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Abstract
An enhanced virtual element formulation for large displacement analyses is presented. Relying on the corotational approach,
the nonlinear geometric effects are introduced by assuming nodal large displacements but small strains in the element. The
element deformable behavior is analyzed with reference to the local system, corotating with the element during its motion.
Then, the large displacement-induced nonlinearity is accounted for through the transformation matrices relating the local
and global quantities. At the local level, the Virtual Element Method is adopted, proposing an enhanced procedure for strain
interpolation within the element. The reliability of the proposed approach is explored through several benchmark tests by
comparing the results with those evaluated by standard virtual elements, finite element formulations, and analytical solutions.
The results prove that: (i) the corotational formulation can be efficiently used within the virtual element framework to account
for geometric nonlinearity in the presence of large displacements and small strains; (ii) the adoption of enhanced polynomial
approximation for the strain field in the virtual element avoids, in many cases, the need for ad-hoc stabilization procedures
also in the nonlinear geometric framework.

Keywords Virtual element method · Corotational approach · Stabilization-free

1 Introduction

The structural analysis in the presence of large displacements
can be carried out by different approaches, including more
establishedFiniteElement (FE)methods integrating theTotal
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and Updated Lagrangian formulation, and the Corotational
(CR) approach.

Pioneered by the seminal papers by Wempner [1],
Belytschko and Hsieh [2], and Argyris and his collabora-
tors [3], the key idea of the CR approach is to account for the
effects of large displacements and rotations by decompos-
ing the kinematics into a contribution provided by the large
rigid-body displacements and the small-strain part. The CR
approach has gained an ever-increasing interest in the com-
putational mechanics community for it may reach results
comparable to those obtainable through finite strain formu-
lations. It offers indeed higher accuracy with respect to finite
strain formulations and other approaches based on the small
strain assumption and considering large displacements [4].
Another advantage is that the CR formulation obeys the prin-
ciple of material frame indifference [5, 6] and can deal very
simply with material nonlinear laws [7].

CR formulations were developed for one, two- and three-
dimensional finite elements, such as beams [8, 9], plates [10,
11], shells [12], and bricks [13, 14], while unified CR formu-
lations for general elements are also available [13, 15]. The
CR approach has been exploited in various fields of struc-
tural analysis, including applications to masonry walls both
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using beams [16, 17] and bricks elements [14], shells made
of shape-memory alloys [18], thin andmoderately thick lam-
inated composite structures [19], and soft biological tissues
[20]. Variants are represented by the Implicit Corotational
Method [21] to generate accurate geometrically nonlinear
models, while Yaw and Sukumar [22] have extended the CR
approach to the Maximum Entropy Meshfree Method [23].

However, the CR approach has been not yet extended to
new generation generalized Galerkin finite element methods,
such as the Mimetic Element Method [24], the Polygonal
Finite Element Method [25–27], and the Virtual Element
Method (VEM). Recently derived by Brezzi, Beirao, and
coworkers [28] from the Mimetic Element Method, since
its appearance, VEM has captured the general interest for it
allows using general polygonal elements while completely
releasing the meshing process from the requirement of gen-
erating regular undistorted meshes and avoiding hanging
nodes. VEMwas applied to a broad range of structural prob-
lems in linear [29], nonlinear [30], and finite elasticity and
elastoplasticity [31], in elastodynamics, and fracture [32–
34].

Classical VEM requires stabilization, which can be car-
ried out through one of the various stabilization techniques
proposed in the literature, examples being the stabilization
technique proposed by Beirão da Veiga et al. [28], Chi et
al. [35], and the locking-free technique devised by Wriggers
et al. [36]. As the unique identification of the stabilization
parameters may be a hard task, while being occasionally
problem-dependent, stabilization-free VEM formulations
have been recently developed [37] which combine low-order
displacement interpolations and high-order strain descrip-
tions. Indeed, it is known that a meaningful advance in terms
of computational efficiency and high accuracy in bending-
dominated situations and even in the nearly-incompressible
limit can be reached by utilizing enhanced formulations for
low-order finite element interpolations. The relevant seminal
enhanced formulations can be retraced back to the assumed
strain-based approach [38, 39], the B-bar methods [40–42],
and the mode-decomposition and Hu–Washizu methods of
Belytschko and co-workers [43]. Owing to their versatility,
soon after their development, enhanced strain FE formula-
tions were extended to geometrically non-linear problems
[44], including a seminal CR-like approach [10].

Recently, it has been shown that the enhanced strain
approach offers analogous advantages in the context of VEM
[45], including the ability to deal with irregular meshes and
improve accuracy, even for nearly incompressible materi-
als. Of particular interest are the recent extensions of the
enhanced strain approach to self-stabilized VE formulations.
The key idea is to keep low the interpolation order even
in the presence of many displacement degrees of freedom
(DOFs) on the element boundary, as typical of polygonalVEs
[45]. Another stabilization-free VE formulation, that does

not require any additional internal DOFs and admits higher-
order strain approximation, has been recently derived using
Serendipity elements [46]. Similarly, a VEM based on the
Hu–Washizu mixed variational principle has been recently
proposed for 2D linear elastostatic framework [47]. Themost
notable advantage of this formulation is the possibility to
prescribe the strain model a priori so that self-stabilized and
locking-free low-order VEs with an accurate strain descrip-
tion can be obtained.

In the present contribution, for the first time, the CR for-
mulation is implemented within an enhanced, stabilization-
free, VEM framework for plane elasticity. In particular, the
stabilization-free enhanced VEM developed by D’Altri et al.
[45] is extended by exploiting a divergence-free polynomial
approximation.

The paper is organized as follows. Section2 details the
strong and weak formulations of the problem. Section3 is
dedicated to presenting the CR approach. Section4 describes
the adopted enhanced virtual element formulation (EVE).
Section5 shows some numerical examples with a com-
prehensive discussion of the results. Finally, the salient
conclusions and possible areas for further development are
drawn in Sect. 6.

2 Problem formulation

The fundamental equations governing the two-dimensional
(2D) continuum problem are described in the following.

A 2D domain � ⊂ R
2 is considered with its boundary

∂� constituted by �u ∪ �t = ∂� and �u ∩ �t = ∅, where
�u and �t are the portions where displacements u and trac-
tions t are imposed, respectively. The problem is governed by
the following strong form of compatibility and constitutive
equations:

ε = Du

σ = Cε
(1)

where ε and σ are the strain and stress organized in vectors
according to the Voigt notation, u is the displacement vector,
D is the compatibility operator, and C the material consti-
tutive matrix. The elastic isotropic constitutive behavior is
herein assumed. The above equations are complemented by
the following Dirichlet and Neumann boundary conditions,
that is:

u = u on�u (2)

Nσ = t on�t (3)

where N contains the outward to � unit normal vector. To
derive the approximated VEM procedure, the weak form of
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the equilibrium equations is required, which is written by
resorting to the virtual work principle as:

Find u ∈ U such that∫
�

(Dδu)T CDu d� =
∫

�

δuT b d�

+
∫

�t

δuT t d� ∀δu ∈ U0 (4)

with:

U =
{
u ∈

[
H1 (�)

]2 : u = u on�u

}
(5)

U0 =
{
δu ∈

[
H1 (�)

]2 : δu = 0 on�u

}
(6)

and b and t denoting the body force and traction vectors.
For the considered 2D problem, u = {u v}T , b ={

bx by
}T , u = {u v}T , t = {

tx ty
}T , ε = {

εx εy γxy
}T ,

σ = {
σx σy τxy

}T .

3 Corotational formulation for the enhanced
virtual element

The 2D solid occupying the body � is discretized into
nonoverlapping polygons. Each polygon E is characterized
by the area �E and boundary ∂�E , which is made up of nV
vertices, nE edges and n nodes required for the displacement
interpolation on the element boundary. Large displacement
and small strain assumptions are considered to develop the
enhanced VEM presented. The corotational formulation is
introduced to this end by making reference to polygonal ele-
ments. In what follows, the procedure proposed by Battini et
al. [11] for quadrilateral elements is extended tomore general
polygons. The overall motion of the polygonal virtual ele-
ment E is expressed as the composition of the rigid (Fig. 1a)
and deformation part (Fig. 1b). With reference to the global
coordinate system (O, X , Y ) (Fig. 1), the current location
of the node i is denoted by Xi = {Xi Yi }T , and that referred
to the initial undeformed configuration by X0

i = {
X0
i Y

0
i

}T
.

Thus, the global displacement at node i is defined as:

Ui = Xi − X0
i (7)

and that of the element centroid C results:

UC = XC − X0
C (8)

The rigid motion can be expressed as the composition of
the rigid translation, expressed by vector UC , and the rigid
rotation θ (Fig. 1a). The varied position of the element, after

rigid body motion, is considering as the ‘corotational’ refer-
ence configuration. Referring to this latter, that is the local
corotated system (C, x, y), the deformation displacement at
node i is expressed as:

Ṽi = xi − x0i (9)

where xi indicates the local position of node i as referred to
the corotated reference system after the deformation process
and x0i its initial position in the same system. In Eq.9 the
current local position xi can be evaluated as:

xi = R(Xi − XC ) (10)

where R is the matrix ruling the rigid rotation tranforma-
tion from the initial global reference system to the local one,
expressed as:

R =
[

cos θ sin θ

−sin θ cos θ

]
(11)

By introducing Eq.10 in 9, and using Eqs. 7 and 8, it fol-
lows:

Ṽi = R
(
Ui + X0

i − UC − X0
C

)
− x0i (12)

The rigid rotation θ is evaluated by minimizing the square
of the Euclidean norm of the nodal deformation displace-
ments and results:

tan θ =
∑n

i=1 x
0
i (Yi − YC ) − y0i (Xi − XC )∑n

i=1 x
0 T
i (Xi − XC )

(13)

The global and local deformation displacement vectors at
all the nodes of each element are collected in vectors U and
Ṽ, respectively. The following relation links their variations:

δṼ = B δU (14)

where B is the compatibility operator defined in the follow-
ing. Considering the local deformation displacement at node
i , it results:

δṼi = R (δXi − δXC ) + δR (Xi − XC ) − δx0i (15)

and, after some manipulations, it is obtained:

δṼi = R (δUi − δUC ) − Yi δθ (16)

with:

Yi =
{−yi

xi

}
(17)

123



Computational Mechanics

Fig. 1 Kinematics of the virtual
element: (a) rigid and (b)
deformation parts

The variation of the rigid rotation δθ is evaluated as:

δθ =
n∑

i=1

1∑n
i=1 x

0 T
i xi

Y0T
i R (δUi − δUC ) (18)

where:

Y0
i =

{−y0i
x0i

}
(19)

Introducing Eq.18 in Eq.16, it results:

δṼ = (I − AG)ET δU (20)

where matrixE is the 2n×2n operator collecting the rotation
matrices, i.e.:

E =

⎡
⎢⎢⎢⎢⎣

RT 0 . . . 0

0 RT
...

...
. . .

...

0 . . . . . . RT

⎤
⎥⎥⎥⎥⎦ (21)

Matrix A = {
YT
1 YT

2 . . .YT
n

}T
collects vectors Yi for all

the nodes located on the element boundary, and:

G = 1∑n
i=1 x

0 T
i xi

A0 (22)

with A0 = {
Y0T
1 Y0T

2 . . .Y0T
n

}
. The transformation matrix

B in Eq.14 is then defined as follows:

B = (I − AG)ET (23)

with I denoting the identity matrix. The nodal forces work-
conjugate to displacement global and local vectors, U and
Ṽ, are collected in vectors P and P̃ and are linked by the
following relation:

δP = BT δP̃ (24)

derived by invoking the equivalence of the element virtual
work evaluated at the global and local level, respectively.
The incremental relation between the global force and dis-
placement vectors is:

δP = ∂P
∂U

δU (25)
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Considering the incremental force-displacement relation
at the element local level in the form:

δP̃ = K̃ δṼ (26)

and making use of Eqs. 14 and 24, it follows:

∂P
∂U

= ∂(BT P̃)

∂U
=BT ∂P̃

∂Ṽ

∂Ṽ
∂U

+ ∂BT

∂U
P̃ = BT K̃ B + Kg

(27)

where the first term at the RHS indicates the material tangent
matrix, while the second term is the geometric tangent matrix
defined as:

Kg = δE (I − AG)T P̃ + E δ(I − AG)T P̃ (28)

4 Enhanced virtual element method

The enhanced VEM formulation presented in [45] is here
adopted and the main steps are recalled in the following.
The virtual displacement field v at the generic point in the
element domain�E , according to the corotational approach,
is the approximated deformation displacement as referred to
the local corotated system (C, x, y), defined as (see Eq.12):

v = R
(
U + X0 − UC − X0

C

)
− x0 (29)

According to the classical VEM assumptions, the displace-
ment field v is not explicitly interpolated. Conversely, the
approximated displacement field ṽ on the element boundary
∂�E is expressed as function of the displacement degrees of
freedom defined at the n nodes lying on it by means of pre-
scribed shape functions collected inmatrixNV . The assumed
interpolation of ṽ is written as:

ṽ = NV Ṽ (30)

where vector Ṽ has 2nV k components, with k denoting the
order of the polynomial interpolation adopted. To obtain a
suitable representation of the approximated strain associated
to the unknown virtual displacement, v, in the element inte-
rior, the projected strain εP is defined as the unique function
that minimizes the energy norm, that is the solution of the
following equation:

∫
�E

(δεP )T C
(
εP − Dv

)
d�E = 0 ∀ δεP ∈ Pq(�E )

(31)

wherePq(�E ) indicates the polynomial space up to order q.
Denoting with σ P the stress vector associated to the strain
εP , Eq. 31 can be expressed as follows:

∫
�E

(C−1δσ P )T
(
σ P−CDv

)
d�E =0 ∀ δσ P ∈Pq(�E )

(32)

Then, the stress vector σ P is interpolated on the basis
of the parameters contained in vector σ̂ and the polynomial
functions collected in the matrix Ň, that is:

σ P = Ň σ̂ (33)

By introducing the interpolation expressed by Eq.33 in
Eq.32 and integrating by parts this latter term, the following
expression results for the stress parameters:

σ̂ =
[∫

�E

ŇTC−1Ň d�E

]−1

[∫
∂�E

(NT
E Ň)T NV d�E Ṽ −

∫
�E

(DT Ň)T v d�E

]
(34)

where NE is the matrix containing the direction cosines of
the outward unit normal vectors on �E .
Assuming the following definitions:

G =
∫

�E

ŇTC−1Ň d�E

B̃ Ṽ =
∫

∂�E

(NT
E Ň)T NV d�E Ṽ

B̂ V̂ = −
∫

�E

(DT Ň)T v d�E

(35)

Equation34 can be written in compact form as follows:

σ̂ = G−1
(
B̃Ṽ + B̂V̂

)
(36)

with vector V̂ collecting the moments of the virtual displace-
ment v representing additional internal degrees of freedom.

After the evaluation of the stress parameters by Eq.36, the
projected strain εP is computed as:

εP = C−1Ňσ̂ (37)

The LHS term in the virtual work equation in Eq. 4,
expressing the internal work, can now be written in each
element domain as a function of the projected strain εP ,
resulting as:

∫
�E

[εP (δv)]T CεP (v) d�E

=
∫

�E

(
G−1B δV

)T
ŇTC−1ŇG−1BV d�E (38)
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having collected:

B =
[
B̃ B̂

]
, V =

[
Ṽ V̂

]T
(39)

Equation38 can be manipulated as:

δVT
[
BTG−T

(∫
�E

ŇTC−1Ňd�E

)
G−1B

]
V=δVT K̃cV

(40)

where the consistent definition of the element stiffness
matrix K̃c is introduced. Among the different possible pro-
cedures to select the polynomial representation for Ň, the
divergence-free formulation is here adopted, corresponding
to a self-equilibrated representation of σ P . This is a special
choice that leads to no internal degrees of freedom, as the last
term at the RHS of Eq.34 vanishes being DT Ň = 0. Results
reported in [45] proved that this assumption allows to obtain
satisfactory solutions, especially if no distributed volume
forces are considered. The slightly worse results obtained in
the presence of volume forces could be improved by select-
ing other types of polynomial representation for Ň, which
lead to more complex formulations involving also the inter-
nal degrees of freedom.

In the presented enhanced formulation, differently from
the standard VEM, the degree q of the polynomial repre-
sentation in Ň is not linked to the order k used in NV , but
it is selected so that the number of modes considered in
Ň is greater than or equal to the element degrees of free-
dom purged by the number of rigid motions (i.e., modes in
Ň ≥ nDOF − 3 in the presented 2D formulation). Appendix
A shows the matrix Ň adopted in cases of q = 1, q = 2 and
q = 3. In such a way, self-stabilized elements are derived
for which the stabilization term is not required and, conse-
quently, the stiffness matrix K̃ is equal to K̃c in Eq.40.

To clarify, Table 1 reports the number of modes in Ň
and the polynomial degree q to be taken for the single
enhanced virtual elementwith nV vertices and nDOF degrees
of freedom, assuming k = 1. For instance, if the element is
characterized by nV = 4 and nDOF = 8, at least 5 param-
eters are needed to describe the strain field. Thus, the three
strain components can be assumed linear (q = 1) into the
element leading to 9 strain (or stress) parameters, that reduce
to 7 by enforcing the free-divergence.

5 Numerical examples

This section aims to validate both the efficiency of the numer-
ical procedure and the accuracy of the results obtained by
employing the CR-EVE approach for a set of numerical
examples in plane elasticity. These are properly selected from

Table 1 Polynomial degree q to
be adopted for the single
element with nV vertices and
nDOF degrees of freedom, and
effective mode number of Ň for
the divergence-free polynomial
representation. (Table adapted
from [45])

nV nDOF q Ň modes

3 6 0 3

4 8 1 7

5 10 1 7

6 12 2 12

7 14 2 12

8 16 3 18

9 18 3 18

10 20 3 18

the literature for the sake of comparison with established for-
mulations.

Four classical examples of structures exhibiting geometric
nonlinear response are considered, namely, thin and thick
cantilevers, an L-bracket beam, and a circular shallow arch.

For the EVE, the first-order (k = 1) displacement
approximation is adopted, while the degree q of the strain
interpolation varies according to the number of nodes of
the element. For comparison purposes, the VEM stabilized
according to the procedure proposed by Artioli et al. [29] is
also considered.

Table 2 summarizes the relevant information useful for
identifying, for each example, the operational data concern-
ing the CR-EVE and the adopted reference solutions. The
degrees of freedom (DOFs), the average diameter hav of
the element in the mesh are reported. Furthermore, in the
case of the CR-EVE formulation, the polynomial degree q
of the strain approximation is detailed. Acronyms identifying
the various formulations are used for brevity. In particular,
CR-VE-Q4 denotes a stabilized four-noded VE while incor-
porating the CR approach. On the other hand, CR-EVE-Q4
indicates the homologous enhanced VE. Similarly, the for-
mulations based onVoronoimeshes, generated using Lloyd’s
iteration-based algorithm implemented in PolyMesher [48],
are designated with the acronyms CR-VE-V and CR-EVE-V
for the stabilized and enhanced self-stabilized VE formula-
tion, respectively. From Table 2 it clearly emerges that VEs
denoted with CR-VE-Q4 and CR-VE-V are based on the use
of polynomial approximation of the strain field with order
q = 0, while the CR-EVE-Q4 and CR-EVE-V elements are
associated to q = 1 and q = 2, respectively.

As for the VE simulations, the solution of the nonlinear
problem is determined by means of an incremental-iterative
Newton Raphson method using the Modified Generalized
Displacement Control (MGDC) method [50] with a con-
vergence tolerance of 10−6. The load–displacement curves
obtainedwith the proposed approach are compared with both
reference solutions provided by previously proposed CR-
FE formulations [11, 22, 49, 51] and FE results obtained
by Abaqus using overkill meshes made of 4-node CPS4
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Table 2 Data concerning the
adopted VE and FE
formulations in terms of: used
acronyms, DOFs, average
diameter of the element,
stabilization instances, and
polynomial degree q of the
strain approximation

Example ID Element DOFs hav Stabilization q

Thin cantilever CR-VE-Q4 1280 0.0870 Yes 0

CR-EVE-Q4 1280 0.0870 No 1

CR-VE-V 1282 0.0920 Yes 0

CR-EVE-V 1282 0.0920 No 2

Hybrid Stress FEM [49] 126 n.a n.a n.a

Abaqus-CSP4 21794 0.0182 n.a n.a

Thick cantilever CR-VE-Q4 1298 0.2641 Yes 0

CR-EVE-Q4 1298 0.2641 No 1

CR-VE-V 1280 0.3842 Yes 0

CR-EVE-V 1280 0.3842 No 2

Meshfree [22] 738 n.a n.a n.a

Abaqus-CPS4 41730 0.0442 n.a n.a

L-Bracket CR-VE-Q4 772 0.3536 Yes 0

CR-EVE-Q4 772 0.3536 No 1

CR-VE-V 1218 0.3288 Yes 0

CR-EVE-V 1218 0.3288 No 2

Enhanced FEM [11] 772 n.a n.a n.a

Abaqus-CPS4 10370 0.0884 n.a n.a

Circular shallow arch CR-VE-Q4 1390 27.0931 Yes 0

CR-EVE-Q4 1390 27.0931 No 1

CR-VE-V 2204 25.1400 Yes 0

CR-EVE-V 2204 25.1400 No 2

Meshfree [22] 5522 n.a n.a n.a

Abaqus-CPS4 67650 3.5083 n.a n.a

elements [52], based on bi-linear shape functions for the dis-
placement interpolation and plane stress assumption in finite
elasticity.

5.1 Cantilever beams

The first set of analyses investigates the structural response
of cantilevers with two different slenderness ratios, corre-
sponding to a thin and a thick cantilever subjected to uniform
vertical load at the free end, illustrated in Sects. 5.1.1 and
5.1.2, respectively.

5.1.1 Thin cantilever

The response of a thin cantilever subjected to a shear load at
the free end is analyzed assuming length l = 10mm, height
h = 0.1478mm, and thickness t = 0.1mm. Elastic material
withYoung’smodulus E = 108 MPa and null Poisson’s ratio
is employed. The same problem was studied by Karkon and
Rezaiee-Pajand [49] through a hybrid-stress FE formulation.
Figure2 shows the undeformed beam configuration and the
boundary and loading conditions.

The adopted CR-EVE meshes consist of the same DOFs
for quadrilateral and Voronoi elements, respectively. An

Fig. 2 Thin cantilever: geometry (dimensions are in millimeters),
boundary and loading conditions

initial load factor �λ = 10.0 is set. Figure3a shows
the deformed geometry of the cantilever at the last load
increment. The load–displacement curves, relating the ver-
tical displacement of point A in Fig. 2 to the total applied
force, for the different formulations adopted are displayed in
Fig. 3b. The superior accuracy of the CR-EVE with respect
to the classic stabilized VEM clearly emerges. It can be
observed that the load–displacement curve obtained with
the higher-order enhanced CR Voronoi elements (CR-EVE-
V) overlaps with the reference solution obtained using the
Abaqus overkill mesh (CPS4) and the hybrid-stress for-
mulation proposed by Karkon et al. [49]. Conversely, the
load–displacement curve obtained with the CR-EVE-Q4 is
less accurate with the same number of DOFs. Finally, to
demonstrate the robustness of CR-EVE formulation, Table 3
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Fig. 3 Thin cantilever: a deformed configuration at the final step of the
analysis and b load–displacement curves obtained with the standard
and the CR-EVE compared with those derived from the hybrid stress
FE formulation [49] and the Abaqus overkill mesh made of CPS4 FEs

shows the vertical displacement δ of the beam end section for
variable DOFs with both quadrilateral and Voronoi meshes.
The reference overkill-mesh result is also reported for the
reader’s convenience.

5.1.2 Thick cantilever

Athick cantilever, borrowed fromYawet al. [22], is subjected
to a shear load applied at the free end. The cantilever has a
length l = 10 in, height h = 2 in, and thickness t = 2 in and
is made of amaterial with Young’s modulus E = 100 ksi and
null Poisson ratio. Figure4 shows the cantilever geometry,
boundary and loading conditions.

The analysis is carried out with meshes of quadrilateral
and polygonal virtual elements sharing the sameDOFs. It has
been verified that the use of 20000 quadrilateral CR-EVE-

Table 3 Thin cantilever: vertical displacement δ at P = 200 N for
variable DOFs

ID Element DOFs hav δ [mm]
CR-VE-Q4 810 0.1303 5.794

CR-EVE-Q4 810 0.1303 7.243

CR-VE-V 812 0.1163 6.661

CR-EVE-V 812 0.1163 7.529

CR-VE-Q4 1280 0.0870 6.807

CR-EVE-Q4 1280 0.0870 7.534

CR-VE-V 1282 0.0920 7.137

CR-EVE-V 1282 0.0920 7.646

Abaqus-CPS4 21794 0.0182 7.699

Fig. 4 Thick cantilever: geometry (dimensions are in inches), boundary
and loading conditions

Q4 leads to an almost identical load–displacement profile.
The computation of load–displacement curves, evaluated by
monitoring thedisplacement of pointA inFig. 4, is performed
with the MDGC with prescribed initial load factor �λ =
0.2. Figure5a illustrates the deformed configuration of the
thick cantilever,whileFig. 5bdisplays the load–displacement
curves for different VE meshes and enhancement types.

The current results match well both the analytical solu-
tion obtained by Yaw [51] for an Eulero-Bernoulli-beam
assuming large displacements and axial deformations and
that computed through a meshfree CR-formulation [22]. For
completeness, the Abaqus solution obtained with an overkill
mesh of CPS4 elements incorporating a finite elasticity for-
mulation is also reported. It can be observed that, at least
in the present example, the incidence of non-infinitesimal
strains emerges at the final stages of the loading history,
as soon as the deformed cantilever tends to take an almost
vertical configuration so that any further change of configu-
ration should be ascribed to axial finite elastic deformations
rather than to large displacements and rotations, a circum-
stance where Total or Updated Lagrangian finite elasticity
formulations are more accurate [15]. The example confirms
nevertheless that the presented CR-EVE approach leads to
satisfactory results in terms of accuracy with respect to the
homologous reference numerical solutions evenwhen coarse
meshes are employed.

The influence of non-convex and distorted meshes on the
robustness of the proposed CR-EVE formulation has been
also tested. For this purpose, the meshes shown in Fig. 6,
made of distorted quadrilateral elements (CR-EVE-Q4D),
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Fig. 5 Thick cantilever beam: a deformed configuration at the end of
the analysis,b load–displacement curves obtainedwith the standard and
the enhanced CR-VEM compared with the available analytical Euler–
Bernoulli beam solution [51] and results derived from the meshfree
CR-formulation [22] and the Abaqus overkill mesh made of CPS4 FEs

Voronoi Lloyd-iteration-based elements (CR-EVE-V), and
non-convex elements (CR-EVE-NC) have been used. In
Fig. 6, the regular quadrilateral mesh (CR-EVE-Q4) is also
displayed for the sake of comparison. Further details, in terms
of number of DOFs, polynomial degree q and average diam-
eter hav of the elements of the meshes, are reported in Table
4. The resulting load–displacement curves in Fig. 7 confirm
that the proposed formulation performs well even with non-
convex and distorted elements, as the results are not affected
by the mesh type.

Analogously to the thin beam example, the beam free end
vertical displacement is shown inTable 5 for all enhanced and
classical formulations with both quadrilateral and Voronoi

meshes with different DOFs number. The reference overkill-
mesh result is also shown.

5.2 L-bracket

The third example is drawn from the paper of Battini [11]
and involves the modeling of the bending behavior of the L-
bracket shown in Fig. 8. The L-bracket is fixed at the top and
it is subjected to a uniform shear load at the free end. Each
branch has a length of 10mm and a square cross-section.
The elastic properties of the material are Young’s modulus
E = 3 × 107 MPa, and Poisson ratio ν = 0.3.

Meshes of 304 square and Voronoi elements are used for
the analysis. Figure9a reports the deformed shape at the last
load increment, while the load–displacement curves for the
various types of elements are reported in Fig. 9a. These are
derived by relating the vertical displacement of point A at the
free end (Fig. 8) to the applied load. The obtained solutions
are computedwith a prescribed initial load factor�λ = 0.15.
The results are consistent with the Abaqus overkill mesh and
the numerical solution obtained by Battini [11].

Notably, in general, the self-stabilized CR-EVE formu-
lation exhibits greater accuracy than the standard stabi-
lized one, providing global load–displacement curves over-
lapped to those derived from the other reference numerical
approaches.

5.3 Shallow arch

The last studied structural example is illustrated inFig. 10 and
concerns the thin circular shallow arch previously studied by
Yaw et al. [22] by means of a CR-meshless formulation. The
arch is simply supported with hinges located at both ends
along the axis line. A concentrated force is applied on the
symmetry axis at the upper surface. The arch geometry is
featured by radius r = 10581.6mm, thickness t = 79.2mm,
depth w = 25.4mm, and rise f = 76.48mm, being the hor-
izontal span length l = 2540mm. The material is modeled
assuming Young’s modulus E = 68.948 kN/mm2 and null
Poisson ratio.

Meshes made of quadrilateral and Voronoi elements are
assumed, adopting the initial load factor �λ equal to 1.5.
Figure11b shows the load–displacement curve of the con-
sidered shallow arch, which relates the force to the vertical
displacement of its application point A.

The snap-through behavior is satisfactorily captured, as
shownby the comparisonwith the reference solutions derived
from Abaqus with an overkill mesh of CPS4 elements and
the CR meshless approach developed by Yaw et al. [22]. In
particular, the results confirm that accuracy greatly improves
when the enhanced VEM is employed instead of the clas-
sical VEM with stabilization. It is suggested that the slight
discrepancies between the comparison and the present curves

123



Computational Mechanics

Fig. 6 Meshes adopted for the
thick cantilever: a quadrilateral
elements, b distorted
quadrilateral elements, c
Voronoi Lloyd-iteration-based
elements, d non-convex
elements

Fig. 7 Thick cantilever: load–displacement curves derived from the
meshes shown in Fig. 6 and featured by Table 4

Table 4 Thick cantilever: features of the meshes shown in Fig. 6

ID Element DOFs hav q

CR-EVE-Q4 738 0.3536 1

CR-EVE-Q4D 738 0.4055 1

CR-EVE-V 736 0.4372 2

CR-EVE-NC 736 0.5919 3

observable at the lower and upper limit points could be
ascribed to the usage of force-based versus displacement-
based arc length algorithms, as already observed by Pretti et
al. [53]. It should be, indeed, recalled that, due to the pres-
ence of snap-back and snap-through critical points, the issue
of tracing the nonlinear structural response of loaded arches
is one of the most challenging in computational mechanics.
A thorough discussion of the performance of the available
arc-length algorithms, such as the one provided in [53], is
out of the aims of the present paper, the present focus being
on the investigation of the effective gain in terms of accuracy
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Fig. 8 L-bracket: geometry (dimensions are in millimeters), boundary
and loading conditions

Fig. 9 L-bracket: a deformed configuration at the end of the analysis,
and b load–displacement curves obtained with standard and enhanced
CR-VEM compared with the reference solutions obtained utilizing the
enhanced CR-FE formulation proposed by Battini [11] and the Abaqus
overkill mesh made of CPS4 FEs

Table 5 Thick cantilever: vertical displacement δ at P = 10 kips for
variable DOFs

ID Element DOFs hav δ [in]
CR-VE-Q4 738 0.3536 8.089

CR-EVE-Q4 738 0.3536 8.154

CR-VE-V 736 0.4372 8.085

CR-EVE-V 736 0.4372 8.156

CR-VE-Q4 1298 0.2611 8.125

CR-EVE-Q4 1298 0.2611 8.161

CR-VE-V 1280 0.3842 8.122

CR-EVE-V 1280 0.3842 8.166

Abaqus-CPS4 41730 0.0442 8.3518

brought by the adoption of the enhancement technology pro-
posed in the present corotationalVE formulationwith respect
to the classical stabilized VEM.

Remarkably, from the present results, it can be inferred
that a comparatively reduced number of elements allows
us to accurately capture the reference solution. For com-
pleteness, Figs. 12a, b highlight the critical points of the
load–displacement results obtained using CR-EVE-Q4 ele-
ments with 1390 DOFs, including the snap-through points
A and B, the inferior limit point C, the inflection point D,
and the corresponding deflection evolution for variable non-
dimensional span length x/l, respectively.

6 Conclusion

A corotational framework for plane virtual elements was
presented. According to the key idea of the corotational
approach, the kinematics of the virtual element was decom-
posed in its rigid and deformation parts by introducing
a local/corotated system moving with the element dur-
ing its motion. Hence, the deformable element response,
described in terms of element stresses and stiffness, was
evaluated on the basis of the small deformation displace-
ments referred to the corotational system, whereas the large
displacement-induced nonlinearity was considered through
the transformation matrices relating to the local and global
quantities. This permitted to account for nonlinear geo-
metric effects, still assuming small strains at the element
level. Moreover, linear elastic material behavior was con-
sidered. As for the virtual element formulation, low-order
displacement interpolation was assumed, while considering
an enhanced strain description. This was based on the use
of divergence-free stress representation which leads to self-
stabilized elements without introducing internal degrees of
freedom [45].
The effectiveness and robustness of the proposed approach
were proved through several benchmark tests, such as thin
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Fig. 10 Shallow arch: geometry
(dimensions are in millimeters),
boundary and loading conditions

Fig. 11 Shallow arch: a deformed shape at the end of the analysis
and b load–displacement curves obtained with standard and enhanced
CR-VEM compared with the reference solutions obtained with the CR
meshfree [22] and the Abaqus overkill mesh made of CPS4 FEs

and thick cantilevers, an L-bracket beam, and a circular shal-
low arch, by adopting both quadrilateral 4-node elements and
Voronoi elements with varying numbers of nodes.
An overall agreement emerged between the results obtained
with the proposed CR-EVE formulation and those derived
from finite element reference analyses as well as available
analytical solutions. Very accurate solutions were achieved
with the strain-enhanced virtual elements, also adopting
coarse domain discretizations as compared to the other
numerical reference solutions. Nevertheless, the limit of the
corotational approach, attributable to the description of the
nonlinear geometric effects only due to the nodal large dis-
placements and rotations, emerged especially in the analysis
of the response of the thick cantilever.
To conclude, the performed analyses confirm the reliability
of the CR approachwithin theVEM framework and point out
the capability of the enhanced strain representation to gener-

Fig. 12 Shallow arch: a load–displacement curve, and b vertical dis-
placement along the adimensional x/l, where l is the span length. These
results refer to a mesh made of CR-EVE-Q4 elements with 1390 DOFs

ate self-stabilized elements also in the nonlinear geometric
range.
Further studies, herein limited to the assumption of linear
elastic constitutive behavior, will be moved to a nonlinear
constitutive regime to develop a tool for fully nonlinear anal-
yses. Finally, the effectiveness of the formulation will be
checked against some real structural problems.
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Appendix A

In the following, the adopted matrix Ň with divergence-free
polynomial representation is reported for the cases of:

• q = 1:

Ň =
⎡
⎣ 1 0 0 y 0 x 0
0 1 0 0 x 0 y
0 0 1 0 0 −y −x

⎤
⎦ (A1)

• q = 2:

Ň =
⎡
⎣ 1 0 0 y 0 x 0 2xy 0 x2 y2 0
0 1 0 0 x 0 y 0 2xy y2 0 x2

0 0 1 0 0 −y −x −y2 −x2 −2xy 0 0

⎤
⎦

(A2)

• q = 3:

Ň =
⎡
⎣ 1 0 0 y 0 x 0 x2 y2 0 0 −2xy x3 y3 0 3x2y 0 −3y2x
0 1 0 0 x 0 y y2 0 x2 −2xy 0 3y2x 0 x3 y3 −3x2y 0
0 0 1 0 0 −y −x −2xy 0 0 x2 y2 −3x2y 0 0 −3y2x x3 y3

⎤
⎦

(A3)
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