.343)
[0.320] [—0.175] [—0.113] [—0.062]

0.036 0.091 —0.154 —0.123
10-19 (0.027) (0.074) (—0.239) (—0.351)
[0.037] [0.088] [—0.104] [—0.066]

—0.089 0.058 0.084 0.009
20-29 (—0.118) (0.069) (0.118) (0.018)
[—0.064] [0.045] [0.059] [0.005]

—0.224 0.144 0.173 0.095
30-39 (—0.273) (0.130) (0.186) (0.131)
[—0.174] [0.132] [0.144] [0.067]

—0.210 —0.222 0.302 0.290
40+ (—0.323) (—0.026) (0.310) (0.336)
[—0.144] [—0.017] [0.260] [0.234]

Table 4 Row scores, As, of Table | when § = 1, § = 0.5 (in parentheses), § = 1.3 [in brackets]

Dimension
Occupational exposure | 1 2 3
(years)
—1.02290 0.94851 —0.38985
0-9 (—0.85037) (0.32697) (0.90201)
[—1.34416] [1.19850] [—1.01459]
—0.36841 —0.91680 0.86632
10-19 (—0.49058) (—1.00021) (0.18633)
[—0.30269] [—0.88181] [—1.30718]
0.66843 —0.58167 —2.72979
20-29 (0.30424) (—0.60267) (0.11576)
[0.92246] [—0.51343] [—0.75616]
1.09292 —0.73852 —0.58441
30-39 (0.54535) (—0.75422) (0.45356)
[1.44713] [—0.61736] [—1.69930]
1.90128 1.71357 1.07537
40+ (0.96909) (0.27742) (1.15320)
[2.48117] [2.84114] [—0.87060]
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Table 5 Column scores, Bs, of Table 1 when § = 1,8 = 0.5 (in parentheses), § = 1.3 [in brackets]

Dimension
Asbestos grade 1 2 3
diagnosed

—0.84676 0.47171 —0.05555
None (—0.52581) (0.56963) (—0.87972)
[—1.04526] [0.59196] [—0.95817]
0.41559 —1.33969 0.29055
Grade 1 (0.23231) (—0.89489) (—0.79743)
[0.56992] [—1.32742] [—1.46238]
1.79933 0.87879 —1.96347
Grade 2 (1.10218) (—0.00212) (—0.46582)
[2.31241] [1.82513] [—1.11975]
2.16133 2.16732 3.45997
Grade 3 (1.30939) (1.20810) (—0.19278)
[2.91301] [3.71911] [—1.46567]

Table 6 Maximum correlation of the row and column scores from the SVD of R for Table 1 when
§€[0,1, 1.5]

Correlation 8

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
A1 (8) 0.08456 | 0.73475 |0.91742 0.85718 | 0.75146 | 0.65095 |0.56848 | 0.50786
Abs Diff 0.00001 | 0.00001 |0.00001 | <0.00001 |0.00001 |0.00001 |0.00001 |0.00002

tions from a scaling perspective. Hopefully, this paper fills that void by discussing
it in terms of reciprocal averaging and canonical correlation analysis, and the appli-
cation of Irving Selikoff’s asbestos data in Sect. 6.1. We have methodologically, and
practically, shown that the calculation of the row and column scores can be found
using reciprocal averaging or, for a multi-dimensional solution, from the SVD of
the matrix Z; defined by (19). While we can also show how such scores and their
correlation relate to the Cressie-Read family of divergence statistics (Cressie and
Read 1984) further work can be undertaken to demonstrate its practical benefits. The
links that exist between this family and correspondence analysis were established by
Beh and Lombardo (2024).

While we do focus on power transformations of the profile elements from the
perspective of reciprocal averaging it is important to keep in mind that reciprocal
averaging involves the arithmetic averaging of the transformed elements of the row
and column profiles. One may also consider other strategies for finding the centre
of the profiles. These include performing reciprocal averaging on the median of
the profile elements, or even a geometric or harmonic averaging of the elements.
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Considering reciprocal averaging in the median case when examining untransformed
elements was discussed by Nishisato (1984) but can be expanded to the transformed
case by considering the following two equations:

)
Do (8) @iy (8) = Mdn; [((’p’ ’_") - pf,-) bim (8)} (34)
A (8) b (8) = Mdn; [((5—’) - p?.) dim (8)] . (35)
oj

Here, “Mdn;” is the median of the / elements of the power transformed elements of
the centred row profile, while “Mdn;” is the median of the J elements of the power
transformed centred column profile. Note that when § = 1, (34) and (35) simplify
to Eqgs. (5) and (6), respectively, of Nishisato (1984), a technique he referred to as
the method of reciprocal medians (or simply MRM) and was proposed, in part, to
“mitigate the problem of extreme weights” [p. 143].

Rather than determining the row and column scores by considering the weighted
arithmetic mean of the elements of the profiles, or their median, Nishisato et al.
(2021, Chap. 8) proposed a few different ways in which geometric averaging could be
performed. These methods, referred to as the methods of geometric averaging, were
designed for the untransformed case but can be easily amended when considering
the transformed version of the profile elements. In this case, the row and column
scores, a;,, (8) and bj,, (§), can be determined from:

and

r 1/J
b 8 aim ) = | [] (%) = Paj| bim (8 (36)
_j:l e
and
roJ 3 1/1
I B bjm ) = | ] | (1’)’—’> — Pl @im (8)} : (37)
Li=1 *J

An alternative set of geometric averaging formulae were also derived, those being:

1/J

NOE ]'[( Py ) bjm (3) (38)

PieDej

s 11
( Pij ) i (8)} . (39)
PieDej

and

1
)"mbjm ) = l—[
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In both cases, there is no guarantee that the row and column scores calculated from
either set of formulae will be centred at zero or have a unitary variance. However, these
properties can be satisfied once convergence has been achieved. We note that when
8 = 1, then (36)—(37) simplify to (8.4)—(8.5) of Nishisato et al. (2021, p. 162), while
(38)-(39) simplify to Eqgs. (8.6)—(8.7) (Nishisato et al. 2021, p. 163). Choulakian
(2023) points out that taxicab correspondence analysis (Choulakian 2006) can be
performed using the framework outline in this paper by adapting (7) and (8) so that:

J A\
dom (8) i (8) =Y ((” "’) - pf,) sgn (b (8))

j=1 ‘

Pie

and

hon @) by ) = Y <<ﬂ> - p?.) sgn (@ (3)) -

i=1 Pej

Here, sgn (e) is the coordinate-wise sign function such that sgn(x) =1 if x > 1
and sgn (x) = —1 if x < 0. Choulakian (2023) also points out that the method of
reciprocal medians (Nishisato 1984) can be performed in the context of a taxicab
analysis by replacing b;,, (§) with sgn (b im (8)) on the right-hand side of (34) and
aim (8) with sgn (a;;, (8)) on the right-hand side of (35). Similarly, a taxicab analysis
of the method of geometric averaging can be performed by making a substitution
of sgn (a;,, (8)) for a;, (§) in (37) and (39), and of sgn (bj,,, (6)) for b, (8) in (36)
and (38).

One unresolved issue with these alternative “averaging” techniques is that, unlike
reciprocal averaging in the classic (untransformed) or transformed case considered
here, their link with eigen-decomposition and singular value decomposition has not
been established. The advantage of any such links is evident in the computational
simplicity that can be achieved (at least in most cases) in R using the svd () function.
Although these links, and other research questions that may present themselves, will
be discussed at a later date.

Appendix

We present here the R function rapower . exe () that performs the reciprocal aver-
aging of the elements of the row and column profiles under a power transformation
8 (delta). The input arguments of the function are:

e the contingency table, N which is defined as data,

e the power of the transformation, § (delta). By defaultdelta = 1,

e alogical argument iters that, if it is set to TRUE (default), prints to screen the
value of each row score, column score and correlation at each iteration.


http://dx.doi.org/10.1007/978-981-99-5329-5_8
http://dx.doi.org/10.1007/978-981-99-5329-5_8
http://dx.doi.org/10.1007/978-981-99-5329-5_8
http://dx.doi.org/10.1007/978-981-99-5329-5_8
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e the initial value of A; (6) (Lambda.ini) which, by default, is set equal to 1,
and

e the number of decimal places (acc) until convergence of the correlation is
reached. By default convergence is set to five decimal places:

rapower.exe <- function(data, delta = 1, iters = TRUE,
lambda.ini = 1, acc = 5) {

# This function performs a reciprocal averaging using the
# "power family 2" transformation of Greenacre (2009)

HHHSH S H S HEHAHFH AR AR E AR AR AR R H RS R
# Some basics #
HHHSH A A HAHAHAHAH AR AR HARA R AR AR AR AR HAF AR HAH AR R H AR AR RARA RS

Inames <- dimnames (data) [1] # Row category names
Jnames <- dimnames (data) [2] # Column category names

I <- nrow(data)

J <- ncol (data)

n <- sum(data)

P <- data/sum(data
pidot <- apply (P,
pdotj <- apply (P,
R <- diag(pidot, I, I
C <- diag(pdotj, J, J

N = —

HHEHH S H S H AR AR
# The algorithm #
HHHHHHHHHSHAH AR R R AR RH R AR AR A R AR R S AHA R R R R

a.ini <- c(l:nrow(data)) # Initial value of row scores
b.ini <- c(l:ncol(data)) # Initial value of column scores
if (iters == TRUE) {
print (round(c (0, a.ini, b.ini, lambda.ini), digits = acc))
}
# The first iteration of the row and columns scores, and their
# correlation

a.old <- a.ini/sqgrt(t(a.ini)%*%R"delta%*%a.ini) [1,1]
b.old <- (1/lambda.ini)* (solve(C"delta)%*%t(P"delta) -
(rep(l, times = J)%*%t(pidot”delta)))%$*%a.old
b.old <- b.old/sqgrt(t(b.old)%*%$C"delta%*%$b.old) [1,1]
lamb.old <- (t(a.o0ld)%*%P "delta%*%b.old) [1,1]

# The iterative step of the algorithm
counter = 1

if (iters == TRUE) {
print (round(c (counter, a.old, b.old, lamb.old), digits = acc))

repeat {
a.new <- (1/lamb.old)* (solve(R"delta)%*%P "delta -
(rep(l, times = I)%*%t(pdotj”~delta)))%*%b.old
b.new <- (1l/lamb.old)*(solve(C"delta)%*%t (P "delta) -
(rep(1l, times = J)%*%t(pidot”delta)))%*%a.new

a.new <- a.new/sqgrt(t(a.new)%*$R"delta%*%a.new) [1,1]
b.new <- b.new/sgrt(t(b.new)%*%C"delta%*%b.new) [1,1]

lamb.new <- (t(a.new)%*%3P"delta%*%b.new) [1,1]
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counter <- counter + 1

if (iters == TRUE) {
print (round(c (counter, a.new, b.new, lamb.new), digits = acc))

lamb.comp <- abs(lamb.old - lamb.new)
if (lamb.comp < 10" (-1l*acc)) break

a.old <- a.new
b.old <- b.new
lamb.old <- lamb.new

HhHSHSH AR HAHAHAHAHARA B AR AR AR AR AR AR A HAHAHAH AR RS HABA RS R AR ASH
# The numerical output . . #
###############################################################

dimnames (a.new) <- list(paste(Inames([[1]]), paste("row score"))
dimnames (b.new) <- list(paste(Jnames([[1]]), paste("col score"))

list(iterations = round(counter, acc),
a = round(a.new, acc),
b = round(b.new, acc),
lamb = round(lamb.old, acc))

Therefore, when asbestos . dat is the R object given to the two-way contingency
table of Table 1 and is defined by:

> asbestos.dat <- matrix(c(310, 212, 21, 25, 7, 36, 158, 35, 102,

+ 35, 0, 9, 17, 49, 51, 0, 0, 4, 18, 28), nrow = 5)
> dimnames (asbestos.dat) <- list(paste(c("0-9", "10-19", "20-29",
+ "30-39", "40+")), paste(c("None", "Grade 1", "Grade 2",
+ "Grade 3")))
>
> asbestos.dat
None Grade 1 Grade 2 Grade 3
0-9 310 36 0 0
10-19 212 158 9 0
20-29 21 35 17 4
30-39 25 102 49 18
40+ 7 35 51 28

>

The traditional reciprocal averaging approach may be performed by defining § = 1
so that:

> rapower.exe (selikoff.dat, iters = F)

Siterations
[11 3
Sa

row score
0-9 -1.02368
10-19 -0.36766
20-29 0.66890
30-39 1.09353
40+ 1.89988
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Sb

col score
None -0.84693
Grade 1 0.41606
Grade 2 1.79902
Grade 3 2.16057
$lamb
[1] 0.6994

>

Note that $Sa and Sb are the row and column scores given by a; (6 = 1) and
b, (6 = 1), respectively, in Sect.6.2 while the correlation of 0.69940 appears as
$lamb.

If a similar analysis is performed but with § = 0.5 then we get the row scores
($a), column scores ($b) and correlation ($1amb) that are summarised in the fourth
column of Table 2 so that:

> rapower.exe (selikoff.dat, delta = 0.5, iters = F)

Siterations
[11 7
Sa

row score
0-9 -0.85037
10-19 -0.49058
20-29 0.30424
30-39 0.54535
40+ 0.96909

Sb

col score
None -0.52581
Grade 1 0.23231
Grade 2 1.10218
Grade 3 1.30939

Slamb
[1] 0.91743

>
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Dual Scaling of Rating Data )

Check for
updates

Michel van de Velden and Patrick J.F. Groenen

1 Introduction

The works of Nishisato has shown that dual scaling is a powerful method that can
be applied to solve a wide variety of data analysis problems. Dual scaling is closely
related and, for many practical purposes and applications, equivalent to correspon-
dence analysis. The books of Nishisato (1994) and Greenacre (1984) give a detailed
account of the relationships and origins of the methods. Mathematically, relation-
ships are particularly strong; see, for example, Greenacre (1984) and van de Velden
(2000a). Perhaps, the biggest difference between the methods concerns correspon-
dence analysis’ focus on geometry versus dual scaling’s emphasis on the optimal
scaling properties.

Although both correspondence analysis and dual scaling are often considered for
analysing a contingency table, both methods can be applied to other types of data.
However, with respect to the analysis of such other data types, the approaches do in
fact differ. In this Chapter, we explicitly consider dual scaling and correspondence
analysis of rating data.

For correspondence analysis, the analysis of rating data is explicitly treated in
Greenacre (1984, Chap. 6). However, Greenacre (2017) treats the analysis of rating
data in a chapter titled “Data re-coding” (Chap. 23). The new labelling of the topic is
a direct result of the way the analysis of rating data is defined in the correspondence
analysis literature. That is, for the analysis of rating data, the rating data are first
re-coded in a specific form and subsequently the usual correspondence analysis
calculations are applied to the re-coded data.
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For dual scaling, the analysis of rating data is treated in the context of paired
comparison and successive categories data. The proposed methods in these contexts
also amount to the application of the usual dual scaling calculations (which are
equivalent to the correspondence analysis calculations) to re-coded data. However,
as we show in this paper, the re-coding in dual scaling and correspondence analysis
is different and, consequently, properties of the solutions differ as well. Note that, a
direct analysis of rating data does not appear to exist in the dual scaling literature.
However, as we show in Sect.4, we can tackle this problem by using a similar
interpretation of the ratings as done in the correspondence analysis literature.

In this paper, we review the existing approaches to the analysis of rating data in
dual scaling and correspondence analysis. We do so by first briefly summarising the
different types of re-coding in Section’s 3 and 4. Furthermore, we propose a method
that allows a more direct treatment of rating data in dual scaling. Next, using the
optimal scaling framework that is fundamental in the works of Nishisato, we provide
insights into the theoretical differences between the methods, and we discuss the
implications of these differences in practise. We illustrate the differences by means
of an example data set taken from Nishisato (1994) and provide some final remarks
in Sect.7.

2 Dual Scaling

The objective of dual scaling is to find optimal scaling values or scores (or coordi-
nates) for row categories that maximise the between row variance whilst at the same
time finding scores for the column categories that maximise the between column
variance. Here we only give the basic formulas needed to calculate the dual scaling
solution for analysing a two-way data table F consisting of non-negative integers. For
a complete description of the rationale and a derivation of the dual scaling solution;
see Nishisato (1994).

Let F denote an n x p matrix consisting of non-negative entries and define diag-
onal matrices D, and D in such a way thatD,1, =F1, =randD.1, = F'1, =c,
where generically, 1; denotes an i x 1 vector of ones. Consider the singular value
decomposition:

1
D'/ (F ~ —rcT> D; /2 =UAV’, (1)
S

where s = 1,F1,, and, without loss of generality, the singular values on the diagonal
of A are in non-increasing order. The k-dimensional optimal scaling values (i.e.
the scores/coordinates) for rows and columns are X = D, 1/ 2Uk and Y =D, 1 2Vk
respectively, where U, and V. correspond to the first £ columns of U and V.

Note that by defining X and Y in this way, they are standardised such that
X"D,X=Y"D, Y = 1. In the correspondence analysis literature, the matrices
X and Y are referred to as standard coordinates. Alternatively, defining G =
D, 1/ ZUkAk and H=D, 1/ 2VkAk gives the solution in so-called principal coordi-
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nates. For more details on the different scalings and their implications on, in partic-
ular, graphical representations of results; see Greenacre (2017).

3 Correspondence Analysis of Ratings (CAr)

Let R denote ann x p matrix of ratings on a 1 to ¢ scale. We use an artificial example
of n = 4 individuals who each rate p = 3 objects on a ¢ = 5 point rating scale, to
illustrate the different data pre-processing steps required in the different variant. That
is:

245
331
R=127.1 2

153

Correspondence analysis is concerned with count data. The ratings can be considered
as counts by considering a rating value as the number of times an object was preferred
over the lowest rating number. To achieve this, we simply subtract 1 from the originals
ratings. LetT =R — 1, IIT,, denote the resulting matrix with values fromOto g — 1.
That is, if the original rating scale consists of g ratings, we first subtract 1 which
leads in our toy example to:

245 111 134
o qar_ |331] 111 _|220
T=R-Ll;=1,,, 111|103
153 111 042

Thus, T can be interpreted as the number of scale points below a given rating, or,
equivalently, as the number of times an object was considered to exceed a threshold
on the original rating scale.

Mathematically, we can apply correspondence analysis to the count data in T.
However, the problem with such a procedure is that the direction of the original
rating scale influences the results; reversing the scale would lead to different results.
That is, if data are gathered on a scale were the lowest rating (1) corresponds to
“bad” and the highest rating (g) to “good”, and we decide to switch the labelling
from 1 = “good” to g = “bad”, the results of the analysis would change. Clearly this
sensitivity to the direction of the scale is an undesirable effect.

To overcome this problem, the data are “doubled”, meaning that the rating data for
both directions of the rating scale are considered simultaneously. In correspondence
analysis, this is done by, for each object, adding a column with the rating on the
reversed scale. Consequently, instead of p columns, we obtain a matrix consisting
of 2p columns. Let S denote the matrix of ratings on the reversed scale, that is,
S=1(q — 1)1n1; — T. In our running example, we get:
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444 134 310
444 220 224

_ _ T _mp_ _ _
S=@-DlL1,=T=1,,4 1037|341
444 042 402

We construct a column-wise doubled matrix as F. = [T | S]:

134|310
220|224
103(341
042402

F.=[T|S]=

Substituting this doubled matrix F, for F in the formulas of Sect.2 yields the corre-
spondence analysis solution.

The specific structure of the doubled matrix F, results in structured coordinates for
the columns as well. In particular, the points corresponding to the same object, with
the reversed ratings, can be connected through a straight line running through the
origin (however, the distances from the origin of both points differ). Greenacre (2017)
uses this relationship and shows that the resulting lines can be divided into ¢ — 1
equal sized intervals with the endpoints corresponding to the endpoints of the rating
scale. That is, rating g corresponds to the point corresponding to the original rating,
and rating 1 corresponds to the point on the reversed scale. The approximated average
rating value (on the original scale) can then be inferred from this plot by considering
the value on this line at the origin. Furthermore, similar to the case in principal
component analysis, the angles (at the origin) between the lines corresponding to the
different attributes, approximate correlations between the ratings for the attributes.
In fact, as shown in van de Velden (2004, pp. 103—104), the analysis of the doubled
matrix F, is equivalent to a principal component analysis of a particularly scaled and
double centred version of the original rating data.

4 Dual Scaling of Rating Data

Dual scaling of rating data is not treated as topic of its own in Nishisato (1994).
Instead, in the context of paired comparison and rank order data, Nishisato (1994)
proposes two dual scaling variants that require different re-coding of the data. The
first approach requires re-coding of the ratings as rankings while the second approach
involves a joint ranking of objects and, unobserved, rating boundaries. To these two
approaches, we add a third, more direct, re-coding that relies on an interpretation of
ratings similar to the one used in correspondence analysis and described in Sect. 3. In
the following subsections, we briefly discuss these three types of re-coding as well
as the dual scaling analysis of them. For convenience, we have labelled these dual
scaling variants DS1 up to DS3.
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4.1 Converting Ratings to Rank Order Data (DS1)

For the first variant, rather than considering the observed ratings directly, for an
observation i, one counts the number of times that individual i’s rating for object j
is rated higher than ratings for all other objects. This is equivalent to transforming
the ratings to ranked (from O to p — 1) data and requires a way to deal with ties (i.e.
equal ratings). For the data from our running example, that is the matrix R given in
(2), we get:

0 12
«_ | 15150
T = 1 02|
0 21
and, on the reversed scale:
2 10
« 105052
§ = 1 20
2 01

Since the focus is now on the rank of the three objects, not their rating on a 5-point
scale, this method clearly incurs a loss in information as only the direction of the
difference is considered, and not the magnitude.

To analyse the resulting rank order data Nishisato (1994) proposes to construct
a dominance matrix E consisting of the difference between the number of times an
object was preferred over the other objects (T*) and the number of times it was not
preferred over other object (S*). For our example we get:

So that the sum of each row is zero. Note that the dominance matrix E contains
positive and negative values. Moreover, as the row sums are all zero the usual dual
scaling calculations, as set out in Sect. 2, cannot be applied directly. Nishisato (1994)
resolves this by defining D, = p (p — 1)1, and D, = n (p — 1) I, respectively.
Alternatively, as shown by van de Velden (2000b), one can apply the usual dual

T
scaling approach to the row-wise doubled matrix F, = [T*T | S*T] yielding, for
our example data,
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0 127
15150
1 02
0 21
=210
05052
1 20

L 2 01|

Analysing the row-wise doubled matrix yields 2n scores for the n rows. The scores
for the first n rows corresponds to the observations (rankings) on the original scale
while the scores for the second set correspond to the observations (rankings) on the
reversed scale. These two sets of scores, however, are trivially related as the scores
in the second set are simply —1 times those in the first set.

4.2 Converting Rating Data to Successive Category Data
(DS2)

The second approach, introduced in Nishisato (1980) and further developed in
Nishisato and Sheu (1984), requires the introduction of “boundaries”, marking the
difference between rating scale values. To each boundary we assign a rating that lies
between the two values of the rating scale that the boundary represents. The observed
ratings in R and the boundaries in Rpoung are jointly ranked, resulting in so-called
successive category data Rgcp. Note that, in this way, in addition to the p objects,
g — 1 boundaries are added as columns to the data matrix. In our example, using 1.5
up to 4.5 as “rating” values for the boundaries, we get:

245[1.52.53.54.5 2 571346
331]1.52.53.54.5 454512367
[RIRoownal = | 51 4115053545 | = Rso=1| "3 162457
153]1.52.53.54.5 | 742356

The resulting n x (p + ¢ — 1) matrix of rank ordered data Rgcp can be analysed in
the same way as described above, that is, using the row-wise doubled matrix. Note
that it doesn’t matter what the exact values are that we insert for the boundaries, as
long as they are between the actual ratings.

As the boundaries are always ordered in the same way, the one-dimensional dual
scaling solution for successive category data typically seems appropriate and suf-
ficient in terms of explained variance. Moreover, as the successive category values
for an individual are based on all ratings by the same individual, individual specific
scale use is taken into account. For this reason, this specific coding was used by
Schoonees, van de Velden and Groenen (2015) and Takagishi, van de Velden and
Yadohisa (2019) to construct methods to study response style bias in questionnaires.
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4.3 Converting Rating Data to Count Data (DS3)

Both re-coding methods described in the previous subsections yield individual spe-
cific rankings. Consequently, the transformed rating values are individual specific as
well. This implies that if individual i assigns rating j to an object, and individual /
assigns the same rating value j to that object, the re-coded values do not have to be
the same for both observations. If the actual ratings are considered to be meaningful
and non-individual specific, this may not be a desirable property. To overcome this
problem, one can re-code and interpret the ratings as previously described in Sect. 3
in the context of correspondence analysis, that is, the rating values are re-coded to
T; the number of times an observation exceeds the boundaries on the original rating
scale.

As before, we cannot apply dual scaling directly to T as this would lead to results
that depend on the direction of the scale. Following the dual scaling approach for
rank order data, we can overcome this by constructing a row-wise doubled matrix

F, = [TT | ST]T and applying dual scaling to this matrix. From here on, we refer to
this DS3 approach as dual scaling of rating data.

5 Optimal Scaling Properties

As seen in Section’s 3 and 4, the difference between dual scaling and correspondence
analysis of rating data amounts to a difference in doubling of the observed ratings
after converting themtoaOto g — 1 scale. That s, correspondence analysis of ratings
is defined as correspondence analysis of F. whereas dual scaling of ratings is defined
as dual scaling of F,. To better understand the implications of these differences, we
briefly review the optimal scaling properties of them.

As shown by Nishisato (1978) and van de Velden (2004), the object scores obtained
in an analysis of the dominance matrix E, and, hence, the object scores in the analysis
of F,, are equivalent to the optimal scaling values as defined and derived by Guttman
(1946). As such, these values are determined “so as to best distinguish between
those things judged higher and those judged lower for each individual”’; see Guttman
(1946). Both Guttman (1946) and Nishisato (1978) explicitly consider paired com-
parison data. However, crucial in the formulation of the optimal scaling framework
are the matrices T and S. Hence, using these matrices in the context of rating data
where, respectively, the entries represent the times an object rating exceeds or does
not exceed the available rating boundaries, the optimal scaling properties remain
valid. That is, in dual scaling of ratings as defined in Sect.4.3, the scale values for
the objects are assigned in such a way that they best distinguish between objects.

In Guttman (1946), an optimal scaling solution for the individuals is not con-
sidered. However, we can rephrase Guttman’s (1946) optimal scaling goal towards
finding scale values for the observations/individuals as follows: Find scale values
for individuals so as to best distinguish between individuals that judged an object
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Table 1 Properties of the different variants for the analysis of rating data

Method | Intervals Optimal scaling Doubling

DS1 Rank order only Objects Implicit; row-wise
DS2 Successive categories Objects and boundaries | Implicit: row-wise
DS3 Differences between ratings Objects Explicit: row-wise
CAr Differences between ratings Individuals Explicit: column-wise

higher and lower, for each object. Where once again higher (lower) indicates how
often a rating exceeded (did not exceed) the boundaries. This “dual” problem was
considered, in the context of paired comparison data, by van de Velden (2004) who
showed that the resulting optimal scaling values for individuals can be obtained by
applying dual scaling/correspondence analysis to the column-wise doubled matrix
F.. As before, interpreting the entries of T and S as the times an object rating exceeds
or does not exceed the available rating boundaries, these optimal scaling properties
remain valid in the analysis of F.. Hence, whereas dual scaling of ratings yields opti-
mal scaling values for the objects, correspondence analysis of ratings yields optimal
scaling values for the individuals.

Note that for the dual scaling analysis of rating data, the optimal scaling values
for the doubled rows (i.e. individuals’ ratings according to the original and reversed
scales) are optimal in the usual dual scaling sense. That is, they maximise the variation
between the rows of the doubled table. Similarly, for the correspondence analysis
solution, the values for the doubled columns are optimal scaling values (i.e. the
objects rated according to the original and reversed scales). However, when defining
optimal scaling values according to the framework and rationale as presented by
Guttman (1946), the typical duality associated with a dual scaling (and correspon-
dence analysis) solution obtained using the formulas of Sect. 2, does not immediately
carry over when we have rating data. That is, Guttman’s optimal scaling values for
individuals and objects based on rating data cannot be obtained simultaneously.

We summarised some properties of the different variants in Table 1.

In summary, the difference between the dual scaling and correspondence analysis
of rating data approaches amounts to a different way of dealing with the direction
of the rating scales. For the dual scaling of rating data, as introduced in Sect.4.3, a
row-wise doubling is employed. For the correspondence analysis of rating data, a
column-wise doubling is used to resolve the problem. The effect of these different
data pre-processing steps is that in the dual scaling analysis of rating data, the values
for the objects are optimal scaling values whereas in the correspondence analysis of
rating data, the coordinates for the individuals are optimal scaling values.

In order to choose one method over the other, it is important to understand these
differences. Depending on the type of application and the specific research goals, a
choice can be made. Dual scaling of rating data may be more appropriate when one’s
prime concern is a visualisation (or quantification) of a set of objects based on the
observed differences in the ratings for these objects. This could be the case, when, for
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example, relative positions of products based on how they are perceived by a group
of individuals. One the other hand, if one is more concerned with a visualisation (or
quantification) of the individuals, based on differences in rating patterns for a set of
objects, correspondence analysis of rating data may be better equipped to pick up on
the individual differences.

6 Applications

To illustrate the differences between the dual scaling and correspondence analysis of
rating approaches, we analyse an example data set from Nishisato (1994, p. 230) on
perceived seriousness of crimes. In particular, we focus on the effects of the different
doublings; that is, the analysis of a column-wise (CAr) and row-wise (DS3) doubled
matrix of ratings.

A sample of 17 individuals indicated, on a rating scale from 1 (“somewhat seri-
ous”) to 4 (“extremely serious”), the perceived seriousness of the following 8 types
of crimes: Arson, burglary, counterfeiting, forgery, homicide, kidnapping, mugging
and receiving stolen goods. For ease of reproducibility, we included the data here
in Table2. Note that all individuals considered “homicide” to be extremely serious.
For this lack in variation, which leads to a singular D, matrix in CAr, we removed
this type of crime from our analyses. In the DS3 approach such a singularity does
not occur and Nishisato (1994) analyses the data without removal of this object.

The two-dimensionsal dual scaling solution for the objects (crimes) can be found
in Fig. 1. In accordance with the optimal scaling formulations of Guttman (1946) and
Nishisato (1978) the scaling values are in so-called standard coordinates. The two-
dimensional solution, which is heavily dominated by the first dimension, accounts
for 89% of the variance.

Correspondence analysis of the ratings results in Fig. 2, where in accordance with
Greenacre (2017, Exhibit 23.2, p. 180), the coordinates for the doubled objects are
in principal coordinates, and, for each crime, we connected the points corresponding
to the lower and upper ends of the scale, by axes. The CA solution accounts for 64%
of the variation.

A one-to-one comparison of these two solutions for the objects is complicated due
to the doubling of object points in the correspondence analysis solution. Moreover,
we used standard coordinates in the dual scaling analysis, and principal coordinates
for the correspondence analysis results. Still, comparing Figs. 1 and 2 immediately
does show a better separation of objects (crimes) in the dual scaling approach. In
Fig. 1, we see that the crimes “Counterfeiting” and “Forgery”, which are somewhat
similar in nature, are indeed perceived as more similar by the respondents. On the
other hand, the perceptions of “Mugging”, “Burglary” and “Receiving stolen goods”,
as indicated by the ratings, differ substantially. Note that the first dimension in this
analysis is rather dominant. Moreover, this dimension appears to describe mostly the
perceived seriousness of crimes from more “serious” (Arson and Kidnapping) on the
left, to less “serious” (Receiving stolen goods) on the right.



210

M. van de Velden and P. J.E. Groenen

Table 2 Nishisato’s 1994 seriousness of crimes rating data

Individual | Arson Burglary Counterfeit. | Forgery Homicide | Kidnapp. | Mugging | Rec. st.
goods
1 4 2 2 2 4 3 3 1
2 4 2 2 2 4 4 3 1
3 3 2 2 2 4 3 3 1
4 4 3 2 2 4 4 4 3
5 4 3 2 2 4 4 3 2
6 4 3 3 2 4 4 3 2
7 4 1 2 2 4 4 2 1
8 4 4 2 2 4 4 3 2
9 3 2 1 2 4 4 3 1
10 4 3 3 3 4 4 3 2
11 4 2 3 3 4 4 4 1
12 4 4 3 3 4 4 4 2
13 4 3 3 2 4 4 3 1
14 4 2 2 2 4 3 3 1
15 4 2 1 1 4 4 2 1
16 3 2 2 2 4 3 3
17 3 2 2 4 4 3 2
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Fig. 1 Dual scaling of ratings (DS3) for the crime perception data. Optimal
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Fig. 2 Correspondence analysis of ratings (CAr) for the crime perception data. Objects (crimes)
in principal coordinates

In Fig. 2, we see that the correspondence analysis approach (CAr) visualises that
the ratings of “Arson” and “Kidnapping” are correlated. Furthermore, the ratings
of these two crimes appear to be mostly uncorrelated to the ratings for “Forgery”,
“Mugging”, “Burglary” and “Receiving stolen goods”. Note that the endpoints of
the coloured lines correspond to the end points of the scale. That is, the ‘—’ points
correspond to the lowest rating and the ‘+’ points to the highest ratings. As the origin
in a CA plot corresponds to average profiles, we can infer the approximate mean
ratings for objects directly from the plot. For example, we see that both “Kidnapping”
and “Arson” are rated as “extremely serious” far more often than average. Similarly,
“Receiving stolen goods” tends to receive a lower (less serious) rating more often
than not. For “Burglary”, the results are more varied and the average rating appears
to be close to the middle of the rating scale.

Figure 3, for DS3, and Fig. 4, for CAr, give, for both analyses, the corresponding
solutions for the individuals. Hence, for the dual scaling solution, the scores for
the individuals are in principal coordinates whereas for the CA solution they are in
standard coordinates. In addition, the doubled set of “individual” scores for the dual
scaling solution is ignored as these are simply the same coordinates mirrored in the
origin.

Recall that the correspondence analysis solution gives optimal scaling values for
the individuals. Hence, coordinates are determined in such a way that differences in
the indicated rating patterns between individuals is optimally depicted. Superficially
comparing Figs.3 and 4 may not immediately expose this. However, note that for
the dual scaling solution, depicted by Fig.3, the points are not spread out along
both dimensions. Instead, they are all concentrated on the negative side of the first
dimension.
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Fig. 3 Dual scaling of crime rating data. Scores for individuals in principal coordinates

Fig. 4 Correspondence analysis of crime rating data. Optimal scaling values for individuals in
standard coordinates

To better appreciate the differences in the solutions, Figs. 5 and 6 give biplots for
both methods. That is, joint plots for rows and columns where projections of one
set of points on the directions of other points (obtained, for example, by drawing
axes from the origin through the points), can be used to reconstruct the values in the
original data table; see Greenacre (1993) for more details. Note that, in both joint
plots objects (crimes) are in standard, and individuals are in principal coordinates.

Interpreting the relative positions of the individuals in Fig.5 is not so easy. For
these data, differences are small and most individuals give high ratings to all crimes.
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Fig. 5 Dual scaling biplot of crime rating data. Optimal scaling values for objects (crimes) in
standard coordinates

Fig. 6 Correspondence analysis biplot of crime rating data. Optimal scaling values for individuals
in principal coordinates

That is, they tend to find all crimes to be serious. How individual 15 differentiates
from the others, as its location in Figs. 3 and 5 suggests, is not clear from the plot.
The optimal scaling positions of individuals in Fig.4 appear better separated.
Moreover, the interpretation of the differences in the locations of the individuals is
more straightforward. For example, individuals 15 and 7 are separated from the other
points. In the biplot of Fig. 6, we see that this may be explained by both individuals
giving relatively low ratings (that is, a lower rating than average) for “Mugging”.
Indeed, these two individuals are the only ones that assign a rating 2 to these two
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crimes. All others give higher ratings. In a similar way, differences in positions of
other “outlying” points (e.g. 3, 16, 12, 4) can be explained by observing in what
sense the corresponding rating profiles differ from the average rating profiles. For
the equivalent ratings of individuals 3 and 16, we see that they differ from all other
individuals with respect to their rating for “Arson” and “Kidnapping”. As can be
verified from the data table, they gave a rating of 3 to both of these crimes whereas
all others either gave rating 4 to at least one of these crimes.

7 Conclusion

In this paper, that has been inspired by the works of Nishisato, we introduced a dual
scaling of rating approach. We showed how this method relates to the correspondence
analysis of rating data and that the fundamental difference between these two variants
can be attributed to a difference in pre-processing of the data. In particular, the dual
scaling of rating data can be described as dual scaling of a row-wise doubled matrix
whereas correspondence analysis amounts to the analysis of a column-wise doubled
matrix.

The dual scaling framework that has been laid out by Nishisato throughout his
career offers tools to better understand the resulting differences. That is, whereas the
dual scaling of rating data yields (and in fact, was defined to do so) optimal scaling
values for the objects, the correspondence analysis of rating data yields optimal
scaling values for the individuals. Given these rather fundamental differences, saying
that one approach is better than the other, does not make much sense. A choice
between these two variants depends on the research goals. If the goal is to find
scale values (or: a representation) that best separates the objects according to the
observed ratings, the dual scaling of ratings (that is: the analysis of the row-wise
double matrix F,) is appropriate. On the other hand, to better distinguish individuals
according to their ratings, correspondence analysis of ratings (that is: the analysis of
the column-wise doubled matrix F,.) is the better alternative.
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1 The Journal of Educational Psychology as a Precursor
to Psychometrika

Before!the establishment of the journal Psychometrika in 1936, the main outlet for
the publication of technical/mathematical material with a psychological bent was,
somewhat surprisingly, the Journal of Educational Psychology (JEdP). JEdP was
founded in 1910, with an opening lead article written by E. L. Thorndike (the second
President of the Psychometric Society after Thurstone). By the time the 1930s arrived,
JEAdP was dominated by authors who would later become inaugural members of the
Psychometric Society as well as some of its later presidents. For example, in the 1930
volume, there were quantitative articles written by the familiar names of Cureton,
Dunlap, Holzinger, Spearman, Rulon, Lindquist, Edgerton, Garrett, and Carter. (We
might add that in the 1930s and 40s, Jack Dunlap, one of the six founding members
of the Psychometric Society, was an Editor of JEdP and so was responsible for all
technical/quantitative submissions made for the journal). It may not be completely
surprising then that Harold Hotelling, one of the leading mathematical statisticians
of the 20th century, would publish his method of principal components in JEdP in
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1933 (Hotelling 1933).2 What may be more interesting historically, however, is how
Hotelling came to the topic in the first place—that story is the purpose of this short
essay.

2 Harold Hotelling and Truman Lee Kelley

Harold Hotelling (1895-1973) received his doctoral degree in mathematics (and
economics) from Princeton in 1924. Immediately thereafter he became a Research
Associate at the Stanford University Food Research Institute; from 1927 to 1931
he was an Associate Professor of Mathematics, also at Stanford. He moved to the
Economics Department of Columbia University in 1931, and stayed until 1946 when
he left for the University of North Carolina to found the Department of Statistics. He
remained a Professor of Mathematical Statistics at North Carolina until his death.
Judging from a perusal of the Harold Hotelling archives at Columbia University and
those of Truman Lee Kelley at Harvard, Hotelling’s work on principal components,
as well as his subsequent development of canonical correlation (Hotelling 1935) also
published in JEAdP, was motivated by his association with Kelley. They overlapped as
colleagues at Stanford from 1924 to 1931, where Kelley was a Professor of Education.
Kelley moved in 1931 to the Harvard Graduate School of Education at exactly the
same time that Hotelling moved to Columbia. As discussed below, this period of
the early 1930s was a time of sustained interaction between Kelley and Hotelling
that directly led to Hotelling’s development of principal components and canonical
correlation.

The same year that both Kelley and Hotelling left Stanford for their respective East
Coast positions at Harvard and Columbia (1931) also saw the formation of the Unitary
Traits Committee under E. L. Thorndike, with both Kelley and Hotelling as committee
members. Several excerpts are given below from a survey that discusses the work of
this group written by Karl Holzinger in the Journal of Personality (Holzinger 1936),
entitled “Recent research on unitary mental traits”:

2 The technical level of Hotelling’s 1933 JEAP article is quite high and would be unexpected in any
journal devoted mainly to substantive matters. For example, Darrell Bock in his chapter, “Rethinking
Thurstone,” in the book, Factor Analysis at 100 (Bock 2007) comments on Hotelling’s JEdP article
as follows (p. 42):

Speaking of notation, I add that although Hotelling may have derived his iterative procedure
for latent roots and vectors in matrix terms, in consideration of the audience, he confined
his presentation to scalar algebra. Curiously, however, he introduces a notational convention
from tensor calculus — namely, that when an equation is written as say, b; = a;;, it denotes
the summation of the right-hand member with respect to the j subscript. This device is
somewhat unsettling to anyone accustomed to seeing the summation sign in these equations.
Surely, this is the only paper containing tensor notation in the entire psychological literature
and perhaps the statistical literature.
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‘When Professor Spearman conceived the idea that the arrangement of a set of intercorre-
lations could be used to determine factors underlying a set of variables, he opened up an
objective method in psychology that has been gathering momentum ever since. After the
publication of Abilities of Man, in 1927, interest in factor theory began to spread widely
throughout America, engaging the attention of such workers as Professor Truman Kelley
and Professor T. V. Moore. In a book entitled Crossroads in the Mind of Man (1928) Profes-
sor Kelley dealt largely with group factors and new methods for their evaluation. These two
volumes laid the immediate foundation for the formation of the Unitary Traits Committee
in 1931.

Professor E. L. Thorndike, for years a passive onlooker of methods of factorisation, now
became an active promoter. Through his influence a committee was formed to study methods
of factorization and apply them if possible to large bodies of data. Professor Thorndike named
the committee the Unitary Traits Committee and with his characteristic symbolism, “U. T.
C. for short.”

The Problems and Plans Committee of the American Council on Education empowered
Professor Thorndike to act as chairman of this committee and secured a grant of money from
the Carnegie Corporation for the purpose of preparing a plan to study unitary differential
traits. The early members of this committee included Professors E. L. Thorndike, Charles
Spearman, T. L. Kelley, Clark Hull, Karl Lashley, and Karl J. Holzinger. At later meetings
Professors T. V. Moore, Henry Garrett, and Harold Hotelling were added to the committee.

The sub-committees were organized as follows:

1. Mathematical theory and techniques and the improvement of methods of analysis: T. L.
Kelley and Harold Hotelling.

During the early meetings of the Unitary Traits Committee some criticism was made of
existing methods of factorisation, chiefly those of Professor Kelley in Crossroads in the Mind
of Man. Professor Kelley was already at work amending these techniques, and enlisted the aid
of Professor Harold Hotelling to further this work. As a mathematical statistician Professor
Hotelling was of great service to the committee. He contributed many valuable suggestions
at meetings, and the factorization technique now known as the Method of Principle [sic]
Components.

The remainder of the present essay can be seen as a series of interesting subtopics
(or at least we hope they are) concerning the introduction of “the method of principal
components” in JEdP (Hotelling 1933). Several of these observations result from
private correspondence and material from the Unitary Traits Committee available in
archives for Kelley and Hotelling at Harvard and Columbia, respectively.

3 Hotelling as a Quantitative Consultant for Psychology

For a period of time in the late 1920s and 1930s, Harold Hotelling was a favored
mathematician to consult when a particularly vexing quantitative derivation task was
at hand. Acknowledgments to Hotelling appeared regularly in JEJP in the early
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1930s; others occurred in several books from around that same time.? For example,
in Kelley’s Interpretation of Educational Measurements (Kelley 1927), we have the
footnote (p. 213):

I am indebted to Dr. Harold Hotelling for a suggestion which readily led to the evaluation
of this determinant.

Or, in Kelley’s Crossroads in the Mind of Man (Kelley 1928), we have the following
in the actual text (p. 54):

Dr. Harold Hotelling has kindly provided the following set of necessary conditions which
are more readily investigated than are the 12 sufficient equations in Formula 35.

In John Flanagan’s thesis under Kelley at Harvard, Factor Analysis in the Study
of Personality (Flanagan 1935), there is the following paragraph about Hotelling
developing the method of principal components at the behest of the Unitary Traits
Committee:

This brings us directly to the last method of multiple-factor analysis which we shall con-
sider, that of Hotelling. At the request of the Unitary Traits Committee, Hotelling attacked
the problem of obtaining a serviceable solution to the problem proposed by Kelley in 1928
[in Crossroads in the Mind of Man], “first, a determination, having tests A, B, C, of what
the independent mental traits are; and secondly an experimental construction of new tests
measuring these independent traits.” As we have just noted, Hotelling’s least-squares con-
ditions are identical to those in one of the solutions presented by Thurstone. Dr. Hotelling,
however, has supplied a very neat iterative solution for the k" order determinant involved
which makes the solution comparatively short.

The role of the Unitary Traits Committee in facilitating the development of the method
of principal components is confirmed by the beginning footnote in Hotelling’s paper
in JEAP (Hotelling 1933):

A study made in part under the auspices of the Unitary Traits Committee and the Carnegie
Corporation.

The author is indebted to Professor Truman L. Kelley, who was responsible for the initiation of
this study and the propounding of many of the questions to which answers are here attempted;
also to Professors L. L. Thurstone, Clark V. [sic; it should be L.] Hull, C. Spearman, and E.
L. Thorndike, who raised some of the further questions treated.

In a four-page single-spaced letter to Kelley from Hotelling (June 2, 1932), which
can be found in the Kelley archives available at the Houghton Library at Harvard,
the approach that Hotelling was to take is spelled out in some detail:

Another line of possible development in tetrad analysis (or rather factor analysis) is to take
as independent factors those linear functions of a number of test scores which correspond to
the principal axes of the ellipsoids of the scatter diagram.

3 It might also be noted that Hotelling was an inaugural member of the Psychometric Society based
on the membership roster published in 1936. For some unknown reason, however, he was no longer
a member as of March, 1939.
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Apparently, this long letter (along with some extensive handwritten notes) served as
a proposal to work for the Unitary Traits Committee for two summer months in 1932
(for $800); Kelley responded to Hotelling with a letter dated June 20, 1932:

This letter is in confirmation of our agreement that you work for the Unitary Traits Committee
for a period of two months and receive therefore a total of $800.00. It is understood between
us that you are to be free to meet such other obligations during this time as incidentally
arise, and that we upon our part may occasionally call upon you in the future for things not
involving an extended study upon your part.

I am sending a copy of this letter to Dr. Thorndike, chairman of the Committee.

I am returning herewith your notes, for which please accept my thanks.

Hotelling replied on June 25, 1932 (with a notation that a copy was also sent to
E. L. Thorndike):

With your letter of June 20 this will confirm our agreement that I am to work for the Unitary
Traits Committee for two months this summer.

Thank you for the return of my rough notes, which I hope latter to elaborate. During the
past week at Syracuse I have been discussing their contents at considerable length with
L. L. Thurstone, Jack Dunlap, and Ragnar Frisch. Dunlap is going to try the method of
principal axes on some tests he has made of chickens. [sic?; “children™?]

I hope to be at Blackey’s Hotel at Gilmanton Iron Works early in July and to see you
there. Meanwhile I am wrestling with some of the very beautiful and intricate mathematical
problems involved.

This last letter is interesting for several reasons, particularly for the three people
Hotelling mentioned that he had extensive discussions with: L. L. Thurstone, Jack
Dunlap, and Ragnar Frisch. The 1932 Syracuse meeting referred to was of the Amer-
ican Association for the Advancement of Science and its many affiliated societies
(such as the American Psychological Association). At this meeting, Thurstone pre-
sented his own principal axes solution to the problem of factor analysis. As Hotelling
notes in a 1933 JEdP footnote:

Since this was written Professor Thurstone has kindly sent me a pamphlet he has prepared
for class use, in which he uses the same geometric interpretation as in the present section,
and discusses the problem from essentially the same standpoint as that taken in [Part One].
His iterative procedure appears to have no relation to that of [Part Four]. In June, 1932,
Professor Thurstone presented at the Syracuse meeting of the American Association for
the Advancement of Science certain of the considerations which have served as a point of
departure for this paper.

Interestingly, Thurstone abandoned his first principal axes approach because he
thought it did not conform to a “true” and psychologically meaningful factor analytic
model. The mention of Jack Dunlap in Hotelling’s letter is also interesting, because he
was to be the Editor of JEdP overseeing the publication of Hotelling’s 1933 contribu-
tion. Ragnar Frisch, for those who might not know, was the first recipient of the Nobel
Prize in Economic Sciences in 1969; he is recognised for founding the discipline of
econometrics and for coining the word pair “macroeconomics/microeconomics” in
1933.
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It is worth mentioning that the debate between the use of principal components
and the reliance on the factor model, which rages to this day, can date back to 1935
in Thurstone’s book, The Vectors of Mind: Multiple Factor Analysis for the Isolation
of Primary Traits (Thurstone 1935). In Chapter IV, “The Principal Axes”, Thurstone
concluded with a summary rejection of principal components as a viable approach
to the factor model (p. 132):

These considerations make it necessary to discard the method of principal axes and also
Hotelling’s special case of this method as solutions to the psychological factor problem.

When the first author has taught modules on principal component analysis (PCA)
and factor analysis (FA) in a Multivariate Analysis class, PCA was introduced with
three introductory points:

(a) PCA deals with only one set of variables without the need for categorizing the
variables as being independent or dependent. There is asymmetry in the discus-
sion of the general linear model; in PCA, however, we analyze the relationships
among the variables in one set and not between two.

(b) As always, everything can be done computationally without the Multivariate
Normal (MVN) assumption; we are just getting descriptive statistics. When
significance tests and the like are desired, the MVN assumption becomes indis-
pensable. Also, MVN gives some very nice interpretations for what the principal
components are in terms of our constant density ellipsoids.

(c) Finally, it is probably best if you are doing a PCA, not to refer to these as “fac-
tors.” A lot of blood and ill-will has been spilt and spread over the distinction
between component analysis (which involves linear combinations of observable
variables), and the estimation of a factor model (which involves the use of under-
lying latent variables or factors, and the estimation of the factor structure). We
will get sloppy ourselves later, but some people really get exercised about these
things.

Four introductory points were made in introducing FA:

(a) In a principal component approach, the emphasis is completely on linear com-
binations of the observable random variables. There is no underlying (latent)
structure of the variables that I try to estimate. Statisticians generally love mod-
els and find principal components to be somewhat inelegant and nonstatistical.

(b) The issue of how many components should be extracted is always an open
question. With explicit models having differing numbers of “factors,” we might
be able to see which of the models fits “best” through some formal statistical
mechanism.

(c) Depending upon the scale of the variables used (i.e., the variances), principal
components may vary and there is no direct way of relating the components
obtained on the correlation matrix and the original variance-covariance matrix.
With some forms of factor analysis, such as maximum likelihood (ML), it is
possible to go between the results obtained from the covariance matrix and
the correlations by dividing or multiplying by the standard deviations of the
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variables. In other words, we can have a certain type of “scale invariance” if we
choose, for example, the maximum likelihood approach.

(d) If one wishes to work with a correlation matrix and have a means of testing
whether a particular model is adequate or to develop confidence intervals and
the like, it is probably preferable to use the ML approach. In PCA on a correlation
matrix, the results that are usable for statistical inference are limited and very
strained generally (and somewhat suspect).

4 Hotelling’s Power Method

At the meeting of the Unitary Traits Committee in December of 1932, several papers
were read that were devoted to numerical examples of Hotelling’s iterative strategy
for obtaining the principal components of a correlation matrix. The procedure pro-
posed by Hotelling would today be referred to as (a repeated use of) the power method
for finding the dominant eigenvalue of a matrix. Bodewig (1956, p. 250) attributes
the power method to von Mises in 1929, as published in a rather obscure German
language periodical. However, because of the close date to Hotelling’s own use of a
power method and his not referencing von Mises (but he did so later in an Annals of
Mathematical Statistics article in 1943 (Hotelling 1943) entitled “Some new methods
in matrix calculation” ), the power method itself might just as well be attributed to
Hotelling. In fact, Hotelling’s repeated use of the power method to find all the eigen-
values and eigenvectors of a matrix involves what has now become well-known as
“Hotelling deflation”: these are outer products of an eigenvector with itself, weighted
by the eigenvalue, and subtracted from the starting matrix. We give a summary of
this process taken from Multivariate Statistical Methods (Morrison 1967):

Let A be the p x p matrix of real elements. It is not necessary that A be symmetric. Order
the characteristic roots A; of A by their absolute values:

A1l > Aol = -0 = [Ap]

and denote their respective characteristic vectors as ay, .. ., a,. Initially we shall require that
only |A1] > |Az|. Let Xg be any vector of p real components, and form the sequence: X; =
Axp; ...Xx, = Ax,_| = A"x( of vectors. Then if the successive x; are scaled in some fashion,
the sequence of standardized vectors will converge to the characteristic vector aj. Probably
the most convenient scaling is performed by dividing the elements by their maximum, with
normalization to unit length merely reserved for the last, or exact, vector. Since Aa; = Aa;
the characteristic root itself can be found by dividing any element of Aa; by the corresponding
element of a;. The same iterative procedure can be used to compute any distinct characteristic
root of A. To extract the second largest root and its vector we normalize the first characteristic
vector aj to unit length, form the p x p matrix Aja; a/] and subtract it from A to give the

residual matrix A; = A — Alala/l. [A Hotelling deflation]

In the more recent implementations of routines for finding the principal compo-
nents of a covariance matrix (such as in Matlab), Hotelling’s iterative procedure is
not used. Instead, a Jacobi-like algorithm for finding the eigenvalues/eigenvectors of
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amatrix is commonly adopted [we will come back to this topic shortly]. This replace-
ment may be due in part to the computational difficulties one might encounter with
Hotelling’s approach. As Bodewig (1956, p. 250) notes:

It was R. von Mises ... who found the power method. It was a great achievement. And in
many cases it gives a quick result. But it cannot be denied that in a large number of cases the
convergence is extremely bad, so bad in fact that it can hardly be used at all. The convergence

will be good enough only if the quotient |%| > 3. But this is only rarely the case.

We might mention that there is one prominent and current application of the power
method for finding a single dominant eigenvalue/eigenvector combination—this is
in Google’s search engine and the use of what is called PageRank.

S Hotelling’s 1936 Psychometrika Paper: “Simplified
calculation of principal components”

If Hotelling’s seminal 1933 article in JEdP had appeared instead in Psychometrika,
it would be, according to Google Scholar, the second most highly cited article in
Psychometrika after Cronbach’s (1951) survey on “coefficient alpha.” The first co-
editor of Psychometrika, Paul Horst, even relates how he tried to get something
comparable for the first volume of Psychometrika (Horst and Stalnaker, 1986, p. 5):

At Proctor and Gamble we had been working with the applications of the new factor analytic
methods to personnel data. I had learned of a new iterative procedure that Hotelling at
Columbia had developed for finding the principal axis factors of a correlation matrix, and
we were using it at Proctor and Gamble. I saw Hotelling personally at Columbia during this
time, to persuade him to contribute his manuscript for the maiden issue of Psychometrika.
I asked him whether he could give us a manuscript on his new method. He at first was
markedly cool to the idea and I suspected that he was not eager to conceal his production
under the cover of a dubious new journal. I then told him that I very much wanted this method
published in this first issue and that, if he did not feel he could do it, I would reluctantly
publish the method myself and of course give him full credit. With this, he decided to provide
the manuscript himself (Hotelling 1936), and we remained good friends as long as he lived.

The 1936 Hotelling paper referenced above is based on the simple idea that when
the power method is applied to an integer power of a matrix (say, to A?) instead of
to the original matrix (say, to A), convergence will be faster. Unfortunately, such a
conjecture appears generally unjustified. We give two quotes from Bodewig (1950,
p. 134; 246) that make this point:

Hotelling [in the 1943 Annals of Mathematical Statistics article] therefore, proposes com-
puting the product T and, then to square successively: T, T2, T4, T8 ..., and then to form
the vector say T'0yD). This method is very elegant. Whether it is suitable, is another matter.
(emphasis added)

Powers of Matrices: Many authors such as Kincaid, Aitken, Hammersley, and Hotelling,
recommend successive squaring of A and iteration with A”™ on v instead of with A itself.
This is done in order to speed up convergence and to save work. But this proposal cannot be
defended. (emphasis added)
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Bodewig provides a formal proof of this assertion that “this proposal cannot be
defended.” It is based on an elaboration of the following observation: multiplying a
vector X by a matrix A and that resultant vector, Ax, by A again (i.e., A(AX)), requires
fewer operations than multiplying A by A, and then using that product matrix, A2,
to multiply x (i.e., A%x).

6 Kelley’s Approach to Principal Components

In Holzinger’s survey of the work completed by the Unitary Traits Committee men-
tioned earlier, the following short excerpt appears:

Very recently Professor Kelley has published a volume entitled The Essential Traits of Mental
Life(1935). In this book he has contributed a method of factorization which appears simpler
than that of Hotelling, but which gives the same results. In addition to this new technique
Professor Kelley makes a comparison of current methods of factorization.

In the 1936 Hotelling paper solicited by Horst, Kelley’s method of obtaining principal
components is explicitly commented on as follows (p. 27):

Another method of calculating principal components has been discovered by Professor Tru-
man L. Kelley, which involves less labor than the original iterative method, at least in the
examples to which he has applied it. How it would compare with the present accelerated
method is not clear, except that some experience at Columbia University has suggested that
the method here set forth is the more efficient. It is possible that Kelley’s method is more
suitable when all the characteristic roots are desired, but not the corresponding correlations
of the variates with the components. The present method seems to the computers who have
tried both to be superior when the components themselves, as well as their contributions
to the total variance, are to be specified. The advantage of the present method is enhanced
when, as will often be the case in dealing with numerous variates, not all the characteristic
roots but only a few of the largest are required.

A synopsis is given below of Kelley’s method for finding the two principal compo-
nents of a two-variable system, taken from his Essential Traits of Mental Life (1935,
p- 2). He showed that by using this method iteratively for all pairs of variables, the
complete set of principal components are retrieved:

If it is desired to create two new variables, x and y’, which are completely defined by the
given variables, x and y, ..., all thatis necessary isto writex = ajx + b1y; y = axx + by
and assign any values to ay, a, by, and b,. Solving these equations for x and y we have

_ box' —bry
T aiby — azby

aly/ - azx/
" aiby — by

Of the infinite number of new sets of equivalent variables, x' and y/, which can be derived
by substituting different values for ay, az, b, and by, that one is considered to have special
merit which is a rotation of the x and y axes to the position of the major and minor axes of
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the ellipse. These particular new variables, which we designate x| and yj, are given by the
equations
X1 =xcosf + ysin6

y1 = —xsin6é + ycosf
where 6 is the angle of rotation and is given by

2p
V] — V) ’

tan 20 =

Here, p =012, v1 = 012 and vy = 022. The peculiar merit of the new variables, x| and yy,
lies in the facts which can be immediately surmised by thinking of the elementary geometry
involved.

(a) x1 and yj are uncorrelated.
(b) xj and y; axes are at right angles to each other.

(c) The variance of xj, distance from the minor axis in the direction of the major axis, is a
maximum, for no other rotation of axes yields a variable with as large a variance.

(d) The variance of yj, distance measured in the direction of the minor axis, is a minimum.

The advantage of (a), lack of correlation, need scarcely be dwelt upon, as it is the essential
purpose of factorization to obtain independent measures.

The advantage of (b), orthogonality, is not quite so obvious. Though a point in two-
dimensional space may be completely defined by distance from two oblique axes, nev-
ertheless the simplicity of thought (and to create such simplicity is a basic purpose of factor-
ization) when a point is defined in terms of perpendicular distance from two perpendicular
axes, should be sufficient to commend the use of such axes.

The advantage of (c) making the variance of one of the new variables a maximum is partic-
ularly apparent when the major axis is much greater than the minor. In this case, much more
about the total situation or the total field wherein variation can take place is known if vari-
ability in any other direction is known. The principle of parsimony of thought recommends
a knowledge of the x; variable if but a single item of knowledge is available. The operation
of this principle will be much more apparent when thinking of many variables, for here the
variances of some of the smaller ones may be such that entire lack of knowledge of them
will not be serious.

It is obvious from the geometry of the situation that there is but a single solution yielding

variables with the properties mentioned. These constitute the components in the two-variable
4

problem.

It is interesting to speculate where Kelley may have come up with his approach
to the calculation of principal components. He gives no explicit reference for his
iterative method in the Essential Traits of Mental Life. In fact, he opens this text
(Chapter 1) as follows:

4 As mentioned earlier, one limitation of the power iteration method is slow convergence when
A1/X2 is close to 1. Kelly provided the following comment on the advantage of his method: “unlike
Hotelling’s method, approximate equality of variance of two components does not lead to slow
convergence.” (p. 9)
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A New Method of Analysis of Variables into Independent Components: Before attempting
a comparison of different methods of analysis of variables into components, a new method
is presented. The procedure followed is new, but the outcome is identical with that given by
Hotelling’s method of analysis.

One story that is at least plausible comes from a perusal of the Kelley archives at
Harvard. Kelley spent a sabbatical year in the very early 1920s with Karl Pearson,
who was to have a major influence on Kelley’s statistical thinking. For example,
in the preface to Kelley’s well-received 1923 text, Statistical Method, there is the
following acknowledgement to Karl Pearson:

I would, however, say that my greatest inspiration has been the product of that master analyst,
Karl Pearson, and that the English school entire has been most contributive.

There is also a reference in Statistical Method (p. 363) to Karl Pearson’s paper,
“On lines and planes of closest fit to systems of points in space” (Pearson 1901).
As is now well-recognised, this early 1901 paper introduced “the method of prin-
cipal components,” although that particular terminology, introduced much later by
Hotelling in 1933, was obviously not used.

The key “tan 20” formula in Kelley’s method for finding the angle of rotation for
the principal axes orientation of a two-variable system is present in Pearson (1901, p.
566). Itis conceivable that Kelley could have encountered it there for the first time, but
itis more likely that Kelley knew of it from his undergraduate work in mathematics at
the University of Illinois in the early 1900s. Neither Pearson nor Kelley, for example,
thought it necessary to include any reference for what was presumably a well-known
formula in mechanics that dealt with the axes of an ellipsoid. At Illinois, Kelley
did a Bachelor of Arts thesis (1909) entitled “Graphic Evaluation of Trigonometric
Functions of Complex Variables.” (A Google search on this exact title will retrieve
a copy of the thesis). Kelley’s trigonometric prowess as represented in his thesis
is also well on display in his Essential Traits of Mental Life—an extensive set of
trigonometric equations were derived by Kelley to make the iterative process work.

An interview done in 2006 with Darrell Bock in the Journal of Educational and
Behavioral Statistics (Wainer and Robinson 2006) may shed some more historical
light on the question of “Whence Principal Components?” The excerpts given below
discuss Bock’s visit to the University of Illinois in the 1950s to use the ILLIAC
computer for some eigenvector/eigenvalue computations that he needed done. Note
the name of the graduate student he met at Illinois, Gene Golub; Golub was soon to
become a computational giant of the second half of the 20th century.

I had heard from Charles Wrigley at Michigan State University that the new ILLIAC elec-
tronic computer at Champaign-Urbana had programs for both the one- and two-matrix
eigenproblems. On his advice, I phoned Kern Dickman, who had helped Charles perform
a principal component analysis on the machine, and explained my needs. He invited me to
come down to Urbana and bring the matrices to be analyzed with me. By that time, I had
become sufficiently proficient in using punched card equipment in the business office of the
University—in particular a new electronic calculating punch that could store constants and
performed cumulative multiplications as fast as the cards passed through the machine.
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I arrived in Urbana and found Kern; he took me directly to the computation center to see
the ILLIAC. But there was very little to see—only a photoelectric reader of teletype tape
and a box with a small slit where punched tape spewed from the machine; a few dimly
revealed electronic parts could be seen behind a plate-glass window. Elsewhere in the room
were teletype machines for punching numbers and letters onto paper tape, printing out the
characters of an existing tape, or copying all or parts of one tape to another. My first job
was to key the elements of the two covariance matrices onto tape, which in spite of my best
efforts to avoid errors, took most of the afternoon.

When I finished that task, Kern suggested that we should meet for dinner at his favorite
watering hole in Urbana. When I arrived there I found him sitting with another person whom
he introduced as Gene Golub, adding that Gene had programmed the eigenroutines for the
ILLIAC. At Kern’s suggestion Gene had brought along some papers for me—an introduction
to programming the ILLIAC and the documentation of the eigenroutines. He said that his
code was similar to that of Goldstein, who had programmed the eigen-procedures for the
Maniac machine built by Metropolis at Los Alamos. It used the Jacobi iterative method, which
consists of repeated orthogonal transformations of pairs of variables to reduce the elements
in the off-diagonal of a real symmetric matrix to zero, all the while performing the same
operation on an identity matrix. Although a given element of the matrix does not necessarily
remain zero, the iterations converge to a diagonal matrix containing the eigenvalues, and the
identity matrix becomes the corresponding eigenvectors.

Gene told the story that Goldstein, having heard the Jacobi method described by a colleague,
stopped by John von Neumann’s office to ask if the method was strictly convergent. Gazing
at the ceiling for about five seconds, von Neumann replied “yes, of course.” Goldstein was
amazed, thinking this was another of von Neuman'’s [sic] fabled feats of mental calculation,
but as Golub and Van Loan show in their 1996 reference, Matrix Computations, the proof
requires only a few lines of matrix expressions, which von Neumann could have easily
visualized. I already knew of this method, not as Jacobi’s, but as the “method of sine and
cosine transformations” described by Truman Kelley in his 1935 book, Essential Traits of
Mental Life. He presented the method as his own creation, including a proof of convergence
requiring several pages of geometric argument. Considering that Jacobi had introduced the
method in the middle of the 19th-century, I wondered if Kelley had heard of it from one of his
fellow professors at Harvard. But I found in his 1928 book, Crossroads in the Mind of Man,
that he had already used sine and cosine transformations in connection with Spearman’s
one-factor model, and I now believe that he rediscovered Jacobi’s method independently.

Bock got this a little incorrect. Kelley did not “rediscover” Jacobi’s method. He did
not know, for example, that merely multiplying the pairwise orthogonal rotations
together would give the eigenvectors directly as is done in Jacobi’s method. But still,
Kelley got very close by obtaining all of the eigenvalues of a correlation matrix at the
end of his pairwise iterative process. Kelley generated the corresponding eigenvectors
rather laboriously by keeping track of all the transformations carried out over the
pairwise iterations as expressed in terms of the original variables.
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7 Conclusion

So now to the opening question of “Whence principal components?” The best theo-
retical answer is probably Karl Pearson, given his 1901 paper mentioned earlier.’ The
numerical examples Pearson gave, however, were all extremely small and involved
at most three variables. So, from a computational perspective, the answer to the ques-
tion should probably be Hotelling, based upon his use of an iterative power method
and the introduction of Hotelling deflation. If current computational practice is any
criterion, however, Kelley could be credited with the introduction of a rudimentary
Jacobi-like method. The Jacobi approach became more or less standard practice in
the 1950s and 1960s. As noted by Bock in the earlier excerpts, the method had
been programmed by Golub for the ILLIAC computer before Bock’s visit to Illinois.
From the 1970s to the present, most computer-implemented principal component
computational routines (in Matlab, for instance) rely on a more basic singular value
decomposition (SVD) algorithm developed by that same graduate student Bock met
at [llinois in the 1950s, Gene Golub; see, for example, Golub and Reinsch (1970),
“Singular value decomposition and least-squares solutions.” By way of closing, it is
interesting to note that the Golub-Reinsch SVD routine relies on exactly the same
type of planar rotations (but now called Givens rotations) used by Kelley in his
approach to computing principal components.®
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The Emergence of Joint Scales )
in the Social and Behavioural Sciences: oo
Cumulative Guttman Scaling

and Single-Peaked Coombs Scaling

Willem J. Heiser and Jacqueline J. Meulman

1 Introduction

In his classical textbook Theory and Methods of Scaling, Torgerson (1958) distin-
guished three groups of scaling methods. This distinction was primarily based on the
consideration which part of the variability in responses of subjects (persons, judges)
to stimuli (questions, tasks) was to be regarded as systematic or random. In the first
group, called the subject-centred approach, systematic variation in the observations
is attributed to individual differences in the subjects, while the stimuli are regarded as
replications. In the second group, called the stimulus-centred or judgement approach,
systematic variation in the observations is attributed to differences in the stimuli with
respect to a designated attribute, while the subjects are regarded as replications. In
the third group, called the response approach, systematic variation is attributed to
stable differences in the subjects as well as in the stimuli. We start by briefly outlining
the historical context in which the first two approaches evolved.

1.1 Galton’s Subject-Centred Approach

The first group of scaling methods in Torgerson’s classification originated with Fran-
cis Galton (1822-1911). As noted by Helen Walker, in her impressive dissertation on
the history of educational statistics (Walker 1929), Galton’s book Hereditary Genius
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was the reason for him to become interested in devising standardised ways of report-
ing individual differences in achievement and intellectual ability. She quoted Galton
as follows:

The theory of Hereditary Genius, though usually scouted, has been advocated by a few writers
in the past as well as in modern times. But I may claim to be the first to treat the subject
in a statistical manner, to arrive at numerical results, and to introduce the ‘law of deviation
from an average’ into discussions on heredity. [...] The range of mental powers between
[...] the greatest and least of English intellects, is enormous. There is a continuity of natural
ability reaching from one knows not what height, and descending to one can hardly say what
depth. [...] I propose in this chapter to range men according to their natural abilities, putting
them into classes separated by equal degrees of merit, and to show the relative number of
individuals included in the several classes. [...] The method that I shall employ for discovering
all this, is an application of the very curious theoretical law of ’deviation from an average’.
(Galton 1869, as quoted in Walker 1929, pp. 86-87)

The “curious theoretical law” is the normal distribution of errors, but why would
a theory of errors apply to mental ability? In Chap.3 of Hereditary Genius, Galton
tried to show that it does. He first looked at 200 students who obtained mathematical
honours at Cambridge and found that their average scores on a ‘scale of merit’ given
by several examiners appear to follow the normal distribution, albeit that they show
a longer tail in the higher end of the distribution. He then looked at another example,
inspired by the inquiries of Adolphe Quetelet (1796-1874) on social and moral
statistics—Qalton even strongly advises readers to consult the ‘very readable octavo
volume’ Letters on Probabilities (Quetelet 1849). The data were scores obtained by
73 candidates from the admissions test for the Royal Military College at Sandhurst,
December 1868 (see Stigler 1992). For this data set, he found that the frequencies
in ten classes compared with expected frequencies under the normal distribution
according to tables published by Quetelet “accord as closely as the small number of
persons examined could have led us to expect” (Galton 1869, p. 26). In this case, the
tail at the lower end was shorter than expected, which he attributed to an effect of
pre-selection.

Galton did not want to argue only from empirical examples. Not long after publica-
tion of Hereditary Genius, he tried to give some theoretical reasons why examination
scores could be expected to be normally distributed (Galton 1875). He first recalled
that to conform to the normal distribution, individual errors of observation were
supposed to be due to the combined effect of different influences that must be all
(1) independent, (2) of equal size, (3) equally likely to push the average upwards or
downwards, and (4) infinitely numerous. He immediately admitted that the first three
of these conditions “may occur in games of chance, but they assuredly do not occur
in vital and social phenomena” (Galton 1875, p. 39). Nevertheless, he then tried to
argue that, when examined more closely, they might still be approximately true at a
more fundamental level. Stigler (1986) came with a stern but just assessment of this
view:

His explanation was scattered, however; and therefore incomplete. It amounted to two claims
that, although true, did not get to the heart of the matter. One was a rearguing of the hypothesis
of elementary errors — large influences would frequently, upon closer inspection, be seen to
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be composed of a large number of smaller influences, and hence the Laplacian conditions
could be safely pushed back a stage, out of sight. The other, upon which Galton put more
emphasis, was that the number of variable influences did not really need to be “infinitely
numerous”’; in fact, even for n = 17, a binomial distribution was normal for practical purposes.
(Stigler 1986, pp. 274-275)

Notwithstanding the somewhat shaky defense of the assumption of normality, the
1875 paper is important for the subject-centred scaling approach, because it elabo-
rated on what Galton called the “common statistical scale” in a letter to Editor of
Nature (Galton 1874). First, by expressing the raw score in deviations from the mean,
in standardised scores with unit defined by what was at that time called the “prob-
able error” (before Karl Pearson conceptualised the standard deviation), different
distributions of all kinds could be made comparable, as well as individuals measured
in different groups or on different occasions. Second, by using the cumulative fre-
quencies of the normal distribution, a curve could be drawn, which he called the
“ogive” by which scale values can be determined that partition the total frequency
into one hundred equal parts—the percentiles. The standardised scale and the per-
centiles (or McCall’s (1922) T-scale that divides individuals in ten equally frequent
classes) became the mainstay of early educational and mental measurement.

The two psychometric branches that developed out of these first steps of the
subject-centred approach became known as classical test theory and factor analysis
on subscale scores of a test. Classical test theory introduced the concept of a system-
atic latent variable, on top of an error variable: “observed score = true score + error”;
it concerns the reliability and validity of subject scores and various ways to establish
and optimise these quality measures. A good recent source for the history of clas-
sical test theory is Clauser (2022). Factor analysis could not have been formulated
before Galton’s path-breaking discovery in the 1880s of the statistical concept of
correlation.? It is concerned with the structure of correlations between scale scores,
with the aim to identify (possibly overlapping) subsets of scales that are mutually
highly correlated, called common factors. At the occasion of the 100th anniversary
of Charles Spearman’s seminal paper about the structure of intelligence in 2004, the
history of factor analysis was reviewed by leading psychometricians in Cudeck and
MacCallum (2007).

1.2 Fechner’s Stimulus-Centred or Judgement Approach

The second group of scaling methods in Torgerson’s classification started slightly
earlier with Gustav Theodor Fechner (1801-1889), physicist and philosopher with
important contributions to both psychology, psychometrics, and statistics (Stigler

1 According to Yule and Filon (1936), the standard deviation was introduced in Pearson (1894, p.
75). Stigler (1986, p. 328) noted that he already mentioned it in a series of lectures from 31 January
through 3 February 1893. It no longer presupposes that the variability is caused by error.

2 But see Stigler’s (1986, pp. 297-299) interesting comments about the minor role correlation played
in Galton’s own work.
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1986, Chap.7; Murray 2021; Heiser 2023). He is best known for Fechner’s Law,
which relates subjective sensation of stimuli to the logarithm of the amount of objec-
tive stimulation by physical excitation. As a basis, he took Weber’s Law, which states
that the perceived change in a stimulus is proportional to the initial physical value of
the stimulus.

Ernest Heinrich Weber (1795-1878) started work on effects of pressure on the skin
in the early 1830s and gave a matured account in Der Tastsinn und das Gemeingefiihl
(Weber 1846). According to the eminent historian of psychology Edwin Boring
(1886-1968):

immediately others began trying to establish Weber’s Law for senses other than touch and
for dimensions other than intensity. Weber’s Law was quantitative. It was a measurement in
the sense that it measured in terms of the stimulus: a sensory distance judged quantitatively.
It did not, however, imply a sensory scale. (Boring 1961, pp. 241-242).

Fechner’s most significant contribution to quantitative psychology was that he
showed how to construct a sensory scale in his major work Elemente der Psy-
chophysik (Fechner 1860). The key was to assume that on the psychological scale,
all just noticeable differences (jnds) are equal, and then to take the jnd as the unit of
measurement. By simple addition of jnds, one could find the magnitude of a sensation
above the zero point (called the stimulus limen).

Fechner also formulated three specific experimental designs for establishing jnds:
the method of reproduction or adjustment, the method of minimal changes (or method
of limits), and the method of constant stimuli; see (Guilford (1936), Chaps.2, 4, and
6) for a brief overview and Heiser (2023). In the first design, it is the subject who
produces a series of stimulus adjustments to make them subjectively equal to a
fixed comparison stimulus. Here, the difference between the physical value of the
comparison stimulus and the average physical value of the reproduced stimuli is
taken as the jnd. In the second and third designs, it is the experimenter who adjusts
the intensity of a variable stimulus with respect to a constant stimulus in different
ways. Then the task of the subject is merely to indicate which of the two is more
intense than the other (e.g., “louder than” or “heavier than”). Here, the jnd is defined
as the physical stimulus difference that is detected by human observers 50% of
the time. It is important to notice that for the method of minimal changes and the
method of constant stimuli, the actual elementary observations are qualitative: in
a comparison of two stimuli, the subject has to declare that the first dominates the
second, or the other way around (soon it became customary to admit judgements of
equality as well). After several repetitions of the task, by the same subject and/or
other subjects considered as replications, we obtain a number of relative frequencies
for the “greater than” category that tend to increase as a function of the value of the
comparison stimulus.

To determine the 50% point, Fechner (1860, pp. 85-93) proposed to fit a
cumulative-normal distribution to these relative frequencies. It is not the place here
to go into details of different ways of fitting such a curve that were developed in the
next fifty years (see Urban 1907, 1910). However, it should be mentioned that Fech-
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ner’s brilliant idea of fitting a nonlinear model in this context obtained an adequate
name by the end of this period:
A mathematical expression which gives the probability of a judgment as function of the
comparison stimulus, is called the psychometric function of this judgment [...] The term
psychometric function was chosen in imitation of the term biometric function, which is

commonly in use for mathematical expressions which give the so-called probability of dying
as function of age. (Urban 1910, p. 230).

The assumption of the normal distribution on which Fechner’s sensory scale is
based has become known as the phi-gamma hypothesis ®(y), where ®(-) denotes
the normal distribution function. Here, y = h.A is the product of the measure of
precision in Gauss’ sense h (the steepness of the curve, in Pearson’s terminology
h=1/o ﬁ, where o is the standard deviation), and the stimulus increment A cor-
responding to a probability of 0.5 (the inflection point of the curve). For insight-
ful discussions of the phi-gamma hypothesis, see Boring (1917, 1924), Thurstone
(1928a), and Stigler (1986, pp. 244-254).

1.3 The Response Approach: Scaling both Subjects
and Stimuli

That brings us to the third type of psychological scaling, which is the main topic
of this paper. Torgerson (1958) called it the response approach, the early history of
which started in the 1940s and 1950s of the twentieth century. Its main initiators were
Louis Guttman (1916-1987) and Clyde Coombs (1912—-1988). The main concept of
the response approach is the joint scale, on which both subjects and stimuli have
scale values (or a rank position), and its main objective is to find these scale values
by an analysis of a single data set with the responses of subjects towards a given set of
stimuli. The Guttman type of joint scale will be discussed in Sect. 2, the Coombs type
of joint scale in Sect.3, and we will introduce an interesting and useful connection
between the two in Sect. 4.

2 Joint Scales for Multiple Choice Data: Cumulative
Guttman Scaling

Guttman’s theory of a joint scale was based on the format of multiple choice data:
responses of a group of individuals (alternatively called “objects”) to a set of items
(alternatively called “qualitative variables™) with multiple response categories that
are exclusive and exhaustive.’

3 This format was developed during World War I, when mental testing and classification of almost
two million army recruits necessitated group testing with efficient scoring rules, replacing the
customary one-hour individual interviews by a trained psychologist. See Siegel (1992) for the
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2.1 Guttman’s Points of Departure

Apart from the data format that he had chosen to arrive at a joint scale, various
important prerequisites and objectives for Guttman’s scaling work were:

1. To consider the individuals as a sample from a well-specified population, and
the items as a sample from a well-designed universe of items, which should form
what Guttman called a single class of behaviour (Guttman 1941, p. 321).

2. To keep in mind that “a criterion for an attribute to belong in the universe is
not the magnitude of the correlations of that item with other attributes known
to belong in the universe. [...] It will be seen that attributes of the same type of
content may have any size of intercorrelations, varying from practically zero to
unity.” (Guttman 1944, p. 142).

3. To regard the specific selection of categories endorsed by an individual across
items as an individual’s coherent behaviour, and the specific subgroup of individ-
uals who checked the same category as exhibiting a distinctive feature, so that the
entire variability of behaviour is attributed to systematic individual differences.

4. Tokeep away from any assumption of “a priori notions of ‘units of measurement’,
‘interchangeability of units’, ‘linearity of units’, ‘addition of units’, and the like”
(Guttman 1941, p. 323), by which he distanced himself from the psychophysical
tradition.

5. To work with methods that simultaneously order and/or quantify individuals
and categories on the basis of one and the same data set, in which no a priori
Jjudgment is required whether or not one category should obtain a higher value
than another.

6. To assign a single value (called weight) to each category and a single value
(called score) to each individual, in order to predict responses to other items in
the same universe (but outside the current sample), as well as to other individuals
of the same population.

During the 1940s, Guttman designed several methods to achieve the above objectives
(5) and (6) under prerequisites (1) to (4). The two best-known ones are what Guttman
called his least squares method (Guttman 1941)—the name we also use in this
chapter—and scalogram analysis, of which the basic principles were described in
Guttman (1944, 1950a), while more detailed and practical matters can be found
in Guttman (1947a,b). Let us first look at the major concepts of the least squares
method.

important role of Arthur Otis, a doctoral student at Stanford University under supervision of Lewis
Terman, who created the first multiple choice paper-and-pencil scale for assessing mental ability,
known as the Army Group Examination Alpha.
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2.2 The Least Squares Method

In the introductory section of Guttman (1941), he makes the following fundamental
remark:

It so happens that the “best” answer we shall derive involves rather lengthy, though simple,
numerical calculations; and it can often be usefully approximated by simpler — and even
intuitive — procedures. It is of little value, however, merely to say that one “weighting”
system is as good as another since different weights give approximately the same numerical
answer. It is of primary importance to define first a “best” answer so that one can know what
it is that is being approximated, and that definition is our principal motivation in writing this
paper (Guttman 1941, p. 323)

Hence, his aim was evidently to describe the rationale of applying already known
methods of principal components analysis and reciprocal averaging—to which he
referred in the bibliographical note on pp. 345347 of his paper—when the data are
qualitative. In fact, he gave three different but related criteria and proved that they
lead to the same solution, after adjustments for normalisation differences. The first
two have in common a new use of the correlation ratio to define quantifications,
while the third uses the familiar correlation coefficient as a measure of consistency
of optimal weights and scores to be found.

2.2.1 Pearson’s Correlation Ratio for Nonlinear Regression

The correlation ratio n had been proposed by Pearson (1905) for the situation of a
nonlinear regression of an observed quantitative variable y upon either a qualitative
or a quantitative independent variable, grouped into a number of classes. The distri-
bution of y for given class x of the independent variable was called an x-array of y’s,
having an average value y,. Then n?, the square of the correlation ratio, was defined
as the ratio of the variance of the means y, of the x-arrays to the total variance of
y. By what Pearson called “a well-known property of moments,* the total variance
of y can be decomposed into two parts: the sum of the variance between the means
and the average of the variances within x-arrays. Therefore, when 1% goes to 1.0, we
have perfect nonlinear correlation and no variability around the regression curve. If
172 equals zero, the variance between the means is zero; i.e., there is no association
of y’s with special classes of x at all. Pearson also proved that n is always greater
than r, the linear correlation coefficient, where he noted:

except in the special case when the means of the x-arrays of y’s all fall on a straight line,
i.e., we have linear regression, and then the two correlation constants are equal. [...] We have
now freed our treatment of correlation from any condition as to linearity of the regression.
(Pearson 1905, p. 11).

4 Particularly, it is a property of the second moment of inertia, a concept from physics that Pearson
started to use a lot in the 1890s. For a historical account of Pearson’s Method of Moments, see
Walker (1929, Chap. III).
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2.2.2 Quantification of the Category Weights

In his first application of the squared correlation ratio, Guttman introduced the impor-
tant new notion to let y correspond to the parameters of his scaling problem, i.e.,
the unknown quantifications of the category weights. The independent variable x
corresponded to subjects, so that an x-array contains subject-specific observations.
Hence, for quantification of the weights, n”> measures the ratio of the variance across
subjects of the mean weights y,—of the categories endorsed by each subject—to the
total variance of all weights. For a reason to be discussed shortly, Guttman’s objec-
tive was to minimise the relative variability of the weights within subjects. From
Pearson’s decomposition of the total variance, we can be assured that this goal is in
fact achieved by maximising n>.

Guttman then continued to show that from this point of departure, the solution
involves finding the eigenvector with the largest eigenvalue of a matrix containing all
bivariate cross-tables of the qualitative variables involved in the problem, standard-
ised with respect to the expected frequencies under the hypothesis of independence.
Hence, the matrix from which we calculate the optimal category quantifications has
typical elements involved in the usual chi-square statistic to test for significance of
association. For this reason, Guttman remarks that although the method looks like a
principal component analysis:

There is an essential difference, however, between the present problem of quantifying a class
of attributes and the problem of “factoring” a set of quantitative variates. The principal axis
solution for a set of quantitative variates depends on the preliminary units of measurement of
those variates. In the present problem, the question of preliminary units does not arise since
we limit ourselves to considering the presence or absence of behaviour. But we [...] see that
in a sense a metric has arisen out of our analysis, a metric that we shall call the “chi-square”
metric. (Guttman 1941, pp. 330-331).

So, he underlines that his method satisfies prerequisites (3) and (4) discussed in
the beginning of this section. We are not accounting for variance in the data, but
for variability in qualitative behaviour. The chi-square metric is not assumed but
follows from the aim to minimise the variance of the relevant category weights
within subjects, relative to their total variance.

2.2.3 Quantification of the Subject Scores

In Guttman’s second application of the squared correlation ratio, the dependent vari-
able y corresponds to the unknown quantifications of the position of the subjects on
the joint scale, i.e., the subject scores. The independent variable then corresponds
to categories, so that an x-array contains category-specific observations that identify
subgroups of subjects who share the same behaviour. Now the objective is that the
values of y should be such that subjects who endorse the same category should have
maximally similar scores, while subjects in different categories have maximally dif-
ferent scores. In this set-up, 7> will measure the ratio of the variance across categories
of the mean scores y, to the total variance of all scores. By the same argument as
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before, maximising the relative variance of the mean subject scores per category
implies minimising the relative variances of the scores within categories.

The solution to maximise 7> for the scores again becomes an eigenvalue-
eigenvector problem, resulting in standardised scores and in category weights that
are the average of the scores of subjects belonging to or endorsing that particular cat-
egory. It gives the rationale for a common statistical scale with standardised scores,
with all advantages that Francis Galton had in mind, but now for purely qualitative
data and without any distributional assumptions.

2.2.4 Linearising the Regression of Scores and Weights

Finally, Guttman considered a consistency criterion for determining the optimal
category quantifications and optimal subject scores simultaneously. For this criterion,
he selects all pairs of combinations of some subject i endorsing some category j.
This subset of pairs is coded with ones in the binary data matrix M, and the other
pairs are coded with zeros. The problem becomes one of finding scores z = {z;} and
weights w = {w;} that are maximally correlated. Maximal correlation implies that
categories endorsed by people with low scores should have similarly low values on
the joint scale, while categories endorsed by people with high scores should have
similarly high values on the joint scale. Guttman then showed that optimising the
consistency criterion amounts to maximising a bilinear form in terms of z and w
in the metric M, under the restrictions that the variances of z and of w are finite
constants. In addition, he showed that:

1. The quantifications under the consistency criterion solution are equivalent to the
two solutions based on maximising the squared correlation ratio;

2. The optimal correlation coefficient is equal to both optimal correlation ratios;

3. Therefore, due to Pearson’s result quoted earlier, the regressions of the optimal
category weights W on the optimal subject scores Z are linear in both directions.

In sum, all three approaches linearise the regression between the two types of scale
values on the joint scale. With these important results, we conclude our summary
of the major features of Guttman’s least squares technique and turn to his remark
cited in the beginning of Sect.2.2 that it could often be approximated by simpler
procedures.

2.3 Scalogram Analysis

The basic ideas of these simpler procedures were introduced in Guttman (1944)
under the name scalogram analysis. A scalogram is a visualisation of the joint scale,
in which subjects are represented by rank scores x and the new concept is that an
item with its response categories is required to be a simple function of x. Suppose
the m categories of an item V have arbitrary values vy, v,, ..., v,, which are
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regarded to be just labels. Then item V is said to be a simple function of x if we
can divide the rank scores on the scale into m consecutive intervals, for which the
values within one interval are the same, while they are different from the values
in the other intervals. Thus, all subjects with a score within one interval share the
same unique response category. The intersection of the intervals across items yields
a limited number of response profiles that may occur given the requirement of items
being simple functions.

2.3.1 Definition of a Guttman Scale

Given these preliminaries, here is the explicit definition of the notion that Guttman
called a scale, which was only implicitly playing a role in the least squares approach:

For a given population of objects, the multivariate frequency distribution of a universe of
attributes will be called a scale if it is possible to derive from the distribution a quantitative
variable with which to characterize the objects such that each attribute is a simple function
of that quantitative variable. Such a quantitative variable is called a scale variable. [...]
Obviously any quantitative variable that is an increasing (or decreasing) function of a scale
variable is also a scale variable [...], which is equally good at reproducing the attributes.
[...] Therefore, the problem of metric is of no particular importance here for scaling. For
certain problems like predicting outside variables from the universe of attributes, it may be
convenient to adopt a particular metric like a least squares metric, which has convenient
properties for helping analyze multiple correlations. The interesting mathematics involved
here will be discussed in another paper. (Guttman 1944, pp. 140-141).

The future paper that Guttman anticipates in this quotation is most likely Guttman
(1950b), in which he demonstrates that for a uniform distribution of the response
profiles the least squares technique will produce optimal scores that are linear with
the rank scores—i.e. they are equally spaced. A monotonically increasing function of
them is obtained for a non-uniform distribution, depending on the relative frequencies
of people with the same response profile. Furthermore, once the scale variable is
found, there is an unambiguous meaning to the order of attribute values. One category
of an attribute is higher than another if it characterises objects higher on the scale
(Guttman 1944, p. 150). By ordering the categories in this way, the simple function
becomes an increasing step function for each attribute.

2.3.2 Representations of a Guttman Scale

In a scalogram, the joint ordering of subjects and categories is represented by marking
the ranked subject scores on a continuum, and then inserting cutting points indicating
the location where one interval borders the next interval. Alternatively, items are
represented as a set of parallel bar charts, with cutting points in proportion to the
marginal frequencies, extended across all items. This construction allows reading off
all possible response profiles accounted for by the joint scale. In the important special
case in which each item has two categories, permuting the rows and columns of the
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binary data matrix M in the order of the scale variable will show a characteristic
parallelogram pattern, which is often also called a scalogram (Guttman 1950b).

In joint scales of binary items, the step function has only one step, located at the
cutting point between the last subject who scored in the lower category and the first
subject who scored in the higher category. It is instructive to compare Guttman’s step
function with functions in probabilistic models that psychometricians also started to
develop in the 1950s and 1960s. Such models are based on a curve that gives the
probability of answering an item correctly, called a trace line (Lazarsfeld 1950)
or item-characteristic curve (ICC; Lord and Novick 1968, p. 366). Initially, the
most popular ICC was exactly Fechner’s (and Galton’s) normal ogive psychometric
function ®(y) that we discussed in Sect. 1.2. When used as a model for the relation
between ability and item responses (Lord 1952), y is parametrised as y = a (6 — b),
where 6 is the subject score, the precision parameter a is called the discriminating
power of an item, and b is called the item difficulty, or more generally, item location
parameter. In these terms, the Guttman step function is the limiting case for a grow-
ing without bound, so that items have perfect discrimination. Formally, we obtain
Oloo(@ —b)] = 1if6 > band P[oo(d — b)] = 0if 0 < b. (Lord and Novick 1968,
p. 403). If the subject score is larger than the item difficulty, we are sure the item
will be answered correctly, and when it is smaller we are sure that it will not. That
is why the Guttman scale is called cumulative: it requires some extra ability to pass
the next item on the scale.

2.3.3 Advantages of Scalogram Analysis

Guttman (1944) mentioned three advantages of representing a large amount of data
compactly as a joint scale:

1. Tt is easier to understand and remember than a large chaotic tabulation (p. 142).

2. Intheideal case, we can reconstruct the entire table from the scale scores, because
that merely requires checking out which interval each score falls in for each item
(p. 142-143).

3. Any outside variable can be predicted equally well from the scale scores alone
as from the set of separate items (p. 150).

These properties made scalogram analysis a very popular method among social
scientists. Unfortunately:

Perfect scales are not found in practice. The degree of approximation to perfection is mea-
sured by a coefficient of reproducibility |...] . In practice, 85 percent perfect scales or better
have been used as efficient approximations to perfect scales (Guttman 1944, p. 150).

It need not surprise us that a quite extensive literature emerged on how to find
good approximate scalograms. Guttman (1947b) proposed the Cornell technique,
which involved repeatedly sorting and rearranging the entries of the raw data matrix,
but this soon becomes bothersome for larger number of subjects and items. Green
(1956) proposed a practical and automatic method that does not involve sorting and
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rearranging and was based on summary statistics to estimate reproducibility. For
a relatively recent overview of many other proposals and extensions of scalogram
analysis, we refer to Clogg and Sawyer (1981).

3 Joint Scales for Preferential Choice Data: Single-Peaked
Coombs Scaling

Coombs’ theory of a joint scale was based on the format of preferential choice data:
rank order responses of a group of subjects (treated as individuals) to a set of stimuli.
Two major examples are (a) what Coombs (1952) called pick k/n data, in which
subjects are asked to select k stimuli out of a set of n stimuli according to personal
preference, and (b) order k/n data, in which the subjects are asked to offer their
151, 2 up to k'" choice. When the latter set-up & is fixed equal to n, we obtain a
third type of task for the subject: (c) produce a complete rank order of the stimuli. If
repeatedly pairs of stimuli (n = 2) are presented and the subject is asked which one
is preferred (k = 1), we get (d) the method of paired comparisons.

Coombs called this class of behaviour relative and mentioned that it requires the
use of the Method of Choice, without indicating the origin of that group of methods.
It originated as Fechner’s Wahlmethode, which was introduced for the experimental
study of aesthetics (Fechner 1871); see Guilford (1936, pp. 222-225) for its early
history. What Coombs meant by relative is that the data do not tell us whether or not
the subject actually endorses the chosen object or proposition in an absolute sense.
Rather, it just indicates which one of the stimuli is psychologically closer to the
subject’s evaluation standard.

3.1 Coombs’ Points of Departure

In terms of prerequisites and objectives, Coombs wanted to stay away from any
assumption on the unit of measurement—ijust like Guttman. In his first paper on the
so-called unfolding technique, he clearly stated his ultimate goal:

But because we may sometimes question the meaning of the definitions and the validity of
the assumptions which lead to a unit of measurement, it is our intent in this paper to develop
a new type of scale not involving a unit of measurement. [...] [It] falls logically between
an interval scale and an ordinal scale [...] ; on the basis of tolerable assumptions and with
appropriate technique we are able to order the magnitude of the intervals between objects.
‘We have called such a scale an ordered metric. (Coombs 1950, p. 145)

This point of departure is clearly the same as Guttman’s prerequisite (4), with the
added objective to establish a new kind of metric. Coombs also explicitly stated that
“each stimulus has one and only one scale position for all individuals and that each
individual has one and only one scale position for all stimuli” (Coombs 1950, p. 146),
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which corresponds to Guttman’s objectives (5) and (6). However, where Guttman
talks about the advantage to predict the response to all items from the subject score
alone, Coombs phrases it with a twist:

The unfolding technique was explicitly designed to explain preference behaviour. Existing
techniques for scaling such data, as Thurstone’s Law of Comparative Judgement as applied
in his study of Nationality Preferences [...] [Thurstone (1928b)] are procedures [...] which
best represent the preferences of the individuals in a group in some statistical sense such
as least squares (see Mosteller 1951). The objective of the Unfolding Technique is to go
behind the expressed preferences of individuals and to construct a model from which their
preferences may be derived [emphasis in the original]. It is in this sense that the term explain
is used (Coombs 1952, p. 56).

So Coombs, too, aims at constructing a joint scale from which all individual differ-
ences may be reproduced entirely. We have seen for the Guttman scale how to link
subjects with the responses to items, but how are we going to do something like that
for the Coombs joint scale, which has scale values for subjects and for stimuli (or
objects), but not for responses?

3.2 The Unfolding Mechanism

We answer this question by examining the mechanism on which the unfolding model
works. If the scale value of subject i is denoted by C;, and the scale values of two
stimuli are denoted by Q; and @, then the basic assumption is that an individual
will give the response “I prefer stimulus j to stimulus [” if we have |Q; — C;| <
|Q; — C;|. In other words, subjects will prefer the stimulus that is closer to their
own scale value. In line with this principle, we expect for the case of pick k/n data
that the individual selects those k stimuli that are closest to C; (and for order k/n
data, in the order of the distances from C;). It follows that the C; value represents
a hypothetical stimulus that would perfectly represent the evaluation standard of
a subject. For this reason, C; is usually called the ideal point of subject i. Since
preference monotonically decreases in both directions of the scale, with a peak at
the ideal point, this property of response curves in the unfolding model is known as
single-peakedness (see Coombs and Avrunin 1977, for the theoretical and historical
background of this concept). Perhaps one of the most important consequences is
that, if all preference curves are single peaked, a social or consensus ranking by the
simple majority rule exists, and is equal to the ranking of the median individual on
the Coombs scale (Black 1948).

3.2.1 How the Coombs Scale Limits the Number of Possible Rankings

Coombs called the preferential ordering of the stimulus objects by individual i the I
scale, and the joint scale with scale values for individuals, and stimuli the J scale. He
then introduced a mechanical metaphor to explain how to reconstruct the data (the I
scales) from the model (the J scale), in particular:
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by imagining a hinge located on the J scale at the C; value of the individual and folding the
left side of the J scale over and merging it with the right side. The stimuli on the two sides of
the individual will mesh in such a way that the quantity |Q; — C;| will be in progressively
ascending magnitude from left to right. The order of the stimuli on the folded J scale is the
I scale for the individual whose C; value coincides with the hinge.

It is immediately apparent that there will be classes of individuals whose I scales will be
qualitatively identical as to the order of the stimuli and that these classes will be bounded
by the midpoints between pairs of stimuli on the J scale. (Coombs 1950, p. 147).

It turns out that the midpoints mentioned in this quotation play a major role in the
model, so let us have a closer look at them. In the examples that follow, we use the
customary convention to label the stimuli alphabetically. If there are n stimuli, there
will be %n(n — 1) midpoints in total, which have coordinates on the J scale defined
as Qap = 3(Qa + Op), for all pairs (A,B).

Therefore, the midpoints define %n(n — 1) 4 lintervals on the J scale. For the case
of complete rankings, in each of these intervals one unique I scale can be located.
In case of pick k/n data, however, only a subset of the midpoints define feasible
intervals, for a smaller set of I scales. Since complete rankings provide the richest
information and lead to the unfolding technique, we start there and will return to the
analysis of pick k/n data afterwards.

Suppose we have a J scale with four stimulus points, in the order {Qx, Oz, QOc,
Op}. Then the leftmost interval up to midpoint Q s contains the first I scale, denoted
as ABCD. Going to the right, all points in the next interval will be closer to Qg than
to Q. Thus, passing the midpoint Q 4 leads to the I scale BACD; then, by moving
further to the right we obtain BCAD after passing midpoint Qc, and so on. In
general, the transition from one I scale to the next always involves the reversal of
only one adjacent pair of stimuli. After having passed all six midpoints, we end up
in the rightmost interval containing I scale DCBA, exactly the reverse order from
where we started.

3.2.2 How Metric Information Can Be Deduced from Different Subsets
of Rankings

So we see that, although there are 24 (n!) possible rankings of four stimuli, a perfect
joint Coombs scale allows only 7 of them to be present in the data. Of course, with a
different order of the stimuli on the J scale, a different set of I scales may be generated.
Nevertheless, even for a given order of four stimuli on the J scale, the subset of 1scales
accommodated is not unique. In our example, the I scale in the middle interval may
be either BCDA or CBAD. To understand why, consider the sequence of the three
I scales in the middle: we can either have BCAD—BCDA—CBDA, or BCAD—
CBAD—CBDA. In the first sequence, midpoint AD is passed first, and midpoint
BC is passed next; in the second sequence, the midpoints are passed in the reverse
order. An important consequence is that in the first sequence we have, in terms of
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coordinates, %(Q A+ Op) < %(QB + Qc). From this inequality, it follows that we
must have |(Op — Oc)| < |Os — Qal, while in the second sequence we find the
reverse.

Apparently, the occurrence of the I scale BCDA in the data indicates that the
interval between stimuli A and B must be greater than the interval between C and D.
Conversely, the occurrence of the I scale CBAD indicates that the distance between A
and B is smaller than the distance between C and D. With more than four stimuli, the
variety of different sets of I scales increases rapidly and leads to a substantial amount
of metric information. Coombs (1950) called a J scale with unequally sized intervals
between the scale values of the stimuli a quantitative J scale, with an ordered metric
measurement level.

3.3 Methods to Find Coombs Scales, Including Some
Extensions and Special Cases

We are now in a position to deal with the technical problem of constructing Coombs
scales, starting with early methods for finding a quantitative J scale. Next, we will
indicate how the unfolding model has been extended to the multidimensional case
and to probabilistic versions. The last two subsections are devoted to the analysis of
pick k/n data.

3.3.1 Early Methods to Determine a Quantitative J Scale for a Set
of Rankings

Early methods to find a quantitative J scale for a given set of I scales usually consisted
of three steps. The first step starts by heuristically deciding on the order of the stimuli
and then tries to list by trial and error the I scales from left to right, where the transition
from one I scale to the next must involve only one reversal of an adjacent pair of
stimuli (while keeping track of I scales that do not fit or do not occur in the data). This
first step identifies the midpoints and their ordering along the scale. The second step
involves determining metric relations between the stimulus intervals by using the
order in which the midpoints change—as demonstrated earlier; it results in a partial
ordering of a subset of the distances between stimulus scale values. In the third step,
the quantitative J scale has to be derived in such a way that the stimulus intervals
satisfy the metric relations found in the previous step.

A remarkable omission in the Coombs (1950) paper that introduced the unfolding
technique was that Coombs completely skipped a description of the third step. One
reason may have been that he encountered the difficulty that half of the subjects in
his empirical example produced a different partial order of the distances than the
other half. Another reason might have been that he considered this step simply to
be done by trial and error for a small number of stimuli. Next, the monograph that
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contained an extended discussion of the unfolding model and technique (Coombs
1952) did give one empirical example of an unfolded J scale with the spacing between
adjacent stimulus scale values indicated (Fig. 11 on page 82), but without any further
explanation of how this result was obtained. In Coombs (1953), the unfolding of
preferential choice data are embedded in his emerging theory of data, but again there
is no indication on how to actually obtain the joint scale.’

The first method for solving the problem completely was provided by Abelson and
Tukey (1959), who proposed a general maximin criterion for regression problems
under a variety of order constraints. For the unfolding case, we consider an ordered
sequence of quantitative scale values {Q1, ..., Q,} with first differences that satisfy
certain inequalities. The proposed criterion maximises the squared Pearson correla-
tion 2 between any candidate solution {Ql, e Q,,} and another feasible set of
scale values satisfying the same inequalities, chosen to have minimal correlation
with {O1, ..., O,)}. This criterion guarantees that 7> cannot be less than an admit-
tedly pessimistic value between zero and one, which may be viewed as a measure of
how loose or how tight the ordinal constraints on the stimulus coordinate differences
determine the quantitative J scale (cf. Shepard 1966, pp. 288-292). The procedure
used to actually find these maximin solutions was complete enumeration with smart
heuristics, requiring computing equipment for cases with a relatively large number
of stimuli.

In his wide-ranging treatise A Theory of Data, Coombs (1964) presented a “pencil-
and-worksheet” method for finding the ordered metric scale values, called the delta
method and developed by his colleague Frank Goode. The presentation was primarily
by giving examples: one for the unfolding case of seven stimuli (o.c., pp. 96—-102) and
two for his ordinal method of similarities (o.c., pp. 359-362 and pp. 450-454). The
delta method did not include a criterion to evaluate the quality of the solution, and all
the rewritings in the worksheets were not easy to comprehend for the general reader
(to putit mildly). No wonder that unidimensional ordinal unfolding never found many
substantial applications, except within the limited circle of Coombs and his students
(e.g. Dawes 1972, pp. 79-80). The same conclusion was reached—reluctantly—by
Mclver and Carmines (1981, Chap. 6).

3 Interestingly, this chapter also introduced the “Method of Similarities, an adaptation of the Unfold-
ing Technique [...] , [by which] it is possible to take a single individual subject and determine the
structure of the attribute [...] as he perceived it for these stimuli. It can readily be determined
whether his perception [...] satisfies a simply ordered system and what some of the metric relations
are” (Coombs 1953, pp. 479-480). The first published detailed account of this method of similarities
(Coombs 1954) was concerned primarily with a system of data collection procedures for finding
the rank order of distances between pairs of stimuli, in several related designs. So again it turns out
that, in his own words, “procedures for recovering a J space are as yet incompletely developed”
(o.c., p. 193).
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3.3.2 Later Methods for Extensions of Unfolding

It took 25 years after his first presentation of the ordered metric scale before Coombs
could offer a practical analytical procedure in the form of the so-called ORDMET
algorithm (McClelland and Coombs 1975). Meanwhile, however, other approaches
to obtain single-peaked joint scales had been invented and successively improved
upon that soon became more popular. We just mention the following two groups of
methods.

The first approach is a special case of the non-metric multidimensional scaling
(MDS) methods that is usually based on the least squares STRESS criterion pro-
posed by Kruskal (1964). In the case of non-metric multidimensional unfolding,
STRESS measures the average discrepancy between the best monotonically increas-
ing transformation of each I scale and the distance between ideal and stimulus points
in a Euclidean space of prespecified number of dimensions. Non-metric MDS and
unfolding have generated a vast literature, with many applications in a wide spec-
trum of domains. For unfolding as an MDS method, we refer for more specifics and
historical overviews to Heiser and Meulman (1983), Heiser and Busing (2004) and
Busing (2010).

The second approach is the group of probabilistic unidimensional unfolding meth-
ods in the tradition of item response theory (IRT) modelling. It is important to note
here that these types of methods do not attempt to model preferential choices (i.e.
Coombs data), but multiple choice items (i.e. Guttman data) with binary or graded
agree-disagree responses. In the graded case, the categories are of the ordered Likert
type (Likert 1932), for example: {“strongly agree”, “agree”, “disagree”, “strongly
disagree” }. For a good example of this approach, we briefly look at the generalised
graded unfolding (GGUM) model proposed by Roberts, Donoghue, and Laughlin
(2000). They assume a subjective response process, which is single peaked in terms
of the difference between the item location Q; and the subject location C;—the
standard unfolding assumption. Then they note that for the observable categories,
subjects can respond with the “disagree” response categories for either of two rea-
sons. If Q; — C; is negative beyond a certain threshold, then the subject will disagree
with the item “from above”, and if Q; — C; is positive beyond a certain threshold,
then the subject will disagree with the item “from below”. The implication is that
the response probabilities for the agree categories are single peaked (with different
dispersions), and for the disagree categories, they are bimodal or even single dipped
for items that are far away from the ideal point.

3.3.3 Parallelogram Analysis of Pick k/n Data

We now turn to the analysis of pick k/n data. Note that this type of data is a special
case of rankings, because if we ask a subject to choose a subset of k stimuli out of
a set of size n, the I scale so obtained is equivalent to a tied ranking. There will
be k stimuli in the first tie block and #n — k stimuli in the second tie block. From
the assumption of single-peakedness, it follows directly that subjects will choose k&
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adjacent stimuli that are all closer their ideal point than any other stimulus. Consider
the case of k =2 and n = 5, with stimulus points on the J scale in alphabetical
order (Coombs 1953, pp. 496-501). Starting from the left, there are four pairs of
adjacent stimuli: (AB), (BC), (CD), and (DE); in general, the number of subsets is
n — k + 1. So the feasible I scales generated under this data collection design are the
tied rankings {(AB), (CDE)}, {(BC), (ADE}, {(CD), (ABE)}, and {(DE), (ABC)}.
We see that in going from one I scale to the next, the leftmost stimulus in the first tie
block is dropped and replaced by the stimulus in the second tie block that is next on
the J scale. So, only midpoints AC, BD, and CE are “working”—in general, there are
n — k midpoints to differentiate the subjects, a lot less than the %n(n — 1) midpoints
that are working for full rankings. When k grows with respect to n, discriminability
among subjects very quickly deteriorates.

For pick k/n data, we can code a binary data matrix E with elements e;; =1
if a subject in row i has chosen the stimulus in column j, and e;; = 0 elsewhere.
Then it is not hard to see that if the rows and columns of E are arranged in the order
of subject and stimulus points on the J scale; the rearranged data matrix will show
a parallelogram pattern with k consecutive ones in each row (Coombs 1964, pp.
66-74). So an obvious procedure to analyse pick k/n data—called parallelogram
analysis—is seeking a rearrangement of rows and columns of E that will yield as
closely as possible a solid diagonal band from the top-left to the bottom-right. The
technical problem is identical to seeking a parallelogram pattern in the matrix M of
Guttman’s scalogram analysis for binary items.

3.3.4 Mosteller’s Least Squares Method

Techniques for parallelogram analysis in the early 1940s were heuristic trial-and-
error procedures, which became cumbersome with growing size and error in the
data (regardless how defined). We refer to Hubert (1974) for the early recognition
that parallelogram analysis is formally equivalent to the seriation problem studied
in archeology, for which theoretical results and good approximate solutions were
already available. In addition, we have seen in Sect.2.2 that the least squares tech-
nique developed by Guttman (194 1) gives an optimal solution for scalogram analysis
that is unique and could serve as a criterion to evaluate simpler procedures. But as
first noted by Torgerson:

More recently, Mosteller (1949) has shown that precisely the same reasoning can be applied
to the nonmonotone or point item, the only difference being that, with the monotone items
considered by Guttman, each category is included in the analysis, whereas, with the point
items, only the positive category is included. Other than this, the solutions are equivalent.
[...] We shall follow Mosteller’s (1949) derivation mostly, rather than Guttman’s, since it
seems easier. (Torgerson 1958, pp. 338-339)
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Mosteller’s intention was to formulate a new method of scaling for attitude state-
ments on the basis of binary agreement responses.® Therefore, we will in the follow-
ing paragraphs call the stimuli we are dealing with in the columns of E statements.
According to the summary in Torgerson (1958, pp. 339-343), the task of the subject
is to check k statements for agreement, relative to the other n — k statements. The
subject score is defined as the average of the unknown weights for the statements
selected. To find these weights, Mosteller used the same criterion as the one used by
Guttman: maximising the squared correlation ratio n*, i.e. the ratio of the variance
of the subject scores, relative to the total variance of all weights. Next, Torgerson
explained in great detail the derivation of the stationary equations for the optimal
weights as a function of E. He also demonstrated that the procedure to obtain these
optimal weights for E is equivalent to the procedure to obtain optimal weights for
Guttman’s binary data matrix M. However, the actual solution based on E is only
the same as the one based on M if the columns of E are supplemented by » addi-
tional columns, with elements {1 — e;;}, which represent the negative categories
(disagreement) in Guttman’s multiple choice format. This supplementation is called
“dédoublement” in the French literature (Benzécri et al. 1973, TII A no 2, Sect. 1.4,
1.5), and “doubling” in the English literature (e.g. Benzécri 1992, pp. 390-392, pp.
513-517, or Nishisato 2007, p. 182). Hence, our conclusion must be that Mosteller
(1949) had not only formulated a new scaling method for non-cumulative or non-
monotone items but had also provided a procedure equivalent to correspondence
analysis of binary data with equal row sums (cf. Heiser 1981, Chaps.3 and 4) and
was the originator of the concept of dédoublement as well.

The final issue is: in what sense does Mosteller’s least squares method offer a good
solution to parallelogram analysis? The short answer is: if there exists a permutation
of the columns of E that yields the consecutive ones property, then the least squares
method will find it. The correct order is obtained by permuting the columns of E in
the order of the optimal weights. For a longer answer, the reader is referred to Heiser
and Warrens (2008). This paper also discusses the same property for robust methods
of calculating optimal weights, such as the method of reciprocal trimmed means, as
proposed by Nishisato (1987).

4 A Coombs Scale of Preference Rankings Using Least
Squares Guttman Scaling

Five years after his first paper about the least squares quantification of multiple choice
data (Guttman 1941; see Sect.2), Guttman published a second quantification paper,
this time about the scaling of paired comparisons and rank order data (Guttman 1946).

6 Mosteller (1949) is an internal document of Harvard university, entitled “A theory of scalogram
analysis, using noncumulative types of items: a new approach to Thurstone’s method of scaling
attitudes”. As far as we know, it is not publicly available, which is the reason that we rely on
Torgerson’s summary.
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In the introduction, he already outlined what he wanted to achieve: “The judgments
vary from person to person (and possibly within a person), and the problem is to
determine a set of numerical values for the things being compared that will in some
sense best represent or average the judgments of the whole population” (o.c., p. 144).
As always, he wanted to avoid distributional assumptions, for example the existence
of latent discriminal processes that are normally distributed, as in Thurstone’s Law
of Comparative Judgment (Thurstone 1927a,b). However, unlike his earlier work,
which determines subject scores expressing individual differences in response to
questions or statements, this paper was an object-centred type of scaling, which only
aims at an average or consensus scale for the whole group of individuals.

4.1 Coding Paired Comparisons and Rankings in Multiple
Choice Format

Guttman’s first step was to code the paired comparison data or rank orders into the
familiar format of binary items, with response categories “yes” and “no”. Here, the
number of items is %n(n — 1), and they concern the question “Did subject i prefer
stimulus j over [?”, with j, / ranging over all pairs of stimuli. For each subject, the
response “yes” is then coded in the first category, while the response “no” is coded
in the second category.

4.1.1 Recoding into a Dominance Matrix to Incorporate Stimulus
Contrast Restrictions

From this point on, we will follow Nishisato (1978), who gave an alternative to
Guttman’s formulation that is easier to understand and leads to the same solution.
Since the categories of each item specify that object j is preferred over object [ or
the reverse, it is natural to require that the quantification of each category is a simple
linear function of the two corresponding object scale values Q; and Q;. If we denote
the category quantifications with y;;, and yj;,, then the stimulus contrast restrictions
are yj, = Q; — Qrand yj;, = Q1 — Q.

Nishisato then showed that maximising the correlation ratio under these restric-
tions leads to the same solution as Guttman (1946) and amounts to a principal com-
ponents analysis of a subjects by stimuli matrix S, called the dominance matrix.
This matrix contains in each row the balance of how many times subject i preferred
object j over the other objects, minus how often subject i preferred one of the other
objects over object j. For instance, the rank order ABCDE is represented in S as
[42 0 —2 —4]. When the paired comparisons contain intransitivities, the rows of
the dominance matrix will contain ties.
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4.1.2 Multidimensional Extension: The Vector Model of Preferences

Guttman also discussed more complicated cases, such as combinations of two things
to be compared, but he did not consider a multidimensional solution. Such an exten-
sion was soon developed by other psychometricians, as explained in Nishisato (1978),
and is known as the vector model of preferences. The most important thing to under-
line in the present context is that Guttman’s one-dimensional solution is not a joint
scale in the same sense as we have seen so far, because it does not give individ-
ual subjects a score from which to predict responses to the same or similar objects.
Indeed, the output is a weighted average of the rows of S as the scale values of the
objects, for the whole group of subjects, and the correlations between this weighted
average and the rank orders of the subjects. These correlations give an indication of
how close or far the subject rankings are from the consensus ranking.

4.2 Least Squares Guttman Scaling on the Original Coding
as a First Step

Nevertheless, it is of course possible to fit a joint scale for paired comparison data
without stimulus contrast restrictions, on the basis of standard least squares Guttman
(1941) scaling (as is done in Heiser 1981, Chap.5). Apart from subject scores, such
analysis gives scale values for subgroups of subjects that prefer one object over
another one, but not scale values for the objects. However, as we will now demon-
strate, with the output of th