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22 ON THE ORIENTED THOMPSON SUBGROUP ~F3 AND ITS

RELATIVES IN HIGHER BROWN-THOMPSON GROUPS

VALERIANO AIELLO AND TATIANA NAGNIBEDA

Abstract. A few years ago the so-called oriented subgroup ~F of the Thompson
group F was introduced by V. Jones while investigating the connections between
subfactors and conformal field theories. In the coding of links and knots by
elements of F it corresponds exactly to the oriented ones. Thanks to the work of

Golan and Sapir, ~F provided the first example of a maximal subgroup of infinite
index in F different from the parabolic subgroups that fix a point in (0, 1). In

this paper we investigate possible analogues of ~F in higher Thompson groups
Fk, k ≥ 2, with F = F2, introduced by Brown. Most notably, we study algebraic

properties of the oriented subgroup ~F3 of F3, as described recently by Jones,
and prove in particular that it gives rise to a non-parabolic maximal subgroup
of infinite index in F3 and that the corresponding quasi-regular representation is
irreducible.

Introduction

Ever since its introduction by Richard Thompson in 1965, the Thompson group
F has drawn a great deal of attention and striking connections have been found
to a wide variety of seemingly different fields such as homotopy theory, logic and
cryptography, to name but a few. Later in 1987 Kenneth Brown [11] introduced
a family of groups Fk, k ≥ 2, generalizing the Thompson group F , with F2 = F .
Among other things, he showed that these groups are finitely presented and of type
FP∞. All these groups are groups of piecewise-linear homeomorphisms of the unit
interval [0, 1].

A few years ago Vaughan Jones [17] discovered a method to construct unitary
representations of the Thompson group F by means of planar algebras [16]. This
construction was later extended to a broad class of groups including the Brown-
Thompson groups thanks to a new categorical framework [18]. Several of these
representations of the Thompson groups have been studied so far [10, 2, 6, 20].

In [17] Jones also introduced a procedure which yields unoriented links from ele-
ments of the Thompson group F . Recall that every element of F can be described
by a pair of planar rooted binary trees with the same number of leaves. Given an
element g = (T+, T−), the associated knot/link is then denoted by L(g) = L(T+, T−).
In general, the knots/links corresponding to the elements of F do not have a natural
orientation. To overcome this issue, Jones introduced the so-called oriented subgroup
~F ≤ F . A result analogous to the classical Alexander Theorems holds: given any
unoriented (oriented) knot/link L there exists an element g in F (in ~F ) for which
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L(g) = L, [17, 1]. It is worth mentioning that in [5] the subgroup ~F was realized as

the group of fractions of the category of oriented forests ~F in the sense of [18], and
unitary representations associated with the Homflypt polynomial were introduced.
Other representations related to link and graph invariants were discussed in [3, 4]
with more elementary but less powerful methods.

Golan and Sapir undertook a systematic study of the subgroup ~F ≤ F in [14, 15].
It should be mentioned that their work sits in a vast literature dedicated to the
subgroups of F . In particular, Savchuk studied in [23, 24] the stabilizers of points in
the unit interval along with their Schreier graphs. These are maximal infinite index
subgroups of F , and Savchuk asked whether they were the only such subgroups of F
[24, Problem 2.5]. A negative answer was provided by Golan and Sapir in [15], where

Jones’s oriented subgroup ~F was employed to exhibit a maximal subgroup of infinite

index in F , whose elements do not have a common fixed point in (0, 1). The group ~F
was also shown to be isomorphic to F3 in [14] (see [22] for an alternative proof) and,
hence, an alternative description of the oriented subgroup was given [17, 14] as the
stabilizer of a certain subset of dyadic rationals. Thanks to this, it was proven that
~F coincides with its commensurator. By a classical result [21, Section 3.4, Corollary

2], this implies that the quasi-regular representation associated with ~F is irreducible.
More recently, Jones [19] defined a new subgroup, this time of F3: the so-called

ternary oriented subgroup ~F3. We briefly recall one motivation for introducing this
subgroup. As pointed out in [19], the construction of knots and links from elements of
F of [17] can be understood as follows. Firsty, we embed F = F2 into F3 by turning
all the trivalent vertices of (T+, T−) into quadrivalent ones. Secondly, we join the
two roots of the two trees and, thirdly, replace all the vertices by an appropriate
crossing, to get a knot/link. In [19] Jones extended this construction of knots/links
to the whole Brown-Thompson group F3 and, in order to describe oriented knots,

the group ~F3 was introduced. It is therefore natural to perform an analysis of the

ternary oriented subgroup, in the spirit of that done by Golan and Sapir for ~F = ~F2.

This constitutes a substantial part of the present paper. As in the case of ~F = ~F2 ≤

F2 = F , the ternary oriented subgroup ~F3 gives rise to a non-parabolic maximal
subgroup of infinite index in F3. This brings us to the question of finding maximal
subgroups of infinite index that do not stabilise any point in (0, 1) in Fk for all k ≥ 2.

For the moment there is no natural candidate for ~Fk, with k ≥ 4. Indeed, it is not
known whether the Brown-Thompson groups Fk, k ≥ 4 are good knot constructors,

as is the case of F2 and F3. However, an algebraic description of ~F2 obtained by the

machinery from [22] allows to define subgroups Hk ≤ Fk analogous to ~F2. It remains
open whether these subgroups give rise to maximal infinite index subgroups of Fk,

as oriented ~F2 does in F2.
We end this introduction by saying a few words on the structure of the paper and

its main results. In the first section we briefly recall some equivalent definitions and
properties of the Thompson group F , of the Brown-Thompson groups Fk, k ≥ 2, and

of the oriented subgroups ~F2 and ~F3, while the remaining sections are devoted to
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Figure 1. Pairs of opposing carets in F = F2 and F3.

the main results of this paper. The first one is a description of the ternary oriented
subgroup as the stabilizer of a certain subset of the triadic rationals, see Section 2. As

a corollary we get that ~F3 coincides with its commensurator, which again implies that

the quasi-regular representation of F3 associated with ~F3 is irreducible. The second
main result is that the ternary oriented subgroup is finitely generated, see Section 3.
The third main result is contained in Section 4, where we exhibit a maximal infinite

index subgroup of F3 isomorphic with ~F3 and show that it does not stabilise any
point in (0, 1). This is in contrast with another family of maximal infinite index

subgroups, the so-called parabolic subgroups. We mention that, likewise ~F ≤ F , the
ternary oriented subgroup is precisely contained in three subgroups of F3. In the last
section we introduce a family of subgroups Hk ≤ Fk, for all k ≥ 2, which generalise

the oriented Thompson group ~F , note some of their properties and formulate the
question of their maximality for k ≥ 3.

1. Preliminaries and notation

We start this section recalling the definition and some properties of the Thompson
group F = F2 and of the Brown-Thompson groups Fk, k ≥ 2. For further informa-
tion, we refer to [12, 7] and [11] 1. The Thompson group F = F2 can be described as
the subgroup of the orientation preserving piecewise linear homeomorphisms of the
unit interval [0, 1], which are differentiable everywhere but at finitely many dyadic
rationals numbers and such that on the intervals of differentiability the derivatives
are powers of 2. The Thompson group has the following infinite presentation

F2 = 〈x0, x1, . . . | xnxl = xlxn+1 ∀ l < n〉 .

The elements of F also admit a graphical representation, namely by pairs of rooted
planar binary trees (T+, T−) with the same number of leaves. As usual, we draw a
pair of trees in the plane with one tree upside down on top of the other and join
their leaves as in Figures 1 and 3.

We call such pairs tree diagrams. Two pairs of trees are equivalent if they differ
by a pair of opposing carets, see Figure 1. Thanks to this equivalence relation, the
following rule defines the multiplication in F : (T+, T ) · (T, T−) := (T+, T−). The
trivial element is represented by any pair (T, T ) and the inverse of (T+, T−) is just
(T−, T+). We call splits the vertices in the top tree and merges those in the bottom
tree. See Figure 3 for a graphical description of the generators of F2.

1We point out that Brown uses a slightly different notation: Fk = Fk,1.
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Figure 2. A split and a merge: tu is a left edge, tv a middle edge,
tw a right edge.

t

u v w

t

u v w

Figure 3. The generators of F = F2.

x0 = x1 =
x3 = . . .

Figure 4. The generators of F3.

y0 = y1 = y2 = . . .

Similarly, for any k ≥ 2, the Brown-Thompson group Fk can be described as a
group of orientation preserving piecewise linear homeomorphisms of the unit interval
[0, 1], but in this case the points where the homeomorphisms may not be differentiable
lie in Z[1/k] and the slopes are powers of k. The Brown-Thompson group Fk also
admits an infinite presentation

Fk = 〈y0, y1, . . . | ynyl = ylyn+k−1 ∀ l < n〉 .

The Brown-Thompson group Fk has the same description in terms of trees as F2,
except that the trees are now k-ary: the vertices are no longer 3-valent, but (k+1)-
valent. All the elements of Fk, k ≥ 2, can be written in normal form, as

ya1i1 · · · yanin y
−bm
jm

· · · y−b1
j1
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with i1 < · · · < in 6= jm > · · · > j1. This representation is unique if one assumes
that when both yi and y−1

i appear, then one among yj or y−1
j , with i < j < i + k,

appears as well. For a large part of this paper we will be mainly interested in F3.
In this case, all the trees are subtrees of the tree of the standard triadic intervals,
whose root is [0, 1] and its vertices are the standard triadic intervals (i.e., intervals
of the form [a3−l, (a + 1)3−l] for a ∈ N, l ∈ {0, 1, . . . , 3l − 1}), cf. [7]. See Figure 4
for a graphical description of the generators of F3.

There is a natural embedding ι : F2 → F3 obtained by replacing the 3-valent
vertices in a tree diagram of F2 with 4-valent vertices and joining the middle edges
in the only possible planar way. Under this embedding, we have ι(xi) = y2i, see
Figures 3 and 4. To ease the notation we will often omit the symbol of this map.

Let (T+, T−) be any graphical representative of an element of F3. We now briefly
recall from [17, 19] how to obtain Γ(T+, T−), which we call the planar graph of

(T+, T−). We make a convention about how we draw tree diagrams. The leaves
of the tree diagrams sit on the x-axis, precisely on the non-negative integers N0 :=
{0, 1, 2, . . .}. The root of the top tree is on the line y = 1, while that of the bottom
tree is on the line y = −1. Any tree diagram (T+, T−) partitions the strip bounded
by the lines y = 1 and y = −1 in regions that we colour in black and white, with the
convention that the left-most region is black. Now the vertices of the planar graph sit
on the x-axis, precisely on −1/2 + 2N0 := {−1/2, 1 + 1/2, 3 + 1/2, . . .} and there is
precisely one vertex for every black region. We draw an edge between two black regions
whenever they meet at a 4-valent vertex or at the root. For an element (T+, T−) of
F2, we define the planar graph of (T+, T−) to be that of ι(T+, T−) ∈ F3.

Note that the planar graph of (T+, T−) is essentially the Tait graph of L(T+, T−)
except that we do not specify the signs of its edges.

We are now in a position to define the oriented subgroups

~F2 := {(T+, T−) ∈ F2 | Γ(T+, T−) is 2-colourable}

~F3 := {(T+, T−) ∈ F3 | Γ(T+, T−) is 2-colourable}

where by being 2-colourable we mean that it is possible to label the vertices of the
graph with two colours such that whenever two vertices are connected by an edge,
they have different colours. We denote by + and − the two colours. Note that the
definition does not depend on the specific representative (T+, T−), [17, Section 4.1].
Since Γ(T+, T−) is connected, if it is 2-colourable, there are exactly two colourings.
By convention we choose the one in which the left-most vertex has colour +. We
observe that if we cut the planar graph of (T+, T−) along the x-axis we get two
subgraphs: one in the upper-half plane which we denote by Γ+ ≡ Γ+(T+), one in the
lower-half plane which we denote by Γ− ≡ Γ−(T−). Since the number of vertices of
Γ±(T±) is equal to the number of 4-valent vertices of T± plus 1, while the number of
edges of Γ±(T±) is equal to the number of 4-valent vertices of T±, it follows that the
graphs Γ+(T+) and Γ−(T−) are trees. The trees Γ+ and Γ− are always 2-colourable,
so Γ(T+, T−) is 2-colourable precisely when the colourings of Γ+ and Γ− are the same.
We observe that for Γ(T+, T−) being 2-colourable is the same as being bipartite.
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Remark 1. It is worth mentioning that if we restrict the map ι to ~F2, its image is

contained in ~F3. Therefore, the elements y2iy2i+2 = ι(xixi+1) ∈ ~F3 since xixi+1 ∈ ~F2,

[14]. As we will see in Example 2, the restriction of ι to ~F2 is not surjective to ~F3.

It is appropriate to say a word of warning: there exists another group denoted by
~F3 in the literature [14], which is a subgroup of F2.

2. The ternary oriented Thompson group as a stabilizer subgroup

We want to describe the ternary oriented Thompson group as the stabilizer (under
the natural action) of a certain subset of triadic rationals. This result should be

compared with [14, Theorem 2], where ~F = ~F2 is realized as the stabilizer of the set
of dyadic fractions in the unit interval [0, 1] with odd sums of digits.

Consider a tree in the upper half-plane and its leaves on the x-axis as usual. To
each vertex v of a tree we associate a natural number c(v) which we call its weight,
as follows. Given a vertex, there exists a unique minimal path from the root of the tree
to the vertex. This path is made by a collection of left, middle, right edges, and may
be represented by a word w11w21 · · · 1wn in the letters {0, 1, 2} (0 stands for a left
edge, 1 for a middle edge, 2 for a right edge), where w1, . . . , wn−1 are words that do
not contain the letter 1, wn can have 1 only as its last letter. We call {w2k+1}k≥0 the
odd words and {w2k}k≥0 the even words. The weight of v is the sum of the number
of digits equal to 1, plus the number of digits equal to 2 in the odd words, plus the
number of digits equal to 0 in the even words. When we compute the weight of a leaf
in a tree diagram, sometimes we use the symbol c+ or c− to distinguish which tree
we are considering (c+ for the top tree, c− for the reflected bottom tree). Similarly,
we define the number d(v) (and d±(v) if we want to specify the tree) which counts
the number of middle edges met in the path from the root to v. Here follow a couple
of easy lemmas that will come in handy in the sequel. The proofs are similar and
they can all be done by induction on the length of the path. We provide a proof only
of the second one.

Lemma 1. If the following configurations occur in T+

u v w

t

u v w

t

then in the first case d+(t), d+(u), d+(w) ∈ 2N0 + 1 and d+(v) ∈ 2N0, while in the
second d+(v) ∈ 2N0 + 1 and d+(t), d+(u), d+(w) ∈ 2N0.

Recall from Section 1 that the vertices of tree diagrams and the planar graphs
Γ(T+, T−) can be identified with the non-negative integers and −1/2 + 2N0 :=
{−1/2, 1 + 1/2, 3 + 1/2, . . .}, respectively.
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Lemma 2. Given an element (T+, T−) ∈ F3, we have c±(2i) = c±(2i − 1) for all
i ≥ 1. Moreover, the colouring of the vertex 2i − 1/2 in Γ± is + if c±(2i) is even
and it is − if c±(2i) is odd, i ≥ 0.

Proof. The proof is done by induction on the length of the path. The case of a path
of length 1 is obvious. Suppose that the claim is true for all the paths of length n
and consider a path of length n+ 1. The n-th edge of this path can either be a left,
middle, or right edge. Depending on this and the colours of the regions at distance
at most 2 from the last edge (there are two possible cases) we are led to consider six
cases (depicted below). In the first two cases a split is attached below a right edge.
In the third and fourth cases a split is attached below a middle edge. In the last two
cases a split is attached below a left edge. Except for the leaves corresponding to
the new split, the colourings (and the weight) of the other vertices are determined
by induction. We write next to each vertex its corresponding weight and see that its
parity matches the signs in the Γ±-graph (in all these cases we will repeatedly use
Lemma 1 in order to determine how to compute the weight).

1)

cc− 1 c

c

c+ 1c+ 1 ± ∓ ±

2)

c+ 1c− 1 c− 1

c

cc+ 1 ± ± ∓

3) c

c+ 1c− 1 c+ 1c c ± ± ∓

4)
c− 1

c− 1c− 1 c c c ± ∓ ∓

5)
c− 1

c− 1 c c c c ± ∓ ∓

6) c

c+ 1 c+ 1 c c c− 1 ± ∓ ±

�

As an immediate consequence of the previous lemma we get the following descrip-
tion of the ternary oriented Thompson group.

Proposition 1. It holds

~F3 = {(T+, T−) ∈ F3 | c+(i) ≡2 c−(i) ∀ i ≥ 0} .

The natural action of an element φ ∈ F3 on the numbers in [0, 1], expressed in
ternary expansion is described in Figure 5. The number t enters into the top of
the tree diagram, follows a path towards the root of the bottom tree according to
the displayed rules and what emerges at the bottom is the image of t under the
homeomorphism φ , cf. [8]. Note that there is a change of direction only when the
number comes across a vertex of degree 4 (that is, the number is unchanged when it
comes across a leaf). Now follow some examples with explicit computations.
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Figure 5. The local rules for computing the action of F3 on numbers
expressed in ternary expansion.

.0α

.α

.1α

.α

.2α

.α

.0α

.α

.1α

.α

.2α

.α

Example 1. The generator y0 is an example of an element in F3 \ ~F3. Below
are the tree diagram, the shaded strip, the corresponding Γ-graph which is not 2-
colourable/bipartite and the description of y0 in terms of the action on [0, 1].

y0 = Γ(y0) =

y0(t) =







.0α if t = .00α

.1α if t = .01α

.20α if t = .02α

.21α if t = .1α

.22α if t = .2α

One can also show that this element does not belong to ~F3 by computing the weights.
Indeed, one has c+(0) = 0 = c−(0), c+(1) = 1 = c−(1), c+(2) = 1 = c−(2),
c+(3) = 1 6= 2 = c−(3), c+(4) = 1 6= 2 = c−(4).

Example 2. Thanks to the following element we show that the inclusion ~F2 ≤ ~F3

is actually strict. Below are the tree diagram, the shaded strip, the corresponding
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Γ-graph and the description of the element in terms of the action on [0, 1]

y21 = Γ(y21) =

y21(t) =







.0α if t = .0α

.1α if t = .100α

.20α if t = .101α

.21α if t = .102α

.220α if t = .11α

.221α if t = .12α

.222α if t = .2α

One can also check that the weights of the leaves are the same mod 2. Indeed, c+(0) =
0 = c−(0), c+(1) = 3 ≡2 1 = c−(1), c+(2) = 3 ≡2 1 = c−(2), c+(3) = 2 = c−(3),
c+(4) = 2 = c−(4), c+(5) = 1 ≡2 3 = c−(5), c+(6) = 1 ≡2 3 = c−(6).

Example 3. The following element is in ~F3 \ ~F2 and will be part of the generating

set of ~F3.

y0y3 =

y0y3(t) =







.0α if t = .00α

.1α if t = .01α

.20α if t = .02α

.21α if t = .10α

.220α if t = .11α

.221α if t = .12α

.222α if t = .2α

This element does not belong to ~F2 and actually is not even in F2. Indeed, by the very
definition of ι, an element of ι(F2) (represented as a reduced tree diagram), cannot
have a split attached below a middle edge.

Given a triadic rational expressed in ternary expansion .a1a2 · · · an, there is a cor-
responding path (starting from the root) in the tree of the standard triadic intervals.
We denote by c(.a1a2 · · · an) the weight of the end vertex of this path. The next the-
orem is the main result of this section and its proof can be easily deduced from the
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preceding discussion. A different proof using maximality of ~F3 in a certain subgroup
of F3 will be given in Section 4 below.

Theorem 1. The ternary oriented Thompson group ~F3 is the stabilizer of the fol-
lowing subset of the triadic fractions

Z := {.a1a2 · · · an | # of 1’s is even, c(.a1a2 · · · an) is even} .

3. A generating set for ~F3

The aim of this section is to exhibit a generating set for ~F3 and to show that it is
finitely generated. We recall that an element of F3 is said to be positive if it can be
expressed as the product of the generators y0, y1, . . . (but not of their inverses).

Lemma 3. The subgroup ~F3 is generated by its positive elements.

Proof. Let (T+, T−) ∈ ~F3. Possibly after adding pairs of opposing carets, we may
suppose that the colouring of Γ(T+, T−) is +,−,+,−, . . .. Now let T be the tree only
with merges attached to the right edges of other merges and with the same number
of leaves as T±. By construction, Γ(T+, T ) and Γ(T, T−) are both 2-colourable and

thus (T+, T ), (T, T−) ∈ ~F3. Clearly (T+, T ) and (T, T−)
−1 are positive.

T =

. . .

�

Lemma 4. Consider the endomorphism ϕR : F3 → F3 (herein called the right-shift)
defined graphically as

ϕR: 7→g g

Then g ∈ ~F3 if and only if ϕR(g) ∈ ~F3.

Proof. As shown below, the right-shift simply adds a pair of parallel edges attached
only to the left-most vertex of Γ(g)

g . . .

�

Remark 2. For all i ≥ 0 we have that ϕR(yi) = yi+2.
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Theorem 2. The ternary oriented Thompson group ~F3 is generated by the elements

y22i+1, y2iy2i+2, y2iy2i+3 i = 0, 1, 2.

Moreover, the subgroups 〈y22i+1 | i = 0, 1, 2〉, 〈y2iy2i+2 | i = 0, 1, 2〉, 〈y2iy2i+3 | i =
0, 1, 2〉 are all isomorphic to F3.

Proof. The proof of the main statement is divided into two parts. Firstly, we show
that ~F3 is generated by the infinite family

y22i+1, y2iy2i+2, y2iy2i+3, i ≥ 0.(1)

Secondly, we prove that actually the first nine elements corresponding to i = 0, 1, 2
are enough.

In the first place we want to show that all the elements in (1) belong to ~F3. It

was already observed in Remark 1 that the elements y2iy2i+2 are in ~F3. Thanks to

Lemma 4, Example 2 and Example 3 we know that y22i+1, y2iy2i+3 ∈ ~F3.

By Lemma 3 it is enough to show that an arbitrary positive element g in ~F3 can be
expressed in terms of products of the above elements. We give a proof by induction
on the number of leaves of the tree diagram. The first case is when there are 3 leaves.
There is only one tree diagram with three leaves, namely the trivial element, so we
may suppose that the claim is true for a tree diagram with 3+2n leaves (n ≥ 0) and
prove the claim for 3 + 2(n + 1).

In the top tree, one of the following 14 sub-trees must occur. Actually some of them
(namely the cases 2, 3, 4, 5, 8, 9, 10, 11) may be ruled out because the corresponding
subgraph of Γ does not admit a colouring +,−,+,−, . . .. In the other cases, it is
possible to multiply g by the inverse of a suitable element in the aforementioned
family which we denote by h and reduce the number of leaves of the tree diagram.
Below are shown the elements h to consider and the subgraph in red is the part that
will vanish in gh−1.

h h

1)
± ∓ ± y2iy2i+2

2)
± ± ∓

3)
± ± ∓

4)
± ∓ ∓

5)
± ∓ ∓

6)
± ∓ ± y22i+1

7)
± ∓ ± ∓ y2iy2i+3

8)
± ∓ ± ±

9)
± ∓ ∓ ±

10)
± ∓ ∓ ±
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11)
± ± ∓ ±

12)
± ∓ ± ∓ y2iy2i+3

13)
± ∓ ± ∓ ± y2iy2i+3

14)
± ∓ ± ∓ ± y2iy2i+3

We now prove that ~F3 is finitely generated thanks to the defining relations of F3.
Indeed, for i ≥ 1 it holds (y0y2)

−1(y2iy2i+2)(y0y2) = y2(i+2)y2(i+2)+2, y
−2
1 y22i+1y

2
1 =

y22(i+2)+1, (y0y3)
−1(y2iy2i+3)(y0y3) = y2(i+2)y2(i+2)+3 and thus we see that the ele-

ments in (1) corresponding to i = 0, 1, 2 generate the whole subgroup.
We now take care of the last claim of this theorem. Since every proper homo-

morphic image of F3 is abelian [11, Theorem 4.13], it is enough to check that the
elements ui := y22i+1, vi := y2iy2i+2, wi := y2iy2i+3 satisfy the generating relations of
F3. This can be done easily, but we omit tedious computations. �

4. The oriented subgroup ~F3 in F3

The aim of this section is to show that the oriented subgroup ~F3 gives rise to a

maximal subgroup of infinite index in F3 isomorphic to ~F3 that does not fix any point

in (0, 1). The situation is therefore similar to that of ~F ≤ ~F2 ≤ F2 = F studied by

Golan and Sapir in [15]. More precisely, we show that ~F3 is maximal in a subgroup
of index 2 in F3 that is isomorphic to F3.

The said subgroup of index 2 can be defined in any Fk, k ≥ 2, as follows:

Gk := {f ∈ Fk | logk f
′(1) ∈ 2Z}

Proposition 2. The subgroup Gk is generated by wi := yiyk for i = 0, . . . , k−1 and
is isomorphic with the Brown-Thompson group Fk. The subgroup Gk consists of the
elements in Fk whose normal form has even length, and its index in Fk is 2.

Proof. First of all, we observe that the elements in Fk whose normal form has even
length form a subgroup K whose index in Fk is 2. This subgroup coincides with Gk

because K ≤ Gk < Fk and the index [Fk : K] = 2.
We now follow the same strategy as in [14, Lemma 4.7]. Since every proper

homomorphic image of Fk is abelian [11, Theorem 4.13], it is enough to exhibit a
family of elements in Gk that generates the group, satisfies the generating relations of
Fk and do not commute. We set wi := yiyk for i = 0, . . . , k−1, wn := w−1

0 wn−k+1w0

for all n ≥ k. Since wk = (y0yk)
−1y1yky0yk = yky3k−2, we have

w1w0 = y1yky0yk = y0yky2k−1yk = y0ykyky3k−2

= w0wk

For k − 1 ≥ n > i and n ≥ 2, we have

wnwi = ynykyiyk = yiyn+k−1y2k−1yk = yiykyn+2k−2y3k−2

= wiwn+k−1
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Now the general case follows by induction on n+ i

wnwi = w−1
0 wn−k+1w0w

−1
0 wi−k+1w0 = w−1

0 wn−k+1wi−k+1w0 = w−1
0 wi−k+1wnw0

= w−1
0 wi−k+1w0w

−1
0 wnw0 = wiwn+k−1 .

Denote by L the subgroup generated by {wi}i≥0. Clearly, L is a subgroup of Gk.
We want to show that they are actually equal.

The first step is to show that y2n ∈ L for all n = 0, . . . , k. Firstly, suppose that
n ≤ k − 1. We have

wnwn = ynykynyk = y2ny2k−1yk = y2nyky3k−2 = y2nwk ∈ L .

and thus y2n ∈ L.
In the second step we show that ynyn+1 ∈ L for all n = 0, . . . , k − 1. When

n = k − 1, we have yk−1yk = wk−1, so we may suppose n ≤ k − 2. In this case, we
have

ynyn+1 = ynyk(yn+1yk)
−1y2n+1 = wnw

−1
n+1y

2
n+1 ∈ L .

We note that since y20y
2
k = y0y1y0yk = y0y1w0 ∈ L, we have y2k ∈ L. As ynyn−1 =

(y−2
n−1yn−1yny

−2
n )−1, we have ynyn−1 ∈ L for all n = 1, . . . , k.

In the third step we show that yn+k−1yn+k ∈ L for all n = 0, . . . , k − 1. Suppose
that n ≤ k − 2. We have

w0yn+k−1yn+k = y0ykyn+k−1yn+k = (y1yn)(yn+1y0)

= (y1y2y
−2
2 y2y3y

−2
3 · · · y−2

n−1yn−1yn)(yn+1yny
−2
n · · · y−2

1 y1y0) ∈ L .

and so yn+k−1yn+k ∈ L. When n = k − 1, the claim follows from the following
equality and the fact that y0yk−1, yky0 ∈ L

y20y2k−2y2k−1 = (y0yk−1)(yky0) .

In the fourth step we show that y2n+k ∈ L for all n = 1, . . . , k − 2. We have

w0y
2
n+k = y0yky

2
n+k = (y1yn+1)(yn+1y0) ∈ L .

and so y2n+k ∈ L.

Now, since ymym+1y
2
0 = y20ym+2k−2ym+1+2k−2 for all m ∈ N, we have that yiyi+1 ∈

L for all i ∈ N0. Similarly, y2ny
2
0 = y20y

2
n+2k−2 for all n ≥ 1, we have that y2i ∈ L for

all i ∈ N0.
The fifth step is to show that yiyj ∈ L for i < j. We proceed by induction on

j− i. If j− i = 1 the claim was proven in the previous step. Otherwise, by induction
we get

yiyj = (yiyi+1)(y
−1
i+1yj) ∈ L

y−1
i+1yj = y−2

i+1(yi+1yj)

where we used that y−2
i+1 ∈ L and yi+1yj ∈ L by induction.

In the sixth step we show that y±1
i y±1

j ∈ L for i, j. This is true since

y±1
i y±1

j = (y−2ǫ
i )(yiyj)(y

−2δ
j )
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for suitable ǫ, δ ∈ {0, 1}. After all these steps, now it is clear that L is equal to
Gk. �

We now turn our attention more specifically to ~F3 ∈ F3 and will return to the
general case Fk, k ≥ 2 in the next section. Recall from Section 1 the embedding
ι : F2 → F3. Then ι(G2) = G3 ∩ ι(F2). In what follows we will keep the notation
{yi} for the generators of F3 and when necessary use the notation {xi} for the
generators of F2 = F . We have ι(xi) = y2i,∀i ≥ 0.

Lemma 5. It holds 〈y20 ,
~F3〉 = G3.

Proof. Thanks to Proposition 2 it is enough to show that y0y3, y1y3, y2y3 are in

K := 〈y20,
~F3〉. By Example 3 we know that the element y0y3 is in ~F3. Moreover,

y0y3y
−2
0 y0y3 = y1y0y

−2
0 y0y3 = y1y3 ∈ K

so we are left to show that y2y3 ∈ K. To this end, recall from [15, Lemma 3.3] that

〈x20,
~F2〉 = G2, where G2 consists of the elements in F2 whose normal form has even

length. Since y2 = ι(x1) and y0 = ι(x0), we have ι(x1x0) ∈ ι(G2). Now thanks to
the following equality we are done

y2y0y
−2
0 y0y3 = y2y3 ∈ K.

�

Lemma 6. Let g ∈ F3\ ~F3, then there is a positive element in (~F3g ~F3∩ι(F2))\ι(~F2).

Proof. First of all we show that there is a positive element in ~F3g ~F3. Let w be an

element of minimal length in ~F3g ~F3. If it is positive, we can move on to the next
step. Otherwise, let yi be the last letter of w in the normal form, that is w = w′y−1

i .

If i = 2k+1, wy22k+1 = w′y−1
2k+1y

2
2k+1 is an element still with normal form of minimal

length, but with less negative factors. If i = 2k, one may consider w(y2ky2k+2) which

does the job. By iteration we get a positive element in ~F3g ~F3.

We now show that it is actually possible to find a positive element in (~F3g ~F3 ∩

ι(F2)) \ ι(~F2). This means that it is the product of elements in the set {y2i}i≥0.
So far we have an element w which can be expressed as yi1yi2 · · · yin in its normal
form. If i1 = 0 we may consider y23(y

−1
3 y−1

0 )w = y23yi2 · · · yin , which has the same
length and less factors equal to y0. If i2 = 0, after using the defining relations and
the former trick we may erase another factor equal to y0. After finitely many steps,
we may suppose that there are no factors equal to y0. Now that we know that w
does not contain y0, we may use the relation (y0y2)

−1w(y0y2) = ϕ2
R(w) (as defined in

Lemma 4). This allows us to suppose that all the indices are non-zero and arbitrarily
big. Suppose that i1 = 2k, by multiplying w (repeatedly) on the left by factors of

the form y−1
2h+2y

−1
2h ∈ ~F3 we get

y2k+2m+3y2k+2m+2y
−1
2k+2m+2y

−1
2k+2m · · · y−1

2k+2y
−1
2k y2kyi2 · · · yin =

= y2k+2m+3yi2 · · · yin =

= yi2 · · · yiny2k+2m+3−2(n−1)
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where we used that y2k+2m+3y2k+2m+2 = y2k+2m+2y2k+2m+5 ∈ ~F3. After multiplying
by another suitable element we get an element of the form

yi2 · · · yiny2k+2m−2(n−1)+3(y
−1
2k+2m−2(n−1)+3y

−1
2k+2m−2(n−1))(y2k+2m−2(n−1)y2k+2m−2(n−1)+2)

= yi2 · · · yiny2k+2m−2n+2

This allows us to suppose that the first factor in w is odd, that is i1 = 2k + 1, with
k 6= 0. In this case just consider

(y2k−2y2k+1)y
−2
2k+1(y2k+1yi2 · · · yin)

= y2k−2yi2 · · · yin

which has the same length and less odd factors (i.e. y2h+1). If i1 = 1, just conjugate
by y0y2 so that we may assume that i1 ≥ 3. Now after repeating the previous
arguments, we get an element without odd factors.

We make a final observation. We started from g ∈ F3 \ ~F3 and we considered an

element w of minimal length in ~F3g ~F3. In all the steps of the proof we multiplied w

by suitable elements of ~F3 and got an element w′ = f1wf2 ∈ (~F3g ~F3 ∩ ι(F2)), where

f1, f2 are some suitable elements in ~F3. For this reason it is clear that the resulting

element cannot be in ~F3 (and in ι(~F2) ⊂ ~F3). �

Theorem 3. Let g be an element of F3 \ ~F3. Then, the group generated by g and ~F3

is G3 if g has even length, and F3 otherwise. In particular, the group ~F3 is maximal
in G3.

Proof. Let g be an element of F3 \ ~F3. Thanks to the previous lemma we know that

(~F3g ~F3 ∩ ι(F2)) \ ι(~F2) contains a positive element. Without loss of generality, we

may suppose that g is positive and in ι(F2) \ ι(~F2). Therefore, we have to consider

two cases, depending on whether g is in ι(G2) or not. If g ∈ ι(G2) \ ι(~F2), by [15,

Theorem 3.12] we have that 〈g, ι(~F2)〉 = ι(G2). In particular, we have y20 ∈ 〈g, ~F3〉

and thus 〈g, ~F3〉 = G3 by Lemma 5.
Suppose that g ∈ ι(F2) \ ι(G2). This means that its normal form has odd length.

By [15, Theorem 3.12] we have that 〈g, ι(~F2)〉 = ι(F2). In this case, we clearly have

that y20 ∈ 〈g, ~F3〉 and, hence, G3 ⊂ 〈g, ~F3〉. Now 〈g,G3〉 must be equal to F3 by
Proposition 2. �

Corollary 1. The Brown-Thompson group F3 has a maximal subgroup of infinite

index isomorphic to ~F3 that does not stabilize any x ∈ (0, 1).

Proof. Recall from Proposition 2 the notation w0, w1, w2 for the three generators of
G3. Denote by Φ : G3 → F3 the isomorphism established in that Proposition. Since
the action of y0 on the unit interval [0, 1] was described in Example 1, it is clear

that y0 = Φ(w0) ∈ Φ(~F3) ≤ Φ(G) = F3 provides an element which does not fix any
x ∈ (0, 1). �

We are at last in a position to give a proof of Theorem 1.
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Proof of Theorem 1. It can be easily seen that all the generators of ~F3 preserve the

subset Z and, therefore, ~F3 ≤ Stab(Z). Since neither y0, nor y20 belong to Stab(Z),

it holds ~F3 = Stab(Z). �

Similarly to the case of ~F ∈ F (compare with [14, Corollary 3] and [16, Section
5.2]), the above results allow us to conclude that the quasi-regular representation of

F3 associated with ~F3 is irreducible.

Corollary 2. The ternary oriented Thompson group ~F3 coincides with its commen-
surator. In particular, the quasi-regular representation of F3 on F3/~F3 is irreducible.

Proof. First of all, we point out that for any f, g ∈ F3, x ∈ [0, 1], we adopt the
standard notation f · g(x) ≡ g(f(x)).
It is enough to prove the claim about the commensurator since the irreducibility
of the representation then follows from [21]. We follow the same strategy as [14].

Let h ∈ F3 \ ~F3 and I := [~F3 : ~F3 ∩ h~F3h
−1]. Suppose that I < ∞ and pick g =

(y0y3)
−1 ∈ ~F3. Then, there exists an r ∈ N such that gr ∈ h~F3h

−1, or equivalently

h−1grh ∈ ~F3. This implies that h−1grkh ∈ ~F3 for all k ∈ N. We will reach a
contradiction by showing that h−1gnh 6∈ ~F3 for all n large enough.

First of all, we observe that the same argument as in [14, Lemma 4.14] shows that
there exists an m ∈ N such that for any finite ternary fraction t < 3−m, the weight
c(t) is equal to that of h(t). Secondly, thanks to the Example 3 it is easy to see that
for every t 6= 1 we have that gn(t) < 3−m if n is large enough.

Since h 6∈ ~F3, there exists a t ∈ Z such that t1 := h−1(t) 6∈ Z. We observe that
for all l ∈ N we have gl(t1) 6∈ Z. As gn(t1) < 3−m we have that h(gn(t1)) 6∈ Z.
Therefore, it holds h−1gnh(t) = h(gn(t1)) 6∈ Z. Since h−1gnh does not stabilize Z,

we have that h−1gnh 6∈ ~F3 and we are done. �

Given a graph G, its chromatic polynomial ChrG(x) is the unique polynomial
which, when evaluated at a Q ∈ N, gives the number of proper vertex colourings of
G with Q colours. The function

Chr(g,Q) :=
ChrΓ(T+,T

−
)(Q)

(Q− 1)n−1
Q ∈ N≥2 := {2, 3, 4, . . .} ,

where n is the number of the leaves of T±, is a positive type function on F3 (this
can be shown by the same argument as was used in [3] for F2). The quasi-regular

representation of F3 associated with ~F3 coincides with the representation associated
to this positive type function with Q = 2.

5. On maximal subgroups of Fk

Given a point x ∈ (0, 1), and k ≥ 2, the stabilizer StabFk
(x) under the natural

action of the elements of Fk seen as homeomorphisms of the unit interval are called
the parabolic subgroups of Fk. These subgroups are natural examples of maximal
subgroups of infinite index in Fk. This was proven by Savchuk for F2 and the proof
[24, Prop. 2.4, p. 360] readily adapts to any k ≥ 2.
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Figure 6. The map Φk : T2k−1 → Tk is obtained by replacing every
vertex of degree 2k with the tree displayed below.

7→. . .

2k − 1

︸︷︷︸
. . .

. . .k − 1
︸︷︷︸

k

︸︷︷︸

Figure 7. The generators of Fk. In the tree diagram of yi, with
i = 1, . . . , k− 2, a split is attached on the of i-th edge below the root
of the top tree.

y0 = . . . . . . yk−1 = . . . . . . . . . yi =
i

i. . . . . . . . . i = 1, . . . , k − 2.

Theorem 4. For any x ∈ (0, 1), the stabilizers StabFk
(x) are maximal subgroups

of infinite index of the Brown-Thompson group Fk. Moreover, the associated quasi-
regular representations are irreducible.

For the second statement see [13, Lemma 8].
It is therefore natural to inquire, what are non-parabolic maximal subgroups of

infinite index in Fk, k ≥ 2, that would in some way generalise the subgroups ~F2 and
~F3 respectively in F2 and in F3.

The aim of this section is to exhibit subgroups of the Brown-Thompson groups
Fk, which in some way generalise the oriented subgroup ~F2.

Denote by Tk the set of k-ary planar rooted trees. For every k ≥ 2 there exists a
natural map Φk : T2k−1 → Tk displayed in Figure 6. For every k, the map Φk induces
a monomorphism ϕk : F2k−1 → Fk. We denote by {yi}i≥0 and {zi}i≥0 the canonical
generators of Fk and F2k−1, respectively. It is easy to see that ϕk(zi) = yiyi+k−1.
We define the following subgroups

Hk := ϕi(F2k−1) = 〈yiyi+k−1 , i ≥ 0〉 ≤ Fk

It is clear that for all k, the subgroup Hk sits inside Gk, by observing that y′i(1) =
k−1 for all i), see Figure 7. We observe that for k = 2, the subgroup H2 is exactly

the oriented subgroup ~F . For k = 3, the subgroup H3 does not coincide with ~F3

since ϕ3(z1) = y1y3 6∈ ~F3.
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Proposition 3. Let αk : Gk → Fk ≡ 〈zi〉 be the isomorphism mapping yiyk to zi for
i = 0, . . . , k − 1 (see the proof of Proposition 2). Then, the subgroup αk(Hk) does
not stabilise any x ∈ (0, 1).

Proof. As in Proposition 2, set wi := yiyk for i = 0, . . . , k−1 and wn := w−1
0 wn−k+1w0

for all n ≥ k. Since

w0wk−1w
−1
k = y0yk−1 ∈ Hk

we have that αk(y0yk−1) = αk(w0wk−1w
−1
k ) = z0zk−1z

−1
k . Now it is easy to see that

this element does not have fixed points in (0, 1) and we are done. �

The following natural questions about the subgroups Hk remain open for now.

Problem 1. Is the index of Hk in Gk infinite? Is Hk a maximal subgroup of Gk?

Remark 3. In [15], implicit examples of infinite index maximal subgroups of F were
exhibited using the theory of diagram groups. Since all Brown-Thompson groups are
diagram groups, it is possible that similar methods could be applied to them as well.
We haven’t explored this direction.

For F there is another possible source of maximal infinite index subgroups of F
coming from a natural generalisation of the map ϕ2 defined above. Let T be a rooted
planar binary tree with k leaves. As usual we put its leaves on the x-axis, precisely
on the non-negative integers 0, 1, 2, . . . , k−1. We denote by ℓT (0) the number of left
edges in the path from the left-most leaf to the root and by ℓT (k − 1) the number
of right edges in the path from the right-most leaf to the root. Now we define an
injective map αT : Fk → F : given a tree diagram (T+, T−) ∈ Fk, replace any vertex
of degree k + 1 with the tree T , [22].

We recall that the projection π : F → F/[F,F ] = Z ⊕ Z can be described as
π(f) = (log2 f

′(0), log2 f
′(1)), see [12]. If f is represented by a pair of trees (T+, T−),

then log2 f
′(0) is equal to the number of left edges in the path from the left-most

leaf to the root of T+ minus the same number for T−. Similarly, log2 f
′(1) is equal

to the number of right edges in the path from the right-most leaf to the root of T+

minus the same number for T−.
Recall from [9] that, for any a, b ∈ N, one can define the rectangular subgroups of

F as

K(a,b) := {f ∈ F | log2 f
′(0) ∈ aZ, log2 f

′(1) ∈ bZ}

All these subgroups have finite index and are isomorphic with F .

Proposition 4. The subgroup αT (Fk) sits inside of K(ℓT (0),ℓT (k−1)).
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Proof. By looking at the tree diagrams of the generators y0, . . . , yk−1 of Fk (see
Figure 7), one can see that

π(αT (y0)
′(0), αT (y0)

′(1)) = (2ℓT (0)− ℓT (0), ℓT (k − 1)− 2ℓT (k − 1))

= (ℓT (0), ℓT (k − 1))

π(αT (yi)
′(0), αT (yi)

′(1)) = (ℓT (0)− ℓT (0), ℓT (k − 1)− 2ℓT (k − 1))

= (0, ℓT (n− 1)) i = 1, . . . , n− 2

π(αT (yk−1)
′(0), αT (yk−1)

′(1)) = (ℓT (0)− ℓT (0), 2ℓT (k − 1)− 3ℓT (k − 1))

= (0,−ℓT (k − 1)) .

�

Note that for a = 1, b = 2, we get K(1,2) = G2, also ϕ2 is αT with T the binary
tree with three leaves where the caret is to the right from the root.

Problem 2. What is the index of αT (Fk) in K(ℓT (0),ℓT (k−1))? Is αT (Fk) maximal in
K(ℓT (0),ℓT (k−1))?
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