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Network analysis identifies 
circulating miR‑155 as predictive 
biomarker of type 2 diabetes 
mellitus development in obese 
patients: a pilot study
Giuseppina Catanzaro 1,6, Federica Conte 2,6, Sofia Trocchianesi 1, Elena Splendiani 1, 
Viviana Maria Bimonte 3, Edoardo Mocini 1, Tiziana Filardi 1, Agnese Po 4, 
Zein Mersini Besharat 1, Maria Cristina Gentile 1, Paola Paci 5, Susanna Morano 1, 
Silvia Migliaccio 3,6* & Elisabetta Ferretti 1,6*

Obesity is the main risk factor for many non‑communicable diseases. In clinical practice, unspecific 
markers are used for the determination of metabolic alterations and inflammation, without allowing 
the characterization of subjects at higher risk of complications. Circulating microRNAs represent 
an attractive approach for early screening to identify subjects affected by obesity more at risk of 
developing connected pathologies. The aim of this study was the identification of circulating free 
and extracellular vesicles (EVs)‑embedded microRNAs able to identify obese patients at higher 
risk of type 2 diabetes (DM2). The expression data of circulating microRNAs derived from obese 
patients (OB), with DM2 (OBDM) and healthy donors were combined with clinical data, through 
network‑based methodology implemented by weighted gene co‑expression network analysis. The six 
circulating microRNAs overexpressed in OBDM patients were evaluated in a second group of patients, 
confirming the overexpression of miR‑155‑5p in OBDM patients. Interestingly, the combination of 
miR‑155‑5p with serum levels of IL‑8, Leptin and RAGE was useful to identify OB patients most at 
risk of developing DM2. These results suggest that miR‑155‑5p is a potential circulating biomarker for 
DM2 and that the combination of this microRNA with other inflammatory markers in OB patients can 
predict the risk of developing DM2.

Obesity is a common condition which is consistently linked to an increased risk of developing a wide range of 
metabolic chronic disorders, such as metabolic syndrome (MS), type 2 diabetes (DM2), cardiovascular diseases 
(CVD), non-alcoholic fatty liver disease (NAFLD), musculoskeletal diseases and some  cancers1–5.

In particular, it is well known that DM2 is one of the major concerns in individuals affected by obesity, due 
to the strong link between the two disorders, which has even brought to define with the new term “diabesity” 
the unhealthy association of obesity and  DM26. Indeed, both obesity and DM2 global cost burden and its social 
consequences have dramatically increased in the last decades, and they will further increase by  20306.

The markers used in clinical practice for the determination of metabolic alterations do not allow the identifi-
cation of the subjects most at risk of developing complications, such as DM2. MicroRNAs are short, non-coding 
RNA molecules, that negatively modulate gene expression at post-transcriptional level. Through their ability 
to influence protein translation, microRNAs have emerged as powerful regulators of many different biologi-
cal  processes7. Moreover, due to their stability and readily detectability in blood, circulating microRNAs have 
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emerged as potential biomarkers for many pathological processes, including metabolic chronic  diseases8. The 
recent use of microRNAs as circulating biomarkers represents an innovative and sensitive approach for the early 
screening of individuals at risk of several disorders, including non-communicable  diseases8–11.

Previous studies investigated the connection between microRNAs and risk factors connected to MS, such as 
DM2, hypertension, dyslipidemia and obesity. In a recent systematic review, Brandao Lima et al. summarized the 
links between circulating microRNAs and the main risk factors for  MS12. Of note, miR-122, miR-221, miR-222 
and miR-423 were related with adiposity, lipid and glycemic  metabolism12. In older overweight or obese adults 
with DM2 miR-21, miR-27a, miR-30d and miR-155 presented a negative relationship with total and central 
body  obesity13–15, whilst miR-101 presented a positive relationship. Another recent systematic review conducted 
by Solis-Toro et al. identified 12 microRNAs, namely miR-505-5p, miR-148a-3p, miR-19b-3p, miR-320b, miR-
342-3p, miR-197-3p, miR-192-5p, miR-122-5p, miR-103, miR-130a, miR-155-5p and miR-375, as potential 
biomarkers for metabolic  risk16. Additionally, another meta-analysis reported 7 microRNAs (miR-142-3p, miR-
140-5p, miR-222, miR-21-5p, miR-221-3p, miR-125-5p, miR-103-5p) as dysregulated in OB subjects, while two 
of them (miR-142-3p and miR-222) were concordantly up-regulated also in DM2  patients17. Since dyslipidemia 
as well as hypertension and DM2 are among the main risk factors for the development of cardiovascular disease 
(CVD), a number of studies focused on the circulating microRNAs able to predict cardiovascular  events18. 
MiR-126, miR-197 and miR-223 were significantly associated with the risk of myocardial  infarction19 as well as 
miR-92a, whose upregulation in DM2 patients appear years before the development of coronary artery disease 
(CAD)20. Additionally the combination of five microRNAs (miR-106a-5p, miR-424-5p, let-7g-5p, miR-144-3p 
and miR-660-5p) was proposed to be used for myocardial infarction prediction in healthy  individuals21.

Thus, aim of the present research was to evaluate and to determine a specific microRNA pattern, present 
in obese individuals affected by DM2, which could identify obese subjects at increased risk of developing this 
chronic metabolic disease.

Results
MicroRNA profiling of the discovery cohort patients
We evaluated the expression profiles of 798 microRNAs derived from EVs and total plasma (TP) of a group of 12 
obese patients (OB), 10 obese patients with DM2 diagnosis (OBDM) and 9 normal body weight donors (HD). 
Data from EVs were available for 8 out 9 HD. Patients’ clinical features are reported in Table 1.

We combined the microRNA expression data with the clinical data of patients by exploiting the network-based 
methodology implemented by the WGCNA  software22,23. This approach first builds a correlation network and 
searches for network modules of microRNA expression. Then, the weighted average of the microRNA expres-
sion profiles of each module is summarized by using the Module Eigengene (ME) and, to relate each ME with 
the clinical outcome, the clinical data for each patient are used as external sample traits to be incorporated into 
the co-expression network. Finally, the module-trait association is evaluated by computing for each module the 
correlation and the statistical significance (p-value) between its ME and each external sample trait.

WGCNA on EVs data
The WGCNA analysis performed on circulating microRNAs derived from EVs led to a co-expression network 
made of two well-defined modules with the size of 84 and 655 microRNAs (Fig. 1a, Supplementary Table 2).

The heatmap of the module-trait association (Fig. 1b) shows how the blue module, although with a p-value 
slightly higher than the standard significance level (i.e., 0.05), exhibits the strongest association with the 

Table 1.  Clinical features of the discovery cohort patients’. HD, Healthy donors; OB, obese patients; OBDM, 
obese patients affected by type 2 diabetes (DM2); BMI, body mass index; BP, blood pressure. *p < 0.05, 
***p < 0.001 OB versus OBDM, ****p < 0.0001 OB versus OBDM, °°°°p < 0.0001 HD versus OB, §§p < 0.01 HD 
versus OBDM, §§§p < 0.001 HD versus OBDM, §§§§p < 0.0001 HD versus OBDM.

Discovery cohort

p-valueHD (n = 9) OB (n = 12) OBDM (n = 10)

Age 56.11 ± 4.65 56.33 ± 4.56 62.50 ± 9.05 0.0512

Gender males/females (n) 5/4 9/3 5/5 NA

BMI 24.17 ± 2.62 42.00 ± 8.62 36.27 ± 4.51  < 0.0001°°°°; 0.0018§§

Smoking habit Yes/No/Ex (n) NA 1/8/2 2/5/2 NA

Waist circumference NA 120.25 ± 11.67 120.56 ± 12.43 0.95

Systolic BP 123.33 ± 8.66 127.50 ± 11.58 137.50 ± 18.89 0.0820

Diastolic BP 80.00 ± 5.00 72.08 ± 3.96 77.50 ± 11.61 0.0611

Glycemia 92.66 ± 6.44 94.92 ± 8.89 145.74 ± 29.17  < 0.0001§§§§; < 0.0001****

HbA1c NA 5.70 ± 0.36 7.78 ± 1.44 0.0007***

HOMA-I NA 4.54 ± 2.46 7.83 ± 4.22 0.0467*

Insulin resistance Yes/No (n) NA 8/3 8 NA

HDL cholesterol 71.22 ± 15.39 43.82 ± 5.91 48.57 ± 10.03  < 0.0001°°°°; 0.0005§§§

Triglycerides 102.67 ± 50.45 140.64 ± 63.00 162.11 ± 79.51 0.1593
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individuals’ status, treated as categorical variable, that increases moving from healthy to diseased condition. 
Specifically, we considered three levels for the variable “status” (1 = HD, 2 = OB, 3 = OBDM). The positive sign of 
this correlation indicates that high levels of microRNAs are a sign of pathological conditions and, in particular, 
of the OBDM status (Fig. 1b and Fig. 2a). In addition, the ME blue was found to exhibit a high (statistically 
significant) positive correlation with traits called HbA1c, glycemia and HOMA-I (Fig. 1b). It is worth noting 
that, in the current study, we investigated the relationship of the available clinical variables with microRNA 
expressions by considering some of them as categorical variables. In particular, we considered: three levels of 
HbA1c (1 = normal if less than 5.7%, 2 = pre-diabetes if between 5.7 and 6.4%, 3 = diabetes if equal or greater than 
6.5%) and two levels of glycemia (1 = normal if less than 126 mg/dL, 2 = high if equal or greater than 126 mg/dL).

Looking at the expression levels of the blue ME across all individuals of our cohort and stratifying them with 
respect to the specific levels defined for each clinical variable of interest (Fig. 2), we note that it could be feasible 
to discriminate among HD, OB and OBDM individuals according to the values of these parameters. For example, 
we found that microRNAs are more expressed in OBDM patients and that these diabetic patients are mainly 
characterized by higher values of HbA1c, glycemia and HOMA-I (Fig. 2a–d).

WGCNA on TP data
The WGCNA analysis performed on circulating microRNAs derived from TP led to a co-expression network 
made of two well-defined modules consisting of 106 and 638 microRNAs (Fig. 3a, Supplementary Table 3).

The heatmap of the module-trait association (Fig. 3b) reinforces the results obtained in the previous analysis 
on EV data. Indeed, we found again a blue module that exhibits a stronger (positive) and more statistically sig-
nificant association with the individuals’ status, indicating that microRNAs falling within this module tend to 
increase from healthy (HD) to diseased condition (OB/OBDM). Yet, the ME of the TP blue module preserves 
the same correlations and trends of the ME of EV blue module with respect to HbA1c, glycemia and HOMA-I 
(Figs. 3b and 4a–d).

The hypothesis that the TP results may include and even reinforce those of EV is further supported by the evi-
dence that 75 out of 84 microRNAs within the EV blue module are in common with the TP blue module (Fig. 5a). 

Figure 1.  WGCNA analysis on EV data. (a) WGCNA network. In the correlation network (left), the WGCNA 
detected modules are highlighted and colored according to the corresponding module labels. Grey color was 
used to indicate nodes that could not be classified into any modules. In the bar plot (right), bars represent the 
size of each WGCNA detected module and are colored according to the corresponding module labels. (b) 
Module-trait associations. In the heatmap, each row corresponds to a module eigengene and each column to a 
clinical trait of interest. Each cell contains the corresponding correlation and p-value. The heatmap is color-
coded by correlation according to the color legend.
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Interestingly, 55 out of the 57 most representative microRNAs of each module are in common, i.e., microRNAs 
with module membership (MM) greater than 0.7 (Fig. 5a, Supplementary Table 2 and Supplementary Table 3).

Taken together, these findings led us to focus on the blue module of TP and to look for potential driver micro-
RNAs of the patients status within this module. To do this, we firstly ordered microRNAs of TP blue module 
according to their MM and gene significance (GS). Then, by setting a threshold on the values of these parameters, 
we selected microRNAs satisfying the conditions MM > 0.7 and a GS > 0.7 (Supplementary Table 2). We ended 
up with six potential driver microRNAs for further analyses: hsa-miR-27b-3p, hsa-miR-182-3p, hsa-miR-155-5p, 
hsa-miR-1245b-5p, hsa-miR-4421, hsa-miR-548ak. The boxplots of Fig. 5b show that these microRNAs are 
overexpressed in OBDM samples and how they are able to discriminate between OBDM and OB or HD, but not 
between OB and HD (Fig. 5b). This behavior is confirmed also by taking into consideration the EV data (Sup-
plementary Fig. 1). It is worth noting that all driver microRNAs identified from TP are included in the EV blue 
module, except for hsa-miR-27b-3p, which belongs to the EV turquoise module.

The biological relevance of the six identified driver microRNAs was assessed by creating a network of the 
experimentally validated microRNA-target interactions and then performing a functional enrichment analysis of 
the KEGG pathways in which their targets are involved (Fig. 5c and Supplementary Table 4). Interestingly, among 
the most enriched KEGG pathways, we found “Insulin signaling pathway” and “AGE-RAGE signaling pathway in 
diabetic complications”, thus suggesting a putative role of the microRNAs of interest in the diabetes development.

Figure 2.  Module-trait association for EV data. Bar plots of the expression levels (y-axis) of blue module 
eigengene across healthy, OB, and OBDM samples (x-axis). Expression levels of the module eigengenes were 
log2-transformed and z-score normalized. In each panel, bars were colored according to the stratification used 
for the specific clinical trait of interest. For HOMA-I, the samples were stratified according to the corresponding 
median value only for display purposes. Grey was used to indicate not available data.
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Independent validation patients’ cohort analyses
Validation studies were conducted on an independent group comprising 15 OB and 9 OBDM patients, whose 
clinical features are reported in Table 2.

For microRNAs validation analysis, the six microRNAs derived from the WGCNA were evaluated by RT-
qPCR and miR-155-5p confirmed its up-regulation in OBDM patients (Fig. 6a).

Since miR-155-5p has a key role in  inflammation24 and obesity and DM2 are considered as chronic inflam-
matory  disorders25, 14 cytokines were selected on the basis on their correlation with miR-155-5p, obesity and 
 DM225–31. Interleukin-8 (IL-8) was significantly up-regulated in OBDM patients, conversely leptin was signifi-
cantly down-regulated (Supplementary Table 5). Intercellular adhesion molecule 1 (ICAM-1), interleukin-1α 
(IL-1α) and vascular endothelial growth factor (VEGF) were reduced, while the receptor for advanced glycation 
products (RAGE) was increased in the OBDM group, although not significantly (Supplementary Table 5).

Correlation analyses were conducted to assess possible associations of miR-155-5p expression with both 
clinical data and cytokines levels. MiR-155-5p showed a significant positive correlation with IL-8 levels (correla-
tion = 0.58, p-value = 0.04) (Fig. 6b). Additionally, a multivariate logistic regression model was applied with the 
aim to find independent predictors of DM2 risk in OB. We found that the combination of miR-155-5p expres-
sion levels with IL-8, leptin and RAGE levels was able to significantly predict OB patients at risk of developing 
DM2  (R2 = 0.7, p-value = 0.02).

These results underline that miR-155-5p can be used as circulating biomarker for OB patients affected by 
DM2 and that the combination of miR-155-5p with other inflammatory parameters in OB patients can predict 
the risk of developing DM2.

Discussion
In the present study, we profiled both free TP and EVs-embedded circulating microRNAs and used the WGCNA, 
one of the most employed algorithms that analyzes gene co-expression networks across gene expression data, to 
explore the relationship between microRNAs and the clinical traits of interest, with the aim of identifying greatly 
interconnected or co-expressed microRNAs within the weighted network. This approach allowed us to identify 

Figure 3.  WGCNA analysis on TP data. (a) WGCNA network. In the correlation network (left), the WGCNA 
detected modules are highlighted and colored according to the corresponding module labels. Grey color was 
used to indicate nodes that could not be classified into any module. In the bar plot (right), bars represent the size 
of each WGCNA detected module and are colored according to the corresponding module labels. (b) Module-
trait associations. In the heatmap, each row corresponds to a module eigengene and each column to a clinical 
trait of interest. Each cell contains the corresponding correlation and p-value. The heatmap is color-coded by 
correlation according to the color legend.
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six microRNAs able to distinguish between HD and OB individuals with or without DM2. The evaluation of 
these microRNAs in an extended cohort of OB patients with and without DM2 allowed to confirm miR-155-5p 
as a circulating biomarker that characterizes OB subjects affected by DM2. Additionally, we identified clinical 
features and inflammatory markers correlated with miR-155-5p levels and described a model through which 
the combination of miR-155-5p with IL-8, Leptin and RAGE may be useful to individuate OB patients at higher 
risk of developing DM2.

MiR-155-5p is one of the most characterized microRNAs. It is hosted in the B-cell integration cluster gene 
(BIC) in a 13 kb region of the chromosome 21 and is highly expressed by hematopoietic cells, where it can control 
both erythropoiesis and myelopoiesis, beyond playing pivotal roles in inflammation and  immunity32,33. MiR-
155-5p targets indeed are involved in inflammatory pathways  regulation34 such as in the control of  lipolysis35,36, 
making miR-155-5p an interesting target in chronic inflammatory disorders. Several studies indeed addressed 
the association between circulating miR-155 dysregulation and DM2. High levels of miR-155 in patients with 
diabetic nephropathy correlated with microalbuminuria and the combination of serum miR-155 levels with 
urine vitamin D binding protein had a predictive value in the diagnosis of both onset and poor prognosis of 
patients with diabetic  nephropathy37. In contrast, a study conducted on the Iranian population did not report 
any difference between plasma miR-155 expression in DM2 patients with and without nephropathy and lower 
levels of plasma miR-155 were detected in DM2 patients compared with healthy  subjects24. However, the differ-
ences among the data of Akhabri, the results of Bai et al. and our results may be due to the different source of 
samples as well as the exclusion of obese patients from the cohort of the analyzed individuals. In another study 
conducted on serum of DM2 and healthy Chinese subjects, miR-155 was down-regulated in DM2  patients38; 

Figure 4.  Module-trait association for TP data. Bar plots of the expression levels (y-axis) of blue module 
eigengene across healthy, OB, and OBDM samples (x-axis). Expression levels of the module eigengenes were 
log2-transformed and z-score normalized. In each panel, bars were colored according to the stratification used 
for the specific clinical trait of interest. For HOMA-I, the samples were stratified according to the corresponding 
median value only for display purpose. Grey was used to indicate not available data.
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Figure 5.  Potential driver microRNAs. (a) Comparison between EV and TP results. Overlap between the 
microRNAs in the blue module obtained from EV data and microRNAs in the blue module obtained from TP 
data. (b) Expression of driver microRNAs in TP. The boxplots show the gene expression levels (log-transformed) 
of the six potential driver microRNAs in TP across the HD, OB and OBDM samples. Wilcoxon-test was used 
to perform pairwise-comparisons and statistical significance was indicated by the star symbols (i.e., ns: p > 0.05, 
*: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001). (c) microRNA-target interaction network and KEGG 
pathways of driver microRNAs. The network on the left shows the microRNA-target interactions retrieved from 
MIENTURNET by querying  miRTarBase52. These interactions were experimentally validated with strong 
or weak experimental methods. Blue dots represent microRNAs, yellow dots represent microRNA targets. 
The panel on the right shows the main KEGG pathways enrichment results for the targets of the microRNAs 
appearing in the network. These results are presented as a dot plot, where the Y-axis reports the annotation 
categories (i.e., KEGG pathways) and the X-axis reports the microRNAs with the number of recognized targets 
(i.e., number of targets with at least one annotation) in round brackets. The colors of the dots represent the 
adjusted p-value s, whereas the size of the dots represents gene ratio (i.e., the number of microRNA targets 
found annotated in each category over the total number of recognized targets indicated in round brackets). No 
statistically significant KEGG pathway was detected for miR-4421 targets.
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the contrasting result may be due again to the different ethnicity of patients included in the study. Additionally, 
authors did not specify if DM2 patients were also obese. Interestingly, they also used an experimental animal 
model of transgenic mouse overexpression of miR-155 and determined an improvement in glucose tolerance 
and insulin sensitivity, underlying the importance of this specific microRNA in glucose metabolism and insulin 
 resistance38. Furthermore, Guay et al. demonstrated that miR-155, together with miR-142-3p and miR-142-5p, 
is transferred by T-lymphocytes derived-exosomes to ß-cells inducing apoptosis and favoring type 1 diabetes 
 development39. MiR-155 indeed plays also an important role in both acute and chronic inflammation. It can be 
modulated by several inflammatory stimuli, such as tumor necrosis factor alpha, interferons as well as pathogen- 
and damage-associated molecular  patterns40 and regulates the expression of many inflammatory  mediators41. 
We demonstrated that circulating levels of miR-155 are up-regulated in plasma derived from OBDM in respect 
to OB patients and are positively correlated with IL-8 which, of note, is more abundant in sera of OBDM than 
in OB patients. Few reports describe the relationship between miR-155 and IL-8. In 2011, Bhattacharyya et al. 
demonstrated that miR-155 may play a central role in controlling inflammation in cystic fibrosis lung epithelial 
cells by regulating IL-8 levels through the PI3K/AKT signaling pathway  activation42. More recently, miR-155 
was demonstrated as IL-6 and IL-8 regulator in oral lichen planus (OLS) associated-fibroblasts (OLP AFs). The 
knockdown of miR-155 indeed determined the reduction of IL-6 and IL-8  release43. Conversely, the relationship 
among miR-155-5p and leptin or RAGE has not been investigated yet. Advanced glycation end products (AGEs) 

Table 2.  Clinical features of the validation cohort patients’. OB, obese patients; OBDM, obese patients affected 
by type 2 diabetes (DM2); BMI, body mass index; BP, blood pressure. *p < 0.05, **p < 0.01 OB versus OBDM.

Validation Cohort

OB (n = 15) OBDM (n = 9) p-value

Age 63.36 ± 7.31 69.33 ± 6.03 0.0514

Gender males/females (n) 3/12 2/7 NA

BMI 42.50 ± 8.29 34.97 ± 5.45 0.0243*

Smoking habit Yes/No/Ex (n) 2/10/0 1/6/2 NA

Waist circumference 131.61 ± 8.14 116.67 ± 10.07 0.197

Systolic BP 142.69 ± 23.51 128.22 ± 12.91 0.1798

Diastolic BP 81.15 ± 11.75 78.33 ± 16.33 0.672

Glycemia 93.83 ± 11.57 123.33 ± 32.70 0.0052**

HbA1c 5.83 ± 0.75 6.54 ± 1.26 0.1228

HOMA-I 4.01 ± 2.96 7.60 ± 5.18 0.0796

Insulin resistance Yes/No (n) 7/6 4/1 NA

HDL cholesterol 51.64 ± 15.30 42.00 ± 13.20 0.1355

Triglycerides 137.69 ± 79.59 206.67 ± 134.19 0.145

Figure 6.  MiR-155-5p confirms its up-regulation in OBDM patients and is correlated with IL-8 levels. (a) 
RT-qPCR analysis was conducted on 15 OB and 9 OBDM patients and miR-155-5p resulted significantly 
up-regulated in OBDM patients. (b) Correlation analysis of miR-155-5p with cytokines resulted in a significant 
positive correlation with IL-8 levels. *p < 0.05.
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are molecules derived from the reaction of glucose with proteins or lipids that bind to RAGE. The activation 
of RAGE has been hypothesized to act as a major pathogenic factor in diabetic complications and specifically 
triggers an increase in cytokines, oxidative stressors and proinflammatory factors, which are involved in car-
diovascular alterations. Indeed, miR-155 is also involved in the pathophysiology of cardiovascular  diseases44,45 
and endothelial  dysfunction46,47. Interestingly, Frati et al. demonstrated that the circulating levels of miR-155 
were significantly increased in subjects’ sera after the smoking of just one  cigarette48 and that the exogenous 
administration of miR-155 was accompanied by a reduction in VEGF protein levels, corroborating the idea of a 
role of miR-155 the mechanisms involved in vascular  alterations48. Of note, we also found a negative correlation 
between plasma miR-155-5p abundance and VEGF levels in the patients we analyzed.

We are aware that our study has some limitations since it is a monocentric study conducted on a small 
number of patients, that were recruited, at least in part, during COVID-19 pandemic. However, our data may 
have important clinical implications since they suggest that miR-155-5p, together with IL-8, Leptin and RAGE, 
may be used as biomarker to identify obese individuals with higher risk of developing DM2 and cardiovascular 
complications. Thus, although further studies on a larger group of patients are needed to further corroborate 
these results, our data support a role for miR-155-5p in chronic inflammation and in the prediction of both 
metabolic and cardiovascular risk.

Materials and methods
Unless otherwise stated, commercially available products were used according to the manufacturer’s instructions/
protocols.

Patient cohorts
The study comprised two patients’ groups, a discovery and a validation one.

The discovery group consisted of female and male obese patients without DM2 (OB, n = 12, 56.3 ± 4.6) and 
obese patients with DM2 (OBDM, n = 10, 62.5 ± 9.0) recruited at Department of Experimental Medicine, Poli-
clinico Umberto I, “Sapienza” University Hospital of Rome. In addition, a cohort of healthy, age- and body mass 
index (BMI)-matched donors (HD, n = 9, 56.1 ± 4.6) was used as negative control. The validation cohort com-
prised OB (n = 15, 63.4 ± 7.3) and OBDM (n = 9, 69.3 ± 6.0) patients. Informed written consent was obtained from 
the patients before enrolment, according to our ethical committee guidelines. Ethical approval (Ref. 5705) was 
obtained by the Hospital Ethics Committee of “Sapienza” University of Rome, in accordance with the Helsinki 
declaration of 1964 and its later amendments.

To be eligible for the study, patients should have a diagnosis of obesity (BMI > 30 kg/m2 or adipose tis-
sue > 35% in case of women or > 25% in case of men) and/or DM2 (HbA1c ≥ 6.5%). Additionally, women were 
after menopause. Exclusion criteria were previous bariatric surgery, neoplastic and/or endocrine diseases, liver 
and/or kidney failure or pharmacological treatments with therapies that could modify the cardio-metabolic and 
skeletal muscle structures. At the time of enrolment, medical history and physical examination were obtained. 
Anthropometric/vital parameters, such as weight, height, BMI, blood pressure and biochemical parameters were 
obtained. Patients’ clinical features are reported in Tables 1 and 2.

Blood samples processing
Blood samples collected for microRNAs expression were processed within 2 h after collection in BD Vacutainer 
K2-EDTA tubes and plasma was obtained after centrifugation at 1300 g for 10′ at room temperature (RT). 
Supernatant was then centrifuged at 1200 g for 20′ at RT and finally at 10,000 g for 30′ at RT. Blood samples for 
cytokines evaluation were collected in red top vacutainers and processed at the end of clotting time. Serum was 
obtained after two sequential centrifugations, the first at 1300 g for 10′ at RT and the second at 1200 g for 20′ at 
RT. Plasma and serum samples were stored at − 80 °C until further use.

Extracellular vesicles (EVs) isolation
500 µl of plasma were processed with the ExoQuick Plasma prep and Exosome precipitation kit (Cat #EXO-
Q5TM-1, System Biosciences) to obtain EVs. Briefly, after thrombin addition (final concentration 5U/mL), 
plasma samples were subsequently centrifuged at 10,000 g for 5′ at RT. Then, supernatants were incubated for 30′ 
at 4 °C with the Exoquick Exosome Precipitation Solution and then centrifuged at 1500 g for 30′. The resulting 
pellet was centrifuged again at 1500 g for 5′ and re-suspended with 200 μl of RNase free  H2O.

RNA extraction
The automated Maxwell RSC-Promega extractor was used for RNA extraction from TP and EVs by using the 
Maxwell RSC miRNA Plasma and Serum kit (CAT # AS1680, Promega), following manufacturer’s instructions. 
The technical quality of the extraction was followed by adding the Ath-miR-159a spike-in during RNA extraction.

MicroRNA profiling
TP and EVs samples derived from the discovery cohort patients were analysed with the multiplexed NanoString 
nCounter Human v3 miRNA expression assay (NanoString Technologies, Seattle, WA, USA), as previously 
 described21. Briefly, 3 μL RNA derived from TP and EVs was annealed with multiplexed DNA tags (miR-tag) and 
a ligase enzyme was used to bind mature microRNAs to specific miR-tags, excess was removed by an enzymatic 
clean-up. After dilution and denaturation, the Reporter and Capture CodeSet were added to 5 μL of the obtained 
product that was then incubated for 16 h at 70 °C to achieve the hybridization of the Target-Probe Complex. 
Data collection was performed by using the nCounter Digital Analyzer, where digital images are processed, and 
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the barcode counts are tabulated in a comma separated value format. Raw data quality check and normalization 
were performed with nSolver 4.0 Software (Nanostring, Seattle, WA, USA).

RT‑qPCR
Spike-in was analyzed with RT-qPCR by using the TaqMan Individual microRNA assays for Ath-miR-159a (code: 
000338) (Applied Biosystems, Waltham, MA, USA), as previously  described8. MicroRNA validation analysis was 
performed on TP, as already  described49. MicroRNAs used in the pools are reported in Supplementary Table 1.

Gene co‑expression network analysis
WGCNA is one of the most commonly employed algorithm to construct gene co-expression networks across 
gene expression data, exploring the association between gene networks and external phenotypic/clinical traits 
of  interest22,23.

Briefly, WGCNA first builds a weighted network where nodes correspond to genes and edges are weighted 
according to the pairwise correlations between their gene expressions. Then, WGCNA identifies modules of 
highly interconnected, or co-expressed, genes within the weighted network by grouping together the most similar 
nodes. The similarity measure between two nodes is expressed in terms of their direct connection strength as well 
as connection strengths “mediated” by shared neighbors. The relationship between modules as well as with the 
external traits can be studied by exploiting the so-called module eigengene (ME). The ME is defined as the first 
principal component of a given module and can be considered a representative of the gene expression profiles 
in that module. The relevance of each gene is assessed by computing two parameters: the module membership 
(MM) and the gene significance (GS). The MM is defined as the correlation between the gene expression profile 
and the ME of a given module. If MM of a given gene with respect to a given module is close to 0, that gene is 
not part of that module. On the other hand, if MM is close to 1 or -1, the gene is highly connected to the genes 
of that module. The sign of MM encodes whether the gene has a positive or a negative relationship with the 
ME. The GS is defined as the correlation between the gene expression profile and a given external sample trait. 
Abstractly speaking, the higher the absolute value of GS of a given gene, the more biologically significant is that 
gene. The gene significance of 0 indicates that the gene is not significant with regard to the biological question of 
interest. The GS can take on positive or negative values. In the present study, potential driver microRNAs were 
identified as those microRNAs of a given module highly connected within the module (highest MM in absolute 
value) and most strongly correlated with the trait of interest (highest GS in absolute value). Both for MM and 
GS, we selected a threshold equal to 0.7.

MicroRNA‑target interaction network
The microRNA-target interaction networks were constructed by exploiting MIENTURNET (MicroRNA ENrich-
ment TURned NETwork)50, a web tool designed to receive in input a list of microRNAs and infer possible evi-
dences of their regulation on target genes, based on both statistical and network-based analyses. In particular, 
MIENTURNET produces a network where nodes are microRNAs and target genes and a link occurs between 
them if an interaction among them is computationally predicted and/or experimentally validated from TargetS-
can and miRTarBase, respectively.

Functional enrichment analysis
The functional enrichment analysis was performed by querying Kyoto Encyclopedia of Genes and Genomes 
(KEGG)51 pathway through MIENTURNET web  tool50. p-value s were adjusted with the Benjamini–Hochberg 
method and a threshold equal to 0.05 was set to identify functional annotations significantly enriched amongst 
genes of the input list.

Cytokines evaluation
Fourteen cytokines were selected (HGF, ICAM1, IFN-γ, IL-10, IL-17, IL-1-α, IL-1- β, IL-6, IL-8, Leptin, Rage, 
Resistin, TNF-α, VEGF) and measured on serum samples belonging to the validation cohort patients by BioPlex 
(Luminex Technology, BioRad).

Statistical analysis
Statistical analyses were performed using GraphPad Prism Software version 9.0 (La Jolla, California, USA). 
Student’s unpaired t-test was used to determine significant differences between microRNAs or cytokines in the 
validation cohort. Correlation analyses were performed by using non-parametric Spearman’s rank test through 
R statistical software (version 4.1.0). A multivariate logistic regression model was constructed to evaluate the 
relationships between the outcome of interest (OB/OBDM status) and the predicted biomarkers (microRNAs 
and cytokines). In all statistical analyses, p-value < 0.05 was considered statistically significant.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article [and/or] 
its supplementary materials.
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