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Abstract

This work finds its place in the statistical mechanical approach to light amplification
in disordered media, namely Random Lasers (RLs). The problem of going beyond
the standard mean-field Replica Symmetry Breaking (RSB) theory employed to find
the solution of spin-glass models for RLs is addressed, improving the theory towards
a more realistic description of these optical systems.

The leading model of the glassy lasing transition is considered, justifying the
emergence of the 4-body interaction term in the context of RL semiclassical theory. In
the slow amplitude basis, the mode-couplings are selected by a Frequency Matching
Condition (FMC) and the Langevin equation for the complex amplitude dynamics has
a white noise, leading to an effective equilibrium theory for the stationary regime of
RLs. The spin-glass 4-phasor Hamiltonian is obtained by taking disordered couplings,
as induced by the randomness of the mode spatial extension and of the nonlinear
optical response. A global constraint on the overall intensity is implemented to
ensure the system stability.

Standard mean-field theory requires the model to be defined on the fully-
connected interaction graph, where the FMC is always satisfied. This approximation
allows one to use standard RSB techniques developed for mean-field spin glasses,
but only applies to a very special regime, the narrow-bandwidth limit, where the
emission spectrum has a width comparable to the typical linewidth of the modes.
This prevents the theory from being applied to generic experimental situations, e.g.,
hindering the reproduction of the central narrowing in RL empirical spectra. It is
of great interest, then, to investigate the model on the Mode-Locked (ML) diluted
interaction graph.

To address the problem, both a numerical and an analytical approach are followed.
A major result is the evidence of a mixed-order ergodicity breaking transition in
the ML 4-phasor model, as revealed by exchange Monte Carlo numerical simulation.
The joint study of the specific-heat divergence at the critical point and of the low
temperature behavior of the Parisi overlap distribution reveals both the second and
the first-order nature of the transition. This feature, already analytically predicted
on the fully-connected model, seems quite solidly preserved in the diluted model.
However, in numerical simulations preceding this work, the transition is found not
to be compatible with mean-field theory, according to the estimated value of the
scaling exponent of the critical region, which appears to be outside the boundaries
corresponding to a mean-field universality class. We derive these bounds through a
general argument for mean-field second order transitions.

New results from numerical simulations show how the previous ones were haunted
by strong finite-size effects, as expected in simulations of a dense model such as the
ML RL: the number of connections in the graph requires a number of operations
which scales as the cube of the system size, thus forbidding the simulation of large
enough sizes. To reduce these effects, we develop a simulation strategy based on
periodic boundary conditions on the frequencies, for which the simulated model at a
given size can be regarded as the bulk of the model with free boundaries pertaining
to a larger size. By means of this strategy, we assess that the scaling of the critical
region is actually compatible with mean-field theory. However, the universality class
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of the model seems not to be the same as its fully connected counterpart, suggesting
that the ML RL needs a different mean-field solution.

The possibility of a localization transition in the ML RL is also investigated.
In this context, localization - else termed power condensation - is the phenomenon
whereby a finite number of modes carries an extensive amount of light intensity. The
presence of localization, as the global constraint on the overall intensity is tuned above
a given threshold, is only theoretically possible in presence of dilution with respect
to the fully-connected case, where the high connectivity of the model guarantees
equipartition of the constraint among all degrees of freedom. From the finite-size
study of the localization order parameter, we assess that, despite some evidence
of incipient localization, the glassy phase of light is not strictly speaking localized.
Moreover, the study of the spectral entropy reveals that the low temperature phase
of the model is characterized by intensity equipartition breaking. We have termed
“pseudo- localization” the transition to this hybrid phase, where light intensity is not
completely localized and at the same time is not equipartitioned among the modes.
One of the most relevant aspects revealed by the numerical results is that the critical
temperature of the glass and of the pseudo-localization transitions is the same. This
occurrence makes the ML RL an interesting problem where ergodicity breaking
manifests itself in a twofold way: replica-symmetry breaking and condensation. The
opportunity given by this model is to study both transitions at the same time,
opening the way to more general studies for arbitrary nonlinearities and degrees of
dilution.

Supported by the numerical evidence that the ML RL is, indeed, a mean-field
model, we address its analytical solution. Our approach is based on a technique
developed for the Merit Factor problem, which has the same topology of the ML
network. This is an ordered model, which due to antiferromagnetic couplings,
exhibits a frustrated glassy phenomenology. The presence of a glass transition is
investigated through the replica method applied to the model in the space where
the spin variables are mapped by a random unitary matrix. We call this version
of the model Random Unitary Model (RUM). A careful study of the saddle-point
self-consistency equations of the RUM, both in the replica symmetric and in the one
step replica-symmetry breaking scheme reveals the absence of a phase transition
for this model and leads us to question whether the mapping between the original
deterministic (though frustrated) model and the RUM is under control.

The technique is then applied to the ML RL, where after averaging over the
disordered couplings we pass to a generalized Fourier space by transforming the
local overlaps with a random unitary matrix. The major difficulty of defining a
global order parameter for the model and finding closed equations to determine it as
function of temperature is successfully addressed, with the introduction of a new
order parameter, a superoverlap, which is a measure of the correlations among local
overlaps. However, the solution suffers the same problem of the RUM for the Merit
Factor problem. To the best of our knowledge, this represents the first tentative
solution ever attained of a spin-glass model out of the fully-connected or sparse
graph cases.
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Chapter 1

Introduction

Statistical mechanical models for spin glasses were first introduced in the ’70s by
Edwards and Anderson [EA75] for the study of certain magnetic alloys displaying an
intriguing low temperature behavior, which significantly differed from ferromagnetism.
In such systems, lowering the temperature did not lead to the onset of long-range
order in terms of global magnetization, but rather to the freezing of the material in
apparently random configurations. The problem of dealing with this structural and
athermal kind of randomness proved to be hard also in the mean-field approximation
[SK75]. It took almost a decade and a remarkable series of papers by Parisi [Par79b;
Par79a; Par80a; Par80c; Par80b] to lay the foundations of the mean-field theory
of spin glasses and to deepen the knowledge about the spin-glass phase transition.
The effort required the development of new mathematical techniques, such as the
algebraic replica-symmetry breaking method and the probabilistic cavity approach.
The physical scenario coherently revealed by these techniques is that at least at the
mean-field level some kind of magnetic order arises at low temperature, where the
system exhibits a behavior compatible with ergodicity breaking in multiple pure
states non related by a symmetry operation and organized in a highly nontrivial
structure [Par83; MPV87].

Spin-glass theory, then, took the shape of the ideal settlement to rigorously frame
the physical meaning of complexity and describe a number of out-of-equilibrium
phenomena, including weak ergodicity breaking and aging, i.e. the phenomenon by
which the relaxation of a system depends on its history [J P92]. As new spin-glass
models with nonlinear interactions were considered [Der80; GM84], it was soon
understood that spin glasses could represent a powerful tool to describe a much
larger class of systems spreading over many different fields of research, such as
condensed matter physics, biophysics and computer science. The first and probably
most studied applications can be traced in structural glasses [KW87; KTW89], the
amorphous state reached by many supercooled liquids, when cooled fast enough
to avoid crystallization, and neural networks [Ami89], the prototype of learning
systems, which mimic the interactions among neurons in the brain. Nowadays, the
list of systems and problems where spin-glass models and techniques have been
applied is quite long, ranging from colloids [Daw+01] to granular materials [Meh94],
from protein folding [BW87] to optimization and constrained satisfaction problems
in computer science [MPV87; MM09] and theoretical ecology [AF19]. All those
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systems, ubiquitous in science, where frustration leads to a complex structure of
states may be described as spin glasses.

If spin-glass theory represents the perfect framework for a large number of
systems, it is also true that new insights on the theory have been acquired from
many applications, such as the Random First Order Transition [LW07; LN08],
developed in the context of structural glasses, to describe the glass transition and the
theory of the jamming transition for the packing of hard spheres [PZ10; PUZ19]. For
this reason, spin glasses can be fairly regarded as one of the most interdisciplinary
line of research in statistical mechanics.

However, despite the number of applications, the mean-field theory of spin
glasses has not yet found a clear correspondence in experiments on physical systems.
In particular, its most prominent feature, replica-symmetry breaking, has been a
long debated issue, leading to question whether it is just an artifact of long-range
interactions, rather than an actual physical mechanism [BB11]. One would be
naturally interested in understanding what of the mean-field picture remains true
in finite dimension, that is in the case of the vast majority of physical systems
described within the framework of spin-glass theory, which are characterized by
rapidly decaying interactions. Unfortunately, unlike the case of ferromagnetism,
an approach based on a renormalizable field theory is still missing for spin glasses,
albeit very hardly investigated [DG06] (see also Ref. [Alt+17; AB17; Ang+20] for
more recent approaches). However, among the applications of spin-glass theory there
is a fortunate one, to which the present work is devoted, which is very promising
as an experimental benchmark of replica-symmetry breaking: the study of optical
waves in disordered media with gain, namely random lasers. Indeed, recently the
order parameter of the replica symmetry breaking theory has been experimentally
measured in these optical systems, for which the mean-field theory is exact [Gho+14;
Pin+16; Gom+16; Tom+16].

Random Lasers

A Random Laser (RL) is made of an optically active medium with randomly placed
scatterers [WL96]. As in standard lasers, the optical activity1 of the medium provides
the gain, whose specific relation with the frequency of the radiation depends on the
material. However, random lasers differ from their ordered counterpart both in the
inhomogeneity of the medium and in the absence of a proper resonating cavity, which
accounts for feedback in standard lasers. In order to have lasing without a cavity
some other mechanism at least for light confinement must exist, which manages to
overcome the strong leakages of these systems. Since Letokhov’s groundbreaking
work [Let68], where light amplification in random media was first theoretically
predicted, the trapping action for light has been attributed to the multiple scattering
with the constituents of the material. The nature of the feedback, instead, whether
it was resonant or non-resonant2, remained intensely debated for a long time and

1With optical activity of the medium we refer to the inversion of the atomic level population of
the material by means of external energy injection, which is necessary for stimulated emission. In
optics, optical activity also stands for the ability of a substance to rotate the polarization plane of
light passing through it.

2Non-resonant or incoherent feedback leads to amplified spontaneous emission (ASE) or su-
perluminescence [Bee98], which is light produced by spontaneous emission optically amplified by
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with it the nature of the modes of RLs [And+11].
In the original theory by Letokhov only light intensity was considered, with

phases and interference not playing any role in mode dynamics. A key finding
obtained by means of a diffusion equation with gain is that there is a threshold for
amplification, when the volume of the medium is sufficiently large with respect to
the gain length. The diffusive limit applies to the case when the mean free path of
the photon with respect to scattering is much larger than its wavelength and, at
the same time, much smaller than the average dimension of the region occupied by
the medium [Let68]. In this approach, above the threshold the emission spectrum
is predicted to be continuous and peaked in the frequency corresponding to the
maximum gain. These features were observed in early experiments [VB86; Gou+93],
fueling the idea that the notion of modes looses its meaning in RLs.

Later experiments, based on more accurate techniques and spectral refinement,
revealed the emergence of sharp peaks in the emission spectra of RLs on top of
the global narrowing as the external pumping was increased [Fro+99; Cao05]. The
observation of highly structured and heterogeneous spectra brought evidence in favor
of the existence of many coupled modes with random frequencies. Studies on photon
statistics [Cao+01; PCV01] confirmed this idea, by showing that the intensity of
light emitted at the peak frequencies exhibits a Poisson photon count distribution,
as in the case of standard multimode lasers. In view of these experiments, it was
generally accepted that random lasing is, in fact, characterized by a resonant feedback
mechanism, which induces the existence of well-defined cavity modes. This idea is
also supported by more recent results drawn from numerical simulations based on
the semiclassical theory of RLs [And+11].

The physical picture that one has to bear in mind is the following: the multiple
scattering of light with the randomly placed scatterers not only confines part of
the spectrum inside the medium, but also allows for the existence of cavity modes
with a lifetime long enough to compete for amplification. The key role of scattering
in random lasing is quite remarkable, especially if one thinks that in laser theory
scattering is usually considered to be deleterious to the lasing action, since it is
responsible for losses disturbing the intensity and directionality of the output. The
modes of RLs are many, they are characterized by a complex spatial profile of
the electromagnetic field and in most RLs they are extended3 and coupled. In a
fascinating way, one can say that random lasers are “mirror-less” systems, but not
“mode-less” [Wie08].

What is not yet completely understood is the physical source of the oscillating
modes and of the corresponding peaks in RLs spectra. Some attempts to explain the
occurrence of well defined resonances have been made in terms of light localization,
the counterpart for the photons of Anderson localization of electrons [And58], which
was claimed to have been experimentally revealed in Refs. [Wie+97; Stö+06; Spe+13].

stimulated emission. In this case, interference effects are neglected, and the laser output is only
determined by the gain curve of the active medium.

3Just a note on the use of some words, which may be misleading: the modes of RLs are confined
in the medium, in the sense that their spatial extension is comparable with the characteristic length
of the sample material, but not properly localized in the sense of Anderson localization (see the
next paragraph); they are extended over the whole volume of the sample, as if the sample itself
represents a cavity.
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The presence of localization was inferred from measurements of the deviation from
diffusion theory, e.g., through the study of photon time of flight. However, it has
been later theoretically proved [SS14; TS21] that light localization can not take place
in 3D, due to the vectorial nature of light, as revealed by a comparison between
the spectra of the random Green matrix describing the propagation of light from
one atom to another in the vector case and in the scalar approximation4. This is
coherent with the observation that in many materials the modes, though confined
inside the sample, are extended all over its volume. The deviations from diffusion
theory mistaken for Anderson localization were then traced back to experimental
effects, such as delays in fluorescence [Spe+16]. Therefore, though in less than 3D it
may truly be observed in particular random lasers [Kum+21], Anderson localization
can not be taken as a general feedback mechanism for these systems.

Whatever the physical mechanism leading to the existence of cavity modes in
RLs may be, a multimode theory of RLs based on quantum mechanics principles
has to include the openness of the cavity which leads to a nonperturbative effect
of the leakages and the inhomogeneity of the medium, which causes the irregular
spatial structure of the electromagnetic field. Though a complete quantum theory of
light amplification in random media is still missing, when treated in a semiclassical
perspective [VH03; Hac05; Tur+08; ZD10b], random lasers display two basic features
of complex disordered systems: nonlinear interactions and disorder.

Evidence that random lasing may be a complex phenomenon comes from more
recent experiments [MML06; Muj+07; Pap+07], which have revealed a new feature.
The positions of the spectral peaks were already known to change, if different parts
of a sample were illuminated, as a clear consequence of medium heterogeneity. These
experiments show a very peculiar behavior in the temporal and spectral response
of RLs, when taking shots of the spectrum produced by exactly the same piece of
sample at different times, each one corresponding to a pump pulse. The positions of
the random scatterers as well as the external conditions are kept fixed all along the
data acquisition. The intriguing result is that each shot shows a different pattern of
the peaks (see Fig. 1.1), meaning that, at variance with standard multimode lasers,
there is no specific frequency which is preferred, but depending on the initial state,
with the disorder kept fixed, the narrow emission peaks change frequency every
time5.

This behavior strongly resembles the freezing of magnetic alloys or supercooled
liquids in random configurations, making the idea of a spin-glass theory of random
lasing quite tempting. Moreover, statistical mechanics is not new to lasing systems:
the so-called Statistical Light-mode Dynamics (SLD) proved to be a successful way
to deal with standard multimodal lasers, where the number of modes is high enough
and nonlinear effects are present [GF02; GF03]. The main merit of SLD is to show

4The difference with respect to electron localization lies in the different role played by polarization
with respect to electron spin: in the case of light, elementary excitations from one atom to another
can be mediated not only by the transverse electromagnetic waves but also by the direct interaction of
atomic dipole moments, which is accounted for by the longitudinal component of the electromagnetic
field [SS14]. While the former phenomenon would be reduced by increasing the number density
of atoms, the latter becomes more and more efficient as the typical distance between neighboring
atoms decreases.

5Incidentally, this phenomenon may have also contributed to early observations of continuous
RL spectra, where data were averaged over many shots, smoothing the spectral profile.
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that an effective thermodynamic theory of these photonic systems is possible, where
noise, mainly due to spontaneous emission, can be treated in a non-perturbative
way. It may seem inappropriate to develop an equilibrium theory for lasers, which
are out-of-equilibrium systems by definition, being constantly subjected to external
energy injection. However, a stationary regime is achieved in such systems thanks
to gain saturation, a phenomenon connected to the fact that, as the power is kept
constant, the emitting atoms periodically decade into lower states, saturating the
gain of the laser. This justifies the introduction of an equilibrium measure, giving
weights to steady lasing states. The extension of the SLD approach to RLs has
led quite naturally to the development of a research line devoted to the theoretical
modeling of optical waves in random media within the framework of spin-glass
theory [Ang+06a; Ang+06b; Ang+07; Leu+09; CL11].

A Glassy Random Laser

The two main goals of the spin-glass approach to RLs are the following: (i) to provide
a theoretical interpretation of the lasing phase of optically active random media in
terms of glassy light, which can be regarded as the amorphous phase of light modes;
(ii) to create the opportunity of experimentally testing the theory of spin glasses,
and in particular replica symmetry breaking, on systems in which the glassy state is
much easier to access than in structural and spin glasses. Regarding (ii), one reason
why this is the case is that the dynamics of light modes is incomparably faster with
respect to the dynamics of particles in liquids or condensed matter systems, so that
an effective equilibrium state is easier to reach for RLs. Incidentally, this is also the
reason why by glassy light, here, it is only meant that RLs seem to be characterized
by a multi-valley landscape with many possible equilibrium states: phenomena like
aging, memory and rejuvenation, which are typical of the dynamics of supercooled
liquids, may not be observable on the short timescale in which a laser reaches the
steady state. The other – and maybe more important – reason is that many RLs are
naturally represented by a statistical mechanical system with long-range interactions
as a consequence of the fact that the effective mode couplings are determined by the
spatial overlap among the wave functions of the modes, which can be extended over
the whole medium.

Another merit of this approach is to provide a theoretical framework for the
analysis of the mode-locking process in multimode lasers, both standard and random.
In standard lasers, mode-locking entails the formation of very short, regularly spaced
pulses in the laser output [Hau00]. To produce ultrafast multimode lasers, special
devices are required which sustain the pulse formation through nonlinear couplings
selected by a particular rule called the frequency-matching condition (FMC). Given
four modes, they form an interacting quadruplet only if their frequencies satisfy the
following relation

FMC : |ω1 − ω2 + ω3 − ω4| ≲ γ,

where γ represents the typical single mode linewidth. In random lasers, pulse
formation is, in principle, hindered by the disordered spatial structure of the electro-
magnetic field and by the random frequency distribution. Indeed, it has never been
observed in such systems. However, nonlinear interactions and FMC are intrinsic to
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Figure 1.1. Left panel: RL experimental single shot spectra from an amorphous solid
sample of T5OCx, thienyl-S,S-dioxide quinquethiophene (reprinted from Ref. [Gho+14]).
Right panel: reproduction of a RL spectrum in numerical simulation of the Mode-Locked
4-phasor model with a frequency comb distribution. The mode index k in abscissa,
which pertains to the mode of frequency ωk, is normalized to the total number of modes,
N = 120. Increasing the pumping rate (from red to blue) the typical narrowing of the
spectrum can be observed, together with the emergence of sharp peaks. The aim of this
figure is only to show the ability of the spin-glass model for the mode-locked random
laser to qualitatively reproduce experimental spectra in numerical simulations. Even if
there is no precise mapping between the index k of the right panel and the wavelength
in the left panel, the resemblance of the two plots is remarkable.

a RL and do not require ad hoc devices. Though the possibility of a pulsed random
laser is still only hypothetical, evidence of a self-induced mode-locked phase has
been recently found in Ref. [Ant+21]. Within the statistical mechanics approach,
the formation of a mode-locked phase is interpreted as a phase transition: while
increasing the pump energy, the system leaves a random fluctuating regime to enter
a locked one, where the oscillation modes have different phases and intensities, but
they are fixed, “locked” and “frozen”.

The statistical mechanics description of RLs has led to the definition of the
Mode-Locked (ML) p-phasor model, a mixed p-spin model (p = 2 and 4, i.e. both two
and four body interactions) with complex variables constrained on a N -dimensional
sphere and quenched disordered couplings. In this framework, the oscillation modes
of the electromagnetic field are represented by N phasors placed on the nodes of the
interaction graph and the total optical intensity of the laser is fixed by the spherical
constraint on the amplitudes of the phasors. The model can be adapted to describe
multimode lasers in the presence of an arbitrary degree of disorder and non-linearity,
resulting in a comprehensive theory of the laser mode-locking transition in both
random and standard lasers. The interaction graph is dense because the interactions
among the modes are long range as a consequence of the evidence of extended
modes. The specific topology of the graph is defined by the FMC, which yields a
deterministic dilution of the interaction network.

In Refs. [Ant+15; ACL15a] the model has been analytically solved in a certain
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regime compatible with a fully connected graph of interaction, where standard mean-
field techniques for spin-glass models can be applied. This particular regime is the
narrow-bandwidth limit, where the typical linewidth of the modes is comparable with
the entire emission bandwidth of the laser. The replica solution of the fully-connected
model already presents a very rich phenomenology, with various kinds of replica
symmetry breaking, corresponding to nontrivial optical phases. In this context,
shot-to-shot fluctuations of the emission spectra are shown to be compatible with an
organization of mode configurations in cluster of states similar to the one occurring in
spin glasses. Such correspondence relies on the equivalence between the distribution
of the Intensity Fluctuation Overlap (IFO), which can be experimentally measured,
and the distribution of the overlap between states, the order parameter of the
spin-glass transition [ACL15b]. Experimental evidence of replica symmetry breaking
in the IFO probability distribution function has been found in Ref. [Gho+14].

However, a complete understanding of the physics of RLs requires to go beyond
the narrow-bandwidth limit and needs to incorporate in the description the FMC,
which is an essential ingredient of the ML p-phasor model for the reproduction of the
experimental spectra, see Fig. 1.1. For combinatorial reasons modes at the center
of the spectrum are frequently selected by the FMC, so that when the external
pumping is increased and the nonlinear interactions become dominant, the spectrum
develops a central narrowing on top of the gain profile curve (which, instead, prevails
in the fluorescence regime). The inclusion of the FMC is the main goal of this work,
where the problem of dealing with the diluted mode-locked graph is addressed both
numerically and analytically.

It is worth stressing that, besides being of interest for a more realistic description
of RLs, the subject of this work is also fascinating from a purely theoretical point
of view. In fact, we deal with a nonlinear (4-body) disordered model with complex
spherical variables and couplings selected according to a deterministic rule. The
presence of a 2-body interaction term, which takes into account the net gain profile
of the medium and the radiation losses, allows for the competition between linear
and nonlinear interactions, which is known to be responsible for mixed-order replica
symmetry breaking. In fact, in the fully-connected case, the model is the generaliza-
tion of the (2+p)-spin (with p = 4) model [CL04; CL06; CL13] to complex variables,
both magnitudes and phases. One of the most interesting features of the model is
the dilution of the interaction graph, which is of the order of the system size N .
This leaves the 4-body interaction network still dense, i.e. still O(N2) connections
per mode, which is an intermediate situation between the fully-connected (O(N3)
interactions per mode) and the sparse case (each mode participating in O(1) interac-
tion terms). To the best of our knowledge, no spin-glass model has been analytically
solved in this particular regime of dilution. Moreover, given the presence of a global
quantity conserved through a hard constraint (i.e. the total optical power) the model
offers the possibility of studying the occurrence of a power condensation transition
in the space of the modes, especially in relation to the breaking of ergodicity, which
is signaled by replica-symmetry breaking. The possibility of intensity localization is
also suggested by the sharp peaks in the spectra of Fig. 1.1, which are evidence of
the fact that the total value of the intensity is not homogeneously parted among the
modes and might be a precursor to a sharp condensation of the whole intensity on
O(1) modes.
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Organization of the Thesis

The Thesis is divided in two parts, a numerical and an analytical one, which
are preceded by an introductory chapter on the mean-field theory of RLs. The
organization of the chapters follows the natural development of the research: after
acquiring confidence with the status of the art, the results of numerical simulations
are presented and discussed in Part I; then, inspired by the physical insights obtained
through the simulations, in Part II the analytical approach is developed. Three
Appendices contain much of the technicalities of the computations. Each chapter
opens with a brief introduction to the topic to which it is devoted. In what follows,
we sketch the contents of each chapter.

• Chapter 2 contains an Introduction to the spin-glass theory of RLs, where
the main analytical results obtained within the mean-field fully-connected
approximation are described in some detail. After introducing the reader to
the statistical mechanics approach to standard (ordered) multimode lasers, the
spin-glass model for random laser is derived starting from the semiclassical
laser theory for open and disordered systems in the system-and-bath approach.
The presence of off-diagonal linear terms of interactions among the modes
is related to the openness of the system, while the presence of nonlinearity
accounts for the light-matter interaction at the third order in perturbation
theory in the mode amplitudes. The relevant approximations which are needed
in order to obtain the mean-field fully-connected model are described. Then,
the replica computation to derive the quenched average of the free energy is
considered and the phase diagram of the model is described. The last section
is devoted to an introduction to the IFO and how they are related to the Parisi
overlap in the mean-field fully-connected theory.

• Chapter 3 deals with the first attempt at including the dilution effect due to
the FMC in the theory through numerical simulations. The numerical technique
used to simulate the model is described in detail and the results of Ref. [GAL20]
are carefully reviewed. The density of the model interaction graph represents
an additional difficulty with respect to those already present in Monte Carlo
simulations of finite-dimensional spin-glass models: not only the relaxation
to equilibrium is hindered by the presence of local minima in the free energy
landscape, but each attempt of changing configuration has a computational
complexity which scales as the square of the system size. Moreover, especially
for the study of non-self-averaging quantities, many samples corresponding to
different realizations of the disordered couplings have to be simulated. In order
to deal with these difficulties, a Parallel Tempering Monte Carlo algorithm
has been developed and parallelized for Graphic Processing Units. From
the simulations, the typical behavior of a Random First-Order Transition is
revealed for the simulated model, though the results are plagued by strong
finite-size effects, making the assessing of the universality class of the model a
nontrivial task.

• Chapter 4 is devoted to a refinement of the finite-size scaling analysis of the
glass transition for the ML 4-phasor model. Many of the results presented
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here are contained in Ref. [Nie+22]. In order to reduce the finite size effects in
numerical simulations of the mode-locked glassy random laser, two strategies
have been exploited: first, simulations with larger sizes and a larger number
of disordered samples have been performed; secondly, and more remarkably,
a version of the model with periodic boundary conditions on the frequencies
has been introduced in order to simulate the bulk spectrum of the model. The
results obtained by a more precise finite-size scaling technique allow us to
conclude that the ML 4-phasor model is indeed compatible with a mean-field
theory, though it may be in a different universality class with respect to its
fully-connected counterpart. This is the main output of this chapter; then, the
study of the glass transition is completed by presenting results which pertain
to various overlap probability distribution functions.

• Chapter 5 is devoted to the numerical study of the power condensation
phenomenon in the ML 4-phasor model. The results presented here are
contained in Ref. [NLG22], where evidence of an emergent pseudo-localized
phase characterizing the low-temperature replica symmetry breaking phase
of the model is provided. A pseudo-localized phase corresponds to a state in
which the intensity of light modes is neither equipartited among all modes
nor really localized on few of them. Such a hybrid phase has been recently
characterized in other models, such as the Discrete Non-Linear Schrödinger
equation [Gra+21b], just as a finite size effect, while in the low temperature
phase of the glassy random laser it seems to be robust in the limit of large
size. The differences between such non-interacting models and generic p-body
nonlinear interacting models are highlighted: in particular, the role played by
the dilution of the interaction network is clarified.

• Chapter 6 is the first analytical chapter of this Thesis and the only one
which is not directly dedicated to the ML 4-phasor model for the glassy
random laser. The similarity between the topology of the mode-locked graph
and the structure of the Hamiltonian of the Bernasconi model for the Merit
Factor problem [Ber87], has led us to devote our attention to this model
first. Although it is a model with long-ranged ordered interactions, finite-
size numerical studies, which have been replicated in this work, point in the
direction of a glassy behavior at low temperature. The solution technique
proposed in Ref. [MPR94a], which is based on quenched averaging over the
unitary group of transformations of the spin variables, is carefully analyzed
and completed through the study of the saddle-point equations with different
ansatzes of solution. No evidence of phase transition at finite temperature has
been found with one step of Replica Symmetry Breaking (RSB), up to the
precision of our analysis; however, we believe that the solution technique may
be the right tool to address the computation of the free energy in the mode-
locked random laser. The three Appendices to this chapter deal respectively
with the integration over the Haar measure of the unitary group and the
Replica Symmetric (RS) and 1RSB details of the computation.

• Chapter 7 is devoted to the proposal of a new mean-field theory for the
mode-locked glassy random laser. The quenched average over the disordered
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couplings leads to a long-range ordered matrix field theory in the local overlap,
which is characterized by a Hamiltonian formally similar to the one of the
Merit Factor problem, but at the level of the local overlaps rather than of the
spins. The technique developed for the Bernasconi model is then applied to
the model of interest, allowing us, after averaging over the unitary group, to
introduce a global order parameter, which we have called superoverlap. As
the global overlap usually represents a two-point correlation between spin
variables, the superoverlap denotes a correlation between local overlaps. The
RS and 1RSB self-consistency equations have been derived, and their study is
in progress.

• Chapter 8 contains the conclusions of this Thesis and a discussion on the
research lines opened by the present work on the topic. Among them we mention
the integration of the saddle point equations of the ML 4-phasor model, the
numerical simulation of models with realistic frequency distributions and gain
profiles, a detailed analysis of the comparison between the experimentally
measured and the numerically computed overlap distributions, considering
thermalization, size and time-averaging effects
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Chapter 2

Mean-Field Theory of the Glass
Transition in Random Lasers

In this chapter the most salient features of the mean-field spin-glass theory of
random lasers are described. Before getting to the heart of the discussion, some
background knowledge is provided about multimode lasing systems, in order to make
the reader confident with the most relevant physical properties of these systems
from a statistical mechanics point of view.

The case of standard multimode lasers is discussed first, since it represents a
constant basis for comparison for the more general statistical theory of random
lasers. Given the large number of modes (102 − 109 in long lasers) and the stabilizing
effect of gain saturation, an effective thermodynamic theory can be developed for the
stationary regime [GF02; GF03]. The main outcome of the mean-field analysis of
these systems is that the onset of the mode-locking regime [Hau00], can be interpreted
as a noise driven first-order phase transition [GGF04]. Then, we briefly review the
system-and-bath approach to random laser theory developed in Refs. [HVH02; VH03;
VH04] to deal with the openness of the cavity and the light-matter interaction. In our
perspective, the main merit of this approach is to provide reasonable explanations
for the origin of all the essential elements of the general spin-glass model of a RL,
starting from the semiclassical approximation to the quantum dynamics of the
electromagnetic field in an open and disordered medium.

In the second part of the chapter, the spherical (2+4)-phasor model [Ant+15;
ACL15a], which represents the leading mean-field spin-glass model for RLs, is
presented in connection with the semiclassical derivation. The particular regime
where the theory applies is carefully described, by presenting all the approximations
which make the model compatible with mean-field fully-connected theory. After a
brief summary of the replica method for the solution of quenched disordered systems,
the replica computation for the model of interest is reviewed in its main steps and
the results are described. The general phase diagram of the model is presented, with
particular attention to the glass transition, which will be studied in the rest of this
work. The phenomenology of the model is very rich already in the fully-connected
case, where the system exhibits four different phases corresponding to different
regimes in the output of a laser depending on the amount of energy injected into
the system and on the degree of disorder of the medium. Moreover, the breaking of
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replica symmetry occurs with three different kind of structures depending on the
degree of non-linearity. In the last section, the theory is put in correspondence with
experiments through the study of the overlap among intensity fluctuations [Gho+14]
(i.e. IFO), an experimentally measurable quantity whose analytical counterpart can
be expressed in terms of the Parisi overlap in the fully-connected approximation
[ACL15b].

2.1 Statistical Light-mode Dynamics

Though concepts borrowed from phase transition physics were already present in
the seminal work of Lamb on multimode lasers [Jr64; SJ67; Hak84], it is not until
the early ’00s that statistical mechanics methods were systematically applied to the
study of optical systems. Statistical Light-mode Dynamics (SLD) is an approach
developed by Gordon and Fisher [GF02; GF03] to deal with open problems regarding
the mode-locking phenomenon in multimode lasers. Mode-locking is a consequence
of the fact that, unlike a conventional laser, a mode-locked laser oscillates among
longitudinal modes whose frequencies are in a coherent relationship. In standard
lasers the interaction among axial modes necessary for pulse formation is induced by
ad hoc devices: either the system is made time dependent by means of an amplitude
modulator, or a suitable nonlinearity, as the one provided by a saturable absorber1,
is added to the system dynamics. Between the two methods, which are commonly
referred to as, respectively, active and passive mode-locking, only the latter is known
to produce ultra-short pulses (of the order of femtoseconds).

The mode-locking theory developed in the seventies [KE70; Hau75; Hau00]
has many merits, such as the prediction of the pulse shape and of its duration.
However, the underlying mechanism to pulse formation remained unclear, until the
SLD approach was formulated. It was already known that pulse formation may be
achieved when the optical power reaches a certain threshold (besides the one needed
for the onset of lasing) and that the emergence of pulses upon reaching this threshold
is abrupt. Several hypotheses were put forward to explain this phenomenon, by
identifying some mechanism which opposed to mode-locking [ILH90; HI91; CWM95],
but no one was really satisfactory. In most of these approaches, the antagonist of
optical power for the onset of pulse formation was correctly identified with noise,
which however, was treated as a small perturbation. In fact, noise plays a central
role in the dynamics of a laser: besides the usual sources of noise to which a
physical system is subjected, in lasers a fundamental source of noise is represented
by spontaneous emission, which can also be amplified due to optical activity. By
treating noise in perturbation theory, many interesting features of the system can
be missed when the noise is large.

The main novelty introduced by SLD is represented by the inclusion of noise in
the theory in a non-perturbative way, as an effective temperature. This has lead to
the first many-body thermodynamic theory of multimode lasers, where the onset of
mode-locking is interpreted as a phase transition driven by the ratio between external

1Saturable absorption is the property of a material with a certain absorption loss for light, which
is reduced at high optical intensities. Since the absorption coefficient depends on the light intensity,
the absorption process is nonlinear.
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pumping and noise. As the energy pumped into the system makes the interactions
strong enough to overcome noise, then, global correlations arise among the phases
of the modes, which sharply divide the unlocked and locked thermodynamic phases.
In this framework, the difference between active and passive mode-locking becomes
evident: when considered from the point of view of the interaction networks, the
passive case corresponds to a long-range model [GGF04], where a global order
can arise below a certain level of noise, whereas the active case corresponds to a
one-dimensional short-range model [GF04], where a phase transition can in principle
occur only at zero temperature2. Hence, the fragility of active mode-locking ca be
interpreted as a manifestation of the lack of global ordering at finite temperature
in the one-dimensional spherical spin model [BK52]: any weak noise breaks a bond
between two modes, thus eliminating global ordering.

In the following, we focus on the theory of passive mode-locking, which is the
most interesting one for the random laser case. In an ideal cavity, i.e. by neglecting
the leakages, the electromagnetic field can be expanded in N normal modes

E(r, t) =
N∑
k=1

ak(t)e−iωktEk(r) + c.c. (2.1)

where the presence of nonlinearity makes the complex amplitudes ak(t) time depen-
dent. In the physical situation, N corresponds to the number of distinguishable
resonances selected according to the distance between the mirrors. If the frequencies
of adjacent modes are too close with respect to the spectral resolution, then the
actual number of cavity modes is larger than the number of bins in the revealed
spectrum. The frequency distribution of the modes is that imposed by a Fabry-Perot
resonator, namely a linear comb:

ωk = ω0 + kδω, k ∈
[
−N

2 ,
N

2

]
(2.2)

where ω0 is the central frequency of the spectrum and δω is the frequency spacing.
In the high finesse limit, if we denote by ∆ω the bandwidth of the entire spectrum
and by γ the typical linewidth of the modes3 then we have γ ≪ δω ≪ ∆ω. Moreover,
we consider the slow amplitude mode basis, in which given a mode with frequency
ωk, the time dependence of the amplitude of such a mode is on a time scale much
larger than ω−1

k . Lasing modes are by definition slow amplitude modes, since their
expression in the frequency domain must be approximately equal to a delta centered
in their frequency:

ak(t)e−iωkt →
∫

dt ak(t)e−iωkteiωt ≈ ak(t)δ(ω − ωk), (2.3)

2Amplitude modulation produces sidebands of the central frequency of the spectrum, say ω0,
at the neighbor frequencies ω = ω0 ± δω, where the δω is the frequency spacing, which lock the
corresponding modes to the central one, and so on. This leads to nearest neighbors interactions on
a linear chain.

3Even if photons are emitted exactly with the atomic frequency ωij = (Ei − Ej)/ℏ, broadening
effects give to the resonator modes a width γ. These effects can be homogeneous, like collision
broadening, leading to a Lorentzian line-shape function or inhomogeneous, like Doppler broadening,
leading to a Gaussian line-shape function: the Voigt profile takes into account both kinds of
broadening [Hak84]. In principle, then, each mode has a different linewidth. By neglecting these
effects one would have a frequency distribution made of sharp delta peaks.
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where the Fourier transformation of the electromagnetic field basically reduces to a
time average over the fast phase oscillations.

The SLD description of passive mode-locking can be obtained by considering the
standard Langevin master equation [Hau00]

dal
dt = (Gl + iDl)al(t) + (Γ − i∆)

∑
i−j+k=l

ai(t)aj(t)ak(t) + ηl(t), (2.4)

where Gl is the net gain profile, i.e. the gain minus the losses, Dl is the group velocity
dispersion coefficient, Γ is the self-amplitude modulation coefficient resulting from
saturable absorption and ∆ is the self-phase modulation coefficient responsible of the
Kerr lens effect. The nonlinear term in the dynamics is characterized by the selection
rule i − j + k = l, which comes from averaging away the fast phase oscillations
in the slow amplitude basis. This is actually a condition on the frequencies, the
so-called frequency matching condition (FMC), which reduces to a relation among
indices because of Eq. (2.2). The noise ηl(t), mainly due to spontaneous emission, is
generally assumed Gaussian, white and uncorrelated:

< ηl(t1)ηk(t2) >= 2Tδlkδ(t1 − t2) < ηl(t1)ηk(t2) >= 0, (2.5)

where T is the spectral power of the noise, which has a dependency on the actual
temperature of the sample (i.e. the laboratory temperature in the experimental
case).

We distinguish two kinds of dynamics in Eq. (2.4): a dissipative one, which
involves gain and saturable absorption and a dispersive one. In order to develop an
effective thermodynamic approach, a necessary requirement is laser stability. The
total optical intensity of the laser E =

∑N
k=1 |ak|2 is a constant of motion only in

the purely dispersive limit, i.e. when Gl = Γ = 0. However, in the general case the
stability of the laser is ensured by gain saturation, the effect for which the gain
decreases as the intensity increases [CWM94]. In laser theory, gain saturation is
usually implemented by assuming a time dependent gain, e.g. for a flat gain curve
G = G0/(1 + E/Esat), where Esat is the saturation power of the amplifier and G0 is
the unsaturated gain.

In Ref. [GF02] a simpler alternative has been proposed: one can assume that at
each time G0 takes exactly the value necessary to keep the optical power fixed to its
original value. The precise value of G0 can be obtained by imposing that ∂E/∂t = 0
and exploiting the equation of motion (2.4). This way, the stabilizing effect of gain
saturation can be modeled by considering a time independent gain profile Gl and
imposing a hard constraint on the total intensity, which forces the dynamics on the
hypersphere E = E0. We refer to this choice as fixed-power ensemble [Ant16]. This
hard constraint might be relaxed studying the dynamics of the overall total intensity
under saturation, evolving at a much larger time scale than the dynamics of the
single mode phasors. The fluctuations in a variable-power ensemble might, then,
be studied, in a way that pretty much resembles the relation between ensembles in
statistical mechanics [GGF04]. We will come back to this topic in Chap. 5.

In the purely dissipative limit, i.e. Dl = ∆ = 0, it has been shown in Ref. [GF03]
that the stationary distribution of configurations, solution to the Fokker-Planck
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equation associated to Eq. (2.4), tends to a Gibbs-Boltzmann measure. Therefore, the
equilibrium properties of the system can be investigated by studying the Hamiltonian

H = −
N∑
k=1

Gk|ak|2 − Γ
2

∑
FMC(k)

ak1ak2ak3ak4 , (2.6)

with the spherical constraint
∑
k |ak|2 = E0 = ϵN . The model can be, then, studied

as a statistical mechanical system in the canonical ensemble at equilibrium in a
thermal bath at the effective temperature

Tphotonic = T

ϵ2
= 1

P2 , (2.7)

where P is the so-called pumping rate. This temperature accounts for the competition
between the optical power injected into the system, which favors the ordering action
of the interactions, and the noise, which acts in the opposite direction. It is worth
stressing that the effective temperature Tphotonic reduces to the spectral power of
noise T , if one considers ϵ = 1 (i.e. if one fixes the spherical constraint to a specific
value of the total intensity).

In Ref. [GGF04], the model has been solved in the narrow-bandwidth approxima-
tion, in which the typical linewidth of the modes γ is comparable to the total spectral
bandwidth ∆ω. In this limit the FMC is always satisfied, by any quadruplet of modes,
thus yielding a fully-connected graph of interactions. The mean-field analysis of the
model reveals a first-order transition with respect to the value of P between two
thermally disordered and ordered phases, characterized respectively by unlocked and
locked phases of the mode amplitudes ak. The former is the low-P (high temperature)
phase corresponding to an incoherent output of the multimode laser (continuous
wave - CW), the latter is the high-P (low temperature) phase corresponding to a
coherent output, equivalent to pulses in the time domain (mode-locking - ML). The
theory has found experimental confirmation in Ref. [Vod+04].

It is worth noting that in the narrow-bandwidth limit, the modes are locked in
a trivial way: almost all of them are aligned in the same direction in the complex
plane, i.e. they have the same value of the phase. In the language of magnetic
systems (the analogy here is with the ordered XY model), the locking of the phasors
to the same angle leads to the presence of global magnetization. Correspondingly,
the output of the laser is a approximately a plain wave, which is equivalent to sharp
delta-like pulses in the time domain. Therefore, spectra are not possible in this
case, in the sense that they reduce to a single spectral line plus some noise. If one
goes beyond the fully-connected case, a different kind of global ordering arises at
high pumping P which consist in the onset of phase-waves, as it is discussed in the
introduction to Chap. 3.

In the general case, when the dispersive effects are included, the problem becomes
hard to study analytically. However numerical simulations show that the presence
of these effects do not change qualitatively the physical scenario of a first-order
transition, leading only to a lowering of the critical value of the temperature (2.7)
which drives the transition [GF03; Ant16].
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2.2 Multimode Laser Theory in Open and Disordered
Media

The previous description is based on the underlying quantum theory of a multimode
laser in an ideally closed cavity, which was first developed in the semiclassical
approximation by Lamb in Ref. [Jr64] and then generalized to the fully quantum case
by Scully and Lamb in Ref. [SJ67]. In the case of random lasers, a complete quantum
theory is still missing given the difficulty of the problem. Besides the disorder of
the active medium, which makes the spatial dependence of the electromagnetic
field not easy to compute, one more fundamental problem is how to deal with the
openness of the system, when the leakages are non-perturbatively relevant. The
quantization procedure in this case presents the typical technical issues of quantum
systems with dissipation, which are non-Hermitian problems where the spectral
theorem for self-adjoint operators does not apply, i.e. the standard decomposition in
a unique complete set of orthogonal eigenvectors corresponding to real eigenvalues
is not possible. This problem was already present in quantum optics, even before
the theory of Lamb for multimode laser was developed, since when Fox and Li first
studied the effect of diffraction losses in a cavity [FL61]. More recently, several
relevant studies have been put forward to overcome the difficulties [DN00; TDB06],
but a part from the exceptional case of a two mode-laser [ESO11], to the best of our
knowledge, the problem remains open. For a comprehensive review on the topic see
Ref. [ZD10a].

Among the approaches that have been proposed, we focus on one based on
the standard system-and-bath decomposition (see e.g. Refs. [Sen60; SSL78]) which
develops the clearest physical intuition and seems to be the most convenient one
for the case of random lasers. The experimental observations discussed in the
Introduction push towards the development of a theory of the electromagnetic field
which accounts for both a discrete and a continuous part of the spectrum, the former
comprised by modes which are confined inside the medium by multiple scattering,
the latter by diffusive modes radiating from the medium. The system-and-bath
approach developed in Refs. [VH03; VH04] is based on regarding the quantum
subsystem composed of electromagnetic cavity modes as embedded in an environment
of scattering states into which the states of the system can decay, i.e. the bath. In
the following, we briefly sketch the main features of the approach and report the
results. We refer to Ref. [Ant16] for a more detailed exposition.

2.2.1 System-and-Bath Decomposition

The starting point of this approach is the expansion in modes-of-the-universe devel-
oped in Refs. [LSJ73; GL91], where the electromagnetic field quantization is carried
out in the presence of a 3-dimensional dielectric medium with spatially dependent
permittivity ϵ(r) and without specifying boundary conditions. The electromagnetic
field can be expressed in terms of its vector potential A(r, t) and of its scalar po-
tential Φ(r, t). The Coulomb gauge (transversal gauge), generalized to the case of
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inhomogeneous media, is defined by the following relations

Φ(r, t) = 0 (2.8)
∇ · [ϵ(r)A(r, t)] = 0 (2.9)

and allows one to write the electric and magnetic fields in the form

E(r, t) = −1
c

Ȧ(r, t) (2.10)

B(r, t) = ∇ × A(r, t), (2.11)

where the dot denotes the time derivative. The Hamiltonian of the system is given
by

H = 1
2

∫
dr

{
c2

ϵ(r)Π2(r, t) + [∇ × A(r, t)]2
}
, (2.12)

where Π = ϵ(r)Ȧ/c2 is the cojugated momentum of the vector potential. The
modes-of-the-universe are defined as solutions of the Helmoltz equation

∇ × [∇ × fm(ω, r)] − ϵ(r)ω2

c2 fm(ω, r) = 0, (2.13)

where the functions fm(ω, r) are defined in all space and satisfy the transversality
condition ∇ · [ϵ(r)fm] = 0. The index ω is a continuous frequency, but the formalism
can be easily adapted to the case of a discrete spectrum by using a discrete index
and replacing integrals with sums. The discrete index m specifies the asymptotic
boundary conditions far away from the dielectric, including the polarization. We
consider asymptotic conditions corresponding to a scattering problem with incoming
and outgoing waves. Then fm(ω, r) represents a solution with an incoming wave in
channel m and only outgoing waves in all other scattering channels. The definition
of the channels depends on the problem at hand: for a dielectric coupled to free
space, one may expand the asymptotic solutions in terms of angular momentum
states. Then m corresponds to an angular momentum quantum number. On the
other hand, for a dielectric connected to external waveguides, m may represent a
transverse mode index [VH03].

Equation (2.13) is the classical equation of motion for the field dynamics in
the generalized Coulomb gauge, which can be obtained through a variational prin-
ciple from the Lagrangian of the electromagnetic field. By defining ϕm(ω, r) =√
ϵ(r)fm(ω, r), the equation can be cast into a well-defined eigenvalue problem for

the Hermitian differential operator L:

Lϕm(ω, r) = ω2

c2 ϕm(ω, r), (2.14)

L = 1√
ϵ(r)

∇ × [∇ × 1√
ϵ(r)

], (2.15)

where the eigenmodes ϕm(ω, r) form a complete set in the subspace of L2 functions
defined by the transversality condition. The vector potential can be then expressed
in terms of the eigenmodes as

A(r, t) = c
∑
m

∫
dω qm(ω, t)ϕm(ω, r)√

ϵ(r)
, (2.16)
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and a similar expression holds for its conjugated momentum Π with coefficients
pm(ω, t). Quantization can be obtained by promoting the coefficients of the expansion
to operators and imposing canonical relations on them.

This normal mode expansion is a consistent field quantization scheme in presence
of inhomogeneous media, but does not provide any particular information about the
field inside the medium. As showed in Ref. [VH03], a separation into cavity (else
termed resonator) and radiative (or channel) modes can be obtained by means of a
Feshbach projection [Fes58]. The eigenmodes of the total system can be projected
onto orthogonal subspaces by the operators

Q =
∫

r∈V
dr|r⟩⟨r| P =

∫
r/∈V

dr|r⟩⟨r|, (2.17)

where V is the region of the whole space where the dielectric is present. The
eigenmodes ϕm(ω, r) can be then written as |ϕ⟩ = |µ⟩ + |ν⟩, where |µ⟩ = Q|ϕ⟩
and |ν⟩ = P|ϕ⟩ represent respectively the projections on the cavity and radiative
subspaces and ϕ(ω, r) = ⟨r|ϕ⟩. Similarly the actual modes-of-the-universe fm(ω, r)
can be written as |f⟩ = |u⟩ + |v⟩, where |u⟩ and |v⟩ correspond respectively to |µ⟩
and |ν⟩. The cavity modes vanish outside V and, hence, form a discrete set labeled
by a discrete index λ; vice versa the radiative modes vanish inside V and form
a continuum, labeled by a continuous index ω and a discrete index m specifying
boundary conditions at infinity. Each set of modes is a complete and orthonormal
set in the subspace of definition, but as whole they can not be considered eigenmodes
of the total system.

The eigenvalue problem in Eq. (2.14) can be rewritten in this formalism and
solved with suitable matching conditions at the boundaries. The differential operator
L can be decomposed into resonator LQQ, channel LPP and coupling LQP ,LPQ
contributions, in such a way that(

LQQ LQP
LPQ LPP

)(
µ(r)
ν(r)

)
=
(
ω

c

)2
(

µ(r)
ν(r)

)
(2.18)

where µ(r) = ⟨r|µ⟩ and equivalently for ν. The solution yields an exact representa-
tion of the eigenstates in terms of cavity and radiative modes

|ϕm(ω)⟩ =
∑
λ

αλ(ω)|µλ⟩ +
∑
m

∫
dω′βm(ω, ω′)|νm(ω′)⟩, (2.19)

where µλ and νm(ω) are the solutions of the uncoupled problems for LQQ and LPP ,
while the coefficients α, β carry the dependence on the coupling operators LQP ,LPQ.
The same decomposition holds for the wavefunctions fm(r, ω) in terms of their
projections uλ and vm(ω).

The vector potential can be expanded in terms of cavity and radiative modes

A(r, t) = c
∑
λ

Qλ(t)uλ(r) + c
∑
m

∫
dω Qm(ω, t)vm(r, ω), (2.20)

and similarly for the conjugated momentum Π, with coefficients Pλ(t) and Pm(ω, t)
respectively for the discrete and continuoous part of the spectrum. Quantization can



2.2 Multimode Laser Theory in Open and Disordered Media 19

be obtained as usual, by promoting the coefficients of the expansion to operators and
imposing canonical commutation relations. Eventually, the field Hamiltonian takes
the expected system-and-bath form, which in the rotating-wave approximation4

reads as

H =
∑
λ

ℏωλa†
λaλ +

∑
m

∫
dωℏωb†

m(ω)bm(ω)

+ ℏ
∑
λ

∑
m

∫
dω
[
Wλm(ω)a†

λbm(ω) + h.c.
]
,

(2.21)

where a†
λ, aλ and b†

λ, bλ are couples of creation and annihilation operators respectively
for the cavity and the radiative modes. The first two terms in H account for the
energy of the resonating system and of the radiative bath separately, while the
third one accounts for the interaction energy of the system-and-bath coupling.
The procedure followed allows to have explicit expressions for the coupling matrix
elements

Wλm(ω) = c2

2ℏ√
ωλω

⟨µλ|LQP |νm(ω)⟩. (2.22)

Here, however, consistently with the rotating-wave approximation, we consider the
matrix elements Wλm independent of frequency, at least over a sufficiently large
band around the typical mode frequency [FS97]. This is also compatible with the
Markovian limit, which is equivalent to assume a time scale separation so that
the typical cavity mode lifetimes are much bigger than the “bath correlation time”
[HVH03].

At this point, it is easy to find coupled dynamical equations for the operators
aλ and bm(ω) in the Heisenberg representation. From the study of these equations
one can find input-output relations based on the scattering matrix formalism, which
are useful since the radiative states are the only accessible experimentally. However,
here we are only interested in the cavity mode dynamics, which turns out to be
given by the following Langevin equation

daλ
dt = −iωλaλ(t) −

∑
λ′

γλλ′aλ′(t) + ηλ(t), (2.23)

where we have defined the coupling matrix γλλ′ = π
[
WW †

]
λλ′

and the quantum
noise operator

ηλ(t) = −i
∑
m

Wλm

∫
dωeiω(t−t0)bm(ω, t0). (2.24)

Therefore, the system-and-bath separation leads to a quantum stochastic dynamical
theory in the cavity modes subspace, where the effect of the external bath of radiative

4The rotating-wave approximation [BJ84] allows one to neglect fast oscillating terms in the
Hamiltonian of an optical system. In the present case we only keep the resonant terms (ab†, a†b) in
the system-and-bath coupling and neglect the nonresonant ones (ab, a†b†), which become relevant
only when the frequencies of the modes are spread over a range comparable to their typical frequency.
Then, if ∆ω is the width of the entire spectrum, the rotating-wave approximation holds as far as
∆ω ≪ ω, that is, the typical situation for random optically active materials.
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modes is included through a noise term. Moreover, an effective linear damping
coupling mediated by the radiative modes, i.e. the matrix γ, acts on the cavity modes.
The two main differences with respect to the closed cavity case are represented by:
(i) the presence of non-diagonal elements γλλ′ in the interactions; (ii) the fact that
the noise is correlated in the mode space, as one can see from the relation

⟨η†
λ(t1)ηλ′(t2)⟩ ∝ 2γλλ′δ(t1 − t2) ̸= δλλ′δ(t1 − t2). (2.25)

2.2.2 Semiclassical Theory of Light-Matter Interaction

So far, we have managed to deal with the openness of the system. However, in order
to complete the theory for active media we have to bring into the game light-matter
interactions accounting for the gain. The standard way to go beyond the cold-cavity
modes5 is by using the semiclassical Lamb theory and including the gain medium
described as a collection of two-level atoms continuously pumped into the excited
state. Let us denote by ρ(r) the atomic density and by ωa the atomic transition
frequency. If |g⟩ and |e⟩ denote respectively the ground and the exited states and
Ee and Eg their energies, then ωa = (Ee − Eg)/ℏ. Only homogeneous broadening is
considered, e.g. the Doppler effect is neglected in first approximation. The evolution
of the atom-field operators can be derived from the Jaynes-Cummings Hamiltonian
[JC63; SK93], plus the contribution of the damping term accounting for the openness
of the system, and can be expressed in the Heisenberg representation by the following
set of quantum stochastic nonlinear differential equations [Hac05]

ȧλ = −iωλaλ −
∑
µ

γλµaµ +
∫

drg†
λ(r)σ−(r) + ηλ (2.26a)

σ̇−(r) = −(γ⊥ + iωa)σ−(r) + 2
∑
µ

gµ(r)σz(r)aµ + η−(r) (2.26b)

σ̇z(r) = γ∥(Sρ(r) − σz(r)) −
∑
µ

(
g†
µ(r)a†

µσ−(r) + h.c.
)

+ ηz(r), (2.26c)

where σ†
− = |e⟩⟨g| and σ− = |g⟩⟨e| are the atomic raising and lowering operators

and σz = |e⟩⟨e| − |g⟩⟨g| is the inversion density operator. The terms γ⊥ and γ∥ are
the polarization and population-inversion decay rates, while S is the pump intensity
resulting from the interaction between atoms and external baths, which also gives
rise to the noise terms η−(r) and ηz(r). The noise term ηλ and the damping matrix
γλµ are the terms previously shown to be induced by the external radiation field. In
the electric dipole approximation [BJ84] the atom-field coupling gλ(r) are given by

gλ(r) = ωa√
2ℏϵ0ωλ

peg · µλ(r), (2.27)

where peg = ⟨e|r|g⟩ is the atomic dipole and µλ is the complete and orthonormal
set of cavity modes previously introduced.

A full quantum treatment of these equations would require the use of the density
matrix formalism to trace over the atomic degrees of freedom, as done in Ref. [ESO11]

5By cold-cavity modes we mean solutions of the Helmholtz equation obtained by neglecting
scattering and nonlinear effects which could come from the interactions with the active medium.
Eq. (2.23), for instance, is written in terms of the cold cavity modes of an open resonator.
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for the case of a two-mode laser. In general, this is not doable and one resorts to
the semiclassical approximation [Hac05], where the operators are downgraded to
complex numbers corresponding to their expectation values and all the noise sources
are neglected (and only later added back). Then, by considering laser media where
the characteristic time of atomic pump and loss are much shorter than the lifetimes
of the resonator modes, the atomic variables can be adiabatically removed obtaining
a set of nonlinear equations for the field modes alone. We will not enter into the
details of the procedure, which is carefully described in Ref. [Ant16], but just sketch
the main steps and the final results.

In order to eliminate the atomic variables, we resort to perturbation theory in
the mode amplitudes. One can start by neglecting the quadratic term in Eq. (2.26c),
obtaining the zeroth-order approximation, which replaced in Eq. (2.26b) gives the
first-order approximation, which replaced back in Eq. (2.26a) gives the second-order
approximation and so on. Once the expressions of σ− and σz have been found at a
given order of perturbation theory, by replacing them into Eq. (2.26a) one finally
finds the the dynamic equation for the modes alone.

The perturbation series can be resummed obtaining an expression which is
valid at all orders in perturbation theory [ZD10b] only in the special case of the
free-running approximation, for which the lasing modes are considered to oscillate
independently from each other. However, this would only be adequate for a theory of
random lasing with non-resonant (incoherent) feedback, where the role of interference
is neglected, as in the original work by Letokhov [Let68]. As already mentioned
in the Introduction, after the observation of structured random laser spectra with
sharp peaks (see, e.g., [Cao+01; Cao05]), it is generally believed that phases do
play an important role in the mode dynamics, determining a coherent lasing action.
Therefore, we do not use the free-running approximation and limit ourselves to the
third-order theory. In fact, we expect higher orders to become relevant far from the
lasing transition and, from the statistical mechanics point of view, not to change
universality class of the transition, see, e.g. Ref. [CL13].

In the third-order theory, the atom-field couplings driving the mode dynamics
in the cold-cavity mode basis {aλ} (with Greek letter indices) contain terms of the
kind

G
(2)
λ1,λ2

∝
∫

drρ(r)g∗
λ1(r)gλ2(r) (2.28)

G
(4)
λ1,λ2,λ3,λ4

∝
∫

drρ(r)g∗
λ1(r)gλ2(r)g∗

λ3(r)gλ4(r). (2.29)

However, it is convenient to express the mode dynamics in the slow amplitude
mode basis, which we have already defined in the previous section, see Eq. (2.3).
By denoting with {ak} (with Latin letters indices) the slow amplitude modes, the
following change of variables is performed

aλ =
∑
k

Aλkak, (2.30)

which affects all the quantities in the dynamic equation for the modes. The matrix
A accounts for the fact that each lasing mode can be thought as a single resonance
given by the superposition of many cavity modes, whose fast oscillations can be
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averaged away. However, the decomposition of a slow amplitude modes in cavity
modes is by no means unique: we can use this freedom to choose a basis in which
the noise is diagonal, simplifying the stochastic dynamics. Eventually, the resulting
equation turns out to be the generalization to random lasers of the SLD Langevin
master equation for standard multimode laser Eq. (2.4) and reads

dak1

dt =
∑

k|FMC(k)
g

(2)
k1k2

ak2 +
∑

k|FMC(k)
g

(4)
k1k2k3k4

ak2ak3ak4 + ηk1(t), (2.31)

where the couplings are

g
(2)
k1k2

= SG
(2)
k1,k2

− γ̃k1k2 g
(4)
k1k2k3k4

= 2SG(4)
k1,k2,k3,k4

, (2.32)

with

γ̃k1k2 =
∑
λµ

A−1
λk1
γλµAµk2 (2.33)

G
(2)
k1,k2

∝
∫

drρ(r)gL∗
k1 (r)gRk2(r) (2.34)

G
(4)
k1,k2,k3,k4

∝
∫

drρ(r)gL∗
k1 (r)gRk2(r)gL∗

k3 (r)gRk4(r), (2.35)

where gLk =
∑
µ(A−1)∗

µkgµ and gRk =
∑
µAµkgµ, and the proportionality coefficients

slightly depend on the frequency [Ant16]. Most importantly, in the slow amplitude
basis, where by definition ak(ω) ≃ δ(ω − ωk), the relevant terms in the dynamics
are selected by the frequency matching condition

FMC(k) : |ωk1 − ωk2 + · · · + ωk2n−1 − ωk2n | ≲ γ, (2.36)

which generalizes the selection rule in the case of a comb-like frequency distribution.
This can be seen as an adiabatic conservation law coming from averaging over fast
mode oscillation.

At this stage, the same techniques developed by the SLD approach can be applied
to the Langevin master equation (2.31). In order to clearly separate the dissipative
contributions from the dispersive ones, we can pass to the real and imaginary parts
of the couplings. By defining

Gk1k2 = 1
2
(
g

(2)
k1k2

+ g
(2)
k1k2

)
iDk1k2 =

(
g

(2)
k1k2

− g
(2)
k1k2

)
(2.37a)

Γk1k2k3k4 = 1
2
(
g

(4)
k1k2k3k4

+ g
(4)
k1k2k3k4

)
i∆k1k2k3k4 =

(
g

(4)
k1k2k3k4

− g
(4)
k1k2k3k4

)
,

(2.37b)

the dynamical equation can be written as
dak1

dt = −∂(HR + iHI)
∂ak1

+ ηk1(t), (2.38)

where we have defined

HR =
∑

k|FMC(k)
Gk1k2ak1ak2 + 1

2
∑

k|FMC(k)
Γk1k2k3k4ak1ak2ak3ak4 (2.39a)

HI =
∑

k|FMC(k)
Dk1k2ak1ak2 + 1

2
∑

k|FMC(k)
∆k1k2k3k4ak1ak2ak3ak4 . (2.39b)
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By considering the purely dissipative limit, i.e. HI = 0, and exploiting the fixed-
power ensemble defined in [GF02], i.e. imposing the spherical constraint to model
gain saturation, one can prove that the dynamics converges to equilibrium [Ant16].
As for the ordered case of standard multimodal lasers, the more general situation, in
which one retains the dispersive part of the dynamics, is not supposed to change the
nature of the results that we are going to discuss in the next section.

2.3 The Glassy Random Laser

In the previous section we have shown that an effective statistical mechanics theory
of random lasers can be justified, along the lines of the SLD approach to multimode
ordered lasers. The specific features of the mode coupling interaction have been
exposed: linear interactions have non diagonal elements accounting for the damping
effect due to the openness of the system and a 4-body disordered coupling term
emerges from the atom-field interaction in the semiclassical approximation. The
mode dynamics is described in the slow amplitude basis, where a generalized FMC
applies to both the 2-body and the 4-body term of interaction.

However, the model defined by the Hamiltonian in Eq. (2.39a) is still very hard
to be addressed. The mean-field fully-connected solution obtained in Refs. [Ant+15;
ACL15a] requires the following additional hypotheses:

• extended modes: all modes have a spatial wavefunction extended all over the
volume V , where the dielectric medium is present;

• narrow bandwidth: the bandwidth of the entire spectrum ∆ω is comparable
with the typical linewidth of the modes γ.

The extended modes hypothesis guarantees that the only selecting rule in mode
coupling is the FMC, while the narrow bandwidth limit ensures that all the modes
satisfy the FMC. Hence, the combination of these conditions leads to a model defined
on a fully-connected graph of interactions, where each phasor interacts with all the
others. Moreover, the mode self-interactions (representing the gain profile) are taken
independent from k and set to zero, without loss of generality.

Another important assumption regards the magnitudes and phases of the cou-
plings, which are related to the spatial overlap among the modes. The computation
of their values requires a precise knowledge of the spatial structure of the electromag-
netic field, which is difficult to access in presence of a disordered medium. Though
difficult in practice, it is possible to accomplish the task, and, actually, it has been
done in some simple cases [Tur+08; Tür+08; Est+14]. The problem remains however
to compute the value of the couplings in the slow amplitude basis, which is used to
express the dynamics of the lasing modes. For the construction of the statistical
mean-field model, it is then assumed that the couplings are independently drawn
from a probability distribution. This is in not true in general, because of the nature
of the couplings: for instance, all couplings involving the same mode are correlated.
However, these correlations matter only in finite dimensions, while in mean-field
theory each coupling coefficient vanishes as N increases and the role of correlation
will be quantitatively negligible as far as the system displays enough modes.
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By considering all these assumptions together, the mean-field spin-glass model
for random lasers is defined by the Hamiltonian

H[a] = −1
2

1,N∑
i,j

Jijaiaj − 1
4!

1,N∑
ijkl

Jijklaiajakal, (2.40)

where the phasors ak are subjected to the spherical constraint

N∑
k=1

|ak|2 = ϵN (2.41)

and the coupling values6 are independently extracted from the Gaussian probability
distributions

P (Ji1,...,ip) = 1√
2πσ2

p

exp

−

(
Ji1,...,ip − J̃

(p)
0

)2

2σ2
p

 . (2.42)

In order to ensure the extensivety of the Hamiltonian the average J̃ (p)
0 and the

variance σp are taken as follows

J̃
(p)
0 = J

(p)
0

Np−1 σp =
p!J2

p

2Np−1 , (2.43)

with J
(p)
0 and Jp independent from N . As usual, the variance of the distributions

accounts for the strength of the disorder, while their average, by inducing a bias in
the extraction of the couplings, acts as an aligning coupling, which tends to induce a
long-range ordering in the system at low temperature. To gain a physical intuition
of the role played by the free parameters of the model, it is useful to express them
in terms of photonic parameters:

J
(2)
0 = (1 − α0)J0 J

(4)
0 = α0J0, (2.44a)

J2 = (1 − α)J J4 = αJ (2.44b)

where J0 and J respectively fix the cumulative strength of the ordered (the coupling
average) and disordered (the coupling variance) contributions to the Hamiltonian,
while α0 and α fix the strength of nonlinearity in the ordered and disordered parts.
Then, we introduce the degree of disorder RJ and the pumping rate P as

RJ = J

J0
P = ϵ

√
βJ0, (2.45)

where β is the inverse of the noise spectral power T . The definition of P, like in
Eq. (2.7), accounts for the equivalence of increasing the optical power per mode ϵ or
decreasing the temperature of the heat bath.

We refer to the model defined by the Hamiltonian (2.40) as spherical (2+4)-
phasor model. This is the most general family of mean-field models that has been

6We remind that the couplings are real numbers, since we are considering the purely dissipative
limit of the dynamics.
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put forward to study the equilibrium properties of lasing systems, i.e. the properties
of the steady state of a laser, expressed in terms of a thermodynamic equilibrium
under the mapping discussed above. Indeed, by changing the values of J and J0
one can tune the degree of disorder and adapt the model to the case of multimode
laser with weak disorder or with no disorder at all, and, at the same time depending
on α and α0 one can tune the degree of nonlinearity and make the damping effect
of the leakages more or less strong. In particular, by choosing J = 0 and α0 = 1
one finds back the Hamiltonian (2.6) of the mean-field ordered model defined in
[GGF04]. Therefore, the model results in a comprehensive theory of multimode
lasing phenomena.

Before the spherical (2+4)-phasor model was considered, a simpler spin-glass
model was proposed in Refs. [Ang+06a; Ang+06b] which does not take into account
the amplitudes of the phasors. The model is a 4-body disordered XY model, defined
by the Hamiltonian

H[ϕ] = −
∑
ijkl

Jijkl cos(ϕi − ϕj + ϕk − ϕl), (2.46)

where ϕk denotes the phase of the phasor ak = Ake
iϕk and Jijkl are unbiased random

couplings. Eq. (2.46) can be recovered from the real part of the (2+4)-phasor
Hamiltonian in the strong cavity limit, for which the damping coupling due to
the openness can be neglected, and in the quenched amplitude approximation, for
which the amplitudes are considered as fixed during the dynamics of the phases
and are absorbed in the definition of the couplings. This model was the first mean-
field statistical description of random lasers, which goes beyond the free-running
approximation, by including the effect of interference. By means of the replica
method it was shown for the first time that the competition for amplification in a
multimode random optical system can lead to a behavior similar to that of a glass
transition. The study was then completed by adding an average to the coupling
distribution [Leu+09], which extends the phase diagram of the model to a globally
magnetized phase, and by computing the complexity of the glassy phase [CL11].

It is worth noting, that the (2+4)-phasor model we are considering can be
regarded as a superposition of the XY (only phases) model of Eq. (2.46), considered
in [Ang+06a], and the real spherical (2+p)-spin (only magnitudes) model considered
in [CL04; CL06], for p = 4.

2.3.1 Quenched Disordered Systems

In this section we briefly review the replica method, which lies at the heart of the
solution of the mean-field model defined by Eq. (2.40) and of the analytical part
of this work. Consider a generic mean-field fully-connected spin-glass model with
variables σ = {σ1, . . . , σN} and quenched disordered couplings J independently
extracted from a probability distribution function P (J). The Hamiltonian HJ [σ]
may have pairwise interactions as in the case of the SK model [SK75] or nonlinear
interactions as in the case of the p-spin model [Gar85; CS92]. The variables may
either take value in a limited, also multi-dimensional domain, in which case the
model has N local constraints as in the case of Ising, XY or Heisenberg spins, or
be continuous and subject to a global constraint of the kind ||σ||ρ = N , for some
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choice of the norm. If ρ = 2, the spherical constraint is recovered. The partition
function of the model, which one aims to compute in order to study the equilibrium
properties of the system, depends on disorder and is given by

ZJ =
∫

Dσ e−βHJ [σ], (2.47)

where we have used a shorthand notation for the sum over all the possible configura-
tions of the variables compatible with the constraints. A fundamental quantity is
the overlap

q = 1
N

σ · τ = 1
N

N∑
i=1

σiτi (2.48)

among two configurations σ and τ extracted from the Gibbs measure with the same
Hamiltonian HJ . We call PJ(q) the overlap probability distribution function for a
given realization of the quenched disordered couplings J .

The meaning of quenched disorder is that the coupling values, once extracted
from P (J), remain fixed during the dynamics. Generally, this assumption is justified
on the basis of a time scale separation between the dynamics of the system variables
and the dynamics of the couplings, which evolve on a much larger time scale. This
applies particularly well to the case of random lasers where the light mode amplitudes
have a very fast dynamics when compared to changes in the displacements of the
particles of the medium, which determine the time evolution of the couplings. The
opposite case is the annealed one: when variables and couplings evolve on the same
time scale, the disorder averages out leaving the system qualitatively equal to its
ordered counterpart but for a rescaling of the free parameters. To perform an
annealed average of the disorder, one just has to compute

ZJ =
∫

DJP (J)
∫

Dσ e−βHJ [σ], (2.49)

from which one sees that in this case the disorder is just an additional thermodynamic
degree of freedom, being at the same level of the σ. Once the partition function is
averaged, no dependence on the J ’s remain.

In principle, every macroscopic observable of a quenched disordered system
measured at equilibrium depends on the particular realization of the disorder,
leading to the idea of dealing with an ensemble of systems. However, observables
whose fluctuations with respect to the J ’s decrease as 1/N1/2 are expected to take
the same value in the large-N limit irrespectively of the specific values of the J ’s.
These quantities are called self-averaging and in most cases the free energy density
is one of such kind. For self-averaging quantities it is sufficient to compute the
average value over disorder to make comparisons with the experimental typical values
measured on macroscopic samples. On the other hand, because of much stronger
fluctuations, non-self-averaging quantities, such as the overlap distribution function
PJ(q), do not lose their dependence on the disorder in the thermodynamic limit, so
that their averaged value P (q) = PJ(q) is generally different from the typical PJ(q).

We are interested in computing the quenched average

f = − lim
N→∞

1
βN

logZJ = − lim
N→∞

1
βN

∫
DJP (J) log

∫
Dσ e−βHJ [σ]. (2.50)
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In this case, the average over the couplings has to be taken after the sum over the
configurations has been performed at fixed J . To avoid the problem of averaging
the logarithm of a complicated function one can resort to the replica method, which
is based on the following trick

log x = lim
n→0

xn − 1
n

, (2.51)

where x is a generic variable. Once applied to the partition function, the average
reduces to

f = − lim
N→∞

1
βN

logZJ = − lim
N→∞

lim
n→0

1
βN

ZnJ − 1
n

, (2.52)

where

ZnJ =
∫

DJP (J)
∫ n∏

a=1
Dσa e−β

∑n

a=1 HJ [σa]. (2.53)

The replica trick allows us to pass from the average of a function of the random
partition function ZJ to the computation of the integer moments of the partition
function distribution. This is more than just a simple algebraic trick: the n indepen-
dent and identical copies of the system are of crucial importance for the study of
the equilibrium properties. Once the average over disorder is carried out, a coupling
among replicas is found, which naturally leads to the introduction of the global
overlap matrices

Qab = 1
N

σa · σb = 1
N

N∑
i=1

σai σ
b
j . (2.54)

In terms of these quantities (and possibly of other global parameters) the replicated
partition function is such that the free energy reads

f = − lim
N→∞

lim
n→0

1
βN

∫
DQ eNS(Q) − 1

n
, (2.55)

which can be computed with the saddle-point method provided that the order of the
limits is exchanged. This is the prescription of the so-called replica method, which
leads to

f = − lim
n→0

1
βn

S(QSP), (2.56)

where QSP is saddle-point value of the matrix Q.
In order to solve the saddle point problem one may restrict the search for QSP to

a specific matrix space, find self-consistency equations for the parameters and then
check the solution a posteriori from the behavior of the thermodynamic potentials.
The correct solution to this optimization problem is not always given by the intuitive
replica symmetric (RS) ansatz, where the overlap matrix is parameterized by only one
parameter q0. Usually the RS ansatz describes the high temperature paramagnetic
solution of the model, where the system is ergodic and there is only one pure state.
If, however, an ergodicity-breaking transition takes place at a certain temperature to
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a phase where the Gibbs-Boltzmann measure breaks down in many pure states, the
solution of the optimization problem can be captured by the more sofisticated Parisi
replica symmetry breaking (RSB) scheme [Par79b; Par80a], where the the overlap
matrix is parameterized by more than one number. The solution has a very deep
significance for the physics of complexity, in terms of understanding the structure
of the states in the low temperature phase of quenched disordered systems [Par83;
MPV87]. Though the mathematical foundations of the replica method have not been
laid yet, it has been rigorously proved by Guerra [Gue03] and Talagrand [Tal06]
that the Parisi RSB scheme provides the correct solution for the free energy of the
SK model.

Quenched disordered systems can exhibit ergodicity breaking transitions corre-
sponding to different kinds of replica symmetry breaking. Some transitions can be
described by a finite number k of steps of replica-symmetry breaking (kRSB), where
the overlap matrix is parameterized by k + 1 numbers q0, q1 . . . , qk, whereas others
lead to full replica symmetry breaking scheme (FRSB), where the overlap matrix is
not parameterized by a discrete set of numbers, but rather by a continuous function
q(x) defined on the interval [0, 1]. Transitions which require a 1RSB ansatz, where
the overlap can only take the values q0 and q1, are usually discontinuous, with a
jump in the order parameter at the transition point and, at the same time, with
a thermodynamic anomaly in the susceptibilities. This kind of phenomenology is
known as Random First Order Transition (RFOT) and is the proxy of the glass
transition in structural glasses [KW87]. The prototype for the RFOT is the spherical
p-spin model. FRSB transitions are instead continuous and are the paradigm of
the spin-glass transition in the context of magnetic systems, where the ergodicity
broken phase space is organized in a hierarchical way. In this case the prototype
model is the SK model. Historically, a distinction between 1RSB and FRSB models
was made: this distinction has gradually faded over time, as soon as it was realized
that more rich and variegated situations exist. In the case of the Ising p-spin model,
for instance, a “glass to spin-glass” transition has been found in Ref. [Gar85], the
so-called Gardner transition: by lowering the temperature the system undergoes
first a transition from the paramagnetic RS phase to a 1RSB phase and, then, a
transition to a FRSB phase. A similar scenario can be found in p-spin mixtures with
spherical variables [CL04], where also kRSB phases or hybrid 1-FRSB phases are
possible.

2.3.2 Replicated Partition Function

In this section we present the solution of the spherical (2+4)-phasor model, by
sketching the main steps of the mean-field replica computation and describing the
most relevant results.

The partition function of the model defined by the Hamiltonian (2.40) with the
spherical constraint (2.41) is given by

Z =
∫ N∏

k=1
dakdak e−βH[a]δ

(
ϵN −

N∑
k=1

|ak|2
)
, (2.57)

i.e. the sum over all the phasor configurations on the complex hypersphere of radius√
ϵN . In the following, the mode amplitudes will be expressed either in terms of
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real and imaginary parts or in terms of modulus and phase as

ak =
√
ϵ(σk + iτk) = Ake

iϕk .

Notice that both the moduli Ak and the phases ϕk are dynamical variables, i.e. they
actually depend on time. However, under the general assumption that the dynamics of
lasing systems is so fast that they can be considered, at least partially (cf. Sec. 2.3.5),
at equilibrium, we are interested in the equilibrium properties of the system, which
can be studied through the analysis of the partition function (2.57). A different
choice of the origin of time is not supposed to change the equilibrium properties of
the system.

The average over disorder of the replicated partition function naturally leads to
the introduction of the following global overlaps matrices7

Qαβ = 1
ϵN

N∑
k=1

ℜ
[
aαka

β
k

]
= 1
N

N∑
k=1

(
σαk σ

β
k + ταk τ

β
k

)
(2.58)

Rαβ = 1
ϵN

N∑
k=1

ℜ
[
aαka

β
k

]
= 1
N

N∑
k=1

(
σαk σ

β
k − ταk τ

β
k

)
(2.59)

and the coherence vector

mα = mα
σ + imα

τ = 1
N

√
2
ϵ

N∑
k=1

aαk (2.60)

mα
σ =

√
2
N

N∑
k=1

σαk mα
τ =

√
2
N

N∑
k=1

ταk ,

which play the role of the order parameters of the model. In the following we will
often refer to the parameter m as magnetization, in analogy with the language of
spin-glass models.

It is useful to discuss the physical meaning of the quantities defined above in
terms of their connection with the optical properties of the system. The diagonal
elements of the overlap matrix Q encode the stationarity of the optical intensity,
being fixed by the spherical constraint

Qαα = 1
ϵN

N∑
k=1

A2
k = 1.

The magnetization m and the diagonal part of the overlap matrix R are directly
connected to the coherence property of the corresponding optical regime

m = 1
N

√
2
ϵ

N∑
k=1

Ake
iϕk , Rαα = 1

ϵN

N∑
k=1

A2
k cos(2ϕk).

7Actually, the computation also requires the introduction of the overlap matrix

Tαβ = 1
ϵN

N∑
k=1

ℑ
[
aα

k aβ
k

]
= 2

N

N∑
k=1

σα
k τβ

k

which however can be set to zero without loss of generality, as a consequence of the symmetry of
the Hamiltonian (2.40) under a global phase rotation a → aeiϕ [Ang+06b; ACL15a].
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In the photonic language, a globally magnetized phase corresponds to a regime in
which all phasors point in the same direction in the complex plane, i.e. their phases
are all equal. The off-diagonal terms of the overlap matrices can be written in terms
of phases and magnitudes of modes in different replicas of the system, as

Qαβ = 1
ϵN

N∑
k=1

AαkA
β
k cos(ϕαk − ϕβk) (2.61)

Rαβ = 1
ϵN

N∑
k=1

AαkA
β
k cos(ϕαk + ϕβk) (2.62)

The presence of more than one value in the off-diagonal part of the overlap matrices,
i.e. the breaking of replica symmetry, is as usual interpreted as the existence of a
nontrivial structure of thermodynamic states.

Eventually, the averaged replicated partition function reads as

Zn =
∫

DΦDΦ̂ exp
{

−N [B(Φ, Φ̂) − log Zeff (Φ̂)]
}
, (2.63)

where the shorthand notations for the set of the order parameters Φ = {Q,R,m} and
for their Lagrange multipliers Φ̂ = {Q̂, R̂, m̂} have been introduced. The functional
B in the previous expression reads

B(Φ, Φ̂) = −ξ2
2

1,n∑
αβ

(Q2
αβ + R2

αβ) − ξ4
4

1,n∑
αβ

(Q4
αβ + R4

αβ + 4Q2
αβR2

αβ)

− b2

n∑
α=1

[(mα
σ)2 + (mα

τ )2] − b4

n∑
α=1

[(mα
σ)2 + (mα

τ )2]2

+
1,n∑
αβ

(Q̂αβQαβ + R̂αβRαβ) +
n∑

α=1
(m̂α

σm
α
σ + m̂α

τm
α
τ )

(2.64)

and the local partition function, which contains the integration over the phasors, is
given by

Zeff (Φ̂) =
∫ n∏

α=1
dσαdτα exp


1,n∑
αβ

[
σα(Q̂αβ + R̂αβ)σβ + τα(Q̂αβ − R̂αβ)τβ

]
× exp

{
n∑

α=1
[m̂α

σσ
α + m̂α

τ τ
α]
}
.

(2.65)

In the previous expressions the following symbols for the external parameters have
been introduced for convenience

b2 = ϵ

4βJ
(2)
0 b4 = ϵ2

96βJ
(4)
0 (2.66)

ξ2 = ϵ2

4 β
2J2

2 ξ4 = ϵ4

6 β
2J2

4 , (2.67)
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where we notice that b2 and b4 vanish if one considers zero-mean probability distribu-
tions for the couplings. The explicit expression of these parameters in terms of the
photonic quantities J, J0, α, α0, RJ and P is reported in Ref. [Ant16]. Moreover, we
notice that the ratios b2/b4 and ξ2/ξ4, which are of crucial importance in determining
the nature of the phases of the model, do not depend on temperature, but only
on the ratios between the free parameters of the coupling distributions, i. e. of the
linear and non-linear contributions.

The local partition function Zeff can be computed by performing the multidi-
mensional Gaussian integration in σ and τ , while the other Lagrange multipliers
can be eliminated by exploiting their saddle-point expressions in terms of overlap
matrices and magnetization. After the integration over all the auxiliary variables
has been carried out, one is left with

Zn =
∫ 1,n∏

α<β

dQαβ

1,n∏
α≤β

dRαβ

n∏
α=1

[dmα
σdmα

τ ] e−NG[Q,R,mσ ,mτ ], (2.68)

where the action functional G reads as

−G[Q,R,mσ,mτ ] = 1
2

1,n∑
αβ

g(Qαβ,Rαβ) + nk(mσ,mτ ) + 1
2 log det(Q + R)

+ 1
2 log det(Q − R) − m2

σ

2

1,n∑
ab

(Q + R)−1
ab − m2

τ

2

1,n∑
ab

(Q − R)−1
ab ,

(2.69)

and the functions g and k are defined as follows

g(x, y) = ξ2(x2 + y2) + ξ4
2 (x4 + y4 + 4x2y2) (2.70)

k(x, y) = b2(x2 + y2) + b4(x2 + y2)2. (2.71)

In the following section we describe the results of the replica computation and
present the phase diagram of the model.

2.3.3 Phase Diagram of the Glassy Laser Transition

The saddle-point method applied to Eq. (2.68) leads to a set of stationary equations
for the functional G, which can be solved with an appropriate ansatz on the structure
of the matrices depending on the value of the external parameters. The precise
expression of the saddle-point equations in the RS and RSB ansatzes can be found
in Ref. [Ant16], where their solution is discussed in detail for all the various cases.
Here, we just aim to describe the phenomenology of the model. The phase diagram
obtained by the solution of the saddle-point equations is comprised by four different
phases distinguished by the values of the order parameters Q,R and m:

• Paramagnetic phase (PM): it is the RS solution with all the order parameters
equal to zero (with the exception of Qαα = 1); it corresponds to the Continuous
Wave (CW), where all the modes oscillate incoherently; it is the only phase at
high (low) enough temperature (pumping);
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• Spin-Glass phase (SG): it is the RSB phase with vanishing global magnetization
m = 0; it is characterized by the freezing of the modes in configurations where
the coherence of oscillations is frustrated by the presence of a nontrivial
structure of states; it corresponds to the Random Laser (RL); it is the only
phase at low enough temperature if ξ2 and ξ4 are large enough with respect to
b2 and b4 (the degree of disorder RJ is large enough);

• Ferromagnetic phase (FM): it is the set of all the phases with nonzero magneti-
zation, regardless of possible replica symmetry breaking; all the modes oscillate
coherently with the same phase; it corresponds to the Standard Mode-Locking
Laser (SML); it is the only phase at low enough temperature if b2 and b4 are
large enough with respect to ξ2 and ξ4;

• Asymmetric Paramagnetic phase (APM): it is the RS solution with the order
parameters all vanishing except for the diagonal elements of the overlap matrix
R, so there is a partial phase locking, without global magnetization, where
the phases take different values but are locked; in the photonic langauge, we
refer to this phase as Phase Locking Wave (PLW); it is an intermediate phase
between the CW and the RL (or SML) phase, which exist only if ξ4 ̸= 0.

Both the FM and the SG phases are expected to present different kinds of replica
symmetry breaking, depending on the values of the control parameters. In particular,
one expects a FRSB structure if the 2-body term in the Hamiltonian is dominating,
while a 1RSB one if the 4-body interaction prevails. When the interactions have
comparable magnitudes, an intermediate 1-FRSB phase is expected in analogy to
the case of real spherical spins [CL04]. The three cases can be distinguished either
by the ratio ξ2/ξ4, or, equivalently, by the photonic parameter α, which measures
the strength of the nonlinearity in the disordered part of the interactions. On the
other hand, the system chooses between the FM and the SG phases depending on
the strength of b2 and b4, or equivalently on the value of the photonic parameter RJ .

Before presenting the phase diagram of the model, let us give a general description
of all the system phases. Let us first consider the case in which b2 and b4 are low
enough. Then, by lowering the temperature from the PM phase, the system may
either enter the APM phase or, only in the case when ξ4 = 0, remain in the RS
phase with a non-vanishing value of the overlap8. From the APM phase, the system
either enters the SG phase through a RFOT if ξ2/ξ4 is low enough, in which case
the structure of the states is of the 1RSB kind, or it undergoes a continuous phase
transition towards the SG phase with a FRSB structure in the opposite case when
ξ2/ξ4 is high enough. On the other hand, if b2 and b4 are high enough, by lowering
the temperature from both the PM and the APM phase, a transition towards a
RS-FM phase is obtained, which can be either continuous (for b2/b4 high enough)
or discontinuous (vice versa). For intermediate values of b2 and b4 the system is in
the FM phase with the same kinds of RSB as the SG phase, depending on the ξ2/ξ4
ratio.

8The fact that for ξ4 = 0 the solution is always replica symmetric is expected in analogy to the
p = 2 spherical model [KTJ76]. The RS solution with non-vanishing overlap is only marginally
stable: the addition of an infinitesimal perturbation to the Hamiltonian (in this case represented by
an arbitrary small disordered nonlinearity) causes the solution to become unstable.
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Figure 2.1. Phase diagram of the glassy laser transition (fieldless case). Red line: appearence
of the APM phase; blue line: APM becomes unstable; green lines: 1RSB solutions for
fixed values of the breaking parameter x = 1, x = 0.8, x = 0.6, x = 0.4; black line: the
1RSB solution becomes unstable. To the left of the black line an intermediate 1-FRSB
emerges, which turns into a FRSB phase on the magenta line. We notice that the ξ4 = 0
line is always RS.

As already mentioned, non-zero coupling averages yield the alignment of the
phasors, acting as an effective field. In Ref. [ACL15a] the model has been mapped
into an equivalent model with zero averages and a suitable effective field, which turns
out to be related to the magnetization in the following way h = 2b2m+ 4b4m

2. A
non-vanishing value of the field signals that the system is globally magnetized, and,
hence, is in the FM (SML) phase. We stress that it is sufficient that b2 = b4 = 0 for
the field to vanish, but it is not necessary: if b2 and b4 are small enough compared
to ξ2 and ξ4, then the field vanishes because of m = 0. Having developed the
replica computation including the magnetization has the remarkable advantage of
bridging with the ordered case. In this way, the theory describes general multimode
laser phenomena, both standard and random and can be adapted to intermediate
situations such as weakly disordered systems. However, for the purpose of this work,
we are mainly interested in the glassy phase of light: hence, in order to simplify the
picture, we present the phase diagram of the model at zero effective field, where no
trace of the FM phase is present. The complete phase diagram of the model has an
additional axis accounting for positive values of the effective field and can be found
in Refs. [Ant+15; Ant16].

In Fig. 2.1 the (ξ4, ξ2)-phase diagram is displayed. The transition lines are
obtained through the study of the phase stability, which can be performed with
the standard method, by looking at the vanishing of the replicon, i.e. the highest
eigenvalue of the stability matrix [dT78; DG06]. Let us briefly describe the results
summarized in the phase diagram. Starting from a value of ξ2 < 0.3434 . . . , i.e. the
three-critical point in Fig. 2.1, by increasing ξ4 one has the following scenario: below
the red line the only stable solution is the PM one; on the red line the PM solution
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becomes unstable in favor of the emergence of the APM solution, which in turn
becomes unstable on the blue line. The stability of both the PM and the APM phases
is revealed by the vanishing replicon of the corresponding RS solution (λPM

RS = 0 and
λAPM

RS = 0). When the APM solution becomes unstable, a transition towards the
1RSB phase takes place: the first green line corresponds to the static transition at
x = 1, where x is the breaking parameter. At the transition, the usual mixed-order
behavior of the RFOT is found: a jump in the order parameters Q and R is present,
but the internal energy remains continuous, a signature of no latent heat exchange.

The study of the stability of the 1RSB solution reveals that, as anticipated, the
1RSB phase is not stable over the whole region of the parameters where the RS
solution is unstable: the replicon of the 1RSB solution vanishes (λ1RSB = 0) on the
black line of Fig. 2.1. Ideally, by starting from a value of ξ2 > 0.3434 . . . in the 1RSB
phase and lowering the value of ξ4, the expected “glass to spin-glass” transition
takes place: first the system enters a mixed 1-FRSB phase and then the FRSB phase
emerges (magenta line).

2.3.4 The glassy state of light

The replica-symmetry broken phase represents the amorphous state of light, in
analogy to the low temperature behavior of glass-forming liquids predicted by mean-
field theory. All the concepts coming from the mean-field theory of structural glasses
are then predicted by this model for optical waves in disordered media. When the
glass transition is approached from the RS phase, the system exhibits a critical
slowing down and dynamical arrest on the transition line, as could be revealed by
study of time correlation functions. The cause of this behavior is, as usual, the
breaking of ergodicity in a number N , increasing exponentially with the system size,
of degenerate metastable states, which dominate the dynamics, before the static
transition is reached. The role of these states can be revealed by the study of the
complexity9, i.e. the configurational entropy Σ = N−1 log N , which also allows to
find the spinodal line of the transition, corresponding to the value of the parameters
where the 1RSB states are dynamically accessible. The complexity decreases when
passing from the 1RSB to the 1-FRSB phase, until it reaches zero on the magenta
line of the continuous transition to the FRSB phase (see Fig. 2.1).

What of this dynamical scenario may be actually observed in real random lasers
is not so clear: as already mentioned, the dynamics of light modes is so fast that
dynamical phenomena (like aging) connected to the presence of metastable states
may be difficult to reveal. However, besides the presence of exponentially many
metastable states, the theory predicts a static transition to a ergodicity broken phase
with multiple equilibria, which most likely can be put in correspondence with the
experimental observations. What can be stated is that the theory predicts that lasing
in random media displays a glassy coherent behavior with the following properties:
(i) the subset of modes which are activated and actually lase is randomly chosen
from all the cavity modes and (ii) the set of activated modes behave coherently and
belong to one out of many possible states.

9Notice that the complexity in disordered systems is the only intrinsically dynamical quantity
that can be computed from the statics.
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CW

Figure 2.2. Phase diagram of the glassy laser transition (fieldless case) in the photonic
parameters, fixing RJ = βJ = 1.1. The region above is the RL phase and it is divided
in the three subregions corresponding to the different RSB ansatzes depending on the
value of the parameters: FRSB, 1-FRSB and 1RSB. The dashed line at fixed α = 0.4 is
a possible path which goes through all the possible phases of the system. The symbols
 ,⬣,▲ and ■ denote the RS and the three kind of RSB phases and are used for labeling
the respective plots of the overlap distribution functions in Figs. 2.3 and 2.4.

It is useful to visualize the phase diagram of the glass transition in the photonic
parameters P and α for a fixed value of the degree of disorder RJ (Fig. 2.2). Actually,
in this case the complete phase diagram has an additional axis for RJ : the fieldless
case is compatible with values of RJ > 1, i.e. J > J0, where the phenomenology
of the model is described in terms of CW, PLW and RL phases10. The diagram
in figure is the same diagram presented before, but with respect to P and α. In
this case, we gain a clearer physical intuition about the behavior of the model. In
particular, by fixing the strength of the nonlinearity (as it is in a real random laser),
we can isolate the role of the pumping. If we choose a value of α to the left of the
tricritical point in Fig. 2.2, for instance α = 0.4 which corresponds to the dashed
vertical line in figure, we see that starting from the CW phase, by increasing the
value of the pumping, the laser first enters the PLW phase, where there is partial
coherence, and, then, reaches the glassy coherent phase, by going through all the
RSB phases: first FRSB, then 1-FRSB and, eventually, 1RSB. On the other hand, if
we choose a value of α on the right of the tricritical point, after the intermediate
PLW phase, the laser enters directly in the 1RSB phase, by crossing the green line.
This last regime will be the working setting of the original part of this Thesis.

10In order to visualize the RL-SML transition one has to consider a (RJ , P)-section of the complete
phase diagram at fixed α. We recall that it is not necessary that J0 = 0 (i.e. b2 = b4 = 0) to be in
the fieldless case: h is zero if m = 0, which may happen also if J0 is small compared to J .
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2.3.5 Intensity Fluctuation Overlap

This section is devoted to the introduction of the key observable which allows
to connect spin-glass theory to experiments on RLs: the Intensity Fluctuation
Overlap (IFO). We refer in particular to the experiments already mentioned in the
Introduction, where activated modes are observed to change in spectra acquired
at different times from the same sample [Muj+07; MML06; Pap+07]. From these
observations it is not possible to extract the mode phases needed to compute the
overlap matrices previously defined, see Eqs. (2.61). In particular, the random lasing
emission is generally not intense enough to successfully use techniques based on
second-harmonic generation to reconstruct the phases of the modes [Ant16]. However,
from the statistical mechanics point of view, the phenomenology presented by the
experiments strongly suggests that an ergodicity breaking transition controlled by
the pumping rate is taking place in real random lasers. To compare the theory
with the experiments it would be great to define a quantity, which is experimentally
measurable and is related in some way to the order parameters defined in the
mean-field analysis.

In Ref. [Gho+14], shot-to-shot intensity fluctuations have been interpreted in
terms of an overlap between intensity fluctuations of two real replicas, i.e. replicas
with the same quenched disorder. Provided that the sample is kept in the same
experimental conditions for all the data acquisition time, then real replicas can be
associated to the different shots, each one thermalized into different equilibrium
states characterized by a specific spectral profile of activated modes and sharp
peaks. Thermalization is guaranteed by the fact that during a single pulse of the
external pumping, several stimulated emission phenomena take place for each mode
frequency ensuring a long enough mode dynamics. To be precise, this would only
be a partial thermalization, since for a disordered system in the ergodicity broken
phase, a complete thermalization would require the system to visit all possible states.
Given the development of the theory and the current interpretation of experiments,
we cannot say how many equilibrium states a random laser actually visits for each
spectral shot, but we can quite safely say that the system has reached the static
transition predicted by mean-field theory. This is not only a consequence of fast light
mode dynamics, but also of a number of modes which is small compared to usual
thermodynamics degrees of freedom (e.g. ∼ 1023) and of the fact that these modes
are highly connected as in the dense interaction network of a mean-field model.

Let us first define the fluctuation of the intensity Iαk of the resonance at the
frequency ωk in a single spectrum α with respect to the spectral intensity at that
frequency averaged over all Ns acquired spectra as

∆α
k = Iαk − 1

Ns

Ns∑
γ=1

Iγk . (2.72)

Each spectrum represents the realization of a replica. The experimental IFO
measured between two real replicas can be represented by the following matrix

Cexp
αβ =

∑
k ∆α

k∆β
k√∑

k(∆α
k )2
√∑

k(∆
β
k)2

(2.73)
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Figure 2.3. Six histograms representing the probability distribution function of the
experimental intensity fluctuation overlap (2.73) built from the data obtained by many
single shot spectra collected at six increasing values of the pumping rate (Reprinted
from [Gho+14]). Notice that P (C) gradually changes from a Gaussian-like distribution
centered in zero for low values of the P to a bimodal distribution. The symbols
represent the region of the phase diagram in Fig. 2.2 to which these experimental P (C)
might correspond. The correspondence is clarified by the analytical study of the IFO
distribution function, whose results are presented in Fig. 2.4.

defined in the interval [−1, 1], where Iαk denotes the intensity of the mode k in the
spectrum corresponding to the replica (shot) α, with α = 1, . . . , Ns. Since thermal-
ization is assumed, the experimental value Iαk can be thought as the equilibrium
average of the intensity, i.e. Iαk ≡ 1

T
∫ t0+T
t0

dt|aαk (t)|2, where T − t0 is the time inter-
val corresponding to random laser lifetime, slightly longer than the pumping pulse.
The overlap is defined between intensity fluctuations rather than directly between
intensities, in order to exclude the effect of amplified spontaneous emission on the
measurements. Fluctuations are taken with respect to the intensity averaged over
many different replicas. From the Ns measured spectra one can extract Ns(Ns−1)/2
values of the IFO and determining their distribution by building the histogram
P (C) =

∑
α<β δ(C − Cαβ).

We report in Fig. 2.3 the results obtained in Ref. [Gho+14], concerning the
measurement of the IFO distribution. At low pumping rate, P (C) appears as a
Gaussian-like distribution centered in C = 0. Then, for increasing values of P, the
distribution develops a nontrivial structure with three distinguished peaks, one
in C = 0 and two symmetric side-peaks, and a continuous part between them.
Eventually, P (C) reduces to a double-peaked distribution for high values of P: in
this last case, as the pumping is varied, C can in principle take all possible values in
the interval [−1, 1], while for a given value of P the position of the peaks is fixed.
This kind of behavior resembles the one of the Parisi overlap distribution function
in the replica symmetry broken phase of the model.
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Figure 2.4. Probability distribution of the intensity fluctuation overlap P (C) for competing
linear and nonlinear couplings (α = α0 = 0.4), and in the fieldless case RJ = 1.1
(reprinted from [Ant16]). The pumping rate P increases from left to right and from top
to bottom, along the dashed line in Fig. 2.2. At P = 1.3 the distribution is a Dirac delta
centered in zero. As soon as the pumping rate exceeds the lasing transition threshold,
all the RSB regime are displayed: FRSB (P = 2.07), 1-FRSB (P = 2.23) and 1RSB
(P = 3.12, 4.45, 7.03).

In order to build a precise correspondence at least in the mean-field fully-
connected model, one has to define a quantity, depending only on intensity fluctua-
tions to be analytically related to the Parisi overlap. In Ref. [ACL15b], the IFO is
expressed (in absolute value) by the following matrix

Cαβ = 1
8ϵ2N

N∑
k=1

[
⟨|aαk |2|aβk |2⟩ − ⟨|aαk |2⟩⟨|aβk |2⟩

]
(2.74)

defined in [0, 1], where the average is taken with respect to the Gibbs-Boltzmann
measure of the spherical (2+4)-phasor model. Clearly this distribution depends on
the realization of the disordered couplings J and has to be averaged P (C) = PJ(C).

It is worth stressing that the definition of emission spectra in statistical mechanical
models is only possible in a model which takes into account both phases and
intensities, and hence the introduction of the IFO distribution could not be possible
within the phase-only approach originally developed in Refs. [Ang+06a; Ang+06b;
Leu+09; CL11]. While the role of the phases is essential for reproducing the phase
transition phenomenology of mode-locking, the role of the intensities is of crucial
importance for bridging with the experiments, where we do not have access to the
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phases.
The crucial result obtained in Ref. [ACL15b] is that the IFO matrix defined in

Eq. (2.74) can be expressed in terms of the overlap matrices Q and R as

Cαβ = Q2
αβ − m4

4 a ̸= b (2.75)

Cαα = 1 + R2
αα

2 − m4

4 , (2.76)

element by element, whatever the structure of Q and R. This result reveals that if
a RSB structure is present at the level of the configuration overlap, the same holds
also for the IFO: in other terms the structure of the state organization is the same
whether we look at the configurations of the modes or at their intensity spectra.

In Fig. 2.4 six different plots of the analytical IFO probability distribution are
displayed for increasing values of the pumping rate P along the dashed line at α = 0.4
in Fig. 2.2, which goes through all kinds of RSB phases. At low pumping rate the
distribution is a Dirac delta centered in zero, meaning that no correlations are present
among the intensities and the modes are independent and non-interacting (CW
phase); increasing the pumping the mode coupling becomes relevant and, accordingly,
the overlap distribution function is nontrivial, since the system enters a phase where
the modes are highly frustrated by disorder. First, P (C) develops a small continuous
part around the central peak in C = 0, denoting the typical continuous FRSB shape
(second panel); then, besides the continuous part, also symmetric side Dirac deltas
emerge, corresponding to the 1-FRSB phase (third panel). Eventually, the analytical
P (C) looses the continuous part and becomes a linear combination of Dirac deltas,
which is the usual 1RSB structure. The resemblance with the experiments, though
only qualitative, is quite remarkable.

Despite this similarity, it should be noted that the correspondence between
theory and experiments is still under construction and many criticisms, both on the
theoretical and experimental sides, can be raised with the perspective of improving
it. The most obvious criticism is that, for now, no experimental data corresponding
to different samples are yet available for averaging over the disorder. Due to the
non-self-averageness of overlap probability distribution functions, the average over
disorder is essential to observe the typical behavior of these observables and compare
it with the theoretical predictions. Furthermore, a major problem lies in the fact
that the emission of a random laser occurs in every direction, while the acquisition
of spectra is not performed in the whole solid angle (at least not in Ref. [Gho+14]).
This, coupled with spectral resolution issues, casts doubt on whether the detected
spectra correspond to all the laser modes oscillating in the sample. Moreover,
experimental data inevitably contain a part of dynamical relaxation to equilibrium,
which should be taken into account by the theory in order to improve the comparison.
Clearly, the analytical results obtained for the IFO distribution in Ref. [ACL15b]
and reported in Fig. 2.4 are purely at equilibrium.

An additional issue that has to be addressed on the theoretical side is going
beyond the narrow bandwidth limit, which includes the FMC in a trivial way. This
is precisely the big goal of this Thesis work. In particular, we aim to develop a
numerical tool to simulate the model diluted with the FMC both out-of and at
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equilibrium. Hopefully, this will also provide useful insight on the diluted model, in
view of its analytical solution.
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Part I

Numerical Simulations
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Chapter 3

Mixed-Order Glass Transition in
Random Lasers

The main goal of this work is to go beyond the fully-connected solution of the
spin-glass model for random laser presented in the previous chapter. By this, we
mean to release the narrow bandwidth approximation and include in a nontrivial
way the mode coupling selection induced by the FMC. Out of the narrow bandwidth
approximation, the interaction network of the glassy random laser can no longer be
considered fully-connected, but has to be diluted by removing all the bonds that do
not match the condition on the frequencies. The FMC is of key importance for the
study of mode-locking and for the reproduction of real random laser spectra: for
this reason its inclusion is essential to bridge with the experiments. However, when
the solution of the mode-locked model is approached analytically, subtle technical
difficulties emerge, which require the development of new techniques with respect
to standard mean-field methods for disordered systems. The analytical approach
will be developed in the second part of this work. Here, we resort to numerical
simulations to get useful insights on the mode-locked model.

A first step towards the inclusion of the FMC has been taken on the ordered
version of the model [AIL15b; AIL15a]. In this case, strong deviations from the
fully-connected behavior have been put in evidence. In particular, the mode-locked
low temperature (high pumping) phase exhibits lack of global order due to the onset
of phase waves1 (see also Ref. [ML15]) produced by the tendency to align of modes
which are close in frequency, due to the FMC. In particular the phases ϕk of the
modes are not all equal as in the fully-connected case, but satisfy a linear relation
with their frequencies ωk, which for a linear comb can be written as ϕk = ϕ0 + k∆,
where ∆, approximately independent from k, is the slope of the phase wave and
is a configuration-dependent quantity [Ant16]. As a result, the coherency of the

1Phase waves is an evocative term reminding of spin waves in pairwise spin models with O(2)
global symmetry, such as the XY model. In these models, when the symmetry is spontaneously
broken, the global magnetization is reduced by the onset of collective excitations analogous to the
Goldstone bosons in quantum field theory. In dimensions d ≤ 2 this phenomenon leads to lack of
global magnetic order, as stated by the Mermin-Wagner theorem [MW66]; however, in the special
case of d = 2, topological transitions of the Kosterlitz–Thouless type [KT73] may be allowed. In the
case of multimode lasers, however, we are dealing with dense models, so the comparison can not be
pushed too far.
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laser is not trivial as in the narrow bandwidth limit, where the output consists of a
train of almost perfectly delta-like (unchirped) pulses, but there is a phase delay in
the emitted pulses, which depends on the slope ∆, and hence on the configuration.
Therefore, in the magnetic analogy, when considering the thermal average, the model
has vanishing magnetization. This effect has not been found in a model with ordered
couplings and a random dilution of the same order of the FMC: in this case, the
physical properties of the system are coherent with the fully-connected solution.
Similarly, phase waves are not expected in the presence of quenched disordered
couplings.

After that, equilibrium numerical simulations of the spin-glass mode-locked
model have been performed in Ref. [GAL20], where evidence of a mixed-order phase
transition has been found and put in connection with an equipartition-breaking
transition at the same critical temperature. The common root of the two transitions
can be traced back to the same underlying phenomenon: the breaking of ergodicity.
In the present chapter and in the following one, we focus on the mixed-order phase
transition, while the analysis of the equipartition-breaking transition will be deepened
in Chap. 5. With respect to the mean-field picture described in the previous chapter,
we are particularly interested in checking what of the RFOT scenario remains in
the diluted mode-locked model, which is much closer to real random lasers than the
fully-connected one.

In the following, first, we present the simulated spin-glass model, which is a slightly
simplified version of the mode-locked spherical (2+4)-phasor model. Particular
attention is devoted to the role played by the FMC in affecting the topology of the
model interaction graph. The numerical technique is explained in detail, by presenting
the Exchange Monte Carlo algorithm implemented to shorten the thermalization
time to equilibrium at low temperature. Moreover, the simulated model presents the
additional problem of being defined on an interaction graph, which, though diluted,
is still very dense. To address this problem, parallel computing on graphic processing
units has been adopted. The results pointing towards the presence of a static glass
transition are collected and their problematic nature is discussed. In particular, the
unexpected scaling of the critical region found in [GAL20] motivates the need for a
new campaign of numerical simulations of the model aimed at collecting data less
affected by finite-size effects.

3.1 The Mode-Locked 4-Phasor Model
The simulated model is described by the following Hamiltonian

H[a] = −
∑

k|FMC(k)
Jk1k2k3k4ak1ak2ak3ak4 + c.c.

= −
∑

k|FMC(k)
Jk1k2k3k4Ak1Ak2Ak3Ak4 cos(ϕk1 − ϕk2 + ϕk3 − ϕk4), (3.1)

where a = {a1, ..., aN} is a N -dimensional complex vector of electromagnetic field
mode amplitudes. In the second expression, Ak and ϕk represents respectively the
modulus and the phase of the mode amplitude ak = Ake

iϕk and a factor 2 has been
absorbed in the definition of the random couplings. Configurations are constrained to
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the complex hypersphere of radius
√
ϵN , where ϵ = E/N measures the average optical

power per mode available in the system. The quenched disordered coupling constants
Jk = Jk1k2k3k4 are independently drawn from a zero-mean Gaussian distribution

P (Jk) = 1√
2πσ2

exp
{
J2

k

2σ2

}
, (3.2)

with variance σ2 = J2
k = 1/N2, ensuring the extensivity of the energy. The scaling

of the coupling distribution variance takes into account the dilution order of the
interaction graph, which is determined by the condition

FMC(k) : |ωk1 − ωk2 + ωk3 − ωk4 | ≲ γ, (3.3)

where ωk are the frequencies of the modes and γ denotes their typical linewidth.
We refer to this simplified version of the general (2+4)-phasor model discussed in
the previous chapter as mode-locked (ML) 4-phasor model. With respect to the
general model and in terms of the photonic parameters introduced in the previous
chapter, see eqs. (2.44) and (2.45), we are here working in the limits RJ → ∞ and
α = 1. The motivation for considering this model is that we are mainly interested
in the study of the non-linear term of the Hamiltonian defined in Eq. (2.40), which
is the most relevant one for reproducing the phenomenology of optical waves in
disordered media near the lasing transition. Indeed, the behaviour of multimode
optical systems in this regime is generally believed to be dominated by non-linear
mode interactions, see e.g. Refs. [Hau00; And+11].

The simplest choice for the frequency distribution is to consider a linear comb
as in the case of standard lasers, see Eq. (2.2). In this case the FMC (3.3) can be
mapped into a relation among the indices of the interaction graph:

|k1 − k2 + k3 − k4| = 0. (3.4)

More realistic dilution rules based on random frequency distributions will be consid-
ered in future works in order to improve the modeling of real random lasers. Besides
being the simplest possible choice, the frequency comb distribution is compatible with
the strong-cavity approximation [CL11], which amounts to neglect the off-diagonal
elements of the linear interaction term in the Hamiltonian of the 2+4 model. In fact,
the 2-body FMC, which generally looks like |ωk1 − ωk2 | ≲ γ, admits off-diagonal
terms only in the case of modes whose frequencies differ less than the threshold fixed
by γ. In principle, modes of this kind exist in random lasers [And+11]. However, in
the case of a high-finesse linear comb, these modes are excluded: the condition for
mode selection reduces to |k1 − k2| = 0, which leaves only the diagonal terms.

Furthermore, by assuming a flat gain curve, i.e. by taking Jkk = g with constant
g, the linear part of the interactions becomes an additive constant, which is only
responsible for a shift of the energy and can be neglect it. This follows as a
consequence of the spherical constraint. The assumption of a flat gain curve is also
compatible with the regime we aim to explore through numerical simulations: as
shown in [AIL15a] for the case of standard multimode lasers, the inclusion of a more
complex gain profile only affects the fluorescence regime, while the transition and
the lasing regime are stable under perturbations of the gain.
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The effective distribution of the phasor configurations which will be sampled in
numerical simulations is given by

P[a] ∝ e−βH[a]δ

(
ϵN −

N∑
k=1

|ak|2
)
, (3.5)

where β is the inverse of the spectral power of noise T . We notice that, by rescaling
the variables as ãk = ak/

√
ϵ, the new variables are constrained on a fixed hypersphere

at the cost of introducing the effective inverse temperature βphotonic = βϵ2 = P2,
which corresponds to the photonic temperature introduced in Eq. (2.7). In these
rescaled variables the probability distribution of configurations reads as

P[ã] ∝ e−P2H[ã]δ

(
N −

N∑
k=1

|ãk|2
)
, (3.6)

making explicit the role of the pumping rate (i.e. a parameter accounting for both
noise and external pumping) as the true control parameter of the system. Now, P
can be tuned in numerical simulations either by varying the effective temperature
T = β−1 and fixing the optical power ϵ, or by working at fixed temperature and
varying the value of ϵ. Simulations are performed at ϵ = 1 varying the temperature
T in order to have a clear correspondence with the literature on glassy systems,
but results are often described in terms of pumping rate P. One simply needs to
remember that, since ϵ = 1, the photonic temperature reduced to the spectral power
of noise T , and so P = 1/

√
T .

3.1.1 Topological Properties

In this section, we aim to provide some details about the topology of the interaction
network of the ML 4-phasor model. A mode-locked graph can be defined in full
generality as a hypergraph whose hyperedges are selected according to the FMC
(2.36). Equivalently a mode-locked graph can be also defined on a factor graph,
with fixed connectivity of the function nodes and connectivity of the variable nodes
determined by the FMC. The following treatment is restricted to the case of interest,
which is characterized by comb-like frequencies and 4-body interactions, but it can
be extended to more general situations.

An interesting quantity to compute is the total number of hyperedges that are
left by the FMC in the interaction graph of the ML 4-phasor model, with respect to
the fully-connected case. Let us denote by N (f)

4 the number of tetrads in the fully
connected graph, which is given by

N
(f)
4 = N(N − 1)(N − 2)(N − 3)

4! ∼ N4

4! , (3.7)

with N ≫ 1. We notice that even if the adjacency tensor defined by the FMC
with equispaced frequencies is not completely symmetric under permutations of the
indices, each term entering the Hamiltonian (3.1) has some symmetry. The condition
(3.4) can be satisfied by 24 permutations of the indices, which can be grouped into 3
independent orderings with 8 equivalent permutations each.

Given a tetrad of indices k = {k1, k2, k3, k4}, the 3 non equivalent orderings in
Eq. (3.4) can be chosen to be
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1. FMC1. P1 = (k1, k2, k3, k4) identifying the combination k1 − k2 + k3 − k4 = 0
and all indices permutations;

2. FMC2. P2 = (k1, k3, k2, k4) identifying k1 − k3 + k2 − k4 = 0 and all indices
permutations;

3. FMC3. P3 = (k2, k1, k3, k4) identifying k2 − k1 + k3 − k4 = 0 and all indices
permutations;

All the permutations inside each of the 3 groups correspond to terms inside the
Hamiltonian (3.1) which have the same value of the energy. Consider for example
the first ordering:

FMC1 : ωk1 + ωk3 = ωk2 + ωk4 → k1 + k3 = k2 + k4, (3.8)

where we have used Eq. (2.2). Following Ref. [Mar+18], we consider uniformly
distributed indices, i.e. P (k) = 1/N for k ∈ [1, N ]. In this case, the probability for
the sum of two indices k+

ij = ki + kj to take the value k+ ∈ [2, 2N ] can be easily
determined:

P+(k+) =


k+ − 1
N2 if k+ ∈ [2, N + 1]

2N − (k+ − 1)
N2 if k+ ∈ [N + 2, 2N ].

(3.9)

We can now evaluate the probability that the quadruplet k satisfies the condition
FMC1 as the probability that the left and right hand side of Eq. (3.8) take the same
value k+:

P (FMC1) =
2N∑
k+=2

P+(k+)2

= 1 + 2N2

3N3 ∼ 2
3N ,

where the last relation holds in the large-N limit. The same occurs for the other
independent orderings, say FMC2,3. This leads to the removal of the factor 1/3 from
the probability that the FMC is satisfied by any ordering. Eventually, the number
of couplings in the interaction network of the ML 4-phasor model is

N∗
4 = 2

N

[
1 + O

( 1
N

)]
N

(f)
4 . (3.10)

Hence, the FMC tends to cut O(N) couplings from the fully-connected graph,
reducing the total number of couplings in the system to O(N3). This prevision has
been verified numerically with great accuracy. It is worth stressing that, though
diluted, the graph is still dense.

The FMC condition is a deterministic selection rule, which induces non-trivial
correlations among the interacting modes. To gain an insight into the kind of
correlations, we consider an analogy with random networks, following Ref. [AIL15a].
A way to build random but correlated networks is to introduce a distance among the
nodes: in the case of a random graph, e.g. Erdös-Rényi graph, the distance can be
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chosen as the absolute value of the difference of the node indices dk1k2 = |k1 − k2|.
Then, one can select bonds accordingly to a probability that depends on that distance.
In the case of the ML 4-phasor model, which has factor nodes of connectivity 4,
one needs a 4-indexed metrics in order to select the interacting quadruplets. This
metrics can be taken as dk = |k1 −k2 +k3 −k4|: therefore, the FMC with equispaced
frequencies is equivalent to including only quadruplets presenting the minimum
value, dk = 0. In this way, the mode frequencies are not degrees of freedom, but
coordinate driving correlations playing the role of a distance on a graph. It should
be stressed again that in the present case the mode coupling is deterministic and
not random: no probability is associated with the distance. As a result, modes that
are in the center of the spectrum are preferred for combinatorial reasons. Indeed,
the central modes have a higher probability of having close frequencies in the sense
of the distance dk. This is the reason for the narrowing of the intensity spectrum
observed through the lasing transition, see e.g. Fig. 1.1, when the external pumping
is increased (or equivalently the temperature is reduced).

3.1.2 Generation of a Mode-Locked Graph

Let us here describe in detail how the FMC is implemented in our code in order to
build the interaction network of the ML 4-phasor model.

First, a virtual complete graph with N
(f)
4 =

(N
4
)

∼ O(N4) interactions is
generated with ordered quadruplets of indices k1 < k2 < k3 < k4. Then the FMC is
applied to the complete graph. Notice that for each ordered quadruplet of indices,
the FMC can be satisfied only by the permutation class P3(k1, k2, k3, k4). Each
time a quadruplet of indices matches the previous condition, the corresponding
interaction is added to the real graph and a random value extracted from the
Gaussian distribution Eq. (3.2) is assigned to it. This procedure is repeated by
randomly picking a quadruplet from the complete graph until a preassigned number
N4 ∼ O(N3) of interactions for the ML graph is reached.

In order to be able to perform a neat finite-size scaling analysis, the number N4
is chosen to be the largest power of 2 below the total number of couplings satisfying
the FMC, which is given by the quantity N∗

4 computed in Eq. (3.10). In practice,
the number N4 is chosen first and then the corresponding size N to be simulated is
selected in order to minimize the difference ∆N = N4 −N∗

4 .
We notice that this way of building the mode-locked interaction network intro-

duces an artificial source of disorder in the model, besides the original one. Each
one of the Ns simulated disordered samples is characterized by a realization of the
couplings {Jk} that differs from the others both in the quadruplet network and in
the numerical values. However, the fluctuations of the observables with respect to
the randomness of the quadruplet topology turn out to be much smaller than the
fluctuations due to the numerical values of the couplings, already for the smallest
simulated sizes. In fact, as it has been observed also for the ordered mode-locked
graph [Ant16], when compared on the log-scale the energy fluctuations occurring
during the equilibrium dynamics (i.e. the ensemble fluctuations) are at least two
orders of magnitude larger than the graph-to-graph fluctuations, which are therefore
negligible for all practical purposes.
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3.2 Numerical Analysis

This section is devoted to present the details of the Monte Carlo algorithm imple-
mented for the simulation of the model.

3.2.1 Exchange Monte Carlo Algorithm

The numerical simulations of the ML 4-phasor model have been performed by means
of an Exchange Monte Carlo algorithm parallelized on GPU’s 2 in order to sample
the equilibrium probability distribution Eq. (3.5). In this section, we briefly describe
the most salient features of the method, by following Ref. [NB99]; then, we provide
a few details on our implementation for the simulation of the ML 4-phasor model.

The Exchange Monte Carlo method, else called Parallel Tempering (PT), was
introduced by Hukushima and Nemoto in Ref. [HN96] as a variation of simulated
tempering [MP92]. In fact, PT is the most simple and general form of simulated
tempering, which has been proposed as a finite-temperature generalization of the
famous simulated annealing [SV83]. All these algorithms have been developed in
order to cope with complex optimization problems, characterized by the presence
of many minima of the cost function, where usual Monte Carlo algorithms are not
feasible. In particular, PT has been widely used for equilibrium simulations of
finite-dimensional spin glasses, see e.g. Refs. [Bal+00; HPV08; PM14], which are
known to be “hardly-relaxing” systems. Indeed, for glassy systems standard iterative
algorithms tend to get stuck in small regions of the state space from which they
cannot escape, facing the so called critical slowing down.

One explanation for this phenomenon is that each state in the Markov chain of a
Monte Carlo algorithm is chosen from the previous one and is in some sense close to
it. Therefore, starting from a certain initial configuration, there are states that can
be reached with a small number of moves, while there are other states, farther in
the configuration space, which can only be reached in a large number of moves. The
state space of glassy models contains many stable and metastable states, as it can
be revealed by several techniques 3. It turns out that the metastable states have a
relatively low energy with respect to the states by which they are surrounded. If
a simulated system is initialized in a configuration close to a metastable state (or
directly in a stable state), to escape its basin of attraction, the algorithm must pass
through one of the surrounding states with higher energy, an occurrence that has
an exponentially low probability, since configurations are sampled with Boltzmann
weights, which depend on the energy difference.

2Graphic Processing Units. The code, written in CUDA, has been running on three types of
GPU: Nvidia GTX680 (1536 cores), Nvidia Tesla K20 (2496 cores) and Nvidia Tesla V100 (5120
cores).

3Metastable states can be revealed by directly studying the model dynamics, typically in the
Martin-Siggia-Rose functional integral formalism (developed by De Dominicis and Janssen for
disorderd models, see e.g. Ref. [De 78]), but also by the study of the complexity or by an analysis
based on the Thouless-Anderson-Palmer (TAP) equations [TAP77]. The prototype case is that
of the spherical p-spin model, for which the dynamical equations have been closed and solved in
Ref. [CHS93; CK93] and the TAP approach has been developed in Refs. [KPV93; AH95]. Moreover,
the structure of the metastable states has been carefully analyzed by means of the Franz-Parisi
potential in Refs. [FP95; CGP97], while their basins of attraction have been studied in Ref. [BF98].
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It has to be pointed out that, of course, multiple states are also present in much
simpler systems, such as the standard Ising model below the critical temperature.
In this case there are only two low temperature states in which the Gibbs measure
breaks down when the system size is sent to infinity: a positively magnetized state
and a negatively magnetized one. In fact, to pass from one state to the other, the
system configuration has to jump an energy barrier whose height scales exponentially
with the size of the system. This event has a probability that is exponentially
small, similarly to the corresponding case in spin-glass models. However, in this
case the low temperature states are symmetric under spin reversal transformation
and one gets the same information on the measured properties of the system, no
matter whether the initial configuration is chosen close to a state or to the other.
Conversely, in glassy models the states are usually not related by any symmetry, so
it happens that for different simulations the algorithm gets stuck in different basins
each time depending on the initial condition, giving completely different answers for
the observables. This can be regarded as a finite-size evidence of ergodicity breaking.

To avoid this situation, PT has been developed based on the idea that system
thermalization may be facilitated by a reversible Markovian dynamics of config-
urations among heat baths at close temperatures. In particular, configurations
belonging to copies of the system at higher temperature may help the copies at
lower temperature to jump out of the local minima of the rugged free energy land-
scape. While the dynamics is carried out in parallel for all the heat baths simulated,
once after a fixed number of steps an exchange of configurations between baths at
neighboring temperatures is proposed. We refer to this kind of move as swap, to
distinguish it from the usual Monte Carlo step. A swap is proposed sequentially for
all pairs of neighboring inverse temperatures βi and βi+1, with the following accep-
tance probability implementing detailed balance with the equilibrium Boltzmann
distribution for each thermal bath:

pswap = min [1 , e(βi−βi+1)(H[ai]−H[ai+1])]. (3.11)

Thus, each state in each of the simulations is sampled with exactly its Boltzmann
weight, so that in PT simulations measurements can be performed in the same
way as in a usual Monte Carlo simulation. We will come back on the measurement
process in the following.

It should be noted that a key role is played by the time after which a move is
proposed. This time has to be large enough in order to avoid exchanges among
configurations that are very similar to those just exchanged, and, on the other hand,
not too large, otherwise thermalization will require a very long time. In one word,
one needs the time between two subsequent swaps to be the smallest possible in
order to make the most of a PT algorithm.

3.2.2 The choice of temperatures

The reason why the PT method overcomes energy barriers is strictly related to the
choice of the simulation temperatures. To give a more intuitive understanding of
the situation, we go through the following argument, taken from Ref. [NB99].

Let us focus of two copies of the system at temperatures T1 < T2, one below
and the other above the glass transition of the system. Suppose that the two copies
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start from configurations which belong to the same energy basin. Since the high
temperature simulation do not show ergodicity breaking, it will freely explore the
phase space on a time scale similar to that of a simulation of a normal, non-glassy
system. On the contrary, the low temperature copy of the system will remain
stuck in the initial energy basin. If one attempts to swap the states of the two
simulations, Eq. (3.11) says that, unless the swap does not increase the energy of
the low temperature simulation by a great deal, then it is unlikely to be accepted.
However, from time to time, it will happen that the system at T2 finds its way into a
region of low energy, that is another basin with respect to the initial one, where the
simulation at T1 is stuck. When this happens a swap will quite likely be accepted.
Thus the low temperature copy is transported in one move to another energy basin,
and the high temperature one finds itself back in the basin that it started in. By
repeating the process over a long time, the low temperature simulation is moved
repeatedly to new energy basins. Thus, the PT algorithm effectively overcomes the
problem of barrier crossing, which makes simulation of glassy systems so hard, and
allows us to sample a significant fraction of the state space, while still sampling with
the correct Boltzmann weights for a temperature below the glass transition [NB99].

In view of this argument, before running the simulations one must have an
approximate knowledge of the critical temperature of the model, in order to establish
properly the temperature interval, i.e. define a βmin and a βmax such that the
critical temperature falls inside the interval. Moreover, one has to bear in mind that
temperatures should be close enough, so that the typical configuration domains at
nearby temperatures overlap. If this does not occur, the energy distributions at some
nearby heat-baths might display no sensitive overlap, thus yielding an extremely
low probability of a swap between them. If a critical point is there, this is likely to
occur when one heat-bath is at a temperature above the critical one and the other
one at a temperature below it. If this is the case there will be a drastic drop in the
exchange frequencies (swapping rate) between these two temperatures, above and
below the phase transition, making the algorithm extremely inefficient.

One essential criterion to decide if the algorithm is working efficiently, both
regarding on how often we propose a swap move and the choice of temperatures, is
to compute the swapping rate between adjacent temperatures, that is the fraction of
accepted swaps. The algorithm works efficiently only if, for all couples of temperatures
is not too small. An optimal value lies between 0.6 and 0.8 and this interval has
been taken as a reference in this work.

3.2.3 Details of the Algorithm

In what follows, the specific PT algorithm designed for the simulation of the ML
4-phasor model is described. The first step is to build the mode-locked graph
of interaction is built according to the procedure described before. Then a PT
dynamics is run for copies of the system with the same quenched disorder at different
temperatures. Each of the system copies follows its own dynamics, except when a
swap is accepted among neighboring heat baths. In the following, we focus on the
main features of the algorithm.
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Local update

The algorithm uses local Metropolis updates for the dynamics of each PT copy of
the system. Then, a configuration update has to be proposed with the requirement
to keep

N∑
k=1

|ak|2 = const.

In order fulfill the constraint, each update of the configurations is carried out by
choosing at random two variables ai = Aie

iϕi and aj = Aje
iϕj and extracting three

random numbers [Ant16; GAL20]: x, y ∈ [0, 2π] and z ∈ [0, π/2]. The first two
correspond to the new (attempted) phases x = ϕ′

i and y = ϕ′
j , the third one mixes

the intensities of the modes selected by preserving the spherical constraint

A′
j =

√
A2
i +A2

j cos z A′
j =

√
A2
i +A2

j sin z

Then the attempted update is accepted according to the usual Metropolis formula,
in order to implement detail balance.

Parallel computation

It is worth noticing that for the case of the ML 4-phasor model the updates have to
performed sequentially, rather than in parallel. In fact, the parallel Monte Carlo
algorithm of a system of interacting variables needs a sparse network of interaction,
such as nearest neighbors, e.g., to be implemented, in order to split the system in
smaller non-interacting sub-systems, that can be updated in parallel. This procedure
clearly speeds up the computation of the update. In our system, however, this is
not possible due to the density of the mode-locked interaction network, in which
each variable participate in O(N2) interacting quadruplets.

However another kind of code optimization can be implemented for the ML
4-phasor model, by exploiting the computing capability of GPU’s: the parallelization
of the energy computation in the local Metroplis update. In order to accept or
reject the update of two spins ai and aj , one has to compute the energy difference
between the attempted configuration and the current one. This operation has a
computational complexity which scales like the number of quadruplets involved in
the computation, i.e. N (i,j)

4 = O(N2):

∆E =
N

(i,j)
4∑
k=1

∆Ek,

where ∆Ek denotes the energy difference between each quadruplet. The computation
of each ∆Ek is realized in parallel on a distinct kernel on GPU.

Last, but not least, also the PT dynamics at different temperatures has been
parallelized on GPU’s. The two kinds of parallelization considered together reduce
the execution time of the entire simulation by a factor of 8 [GAL20].
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3.2.4 Observables of Interest

Before listing the observables considered, let us clarify the measurement procedure.
In order to properly estimate statistical errors, time correlations have been taken into
account. A correlation time τcorr can be identified as the maximum among all the
correlation times of each thermal bath dynamics. Consequently, the observables can
be measured every τcorr Monte Carlo steps. If NMCS is the total amount of Monte
Carlo steps of the simulation, for each disordered sample the number of thermalized,
uncorrelated configurations is given by

N ≡ NMCS − τeq
τcorr

, (3.12)

where τeq denotes the thermalization time of the replica with the lowest temperature.
We will come back in a while on how the equilibrium time is defined. Then, for
a given observable O function of the configurations a, the ensemble average is
estimated by the following time average

⟨O[a]⟩ = 1
N

NMCS/τcorr∑
t=τeq/τcorr

O[at]. (3.13)

On top of that, the average over the quenched randomness of the couplings is defined
as follows. For each {Jk} realization we have a thermal average ⟨O[A]⟩J . Averaging
over the random samples yields the least fluctuating finite-N proxy for the average
in the thermodynamic limit:

O[a] = 1
Ns

Ns∑
j=1

⟨O[a]⟩(j)
J . (3.14)

The observables that will be considered in the present chapter and in the next
one are the following:

• intensity spectrum: normalized to the square root of the temperature, in order
to connect with the physical intensities

Ik = A2
k√
T
, (3.15)

• specific heat: measured as the equilibrium energy fluctuations as

cVN
= 1
N

⟨H2⟩ − ⟨H⟩2

T 2 , (3.16)

• Parisi overlap distribution, P (q), where for the ML 4-phasor model the overlap
among configurations (see Eq. (2.61)) is given by
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qαβ = 1
N

Re
N∑
k=1

aαka
β
k

= 1
N

N∑
k=1

AαkA
β
k cos(ϕαk − ϕβk), (3.17)

• plaquette overlap distribution, P (Q), where the overlap among the plaquettes
of two replicas is defined as [GAL20]

Qαβ = 1
N4

∑
k

Eαk Eβk (3.18)

with the plaquette overlap given by

Eαk = ak1ak2ak3ak4 + c.c. (3.19)

and N4 the number of quadruples satisfying the FMC, as discussed in Sec.
3.1.2.

• intensity fluctuations overlap distribution, P (C), where the intensity fluctuation
overlap (IFO) among two replicas of the system (see Eq. (2.74)) is given by

Cαβ = 1
N

N∑
k=1

∆α
k∆β

k , (3.20)

where the intensity fluctuations are defined as

∆α
k = Iαk − ⟨Iαk ⟩

2
√

2ϵ
. (3.21)

Thermalization

In order to guarantee that the data used to compute the displayed observables are
taken from correctly equilibrated samples thermalization can be tested in several
ways.

First, one can look at energy relaxation on sequential time windows whose length
is each time twice the length of the previous one. For each simulated heat bath
dynamics, a minimal requirement is that the time average of the energy ⟨H⟩ takes
the same value at least on the last and second but last windows. A similar test is
performed on the specific heat, by computing energy fluctuations over the last and
the second-last “logarithmic” window and checking that the values obtained for each
temperature match inside their statistical errors.

However, one can not rely solely on the trend of the energy and of its fluctuations
over time to assess thermalization. In fact, as mentioned before, due to the presence
of energy barriers that scale exponentially with the system size, one may mistake a
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single local minimum for a good equilibrium state. Therefore, a further and stronger
requirement for thermalization is the symmetry of the Parisi overlap distribution
PJ(q) for each disordered sample, which can be tested by checking that its skweness
is approximately zero in the low temperature phase.

Once dynamical thermalization to equilibrium has been assessed and a thermal-
ization time τeq identified, the time average Eq. (3.13) coincides with the canonical
ensemble average. The number of Monte Carlo steps necessary to reach thermaliza-
tion for each simulated size are reported in Tables 4.1 and 4.2, for the simulations
performed to obtain the results of Ref. [Nie+22].

3.3 Evidence of a Random First Order Transition

In this section we present the results of numerical simulations, where evidence of a
glass transition in the ML 4-phasor model has been first reported [GAL20]. Here, we
are just interested in discussing the physical picture drawn from these simulations:
more technical details on measurement and data analysis will be provided in the
next chapter, where the results of new simulations are presented.

As already mentioned in the previous chapter, a Random First-Order Transition
(RFOT), the paradigm of the glass transition [KW87; LW07; LN08], is a mixed-
order phase transition, characterized by the divergence of the thermodynamic
susceptibilities and, at the same time, by the discontinuity of the order parameter
at the static transition point. The former is the signature of a critical phenomenon,
which is determined by a continuous second-order phase transition; the latter is,
instead, a feature which is typical of first-order transitions, where the new dominant
thermodynamic state is already present before the transition, differently from the
continuous case, where it arises at the transition.

The observables which help to investigate the presence of a RFOT4 in the ML
4-phasor model are the specific heat (3.16) and the overlap distribution function
(3.17). A singularity in the specific heat puts in evidence the second-order nature
of the transition, whereas a jump in the overlap probability distribution P (q) is a
signature of its first-order nature. In models with continuous variables, the P (q) is
expected to be a distribution with a single peak in q = 0 in the high temperature
phase and to develop side peaks, as well, in the low temperature glassy phase. At
finite N , of course, exact Dirac delta peaks in the P (q) appear as smoothed functions
of q, due to finite-size effects. One does not have to confuse this finite-size behavior
of the P (q) in a RFOT, with the behavior of the P (q) in the spin-glass transition of
the SK model [SK75], where the overlap distribution is expected to take a non-trivial
shape, different from a bimodal one, even in the N → ∞ limit.

In Fig. 3.1, we display the behaviour of the specific heat and of the configuration
overlap distribution function. The specific heat diverges as the size increases: in the
inset panel data are collapsed in the critical region with an exponent 3/2, which
turns out not to be compatible with a mean-field theory of second-order phase
transitions. The reason why this comes about will be clarified in the next chapter:

4Remember that it is the static transition to be relevant for experiments on random lasers, and
not the dynamic one, as it usually is in structural glasses. This is why our attention is devoted to
the simulation of the equilibrium properties of the model at the static glass transition.
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Figure 3.1. (a) Specific heat cVN
= ⟨H2⟩ − ⟨H⟩2/(NT 2) as a function of T ; Different

curves represent different system size. (Inset) Specific heat as a function of τN3/2

where τ = (T/Tc(N) − 1): curve collapse in the scaling region. The four sizes are
N = 32, 48, 64, 96. (b) Configuration overlap probability distribution for N = 64 at
temperatures T/Tc = 1.71, 1.15, 0.97, 0.64. Reprinted from [GAL20].

there, we will see how this unexpected exponent 3/2 turns out to be a preasymptotic
finite size effect.

The configuration overlap distribution function in Fig. 3.1 turns out to be
Gaussian in the low-P phase. Then, for P > Pc, the distribution shows a clear
deviation from Gaussianity, but only “shoulders” are displayed at the simulated
sizes, rather than proper side peaks.

These results can be compared with those obtained through numerical simulations
of a 4-phasor model with random dilution of the same order of that induced by
the FMC, see Ref. [GAL20]. The comparison reveals two important differences:
first, the scaling of the critical region in the case of random dilution yields an
exponent of 1/2 which perfectly matches the expectations of standard ϕ4 mean-field
theory; secondly, in the case of random dilution the overlap distribution function
exhibits clear secondary peaks at a finite distance from the origin in the high-P
phase, signaling a glassy RSB phase. It is evident, then, that the finite-size effects
are stronger in the mode-locked model than in the randomly diluted one. This
is also quite intuitive: at the small simulated sizes the correlations induced by a
deterministic selection rule are not negligible. In fact, the diluted mode-locked graph
of interactions, though comprised by an extensive number of couplings less than the
fully-connected graph, is still dense, suggesting compatibility with mean-field theory.
However, up to the precision of the study reported here, the question whether the
ML 4-phasor model is a mean-field theory or not remains open and needs a more
refined analysis to be answered.

Regarding the first-order nature of the transition a stronger indication comes
from the study of the plaquette overlap distribution (3.18). At variance with the
configurational overlap, which is computed over N variables, the plaquette overlap
is computed over O(N3) quadruplets, hence it is less plagued by finite-size effects.
In Fig. 3.2 we display both the plaquette overlap and the IFO (3.20) probability
distribution functions. In the low-P phase the plaquette overlap has a very peaked
distribution in Q ≃ 0, while for P ≈ Pc there is clear evidence of a secondary peak
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Figure 3.2. (a) Plaquette overlap distribution P (Q) for N = 64, computed over 214

quadruplets and plotted for four different values of the pumping rates: (Pc/P)2 =
1.71, 1.15, 0.97, 0.64 (Inset) Multimodality parameter b measured for P (Q) as a function
of T = P−2: values above the threshold b∗ = 5/9 (full black line) indicate a bimodal
distribution. (b) Intensity fluctuation overlap (IFO) probability distribution P (C) for
system size N = 64, plotted for the same values of the pumping rate as panel (a). (Inset)
Binder parameter B measured for P (C) as a function of T ; the behavior is typical
of first-order transitions, with the transition at the minimum of B. Reprinted from
[GAL20].

at Q > 0. A similar behavior is shown by the IFO distribution function: in this case,
although at first sight there is no clear evidence of secondary peaks at high pumping
rates, for the same reason why this happens in the P (q), non-Gaussian tails appear
in the vicinity of the transition.

To deepen the analysis one can study the moments of these distributions. In
particular, it is useful to consider the third and fourth moments, which are related
to the symmetry of the distribution and to the swelling of its tails. By denoting
with q a general overlap (be it the Parisi, the plaquette or the intensity fluctuation
overlap) the skewness and the kurtosis of its distribution function are given by

γ = ∆q3

(∆q2)3/2
k = ∆q4

(∆q2)2
. (3.22)

In the high temperature phase, where the order parameter is zero, the distribution
at finite size will be a Gaussian centered in zero, with k = 3. At the phase transition
and in the low temperature phase the distribution will be different from a Gaussian.
A very useful quantity to measure the deviation from Gaussianity is the Binder
parameter [Bin81; BL84], which is defined as

B = 1
2 (3 − k) . (3.23)

If we are dealing with a first-order phase transition, then the Binder parameter
displays a nonmonotonic reversed bell behavior with a maximal deviation from
Gaussianity in the coexistence region, where the distribution is bimodal. This is
precisely what is observed for the IFO distribution function and has been reported
in the inset of panel (b) in Fig. 3.2, where B is plotted as a function of the effective
temperature T = P−2.
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As a term of comparison, we refer to Ref. [PRS01], where the Binder parameter
is computed in numerical simulations of both the SK model and the Ising p-spin
model (with p = 3). In the former case, characterized by a continuous transition to
a FRSB phase, the Binder parameter is zero at high temperature and then increases
monotonically. Moreover, the Binder parameter for different sizes exhibits a crossing
of the curves for different sizes, from which the critical temperature of the model
can be estimated (cf. also Ref. [BY88] for the case of the Edwards-Anderson model
in two or three dimensions). On the other hand, in the case of the Ising p-spin
model, characterized by a discontinuous transition to a 1RSB phase (regarding the
distribution of the order parameter) the Binder parameter exhibits the reverse bell
behavior that has been here reported in the case of the IFO probability distribution
function.

For the study of the plaquette overlap distribution, one can not use the Binder
parameter as a good indicator because, although clearly bimodal at the transition,
the distribution is not Gaussian far from the transition. However, in order to study
the bimodal nature of the distribution at the transition, one can introduce another
parameter, the so-called bimodality parameter, which is defined as

b = γ2 + 1
k + 3(n−1)2

(n−2)(n−3)

(3.24)

where n is the number of data composing the histogram of the probability distribution.
In the inset of panel (b) in Fig. 3.2 the behavior of b as a function of temperature is
reported: the region where the parameter b signals a bimodal distribution of the
overlap is precisely the interval of pumping rates around Pc.
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Chapter 4

Universality Class of the
Transition

In this chapter, the study of the static glass transition in the ML 4-phasor model
is improved with respect to the previous analysis (Chap. 3). The main goal is to
determine the universality class of the model, through a refined finite-size scaling
analysis of the transition. In particular, we aim to assess whether the unexpected
scaling exponent of the critical region found in Ref. [GAL20] is a genuine non-mean-
field feature of the mode-locked diluted model or if it is only a preasymptotic effect,
due to the very strong finite-size effects, which derive from the difficulty to simulate
large enough sizes in dense disordered models.

First, a preliminary argument for the scaling of the critical region in mean-
field theory is presented in a very general way, which does not require any specific
knowledge about the glass transition, besides its second-order nature concerning
the divergence of the susceptibilities at the critical temperature. The outcome of
the analysis is that the exponent for the scaling of the critical region in a generic
mean-field model must fall in a compact interval and its specific value is related to
the order of the leading nonlinear term of interaction. The result obtained is coherent
with the scaling exponent of the Random Energy Model (REM), the simplest model
exhibiting a glass transition [Der80; GM84].

In the second part of the chapter, results obtained from new numerical simulations
are presented [Nie+22]. Besides performing simulations of the original ML 4-phasor
model increasing the number of simulated sizes, temperatures and samples, a slightly
different version of the model is introduced, in order to reduce the specific kind of
finite-size effects induced by the FMC. In particular, the bond filtering action of
the FMC is considered on a frequency space with periodic boundary conditions,
leading to simulations of the bulk spectrum of the original model. The study of the
critical region in both cases leads to a reduction of the value of the exponent for
the scaling of the critical region, which turns out to fall into the interval defined by
the mean-field argument, inside the experimental uncertainty. Finally, the study of
the glass transition is completed by analyzing data in order to obtain the overlap
distribution functions introduced in the previous chapter.
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4.1 A Mean-Field Argument for the Scaling of the Crit-
ical Region

Second-order phase transitions are characterized by scale invariance at criticality: in
finite-dimensional systems (e.g. lattices in d dimensions), fluctuations extend over
regions of all possible sizes and a characteristic scale of length no longer exists. As a
consequence, the behavior of physical quantities near the critical point is described
with respect to some control parameter, e.g. temperature, by power laws, whose
exponents are universal, in the sense that they depend only on very general properties
of the system (such as the dimensionality of space d, the dimensionality of the order
parameter and the symmetries of the Hamiltonian), but not on the details of the
microscopic interactions [Zin02]. Out of the mean-field approximation, the critical
exponents can be computed with renormalization group techniques, such as the
ϵ-expansion [Par88], or can be extrapolated from the study of the system at finite
size L (i.e. the linear size of a lattice), through the finite-size scaling analysis [FB72].

However, here we are interested in the case of infinite-dimensional models defined
on graphs not embeddable into any space with finite dimensions d, for which mean-
field theory is exact. Even in this case, the scaling regime amplitude has a dependence
on the system size N (i.e. the number of nodes in the graph of interactions), governed
by an exponent, which we will denote as νeff , through the following relation

|T − Tc| ∼ 1/N1/νeff , (4.1)

where T is an effective control parameter for the transition - from now on we will
refere to it as temperature - and Tc denotes the critical point. We will make sense
of νeff in terms of standard critical exponents in the following. The prototype of
a mean-field theory of continuous phase transitions is represented by the Landau
effective potential1

V (ϕ) = τ

2ϕ
2 + g

4!ϕ
4, (4.2)

where ϕ is the global order parameter of the transition, τ = T/Tc − 1 is the reduced
temperature and g is the coupling constant. The probability distribution of the
order parameter ϕ is

p(ϕ) = e−NV (ϕ)

Z
, (4.3)

where the partition function Z is given by

Z =
∫

dϕ e−NV (ϕ). (4.4)

In a second-order transition, the relevant quantities that have to be considered
are the fluctuations of the order parameter around the minimum of the effective
potential

δϕ2 = ⟨ϕ2⟩ − ⟨ϕ⟩2, (4.5)
1Let us stress that ϕ is a global quantity, not a local magnetization field ϕ(x) as in the Landau-

Ginzburg λϕ4 theory. The potential V (ϕ) in Eq. (4.2) is the result of the Landau approximation of
the λϕ4 field theory, which consist in taking ϕ(x) = ϕ for all points in space, hence neglecting the
Laplacian term: this is nothing but a mean-field approximation.
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where the brackets denote the average with respect to the distribution p(ϕ). The
critical behaviour of the susceptibilities, which include the specific heat, is related to
the fluctuations of the field near the critical point. In order to estimate the value of
the exponent νeff we aim to match the fluctuations above and below Tc.

When τ ≳ 0 the effective potential is well approximated by V (ϕ) ≈ 1
2τϕ

2 for
values of the order parameter close enough to the minimum ϕ∗ = 0. The probability
distribution of ϕ is a zero-mean Gaussian distribution and its normalization is given
by

Z ≈
∫

dϕ e− Nτ
2 ϕ2 ∼ 1√

Nτ
. (4.6)

In this regime, the fluctuations of the order parameter centred around the minimum
ϕ∗ = 0 are given by the variance of the Gaussian distribution:

δϕ2
T >Tc

∼ 1/Nτ. (4.7)

We notice that the previous equation is the usual scaling law for the linear suscepti-
bility above the critical point in the standard mean-field ϕ4 theory:

χ ∼ 1
N
τ−γ , (4.8)

with γ = 1, see, e. g. Ref. [Car96].
On the other hand, when τ ≲ 0 the quartic term of the potential becomes

relevant and can not be neglected. In this regime, the fluctuations of the order
parameter are centered around one of the two symmetric minima of the potential,
namely ϕ± = ±ϕ∗, depending on the initial conditions. Since we are interested in
matching the fluctuations above and below the critical temperature, we assume
the temperature to be sufficiently close to Tc in order for the amplitude of the
fluctuations to be of the order of the distance from the origin:

δϕ2
T <Tc

∼ (ϕ∗)2. (4.9)

Clearly, this is no longer valid well below Tc, where the curvature of the potential
has to be considered. The minima ϕ± can be easily determined according to the
saddle-point approximation of the partition function

Z =
∫

dϕ e−NV (ϕ) ≈ e−NV (ϕ∗), (4.10)

where ϕ∗ such that dV (ϕ)
dϕ

∣∣∣
ϕ∗

= 0 is

ϕ∗ =
√

−6τ
g
. (4.11)

Hence, δϕ2
T <Tc

∼ −τ/g. Therefore, we have an estimate of the fluctuations on the
two sides of the critical point, respectively

δϕ2
T >Tc

∼ 1
Nτ

(4.12)

δϕ2
T <Tc

∼ −τ/g. (4.13)
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By matching the previous expressions we find

δϕ2
T >Tc

∼ δϕ2
T <Tc

=⇒ |τ | ∼ 1
N1/2 , (4.14)

yielding the estimate νeff = 2.
Notice, that Eq. (4.11) corresponds to the usual scaling law for the order param-

eter below Tc [Car96]
ϕ ∼ −τβ (4.15)

with exponent β = 1/2 for the mean-field ϕ4 theory. In terms of the exponents β
and γ defined by the usual scaling laws, Eq. (4.14) can be written as

τ2β ∼ 1
N
τ−γ =⇒ |τ | ∼ 1

N
1

2β+γ

.

This allow us to identify the scaling exponent νeff for the critical region of infinite-
dimensional models with the expression

νeff = 2β + γ. (4.16)

Therefore, νeff can be taken just as a shorthand symbol for the expression 2β + γ.
This argument can be straightforwardly extended to more general mean-field

potentials, in order to obtain a range of values for the exponent νeff . Let us consider
the family of potentials

V (ϕ) = 1
2τϕ

2 + g

(2n)!ϕ
2n, (4.17)

where the choice of an even lowest order non-linearity is still compatible with the
phenomenology of a second-order phase transition. The fluctuations of the order
parameter above the critical temperature are the same as in the case n = 2, which
means that the exponent γ = 1 for every n. Below the critical temperature, by using
the saddle-point method we find

ϕ∗ =
[
−(2n− 1)! τ

g

] 1
2(n−1)

. (4.18)

Incidentally, this means that the general expression of the exponent β for the scaling
of the order parameter in a ϕ2n mean-field theory is β = 1/2(n− 1). Therefore, the
amplitude of the fluctuations above and below Tc are given by

δϕ2
T >Tc

∼ 1
Nτ

(4.19)

δϕ2
T <Tc

∼ (−τ/g)
1

(n−1) , (4.20)

and their matching leads to

δϕ2
T >Tc

∼ δϕ2
T <Tc

=⇒ |τ | ∼ 1
N

n−1
n

. (4.21)



4.1 A Mean-Field Argument for the Scaling of the Critical Region 63

The range of values that νeff = 2β + γ can take in a mean-field model can be found
by taking n = 2 and n → ∞ in the previous expression. Thus, we have

1 < νeff ≤ 2 ⇐⇒ 1
2 ≤ 1

νeff
< 1. (4.22)

With respect to this argument, it is clear that the value 1/νeff = 3/2 found in
Ref. [GAL20], is out of the interval found for mean-field values of the exponent νeff.

It is worth noting that the validity of this argument is restricted to the large-N
limit, where the saddle-point approximation holds. This is something that we have
to keep in mind, when comparing results of numerical simulations at finite N with
the estimate on the scaling exponents obtained from the previous argument.

4.1.1 The Random-Energy Model

In order to compare the previous argument with a well-known model we have
performed a numerical analysis of the Random-Energy Model (REM), which is the
reference mean-field model for disordered systems with non-linear interactions. Let
us briefly review the main features of the model, following Ref. [MM09], before
presenting our results.

The REM is the simplest statistical mechanics model of a disordered system
exhibiting a phase transition [GM84]. It was originally introduced by Derrida in
Refs. [Der80; Der81] as an exactly solvable model arising from the limit p → ∞
of the p-spin model. As a result of this procedure, the model does not take into
account any specific interaction among the variables: the energy is a random process
rather than a deterministic function. For this reason, the REM has the remarkable
advantage that results obtained through the replica method can be compared with
formal mathematical approaches, see e.g. Refs. [GD89; Bov06; OK09; Gue13; Dot11].

Given M = 2N energy levels (possibly corresponding to the configurations
of N Ising spin variables) the corresponding energies {Eν}ν∈{1,...,M} are taken as
independent random Gaussian variables2 extracted from the distribution function

p(E) = 1√
πNJ2

exp
(

− E2

NJ2

)
, (4.23)

where the scaling of the variance withN ensures the extensivity of the thermodynamic
potentials and J is a parameter. An instance of the quenched disorder corresponds
to an extraction of the M energy levels. A Boltzmann weight pν = exp(−βEν)/Z is
then assigned to each configuration, where Z is the partition function of the model

Z =
M∑
ν=1

e−βEν . (4.24)

We have developed a simple enumeration algorithm to study the REM, which
works as follows: for each disorder sample of a given system size N the energy levels

2A generalized version of the model, where correlations among the energy levels are introduced
in a hierarchical way, has been formulated by Derrida in Ref. [Der85] and exactly solved by Derrida
and Gardner in Ref. [DG86]. Here, we are just interested in the original version of the model, since
the generalized version is in the same universality class.
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{Eν} are generated, by independently extracting a set of 2N random numbers from
the Gaussian distribution Eq. (4.23) with J = 1. A set of equispaced temperatures
T is generated in the interval [Tmin, Tmax]. The internal energy of the model is
computed as a function of temperature by evaluating the following thermal average

⟨E⟩ =
∑
ν Eν e

−βEν∑
ν e

−βEν
, (4.25)

for each of the β = 1/T values extracted before. The specific heat is computed from
the fluctuations of the internal energy as

cVN,i
(T ) = 1

N

⟨E2⟩ − ⟨E⟩2

T 2 , (4.26)

where the index i accounts for the sample. The procedure is repeated for several
independent extractions of the random energies {Eν}. Eventually, when a sufficiently
large number of samples Nsam is collected for a certain simulated size, the disorder
average of the specific heat is computed by averaging over the samples:

cVN
(T ) = 1

Nsam

Nsam∑
i=1

cVN,i
(T ). (4.27)

The number of samples Nsam is chosen in such a way that the estimated value of
the specific heat remains stable upon fluctuations of the samples included in the
average.

4.1.2 Finite-Size Scaling Analysis

Let us consider momentarily a model defined on a d-dimensional lattice of linear
size L.

We consider an observable YL that in the thermodynamic limit scales like

Y∞(T ) ≈ At−ψ

near the critical point, where t is the modulus of the reduced temperature, A is
some constant and ψ some critical exponent. The fundamental assumption of the
Finite-Size Scaling (FSS) Ansatz [FB72; Car88] is that the behaviour of YL near the
critical temperature is controlled by the ratio ξ∞/L. The parameter ξ∞ denotes the
correlation length of the infinite-size system that scales as

ξ∞(T ) ≈ ξ0t
−ν , (4.28)

where ξ0 is a constant. The previous equation is the definition of the critical exponent
ν governing the scaling of the correlation length. The scaling hypothesis for YL can
be then written as

YL(T ) = LωfY (ξ∞/L), (4.29)

where ω is the critical exponent for the scaling of the peak of the observable and fY
is a dimensionless function that depends on the observable Y . The function fY is
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such that in the limit L → ∞ one recovers the scaling law Y∞(T ) ≈ At−ψ, therefore
ω = ψ/ν [FB72]. Moreover, by exploiting Eq. (4.28) the scaling relation (4.29) can
be rewritten as

YL(T ) = Lψ/ν f̂Y (L1/νtL) (4.30)

where tL = |T/Tc(L) − 1|, being Tc(L) the finite-size critical temperature, and f̂Y is
another scaling function that depend on Y .

It is important to notice that, since the lattice size L is linked to the number of
degrees of freedom N by L = N1/d, the scaling relation for the observable Y can be
written as

YN (T ) = Nψ/νdf̂Y (N1/νdtN ) (4.31)

i.e. in terms of N , rather than L. By considering the well-known hyperscaling
relation νd = 2β + γ [Car96], we find

YN (T ) = Nψ/(2β+γ)f̂Y (N1/(2β+γ)tN ). (4.32)

This is the only possible scaling relation that one can use when studying an infinite-
dimensional model, where there is no lattice size L, but the only finite-size parameter
is N .

In the case of the specific heat, the previous finite-size scaling law takes the
following form (see e.g. [ID89])

cVN
(T ) = Nα/νeff f̂CVN

(N1/νeff tN ), (4.33)

where α denotes the critical exponent of the specific heat peak divergence, and we
have used fact that νeff = 2β + γ. Since the dimensionless function f̂ is scaling
invariant, if one uses the correct values of the exponents α and νeff , the curves
cVN

(T )/Nα/νeff for different values of N should collapse on the same curve.
In Fig. 4.1 we show the finite-size behaviour of the specific heat around the

critical temperature. In the main panel, the specific heat is plotted as a function of
temperature, for different system sizes. The simulated sizes are N = 16, 20, 24, 28,
and for each size Nsam = 100. In the inset data belonging to different sizes are
collapsed near the critical temperature with exponents α = 0.52 ± 0.07 and νeff =
2β + γ = 1.94 ± 0.22. As expected, due to the fact that the scaling hypothesis holds
near the critical point, the collapse of the data succeeds around the peaks of the
specific-heat curves. Moving away from the critical temperature the curves begin
to separate one from another. In the inset we show only the interesting part of the
collapse. At variance with the result found in Ref. [GAL20] for the ML 4-phasor,
the result 1/νeff = 1/2 for the scaling exponent of the critical region is in perfect
agreement with the mean-field argument we have presented at the beginning of
the chapter, in the case of a Landau potential. Moreover, we notice that the same
behavior of REM specific heat divergence, has been found in a 4-phasor model with a
random diluted topology [GAL20]. Both these model belong to the same universality
class, the one of the standard ϕ4 Landau theory.



66 4. Universality Class of the Transition

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

c V

T

N=16
N=20
N=24
N=28

 0

 0.1

 0.2

 0.3

-2 -1  0  1  2

c v
/N

α/
ν e

ff

(T/Tc-1)N1/νeff

Figure 4.1. Specific heat of the Random Energy Model. Different colors represent different
simulated sizes. The simulated sizes are N = 16, 20, 24, 28. (Inset) Specific heat scaled
by Nα/νeff as a function of τN1/νeff . The data have been collapsed with exponents
α = 0.52 ± 0.07 and νeff = 1.94 ± 0.22.

4.2 Simulation with Periodic Boundary Conditions in
the Frequency Space

There are many sources of finite-size effects when simulating a dense model, most of
which can be coped with by using powerful algorithms, such as the PT Monte Carlo
algorithm. However, the ML 4-phasor model has another specific source of finite-size
effects induced by the FMC. As discussed in the previous chapter, because of this
condition, modes near the boundaries of the spectrum (k ≳ 1, k ≲ N) interact much
less than modes whose frequency lays in the middle of the spectrum (k ∼ N/2).
Though their dynamic evolution is taken into account in the simulations, the edge
modes are less and less important as the external pumping increases. To circumvent
this problem we introduce a slightly different model network, imposing periodic
boundary conditions on the frequencies [Nie+22].

In the perspective in which the FMC can be thought as a distance on the graph,
we can introduce a distance with periodic boundary conditions. This has the effect
of eliminating band-edge modes, or, equivalently, it is like considering only modes
at the center of the spectrum, as if pertaining to a larger system. The periodic
boundary conditions on the frequencies are obtained in practice by representing the
frequency indices as variables on a ring, see Fig. 4.2, and taking their distance as
the smallest one between any two of them

|ki − kj | =


|ki − kj | if |ki − kj | ≤ N

2

N
2 − |ki − kj | mod

(
N
2

)
if |ki − kj | > N

2

(4.34)

The generalization to the case of quadruplets is straightforward and will be denoted
as dPB

k . In Fig. 4.3 we plot the distribution of tetrads per mode k. Data in green
pertain to the original mode-locked network built by selecting modes according to
dk = 0; data in purple pertain to the mode-locked network with periodic boundary
conditions on the frequencies, where modes are selected according to dPBC

k = 0. The
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Figure 4.2. Periodic boundary condi-
tions on the mode frequency indexes for
the frequency matching condition. The
modes can be thought as distributed on
a ring, instead of a linear chain.

Figure 4.3. Number of tetrads M to which
each mode k of the size N = 64 partic-
ipate. Green: standard FMC; purple:
FMC with periodic boundary conditions.
Notice the absence of a central peak in
the purple distribution.

distribution is approximately flat in the case of modes selected by the FMC with
periodic boundary conditions, whereas it is peaked on the center of the spectrum in
the original case.

From now on, we will refer to the version of the model with periodic boundary
conditions on the frequencies as PBC, whereas the original one, with free boundary
conditions will be termed FBC.

An important remark is that, for a certain number of modes N , the total number
of quadruplets N∗

4 satisfying the FMC with periodic boundary conditions is slightly
greater than the corresponding number in the case of free boundary conditions,
since all the modes participate in approximately the same number of interactions.
However, the order of the dilution with respect to the fully-connected graph is the
same in the two cases.

It is appropriate to anticipate that the fact that with periodic boundary conditions
the central modes are no more preferred by the interactions clearly affects the intensity
spectrum of the model, by eliminating the global narrowing at high pumping, see
e.g. Fig. 4.4. Actually, one can think that there is no more distinction among central
modes and edge modes, though the interacting quadruplets are still selected through
a deterministic condition. We are loosing the ability of qualitatively reproducing
the central narrowing of random laser spectra, in favor of a significant reduction of
finite-size effects.

4.2.1 Details of the Simulation

We have performed numerical simulations of the ML 4-phasor model, both with free
and with periodic boundary conditions on the frequencies.

First, the number of interacting quadruplets N4 is chosen as a power of 2. Then,
the corresponding size N is selected in such a way that the difference between N4
and the true number of tetrads N∗

4 is minimum, as explained in the previous chapter.
Since N∗

4 is greater with PBC rather than with FBC, we managed to perform
simulations in the PBC case with networks which are larger from the point of view
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N N4 Tmin Tmax NPT NMCS Nrep Ns
18 28 0.35 1.6 50 219 4 400
32 211 0.45 1.6 46 219 4 350
48 213 0.5 1.6 44 220 4 300
62 214 0.55 1.6 42 220 4 250
62 214 0.3 1.6 52 220 4 100
96 216 0.65 1.6 38 220 2 100
120 217 0.7 1.6 36 220 2 75

Table 4.1. Details for the simulations of the ML 4-phasor with free boundary conditions on
the frequencies. Notice that for the size N = 62 a second series of simulation has been
performed with lower Tmin and Tmax, in order to better explore the low temperature
phase.

N N4 Tmin Tmax NPT NMCS Nrep Ns
18 29 0.05 1.2 46 219 2 200
28 211 0.1 1.2 44 219 2 200
42 213 0.2 1.2 40 220 2 150
54 214 0.25 1.25 40 220 4 100
66 215 0.25 1.25 40 220 2 100
82 216 0.3 1.3 40 220 2 100
104 217 0.35 1.3 38 221 2 80

Table 4.2. Details for the simulations of the ML 4-phasor model with periodic boundary
conditions on the frequencies.

of the number of couplings, though with smaller sizes. In both cases, however, the
simulated network with the highest number of quadruplets has N4 = 217.

For each size N of the simulated systems, we have run PT simulations with NPT
replicas of the system at temperatures Ti ∈ [Tmin, Tmax], with i = 1, . . . , NPT. On
top of that, we have performed simulations on Nrep identical replicas of the PT
simulations in order to compute overlap distributions. The temperature interval has
been chosen properly in order to have a sufficient number of replicas above the size-
dependent critical temperature Tc(N) and ensure faster thermalization of the replicas
in the low temperature glassy phase. We have chosen equispaced temperatures with
spacing ∆T = 0.025 and a number of Monte Carlo steps Nswap = 64 after which a
swap of configurations between adjacent heat baths is proposed. Both these choices
have been checked to be compatible with high acceptance ratios for the swaps for
the whole duration of the simulation. Each copy of the system at each temperature
share the same realization of quenched disordered couplings {Jk}. The number of
simulated disordered samples has been chosen in relation with the size of the system.
The values of the simulation parameters are reported in Table 4.1 for the model
with FBC and Table 4.2 for the model with PBC.
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4.3 Numerical Results

We devote this section to the results of the Monte Carlo analysis of the ML 4-phasor
model Eq. (3.1) with FBC and PBC on the frequencies.

4.3.1 Spectra

  

(a) (b)

(c) (d)

T T

T T

Figure 4.4. (a,c) Intensity spectrum for a single realization of quenched disorder of the
ML 4-phasor model with free (periodic) boundary conditions on the frequencies and
N = 120 (N = 104) modes. Color map: temperature T ∈ [0.7, 1.45] (T ∈ [0.35, 1.1]).
(b,d) Intensity spectrum with free (periodic) boundary conditions on the frequencies and
N = 120 (N = 104) averaged over Ns = 75 (Ns = 80) instances of quenched disorder.
All spectra are normalized to their area and modes k are divided by N .

The first observable we display is the intensity spectrum Eq. (3.15). Let us,
first, briefly comment on the relationship between the physical intensities Ik and the
complex amplitude variables of the simulated model (3.1). In real experiments the
heat bath temperature T is typically kept fixed (there are exceptions like, e.g., in
Ref. [WC01]) and the overall system energy E = ϵN is varied by tuning the pumping
power. As already discussed (Chap. 3), in our simulations, ϵ is fixed and kept equal
to one in the spherical constraint,

∑
k |ak|2 =

∑
k A

2
k = N , whereas T is varied.

Therefore, according to P = ϵ/
√
T , a change in the pumping rate P because of a

shift in the energy ϵ pumped into the system corresponds to a shift of 1/
√
T . If
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we rescale the intensity of the mode k as in Eq. (3.15), i.e. Ik = A2
k/

√
T , we have∑

k Ik = N/
√
T = Nϵ, as in Eq. (2.41).

In Fig. 4.4, we show the emission spectra at equilibrium for the ML 4-phasor
model with FBC and PBC, both for a single instance of disorder (panels (a,c)) and
averaged over roughly a hundred instances of disorder (panels (b,d)). The most
relevant difference between the model with FBC and PBC is the complete absence of
global narrowing in the spectrum of the PBC case, which corresponds to the absence
of band-edge modes: all modes interact with identical probability with the rest of
the system.

On the other hand in the FBC case, one can observe the typical central narrowing
occurring in random lasers [Cao+99; Cao+00; Wie08; Gho+14] as the pumping
energy increases. This phenomenon becomes particularly evident in the averaged
spectrum (panel (b)), which is smoother than the single sample one. Finally, we
notice that the averaged spectrum in the PBC case looks like the central part of the
FBC spectrum.

One of the most relevant features of all the intensity spectra shown in Fig. 4.4
is that they become more and more structured and heterogeneous upon decreasing
the temperature. The pattern of the peaks is disordered and strongly depends
on the random sample and on the single dynamic history. A first analysis of this
phenomenon in terms of intensity equipartition breaking among the different modes
has been performed in [GAL20], and a deepening of the collective inhomogeneous
behavior of the modes will be presented in Chap. 5.

4.3.2 Specific Heat

In Figs. 4.5 and 4.6 we show the specific heat respectively for the ML 4-phasor model
with FBC and PBC. In the main panel data are plotted with respect to temperature:
each point corresponds to the equilibrium fluctuations of energy within a certain
heat bath averaged over the disordered samples. In the inset, data are collapsed
according to the scaling hypothesis previously discussed. The finite-size scaling
analysis of the specific heat has been performed in a more refined way with respect
to the simple case of the REM. In order to get the two exponents α and νeff = 2β+γ
of Eq. (4.33) from our numerical data we follow the method proposed in Refs. [al13;
Leu+15].

First, the size-dependent critical temperatures Tc(N) are more precisely assessed
by fitting the points around the peak of each curve in the main panels of Figs. 4.5
and 4.6 with a quadratic function of the temperature fN (T ) = aN + bNT + cNT

2.
The critical temperatures are identified with the maximum of each of the fitting
functions Tc(N) = −bN/(2cN ), with a statistical error estimated accordingly. The
results of this procedure are reported in Table 4.3. The critical temperature Tc(∞)
of the models can be extrapolated from the fit of the finite-size critical temperatures
with the following function: Tc(N) = Tc(∞) + aN−b, where the exponent b gives a
first rough estimate of the critical exponent 1/νeff . The results of the fit are:

FBC: Tc(∞) = 0.86 ± 0.03, b = 1.6 ± 0.5, (4.35)
PBC: Tc(∞) = 0.61 ± 0.03, b = 0.98 ± 0.3. (4.36)
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Figure 4.5. Specific heat cVN
for the ML

4-phasor model with free boundary con-
ditions on the frequencies as a function
of T . Different curves represent different
simulated sizes of the system. The simu-
lated sizes are N = 18, 32, 48, 62, 96, 120.
(Inset) Specific heat scaled by Nα/νeff as
a function of τN1/νeff , with α = 0.48,
νeff = 0.9.
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Figure 4.6. Specific heat cVN
for the ML

4-phasor model with periodic bound-
ary conditions on the frequencies as a
function of T . Different curves rep-
resent different simulated sizes of the
system. The simulated sizes are N =
18, 28, 42, 54, 66, 104. (Inset) Specific
heat scaled by Nα/νeff as a function of
τN1/νeff , with α = 0.27, νeff = 1.16.

As one can see, already from this rough estimate the model with PBC has an
exponent 1/νeff falling inside the interval derived for generic mean-field models (4.14)
at the beginning of this chapter. In comparison to the estimate provided from FBC
data, indeed, there appears to be a drastic reduction of finite-size effects.

Then we take the following Ansatz on the form of the scaling function f̂ in
Eq. (4.33)

f̂(x) = A+ Cx2, (4.37)

where x = N1/νeff tN , with tN computed by using the Tc(N) reported in Table 4.3.
In the previous Ansatz we have not included the linear term, since the points are
translated in order for the peak of each curve to be in the origin and we expect the
linear term not to matter. With this Ansatz the scaling hypothesis for the specific
heat Eq. (4.33) reads as

cVN
(T ) = ÃN + C̃N t

2
N , (4.38)

where X̃N = XNN
α+x
νeff , with XN = {AN , CN} and x = {0, 2}. For each size we

select a temperature interval centered in Tc(N) corresponding to the points plotted
in the insets of Figs. 4.5 and 4.6. We fit the points in the selected interval with the
previous function and determine the values of the coefficients. We notice that the
behaviour of the logarithm of the coefficients absolute value, i.e.

log |X̃N | = log |XN | + α+ x

νeff
logN (4.39)

is linear in lnN ; hence, the estimates of α and νeff can be obtained by linear
interpolation.
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FBC PBC
N4 N Tc ∆Tc N Tc ∆Tc
28 18 0.55 0.04 - - -
29 - - - 18 0.42 0.02
211 32 0.63 0.025 28 0.49 0.02
213 48 0.69 0.02 42 0.52 0.02
214 62 0.75 0.03 54 0.55 0.03
215 - - - 66 0.56 0.04
216 96 0.8 0.07 82 0.56 0.05
217 120 0.83 0.09 - - -

Table 4.3. Values of the critical temperatures for each simulated size of the ML 4-phasor
model with fixed and periodic boundary conditions on the frequencies.

For the systems with FBC, this finite-size analysis provides the following values
for the critical exponents

FBC: α = 0.48 ± 0.05, 1/νeff = 1.1 ± 0.16. (4.40)

With respect to the estimate 1/νeff ≃ 3/2 found in [GAL20], a much larger statistics
allows to find an estimate of 1/νeff closer to, and compatible with, the mean-field
threshold, suggesting that deviations from mean-field theory might be due to pre-
asymptotic effects in N . The confirmation that this is, indeed, the origin of the
anomalous value previously found for 1/νeff comes from the analysis with PBC. In
this case, the critical exponents turn out to be

PBC: α = 0.27 ± 0.05, 1/νeff = 0.86 ± 0.14. (4.41)

With PBC we find an estimate of 1/νeff well below the threshold for a mean-field
universality class. Therefore, up to the precision of our analysis, despite being
possibly still of a different universality class with respect to the REM, for which
1/νeff = 1/2, we can assess the mean-field nature of the glass transition in the ML
4-phasor model.

4.3.3 Overlap Distribution Functions

In this section we complete the study of the glass transition in the ML 4-phasor
model, by presenting results of our numerical simulations about the first-order nature
of the transition.

Parisi overlap

Let us first discuss the case of the Parisi overlap distribution (3.17). The protocol
used in numerical simulations to measure overlaps corresponds to the definition of
replicas as independent copies of the system with the same quenched disorder. For
each sample, i.e. each realization of disorder, we run dynamics independently for Nrep
replicas of the system, starting from randomly chosen initial phasor configurations.
In this way, replicas explore different regions of the same phase space, passing
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Figure 4.7. Overlap distributions for five instances of disorder and for the average over
all instances at T = 0.25 ≃ 0.45 Tc. Simulation size N = 54 of the ML 4-phasor model
with periodic boundary conditions on the frequencies.

through configurations typically belonging to separated equilibrium states, if there
are many of them, and, sometimes, to the same state.

To study the behavior of the PJ(q) we choose Nrep = 4, so that at any measure-
ment time six values of the overlap are available qαβ = {q01, q02, q03, q12, q13, q23}.
Hence, passing from two replicas to four increases the statistics by a factor six. In
order to accumulate statistics, we measure the value of qαβ using N equilibrium,
time uncorrelated, configurations of replicas at the same iteration of the simulated
dynamics, see Eq. (3.12). Hence, for each disordered sample the PJ(q) histograms
are built with N ×Nrep(Nrep − 1)/2 values of the overlap.

The overlap distribution functions PJ(q) are computed as the normalized his-
tograms of the overlaps for each one of the samples. This has been done for each sim-
ulated size of the ML 4-phasor model with both FBC and PBC. In Fig. 4.7 we present
the overlap distributions for five samples at the temperature T = 0.25 ≃ 0.45Tc of
the size N = 54 of the ML 4-phasor model with PBC, together with the overlap
distribution averaged over 100 samples. Given the fluctuations of PJ(q) among the
different samples, it is clear that the only physical quantity to be considered in order
to assess the glass transition is the averaged P (q) ≡ PJ(q).

This is particularly important in the case of the overlap distribution function,
since, it is not a self-averaging quantity [MPV87], i.e., the average P (q) cannot be
reached simply by increasing the size of the system over which a single sample PJ(q)
is built, as, for instance in the case of the free energy or of the specific heat, but
only by averaging over disorder.

In Fig. 4.8 and Fig. 4.9 the average overlap distribution function of the ML 4-
phasor model with FBC and PBC are, respectively, reported for the whole simulated
temperature range in systems whose size correspond to N4 = 214, i.e. respectively
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eraged over Ns = 100 instances of dis-
order. Color map: same as Fig. 4.4.
The blue curve corresponding to the low-
est temperature is at T ≃ 0.4Tc, with
Tc = 0.86(3).

 0.001

 0.01

 0.1

 1

 10

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

P
(q

)

T

q

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Figure 4.9. Parisi overlap distribution for
the size N = 54 of the ML 4-phasor
model with with periodic boundary con-
ditions on the frequencies. The distribu-
tion is averaged over Ns = 100 instances
of disorder. Color map: same as Fig. 4.4.
The blue curve corresponding to the low-
est temperature is at T ≃ 0.45Tc, with
Tc = 0.61(3).

N = 62 and N = 54 spins. The reduction of the finite-size effects obtained by using
periodic boundary conditions in the choice of interacting modes leads to display
P (q) with more distinct secondary peaks in the case of the ML 4-phasor model with
PBC.

We have showed the overlap distribution functions for the N = 62 (for the
model with FBC) and N = 54 (for the model with PBC), because these are the
largest sizes for which we performed simulations with Nrep = 4. However, it can
be useful to show also the behavior of the P (q) for a higher size. In Fig. 4.10
we show the overlap distribution function for the size N = 82 of the model with
periodic boundary conditions. One can see that the side peaks of the distribution
at low temperatures are not appreciably more pronounced than than those of the
distribution for N = 54. However, a reduction of the finite size effects with respect
to N = 54 can be appreciated at high temperature, where the distribution is still a
Gaussian, but it slightly narrows around the peak in q = 0. We expect that in the
large N limit the overlap distribution function at high temperature becomes a delta
function peaked in q = 0.

Plaquette overlap and IFO

The study of the plaquette overlap and IFO distribution functions has been performed
both for the model with FBC and PBC. In the following we only display results for
the PBC case, which is less affected by finite-size effects.

In Fig. 4.11 the plaquette overlap distribution is plotted for all the simulated
temperatures and for the system size N = 54. For each of the N uncorrelated
configurations at equilibrium, the plaquette overlaps are computed over N4 ∼ O(N3)
quadruplets, leading to a reduction of the statistical error on the overlap values.
Then, for each sample, the distribution is computed with N × Nrep(Nrep − 1)/2
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Figure 4.10. Parisi overlap distribution for the size N = 54 of the ML 4-phasor model
with with periodic boundary conditions on the frequencies. The distribution is averaged
over Ns = 100 instances of disorder. Color map: same as Fig. 4.4.

values of the plaquette overlap. Data in figure are averaged over Ns = 100 disordered
samples.

In the low temperature region, the distribution clearly develops a nontrivial
shape, with a heavy tail for values of Q > 0. The presence of the three visible
peaks in the distribution tail at the lowest temperatures is a consequence of the
single sample behavior of the P (Q), which we present in Fig. 4.12 for the simulated
temperature T = 0.25. As one can see, the shape of the distribution dramatically
changes from sample to sample: in particular, for some instances of disorder a single
peak, for others two peaks are displayed in the P (Q), at sample dependent positions.
The effect of taking the average over all the simulated samples is reported in the
sixth panel in Fig. 4.12, which corresponds to the lowest T curve in Fig. 4.11. We
notice that, even with Ns = 100 disordered samples, the average is far from a smooth
function, displaying the strong lack of self-averaging of the plaquette distribution.

In Fig. 4.14 the averaged IFO distribution is displayed for the system size N = 54,
at all simulated temperatures. Even with the significant reduction of finite-size effects
obtained through the PBC, the distribution obtained with our data at equilibrium
does not show clear side peaks in the low temperature region. Actually, side peaks
are more evident very close to the transition temperature (gray curves in figure),
rather than for the lowest simulated temperatures. Once again, we get a clear
understanding of the averaged distribution by looking at single instances of disorder.
In Fig. 4.14, one can see that, while many samples have a distribution which is still
peaked in C = 0, a signature that they may not have entered in the glassy phase yet,
in many others the P (C) has developed nice side-peaks at the temperature T = 0.25.
However, when taking the average, the combined effect of samples of the first kind
and of the variable position of the peaks in samples of the second kind, leads to the
smoothed and almost flat shape of the IFO distribution at low temperature.
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Figure 4.11. Plaquette overlap distribution for the size N = 54 of the ML 4-phasor model
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over Ns = 100 instances of disorder. Color map: same as Fig. 4.4. The blue curve
corresponding to the lowest temperature is at T ≃ 0.45Tc, with Tc = 0.61(3).
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Figure 4.12. Plaquette overlap distributions for five instances of disorder and for the
average over all instances at T = 0.25 ≃ 0.45 Tc. Simulation size N = 54 of the ML
4-phasor model with periodic boundary conditions on the frequencies. As for the Parisi
overlap distribution, each sample exhibits a particular distribution shape, with one or
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Chapter 5

Breaking of Equipartition and
Pseudo-Localization at the
Transition

The present chapter is devoted to the study of a particular phenomenon taking place
in the ML 4-phasor model, which has been mentioned previously in this work, when
describing the intensity emission spectra of random lasers: intensity localization of
light, else termed power condensation [ACL15b; AIL15b], and its relationship to the
high pumping replica symmetry breaking (RSB) random lasing phase.

Localization is a widespread phenomenon in physics, which has always been
related to the breaking of ergodicity. In the pioneering work of Anderson on semicon-
ductors, the spatial localization of the electron wavefunction induced by a large degree
of disorder was identified as the underlying mechanism for a semiconductor/insulator
transition [And58]. The absence of diffusion in the insulating-localized phase was
interpreted as a clear manifestation of dynamical ergodicity breaking. Besides the
seminal work of Anderson, localization was related to ergodicity breaking also in
classical systems, since the famous numerical study of Fermi-Pasta-Ulam-Tsingou
(FPUT) on the anharmonic chain [Fer+55]. In this case, localization was observed
in the Fourier space of the chain modes. Starting from an atypical initial condition,
e.g. only the lowest harmonic excited, one would expect that a slight anharmonicity
is sufficient to cause the system to relax on a state where the energy is equally
divided among all the modes1. Contrary to expectations, the system showed a
recurrent dynamics for all the duration of the experiment, with no sign of relaxation
to equipartition. Therefore, localization was coming along with dynamical ergodicity
breaking also in the case of energy localization in the Fourier power spectrum.

Ergodicity breaking was understood as a purely dynamical phenomenon until
the ’80s, when the theory of replica symmetry breaking was established as a new
thermodynamic paradigm and statistical ensembles formalism for ergodicity breaking
transitions in complex disordered systems. Quite interestingly, while localization

1If one initializes a harmonic chain on a eigenmode of the Hamiltonian, the time evolution will
leave the system on that eigenmode, resulting in a breaking of ergoditicy. Nonlinearity is believed
to facilitate the recovery of ergodicity, because it introduces a coupling which makes the eigenmodes
of the unperturbed Hamiltonian more connected.
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phenomena in quantum many-body systems have been widely investigated during
the last decades [Alt+97; BAA06; NH15; RMS15; VR16; AP17; AL18], they have
seldom been probed in disordered systems, apart from the attempts of Refs. [MS18;
GAL20]. The lack of a broad analysis of localization phenomena in the context of
disordered glassy systems is mainly due to the nature of the variables which are
customary for these systems: Ising, XY or Heisenberg spins, all locally bounded,
|s⃗| = 1. In those models, such as the spherical p-spin model, where variables are
used with continuous locally unbounded magnitude as a proxy for magnetic spins
in spin-glasses or density fluctuations in structural glasses, in order to be able to
perform analytical computations, the interaction network is usually fully connected,
thus hindering any sort of magnitude localization. Indeed, this kind of mean-field
representation on a complete graph, together with a local potential (soft spins) or a
global constraint (spherical spins) guarantees magnitude equipartition.

Therefore a careful investigation of how magnitude localization coexists with
replica symmetry breaking in disordered systems is a gap that needs to be filled. Once
again, the spin-glass theory of random lasers represents a very fortunate research
field for this kind of analysis. The fundamental variables, i.e. the amplitudes of the
light modes, are naturally continuous and locally unbounded; the global constraint
which they are subjected to is a quite natural requirement for the stationary regime
of a lasing system (see Chap. 2); the presence of dilution is a direct consequence of
the specific selection rule in light mode coupling, i.e. the FMC. Hence, these systems
have all the ingredients necessary to exhibit a power condensation transition.

As a disclaimer, it is worth stressing that this is not the generalization to light
waves of the spatial wavefunction localization occurring in Anderson theory, that is
known to be inhibited in 3D random lasers because of the vectorial nature of light
waves [SS14; Spe+16]. Rather, it is a condensation of the overall magnitude on a few
variables in a set of locally unbounded variables subjected to a global constraint, i.e. a
global conservation law. This kind of condensation has already been observed and
studied analytically in non-interacting systems [MEZ05; EMZ06; TS01]. When the
value of this globally conserved quantity exceeds a given (non-universal) threshold
the system undergoes a transition where a macroscopic fraction of the conserved
quantity concentrates on a finite portion of the system. Given the clarification, from
now on we will use the terms ‘localization’ and ‘condensation’ interchangeably to
refer to the phenomenon of our interest.

This chapter is organized as follows: first, a few details are provided regarding
the condensation transition in non-interacting systems, pointing out the emergence
of a pseudo-localized phase, which has been discovered in Refs. [Gra+21b; Gra+21a];
then we clarify to what extent, in the presence of an interaction network, the order
of dilution is key to understand possible regimes of equipartition or localization of a
globally conserved quantity; finally, results from the numerical simulations of the ML
4-phasor model are presented, revealing the presence of a hybrid phase analogous to
the pseudo-localized phase of non-interacting systems, where the intensity of light
modes is neither equipartitioned among all modes nor really localized on a few of
them.
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5.1 Pseudo-Localization in Non-Interacting Systems
Condensation of a global quantity on a finite number of degrees of freedom has been
found and very precisely described in the framework of large deviation calculations
and ensemble inequivalence in the case of mass-transport models [MEZ05; EMZ06]
or for bosonic condensates in optical lattices described by the Discrete Non-Linear
Schrödinger Equation (DNLSE) [TS01]. The fundamental ingredient involved in the
localization phenomenology for non-interacting systems is the presence of a global
constraint.

Let us consider, for instance, the DNLSE. We focus on the infinite temperature
limit in which the hopping term, i.e. the kinetic two-body term in the Hamilotnian
of the DNLSE, can be neglected. In this case, the partition function of the model
reads

Ω(µ,E) =
∫ N∏

i=1
dψidψ̄i e−µ

∑N

i=1 |ψi|2 δ

(
E −

N∑
i=1

|ψi|4
)
, (5.1)

where µ is the chemical potential. Clearly the quantity

A =
N∑
i=1

|ψi|2, (5.2)

represents the mass of the condensate, so that the partition function in Eq. (5.1)
corresponds to an ensemble where exact conservation of energy is enforced by means
of a Dirac delta function, whereas mass is conserved only on average by means of
a field µ. In the following, we will refer to the former way of imposing a global
conservation law as “hard” constraint and to the latter as “soft” constraint.

In the case of the DNLSE, as in all cases where it takes place, the physical quantity
that localizes is the one controlled by the hard constraint, hence in this case it is the
energy. It is only thanks to the global action of the constraint on the total energy that
configurations with a strongly heterogeneous distribution of energy on lattice sites
are allowed. The analytical calculations of Refs. [Gra+21b; Gra+21a] show that as
soon as energy is constrained above a certain critical value, E > Ec, these localized
configurations dominate the partition function. It can be shown analytically, but it
can be easily guessed by looking at Eq. (5.1), that localization cannot take place for
a quantity controlled “on average”. It is not possible to have strongly inhomogeneous
fluctuations and/or localization of something which is controlled homogeously by
means of a Lagrange multiplier like the chemical potential in Eq. (5.1). This is
precisely the same mechanism characterizing the Bose-Einsten condensation, which
is a form of localization in Fourier space: the condensed phase cannot be reached
by controlling density with a chemical potential; density must be tuned directly,
for instance, by decreasing the volume for a given number of bosons [Hua87]. The
fact that the Bose-Einstein condensation cannot be implemented by tuning the
chemical potential of a reservoir in contact with the system is analogous to the
fact that energy localization cannot be achieved by tuning the temperature of a
thermostat, i.e. by studying the partition function where conservation of energy is
imposed “on average”, as exp(−βH), rather than exactly, as δ(E − H). In both
the above examples localization entails lack of statistical ensemble equivalence: for
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the energy localization in the DNLSE it is the lack of equivalence between fixed
temperature (canonical) and fixed energy (microcanonical) ensembles, for the Bose-
Einstein condensation it is the lack of equivalence between fixed chemical potential
(grancanonical) and fixed density (canonical) ensembles.

One important feature that has been predicted for the DNLSE [Gra+21b;
Gra+21a] is the existence of a pseudo-localized phase similar to what we are going
to show in numerical simulations of the ML 4-phasor model. The peculiarity of the
localization phenomenon in the case of the DNLSE is that it takes place in two
steps. First, by increasing the energy, i.e. the quantity which controls localization,
one first encounters a second-order transition at a value of the energy – Eth – where
the equivalence of ensembles breaks down and temperature becomes negative. Then,
at a larger value of energy, Ec > Eth, there is a first-order transition to a localized
phase. For E ∈ [Eth, Ec] the system finds itself in a pseudo-localized phase, where a
thermodynamic anomaly is indicated by the lack of ensemble equivalence and the
presence of negative temperature, but localization has not been really achieved yet.

The main difference between the ML 4-phasor model of the glassy random
laser and DNLSE, is that in the random laser case the joint distribution of the
variables over which the global constraint is imposed is not factorized. Therefore,
the analytical results discussed in [Gra+21b; Gra+21a] cannot be straightforwardly
extended to this case. In the following, first we try to derive some understanding of
localization in generic interacting systems; then, we resort to numerical simulations
in order to probe the localization transition in the ML 4-phasor model.

5.2 Scaling Argument for the Occurrence of Intensity
Localization in Interacting Systems

In this section we go through a scaling argument on generic p-spin interacting systems
(both with ordered and disordered interactions) with continuous variables and a
global constraint, of which the ML 4-phasor model with the spherical constraint
(2.41) is a special case.

Let us consider the p-spin Hamiltonian

H[σ] = −
#NA∑
k1...kp

Jk1...kp σk1 . . . σkp , (5.3)

whose N continuous spin variables σ are subjected to a generic ρ-metrical constraint
(e.g., ρ = 2 is the case of the spherical constraint)

N∑
i=1

σρi = N, (5.4)

where NA on top of the sum, with A ∈ [1, p], denotes the scaling with the size of the
number of p-uples contributing to the energy and the spin indices ki run from 1 to
N . If A = p we have a fully-connected interaction graph, i.e. each spin contributes
in (Np−1) p-uples. At the other extreme, if A = 1 the graph is sparse, i.e. each spin
only interacts in a finite number of p-uples, not growing with the size of the system.
All dilutions in between will be considered hereafter.
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For simplicity, we will take the variables as real valued here, yet keeping the
word intensity for the spin magnitude |σ|. We notice that the glassy random laser
is a model belonging to this family, with p = 4 but with complex spins. Though
complex variables yield new physical features (see Chap. 2), we stress that these are
not relevant for what concerns the influence of connectivity on the possible onset of
intensity localization.

5.2.1 Ordered Couplings

First we consider the ordered case Jk1...kp = J . The typical ground state spin
configurations in the canonical ensemble, where equipartition is expected to hold (in
the average, not strictly), are those minimizing Eq. (5.3). The energy is extensive

E = H[σgs] = O(N)

provided that the coupling constant scales as

J ∝ 1
NA−1 . (5.5)

In the occurrence of intensity localization, that is, if only a few modes take the
overall intensity, equal to N according to Eq. (5.4), whereas all the other are zero,
we are interested in the energy contribution of a localized spin configuration. First
of all, let us notice that in order to have a non-zero contribution the intensity at
least p coupled spins must localize. If we represent by □ such a localizing p-uple,
the intensity localized configuration is

{σloc} : σk∈□ ∝ N1/ρ, σk/∈□ = 0. (5.6)

According to Eqs. (5.3), (5.5) the energy of such a configuration of spins scales
with N like

Eloc = H[σloc] = O
(
Np/ρ

NA−1

)
.

To figure out whether intensity condensation might occur and dominate, one
eventually has to compare the scaling behaviors of the energies of an equipartitioned
and a localized configuration:

O(N) vs O(N
p
ρ

+1−A).

Hence, we notice that the kind of global constraint imposed is also key to understand
whether a localization transition may take place. The following cases occur for ρ = 2,
depending on the interaction connectivity scaling NA:

1. A > p/2. Any possible intensity localized configuration of spins would yield
subextensive contributions to the energy. The equipartition regime is, therefore,
dominant. The case A = p is the fully connected interaction graph.

2. A = p/2. Both kinds of spin configurations yield an O(N) contribution to the
energy. In this case a pseudo-localized phase might occur.

3. A < p/2. Intensity localization provides the most prominent contribution to
the energy, that is, O(N>1). The case A = 1 is the sparse case.
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• Ad ogni esercizio svolto correttamente è assegnato il voto 31. Agli esercizi sbagliati o incom-
pleti non viene assegnato alcun voto e non contano in alcun modo ai fini della valutazione
finale dell’esame.

2

|ak| ' 1, 8 k

c =
# couplings

# modes

|ak2⇤| = O(
p

N), |ak/2⇤| = 0
c ⇠ N
c ⇠ N, N2

c ⇠ N2

c ⇠ N3

c ⇠ N3, N4

c ⇠ N4

I seguenti esercizi - assolutamente opzionali a i fini dell’esame - possono essere svolti dagli
studenti ed inviati via email a luca.leuzzi@uniroma1.it in copia scansionata oppure scritti in
latex e compilati in pdf. A tal fine si rende disponibile anche il file sorgente esercizi.tex.

Gli esercizi sono assegnati via via che viene svolto il programma e vengono raggruppati in quattro
o cinque gruppi con date di scadenza distinte e progressive. Gli esercizi consegnati in tempo e svolti
correttamente contribuiranno positivamente al voto di esame, con le seguenti prescirzioni.

• Gli esercizi danno un bonus se sono corretti. Non ci sono malus.
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Figure 5.1. Schematic representation of the possible regimes of low temperature intensity
equipartition, intensity localization or pseudo-localization with respect to the coupling
dilution in the 4-spin spherical model, both for the ordered unfrustrated version (left)
and the quenched disordered, frustrated one (right). The case of the mode-locked random
laser whose connectivity c ∼ N3 is pointed by the arrow. Here, we have used the phasor
notation a, instead of σ, used in the text for real variables.

5.2.2 Quenched Disordered Couplings

If the interaction couplings Jk1...kp are quenched disordered, independently distributed
and with zero mean Jk1...kp = 0, the typical ground state of the Hamiltonian (5.3) is
extensive – E = H[σgs] = O(N) – if the variance of the distribution of the couplings
scales like

J2
k1...kp

∝ 1
NA−1 . (5.7)

If the total intensity of the system is localized in a single interacting p-uple, as in
(5.6), Eqs. (5.3), (5.7) imply that the energy scales with the size like

Eloc = H[σloc] = O
(

Np/ρ

N (A−1)/2

)
.

Comparing the equipartitioned contribution E = O(N) and the localized contribution
Eloc we find for ρ = 2 the following three regimes as the exponent A varies:

1. A = p. Localized energy contibutions are subextensive. The equipartition
regime is dominant. This is the fully connected interaction graph case.

2. A = p− 1. Both kinds of spin configurations yield an O(N) contribution to
the energy. This is the case, e.g., of the mode-locked glassy random laser,
where p = 4, A = 3. In this case one might conjecture the occurrence of a
pseudo-localized phase.

3. A < p− 1. Intensity localization provides superextensive contributions to the
energy.
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In figure (5.1) we summarize the scaling argument predictions on a pictorial
diagram with the known cases of equipartition, localization and pseudo-localization
for the 4-spin model.

5.3 Evidence of Pseudo-Localization in the ML 4-Phasor
Model

Let us turn back to our system. Besides the presence of interactions, there is another
important difference between the glassy random laser and the case of the DNLSE.
In the partition function of the ML 4-phasor model, which reads as

ZN (β, E) =
∫ N∏

k=1
dakdāk e−βH[a]δ

(
E −

N∑
k=1

|ak|2
)
, (5.8)

with H given by Eq. (3.1), the conservation of energy is realized on average, by
imposing homogeneously a temperature for all interacting quadruplets, while the
conservation of the total intensity is realized exactly, by means of the hard global
constraint (2.41). It is then possible to guess that in the ML 4-phasor model a
localization transition might occur at the level of intensity, rather than energy. If
that were the case, though, the algorithms used in our numerical simulations would
not be suitable anymore. An intensity localized system, indeed, would display a
small, fixed number of variables whose energy fluctuations are no longer dependent
on temperature.

In a way analogous to the condensation in the DNLSE, intensity localization
is achieved by tuning the physical quantity E = ϵN controlled by the overall
hard constraint (2.41). More precisely, when a certain threshold is overcome in
the controlling parameter of the constraint, E > Ec, configurations for which a
finite amount of the overall intensity is stored in O(1) quadruplets might become
thermodynamically dominant. However, as already discussed in Chap. 3, numerical
simulations are performed by keeping the optical power fixed (ϵ = 1) and varying the
temperature T or the pumping rate P. We notice that this is equivalent to sample
configurations from the equilibrium distribution

P [â] ∝ e−H[â]δ

(
PN −

N∑
k=1

|âk|2
)

(5.9)

as one can see by performing the change of variables âk = akβ
−1/4. A decrease

(increase) in T (in P) can be read off equivalently as an increase of the spherical
constraint value. Therefore, the occurrence of a localization transition will be
revealed in terms of a critical temperature Tc or equivalently a critical pumping rate
Pc.

Qualitative information about the presence of a localization transition can be
already traced in the behaviour of the emission spectra, when the temperature is
lowered (or equivalently the pumping rate is increased), see Fig. 1.1. It can be very
clearly seen that, as the pumping is increased the overall intensity is heterogeneously
distributed among the modes. This might hint that a localization phenomenon in
intensity occurs, but it is not enough to establish it.
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In the following sections the analysis is refined by introducing and studying
suitable observables for localization and equipartition breaking transitions. Data
are referred to the simulations of the ML 4-phasor model with PBC, whose details
are reported in Table 4.2.

5.3.1 Participation Ratio

Whether the system truly localizes or not can be ascertained only from the study of
the participation ratio, i.e. the localization order parameter, which for our system is
defined as

Y2 =
〈 ∑N

k=1 I
2
k(∑N

k=1 Ik
)2

〉
= 1
N2

〈
N∑
k=1

I2
k

〉
, (5.10)

where Ik = |ak|2 and we have used the fact that

N∑
k=1

Ik = N (5.11)

because of equation (2.41), with ϵ = 1. In this case, it is irrelevant to normalize
the intensities to the square root of the temperature (as done for the spectra in
Eq. (3.15)), since this factor cancels out between numerator and denominator. As
in the previous chapters, ⟨·⟩ denotes the thermal average, i.e. the average computed
over all the uncorrelated equilibrium configurations, which have been sampled.

The dependence on the number of degrees of freedom of Y2 can be easily rational-
ized in two extreme situations: equipartition and localization of the mode intensity.
Let us consider localization first: in this case a finite fraction of the whole intensity
is taken by a finite number of modes that does not increase with N . That is, in the
localized phase, a few modes k have intensity

Ik ∝ N, (5.12)

whereas all the others have I̸=k = 0. Then, we have

N∑
k=1

I2
k ≃

#loc modes∑
k=1

I2
k ∝ N2.

This implies that in a localized phase the participation ratio Y2 in the limit N → ∞
is a constant that does not depend on N :

localization ⇐⇒ lim
N→∞

Y2 = const. (5.13)

On the contrary, in the equipartition phase of nearly homogeneous spectral intensities,
any of the N modes has intensity Ik = O(1), so that in the thermodynamic limit

equipartition ⇐⇒ Y2 ∼ 1
N
. (5.14)

Now we are ready to display, in Fig. 5.2, the first important quantitative informa-
tion obtained from the study of the equilibrium distribution of the intensity among
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Figure 5.2. Main: Participation ratio NY2 of the mode intensities versus T at different
systems sizes N . The vertical line is the asymptotic value of the critical temperature
for the system Tc ≃ 0.61 (from [Nie+22], see also Table 4.3). Inset: scaling of the
participation ratio near the peak for the three largest sizes, as NΨY2 versus T , with
Ψ = 0.35 > 0. The peak height scaling is less than N , thus Eq. (5.10) tends to zero as
N → ∞.

modes. In the figure we have plotted for convenience the average over quenched
disorder of NY2(T ), which we expect of O(1) in the equipartition phase and of
O(N) in a possible localized phase. We observe that in the high temperature phase
NY2 ∼ const and, therefore, the system is in the equipartition regime. Below the
critical point, indicated by the vertical line at Tc = 0.61, which is the glass transition
temperature (see [Nie+22]), we find, instead, an anomaly. Despite the main panel
of Fig. 5.2 gives a clear indication that below the glass temperature NY2(T ) grows
with the system size, the collapse of data in the inset shows that the scaling of the
growth is definitely less than N . Therefore, the regime is not localized, though it
is not equipartitioned, either. In fact, for T ≲ Tc it occurs to be NY2(T ) ∼ N1−Ψ

with a value close to Ψ ≃ 1/3. This means that, since

Y2 = 1
N2

N∑
k=1

⟨|ak|4⟩ ∼ N−Ψ,

those modes k on which the intensity is mostly concentrated scale like

|ak|4 ∼ N2−Ψ → |ak|2 ∼ N1−Ψ/2. (5.15)

The difference from the localization scaling N cannot be accounted for as a
finite size effect, as we might hypothesize in the estimate of critical exponents
of a second-order phase transition. These effects are usually due to the cutting
of long-wavelength fluctuations in a finite size simulation lattice. Localization is,
instead, controlled by a first-order mechanism where a finite fraction of the whole
localizing quantity concentrates on a few variables in such a way that Y2 is strictly
independent from N . In the glassy phase we, thus, have a phase that might show
some signature of incipient localization but it is certainly not localized in intensity.
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Figure 5.3. Main: Effective number of degrees of freedom neff versus T for the mode
intensities |ak|2 for different systems sizes. Inset: NαY2 versus T , α = 0.33.

Intensity equipartition is broken but no finite group of modes (i.e. independent of
N) takes all the intensity of the system.

5.3.2 Spectral Entropy

What can play the same role played by temperature in DNLSE to help us recognizing
that we are in a non-trivial phase, rather than in a localized one? A possible answer
is to look for an indicator of equipartition. In Ref. [GAL20] both the spectral entropy
and the effective number of degrees of freedom were considered for the ML 4-phasor
model. The spectral entropy is defined as

Ssp = −
N∑
k=1

Îk ln(Îk), (5.16)

where Îk is the thermodynamic averaged intensity of the mode k normalized to the
total intensity of the spectrum

Îk = ⟨Ik⟩∑N
k=1⟨Ik⟩

= ⟨|ak|2⟩
Nϵ

. (5.17)

The effective number of degrees of freedom, which is a function of the spectral
entropy and is more easily understandable, is defined as

neff = eSsp

N
.

The behaviour of neff, averaged over quenched disorder, is reported in Fig. 5.3 and
shows the clear signature of a phase transition, where equipartition breaks down, at
the same critical temperature where the glass transition takes place. The transition
is first-order, as shown by the analysis of the Binder and bimodality parameters
of the probability distribution of neff. This study has been performed on the first
simulations of the ML 4-phasor model in Ref. [GAL20].
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We notice that in the high temperature phase all the curves perfectly approach
one, while they decrease to a size-dependent quantity for low temperatures: the larger
the size, the steeper neff decreases. In the inset, we plot the rescaled effective number
of degrees of freedom for the three largest sizes. In the low temperature phase they
collapse on each other with an exponent2 α = 1/3. Thus, in the thermodynamic
limit, this quantity tends to 0 in the low temperature phase, marking the breaking
of equipartition.

The transition taking place at Tc, besides being a static glass transition as it
has been discovered in Refs. [GAL20; Nie+22] and discussed in the previous two
chapters, can be characterized as the transition to a phase with a thermodynamic
anomaly which consist in the breaking of equipartition, in an analogous way for
which we have a breaking of ensemble equivalence in a non-interacting system such
as the DNLSE.

5.3.3 Amplitude Marginal Distribution

The fact that this thermodynamic anomalous phase with lack of equipartition is,
indeed, a phase with incipient localization is signaled, as in the case of DNLSE
(see [Gra+21a]), by the non-monotonic shape of the spectral intensity distribution
P (Ik). In Fig. 5.4 we display P (Ik) for single instances of quenched disorder for the
size N = 82 at the lowest simulated temperature T = 0.3. We notice that some
of the samples (such as sample 2,3 and 4) exhibit a clear peak in the tale of the
distribution corresponding to accumulation of the intensity on a single mode. The
position of the peak is sample dependent. On the other hand, many samples behave
as sample 1, exhibiting only a deviation from monotonicity in the marginal intensity
distribution. Other samples behave in an intermediate way, such as sample 5: the
peak is developing, but still barely visible. The effect of averaging over disorder is
reported in the sixth panel. Finally, Figs. 5.5 shows the behavior of the averaged
P (Ik) for the size N = 82 when lowering the temperature.

Notice that the variance of the marginal distribution of the intensities is related
to the participation ratio (5.10). This can be seen in the following way: by denoting
the sample average over P (Ik) as ⟨·⟩I , which accounts both for the thermal average
and for the average over the modes, the variance of Ik is given by

σ2
I = ⟨(Ik − ⟨Ik⟩I)2⟩I = ⟨I2

k⟩I − ⟨Ik⟩2
I

= 1
N

〈
N∑
k=1

I2
k

〉
− 1
N2

〈
N∑
k=1

Ik

〉2

= 1
N

〈
N∑
k=1

I2
k

〉
− 1, (5.18)

where the spherical constraint has been used. Therefore, we have

1
N

N∑
k=1

I2
k = σ2 + 1. (5.19)

2In order to avoid any possible source of confusion, we stress that this exponent has nothing to
do with the exponent α of the specific heat peak scaling, obtained in the previous chapter.
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Since Y2 has the expression in Eq. (5.10), we find that NY2 = 1 + σ2
I .
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Figure 5.4. Marginal intensity distributions for single instances of the quenched disorder.
Data belong to the simulated size N = 82 at the temperature T = 0.3. The sixth panel
contains the average over all the disordered samples, which corresponds to the lowest
temperature intensity distribution in Fig. 5.5.
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high temperature the distribution is exponentially decaying as revealed by the linear
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from exponential decay can be observed (blue curves) in relation to the onset of the
pseudo-localized phase.
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Part II

Analytical Approach
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Chapter 6

The Merit-Factor Problem

In the first part of this work, we have presented results obtained through Monte
Carlo numerical simulations of the ML 4-phasor model for optical waves in random
media. In particular, we have shown that, notwithstanding the deterministic dilution
of the interaction network induced by the FMC, the model is still compatible with
mean-field theory, though, up to the accuracy of our analysis, it may not be in the
same universality class as the REM. However, as already mentioned, the analytical
solution of the model is not achievable through standard mean-field techniques
for disordered systems. Consider, for instance, the replica method: due to the
dilution, the heterogeneities induced by the quenched disorder do not disappear
as in fully connected mean-field models after averaging over the couplings and a
nasty dependence on the site indices remains in the computation of the free energy,
which impairs the introduction of the usual global order parameter of the glass
transition, i.e. the configuration overlap between replicas. Much of this discussion
will be made more explicit in Chap. 7. Furthermore, implementing the model on
a sparse graph and adopting the cavity, or belief propagation, methods [MG01;
Fra+01] is not possible in this case, because the variables are not locally constrained
and intensity localization would occur because the interaction network is too diluted,
as thoroughly illustrated in Sec. 5.2.

In order to develop the analytical technique to address the solution of the ML
4-phasor model, in the present chapter we temporarily turn to a different problem,
which, in fact, has some striking formal resemblance to our model. The Merit Factor
problem (MF), see Ref. [Jed05] for a survey paper on the topic, is a long standing
problem in digital sequence design, with applications in many communication
engineering problems, such as synchronization, pulse formation and especially radar
[Boe67; Tur13]. The problem lies in finding Low Autocorrelation Binary Sequences
(LABS), according to some suitable measure [Gol77]. The merit factor was first
introduced by Golay [Gol82; Gol83] as an important measure of the kind, which is
maximized by the LABS. Though an upper bound has been conjectured [Gol82], the
problem of finding the merit factor highest value has resisted decades of attempts
by mathematicians and it is still an open issue [Jed05; PM16]. Interestingly, the
MF problem is not only related to the LABS: determining the best asymptotic
merit factor is also an unsolved problem in complex analysis, which was proposed
by Littlewood [Lit61; Lit66] even before Golay’s definition and until the early 00’s
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was studied along independent lines.

From the point of view of theoretical physics, a major contribution to this line
of research was given by Bernasconi in Ref. [Ber87], where the problem of finding
sequences which maximize the merit factor has been reformulated in statistical
mechanics terms as the problem of determining low-energy configurations of a
specific spin model with long range 4-spin interactions. The Bernasconi model
represents the formal connection between the MF problem and the problem of
finding the solution of the glassy random laser, in which we are primarily interested.
The non linear 4-body nature of the couplings is the first feature shared between
the two systems, though in the case of the Bernasconi model the couplings are
antiferromagnetic, rather than extracted from a zero mean, symmetric probability
distribution. Moreover, the most important resemblance between the models is that
the interaction graph of the Bernasconi model has the same structure determined
by the FMC on the mode-locked graph, a quite fortunate occurrence, given the very
different fields from which the two models originated. To be more specific, if one starts
with a 4-spin antiferromagnet defined on the fully connected graph, with tetrads of
spins denoted by k = {k1, k2, k3, k4} in order to obtain the Bernasconi model, one
should dilute the interaction network with the rule k1 − k2 + k3 − k4 = 0, which is
precisely the FMC in the case of a linear comb (cf. Eq. (3.4)). Our perspective is to
take advantage of these similarities between the two models, in order to develop and
test in a simpler environment the analytical methods, with which we aim to address
the solution of the ML 4-phasor model.

After Bernasconi’s reformulation, the merit factor problem has captured the
attention of physicists working in the field of spin glasses and disordered systems,
see Refs. [MPR94a; MPR94b; BM94; MR94; KM95; PP95]. The model proposed by
Bernasconi belongs to a class of models which exhibit frustration and glassy features
without structural disorder - besides the reference just cited, see also the interesting
case studied in Ref. [FH95]. Indeed, the finite-size analysis performed in Ref. [Ber87]
with the simulated annealing procedure provides results which are compatible with
the properties of systems characterized by complex energy landscapes, leading
to conjecture an ergodicity-breaking phase transition at finite temperature. The
outcome of the numerical analysis performed in Ref. [MPR94a] on a slightly modified
version of the Bernasconi model points in the same direction, an evidence which
has led the authors to develop a technique which is based on the introduction of
random unitary matrices in the model and allows to perform a replica computation.
It is precisely this technique that we aim to carefully review and master in order to
apply it to the case of the ML 4-phasor model.

In the first part of this chapter, after introducing the model and presenting
a high temperature approximation, which was already discussed in Refs. [Gol82;
Ber87; MPR94a], we perform new numerical analyses of the model, broadening the
results of Ref. [MPR94a]. In the second part of the chapter, we complete the replica
analysis of the model, along the lines of Ref. [MPR94a], and draw some tentative
conclusion on the low temperature nature of the model.
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6.1 The Bernasconi model

Consider a binary sequence of length N denoted by s = {s1, . . . , sN}, where the
variables are Ising spins si = ±1. The autocorrelation of the sequence at distance k
is given by the scalar product of the sequence with itself shifted by k. Two kinds
of autocorrelations can be defined, leading to two versions of the model: aperiodic
correlations

Rk =
N−k∑
j=1

sjsj+k, (6.1)

where the summation has to be stopped at N − k, and periodic correlations

Rk =
N∑
j=1

sjs(j+k−1)(modN)+1, (6.2)

where the summation contains N terms at distance k and (j + k − 1)(modN) + 1
is a formal way to implement periodic boundary conditions. If we think of the
sequence as of a chain, then the model with aperiodic correlations is defined on
an open chain, whereas the model with periodic correlations is defined on a closed
chain. Historically, the problem of determining the LABS was defined for aperiodic
correlations. The quality of a LABS can be measured either by minimizing the
quantity max{|Rk|, k ̸= 0}, or by maximizing the merit factor [Gol82; Gol83], which
is defined as

F = N2

2
∑N−1
k=1 R2

k

.

In the Bernasconi model [Ber87], one considers the equivalent problem of minimizing
a cost function defined as the inverse of the merit factor

H = 1
N − 1

N2

2F = 1
N − 1

N−1∑
k=1

R2
k (6.3)

which can be considered to represent the energy function of a one-dimensional spin
system with long-range 4-body interactions. In this formulation the MF problem
turns into an optimization problem with which we are more familiar in statistical
mechanics.

Following Ref. [MPR94a], in the rest of this work we will be only concerned
with the periodic model, due to some particular features which allow a deeper
investigation and a generalization to the ML random laser models. We, thus,
consider the Hamiltonian

H = 1
N − 1

N−1∑
k=1

R2
k = 1

N − 1

N−1∑
k=1

N∑
i=1

N∑
j=1

sisi+ksjsj+k, (6.4)

where we implicitly assume periodic boundary conditions. Incidentally, we notice
that this Hamiltonian is equivalent in the large-N limit to the Hamiltonian obtained
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from a fully-connected 4-spin antiferromagnet,

H = 1
N − 1

1,N∑
i1,i2,i3,i4|⋆

si1si2si3si4 , ⋆ : i2 − i1 = i4 − i3 ∈ [1, N − 1] (6.5)

which is diluted with the selection rule i1 − i2 + i4 − i3 = 0. For this reason, we
recognize in this problem the same topology as the mode-locked graph.

6.1.1 The Golay-Bernasconi Approximation

In this section, we discuss the Golay-Bernasconi (GB) approximation [Gol82; Ber87]
of the periodic model, in which the correlations Rk are assumed to be Gaussian
distributed independent random variables with varianceN , i.e. extracted from p(R) =
e−R2/2N/

√
2πN . We notice a certain resemblance between this approximation and

the way the REM [Der80] is built: here the correlations, rather than the energy levels,
are taken as independent random variables, but the spirit is the same. However, while
the REM is defined at all temperatures and exhibits a non-trivial low temperature
behavior, in the GB approximation a negative entropy is found at finite temperature,
which is not acceptable with discrete variables. Hence, we are dealing with a high
temperature approximation, which breaks down when the entropy becomes negative.

Notice that the periodic correlations satisfy Rk = RN−k. This is very easy to see
as follows: by implying the operation of modN whenever the index of summation
yields a value greater than N in the subscript of the spins, we have

RN−k =
N∑
i=1

sisi+N−k =
N∑
i=1

si+ksi+N

=
N∑
i=1

si+ksi = Rk,

where we have used i → i+ k and (i+N)(modN) = i. Therefore, we can rewrite
the Hamiltonian of the periodic model by taking into account only one half of the
contributions and multiplying by a factor two. If N is odd, we can write

H = 2
N − 1

N−1
2∑

k=1
R2
k, (6.6)

whereas if N is even

H = 2
N − 1

N−2
2∑

k=1
R2
k + 1

N − 1R
2
N/2,

as can be checked with simple renaming of the summation indices. However, since
the difference between the two cases is completely irrelevant in the large-N limit, in
the following we use the expression of the Hamiltonian for N odd, which is easier to
handle.
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The solution of the model in the GB approximation is immediate. The partition
function can be computed as follows

Z =
∑

s

e−βH[s] =
∑

s

exp

− 2β
N − 1

N−1
2∑

k=1
R2
k(s)


=
∑

s

∫ N−1
2∏

k=1

dRk δ

Rk −
N∑
j=1

sjsj+k

 exp

− 2β
N − 1

N−1
2∑

k=1
R2
k


=
∫ N−1

2∏
k=1

[
dRk e− 2β

N−1R
2
k

] N−1
2∏

k=1

∑
s

δ

Rk −
N∑
j=1

sjsj+k

 ,
where we have changed variables using the relation

1 =
N−1

2∏
k=1

∫
dRk δ

Rk −
N∑
j=1

sjsj+k

 .
The quantity

∑
s δ
(
Rk −

∑N
j=1 sjsj+k

)
accounts for how many times a certain value

Rk is found over the configurations: it is therefore a measure of the entropy of the
variable Rk. Given the statistical independence of the correlations, this quantity is
just 2N times the probability of Rk and therefore we have that

Z = 2N
N−1

2∏
k=1

∫ dRk√
2πN

exp
[
−
( 1

2N + 2β
N − 1

)
R2
k

]

= 2N
(

N − 1
N − 1 + 4βN

)N−1
4
,

which in the large-N limit eventually yields

Z = exp
[
N

(
log 2 − 1

4 log(1 + 4β)
)]

. (6.7)

From the partition function we can deduce the behavior of the thermodynamic
observables of the model. The expression of the free energy, of the energy and of the
entropy densities in the GB approximation are reported below

f(β) = − 1
β

log Z = − 1
β

log 2 + 1
4β log(1 + 4β)

s(β) = β2 ∂f

∂β
= log 2 − 1

4 log(1 + 4β) + β

1 + 4β

u(β) = ∂(βf)
∂β

= 1
1 + 4β .

It is clear, then, that the approximation breaks down at low temperature, since the
entropy becomes negative for β > 10.3702, i.e. T < 0.0964, and this is not possible
for a model with discrete variables.
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Figure 6.1. Entropy of the Bernasconi model in the GB approximation as a function of β.
The change of sign at β > 10.3702 is a signature of the breakdown of the approximation.

As shown in Ref. [MPR94a], the GB approximation can be recovered in the
high tempererature regime of a disordered model with a Hamiltonian that looks like
Eq. (6.6), but where the variables Rk are given by

Rk =
N∑
ij

J
(k)
ij sisj , (6.8)

where J (k)
ij are random connectivity matrices, independent for different k’s, whose

values are extracted from some probability distribution. The same kind of strategy
was developed also in Ref. [BM94] for the aperiodic model. The replica analysis of
the disordered model reveals a phenomenology which is compatible with the REM,
with a stable 1RSB solution and zero entropy at the transition point. The physical
interpretation behind this scenario might be that of “self-induced” disorder [BM94].
However, following Ref. [MPR94a], we notice that this result is not sufficient to
draw definitive conclusions about the low temperature behavior of the original model
without quenched disorder. The disordered model defined by Eqs. (6.6) and (6.8)
has to be regarded just as a test model, which is only capable of reproducing a high
temperature approximation to the deterministic model. It would be too simplistic
(if not wrong) to think that the glassy phase of this model provides an explanation
of the low temperature complex behavior of the Bernasconi model.

6.2 Numerical Study
This section is devoted to present some numerical results obtained by studying the
Hamiltonian (6.4) with periodic correlations. The ground state of the model is not
known in general and is still the object of research: the effort involves both number
theory approaches [Sch09] and extensive searches [Mer96; PM16]. We have no claim
here to compete with the most recent achievements reached in the field, but rather
to replicate and extend the finite-temperature study proposed in Ref. [MPR94a], in
order to improve our knowledge of the model phenomenology.



6.2 Numerical Study 99

Figure 6.2. Energy and specific heat as a function of temperature for many different sizes
of the Bernasconi model. Different colors correspond to different sizes: from N = 10
(purple) to N = 31 (red). The crossing of the energies corresponding to different sizes, as
well as the unclear scaling of the specific heat peak position, reveal a nontrivial behavior
of the system in the thermodynamic limit.

Although no systematic procedure to construct ground state configurations for a
generic size is known, ad hoc constructions based on number theory exist for some
specific values of N . One of these constructions works for prime numbers of the
kind N = 4n+ 3, with n ∈ N. In this case configurations with the lowest energy are
given by the Legendre sequences

σk = k(N−1)/2modN, (6.9)

which gives σk = ±1 for all k, but k = N where σN = 0. This is a consequence
of a theorem by Fermat [Sch09], which states that unless k is a multiple of N ,
then kN−1 mod N = 1, so that in this case k(N−1)/2 mod N = ±1. To obtain a
legal binary sequence, then, one has to see what happens by replacing the last bit,
which now is zero, with ±1. This operation leads to an increase of the energy by
a finite amount, with respect to the value computed before changing the last bit,
apart from the lucky case N = 4n + 3, which leaves the energy untouched. The
degeneracy of the ground state (and of the other energy levels as well) is related
to the symmetries of the Hamiltonian1. Other ground states can be constructed
from linear shift register sequences based on primitive polynomials over Galois fields.
This construction requires N = 2p − 1 with p prime, see [MPR94a].

In the case where no such constructions exist, one may resort to brute force
algorithms: for a given size N , one lists all the 2N possible sequences and computes
the corresponding values of the energy. Then, the ground state configurations can
be found by sorting the obtained values. The computation of the energy through the
long-range Hamiltonian (6.4) is very demanding, since it requires O(N3) operations.
Even considering the degeneracy of the energy levels, in order to exclude from
the list of configurations those connected by the symmetries of the Hamiltonian,
one cannot reach very high values of N in reasonable times. To the best of our
knowledge, the largest size studied with this method is N = 66 in Ref. [PM16],
where although parallel computing is also exploited, it took 55 days of machine time

1The Hamiltonian of the Bernasconi model is invariant under translation, i.e. the shift of all the
spins of a given number of positions, and under parity, i.e. the flipping of all the spins. Actually,
the reflection of a configuration is another symmetry of the Hamiltonian, but it can be obtained as
a combination of translation and parity, hence not contributing to the total degeneracy.
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Figure 6.3. From left to right: density of states, energy and specific heat for the sizes in
the legend.

  

Figure 6.4. From left to right: density of states, energy and specific heat for the sizes in
the legend. These sizes correspond to the “good primes” for which the ground state is
given by the Legendre sequence σk = k(N−1)/2modN .

to obtain the results. Alternatively, one can resort to Monte Carlo optimizations of
the Hamiltonian to find approximately optimal sequences for arbitrarily large values
of N .

In this work, we used a simple exhaustive search algorithm and studied sizes up
to N = 32. We are interested in all energy levels, not only the ground state, since as
soon as the temperature is added to the system, there is a finite probability of finding
the system in a level with higher energy than the lowest one. The finite-temperature
behavior of the model can be deduced from the density of states expressed as a
function of the energy E. We, then, build the histograms

pN (E) =
∑

s

δ (E − HN [s]) , (6.10)

in terms of which the canonical partition function of the model can be written as

ZN (β) =
∑

s

e−βHN [s] =
∫

dE pN (E)e−βE , (6.11)

where the subscript N is just a reminder of the finite size nature of the quantities
here studied. From the partition function, we get the free energy of the model, from
which, in turn, we derive the specific heat.

In Fig. 6.2 we display the energy and the specific heat for most of the sizes studied.
Fluctuations from one volume size N to a similar one are large and macroscopic.
Such fluctuations forbid any simple extrapolation to the limit N → ∞ from the sizes
analyzed. They decrease however for increasing N . The pronounced peak in the
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Figure 6.5. Histograms built with the frequencies of the overlap values q =
∑N

i=1 σiτi/N ,
for all the pairs of configurations σ and τ of the ground (blue) and first excited (orange)
states for the system sizes N = 19, 20, 21, 22, 31, 32.

specific heat strongly suggests that in the infinite volume limit the system undergoes
a phase transition. However, the position in temperature of the specific heat peak
changes a lot from size to size and seems to decrease towards a small value of T ,
even if in a irregular pattern, which makes it difficult to extrapolate an estimate of
the critical temperature of the model. This becomes clearer if one selects specific
sequences of sizes: for instance in Figs. 6.3 we plot the thermodynamic observables
for even sizes increasing with a ∆N = 4, and in Fig. 6.4 for the sequence of “good
primes”, whose ground state can be constructed analytically.

Finally, we have computed the overlaps between all the configurations belonging
to the ground state and to the first excited state. In Fig. 6.5 we display the histograms
built with the overlap frequencies for some of the studied sizes. The fact that the
overlap can take many values is evidence of a nontrivial structure of the ground
state: most of the configurations minimizing the energy are not correlated. This
study, repeated for the first excited state, basically retraces the results obtained for
the ground state, meaning that a small thermal excitation of the system does not
change dramatically how the configurations are organized.

Taken together, these results constitute the phenomenology of a phase transition
to a complex low temperature phase, which is well captured by the theory of replica
symmetry breaking in spin-glass models. However, given the small sizes considered,
the output of this study cannot be taken as a proof that a phase transition occurs
in the thermodynamic limit.
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6.3 The Random-Unitary Model
The main reason why we focus on the periodic model is that it is suitable for an
analysis in Fourier space [MPR94a]. Let us first introduce the Fourier-space version
of the model and then discuss a first tool of investigation. The discrete Fourier
transformation (DFT) of the spin variables and its inverse are defined as follows

Bp = 1√
N

N∑
j=1

ei
2πp
N
jsj sj = 1√

N

N∑
p=1

e−i 2πj
N
pBp, (6.12)

where the symmetric convention for the normalization has been adopted. Then, the
correlations can be easily expressed in terms of the Fourier variables as

Rk =
N∑
p=1

N∑
q=1

e−i 2πk
N
qBpBqδp,−q =

N∑
p=1

ei
2πk
N
p|Bp|2, (6.13)

where the definition of the Kronecker delta as the inverse DFT of 1 has been used,
together with the fact that Bp = B−p, which holds since the original spin variables
are real. Hence, the periodic Hamiltonian (6.6) can be rewritten as

H =
N/2∑
p=1

|Bp|4, (6.14)

where an irrelevant additive constant has been neglected. Moreover, both the two
previous expressions are correct in the large-N limit, while at finite N one should
take into account the precise definition of the periodic correlations.

A useful tool to yield physical insight about the model, which has been imple-
mented in Ref. [MPR94a], is the high-temperature expansion. In principle this
technique can be applied in a very straightforward way; in the present case, however,
the non-locality of the interaction term causes complications, such as the fact that
the expansion coefficients do not behave well in the large-N limit. It turns out
that the procedure simplifies in Fourier space, allowing for the computation of the
thermodynamic observables at the first orders in β, which better represent the high
temperature regime of the Bernasconi model, with respect to the GB approximation.
This is expected, since the high temperature expansion does not require any ad hoc
approximations, but to take carefully the limit β → ∞.

At this stage, one would like to define a model based on the Hamiltonian
(6.14) and capable of: (i) resumming the high temperature expansion and (ii)
showing (hopefully) a non-trivial low temperature phase that reproduces the complex
phenomenology observed in numerical simulations. This has led the authors of
Ref. [MPR94a] to introduce a model based on random unitary matrices, which
we will refer to as Random Unitary model and to which the rest of the chapter is
dedicated.

6.3.1 Definition of the Model

The core idea of the Random Unitary model is to substitute the standard Fourier
transformation of the spin variables with a generic unitary transformation. In
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fact, the DFT matrix, which can be denoted as Upj = (upj/
√
N)p,j=1,...,N with

u = e−2iπ/N , is just a particular choice of matrix belonging to the unitary group, and
one may be interested in studying a more general case. In the language of Lagrangian
mechanics, a random unitary transformation brings us from spin variables to a set
of random generalized coordinates in the configuration space: in order to visualize
this operation, one can think of a rotation with an arbitrary angle. In fact, the
introduction of random rotations defines a very similar class of models, which were
extensively studied in Refs. [MPR94b; PP95], namely the Random Orthogonal
models. In the language of disordered systems, the unitary group plays the role of
quenched disorder, of which the DFT matrix is a particular instance.

When passing from the DFT matrix to a generic unitary matrix, one has to
pay attention to a subtle aspect of the procedure. In fact, if one starts with real
variables, i.e. the spins si, the Fourier transformed variables Bp of Eq. (6.12) satisfy
the property Bp = B−p, as a consequence of the particular expression of the Fourier
transformation. In general, this is not true for a unitary matrix2. However, it turns
out that this property of complex conjugation is crucial if one aims to reproduce
the results of the high temperature expansion of the original model through a
model defined with generic unitary matrices [MPR94a]. In other terms, if one just
substitutes to Eq. (6.12), the following relation

Bp =
N∑
pj

Upjsj

where Upj are the elements of a generic unitary matrix, one finds different results
from the high temperature expansion already at the first order.

One way to solve the problem is to introduce a model based on a double orthogonal
transformation with Hamiltonian

H =
N/2∑
p=1

|A2p−1 + iA2p|4, (6.15)

where the variables A are related to the variables B as Bp = A2p + iA2p+1 and are
defined in terms of the spin variables as

Ap =
N∑
j=1

Opjsj , (6.16)

with Opj orthogonal matrices, over which we aim to integrate. We call this model
double Random Orthogonal model. However, by following Ref. [MPR94a] we define
N/2 complex spin variables in the following way τj = s2j−1+is2j and apply a random
unitary transformation to τj . Notice that this is just a redistribution of the degrees
of freedom of the theory, not changing the physical content of the model. Clearly, in

2The only property which defines a matrix representing an element of the unitary group is that
U† = U−1, so that UU† = U†U = 1. This leads to the fact that a unitary matrix can always be
written in an exponential form, such as U = eih where h is a generic Hermitian matrix, i.e. h = h†.
However, it is not necessary that the elements of h satisfy the relation hpj = hj(−p) which implies
the property of complex conjugation Bp = B−p in the special case of a DFT matrix
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this case, the unitary transformation has to be represented by a N/2 ×N/2 matrix.
With these prescriptions, the Hamiltonian of the Random Unitary model is given by

H[τ ] =
N/2∑
p=1

|Cp(τ )|4, (6.17)

where the dynamic variables of the model are the unitary-transformed of the complex
spins τj :

Cp =
N/2∑
j=1

Upjτj . (6.18)

6.3.2 Replicated Partition Function

In this section we develop the replica computation for the model defined by the Hamil-
tonian (6.17), where the dynamic variables Cp =

∑
j Upjτj are unitary-transformed

of the complex spins τj = s2j−1 + is2j and Upj are the elements of a random matrix
belonging to the unitary group. The matrices U play the same role in the computa-
tion as the quenched couplings in usual spin-glass models. The partition function of
the model for a specific transform U is given by

ZU =
∑

τ

e−βH[τ ] =
∑

τ

exp

−β
N/2∑
p=1

|Cp(τ )|4
 , (6.19)

where
∑

τ =
∏N/2
j=1

∑
{τj} and the sum runs over the four possible values of the

complex numbers τj . First of all, let us change variables in the computation of the
partition function, by exploiting the relation

1 =
N/2∏
p=1

∫
dCpdCpδ

Cp −
N/2∑
j=1

Upjτj

 δ
Cp −

N/2∑
j=1

Upjτ j


=

N/2∏
p=1

∫
dCpdCpdλpdλp exp

iλp
Cp −

N/2∑
j=1

Upjτj

− iλp

Cp −
N/2∑
j=1

Upjτ j

 ,
where we used the Fourier integral representation of the delta functions and neglected
irrelevant constant factors. We have

ZU =
∫ N/2∏

p=1

[
dCpdCpdλpdλp

]
exp

−β
N/2∑
p=1

|Cp|4 +
N/2∑
p=1

(
iCpλp − iCpλp

)
×
∑

τ

exp

N/2∑
p=1

N/2∑
j=1

(
−iUpjτjλp + iUpjτ jλp

) .
(6.20)

The free energy of the model depends on the choice of the matrices U . Since
we are interested in the typical behaviour of the system with respect to this source
of randomness, the average of the free energy over the unitary group has to be
computed. At this level, we expect the system to exhibit a low temperature glassy
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phase, which can only be revealed by computing a quenched average. This can be
done through the replica method. Therefore our goal is to find the following quantity

f(β) = lim
N→∞

− 1
βN

log ZU = lim
n→0

lim
N→∞

− 1
βnN

log Zn
U , (6.21)

where (· · · ) denotes the integration over the unitary group and, as usual, the two
limits have been exchanged, in order to compute first the saddle point of the averaged
replicated partition function. As a consequence, in the following we will use several
times the fact that we are taking the large-N limit at finite n.

Considering Eq. (6.20), the n-th power of the partition function reads as

Zn
U =

∫ n∏
a=1

N/2∏
p=1

[
dCapdCapdλapdλ

a
p

]
exp

−β
n∑
a=1

N/2∑
p=1

|Cap |4 +
n∑
a=1

N/2∑
p=1

(
iCapλ

a
p − iC

a
pλ

a
p

)
×

n∏
a=1

[∑
τ a

]
exp

 n∑
a=1

N/2∑
p=1

N/2∑
j=1

(
−iUpjτaj λ

a
p + iUpjτ

a
jλ

a
p

) .
(6.22)

By defining the auxiliary variables Ωpj = i
∑n
a τ

a
jλ

a
p, the disorder dependent term of

the replicated partition function can be compactly written as

exp

 n∑
a=1

N/2∑
p=1

N/2∑
j=1

(
−iUpjτaj λ

a
p + iUpjτ

a
jλ

a
p

) = exp
[
Tr(UΩ† + U †Ω)

]
. (6.23)

In order to average the replicated partition function, we have to compute an integral
over the Haar measure of the unitary group. This problem was first encountered
in the large-N limit of lattice gauge theories in Ref. [GW80; BG80], where the
authors considered an approach which is analogous to standard mean-field theory
for magnetic systems and leads to the computation of partition functions of the kind

Z =
∫

dUdU † expN
[
Tr(UA† + U †A)

]
, (6.24)

where A is an arbitrary matrix source. This is exactly what we aim to compute,
when averaging the right hand side Eq. (6.23) over disorder, if we replace the generic
matrix A with Ω/N . The integral was solved in full generality by Brezin and Gross
and the result is reported in Eq. (33) of Ref. [BG80]. However, as noted in [MPR94a],
in the present case at finite non-zero n, only terms containing a single trace operator
survive in the large N limit. Hence, the cited result reduces to

exp [Tr(UΩ† + U †Ω)] = exp
[
N

2 Tr G
(

Ω†Ω
N2

)]
, (6.25)

where G is a function of the eigenvalues of a matrix defined as

G(z) = − log
(
1 +

√
1 + z

)
+

√
1 + z. (6.26)
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This is a main technical part of the computation: in Appendix A we provide the
demonstration of this result in a particularly simple case, where the integral can be
directly performed with the saddle point method.

As is usual in standard replica computations, the average over quenched disorder
leads to the coupling of the originally independent copies of the system. The coupling
among replicas suggests what are the global order parameters of the theory. In the
present case, let us define the following overlap matrices

Qab = 1
N

N/2∑
j=1

τaj τ
b
j Λab = 1

N

N/2∑
p=1

λapλ
b
p. (6.27)

The right hand side of Eq. (6.25) can be expressed in terms of the overlaps as follows

exp
[
N

2 Tr G
(

Ω†Ω
N2

)]
= exp

[
N

2 Tr G (QΛ)
]
. (6.28)

The previous relation can be shown for the expansion of of the function G, i.e. for
any integer power K of its argument:

Tr
(

Ω†Ω
N2

)K
= 1
N2K

N/2∑
j1=1

(Ω†Ω)Kj1j1

= 1
N2K

1,N/2∑
j1,...,jK

1,N/2∑
p1,...,pK

Ωp1j1Ωp1j2 · · · ΩpKjK ΩpKj1

= 1
N2K

1,n∑
a1,...,aK

1,n∑
b1,...,bK

1,N/2∑
j1,...,jK

τa1
j1
τ bK
j1

· · · τaK
jK
τ
bK−1
jK

1,N/2∑
p1,...,pK

λ
a1
p1λ

b1
p1 · · ·λaK

pK
λbK
pK

=
1,n∑

a1,...,aK

1,n∑
b1,...,bK

Qa1bK
ΛaKbK

QaKbK−1 · · · Qa2b1Λa1b1

= Tr (QΛ)K ,

where we have used the fact that Λab = Λba.
In principle, both the matrices defined in Eq. (6.27) are Hermitian; however, since

the overlaps of the original spin variables
∑N
j=1 s

(a)
j s

(b)
j are symmetric quantities, we

can take both Q and Λ as real valued. The symmetry Qab = Qba (and analogously
Λab = Λba) is indeed preserved by any replica symmetry breaking ansatz3; so even if
we carry on the computation for complex order parameters, we will end up with real
valued matrices at the level of the saddle point equations. In Eq. (6.22), we change
variables to the overlap matrix Q through the following relations

1 =
1,n∏
a<b

∫
dQab δ

NQab −
N/2∑
j=1

τaj τ
b
j


=
∫ 1,n∏

a<b

dQab

∫ +i∞

−i∞

1,n∏
a<b

NdRab

2πi e
1
2
∑n

a̸=b
Rab

(
NQab−

∑N/2
r

τa
j τ

b
j

)
3In a replica symmetry breaking ansatz it is not the symmetry of the matrices for index exchange

to be broken, but the symmetry under the n-dimensional permutation group of replicas.
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for the off-diagonal terms and

1 =
n∏
a=1

∫
dQaaδ(NQaa −N) =

∫ n∏
a=1

dQaa

∫ +i∞

−i∞

n∏
a=1

NdRaa

4πi e
1
2
∑n

a
Raa(NQaa−N)

for the diagonal terms. Similarly, we use following relations for the overlap matrix Λ

1 =
1,n∏
a<b

∫
dΛabδ

NΛab −
N/2∑
p=1

λapλ
b
p


=
∫ 1,n∏

a<b

dΛab
∫ +i∞

−i∞

1,n∏
a<b

NdMab

2πi e
1
2
∑n

a̸=b
Mab

(
NΛab−

∑N/2
p

λa
pλ

b
p

)

and

1 =
n∏
a=1

∫
dΛaaδ

NΛaa −
N/2∑
p=1

|λap|2
 =

∫ n∏
a=1

dΛaa
∫ +i∞

−i∞

n∏
a=1

NdMaa

4πi

× e
1
2
∑n

a
Maa(NΛaa−

∑N/2
p

|λa
p|2)

.

All the delta functions have been represented in terms of their Laplace transformations
through the integration over the Lagrange multipliers R and M respectively for Q
and Λ. The factors 1/2 in front of the summations over the off-diagonal terms follow
from the symmetry of the overlap matrices. By considering the previous relations
all together and neglecting all constant prefactors and subleading terms, we have

1 =
∫ 1,n∏

a≤b
dQabdΛab

∫ +i∞

−i∞

1,n∏
a≤b

dRabdMab

× exp

N
2 Tr(RQ) + N

2 Tr(MΛ) − 1
2

N/2∑
j=1

n∑
ab

τaj Rabτ
b
j − 1

2

N/2∑
p=1

n∑
ab

λapMabλ
b
p


Therefore, by looking back at Eq. (6.22) and using the previous relation together
with the result in Eq. (6.28), the averaged replicated partition function reads as

Zn
U =

∫
DCDCDλDλDQDRDΛDM exp N2 [Tr(RQ) + Tr(MΛ) + Tr G (QΛ)]

× exp

−β
n∑
a=1

N/2∑
p=1

|Cap |4 +
n∑
a=1

N/2∑
p=1

(
iCapλ

a
p − iC

a
pλ

a
p

)
− 1

2

N/2∑
p=1

n∑
ab

λapMabλ
b
p


×

n∏
a=1

[∑
τ a

]
exp

−1
2

n∑
ab

N/2∑
j=1

τaj Rabτ
b
j

 ,
(6.29)

where in order to shorten our notation the integration measures in the global
X = {Q,Λ,R,M} and local variables x = {C, λ} have been written respectively as

DX =
1,n∏
a≤b

dXab Dx =
N/2∏
j=1

n∏
a=1

dxaj .
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The expression of the partition function can be simplified by performing the
complex Gaussian integral in the Lagrange multipliers λ. We notice that all the terms
involving the variables λ are diagonal with respect to the local unitary-transformed
space index p. Hence, the dependence on λ can be factorized in N/2 Gaussian
integrals. Each of these integrals can be compactly written in a vector formalism for
the replica indices and has the following solution∫

dλpdλp exp
[
−λp

M
2 λp + iλp · Cp − iCp · λp

]
= (2π)n det(2M−1) exp

[
2CpM−1Cp

]
= exp

[
− log det M + 2CpM−1Cp

]
.

To obtain this result one has to complete the square with the change of variables
λp → λp + 2iM−1Cp and λp → λp − 2iCpM−1. Moreover, in the last expression
we neglected an overall constant additive terms (4π)n. Since we have N/2 of these
contributions, the partition function reads as

Zn
U =

∫
DQDRDΛDM exp N2 [Tr(RQ) + Tr(MΛ) + Tr G (QΛ) − Tr log M]

×
∫

DCDC exp

−β
n∑
a=1

N/2∑
p=1

|Cap |4 + 2
n∑
ab

N/2∑
p=1

CapM−1
ab C

b
p


×

n∏
a=1

[∑
τ a

]
exp

−1
2

n∑
ab

N/2∑
j=1

τaj Rabτ
b
j

 ,
(6.30)

where we have used the relation log det M = Tr log M. The first line of the previous
equation contains entropic contributions in terms of the global order parameters and
their Lagrange multipliers, whereas the second and third line correspond to the local
contributions obtained by tracing respectively over the unitary-transformed variables
C and the complex spins τ . At this point of the computation the dependence
on the local indices both of the direct and of the unitary-transformed space can
be factorized in N/2 equivalent contributions. By defining the following local free
energies

fC(M) = log
∫ n∏

a=1

[
dCadCa

]
exp

[
−β

n∑
a=1

|Ca|4 + 2
n∑
ab

CaM−1
ab C

b

]
, (6.31)

fτ (R) = log
n∏
a=1

∑
{τa}

 exp
[
−1

2

n∑
ab

τaRabτ
b

]
, (6.32)

the replicated partition function averaged over disorder eventually reads as

Zn
U =

∫
DQDRDΛDM exp [NS(Q,R,Λ,M)] (6.33)

where, after singling out the overall factor N , we have defined the action density

S(Q,R,Λ,M) = 1
2{fτ (R) + fC(M) + Tr(RQ) + Tr(MΛ)

+ Tr G (QΛ) − Tr log M}.
(6.34)

The subscripts τ and C in the notation for the local free energies are just reminders
of the variables over which the trace is taken.
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6.3.3 Reduced Theory

The free energy Eq. (6.21) is determined by the stationary point of the action
function derived in the previous section, which has to be computed through the
saddle point method in the large-N limit and evaluated in the limit n → 0:

f(β) = − 1
β

lim
n→0

Ssp
n
, (6.35)

where Ssp is a shorthand notation for the action computed in the solution of the
saddle point equations. In order to solve the optimization problem, it is convenient
to eliminate some of the variables that have been introduced along the computation.
From Eqs. (6.33) and (6.34) it is easy to derive the saddle point equations, by using
well-known matrix identities [PP12]. The full set of saddle point equations for the
action S reads as

∂S

∂Rab
= ∂fτ (R)

∂Rab
+ Qab = 0 (6.36a)

∂S

∂Λab
= Mab + [QG′(QΛ)]ab = 0 (6.36b)

∂S

∂Qab
= Rab + [ΛG′(QΛ)]ab = 0 (6.36c)

∂S

∂Mab
= ∂fC(M)

∂Mab
− M−1

ab + Λab = 0, (6.36d)

where G′ formally denotes the derivative of the function G with respect to its
argument. In the following, we adopt the matrix formalism to shorten our notation.

The main idea to derive the reduced theory is to manipulate the saddle point
equations in order to eliminate the matrix Λ from the theory. A key ingredient in
this procedure is the fact that the function G satisfies the following relation

(G′(z))2 = z−1
(1

4 − G′(z)
)
, (6.37)

which can be checked a posteriori by direct substitution of the expression of G,
Eq. (6.26). In fact, the previous relation can be seen as the ordinary differential
equation that defines the function G: this equation was derived in Ref. [BG80] to
find the solution of the integration over the unitary group and has been reported in
Eq. (A.4). In the following, we will assume that all the matrices commute: this can
be justified in view of the fact that the saddle point value of the action with respect
to variations of these matrices will be computed by restricting the optimization on
the subspaces of RS or RSB (in the Parisi scheme) matrices which are all subspaces
of commuting matrices. From the saddle point equations Eqs. (6.36b) and (6.36c)
one finds

G′(QΛ) = −Q−1M
G′(QΛ) = −Λ−1R,

from which, by subtracting them, one finds an expression of Λ in terms of the other
matrices

Λ = QRM−1. (6.38)



110 6. The Merit-Factor Problem

By plugging the Λ-independent expression of G′ into Eq. (6.37) and using Eq. (6.38)
one gets after some algebra the relation

RQ − 1
4QM−1 = I,

which, with the change of variables M → M−1/4, yields the relation

(R − M)Q = I. (6.39)

It is worth stressing that the change of variables performed does not modify the
integration measure of the partition function up to a subleading term in the large-N
limit. Eq. (6.39) is an algebraic relation that connects the saddle point value of
the overlap matrix to those of the Lagrange multipliers: hence, it can be viewed
as a constraint to a new (reduced) system of saddle point equations. The saddle
point equations Eq. (6.36b) and (6.36c) can be then substituted by the constraint
Eq. (6.39). Finally, by modifying the saddle point equation (6.36d) in order to
eliminate Λ and substituting M with M−1/4, the reduced set of saddle point
equations reads as

∂fτ (R)
∂Rab

+ Qab = 0 (6.40a)

−∂fC(M)
∂Mab

+ Qab = 0 (6.40b)

(R − M)Q = I. (6.40c)

The reduced theory can be now induced from the previous set of saddle point
equations, which in fact can be derived by applying the saddle point method to the
following partition function

Z =
∫
DRDM exp [NA(R,M)] , (6.41)

where

A(R,M) = 1
2 [fτ (R) + fC(M) + Tr log(R − M)] (6.42)

and

fC(M) = log
∫ n∏

a=1

[
dCadCa

]
exp

[
−β

n∑
a=1

|Ca|4 + 1
2

n∑
ab

CaMabC
b

]
(6.43)

fτ (R) = log
n∏
a=1

∑
{τa}

 exp
[
−1

2

n∑
ab

τaRabτ
b

]
. (6.44)

In the redefinition of the first local free energy a numerical factor coming from the
change of variables M → M−1/4 has been absorbed in the integration variables
C,C and the temperature has been rescaled accordingly. On the other hand, the
second local free energy has remained untouched and has been reported here only for
the sake of completeness. The saddle point equations (6.40a) and (6.40b) have a very
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intuitive physical meaning: they fix the value of the overlap matrix to the thermal
average of the product of two different replicas. This can be seen by computing
explicitly the derivatives of the local free energies Eqs. (6.43) and (6.44), which yield

⟨τaτ b⟩τ = 2Qab (6.45)

⟨CaCb⟩C = 2Qab, (6.46)

where the averages induced by the two free energies are defined as

⟨(· · · )⟩τ =
∏n
a=1

[∑
{τa}

]
e− 1

2
∑n

ab
τaRabτ

b

(· · · )∏n
a=1

[∑
{τa}

]
e− 1

2
∑n

ab
τaRabτ

b

and

⟨(· · · )⟩C =
∫ ∏n

a=1

[
dCadCa

]
e−β

∑n

a
|Ca|4+ 1

2
∑n

ab
CaMabC

b

(· · · )∫ ∏n
a=1

[
dCadCa

]
e−β

∑n

a
|Ca|4+ 1

2
∑n

ab
CaMabC

b .

Finally, the thermodynamic free energy of the system is given by

f(β) = − 1
β

lim
n→0

Asp
n
, (6.47)

where Asp is the action computed in the solution of the reduced saddle point equations
(6.40a) and (6.40b) with the algebraic constraint (6.40c).

There is an important remark that has to be made regarding this procedure. The
reduced theory is not completely equivalent to the original one: the action defined in
Eq. (6.42) has not been derived through manipulations of the original one Eq. (6.34),
it has rather been guessed from the saddle point equations. For this reason we
have chosen a different notation for the two quantities. The identities exploited in
order to define the new action function are satisfied only at the saddle point, which
however yield the correct free energy in the large N limit. Thus, the reduced theory
is expected to correctly reproduce the thermodynamics of the original theory.

6.4 Discussion of the results
Before entering into the details of the analysis, we anticipate the discussion of the
results in this section for the convenience of the reader. We have performed three
kinds of computations: the annealed, the Replica Symmetric (RS) and the one
step Replica Symmetry Breaking (1RSB) one. The annealed limit is obtained by
considering n = 1 in the previous equations and yields the paramagnetic solution of
the model. The RS and 1RSB computations are based on different parametrizations
of the replica matrices: if a phase transition from the paramagnetic phase to another
phase occurs, we expect some of the off-diagonal parameters of these matrices
to become non-vanishing and starting increasing by further cooling the system.
However, contrary to expectations, from the numerical study of the model, neither
the RS nor the 1RSB computations give a different solution from the paramagnetic
one at finite temperature, up to the accuracy of our analysis. In Fig. 6.6 we display
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Figure 6.6. Free energy of the Random Unitary Model for the Merit Factor problem. Left
panel: data are plotted as a function of the inverse temperature β; Right panel: data
are plotted as a function of temperature T . Blue: free energy of the annealed solution;
Orange: Replica Symmetric free energy; Green: one step Replica Symmetry Breaking
free energy. From all the computations, the same result is obtained, corresponding to
the paramagnetic state of the system.

the free energy of the model both as a function of temperature and of its inverse,
obtained from the solution of the saddle-point equations pertaining to each one of the
three computations: data fall on the same curve, corresponding to the paramagnetic
state.

The fact that the RS solution does not differ from the annealed one reminds
of the situation found in the spherical p-spin model, where no trace of the glass
transition is found at the RS level, i.e. the off-diagonal element q0 of the overlap
matrix is zero at every temperature. Conversely, in the SK model one can observe
a phase transition already within the RS ansatz, since a non-vanishing value of q0
can be found at finite temperature. However, this solution becomes unstable on
the de-Almeida-Thouless line [dT78] and, also, leads to a low temperature negative
entropy. In the spherical p-spin model the RS solution describing the paramagnetic
state is always stable, a typical feature of first-order phase transitions, and a negative
entropy is not physically inconsistent with continuous variables; nevertheless, the
1RSB solution, with the overlap value of the diagonal blocks q1 ̸= 0, gives a higher
free energy, which in the replica method means that the 1RSB ansatz yields the
thermodynamically dominant phase. If our analysis is correct, the lack of a similar
scenario in the Random Unitary Model for the Merit Factor problem leads to the
following possible situations: (i) the glass transition occurs at zero temperature
with a 1RSB ansatz; (ii) the transition occurs at finite temperature, but with a
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different kind of replica symmetry breaking ansatz from the 1RSB one; (iii) there is
no transition at all in the model with random unitary matrices.

In order to test the first hypothesis, we have to compute the zero-temperature limit
of the 1RSB saddle-point equations, solve them and check whether the asymptotic
value of the free energy is greater than that of the paramagnetic solution. This is still
work in progress, see Sec. 6.9. However, it would be very surprising to discover that
in this model the addition of an infinitesimal thermal noise would destroy the alleged
zero-temperature transition. A useful indication regarding the second hypothesis
may come from the study of the stability of the RS solution: proving that the RS
replicon is always positive definite at finite temperature can be considered as an
evidence in favor of the p-spin model scenario.

In fact, as a result of our analysis, we are led to reconsider the mapping from the
original Bernasconi model, with Hamiltonian (6.6) and whose phebomenology seems
compatible with a glass transition, to the model with random unitary matrices,
which may be not under control. Therefore, the third scenario may be the most
reasonable one: the correct mapping to a disordered model should involve two
random orthogonal transformation (see Eq. (6.15)), one for the real and one for the
imaginary part of the complex spins τ , instead of a single unitary transform. In
order to test this hypothesis, we are performing analytical and numerical studies
of the original models, of the model with random orthogonal matrices and of the
random unitary model.

6.5 Annealed Limit

In this section we focus on the annealed limit, which yields a great simplification
of the theory from the mathematical point of view, since it amounts to consider
numbers instead of matrices. The two local free energies boil down to

fτ (R) = log
∑
{τ}

e− 1
2 |τ |2R = log 4 − R (6.48)

fC(M) = log
∫

dCdCe−β|C|4+ M
2 |C|2 . (6.49)

In the first expression the term log 4 is in place of the usual log 2 for binary variables,
since the sum over the configurations of τ runs over 4 possible values. However, this
fact is compensated by the factor 1/2 in the definition of the action, which takes
into account the correct number of degrees of freedom. Hence, the action reads

Aann = log 2 − R
2 + 1

2 log
∫

dCdCe−β|C|4+ M
2 |C|2 + 1

2 log(R − M) (6.50)

and the only value of the overlap q is connected to R and M through the simple
relation

q = 1
R − M

, (6.51)

which is the scalar version of the algebraic constraint Eq. (6.40c). The saddle point
equations can be derived straightforwardly. The first one is simply R − M = 1,
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which, by using Eq. (6.51), gives q = 1 consistently with the expectation for the
annealed case. The other equation, which determines the value of M, is

⟨|C|2⟩C = 2, (6.52)

where the average is performed with the probability measure induced by the local
free energy fC Eq. (6.49).

The annealed limit shows that, from the technical point of view, the theory is not
trivial, since even in this simple case we cannot obtain an analytical solution. This
is mainly due to the quartic measure, which characterizes the free energy integrated
in the unitary-transformed variables. The integrals appearing in the action and in
the equation for M can be simplified with some change of variables and cast into
truncated Gaussian integrals, yielding error functions which have to be computed
numerically. By passing to polar coordinates in the complex plane we have

∫
dCdCe−β|C|4+ M

2 |C|2 = 4π
∫ ∞

0
drre−βr4+ M

2 r
2 = 4πe

M2
16β

√
π

4
√
β

(
1 + erf

( M
4
√
β

))

and ∫
dCdCe−β|C|4+ M

2 |C|2 |C|2 = 4π
∫ ∞

0
drr3e−βr4+ M

2 r
2

= 4π
4
√
β + e

M2
16β

√
πM

(
1 + erf

(
M

4
√
β

))
16β

3
2

,

where the final result can be obtained by changing variables to u = r2. Eventually,
Eq. (6.52) becomes

M
4β + e

− M2
16β

√
πβ

(
1 + erf

(
M

4
√
β

)) = 2, (6.53)

and can be solved numerically. The free energy is given by

fann(β) = − 1
β
Aann (6.54)

where A is computed over the solutions of the saddle point equations. Due to
Eq. (6.51) and to the fact that q = 1, the logarithm in A vanishes and R can be
expressed in terms of M. Hence, we have

fann(β) = − 1
β

log 2 − M + 1
2 + 1

2 log

π3/2 e
M2
16β

√
β

+ 1
2 log

(
1 + erf

( M
4
√
β

)) ,
(6.55)

where M = M(β) is given by the solution of Eq. (6.53) for each value of β.
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6.6 Replica Symmetric Ansatz
In this section we perform a replica symmetric (RS) ansatz for the solution of the
saddle point equations. We consider the following parametrizations for the global
order parameters

Qab = δab + q0(1 − δab) (6.56a)
Rab = RDδab + R0(1 − δab) (6.56b)

Mab = MDδab + M0(1 − δab), (6.56c)

where the diagonal elements of Q are fixed to one due to the fact that |τa|2 = 2.
The action in Eq. (6.42) has to be expressed in terms of the parameters of the
RS matrices. In order to lighten the exposition, here we simply limit ourselves to
reporting the results and we refer to Appendix B for the details of the computations.

To shorten the notation we introduce the function

gβ,0(C|x, y, z) = e−β|C|4+ 1
2 (x−y)|C|2+√

yℜ(Cz), (6.57)

where x, y ∈ R and z, C ∈ C. By integrating gβ,0 with respect to C we have the
function

Iβ,0(x, y, z) =
∫

dCdCe−β|C|4+ 1
2 (x−y)|C|2+√

yℜ(Cz), (6.58)

that is a local partition function (related to the local free energy (6.43)), which plays
exactly the same role played by the cosh function, which will appear in the other
local free energy (6.44), after tracing over the discrete spins. However, in this case,
we are not able to reduce it further due to the quartic term in the exponential. The
function

Pβ,0(C|x, y, z) = gβ,0(C|x, y, z)
Iβ,0(x, y, z) (6.59)

defines a probability measure for the unitary transforms C of the complex spin
variables τ .

Eventually, the RS action reads

lim
n→0

2
n
ARS = fτ (R0) + fC(MD,M0) + s0(RD,R0,MD,M0) (6.60)

where the O(n) expressions of the local free energies are

fτ (RD,R0) = log 4 − (RD − R0) + 2
∫ dh√

2π
e−h2/2 log cosh(

√
−R0h) (6.61)

fC(MD,M0) =
∫ dzdz

4π e−|z|2/2 log Iβ,0(MD,M0, z), (6.62)

and the O(n) expression of the entropic term has been stored into the function

s0(RD,R0,MD,M0) = log(RD−MD−R0+M0)+ R0 − M0
RD − MD − R0 + M0

. (6.63)

Plugging Eq. (6.60) into Eq. (6.47) yields the RS free energy of the model.
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We now have to find self-consistency equations for MD,M0,RD,R0, whose
solution will give the dynamics of the parameters with respect to temperature
variations, which is necessary to evaluate the free energy at each value of β. These
equations can be derived by imposing the vanishing of the RS action gradient
components, as shown in detail in Appendix B. Eventually, the RS self-consistency
equations are given by

q0 =
∫ dh√

2π
e−h2/2 tanh2(

√
−R0h) (6.64a)

q0 = 1
2

∫ dzdz
4π e−|z|2/2|⟨C⟩0|2 (6.64b)

1 = 1
2

∫ dzdz
4π e−|z|2/2⟨|C2|⟩0 (6.64c)

where

⟨(· · · )⟩0 =
∫

dC dC Pβ,0(C|MD,M0, z)(· · · )

=
∫

dC dC gβ,0(C|MD,M0, z)(· · · )
Iβ,0(MD,M0, z)

,
(6.65)

is the average defined over the probability measure Pβ,0(C|MD,M0, z), see Eq. (6.59),
and, therefore, is a function of the complex Gaussian variable z and the saddle point
parameters MD,0. The system of RS equations is completed by the relations

RD − MD − (R0 − M0)q0 = 1 (6.66a)
(R0 − M0)(1 − 2q0) + (RD − MD)q0 = 0. (6.66b)

which follow from the RS expression of the algebraic relation (6.40c). We notice
that with the above saddle point equations the entropy (6.63) can be rewritten as

s0(q0) = − ln(1 − q0) − q0
1 − q0

,

which clearly vanishes for q0 = 0. One important remark: if one sets R0 = M0 =
q0 = 0 in the RS action (6.60), one recovers the annealed action (6.50).

Further manipulations

It is convenient, especially in view of the numerical analysis of the previous set of
equations, to write every complex variable in terms of its real and imaginary parts.
To have an even lighter notation, let us denote the integral over a real Gaussian
variable x as

Dx = dx√
2π
e−x2/2.

We use the following notation: z = ρ+ iσ and C = a+ ib. Therefore, we have∫ dzdz
4π e−|z|2/2⟨(· · · )⟩0 =

∫
DρDσ⟨(· · · )⟩0
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where a factor 1/2 is cancelled by the modulus of the Jacobian of the transformation
z, z → σ, ρ. The average induced by the measure Pβ,0(a, b|MD,M0, z) now reads

⟨(· · · )⟩0 =
∫

da db (· · · ) P(a, b|MD,M0, z) =
∫

da db (· · · ) gβ,0(a, b|MD,M0, ρ, σ)
Iβ,0(MD,M0, ρ, σ)

(6.67)
where in this case the Jacobians of the transformations C,C → a, b cancel out
between numerator and denominator and

gβ,0(a, b|x, y, ρ, σ, ) = exp
[
−β(a2 + b2)2 + 1

2(x− y)(a2 + b2) + √
y(aσ + bρ)

]
Iβ,0(x, y, ρ, σ) =

∫
da db gβ,0(a, b|x, y, ρ, σ).

In this notation, we have∫ dzdz
4π e−|z|2/2⟨|C|2⟩0 =

∫
DρDσ ⟨a2⟩0 +

∫
DρDσ ⟨b2⟩0

= 2
∫

DρDσ ⟨a2⟩0,

where the last identity holds because the two integrals are equal under the simulta-
neous changes of variables ρ ↔ σ and a ↔ b. Similarly, for the other expectation
value in the self-consistency equations, we have∫ dzdz

4π e−|z|2/2|⟨C⟩0|2 =
∫ dzdz

4π e−|z|2/2(ℜ⟨C⟩0)2 +
∫ dzdz

4π e−|z|2/2(ℑ⟨C⟩0)2

=
∫

DρDσ ⟨a⟩2
0 +

∫
DρDσ ⟨b⟩2

0

= 2
∫

DρDσ ⟨a⟩2
0,

where the last identity is again due to the changes of variables ρ ↔ σ and a ↔ b.
Given the previous results, we can finally rewrite the set of self-consistency

equations for the RS parameters as follows

q0 =
∫

Dh tanh2(
√

−R0h) (6.68a)

q0 =
∫

DρDσ ⟨a⟩2
0 (6.68b)

1 =
∫

DρDσ ⟨a2⟩0 (6.68c)

plus the algebraic constraints Eqs. (6.66). Finally, we report the expression of the
RS free energy, which has to be computed at each temperature on the solutions of
the self-consistency equations

fRS(β) = − 1
β

(
log 2 − RD − R0

2 +
∫

Dh log cosh(
√

−R0h)

+ 1
2

∫
DρDσ log [2Iβ,0(MD,M0, ρ, σ)] + 1

2s0(RD,R0,MD,M0)
)
.

(6.69)
where we recall that s0 contains the expression of the entropic term Eq. (6.63). The
factor 2 multiplying Iβ,0 comes from the change of variables C,C → a, b.
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6.7 One Step of Replica Symmetry Breaking
The first step of replica symmetry breaking (1RSB), introduced in Ref. [Par79b] for
the SK model, is based on a more sophisticated choice of matrices than the more
intuitive RS ansatz, in order solve the saddle point optimization problem. When
replica symmetry is broken, the group Sn of replica permutations is no more a
symmetry group for the theory. However, the theory may still be invariant under
a subgroup of replica permutations. In the 1RSB case the symmetry group left is
(Sm)⊗ n

m ⊗ S n
m

, for some integer value of m, where (Sm)⊗ n
m is the direct product of

the permutation group of m objects with itself for n/m times [MPV87]. This ansatz
amounts to consider matrices of the kind

AD A1
A1 AD

A0

A0
AD A1
A1 AD


which are characterized by n/m diagonal blocks of dimension m × m. With this
choice, it is clear that Sm corresponds to permutations of replicas inside a block and
S n

m
corresponds to permutations of the blocks. From the physical point of view, the

presence of two values A0 and A1 signals the organization of states in clusters with
one value of the overlap between configurations belonging to different states (A0)
and only one intrastate overlap value (A1). The parameter m, which is known as
breaking parameter, is connected to the probability for the overlap to take one of the
two allowed values.

This replica symmetry breaking scheme can be iterated hierarchically, by taking
smaller sub-blocks inside each diagonal blocks and so on ad infinitum. This procedure
with infinite steps of breaking has proved to give the correct free energy for the SK
model [Par80a; Par79a]. However, in analogy with the REM and with the spherical
p-spin model, we expect the 1RSB ansatz to be the right one to capture the low
temperature properties of the model [GM84].

An important remark, which will be particularly helpful for the algebra of this
kind of matrices, is that 1RSB matrices can be decomposed as follows(

A0 A0
A0 A0

)
+
(

A1 − A0 0
0 A1 − A0

)
+ diag(AD − A1), (6.70)

where the first one is a matrix of all elements equal to A0, the second one is a block
matrix with n/m diagonal m×m blocks of all elements equal to A1 − A0 and the
third one is a diagonal matrix with all diagonal elements equal to AD − A1. This
decomposition provides a nice visualization of a 1RSB matrix. The first useful result,
which can be better understood from the decomposition, is the following: a term in
the action containing replicated variables xa - either discrete or continuous - which
are coupled through a 1RSB matrix can be written as

n∑
ab

xaAabxb = A0

(
n∑
a=1

xa

)2

+ (A1 − A0)
n/m∑
k=1

 1,m∑
a∈

Block(k)

xa


2

+ (AD − A1)
n∑
a=1

x2
a,
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where it is clear that each term corresponds to one of the matrices in the expression
(6.70). Other properties of 1RSB matrices will be discussed when necessary. In the
following, we put A = R − M.

The precise computation of the action (6.42) in the 1RSB ansatz is reported in
Appendix C. Let us here report and discuss the result. In analogy with the RS case,
see Eq. (6.59), we define the probability density for the variables C as

Pβ,1(C|x, y, t, z, w) ≡ gβ,1(C|x, y, t, z, w)
Iβ,1(x, y, t, z, w) , (6.71)

where

gβ,1(C|x, y, t, z, w) = e−β|C|4+ 1
2 (x−t)|C|2+√

yℜ(Cz)+
√
t−yℜ(Cw), (6.72)

with x, y, t ∈ R and z, w,C ∈ C and

Iβ,1(x, y, t, z, w) =
∫

dCdC gβ,1(C|x, y, t, z, w). (6.73)

Notice that, by taking y = t, the definitions of gβ,1 and Iβ,1 are equivalent to those
of gβ,0 Iβ,0, see Eqs. (6.57) and (6.58): this is exactly what one expects, since in this
case we are taking M0 = M1, i.e. a RS matrix. Moreover, in this case we also define
the following function, which will appear in the expression of the free energy fτ

Ξ(R0,R1, h, u) =
√

−R0 h+
√

R0 − R1 u. (6.74)

Notice, that by taking R0 = R1 this function reduces to its RS form, which is simply
Ξ =

√
−R0h.

With respect to these quantities, the 1RSB action reads as

lim
n→0

2
n
A1RSB = fτ (RD,R0,R1,m) + fC(MD,M0,M1,m) + s1(AD,A0,A1,m)

(6.75)

where the local free energies have the O(n) expressions

fτ (RD,R0,R1,m) = log 4 − (RD − R1) + 2
m

∫
Dh log

∫
Du coshm Ξ(R0,R1, h, u)

(6.76)

fC(MD,M0,M1,m) = 1
m

∫
D [zz] log

∫
D [ww] Imβ,1(MD,M0,M1|z, w) (6.77)

D [zz] = dzdz
4π e−|z|2/2 (6.78)

and the entropic term

s1(AD,A0,A1,m) = m− 1
m

log(AD − A1) + 1
m

log[AD + (m− 1)A1 −mA0]

+ A0
AD + (m− 1)A1 −mA0

.

(6.79)
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The procedure employed to compute the self-consistency equations for the 1RSB
parameters goes along the same line as in the RS case, but the computations are
heavier. This is due to the fact that a 1RSB matrix has two more parameters than
a RS matrix, leading to an additional level of Gaussian integration in the local free
energies. When performing the derivatives, this will lead to nested averages defined
over probability measures which have more involved expressions compared to the RS
case. In Appendix C, we present in some detail the computation of the derivatives,
adopting notations that are compact enough to allow us to write down the main
equations, but not so much to obscure their meaning. Here, we just state the result.

In analogy to the RS case let us define the following average over the measure
Pβ,1, see Eq. (6.71),

⟨(· · · )⟩1 =
∫

dC dC Pβ,1(C|MD,M0,M1, z, w)(· · · )

=
∫

dC dC gβ,1(C|MD,M0,M1, z, w)(· · · )
Iβ,1(MD,M0,M1, z, w) ,

(6.80)

which is a function of the complex Gaussian variables z, w and the saddle point
parameters MD,0,1. Then, the 1RSB stationary point is given by the solution of the
following set of equations

q0 =
∫

Dh

(∫
Du coshm Ξ tanh Ξ∫

Du coshm Ξ

)2
(6.81a)

q1 =
∫

Dh

∫
Du coshm Ξ tanh2 Ξ∫

Du coshm Ξ (6.81b)

1 = 1
2

∫
D [zz]

∫
D [ww]Imβ,1⟨|C|2⟩1∫

D [ww]Imβ,1
(6.81c)

q0 = 1
2

∫
D [zz]

∣∣∣∣∣
∫

D [ww]Imβ,1⟨C⟩1∫
D [ww]Imβ,1

∣∣∣∣∣
2

(6.81d)

q1 = 1
2

∫
D [zz]

∫
D [ww]Imβ,1|⟨C⟩1|2∫

D [ww]Imβ,1
. (6.81e)

The system is completed by the relations coming from the 1RSB expression of the
algebraic constraint (6.40c), which in the limit n → 0, reads as

AD + (m− 1)A1q1 −mA0q0 = 1 (6.82a)
A1 + ADq1 + (m− 2)A1q1 −mA0q0 = 0 (6.82b)

ADq0 + (m− 1)A1q0 + A0 + (m− 1)A0q1 − 2mA0q0 = 0. (6.82c)

The derivative with respect to m

In this subsection we compute the derivative of the action with respect to the last
1RSB parameter, the breaking parameter m. In fact, this parameter was originally
an integer number, such that m < n, which denoted the dimension of the diagonal
blocks of a 1RSB matrix; when the limit n → 0 is taken, the more intuitive thing
to do would be to send m to zero as well, keeping fixed the ratio n/m. However,
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the prescription of the replica method is that, in order to obtain a well-defined
probability distribution function of the overlap, m has to be promoted to a real
number in the interval [0, 1] and as a result the functions depending on m are
analytically continued with respect to m in that interval [MPV87]. Therefore, m
has to be regarded by all means as a variational parameter with respect to which a
saddle point self-consistency equation has to be computed.

As for the other parameters, we compute the derivatives of the action (6.75)
with respect to m. The derivatives of the free energies (6.76) and (6.77) are

∂fτ
∂m

= − 1
m2

∫
Dh log

∫
Du coshm Ξ + 1

m

∫
Dh

∫
Du coshm Ξ log cosh Ξ∫

Du coshm Ξ

and

∂fC
∂m

= − 1
m2

∫
D [zz] log

∫
D [ww]Imβ,1 + 1

m

∫
D [zz]

∫
D [ww]Imβ,1 log Iβ,1∫

D [ww]Imβ,1
.

The derivative of the entropic term reads as

∂s1
∂m

= − A0(A1 − A0)
(AD + (m− 1)A1 −mA0)2 − 1

m2 log[AD + (m− 1)A1 −mA0]

+ 1
m

A1 − A0
AD + (m− 1)A1 −mA0

+ 1
m2 log(AD − A1).

Then the equation for m, which is too cumbersome to be written here, is given by
the sum of the previous three derivatives set equal to zero.

Further manipulations

With the same procedure followed in the RS case, we pass to the real and imaginary
parts of all the complex variables, with the notations: C = a+ ib, z = ρ+ iσ and
w = u+ iv. Each of the square moduli in the equations obtained from the derivatives
of fC , gives two contributions, which can be proved to be equal under proper changes
of variables. Eventually, we obtain the following set of equations

q0 =
∫

Dh

(∫
Du coshm Ξ tanh Ξ∫

Du coshm Ξ

)2
(6.83a)

q1 =
∫

Dh

∫
Du coshm Ξ tanh2 Ξ∫

Du coshm Ξ (6.83b)

1 =
∫

DσDρ

∫
DuDvImβ,1⟨a2⟩1∫

DuDvImβ,1
(6.83c)

q0 =
∫

DσDρ

(∫
DuDvImβ,1⟨a⟩1∫

DuDvImβ,1

)2

(6.83d)

q1 =
∫

DσDρ

∫
DuDvImβ,1⟨a⟩2

1∫
DuDvImβ,1

, (6.83e)
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where the average induced by the measure Pβ,1(a, b|MD,M0,M1, ρ, σ, u, v), see
Eq. (6.80), now reads

⟨(· · · )⟩1 =
∫

da db gβ,1(a, b|MD,M0,M1, ρ, σ, u, v)
Iβ,1(MD,M0,M1, ρ, σ, u, v) , (6.84)

with

gβ,1(a, b|x, y, t, ρ, σ, u, v) = e−β(a2+b2)2+ 1
2 (x−t)(a2+b2)+√

y(aρ+bσ)+
√
t−y(au+bv) (6.85)

Iβ,1(x, y, t, ρ, σ, u, v) =
∫

da db gβ,1(a, b|x, y, t, ρ, σ, u, v). (6.86)

Notice that, as in the RS case, we have removed a factor 2 from the definition of Iβ,1
since it cancels out with an equal factor in the numerator of the average ⟨(· · · )⟩1.

The algebraic Eqs. (6.82), together with the equation obtained with the deriva-
tives in m, complete the set of self-consistency equations for the 1RSB parameters.
The 1RSB free energy, which has to be computed on the solutions of the self-
consistency equations, reads as

f1RSB(β) = − 1
β

(
log 2 − RD − R1

2 + 1
m

∫
Dh log

∫
Du coshm Ξ

+ 1
2m

∫
DρDσ log

∫
DuDv[2Iβ,1]m + 1

2s1(AD,A0,A1,m)
)
,

(6.87)

where all parameters are the solutions to Eqs. (6.82) and (6.83). We notice that the
RS equations are easily obtained by putting m = 1 and taking q0 = q1 and similarly
for the other parameters.

6.7.1 Simplified 1RSB Ansatz

A simpler optimization problem, which is worth studying at least at a preliminary
level, is the one resulting from a 1RSB ansatz with q0 = R0 = M0 = 0. This
assumption works for the p-spin model in zero external field, both with spherical
variables, see Refs. [CS92; CC05], and with Ising spin variables, see Ref. [Gar85], so
it is reasonable for the present case as well.

The advantage of making this simplified ansatz is a drastic simplification of the
self-consistency equations for the remaining 1RSB parameters. Besides having three
parameters less to optimize, in this case, the local partition function function Iβ,1
does not depend anymore on the auxiliary variable z (or equivalently ρ, σ), leading
to the disappearance of the outer Gaussian integration from the self-consistency
equations obtained by the derivative of fC . Moreover, in this case the functions
gβ,1 and Iβ,1 reduce to the RS integral functions gβ,0 and Iβ,0 computed in MD,M1
rather than MD,M0. Hence, though we are still in a 1RSB ansatz, the average
⟨(. . . )⟩0 will appear in the saddle-point equations. A similar simplification also occurs
for the equation that contains the derivative of fτ with respect to R1: the function
Ξ reduces to its RS form, but computed in R1, rather than R0, i.e. Ξ =

√
−R1u.
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Let us report the expression of the self-consistency equations in this case

q1 =
∫

Du coshm Ξ tanh2 Ξ∫
Du coshm Ξ (6.88a)

q1 =
∫

DuDvImβ,0(MD,M1|u, v)⟨a⟩2
0∫

DuDvImβ,0(MD,M1|u, v) (6.88b)

1 =
∫

DuDvImβ,0(MD,M1|u, v)⟨a2⟩0∫
DuDvImβ,0(MD,M1|u, v) (6.88c)

with the following algebraic constraints

RD − MD + (m− 1)(R1 − M1)q1 = 1 (6.89a)
R1 − M1 + (RD − MD)q1 + (m− 2)(R1 − M1)q1 = 0. (6.89b)

The equation obtained by the vanishing of the action derivative with respect to m
can be computed for the present case by putting R0 = M0 = 0 in the derivatives
computed before and reads as

− 1
m

log
∫

Du coshm Ξ +
∫

Du coshm Ξ log cosh Ξ∫
Du coshm Ξ − 1

m
log

∫
DuDvImβ,0

+
∫

DuDvImβ,0 log Iβ,0∫
DuDvImβ,0

− 1
m

log (1 +m(1 − q1)(R1 − M1)) + (1 − q1)(R1 − M1)
1 +m(1 − q1)(R1 − M1) = 0,

(6.90)

where q1 has been introduced through its expression in terms of the other parameters.
The free energy of the model in this simplified 1RSB ansatz reads

f1RSB(β) = − 1
β

(
log 2 − RD − R1

2 + 1
m

log
∫

Du coshm Ξ

+ 1
2m log

∫
DuDv[2Iβ,0(MD,M1, |u, v)]m + 1

2s1(RD,R1,MD,M1,m)
)
,

(6.91)

where, now, we have

s1 = m− 1
m

log(RD − MD − R1 + M1) + 1
m

log[RD − MD + (m− 1)(R1 − M1)].

By using the algebraic relations (6.89), the entropic term has the following simpler
dependence on q1:

s1 = m− 1
m

log
( 1

1 − q1

)
+ 1
m

log
( 1

1 + (m− 1)q1

)
.
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6.8 Numerical Integration

This section is devoted to the description of the technique used for the numerical
integration of the saddle-point self consistency equations which have been obtained
for the variational parameters of the model in the previous sections. In particular,
we have studied in detail the RS set of Eqs. (6.68) and the simplified 1RSB set of
Eqs. (6.88), both on Mathematica and by writing dedicated codes in Python.

The numerical solution of the integrals has been performed by means of the
Gaussian-Legendre quadrature rule [Bar+06; AS72], which we briefly explain in the
following. Given a function f : [a, b] ⊂ R → R, the integral of f over its domain can
be approximated by ∫ b

a
dyf(y) ≈ b− a

2

n∑
i=1

wif(yi), (6.92)

with

yi =
(
b− a

2

)
xi +

(
b+ a

2

)
.

In the previous expressions the point xi is the ith zero of the Legendre polynomial
Pn(x) and wi is the corresponding weight given by

wi = 2
(1 − x2

i )[P ′
n(xi)]2

.

Both the values of xi and wi are tabulated and can be generated by a specific Python
(or Mathematica) routine. The generalization of this technique to two-dimensional
integrals is straightforward. The advantage of this technique is that the discretization
of the integration domain is very efficient and one obtains a relatively good result
already with a small number of points.

Our integrals are extended between ±∞, but the integrands are rapidly decreasing
functions. We choose symmetric integration domains limited by a parameter Lg in
the case of Gaussian integrals and Lq in the case of integrals of the exponential of a
4-degree polynomial, namely the function gβ,0. We have studied the parametrical
dependence of integrals on the number of points n and on the quantities Lg, Lq and
assessed the values of the parameters such that the results remained stable. The
computation of the integrals is particularly demanding in the 1RSB case, due to the
presence of nested double integrals, which lead to an increase of the computational
complexity of order O(n2) for each layer. Just to make an example, the discretized
version of the integral in the third equation of the simplified 1RSB system (see
Eq. (6.88c)) reads as

I =
∑n
ij wiwje

−
L2

g(u2
i

+v2
j

)
2 Imβ,0(MD,M1|Lgui, Lgvj)⟨(Lqak)2⟩0∑n

ij wiwje
−

L2
g(u2

i
+v2

j
)

2 Imβ,0(MD,M1|Lgui, Lgvj)
,

⟨(Lqak)2⟩0 =
∑n
kl wkwlgβ,0(MD,M1|Lgui, Lgvj , Lqak, Lqbl)(Lqak)2∑n

kl wkwlgβ,0(MD,M1|Lgui, Lgvj , Lqak, Lqbl)
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where, of course, Iβ,0 contains another double integration. During the solution of
the saddle point equations at a certain value of the inverse temperature β, this
integral, like the others, has to be computed iteratively many times with respect to
tentative values of the 1RSB parameters MD,M1,m. Then, the procedure has to
be repeated varying the temperature. To speed up this kind of computations the
code has been parallelized on GPUs using the Python library PyTorch.

The integration technique of the saddle point equations is based on the optimiza-
tion of a loss function defined as the sum of the action gradient components squared.
Let us briefly describe the technique in general before moving to the case of interest.
Suppose we want to find the global minimum of a differentiable cost function L(x),
depending on P parameters {xi}i=1,...,P . The Gradient Descent (GD) algorithm is
based on the idea that the most efficient way of reaching the minimum of L(x) is to
follow the opposite direction of its gradient. This can be implemented in following
iterative way

xn+1 = xn − γ∇L(xn), (6.93)

where the quantity γ is the so-called learning rate, which defines the step size of
the algorithm and the quantity γ∇L(xn) is subtracted from xn since we want to
move against the gradient. Clearly, this method may encounter some difficulties for
functions with many local minima: when one of this minima is reached the gradient
of the function is a vector of zeros and the algorithm gets stuck. To overcome the
problem, several GD optimizations can be run with random initial conditions: in
non-pathological cases the global minimum can be selected a posteriori. In order
to optimize the loss functions which will be defined in a short while, we used the
Adam4 optimizer as a GD algorithm with momentum [KB14]. The momentum is
an additional term to the GD dynamics defined in Eq. (6.93), which suppresses
the oscillations of the gradient, by taking larger steps in the preferred direction of
steepest descent.

6.8.1 RS Equations

Consider the set of RS Eqs. (6.68). In principle, we have to determine five parameters
q0,RD,R0,MD and M0; however, the algebraic constraints (6.66) can be used to
express two of them in terms of the others. For example, we can eliminate RD and
R0 by writing RD = RD(MD, q0) and R0 = R0(M0, q0), where

RD = MD + 1 − 2q0
(1 − q0)2 (6.94a)

R0 = M0 − q0
(1 − q0)2 . (6.94b)

Incidentally, this expression of the parameters allows us to make an important
consistency check on the solution: in order for the RS free energy (6.69) to be real
valued we need the argument of the logarithm function in the entropic term s0 to be
positive definite, i.e. RD − MD − R0 + M0 > 0. When substituting the expressions

4Adam stands for adaptive moment estimation and it is usually adopted as a Stochastic Gradient
Descent (SGD) algorithm in the context of input-output problem in machine learning. Here, however,
we just have to minimize a function with respect to its arguments and we have used it as a simple
GD.
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of RD and R0 in terms of the other parameters into the previous condition, we
find the simple condition 1 − q0 > 0, which is always verified at finite temperature,
since q0 ∈ [0, 1]. We are, then, left with three integral equations in the three
parameters q0,MD,M0. The loss function that we need to optimize can be defined
as LRS =

∑
i(∂XiARS)2, Xi being the generic replica parameter, and explicitly reads

LRS(q0,MD,M0, β) =
(
q0 −

∫
Dh tanh2(

√
−R0h)

)2
+
(
q0 −

∫
DρDσ ⟨a⟩2

0

)2

+
(

1 −
∫

DρDσ ⟨a2⟩0

)2
,

where the dependence of the parameters on β is implicit and all the integrals are
discretized with the procedure described before.

With respect to standard spin-glass optimization problems, where the Lagrange
multipliers conjugated to the overlap variables are usually integrated away at the
level of the saddle-point equations [CS92], here we have the additional difficulty of
dealing with unbounded parameters: in fact, if q0 must be in the interval [0, 1] for
every value of β, we do not have such strong bounds on MD and M0. The only
information we have is that, either by looking again at the RS free energy Eq. (6.69)
or by directly inspecting the equations, the theory is well defined only if R0 < 0
and M0 > 0. The condition on R0 can be used together with Eq. (6.94b) to find an
upper bound for M0. Eventually, we have

0 < M0 <
q0

(1 − q0)2 , (6.95)

which, however, is not so useful in practice a part from the choice of the initial
condition selection. Actually, what we learn from Eq. (6.95) is that as long as q0 = 0,
M0 has to vanish too: this is expected to happen at least for low values of β. If
there is a value of β from which q0 starts increasing, then, as q0 → 1 the upper
bound on M0 diverges. Nothing can be said, instead, for the definition interval of
MD.

In order to acquire preliminary knowledge of the parameters region where the
global minimum of LRS might be located at a certain value of β, we have visualized
the loss landscape, by producing color maps of its projections onto orthogonal
planes. From these plots we could clearly identify the paramagnetic solution, which
is always present for any value of the temperature. Moreover, for sufficiently high β
many other minima, though not deep as the paramagnetic one, could be found for
non-vanishing values of the parameters M0 and q0. However, most of these minima
have turned out to be nonphysical, leading to imaginary values of the free energy or
other pathological consequences. The absence of boundaries for the parameter M0
prevents to thicken the grid over which the loss is computed, but for small intervals
of M0 values. If the global minimum of the loss has a small basin of attraction, it is
very unlikely to be visualized. However, we have managed to exclude some values of
M0 from the choice of the initial conditions for the GD algorithm.

Starting from high temperature, our algorithm falls into the paramagnetic
solution with q0 = M = 0 = 0, independently of the initial conditions, leading
to results which are consistent with the annealed limit. To speed up the search
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for the optimal parameters, when increasing β, we always initialize the optimizer
for the next step in temperature with the optimized parameters at the previous
temperature. However, if one starts with a low value of β, this procedure may cause
the algorithm to remain stuck in the paramagnetic solution, even in presence of a
different solution dominating the thermodynamics. This occurrence is typical of
first-order phase transitions, where the high temperature solution does not become
unstable at the transition (i.e. a maximum or a saddle in the parameter space), but
from being a global minimum it turns into a local minimum. With respect to this,
we refer to the section dedicated to the numerical integration of the Ising p-spin
model, which we have used as a test of the procedure. Therefore, we have tried
another strategy: we start from a high value of β, hoping to fall into a different state
than the paramagnetic one and we lower β to follow the solution up to the transition
point. Having not much information on the value of M0 at low temperature, we
start the optimization by fixing a high value of q0 ∈ [0, 1] and randomly choosing
the initial condition on M0 according to Eq. (6.95) and to our observations of the
loss function. However, no solution can be found at finite T with non-vanishing q0
and M0 and a free energy value higher than the value of the RS free energy at the
same temperature. Hence, no evidence of a phase transition has been revealed in
terms of non-vanishing q0 or M0.

6.8.2 1RSB Equations

We now turn to the more complicated case of the set of 1RSB equations (6.88),
where we have six parameters to determine: q1,RD,R1,MD,M1 and the breaking
parameter m. We eliminate RD and R1 from the problem, by means of the
algebraic constraints (6.82), expressing them as RD = RD(q1,m,MD) and R1 =
R1(q1,m,M1) in the following way

RD = MD + 1 + (m− 2)q1
(1 − q1)[1 + (m− 1)q1] (6.96a)

R1 = M1 − q1
(1 − q1)[1 + (m− 1)q1] . (6.96b)

As in the RS case, we can verify the consistency of the theory, by using these
equations together with the positiveness of the arguments of the two logarithms in
the entropic term of the 1RSB free energy (6.91): we get two conditions, i.e. 1−q1 > 0
and 1 − (m− 1)q1 > 0, which are both satisfied for every finite temperature, since
q1,m ∈ [0, 1]. Moreover, by using the fact that R1 < 0 and M1 > 0, we find a
condition on M1, which is the 1RSB generalization of Eq. (6.95) and reads

0 < M1 <
q1

(1 − q1)[1 + (m− 1)q1] . (6.97)

As in the RS case, this equation tells us that as long as q1 = 0, M1 = 0 as well.
Hence in this case we are left with the three integral equations (6.88) plus Eq. (6.90),
which by using the expression of R1 further simplifies to

− log
∫

Du coshm Ξ +m

∫
Du coshm Ξ log cosh Ξ∫

Du coshm Ξ − log
∫

DuDvImβ,0

+m

∫
DuDvImβ,0 log Iβ,0∫

DuDvImβ,0
− log

(
1 + m

1 + (m− 1)q1

)
+m

q1
1 − q1

= 0.
(6.98)
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to be solved with respect to q1,m,MD and M1.
We have adopted two alternative strategies to solve the 1RSB optimization

problem, one, more direct, which indeed makes use of Eq. (6.98), the other one, more
subtle, which is based on a “graphical” maximization of the 1RSB free energy with
respect to m. In the first case, the loss function is defined by taking into account
all the squared components of the action gradient, expressed in terms of q1,m,MD

and M1. We have

L1RSB(q1,m,MD,M1, β) =
(
q1 −

∫
Du coshm Ξ tanh2 Ξ∫

Du coshm Ξ

)2

+
(
q1 −

∫
DuDvImβ,0⟨a⟩2

0∫
DuDvImβ,0

)2

+
(

1 −
∫

DuDvImβ,0⟨a2⟩0∫
DuDvImβ,0

)2

+ (∂mA1RSB)2 = 0

(6.99)

where the left hand side of Eq. (6.98) has been denoted as ∂mA1RSB for brevity and
all the integrals are computed with the Gauss-Legendre quadrature rule implemented
in parallel. In the other case, the term ∂mA1RSB drops out from the cost function
definition, and optimization with respect to m is performed as follows. At a fixed
value of β, the global minimum of the cost function is found in parallel for different
values of m ∈ [0, 1]: then, the free energy in Eq. (6.91) is computed as a function of
m, i.e. f1RSB = f1RSB(m) and its values are sorted. We look for the maximum of
the f1RSB(m) and consider the values of the parameters corresponding to it as the
solution of the optimization problem. In order to reduce the error, this procedure can
be iterated many times, by using values of m each time closer to the true maximum
of f1RSB(m).

Regarding the dynamics in temperature, we have proceeded as in the RS case,
by either increasing β starting from the paramagnetic solution or by decreasing
β starting from many random initializations of the parameters q1,MD,M1 and
m, which are sampled consistently with their bounds from the regions where the
low temperature maps of the loss functions revealed the presence of minima. By
increasing β, we just remain stuck into the paramagnetic solution already found at
the RS level and in the annealed limit. By lowering β, notwithstanding the huge
number of attempts with different initial conditions, we are not able to find any
good solution besides the paramagnetic one.

6.8.3 Test: the Ising p-spin model

In order to check our numerical integration technique, we have tested the procedure
on the 1RSB solution of the Ising p-spin model. Let us briefly report some useful
result drawn from Ref. [Gar85].

The temperature at which the RS entropy becomes negative, signaling a thermo-
dynamic anomaly, is T = 1/(2

√
log 2) = 0.60056 . . . . The critical temperature of the

transition to the 1RSB phase is given by the analytical expression

Tc = 1
2
√

log 2

(
1 + 2−(p+1)

√
π

p(log 2)3

)
, (6.100)
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Figure 6.7. The 1RSB overlap parameter q1
as a function of the inverse temperature.
Notice, the jump at βc = 1.55 ± 0.025.
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Figure 6.8. The breaking parameter m as
a function of the inverse temperature in
the well-behaved region for β > βc.
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Figure 6.9. Free energy of the model in the RS (orange, analytical) and 1RSB (blue,
numerical) solutions. The thermodynamic free energy is given by the maximum of the
two and hence coincides with the RS one in the high temperature region and with the
1RSB one in the low temperature region.

which for the case p = 3 gives the value Tc = 0.66712 . . . to be compared with our
numerical integration.

For an arbitrary value of p, the free energy with q0 already set to zero is given
by the following expression

Φ = −β

4 [1 + (p− 1)(1 −m)qp1 − pqp−1
1 ] − 1

mβ
log

∫
Dz (2 cosh Ξ)m, (6.101)

where in this case
Ξ = z

√
p

2βq
p−1

2
1

and, as usual,
Dz = dz√

2π
exp(z2/2).

For the present case we have just two equations to determine the parameters q1 and
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Figure 6.10. Color map of the p-spin loss function at three different values of β: from left
to right β = 0.5, β = 3 and β = 6.5. Vertical axis: q1; horizontal axis m; color map:
values of the loss increase from blue to light yellow. The two blue valleys correspond
to the paramagnetic state (RS solution), with q1 = 0 and degenerate in m and to the
glassy state (1RSB solution) with q1 ≃ 1 and m decreasing when β increases. In the
left panel, where β < βc, only the RS solution can be visualized, while in the other two
panels the 1RSB solution appears and moves towards m = 0, when β is increased.

m as functions of β, which read as

q1 =
∫

Dz (2 cosh Ξ)m tanh2 Ξ∫
Dz (2 cosh Ξ)m (6.102a)

β

4 (p− 1)qp1 + 1
βm2 log

∫
Dz (2 cosh Ξ)m − 1

βm

∫
Dz (2 cosh Ξ)m log 2 cosh Ξ∫

Dz (2 cosh Ξ)m = 0.

(6.102b)

The second equation is obtained from the derivative in m of the free energy and, in
this simple case, can be easily integrated directly. Alternatively, as discussed above,
one can solve the first equation parametrically in m and then look for the maximum
of the free energy in m “graphically”. We have tested both procedures and checked
that the optimization of the loss functions defined for the two cases in analogy with
the previous section yields the same results. Here, we report the results obtained
through the optimization of the full loss function by using the FindRoot routine on
Mathematica. The integrals have been computed both with the Gauss-Legendre
quadrature rule and with the NIntegrate routine: we have checked the consistency
of the values computed in the two ways.

In Figs. 6.7 and 6.8 we display the temperature dependence of the two parameters
q1 and m respectively, by plotting them as functions of β. Data are obtained for
the case p = 3. The jump in q1 occurs at βc = 1.55 ± 0.025, with the uncertainty
estimated as half of the β spacing (δβ = 0.05). This result is in good agreement with
the expected critical temperature for the present case. The value of m oscillates
for β < βc, where q1 = 0, as a sign of the fact that in the high temperature phase
the solution is degenerate in m. At βc the value of m starts decreasing smoothly
from 1 towards zero, see Fig. 6.8. Eventually, in Fig. 6.9 we plot the 1RSB free
energy and the RS free energy as functions of β. The RS free energy is given by the
analytical expression f(β) = −β

4 − log(2)
β . Notice how at βc there is a bifurcation of

the free energy corresponding to the point where the 1RSB free energy dominates
the thermodynamics of the model: the physical free energy is the maximum value of
the two curves for each value of β.
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It is important to stress once again that starting from the high temperature
region, i.e. a low value of β, the optimization remains stuck in the RS (or an-
nealed/paramagnetic) solution. This is in line with the fact that the RS solution
with q = 0 remains stable at all temperature values in the p-spin model, differently
from the SK case. The reason why this happens is that the transition to the 1RSB
phase in the case of the Ising p-spin model is first order from the point of view of
the order parameter, while the SK model is characterized by a continuous order
parameter. In other terms, in the p-spin case the solution has a jump in the order
parameter at the critical temperature to an already existing state, whereas in the SK
model the order parameter continuously increases from zero, where the new state
starts to exist. In order to obtain the previous results, one can proceed in two ways:
either from a very high value of β and heating the system, or, when approaching βc
from below, by suggesting initial conditions for the loss optimization which are close
to the right solution.

The stability of the RS solution can be clearly visualized in the low temperature
color maps of the loss function, which is defined as

L(q1,m, β) =
(
q1 −

∫
Dz (2 cosh Ξ)m tanh2 Ξ∫

Dz (2 cosh Ξ)m

)2

+ (∂mΦ)2. (6.103)

where ∂mΦ denotes the left hand side of Eq. (6.102b). In Fig. 6.10 we display
three different plots of the loss function, taken at the following values of the inverse
temperature β = 0.5, β = 3 and β = 6.5, from left to right. Values of q1 (vertical
axis) and m (horizontal axis) are sampled in their definition interval [0, 1], with a
spacing of 0.005. Colors correspond to values of the loss function: the gradient of the
loss points from blue to yellow . One can clearly identify a valley in the low region
of the plots corresponding to the paramagnetic state at q1 = 0 and degenerate in m,
which is also present at β < βc, and a smaller valley in the high region corresponding
to the glassy state with a high value of q1, which appears for β > βc. The glassy
state moves to the left of the plot towards lower values of m, consistently with the
plot in Fig. 6.8.

6.9 Zero Temperature Limit

In this section we complete the study of the model, by computing the zero temperature
limit of the 1RSB equations. Instead of computing the limit β → ∞ directly on
the equations, we first compute the zero temperature limit of the free energy (6.91),
by making scaling hypotheses on the parameters and introducing temperature
independent quantities; then, we compute a new set of self-consistency equations
for the new parameters, hoping that they turn out to be easier then those at
finite temperature. Once the value of these parameters has been found, then the
corresponding value of the free energy is the asymptotic value of the 1RSB free
energy: if it turns out to be greater than the asymptotic value of the paramagnetic
free energy, then we would have evidence of a phase transition at zero temperature.



132 6. The Merit-Factor Problem

6.9.1 Test: the Ising p-spin model

Let us first report the case of the Ising p-spin in order to gain familiarity with this
kind of computations. We take the limit at the leading order in 1/β, thus

q1 = 1 +O(1/β) (6.104)
m = y/β +O(1/β2), (6.105)

which means that m(T ) linearly approaches zero when T → 0, with a slope y to be
determined. By direct substitution in the first term of the free energy one finds

−β

4 [1 + (p− 1)(1 −m)qp1 − pqp−1
1 ] = p− 1

4 y,

up to terms of order O(1/β2). The integral can be evaluated by considering that

− 1
mβ

log
∫

Dz [2 cosh(z
√
p/2βq

p−1
2 )]m = −1

y
log

∫
Dz exp

[
y

β
ln(ezβ

√
p/2 + e−zβ

√
p/2)

]
and between the two exponentials inside the logarithm the first one dominates for
z > 0, while the second one dominates when z < 0 in the β → ∞ limit. Thus, we
can write

−1
y

log
∫

Dz exp
[
y

β
log(ezβ

√
p/2 + e−zβ

√
p/2)

]
= −1

y
log

∫
Dz ey

√
p/2|z|

which can be expressed in terms of an error function as

−1
y

log
∫

Dz ey
√
p/2|z| = −1

y
log

[
epy

2/4
(

1 + erf
√
py

2

)]
= −py

4 − 1
y

log
(

1 + erf
√
py

2

)
Thus, at the leading order we get

Φ(y) = 1
y

− 1
y

log
(

1 + erf
√
py

2

)
(6.106)

where y has to be determined by the self-consistency equation dΦ/dy = 0, i.e.

−1
4 + 1

y2 log
(

1 + erf
√
py

2

)
− 1
y

√
p

π

e−py2/4

1 + erf
√
py
2

= 0. (6.107)

This equation can be easily solved numerically: Fig. 6.11 shows the results for
p ∈ [3, 20]. For p = 3, see Fig. 6.12, the equation has the solution y∗ = 1.38356 . . . ,
which is a maximum point for the free energy. The value of the free energy in y∗

is Φ(y∗) = −0.813535 . . . in perfect agreement with the results of the numerical
integration reported in the previous section.
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Figure 6.11. Solution of the self-
consistency equation (6.107) for y as a
function of p in the interval [3, 20]. The
dependence on p becomes weaker as p
increases.
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Figure 6.12. Function Φ(y) of Eq. 6.12 in
the case p = 3. The stationary point
y∗ = 1.38356 . . . is actually a maximum.
We notice that Φ(y∗) = −0.813535 . . . .

6.9.2 Case of interest

We perform the following scaling ansatzes on the 1RSB parameters of our model

R1 ≃ −r1β
2 r1 > 0 (6.108a)

M1 ≃ µ1β
2 µ1 > 0 (6.108b)

RD − R1 ≃ βr− (6.108c)
MD − M1 ≃ βµ− (6.108d)

m ≃ y

β
. (6.108e)

The guiding idea is to take the parameters (or the differences between couples of
parameters) appearing inside the square roots as of order O(β2) and the others as
O(β), apart from m, which is supposed to behave as in the p-spin case. The first
local free energy in Eq. (6.91) can be simply written by proceeding in analogy to
the p-spin case and reads as

fτ (r1, y) = −r1
2 y − 1

y
log

[
1 + erf

(√
r1y√
2

)]
.

The other local free energy is more difficult to compute in the large-β limit. After
implementing the scaling hypotheses on the parameters we find

fC(µ−, µ1, y) = −1
y

log
∫

DuDv

(∫
dadb eβF (a,b|µ−,µ1,u,v)

)y/β
,

where the function F corresponds to the argument of the exponent of the function
gβ,0, see Eq. (6.57), computed in x = MD and y = M1, and reads

F (a, b|µ−, µ1, u, v) = −(a2 + b2)2 + µ−
2 (a2 + b2) + √

µ1(au+ bv). (6.109)

The integrals in a and b can be computed with the saddle point method, since we
are in the limit β → ∞. Therefore we have

fC(µ−, µ1,m) = −1
y

log
∫

DuDv eyF (µ−,µ1,u,v),
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where F (µ−, µ1, u, v) = F (a∗, b∗|µ−, µ1, u, v) and a∗, b∗ are functions of the other
parameters, e.g. a∗ = a∗(µ−, µ1, u, v) and are given by the solution of the coupled
equations

∂F

∂a

∣∣∣
a∗,b∗

= 0

∂F

∂b

∣∣∣
a∗,b∗

= 0.

We do not report here the explicit expression of the function F (u, v|µ−, µ1), since,
after a∗, b∗ have been substituted, it becomes too cumbersome. Finally the entropic
term of the free energy (6.91) simply reduces to

s1(r−, r1, µ−, µ1, y) = −1
y

log
(

1 + y
r1 − µ1
r− − µ−

)
.

Then, the complete free energy is given by

f1RSB(r−, r1, µ−, µ1, y) = r−
2 − r1

2 y − 1
y

log
[
1 + erf

(√
r1y√
2

)]
− 1
y

log
∫

DuDv eyF (µ−,µ1,u,v) − 1
2y log

(
1 + y

r1 − µ1
r− − µ−

)
.

(6.110)

The self-consistency equations for the parameters introduced can be easily derived
from the previous free energy by imposing the vanishing of the derivatives. We get
the following system of equations

−y −
√

2
π

r
−1/2
1 e−r1y2/2

1 + erf
(√

r1y√
2

) − 1
r− − µ− + y(r1 − µ1) = 0 (6.111a)

1
r− − µ− + y(r1 − µ1) = − r1 − µ1

(r− − µ−) (6.111b)

−
∫

DuDv eyF∂µ1F∫
DuDv eyF

+ 1
r− − µ− + y(r1 − µ1) = 0 (6.111c)∫

DuDv eyF∂µ−F∫
DuDv eyF

+ 1
r− − µ− + y(r1 − µ1) = 0, (6.111d)

to which we have to add the derivative with respect to y. Resolution of the equations
is in progress.



135

Chapter 7

A New Mean-Field Theory for
the Glassy Random Laser

In the previous chapter, we have presented a deterministic model with long-range
interactions and a topology of the interaction network similar to the mode-locked
graph, which can been solved by means of the replica method. It is now time to turn
back to our original problem of reaching the analytical solution of the ML 4-phasor
model. Inspired by the results of numerical simulations discussed in Chap. 4, we
believe that a mean-field solution for this model may exist, even if most likely of a
different kind with respect to the solution already obtained on the fully-connected
graph [Ant+15; ACL15a]. In fact, the model is characterized by a combined effect of
quenched disorder due to the random couplings and deterministic dilution induced
by the FMC. While in the case of ordered mode-locked graphs, a long-range spatial
structure can be identified notwithstanding the dilution [AIL15b; AIL15a], we do
not expect this to happen in the presence of disordered couplings. What we expect,
and indeed what happens as soon as the replica method is applied to the model, is
that the heterogeneities induced by the disorder do not simply average out as in
the fully connected case, leading to the failure of the standard mean-field Replica
Symmetry Breaking theory for spin-glass models.

On the other hand, the order of the dilution is not such that the model can
be defined on a sparse network, e.g. the Bethe lattice, where the cavity method
implemented through message passing algorithms like belief propagation works well
[MM09]. However, precisely because of the weakness of the dilution, our conjecture,
supported by numerical evidence, is that the interaction network is still dense enough
to compensate the effect of the heterogeneities and to be compatible with a mean-field
approximation, although with a more complicated theory than the standard one.

In this chapter, after presenting the ML 4-phasor model in connection to the
Merit Factor problem and explaining the solution strategy, we report the various
steps of the replica computation, which goes along the same lines of the previous
chapter, leading to the saddle point equations for the ML 4-phasor model.
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7.1 The Model
For the purpose of defining a new mean-field theory for the glassy random laser,
we have developed a technique based on the formal analogy with the Bernasconi
model for the MF problem [Ber87], to which the previous chapter has been entirely
devoted. In order to make the discussion more specific, let us recall the model and
add some technical details.

The Hamiltonian function in which we are interested reads

H[a] = −
∑

FMC
Jijkl[aiajakal + c.c.], (7.1)

where a is a complex vector on the N -sphere and Jijkl are quenched disordered
couplings. The summation is restricted to all those indices which satisfy the FMC
in the case of the linear comb

|i− j + k − l| = 0. (7.2)

Due to this constraint on the interacting quadruplets, the Hamiltonian can be written
in a more convenient way as follows

H[a] = −
N∑

i<j<k

Jijk[aiai+kajaj+k + c.c.], (7.3)

where we recognize exactly the same structure of the indices of the Bernasconi model.
Besides the complex variables, the other obvious difference with respect to

the case of the previous chapter is the randomness of the couplings, which are
independently extracted from the following zero-mean Gaussian distribution

P (Jijk) = 1√
2πσ2

J

exp
[
−
J2
ijk

2σ2
J

]
σ2
J = 3!J2

2N2 , (7.4)

where the scaling of the variance withN ensures the extensivity of the thermodynamic
potentials. Moreover the sign in front of the summation in the Hamiltonian is
different in the two cases. However, this is not a big deal in the present case, since
for random couplings extracted from an unbiased symmetric distribution it makes
no real difference whether one has a plus or a minus in the Hamiltonian definition:
after averaging the partition function over the Gaussian distribution (7.4), one is
left with the Hamiltonian squared.

7.1.1 Strategy of Solution

Our strategy is to transform the disordered model of Eq. (7.1) into a non-disordered
one, which is equivalent to the Bernasconi model, though with different variables,
and can be solved exactly, by using the associated random unitary model. In order
to solve the model we will then need to introduce two averages over the disorder.

• First Average: this is the average taken over the quenched randomness, which
we denote as (· · · ). Due to the dilution of the graph, after the average over
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the Gaussian couplings is performed, one is forced to introduce local matrices
qαβi . With respect to these variables, our problem simplifies to the study of an
ordered model with long-range interactions, which has a Hamiltonian of the
kind

H =
N∑
k=1

(
1
N

N∑
i=1

qiqi+k

)2

=
N∑
k=1

C2
k , (7.5)

where we have dropped the dependence on the replica indices, just to make
more clear the analogy with the Hamiltonian of the MF problem. Namely,
we look for the sequences of qi for which the correlation C2

k , summed for all
distances k, takes the lowest value. In other words, we have a problem which is
analogous to the MF problem, but at the level of the local overlaps qi, rather
than of the spins. Clearly, if the original variables are phasors ak, their local
overlap will be in general a complex quantity, so this is a more general problem
with respect to the search for the LABS.

• Second Average: after the first average, one is left with a deterministic model in
the local overlaps with long-range interactions. What we can do now is simply
to apply all the machinery developed in the previous chapter for the solution
of the MF problem, by following Ref. [MPR94a]. We will then associate to
the model Eq. (7.5) the corresponding random unitary model, by replacing
the usual Fourier transformation of the variable with generic unitary matrices,
over which we will perform a second average. In order to distinguish it from
the average over the quenched disorder, we denote this average with (· · · )U .
Following this procedure it turns out that, for our problem, one has to introduce
the overlap between local overlaps:

Qαβ = 1
N

N∑
i=1

qαi q
β
i . (7.6)

We will refer to this quantity as superoverlap. Our main result is to show that
for the ML p-spin a mean-field ansatz for the structure of replica matrices
can be done only at the level of Qαβ matrices. Numerical simulations shows
clear evidence of a glass transition at low temperatures, so that we are led to
assume at low temperatures a replica-symmetry breaking ansatz for Qαβ.

7.2 Average over Disorder
In order to disentangle the difficulties, we consider the case of non-complex variables,
leaving the generalization to phasors for the future. We carry out the computations
in parallel for both Ising and spherical spins, up to the point where some ansatz
for the solution of the saddle point equations has to be performed. Then, the
Hamiltonian we consider is

HJ(σ) = −
N∑

i<j<k

Jijkσiσi+kσjσj+k (7.7)
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and the configuration space is given by either

ΣN =


{±1}N or

SN = {σ :
N∑
i=1

σ2
i = N}. (7.8)

We notice that the two cases differ in the number of constraints: for Ising spins, we
have N local constraints, whereas spherical spins are locally unbounded, but have
to satisfy a global constraint. The partition function of the model can be written as

Z = TrΣN
e−βHJ (σ), (7.9)

where the trace is a compact notation for the summation over all possible configu-
rations, which in the case of spherical spins corresponds to an integration over the
N -sphere, i.e.

TrΣN
=



N∏
i=1

∑
σi=±1∫

SN

dσ =
∫ n∏

i=1
dσi δ

(
N∑
i=1

σ2
i − ϵN

)
,

(7.10)

where ϵ is a constant which tunes the constraint, i.e. the radius of the hypersphere
(see Chap. 5). The replicated partition function reads

Zn = TrΣn
N

exp
[
−β

n∑
α=1

HJ(σα)
]

(7.11)

where Σn
N =

⊗n
α=1 Σα

N . In the thermodynamic limit the free energy of the model is
given by

f(β) = lim
n→0

lim
N→∞

− 1
βnN

log Zn, (7.12)

where the order of the two limits have been exchanged, as is usual in the replica
method.

The average of the replicated partition function over quenched disorder is com-
puted as follows

Zn = TrΣn
N

exp

β n∑
α=1

N∑
i<j<k

Jijkσ
α
i σ

α
i+kσ

α
j σ

α
j+k


= TrΣn

N

N∏
i<j<k

∫ dJijk√
2πσ2

J

exp
[
−
J2
ijk

2σ2
J

+ βJijk

n∑
α=1

σαi σ
α
i+kσ

α
j σ

α
j+k

]

= TrΣn
N

exp

(βJ)2

4
3!
N2

N∑
i<j<k

n∑
αβ

σαi σ
α
i+kσ

α
j σ

α
j+kσ

β
i σ

β
i+kσ

β
j σ

β
j+k


= TrΣn

N
exp

(βJ)2

4

n∑
αβ

N∑
k=1

(
1
N

N∑
i=1

σαi σ
β
i σ

α
i+kσ

β
i+k

)2 ,
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where the last expression is correct up to order O(1/N), since 3!
N2
∑
i<j<k =

1
N2
∑
ijk +O(1/N), see e.g. Ref. [CS92]. We have already reached the point where

the standard mean-field computation breaks down for this model: although, as usual,
the average over disorder has led to coupled replicas, we are not able to introduce
at this point a global overlap between configurations of different replicas. What
one can do instead is to change variables from spins to local overlaps qαβi = σαi σ

β
i .

In order to predispose the model for a generic unitary transformation, in analogy
with the Merit Factor we define the complex overlaps qαβi = σα2i−1σ

β
2i−1 + iσα2iσ

β
2i

and multiply the whole partition function by

1 =
N/2∏
i=1

n∏
<αβ>

∫
dqαβi dqαβi δ

(
qαβi − (σα2i−1σ

β
2i−1 + iσα2iσ

β
2i)
)
δ
(
qαβi − (σα2i−1σ

β
2i−1 − iσα2iσ

β
2i)
)

=
∫ N/2∏

i=1

n∏
<αβ>

[
dqαβi dqαβi dλαβi dλαβi

]
exp

1
2

n∑
αβ

N/2∑
i=1

λ
αβ
i [qαβi − (σα2i−1σ

β
2i−1 + iσα2iσ

β
2i)] + c.c.

 ,
where the integral over the λαβi is between ±i∞ and the argument of the exponent
has been symmetrized in the replica indices. In order to keep a compact notation,
we use the symbol < αβ > in the product to denote how many independent values
of the local overlap we have introduced. On one hand, the product has α < β terms
in the Ising case, where the diagonal terms are fixed by the local constraints and
yield the following constant contribution

exp

(βJ)2

4

n∑
α

N∑
k=1

(
1
N

N∑
i=1

(σαi )2(σαi+k)2
)2 = exp

[
(βJ)2Nn

4

]
.

This term can be dropped from the computation and added eventually to the free
energy. On the other hand, the product has α ≤ β terms in the spherical case,
since the diagonal terms are free to vary compatibly with the global constraint.
Furthermore, the delta functions implementing the spherical constraint on each
replica of the system can be written in terms of the complex overlaps as follows

n∏
α=1

δ

(
N∑
i=1

(σαi )2 − ϵN

)
=

n∏
α=1

δ

N/2∑
i=1

(ℜ[qααi ] + ℑ[qααi ]) − ϵN

 . (7.13)

However, in order to keep the notation compact, for the moment this contribution
will be left inside the definition of the trace operator for the continuous case. At this
point, it is convenient to define an action functional in order to write the partition
function in the following way

Zn = TrΣn
N

∫ N/2∏
i=1

n∏
<αβ>

[
dqαβi dqαβi dλαβi dλαβi

]
exp

[
S(qαβi , qαβi , λαβi , λ

αβ
i , σαi )

]
,
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where

S(qαβi , qαβi , λαβi , λ
αβ
i , σαi ) = β2J2

4

n∑
αβ

N/2∑
k=1

 1
N

N/2∑
i=1

qαβi qαβi+k

2

+ 1
2

n∑
αβ

N/2∑
i=1

λ
αβ
i [qαβi − (σα2i−1σ

β
2i−1 + iσα2iσ

β
2i)] + c.c.

(7.14)

After averaging over the Gaussian couplings, we have a matrix field theory in
the overlap matrices qαβi , which do not depend only on the replica indices αβ but
also on the site index i. Different indices i and i+ k are coupled in the interaction
terms. One can define a new Hamiltonian as

H = βJ2

4

n∑
αβ

N/2∑
k=1

(
1
N

N∑
i=1

qαβi qαβi+k

)2

.

which is the equivalent of the Merit Factor Hamiltonian of the local overlaps, while
the other terms in the action (7.14) are entropic contributions accounting for the
fact that the fundamental variables are the spins. In analogy with the previous
chapter, we introduce the generic unitary transform of the complex overlaps as

Qαβ
k =

N/2∑
r=1

Ukj q
αβ
j =

[
Uqαβ

]
k
, (7.15)

where U represents a generic N/2 ×N/2 matrix of the unitary group. As we already
know, the interaction term is diagonalized by this transformation and reads as

H = βJ2

4

n∑
αβ

N/2∑
k=1

|Qαβ
k |4.

We introduce the unitary-tranformed variables in the computation as usual by means
of delta functions

1 =
n∏

<αβ>

N/2∏
k=1

∫
dQαβ

k dQαβ
k δ

(
Qαβ(k) − [Uqαβ]k

)
δ
(
Qαβ(k) − [Uqαβ]k

)

=
∫ n∏

<αβ>

N/2∏
k=1

[
dQαβ

k dQαβ
k dξαβk dξαβk

]
exp

1
2

n∑
αβ

N/2∑
k=1

iξ
αβ
k

(
Qαβ(k) − [Uqαβ]k

)
+ c.c.

 ,
where, once again, the diagonal terms have been included (excluded) in the continuous
(discrete) case and the argument of the exponent has been symmetrized in the replica
indexes. In order to lighten the notation, let us introduce the following convention
for the symbol of integration over local variables

Dx =
n∏

<αβ>

N/2∏
k=1

dxαβi .
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At this stage the partition function can be written as

Zn = TrΣn
N

∫
DQDQDqDqDξDξDλDλ exp

[
SU (Q,Q, q, q, ξ, ξ, λ, λ, σ)

]
,

and the action reads as

SU (Q,Q, q, q, ξ, ξ, λ, λ, σ) = β2J2

4

n∑
αβ

N/2∑
k=1

|Qαβ
k |4 + 1

2

n∑
αβ

N/2∑
k=1

iξ
αβ
k

(
Qαβ(k) − [Uqαβ]k

)
+ c.c.

+ 1
2

n∑
αβ

N/2∑
i=1

λ
αβ
i [qαβi − (σα2i−1σ

β
2i−1 + iσα2iσ

β
2i)] + c.c.

(7.16)

where the subscript U specifies its dependence on the specific realization of a random
unitary matrix.

7.3 Average over Unitary Matrices
According to Eq. (7.16) the replicated partition function depends on a new source
of randomness, that is we have a free energy fU (β) and we aim to compute fU (β)U .
We can use the fact that logZn = log

(
1 + (Zn − 1)

)
and since (Zn − 1) = O(n) we

can write the free energy in the equivalent form

fU (β) = lim
n→0

lim
N→∞

− 1
βN

Zn − 1
n

. (7.17)

This is all very standard, but it allows us to understand that, at variance with
the MF problem, in this case it is sufficient to perform the annealed average over
the matrices U , since, thanks to the average over the couplings, we have already
dealt with the problem of integrating the logarithm of the partition function and we
are interested in the moments of the partition function. Therefore, the free energy
averaged over the unitary group is simply

f(β) = lim
n→0

lim
N→∞

− 1
βN

(
Zn
)U

− 1
n

. (7.18)

The computation becomes now very similar to the one performed in the previous
chapter. We select the U -dependent part of Eq. (7.16), we introduce auxiliary
variables Ωik = i

∑
αβ ξ

αβ
k qαβi /2 and perform the integration on the unitary group as

follows

exp

N/2∑
kj

ΩklUkl + c.c.

U =
∫

dUdU † exp
[
Tr(Ω†U + h.c.)

]

= exp
[
N

2 Tr G
(

Ω†Ω
N2

)]
= exp

[
N

2 Tr G
(ΛQ

4

)]
,
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where we have used the results of Refs. [BG80; MP92]. In particular, we recall that
the function G is defined as in Eq. (6.26). Moreover, we have introduced the overlaps

Qαβ,γδ = 1
N

N/2∑
i=1

qαβi qγδi Λαβ,γδ = 1
N

N/2∑
k=1

ξαβk ξ
γδ
k , (7.19)

which represent the new global order parameters of the theory: the overlaps between
local overlap fields. In order to change variables from the local fields λαβk and qγδi
to the global matrices Qαβ,γδ and Λαβ,γδ we introduce the following terms in the
partition function

1 =
∫ ∞

−∞
DQ

∫ i∞

−i∞
DQ̂ exp

N
4

n∑
αβ

n∑
γδ

Q̂αβ,γδQαβ,γδ − 1
4

n∑
αβ

n∑
γδ

N/2∑
i=1

qαβi Q̂αβ,γδq
γδ
i


and, similarly,

1 =
∫ ∞

−∞
DΛ

∫ i∞

−i∞
DΛ̂ exp

N
4

n∑
αβ

n∑
γδ

Λ̂αβ,γδΛαβ,γδ − 1
4

n∑
αβ

n∑
γδ

N/2∑
k=1

ξαβk Λ̂αβ,γδξ
γβ
k

 ,
where the integration measures for the global order parameters Q,Λ and their
Lagrange multipliers Q̂, Λ̂ read as

DX =
n∏

<αβ>

n∏
<γδ>

dXαβ,γδ, (7.20)

with the usual meaning of the symbol < αβ >. Moreover, let us momentarily denote
by x all the local variables of the theory {Q,Q, q, q, ξ, ξ, λ, λ, σ} and by X all the
global ones {Q, Q̂,Λ, Λ̂}. With these notations the averaged partition function reads
as

Z ≡
(
Zn
)U

= TrΣn
N

∫
DQDQ̂DΛDΛ̂DQDQDqDqDξDξDλDλ exp[S(X,x)],

where

S(X,x) = β2J2

4

n∑
αβ

N/2∑
k=1

|Qαβ(k)|4 + 1
2

n∑
αβ

N/2∑
k=1

(
iξ
αβ
k Qαβ

k + c.c.
)

+ 1
2

n∑
αβ

N/2∑
i=1

λ
αβ
i [qαβi − (σα2i−1σ

β
2i−1 + iσα2iσ

β
2i)] + c.c.

+ N

8 TrG(ΛQ) + N

4
∑
αβ

∑
γδ

Λ̂αβ,γδ Λαβ,γδ − 1
4

n∑
αβ

n∑
γδ

N/2∑
k=1

ξαβk Λ̂αβ,γδ ξ
γδ
k

+ N

4

n∑
αβ

n∑
γδ

Q̂αβ,γδ Qαβ,γδ − 1
4

n∑
αβ

n∑
γδ

N/2∑
i=1

qαβi Q̂αβ,γδ q
γδ
i .

(7.21)
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We now develop some further manipulations, which will simplify the expression
of the partition function. First, the Gaussian integration over the complex matrices
ξαβk can be easily carried out, yielding up to constant terms

∫
DξDξ exp

−1
4

n∑
αβ

n∑
γδ

N/2∑
k=1

ξαβk Λ̂αβ,γδ ξ
γδ
k + 1

2

n∑
αβ

N/2∑
k=1

(
iξ
αβ
k Qαβ

k + c.c.
) =

= exp

−N

2 log det Λ̂ +
n∑
αβ

n∑
γδ

N/2∑
k=1

Qαβ
k [Λ̂−1]αβ,γδQ

γδ
k

 .
Furthermore, we can store all the dependence on the local variables inside the
definition of free-energy functions. Let us first consider the variables depending on
the local indices of the real space. In order to simplify the dependence on indices it
is better to rename the spin variables in a way which makes explicit the fact that
they are independent integration variables: ui = σ2i−1 and vi = σ2i. Then, we define

eFq(Q̂) = TrΣn
N

∫
DqDqDλDλ exp

[
− 1

4

N/2∑
i=1

n∑
αβ

n∑
γδ

qαβi Q̂αβ,γδ q
γδ
i

+ 1
2

n∑
αβ

N/2∑
i=1

λ
αβ
i [qαβi − (uαi u

β
i + ivαi v

β
i )] + c.c.

]
,

(7.22)

where we will see in a short while that Fq(Q̂) can be factorized as N
2 fq(Q̂).

Similarly, the dependence on the local unitary transformed variables can be put
in the following free energy, which immediately factorizes in N/2 local identical
contributions

e
N
2 fQ(Λ̂) =


∫ n∏

<α,β>

dQαβdQαβ exp

β2J2

4

n∑
αβ

|Qαβ|4 +
n∑
αβ

n∑
γδ

Qαβ[Λ̂−1]αβ,γδQ
γδ


N
2

.

(7.23)
Eventually, we can rewrite the partition function in a very compact expression as
follows

Z =
∫
DQDQ̂DΛDΛ̂ exp

[
S(Q, Q̂,Λ, Λ̂)

]
where

S(Q, Q̂,Λ, Λ̂) = N

2

{
fQ(Λ̂) + fq(Q̂) + 1

2Tr (Λ̂Λ) + 1
2Tr (Q̂Q)

+ Tr G
(ΛQ

4

)
− log(det Λ̂)

} (7.24)

7.3.1 Free Energy of the Local Overlap

In the discrete case, it is immediate to see that the free energy Fq(Q̂) corresponds
indeed to the sum of N/2 independent and identical local free-energies, where the
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expression of the trace operation is simply

TrΣn
N

=
n∏

α=1

N/2∏
i=1

∑
uα

i =±1

∑
vα

i =±1
.

Since the exponent in the definition of Fq(Q̂) is diagonal in the local indices, one
can define N/2 terms of the kind

fq(Q̂) = log
n∏

α=1

∑
uα=±1

∑
vα=±1

∫ n∏
α<β

[
qαβqαβλαβλ

αβ
]

× exp

−1
4

n∑
αβ

n∑
γδ

qαβ Q̂αβ,γδ q
γδ + 1

2

n∑
αβ

λ
αβ[qαβ − (uαuβ + ivαvβ)] + c.c.


(7.25)

In order to show that the relation Fq(Q̂) = N
2 fq(Q̂) holds also in the continuous

case, one has to “open” the Dirac delta of the spherical constraint, which we have
hidden inside the trace operator

TrΣn
N

=
∫ n∏

α=1

N/2∏
i=1

duαi dvαi
n∏

α=1
δ

N/2∑
i=1

[
(uαi )2 + (vαi )2

]
− ϵN

 . (7.26)

Equivalently, the spherical constraint can be written in terms of the local overlaps
as in Eq. (7.13). The operation of passing to the integral representation of a delta
function, which in practice amounts to pass from a microcanonical (hard) version
of the constraint to a canonical (soft) one, is harmless only when the interaction
network is dense enough (see Chap. 5). When the graph of interactions is sparse,
which is not the case here, the global constraint induce a condensation phenomenon
and the equivalence between ensembles breaks down. The opening of the Dirac
delta is not harmless and must be handled with much more care. However, in the
present case, due to the results of Chap. 5, we do not have to worry, since a proper
localization transition does not take place on the mode-locked graph. Then, by
considering the expression of the constraint in the local overlap, we can write

n∏
α=1

δ

N/2∑
i=1

(ℜ[qααi ] + ℑ[qααi ]) − ϵN

 =
∫ i∞

−i∞

n∏
α=1

dhα exp

 n∑
α=1

hα

N/2∑
i=1

(ℜ[qααi ] + ℑ[qααi ]) − ϵN


=
∫ i∞

−i∞

n∏
α=1

dhα exp

−ϵN
n∑

α=1
hα +

N/2∑
i=1

n∑
α=1

hα (ℜ[qααi ] + ℑ[qααi ])

 ,
from which we get

exp
[
Fq(Q̂)

]
=
∫ i∞

−i∞

n∏
α=1

dhα e−ϵN
∑n

α=1 h
α

Z[hα], (7.27)
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where the partition function Z[hα] reads as

Z[hα] =
∫

DqDqDλDλDuDv exp
[

− 1
4

N/2∑
i=1

n∑
αβ

n∑
γδ

qαβi Q̂αβ,γδ q
γδ
i +

N/2∑
i=1

n∑
α=1

hα (ℜ[qααi ] + ℑ[qααi ])

+ 1
2

n∑
αβ

N/2∑
i=1

λ
αβ
i

[
qαβi − (uαi u

β
i + ivαi v

β
i )
]

+ c.c.
]
.

It is now clear that this partition function can be factorized in the product of N/2
identical terms, so that we can write

Fq(Q̂) = log
∫ i∞

−i∞

n∏
α=1

dhα exp N2

[
fq(Q̂, h) − 2ϵ

n∑
α=1

hα
]
, (7.28)

where

fq(Q̂, h) = log
∫

DqDqDλDλDuDv exp
[

− 1
4

n∑
αβ

n∑
γδ

qαβ Q̂αβ,γδ q
γδ

+
n∑

α=1
hα(ℜ[qαα] + ℑ[qαα]) + 1

2

n∑
αβ

λ
αβ
[
qαβ − (uαuβ + ivαvβ)

]
+ c.c.

]
.

(7.29)

Notice that here we have kept for convenience the same notation for the integration
measure as before, even if now it has lost the product over the local indices, i.e.
Dx =

∏n
α≤β dxαβ and equivalently for the spins.

7.4 Saddle-Point Equations

In this section we focus on the case of continuous spherical variables, in which we
are mostly interested, since they are closer to phasors, compared to discrete spins.
However, the solution of the model has been set up also for the discrete case. By
including the result at the end of the previous section, the action of the model can
be written as

S(Λ̂,Λ,Q, Q̂, h) = N

2
[
fQ(Λ̂) + fq(Q̂, h) + Tr G

(ΛQ

4

)
+ 1

2Tr(Λ̂Λ)

+ 1
2Tr (Q̂Q) − Tr log(Λ̂) − 2ϵTr(h)

]
.

(7.30)
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The full set of saddle-point equations for the action reads as:

∂S

∂hα
= ∂fq(Q̂, h)

∂hα
− 2ϵ = 0 (7.31a)

∂S

∂Q̂αβ,γδ

= ∂fq(Q̂, h)
∂Q̂αβ,γδ

+ 1
2Qαβ,γδ = 0 (7.31b)

∂S

∂Qαβ,γδ
= Q̂αβ,γδ + 1

2[Λ G′(ΛQ/4)]αβ,γδ = 0 (7.31c)

∂S

∂Λαβ,γδ
= Λ̂αβ,γδ + 1

2[Q G′(ΛQ/4)]αβ,γδ = 0 (7.31d)

∂S

∂Λ̂αβ,γδ
= ∂fQ(Λ̂)
∂Λ̂αβ,γδ

+ 1
2Λαβ,γδ − [Λ̂−1]αβ,γδ = 0. (7.31e)

Now, by exploiting the property of the derivative of G Eq. (6.37) and following the
same procedure as the previous chapter (which assumes commuting matrices), we
can eliminate the variable Λ and Eqs. (7.31c) and (7.31d) in favor of the algebraic
constraint

Q
(
Q̂ − M

)
= 1, (7.32)

where for convenience we have defined M = Λ̂−1/8 and performed the rescaling
Q̂ → 2Q̂. Consistently with these redefinitions, the two local free energies can be
rewritten as

fQ(M) = log
∫ n∏

α≤β
dQαβdQαβ exp

β2J2

4

n∑
αβ

|Qαβ|4 +
n∑
αβ

n∑
γδ

QαβMαβ,γδQ
γδ


(7.33)

and

fq(Q̂, h) = log
∫

DqDqDλDλDuDv exp
[

− 1
2

n∑
αβ

n∑
γδ

qαβ Q̂αβ,γδ q
γδ

+
n∑

α=1
hα(ℜ[qαα] + ℑ[qαα]) + 1

2

n∑
αβ

λ
αβ
[
qαβ − (uαuβ + ivαvβ)

]
+ c.c.

]
,

(7.34)

where in the first free energy the local integration variables have been rescaled as
Q → Q/(2

√
2). It is worth stressing that all the variable redefinitions performed

so far do not affect the theory up to irrelevant constants and a rescaling of the
temperature. Hence, the set of saddle-point equations reduces to

∂fq(Q̂, h)
∂hα

− 2ϵ = 0 (7.35a)

∂fq(Q̂, h)
∂Q̂αβ,γδ

+ 1
2Qαβ,γδ = 0 (7.35b)

− ∂fQ(M)
∂Mαβ,γδ

+ Qαβ,γδ = 0 (7.35c)

Q(Q̂ − M) = 1, (7.35d)
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which can be obtained by extremizing the following reduced action with respect to
the matrix elements of M and Q̂:

A(M, Q̂, h) = N
[
fQ(M) + 2fq(Q̂, h) + Tr log(Q̂ − M) − 4ϵ Tr(h)

]
. (7.36)

Notice that, when explicitly computing the derivatives of the free energies, the saddle
point equations lead to the physically relevant relations

⟨Re[qαα] + Im[qαα]⟩
Q̂

= 2ϵ (7.37)

⟨qαβqγδ⟩
Q̂

= ⟨QαβQγδ⟩M = Qαβ,γδ, (7.38)

where the definitions of the averages are intuitively induced by the expression of the
local free energies.

7.4.1 Symmetries of the Overlap-Overlap Correlations

The structure of the overlap-overlap matrices – and with that the whole formalism
– can be simplified and lightened a lot considering the symmetries of the original
Hamiltonian under reversal of all spins. Recall that the number of spins in the
4-body interaction term is even. As a consequence the replicated action must be
invariant when all spins are flipped in one replica [APR16], namely we need it to be
invariant under the transformation

{q1α, q2α, . . . , qnα} −→ {−q1α,−q2α, . . . ,−qnα}. (7.39)

The direct consequence of this is that among generic multipoint correlation functions
of the kind

⟨qα1β1 qα2β2 . . . qαkβk⟩,

only those where each upper index is repeated an even number of times are different
from zero. In particular the two point correlations of Eq. (7.38) are non-zero only
when α = γ and β = δ

⟨qαβqγδ⟩
Q̂

= ⟨qαβqγδ⟩
Q̂
δαγ δβδ = ⟨qαβqαβ⟩

Q̂
. (7.40)

This means that the only non-zero terms of the matrix Q̂αβ,γδ are those diagonal
with respect to the couple of indices:

Q̂αβ,γδ = Q̂αβ δαγ δβδ. (7.41)

This simple observation greatly simplifies all the mean-field equations and the
matrices appearing therein. The simplified saddle-point equations are

∂fQ(M)
∂Mαβ

= ⟨QαβQαβ⟩M = Qαβ (7.42a)

−∂fq(Q̂, h)
∂Q̂αβ

= 1
2⟨qαβqαβ⟩

Q̂
= 1

2Qαβ (7.42b)

∂fq(Q̂, h)
∂hα

= ⟨Re[qαα] + Im[qαα]⟩ = 2ϵ (7.42c)

Q(Q̂ − M) = 1, (7.42d)
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where the two local free energies now read:

fQ(M) = log
∫ n∏

α≤β
dQαβdQαβ exp

β2J2

4

n∑
αβ

|Qαβ|4 +
n∑
αβ

Mαβ|Qαβ|2
 (7.43)

and

fq(Q̂, h) = log
∫

DqDqDλDλDuDv exp
[

− 1
2

n∑
αβ

Q̂αβ|qαβ|2

+
n∑

α=1
hα(ℜ[qαα] + ℑ[qαα]) + 1

2

n∑
αβ

λ
αβ
[
qαβ − (uαuβ + ivαvβ)

]
+ c.c.

]
,

(7.44)

7.5 RS Ansatz

The first step towards a replica-symmetric solution is to bring back the free energy
written in the second line of Eq. (7.44) to the form where spins appear explicitly.
We rewind the steps performed, by first integrating over the variables λ and then
proceeding in the following way

fq(Q̂, h) = log
∫

DqDqDuDv exp

−1
2

n∑
αβ

Q̂αβ|qαβ|2 +
n∑

α=1
hα(ℜ[qαα] + ℑ[qαα])


×
∏
α≤β

δ
(
qαβ − ((uαuβ + ivαvβ)

)
δ
(
qαβ − ((uαuβ − ivαvβ)

)

= log
∫

DuDv exp

−1
2

n∑
αβ

Q̂αβ

[
(uαuβ)2 + (vαvβ)2

]
+

n∑
α=1

hα
[
(uα)2 + (vα)2

]
= 2 log

∫ n∏
α=1

dσα exp

−1
2

n∑
αβ

σ2
αQ̂αβσ

2
β +

n∑
α=1

hασ2
α


where the integrals in the variables u and v have been factorized in two identical
contributions. In the following, we will refer to this expression of the local free
energy in real space as fσ(Q̂, h), to remind that now the local integration variables
are the spins.

The simplest assumption for the elements of the global order parameters Q̂αβ

and Mαβ is the replica-symmetric one:

Q̂αβ = q̂Dδαβ + q̂0(1 − δαβ)
Mαβ = µDδαβ + µ0(1 − δαβ),
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together with hα = h for the field. Therefore, we can write

1
2fσ(Q̂, h) = log

∫ n∏
α=1

dσα exp

−1
2(q̂D − q̂0)

n∑
α=1

σ4
α − q̂0

2

(
n∑

α=1
σ2
α

)2

+
n∑

α=1
hασ

2
α


= log

∫
Dz

n∏
α=1

∫
dσα exp

[
−1

2(q̂D − q̂0)σ4
α +

√
−q̂0zσ

2
α + hασ

2
α

]
= log

∫
Dz [Z0(q̂D, q̂0, h, z)]n ,

where Dz = e−z2/2/
√

2π and we have defined the local partition function

Z0(q̂D, q̂0, h, z) =
∫

dσf0(σ|q̂D, q̂0, h, z) (7.45)

f0(σ|q̂D, q̂0, h, z) = exp
[
−1

2(q̂D − q̂0)σ4 + (
√

−q̂0z + h)σ2.

]
(7.46)

From this finite-n expression, it is easy to find that

lim
n→0

1
n
fσ(Q̂, h) = 2

∫
Dz log Z0(q̂D, q̂0, h, z). (7.47)

The local free energy of the dual space is completely diagonal in the replica
indices and can be written as follows

fQ(M) = log
∫ n∏

α≤β
dQαβdQαβ exp

β2J2

4

n∑
αβ

|Qαβ|4 +
n∑
αβ

Mαβ|Qαβ|2


= log
∫ n∏

α=1
dQααdQαα exp

[
β2J2

4

n∑
α=1

|Qαα|4 + µD

n∑
α=1

|Qαα|2
]

+ log
∫ n∏

α<β

dQαβdQαβ exp

β2J2

2

n∑
α<β

|Qαβ|4 + 2µ0

n∑
α<β

|Qαβ|2


= n log Zβ(µD) + n(n− 1)
2 log Zβ(µ0).

In the previous expression, the site partition function Zβ,0 is defined as

Zβ(µ) =
∫

dxdx gβ,0(x|µ) (7.48)

gβ(x|µ) = exp
[
(2 − δµ,µD )

(
β2J2

4 |x|4 + µ|x|2
)]

, (7.49)

where the Kronecker delta in the second definition accounts for the factor 2 in the
off-diagonal case. Eventually, by taking the limit n → 0, we get

lim
n→0

1
n
fQ(M) = log Zβ(µD) − 1

2 log Zβ(µ0). (7.50)

The entropic term in Eq. (7.36) in the limit n → 0 reads

lim
n→0

1
n

log det(Q̂ − M) = log(q̂D − µD − (q̂0 − µ0)) + q̂0 − µ0
q̂D − µD − (q̂0 − µ0) , (7.51)
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so that, in conclusion, the RS action is given by

lim
n→0

1
n
ARS(Q̂,M, h) = 4

∫
Dz log Z0(q̂D, q̂0, h, z) + log Zβ(µD) − 1

2 log Zβ(µ0)

+ log(q̂D − µD − (q̂0 − µ0)) + q̂0 − µ0
q̂D − µD − (q̂0 − µ0) − 4ϵh.

(7.52)

7.5.1 RS Equations

In this section the self-consistency equations for the RS parameters are derived. Let
us start from the computation of the derivatives of the action (7.52), by considering
separately its terms. In the following we imply the limit n → 0, to shorten the
notation. We have:

∂fσ
∂q̂D

= 2
∫

Dz
1

Z0
∂q̂D

Z0 = 2
∫

Dz

∫
dσ∂q̂D

f0∫
dσf0

= −
∫

Dz⟨σ4⟩0,

where we have defined the average

⟨(· · · )⟩0 =
∫

dσf0(σ|q̂D, q̂0, h, z)(· · · )
Z0(q̂D, q̂0, h, z)

. (7.53)

Similarly, we have
∂fσ
∂q̂0

=
∫

Dz

[
⟨σ4⟩0 − 1√

−q̂0
∂z⟨σ2⟩0

]
=
∫

Dz
(
⟨σ2⟩0

)2

where after integration by parts we have used the fact that ∂z⟨σ2⟩0 =
√

−q̂0
[
⟨σ4⟩0 − (⟨σ2⟩0)2].

We consider now the free energy of the dual space and define the average

⟨(· · · )⟩µ =
∫

dxdx gβ(x|µ)(· · · )
Zβ(µ) , (7.54)

where the subscript µ = {µD, µ0} is just a reminder of the gβ function argument. It
is easy, then, to see that

∂fQ
∂µD

= ⟨|x|2⟩µD

∂fQ
∂µ0

= −⟨|x|2⟩µ0 .

The derivatives of the entropic term read just like in the previous chapter. Therefore,
we can write

∂ARS
∂q̂D

= 0 → − 2
∫

Dz⟨σ4⟩0 +A = 0

∂ARS
∂q̂0

= 0 → 2
∫

Dz
(
⟨σ2⟩0

)2
+B = 0

∂ARS
∂µD

= 0 → ⟨|x|2⟩µD −A = 0

∂ARS
∂µ0

= 0 → ⟨|x|2⟩µ0 +B = 0

∂ARS
∂h

= 0 →
∫

Dz⟨σ2⟩0 − ϵ = 0,
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were we have defined

A = q̂D − µD − 2(q̂0 − µ0)
[q̂D − µD − (q̂0 − µ0)]2

B = q̂0 − µ0
[q̂D − µD − (q̂0 − µ0)]2 .

The system of equations can be put in a more familiar form, by exploiting the
RS expression of the algebraic constraint (7.42d), which in the n → 0 limit is given
by the set of equations

qD(q̂D − µD) − q0(q̂0 − µ0) = 1 (7.55a)
(qD − 2q0)(q̂0 − µ0) + q0(q̂D − µD) = 0. (7.55b)

Thanks to these equations, we can eliminate q̂D and q̂0 from the saddle-point
equations by replacing them with the expressions

q̂D = µD + qD − 2q0
(q0 − qD)2 (7.56)

q̂0 = µ0 − q0
(q0 − qD)2 , (7.57)

which are analogous to Eqs. (6.94), with the only difference that here qD is not fixed
to 1. By substituting into A and B, one finds A = qD and B = −q0. A further
simplification follows by noting that the average ⟨(· · · )⟩µ can be rewritten as

⟨(· · · )⟩µ =
∫∞

0 dr r (· · · )gβ(r|µ)∫∞
0 dr r gβ(r|µ) , (7.58)

where we have passed to polar coordinates in the complex integration variables and

gβ(r|µ) = exp
[
(2 − δµ,µD )

(
β2J2

4 r4 + µr2
)]

. (7.59)

Then, we have

qD
2 =

∫
Dz⟨σ4⟩0 (7.60a)

q0
2 =

∫
Dz

(
⟨σ2⟩0

)2
(7.60b)

qD = ⟨r2⟩µD (7.60c)
q0 = ⟨r2⟩µ0 (7.60d)

ϵ =
∫

Dz⟨σ2⟩0 (7.60e)

where ⟨r2⟩µ can be written in terms of error functions. This is a system in the
independent variables qD, q0, µD, µ0 and h and Eqs. (7.56) must be used instead of
q̂D and q̂0 inside the definition of the function f0. The solution of these equations is
in progress.
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7.6 1RSB ansatz
In the 1RSB ansatz the overlap matrices have the structure introduced in the previous
chapter and Eq. (6.70) holds. We use the same expression for the free-energy in
the direct space as in the previous section, going back to the trace over the spin
variables. Then, with simple manipulations we get the following expression

lim
n→0

1
n
fσ(Q̂, h) = 2

m

∫
Dz log

∫
Dy Zm

1 (q̂D, q̂0, q̂1, h, z, y). (7.61)

where we have defined

Z1(q̂D, q̂0, q̂1, h, z, y) =
∫

dσf1(σ|q̂D, q̂0, q̂1, h, z, y) (7.62)

f1(σ|q̂D, q̂0, q̂1, h, z, y) = exp
[
−1

2(q̂D − q̂1)σ4 + (
√

−q̂0z +
√
q̂0 − q̂1y + h)σ2

]
(7.63)

as a clear generalization of the RS functions Z0 and f0. Similarly, the 1RSB
expression of the free-energy in the dual space is given by

lim
n→0

1
n
fQ(M) = log Zβ(µD) − m

2 log Zβ(µ0) + m− 1
2 log Zβ(µ1) (7.64)

where the local partition function Zβ and the function gβ are those defined in the
previous section. The 1RSB expression of the entropic term is the same as Eq. (6.79),
with the matrix A = Q̂ − M for the present case.

The self-consistency equations for the 1RSB parameters read as

qD
2 =

∫
Dz

∫
Dy Zm

1 ⟨σ4⟩1∫
Dy Zm

1
(7.65a)

q0
2 =

∫
Dz

∫
Dy Zm

1
(
⟨σ2⟩1

)2∫
Dy Zm

1
(7.65b)

q1
2 =

∫
Dz

(∫
Dy Zm

1 ⟨σ2⟩1∫
Dy Zm

1

)2

(7.65c)

qD = ⟨r2⟩µD (7.65d)
q0 = ⟨r2⟩µ0 (7.65e)
q1 = ⟨r2⟩µ1 (7.65f)

ϵ =
∫

Dz

∫
Dy Zm

1 ⟨σ2⟩1∫
Dy Zm

1
, (7.65g)

where

⟨(· · · )⟩1 =
∫

dσf1(σ|q̂D, q̂0, q̂1, h, z)(· · · )
Z1(q̂D, q̂0, q̂1, h, z)

. (7.66)

Resolution of these equations is in progress.
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Chapter 8

Conclusions and Perspectives

This work finds its place in the statistical mechanical approach to light amplification
in disordered media. In particular, it addresses the problem of going beyond the
standard mean-field RSB (Replica Symmetry Breaking) theory employed to find the
solution of spin-glass models for random lasers, thus improving the theory towards a
more realistic description of these optical systems.

The leading spin-glass model for the study of the glassy lasing transition has
been introduced, by connecting its key features with the semiclassical theory of
random lasers. In particular, it has been shown that: (i) a non-diagonal linear
coupling between pairs of cavity modes arises as a result of the interaction with
a bath of diffusive modes escaping the system; (ii) a 4-body term of interaction
accounting for the light-matter interactions emerges in the context of third-order
perturbation theory in the mode amplitudes. When the mode dynamics is considered
in the slow amplitude basis, where the modes have a definite frequency, as lasing
modes approximately have to, both the linear and the nonlinear couplings turn
out to be selected by a Frequency Matching Condition (FMC). Moreover, it has
been shown that generalizing the results of the Statistical Light-mode Dynamics
approach developed by Fischer, Gordon and coworkers leads to a thermodynamic
theory for the stationary regime of RLs. The spin-glass (2+4)-phasor Hamiltonian is
obtained by taking disordered couplings, where the randomness in the mode-coupling
is induced by the randomness in the spatial extension of the modes and by the
spatial heterogeneity of the nonlinear optical response.

The standard mean-field theory requires the model to be defined on the complete
graph of interactions, where the FMC does not play any role, since it is always
satisfied. In this approximation, the model is compatible only with the narrow-
bandwidth limit, where the emission spectrum has a width comparable to the
broadened linewidth of the single modes. This is the price to pay for the huge
simplification that one has in the mean-field fully-connected approximation, which
allows to apply in a quite straightforward way the RSB techniques developed for mean-
field spin glasses and to derive the phase diagrams described in Chap. 2. However, the
regime to which this mean-field solution pertains is very special, therefore preventing
the theory from being applied to generic experimental situations. For instance,
neglecting the coupling dilution induced by the FMC hinders the reproduction of
the central narrowing in random laser empirical spectra. Consequently, it is of great
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interest to investigate the model on the mode-locked diluted graph of interaction.
So far the most important result that has been found regarding the mode-locked

glassy random laser is the evidence of a mixed-order ergodicity breaking phase
transition, as revealed by Monte Carlo numerical simulations (see Chap. 3). The
joint study of the specific-heat divergence at the critical temperature and of the low
temperature behavior of the Parisi overlap distribution function reveals both the
first and second-order nature of the transition, which is the typical scenario of a
Random First Order Transition. This is a feature which was already predicted on
the complete graph of interactions and seems quite solidly preserved in the diluted
model. However, in numerical simulations of the Mode-Locked (ML) 4-phasor model
preceding the present thesis work the transition is found not to be compatible with
mean-field theory, according to the estimated value of the scaling exponent of the
critical region. This exponent νeff appears to be outside the boundaries corresponding
to a mean-field universality class. These limits are derived in Chap. 4 through a
simple mean-field argument based on the second-order nature of the glass transition,
which consists in the divergence of the thermal response at the critical point.

In this work, we have presented new results from numerical simulations of the ML
4-phasor model, showing how the previous results were haunted by strong finite-size
effects. Finite size-effects are unavoidable when dealing with simulations of a dense
model such as the mode-locked random laser: the number of connections in the
graph requires a number of operations which scales as the cube of the system size,
thus forbidding the simulation of large enough sizes. In order to reduce these effects,
we have developed a simulation strategy based on periodic boundary conditions on
the frequency space, for which band-edge modes participate in the same number of
interacting quadruplets as the modes in the center of the spectrum. Therefore, a given
size of the simulated model with periodic boundary conditions on the frequencies
can be regarded as the bulk of a a larger size with free boundaries. By means of this
strategy, and by also performing simulations of the original model, but with a larger
number of sizes and of disordered samples, we have assessed that the scaling of the
critical region is compatible with mean-field theory up to the precision of our analysis.
However, the model seem not to be in the the universality class of the Random
Energy Model, an feature suggesting that the mode-locked random laser may need a
different mean-field solution than its fully connected counterpart. The study of the
glass transition has been completed with the analysis of the Parisi overlap probability
distribution function, where the use of periodic boundary conditions, has resulted in
more pronounced side-peaks.

Another interesting phenomenon that has been studied in this work is the
possibility of a localization – else termed power condensation – transition in the
mode-locked glassy random laser. In this context, localization is understood as the
phenomenon whereby a finite number of modes carries an extensive amount of light
intensity, and not in the sense of disorder induced Anderson or many body localization
in quantum systems. The presence of localization, as the spherical constraint is
tuned above a given threshold, is only theoretically possible in presence of dilution
of the interaction network: in the fully-connected case, the high connectivity of
the model is sufficient to guarantee the equipartition of the constraint among all
degrees of freedom. From the careful finite-size study of the localization order
parameter reported in Chap. 5, we have been able to assess that, although some
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evidence of incipient localization can be found, the glassy phase of light is not strictly
speaking localized. This means that the results of our analysis are not compatible
with single light modes carrying an extensive amount of intensity. However, we
have found an anomaly in the finite-size study of the participation ratio, whose
size dependence is compatible with the presence of high power modes, carrying
an intensity |ak|2 ∼ N1−Ψ/2, with Ψ > 0. We stress that in presence of power
condensation those modes would have intensity |ak|2 ∼ N , i.e. Ψ = 0. Moreover,
the study of the spectral entropy has revealed that the low temperature phase
of the model is characterized by the breaking of equipartition. We have termed
“pseudo-localization” the transition to this hybrid phase, where the light intensity
is not completely localized and at the same time is not equipartitioned among the
modes.

One of the most relevant aspects of the picture revealed by the numerical results
presented in this work is that the critical temperature of the glass and of the pseudo-
localization transitions is the same within the statistical uncertainty. This occurrence
makes the mode-locked random laser a very interesting problem where ergodicity
breaking manifests itself in a twofold way: replica-symmetry breaking, which is
typical of quenched disordered systems, and localization, which has mostly been
studied in the context of quantum many-body systems. The opportunity given by
this model is to study both transitions at the same time, opening the way to more
general studies for arbitrary nonlinearities and degrees of coupling dilution.

Supported by the numerical evidence that the mode-locked random laser is,
indeed, a mean-field model, we have approached its solution with analytical tech-
niques. The similarity of the mode-locking dilution rule with the kind of correlations
in the Hamiltonian of the Bernasconi model has led us to perform a preliminary
study of the Merit Factor problem. Though the presence of a low temperature glass
phenomenology is suggested by numerical studies of the finite-size Hamiltonian,
within the accuracy of our analysis, the model does not exhibit any transition at
finite temperature. The presence of a transition has been investigated through
the replica method applied to the model in the space where the spin variables are
mapped by a random unitary matrix. In Chap. 6, the model has been solved in
the annealed limit, in the replica symmetric ansatz and with one step of replica
symmetry breaking. The self-consistency equations for the free parameters have
been deeply studied with different integration techniques and computational tools:
the only solution revealed at finite temperature is the paramagnetic one. The study
of the zero temperature limit of the 1RSB free energy and self-consistency equations
is still in progress. Other important information may come from the study of the
stability of the RS solution, which helps to distinguish the kind of replica symmetry
breaking possibly characterizing the low temperature phase.

The solution of the mode-locked random laser has been addressed in Chap. 7,
where the replica technique developed for the Bernasconi model has been adapted to
the case of interest. In order to simplify the computation, we have first considered
real spherical variables, eliminating the technicality of dealing with the phases at an
initial step of investigation. In this case, after the average over disorder, we pass
to a generalized Fourier space by transforming the local overlaps with a random
unitary matrix. The major difficulty of defining a global order parameter for the
model and finding closed equations to determine it as function of temperature has
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been successfully addressed, with the introduction of a new order parameter, a
superoverlap, which is a measure of the correlations among local overlaps. The
analysis has been completed up to the formal derivation of the 1RSB self-consistency
equations for the order parameters of the model.

Future developments of the work presented in the present thesis are being
considered. In the remaining part of this chapter, the most relevant directions of
research that we aim to follow are discussed.

A first natural continuation of the work presented in Chap. 6 is to investigate
the reason why a glassy phase at finite temperature has not been found for the Merit
Factor problem. This may be due either to some technical issues of the computation
procedure, which we are still carefully inspecting, or to the fact that the transition
occurs at zero temperature. While the study of the zero-temperature saddle-point
equations is in progress, we also aim to compute the stability of the RS solution.
In fact, if the RS solution turns out to be unstable below a certain value of the
temperature, this may be taken as an indication that the correct low-temperature
solution of the model should be looked for with a FRSB ansatz. However, the more
reasonable scenario seems to be that there is no transition at all in the model with
random unitary matrices. It may be that the the mapping of the deterministic model
onto a disordered model with unitary matrices in not correct: the mapping to a a
model with two random orthogonal transformations of the spin variables seems to be
more reliable and will be deeply studied in future. On top of that, numerical studies
of the original deterministic model and of the models with random orthogonal and
unitary transformations are in progress.

Regarding the Mode-Locked 4-phasor model, though the saddle point equations
have not been studied in detail yet, the replica approach based on random unitary
matrices may suffer the same problems as in the Merit Factor problem. Probably, in
this case as well a double orthogonal transformation is needed to reach the correct
solution. However, the approach developed in this work proved useful at least to deal
with the dependence on the site indices due to the deterministic dilution rule. Similar
computations will be performed on the model with the introduction of orthogonal
matrices. Once the study of the 1RSB saddle-point equations is completed and a
phase diagram for the model is obtained, a straightforward extension of the new
mean-field theory is to include the phases of the modes and determine the role
played by the phase locking in the diluted case. Then, we plan to generalize the
computation to the case of a non-zero mean coupling distribution, in order to study
the effect of ferromagnetic alignment with respect to the disorder of the couplings.

Another analytical approach to the study of the Mode-Locked 4-phasor model,
which may yield a useful basis for comparison with the replica computation presented
in this work (or variations on the theme), implies performing an expansion in the
coupling magnitude, which, given the density of the mode-locked graph, still has
to decrease as a power of the size also in the diluted model. The small coupling
expansion can also be interpreted as a high temperature expansion, the well-known
Plefka/Geroges-Yedida expansion [Ple82; GY91]. A useful reference for this approach
is Ref. [Gra+20], where the second-order truncation of the expansion is performed
on the p-spin model, precisely to make a comparison with the replica computation.
In the case of the ML 4-phasor model, one has to perform the expansion keeping the
implementation of the Frequency Matching Condition. Eventually, the third order
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truncation of the expansion, by including the Onsager reaction term, yields the TAP
(Thouless-Anderson-Palmer) free energy, paving the way to a TAP analysis of the
model.

As discussed in the first part of this work, the numerical approach gives the
opportunity to gain physical insight on the mode-locked diluted models and to
bridge the theory with the experiments. Work is in progress regarding the numerical
simulation of the ML 4-phasor model with a continuous frequency distribution
and considering also the relaxation dynamics towards equilibrium [Tri22; Tri+23].
Extracting the frequencies uniformly in the interval [0, 1] allows for a more realistic
description of the frequency profile of a random laser with respect to the frequency
comb, which actually applies to the case of standard closed cavity lasers. Moreover,
experimental measurements RL spectra are always affected by a transient of non-
equilibrium dynamics, which equilibrium data collected for the results presented in
this work do not take into account. One important study which is in progress in
this context is the test of the correspondence between IFO (Intensity Fluctuation
Overlap) and Parisi overlap distribution functions in the case of the mode-locked
diluted interaction graph. In fact, this correspondence has been analytically proved
only in the mean-field fully-connected theory and it would be of great importance to
check its validity also in the diluted case, which is closer to experimental RLs.

Another direction of investigation regards the addition of the 2-body term in the
study of the mode-locked diluted model, which for simplicity has been discarded
in the whole thesis. For instance, the simulations of the complete (2+4)-phasor
model, on the mode-locked graph, should be able, in principle, to show traces of
FRSB, if this feature of the solution on the fully-connected graph survives in the
diluted model. Of course, in this case the effect of FRSB will have to be carefully
disentangled from the finite size effects on the overlap distribution function (see
Chap 4). Simulations in presence of the linear term can be used also to study the
inclusion of a gain profile to the dynamics, which so far has been considered in the
ordered case only. Furthermore, once a code is written to simulate a gain profile, it
could be fed with random laser gain curves measured in experiments.
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Appendix A

Integration over the Unitary
Group

In this Appendix we derive the result contained in Eq. (6.25) with two different tech-
niques, by considering elementary cases, which were already discussed in Refs. [BG80;
MPR94a]. Our aim is just to provide an explanation for the specific function G
appearing in Eq. (6.26).

The key idea is to reduce the difficulty of the integration over the Haar measure
of the unitary group in Eq. (6.24), by passing to a scalar problem, where the integral
can be performed with the saddle point method in the large-N limit. In fact, as
pointed out in Ref. [BG80], the general matrix source problem can not be solved
with this technique, since the Lagrange multiplier, which implements the unitary
constraint in the integration measure, is itself a matrix. Thus, after carrying out
the integration over the unitary group, one is left with N2 coupled variables and
the saddle point method is not applicable. For this reason, in order to deal with
the general problem, Brezin and Gross developed in Ref. [BG80] an alternative
procedure based on the study of the equations of motion in the large-N limit.

Equations of motion

Let us start by reviewing the simple example provided in Ref. [BG80]. Consider the
case of a unitary N -dimensional vector uu† = 1 in an external complex vector field
a. In this case, the problem simplifies to the computation of the following integral

Z = K

∫ N∏
i=1

duiduiδ
(

N∑
i=1

|ui|2 − 1
)
eN
[∑N

i=1(uiai+uiai)
]
, (A.1)

where K is a constant and the delta function restricts the integration to the space of
unitary vectors. First, we notice that the partition function Z satisfies the following
equation:

N∑
i=1

∂2Z

∂ai∂aj
= N2Z. (A.2)
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This can be checked by computing the derivatives of Z with respect to the components
of the external field:

∂Z

∂ai
= K

∫ N∏
i=1

duidujδ
(

N∑
i=1

|ui|2 − 1
)
Nuie

N
[∑N

i=1(uiai+uiai)
]

and

∂2Z

∂aj∂ai
= K

∫ N∏
i=1

duidujδ
(

N∑
i=1

|ui|2 − 1
)
N2uiuje

N
(∑N

i=1 uiai+uiai

)
.

Considering the case i = j and summing over i, one immediately finds Eq. (A.2) due
to the constraint.

We now make an important remark: in order for the theory to be invariant
under unitary transformations, the dependence of Z on the external field can only be
mediated by its modulus. This can be seen as follows: after u → Uu with UU † = I,
the action in Eq. (A.1) reads N

[
u(Ua†) + (U †a)u†

]
, and the only way to make U

disappear from the theory is that the dependence is on aa†. Then, if we denote
λ = aa†, it must be Z = Z(λ). Given this remark, Eq. (A.2) takes the form of an
ordinary differential equation:

λZ ′′(λ) +NZ ′(λ) = N2Z(λ), (A.3)

where the apex denotes derivatives with respect to λ. This can easily be proved by
repeatedly using the chain rule to obtain

∂2Z

∂aj∂ai
= dZ

dλ2aiaj + dZ
dλ δij

and, again, taking i = j and summing over i. By now imposing the fact that logZ
is proportional to N , we look for solutions of Eq. (A.3) of the kind Z = exp[NG(λ)].
By plugging this ansatz into Eq. (A.3) we find an equation for G(λ), which in the
large-N limit reduces to

λ(G′(λ))2 + G′(λ) = 1. (A.4)

The solution of this differential equation with initial condition G(0) = 0 is

G(λ) = −1 +
√

1 + 4λ− log
[1

2 + 1
2

√
1 + 4λ

]
, (A.5)

which, apart from irrelevant constant factors, corresponds to the formula in Eq. (6.26).
The general solution of the external field problem posed in Eq. (6.24) is a

generalization of this procedure and leads to a result which is much more complicated.
However, the final expression of the partition function involves double trace operators,
which for large N are irrelevant in the replica computation carried out in Chap. 6:
by taking into account only terms with a single trace operation, the general result
contained in Ref. [BG80] is a very simple generalization of the scalar case. If we
denote by A the external matrix field, we have

Z = exp
[
N Tr G(AA†)

]
, (A.6)

which corresponds to Eq. (6.25), with A = Ω/N .



161

Saddle-point computation

The other example we deal with is taken from Ref. [MPR94a]. Consider the case
in which Ω has only one element different form zero which is extensive in N , say
Ω11 = ωN/2, so that the trace operation reduces to

Tr(Ω†U + h.c.) = ω
N

2 u11 + c.c. (A.7)

In this case, we have to compute the integral

Z =
∫ N/2∏

i,j=1
duijduij

N/2∏
i=1

δ

N/2∑
j=1

|uij |2 − 1

 eωN
2 u11+c.c. (A.8)

where the integration over the Haar measure of the unitary group has been opened
with N/2 global constraints, one for each line in order to implement the unitary
condition UU † = I. Here, we are considering the case of N/2 ×N/2 matrices only
to be coherent with the treatment of Chap. 6, but the final result will be the same
of the previous example a part from an overlall factor 1/2. The integration over the
elements of every line but the first one gives a constant. Hence, one is left with

Z = K

∫ N/2∏
j=1

du1jdu1jδ

N/2∑
j=1

|u1j |2 − 1

 eωN
2 u11+c.c.

= K

∫ N/2∏
j=1

dxjdxjδ

N/2∑
j=1

|xj |2 − 1

 eωN
2 x1+c.c.,

(A.9)

where in the second line we have just renamed the integration variables and dropped
a redundant index, i.e. u1j → xj . By comparing this integral with the one in
Eq. (A.1), we can see that this is a special case of the previous example.

The integration in x1 can be isolated as follows

Z = K

∫
dx1dx1 e

ωN
2 x1+c.c.

∫ N/2∏
j=2

dxjdxjδ

N/2∑
j=2

|xj |2 − (|x1|2 − 1)


= K

∫
dxdx eω

N
2 x+c.c.

∫ N/2−1∏
j=1

dxjdxjδ

N/2−1∑
j=1

|xj |2 − (|x|2 − 1)

 .

The N/2 − 1-dimensional integral can be performed easily by passing to the real and
imaginary parts of the variables xj = aj + ibj and using the property of the delta of
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a function:

∫ N/2−1∏
j=1

dxjdxjδ

N/2−1∑
j=1

|xj |2 − (|x|2 − 1)

 ∝
∫ N/2−1∏

j=1
dajdbjδ

N/2−1∑
j=1

(a2
j + b2

j ) − (|x|2 − 1)


=
∫ 2(N/2−1)∏

i=1
dtiδ

2(N/2−1)∑
j=1

t2i − (|x|2 − 1)


∝
∫ ∞

0
dr r2(N/2−1)−1δ

(
r2 − (|x|2 − 1)

)
=
∫ ∞

0
dr r2(N/2−1)−1 δ(r −

√
1 − |x|2)

2
√

1 − |x|2

≈ (1 − |x|2)N/2,

where the last step holds in the large-N limit. Hence, the integral we aim to compute
boils down to

Z =
∫

dxdx eω
N
2 x+c.c.(1 − |x|2)N/2 =

∫
dxdx exp N2

[
log(1 − |x|2) + ωx+ ωx

]
,

(A.10)
which is a one-dimensional integral that can be solved with the saddle point method
in the large-N limit.

By passing to real and imaginary part in x = a+ ib and ω = v + iw, we have

Z =
∫

dadb exp N2
[
log(1 − a2 − b2) + 2va+ 2wb

]
≈ exp N2 G(a∗, b∗, v, w). (A.11)

where
G(a, b, v, w) = log(1 − a2 − b2) + 2va+ 2wb (A.12)

and (a∗, b∗) is its maximum. The saddle point equations are

va2 + vb2 + a− v = 0 (A.13a)

wa2 + wa2 + b− w = 0 (A.13b)

and the solution that maximizes G is

(a∗, b∗) =
(

−v − v
√

1 + 4v2 + 4w2

2(v2 + w2) ,
−w − w

√
1 + 4v2 + 4w2

2(v2 + w2)

)
. (A.14)

Calculating G in (a∗, b∗) one finds after some algebra

G(|ω|) = G(a∗, b∗, v, w) = −1 +
√

1 + 4|ω|2 − log
[1

2 + 1
2

√
1 + 4|ω|2

]
. (A.15)

This result corresponds precisely to Eq. (6.26), taking into account that Ω11 = ωN2 .
It is interesting to note that the dependence of G in the modulus of the external
source ω. This is a consequence of the invariance of the theory under unitary
transformations.
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Appendix B

RS computations for the MF
problem

In this Appendix, we report all the Replica Symmetric (RS) computations for the
Random Unitary model of the MF problem. In the first part, the RS action is
derived, by implementing the ansatz (6.56) in the action of the model. In order to
simplify the calculation, the three terms by which the action (6.42) is comprised
are treated separately. Then, self-consistency equations for the RS parameters are
obtained, by imposing the stationarity of the RS action.

B.1 RS action

Local free energy fτ

Consider first the free energy in the spin variables. It is convenient to use the
notation Trτ =

∏n
a=1

[∑
{τa}

]
, where now τ denotes a vector in the replica space.

By plugging the RS ansatz in place of the matrix R, we have

fτ (RD,R0) = log Trτ e
− 1

2
∑n

ab
τa[RDδab+R0(1−δab)]τb

= log e−(RD−R0)n Trτ e
− 1

2 R0|
∑n

a
τa|2

= −n(RD − R0) + log Trτ

∫ dhdh
4π e

−|h|2/2+
√

− R0
4
∑n

a
(τah+τah)

= −n(RD − R0) + log
∫ dhdh

4π e−|h|2/2 Trτ e
√

−R0
∑n

a
ℜ(τah),

where in the second step a Hubbard-Stratonovich transformation has been used to
decouple the square. In order to take the trace over the spins, let us pass to the
real and imaginary parts of the complex variables, by defining τa = ρa + iσa and
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h = hR + ihI . Since ℜ(τah) = ρahR + σahI , we have

Trτ e
√

−R0
∑n

a
ℜ(τah) =

n∏
a=1

∑
{ρa,σa}

e
√

−R0
∑n

a
(ρahR+σahI)

=

 ∑
ρ=±1

e
√

−R0ρhR
∑
σ=±1

e
√

−R0σhI

n

= 4n coshn(
√

−R0hR) coshn(
√

−R0hI).

Now, we consider the integration over the complex Gaussian variable h. It is easy to
see that the two integrals in the real and imaginary parts of h can be factorized in
two identical contributions, leading to

fτ (RD,R0) = n log 4 − n(RD − R0) + 2 log
∫ dh√

2π
e−h2/2 coshn(

√
−R0h), (B.1)

which is the expression of the local free energy at finite n. We now have to take
the limit limn→0 fτ/n, i.e. we only have to keep O(n) terms in the expression of fτ .
The term containing the Gaussian integral in the expression above can be treated as
follows

log
∫ dh√

2π
e−h2/2 coshn(

√
−R0h) = log

∫ dh√
2π
e−h2/2 exp

[
n cosh(

√
−R0h)

]
≈ log

∫ dh√
2π
e−h2/2

[
1 + n cosh(

√
−R0h)

]
= log

[
1 + n

∫ dh√
2π
e−h2/2 cosh(

√
−R0h)

]
≈ n

∫ dh√
2π
e−h2/2 cosh(

√
−R0h).

These are all standard manipulations, which are true at first order in the limit
n → 0 and will be repeatedly used in the following. Eventually, by redefining
limn→0 fτ/n → fτ for convenience, we have

fτ (RD,R0) = log 4 − RD + R0 + 2
∫ dh√

2π
e−h2/2 log cosh(

√
−R0h), (B.2)

This expression resembles the RS free energy of standard spin-glass models, such as
the SK model, see e.g. Ref. [MPV87], except for the fact that it does not depend
explicitly on the temperature: in this model the temperature appears only in the
local free energy fC .
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Local free energy fC

Let us now turn to the local free energy that is computed in the generalized Fourier
space. By using the RS ansatz on the matrix M, we proceed as follows

fC(MD,M0) = log
∫ n∏

a=1
dCadCae−β

∑n

a
|Ca|4+ 1

2 (MD−M0)
∑n

a
|Ca|2e

1
2 M0|

∑n

a
Ca|2

= log
∫ dzdz

4π e−|z|2/2
n∏
a=1

∫
dCadCae−β|Ca|4+ 1

2 (MD−M0)|Ca|2+
√

M0
4 (Caz+Ca

z)

= log
∫ dzdz

4π e−|z|2/2
[∫

dCdCe−β|C|4+ 1
2 (MD−M0)|C|2+

√
M0ℜ(Cz)

]n
,

where analogously to the previous case the square of the sum in the exponential
has been decoupled by introducing a complex Gaussian integration on the auxiliary
variable z and the dependence on n has been factorized. Here, at variance with
the free energy fτ it is convenient to keep the complex formalism, which is more
compact. By using the definition (6.58), the finite-n expression of the second free
energy can be compactly written as

fC(MD,M0) = log
∫ dzdz

4π e−|z|2/2Inβ,0(MD,M0, z). (B.3)

By expanding linearly in the limit n → 0, using the same manipulations of the
previous section, and replacing limn→0 fC/n → fC , we finally get

fC(MD,M0) =
∫ dzdz

4π e−|z|2/2 log Iβ,0(MD,M0, z). (B.4)

Entropic term

In order to rewrite the entropic term in the action, note that for a generic RS matrix
A the following relation holds

det A = (AD − A0)n−1(AD + (n− 1)A0),

as a consequence of the fact that A has only two kind of eigenvalues: AD − A0 with
degeneracy n− 1 and AD + (n− 1)A0 with degeneracy 1. Thus, in the present case
we have

Tr log(R − M) = log det(R − M)
= (n− 1) log(RD − MD − R0 + M0)

+ log(RD − MD − R0 + M0 + n(R0 − M0)),
(B.5)

and by carefully taking limit the n → 0 up to order O(n), we find

lim
n→0

1
n

Tr log(R−M) = log(RD−MD−R0 +M0)+ R0 − M0
RD − MD − R0 + M0

. (B.6)

For convenience, let us define a function s0(RD,R0,MD,M0) equal to the right
hand side of the previous equation, so that limn→0 Tr log(R − M)/n = s0.
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By considering together the three expressions Eqs. (B.2), (B.4) and (B.6) the
expression of the RS action (6.60) reads

lim
n→0

1
n
ARS = log 2 − RD − R0

2 +
∫ dh√

2π
e−h2/2 log cosh(

√
−R0h)

+ 1
2

∫ dzdz
4π e−|z|2/2 log Iβ,0(MD,M0, z)

+ 1
2s0(RD,R0,MD,M0),

where the overall factor 1/2 in Eq. (6.60) has been taken into account.

B.2 RS equations
Let us consider separately the various terms, as in the previous section, and compute
the derivatives of the action.

The derivative of the local free energy fτ (B.2) with respect to RD gives

∂fτ
∂RD

= −1. (B.7)

The derivative of fτ with respect to R0 is less immediate. In order to obtain a
simplified expression, we proceed as follows

∂fτ
∂R0

= 1 − 2 1
2
√

−R0

∫ dh√
2π
e−h2/2h tanh(

√
−R0h)

= 1 − 1√
−R0

∫ dh√
2π
e−h2/2 ∂

∂h
tanh(

√
−R0h)

= 1 −
∫ dh√

2π
e−h2/2

[
1 − tanh2(

√
−R0h)

]
,

where an integration by parts has been performed and the resulting boundary term
neglected1. Since the Gaussian integral is normalized to 1, we finally get

∂fτ
∂R0

=
∫ dh√

2π
e−h2/2 tanh2(

√
−R0h). (B.8)

Consider now the local free energy fC in Eq. (B.4). For the following computations
we will go on working with complex numbers, instead of passing to their real and
imaginary parts. This is done only to keep our notation more compact, and, in fact,
some step will be purely formal. The derivative of fC with respect to MD gives

∂fC
∂MD

=
∫ dzdz

4π e−|z|2/2∂MD
log Iβ,0(MD,M0, z)

=
∫ dzdz

4π e−|z|2/2
∫

dCdC gβ,0(C|MD,M0, z)|C|2/2
Iβ,0(MD,M0, z)

1It may be a superfluous remark, but notice that, even if apparently the sign has not changed
after the integration by parts, in fact, it has changed, since ∂h(e−h2/2) = −e−h2/2h. This kind of
integration by parts will be used several times in the following.
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and, by using the average defined in Eq. (6.65), we get

∂fC
∂MD

= 1
2

∫ dzdz
4π e−|z|2/2⟨|C2|⟩0. (B.9)

As for the other free energy, the derivative of fC with respect to the off-diagonal
element M0 requires some non-trivial step. We have

∂fC
∂M0

=
∫ dzdz

4π e−|z|2/2∂M0 log Iβ,0(MD,M0, z)

=
∫ dzdz

4π e−|z|2/2
∫

dCdC gβ,0(C|MD,M0, z)(−|C|2/2 + (M0)−1/2ℜ(Cz)/2)
Iβ,0(MD,M0, z)

= −1
2

∫ dzdz
4π e−|z|2/2⟨|C|2⟩0 + 1

2
√

M0

∫ dzdz
4π e−|z|2/2 z

2⟨C⟩0

+ 1
2
√

M0

∫ dzdz
4π e−|z|2/2 z

2⟨C⟩0

= −1
2

∫ dzdz
4π e−|z|2/2⟨|C|2⟩0 + 1√

M0

∫ dzdz
4π e−|z|2/2 z

2⟨C⟩0,

where the definition of the average ⟨(· · · )⟩0 has been used, together with the fact
that in the next-to-last step the third integral can be cast into the second one,
by simultaneously changing variables to C ↔ C and z ↔ z. This gives twice the
contribution of the second integral. We now formally integrate by parts in z, and,
therefore, we can write

∂fC
∂M0

= −1
2

∫ dzdz
4π e−|z|2/2⟨|C|2⟩0 + 1√

M0

∫ dzdz
4π e−|z|2/2 ∂

∂z
⟨C⟩0, (B.10)

where we used the fact that ∂z(e−zz/2) = −e−zz/2z/2. The derivative of the expec-
tation value of C is computed as follows

1√
M0

∂

∂z
⟨C⟩0 = 1√

M0

∫
dCdC gβ,0(C|MD,M0, z)C

√
M0

C
2

Iβ,0(MD,M0, z)

− 1√
M0

∫
dCdC gβ,0(C|MD,M0, z)C

∫
dCdC gβ,0(C|MD,M0, z)

√
M0

C
2

(Iβ,0(MD,M0, z))2

= 1
2⟨|C|2⟩0 − 1

2 |⟨C⟩0|2,

where in the last step the linearity of complex conjugation has been used to pass
from the integral of the complex conjugate to the complex conjugate of the integral.
Once integrated over the Gaussian variable z, the first of the two terms in the last
step is exactly equal to the first term of Eq. (B.10), so that the final result is

∂

∂M0
fC = −1

2

∫ dzdz
4π e−|z|2/2|⟨C⟩0|2. (B.11)

Eventually, we are able to write the self-consistency equations for the RS param-
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eters, by considering together Eqs. (B.9), (B.11), (B.7) and (B.8). We have

∂ARS
∂RD

= 0 → − 1 + ∂s0
∂RD

= 0

∂ARS
∂MD

= 0 → 1
2

∫ dzdz
4π e−|z|2/2⟨|C2|⟩0 + ∂s0

∂MD
= 0

∂ARS
∂R0

= 0 →
∫ dh√

2π
e−h2/2 tanh2(

√
−R0h) + ∂s0

∂R0
= 0

∂ARS
∂M0

= 0 → − 1
2

∫ dzdz
4π e−|z|2/2|⟨C⟩0|2 + ∂s0

∂M0
= 0,

where the derivatives of the entropic term defined in Eq. (B.6) are easy to compute
and read as

∂s0
∂RD

= − ∂s0
∂MD

= RD − MD − 2(R0 − M0)
(RD − MD − R0 + M0)2

∂s0
∂R0

= − ∂s0
∂M0

= R0 − M0
(RD − MD − R0 + M0)2 .

The previous set of equations can be simplified as follows. The first equation
in the set, which contains the derivative with respect to the diagonal element RD,
fixes the condition

(RD − MD − R0 + M0)2 = RD − MD − 2(R0 − M0), (B.12)

which can be eliminated after substitution in all the other equations of the set,
leading to

1
2

∫ dzdz
4π e−|z|2/2⟨|C2|⟩0 − 1 = 0∫ dh√

2π
e−h2/2 tanh2(

√
−R0h) + R0 − M0

RD − MD − 2(R0 − M0) = 0

−1
2

∫ dzdz
4π e−|z|2/2|⟨C⟩0|2 − R0 − M0

RD − MD − 2(R0 − M0) = 0.

A further simplification comes from the RS expression of the algebraic relation
(6.40c), which defines the overlap in terms of the other variables. By considering the
product of two RS matrices, we get a system of only two independent equations

RD − MD + (n− 1)(R0 − M0)q0 = 1
(R0 − M0)(1 + (n− 2)q0) + (RD − MD)q0 = 0,

which, always at order O(n), simplifies to

RD − MD − (R0 − M0)q0 = 1 (B.13a)
(R0 − M0)(1 − 2q0) + (RD − MD)q0 = 0. (B.13b)

If one isolates q0 from the second equation, one finds

q0 = R0 − M0
RD − MD − 2(R0 − M0) . (B.14)
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By substituting this expression of q0 in the self-consistency equations, we find

q0 =
∫ dh√

2π
e−h2/2 tanh2(

√
−R0h)

q0 = 1
2

∫ dzdz
4π e−|z|2/2|⟨C⟩0|2

1 = 1
2

∫ dzdz
4π e−|z|2/2⟨|C2|⟩0

This set of equations is completed by the two algebraic relations among the RS
parameters, Eqs. (B.13).





171

Appendix C

1RSB computations for the MF
problem

In this Appendix, the 1RSB computations for the Random Unitary model of the MF
problem are reported by following the same scheme of Appendix B. First the 1RSB
action is derived, by implementing the ansatz (6.70) on all the order parameters of
the theory; then self-consistency equations are obtained by imposing the stationarity
of the action.

C.1 1RSB action

1RSB local free energy fτ

Let us consider the free energy fτ in Eq. (6.44). We perform the 1RSB ansatz on
the matrix R, which leads to the introduction of three parameters RD,R0 and
R1. In the following, we avoid writing the dependence of fτ on these parameters
explicitly. By using the same notation of the previous Appendix for the trace over
the replicated spin variables τ , we have

fτ = Trτ e
− 1

2 R0
∑n

ab
τaτb− 1

2 (R1−R0)
∑n/m

k

∑m

ab
τaτb− 1

2 (RD−R1)
∑n

a
|τa|2

= −n(RD − R1) + log Trτ e
− 1

2 R0|
∑n

a
τa|2

e
1
2 (R0−R1)

∑n/m

k |
∑m

a
τa|2

.

The first exponential in the trace operator is of the same kind of the one already
encountered in the RS computation and can be decoupled by introducing only one
auxiliary Gaussian variable with a Hubbard-Stratonovich transformation

e−R0|
∑n

a
τa|2

=
∫ dhdh

4π e−|h|2/2e
√

−R0
∑n

a
ℜ(τah).

On the other hand, the second exponential requires the introduction of n/m auxiliary
Gaussian variables, one for each diagonal block:

e
1
2 (R0−R1)

∑n/m

k |
∑m

a
τa|2

=
n/m∏
k

∫ dukduk
4π e−|uk|2/2e

√
(R0−R1)

∑m

a
ℜ(τauk).
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In order to take the trace over the complex spin variables, as in the previous Appendix,
we pass to the real and imaginary parts both of the spins τa = ρa + iσa and of the
auxiliary Gaussian fields h = hR + ihI and uk = uRk + iuIk. Moreover, we use the fact
that

∑n
a =

∑n/m
k

∑m
a and

∏n
a =

∏n/m
k

∏m
a . Consider the two exponential functions

depending on the the parameters R0 and R1 in the previous expressions. We can
write their product as follows:

n/m∏
k

m∏
a

∑
{τa}

e
√

−R0ℜ(τah)e
√

R0−R1ℜ(τauk) =
n/m∏
k

m∏
a

∑
{ρa,σa}

e
√

−R0(ρahR+σahI)×

× e
√

R0−R1(ρauR
k +σauI

k)

=
n/m∏
k

m∏
a

∑
ρa=±1

eρ
a(

√
−R0hR+

√
R0−R1uR

k ) ∑
σa=±1

eσ
a(

√
−R0hI+

√
R0−R1uI

k)

= 4n
n/m∏
k

coshm(
√

−R0hR +
√

R0 − R1u
R
k )×

× coshm(
√

−R0hI +
√

R0 − R1u
I
k)

= 4n
n/m∏
k

coshm Ξ(R0,R1, hR, u
R
k ) coshm Ξ(R0,R1, hI , u

I
k),

where the function Ξ is defined as the argument of the cosh function (see Eq. (6.74)).
When the final expression of the previous sequence is integrated over the Gaussian

variables it factorizes in two equivalent contributions, one containing an integral
in hR and n/m identical integrals in uRk , the other one containing an integral in
hI and n/m identical integrals in uIk. By changing integration variables the two
contributions give a square, which taken out of the log, leads to

fτ = n log 4 − n(RD − R1) + 2 log
∫

Dh

(∫
Du coshm Ξ

) n
m

, (C.1)

where the compact notation for the Gaussian integration measure has been adopted.
This is the expression of fτ in the 1RSB ansatz at finite n. After carefully taking the
limit n → 0 and replacing as usual limn→0 fτ/n → fτ , we find the O(n) expression

fτ (RD,R0,R1,m) = log 4 − (RD − R1) + 2
m

∫
Dh log

∫
Du coshm Ξ(R0,R1, h, u)

(C.2)

Once again, this expression resembles the 1RSB free energy of the SK model, even if
here the dependence on temperature is only implicit in the parameters.
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1RSB local free energy fC

We perform the 1RSB ansatz on the matrix M and plug it into the free energy fC
in Eq. (6.44), so that we get

fC = log
∫ n∏

a

dCadCae−β
∑n

a
|Ca|4+ 1

2 M0
∑n

ab
CaC

b+ 1
2 (MD−M1)

∑n

a
|Ca|2

× e
1
2 (M1−M0)

∑n/m

k

∑m

ab
CaC

b

= log
∫ n∏

a

dCadCae−β
∑n

a
|Ca|4+ 1

2 (MD−M1)
∑n

a
|Ca|2e

M0
2 |
∑n

a
Ca|2

× e
1
2 (M1−M0)

∑n/m

k
|
∑m

a
Ca|2 .

As for the other local free energy, we decouple the squares introducing auxiliary
Gaussian variables through the following relations

e
M0

2 |
∑n

a
Ca|2 =

∫ dzdz
4π e−|z|2/2e

√
M0
∑n

a
ℜ(Caz)

and

e
1
2 (M1−M0)

∑n/m

k
|
∑m

a
Ca|2 =

∫ n/m∏
k

[dwkdwk
4π e−|wk|2/2

]
e

√
M1−M0

∑n/m

k

∑m

a
ℜ(Cawk).

After reorganizing the terms in the free energy and factorizing identical contributions,
one finds

fC = log
∫ dzdz

4π e−|z|2/2
[∫ dwdw

4π e−|w|2/2Imβ,1(MD,M0,M1, z, w)
] n

m

, (C.3)

where Eq. (6.73) has been used. Eq. (C.3) is the finite-n expression of the local
free-energy fC . By expanding linearly in n and replacing limn→0 fC/n → fC , we
find

fC(MD,M0,M1,m) = 1
m

∫
D [zz] log

∫
D [ww]Imβ,1(MD,M0,M1, z, w) (C.4)

D [zz] = dzdz
4π e−|z|2/2, (C.5)

where to shorten the notation, we have introduced the symbol above for the complex
Gaussian integration measure. Incidentally, we notice that, if z = σ + iρ, then
D [zz] = DσDρ, taking into account the usual factor 2 coming from the Jacobian of
the transformation.

1RSB entropic term

A useful property of 1RSB matrices, which is of great advantage in writing entropic
contributions to the action, is that a given matrix A of this kind has only three
kinds of eigenvalues

a1 = AD − A1 d1 = n− n

m

a2 = AD + (m− 1)A1 −mA0 d2 = n

m
− 1

a3 = AD + (m− 1)A1 + (n−m)A0 d3 = 1,
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where d1, d2 and d3 are the degeneracies, see e.g. [CC05]. Hence, the determinant of
a generic 1RSB matrix is given by

det A = (AD−A1)n− n
m (AD+(m−1)A1 −mA0)

n
m

−1(AD+(m−1)A1 +(n−m)A0).

Let us put A = R − M. Then, the entropic term in the action (6.42) is given by
log det A, which at order O(n) reads as

lim
n→0

Tr log(A)/n = m− 1
m

log(AD − A1) + 1
m

log[AD + (m− 1)A1 −mA0]

+ A0
AD + (m− 1)A1 −mA0

.
(C.6)

Analogously to the RS case, we define a function s1(AD,A0,A1,m), in which we
store the expression of the 1RSB entropic term reported in the right hand side of
the previous equation.

The 1RSB expression of the action (6.42), can be written collecting the results
of Eqs. (C.2), (C.4) and (C.6). We have

lim
n→0

1
n
A1RSB = log 2 − RD − R1

2 + 1
m

∫
Dh log

∫
Du coshm Ξ

+ 1
2m

∫
D [zz] log

∫
D [ww] Imβ,1(MD,M0,M1, z, w)

+ 1
2s1(AD,A0,A1,m),

where we recall that the functions Ξ and Iβ,1 have been defined respectively in
Eqs. (6.74) and (6.73), and the overall factor 1/2 in Eq. (6.42) has been taken into
account.

C.2 1RSB equations

Let us consider the local free energy fτ in Eq. (C.2), which is the simplest one
and resembles to the paradigmatic case of the SK model. The derivative in RD is
immediate and leads to the same equation as in the RS case, see Eq. (B.9). The
derivatives with respect to R0 and R1 need some preliminary remark to be computed
more easily. Notice that, given the definition of the function Ξ in Eq. (6.74), the
following relations hold

∂R0Ξ = − 1
2
√

−R0
h+ 1

2
√

R0 − R1
u,

∂R1Ξ = − 1
2
√

R0 − R1
u,

∂hΞ =
√

−R0, ∂uΞ =
√

R0 − R1.

As a consequence of the last line of relations, the derivative of any function of Ξ in h
or u is equal up to the coefficient ch,u = ∂h,uΞ = {

√
−R0,

√
R0 − R1}. In particular,
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this applies to the following derivatives compactly written for both the derivative in
h and in u

∂h,u coshm Ξ = m ch,u coshm Ξ tanh Ξ (C.7)

∂h,u(coshm Ξ tanh Ξ) = ch,u coshm Ξ
[
1 + (m− 1) tanh2 Ξ

]
, (C.8)

which will appear in the computations. In the previous expressions, the power m
is restored after the derivative, by multiplying and dividing by cosh Ξ, which also
leads to the presence of tanh Ξ.

With the help of the previous relations, the derivative of fτ with respect to R0
is computed as follows:

∂fτ
∂R0

= 2
m

∫
Dh

∫
Du ∂R0 coshm Ξ∫

Du coshm Ξ

= − 1√
−R0

∫
Dhh

∫
Du coshm Ξ tanh Ξ∫

Du coshm Ξ + 1√
R0 − R1

∫
Dh

∫
Du u coshm Ξ tanh Ξ∫

Du coshm Ξ

= − 1√
−R0

[∫
Dh

∫
Du∂h (coshm Ξ tanh Ξ)∫

Du coshm Ξ −
∫

Dh

∫
Du coshm Ξ tanh Ξ

∫
Du∂h coshm Ξ

(
∫

Du coshm Ξ)2

]

+ 1√
R0 − R1

∫
Dh

∫
Du ∂u (coshm Ξ tanh Ξ)∫

Du coshm Ξ

where the first term has been integrated by parts in h (and the derivative distributed
on the numerator and denominator of the integrand) and the second one in u. It is
then clear, that the first and third term yield an equal and opposite contributions,
as a consequence of Eq. (C.8). We are therefore left only with the second term in
the previous expression, which after using Eq. (C.7), leads to

∂fτ
∂R0

= m

∫
Dh

(∫
Du coshm Ξ tanh Ξ∫

Du coshm Ξ

)2
. (C.9)

The derivative of fτ with respect to R1 is slightly easier: we have

∂fτ
∂R1

= 1 − 2
m

∫
Dh

∫
Du ∂R1 coshm Ξ∫

Du coshm Ξ

= 1 − 1√
R0 − R1

∫
Dh

∫
Du u coshm Ξ tanh Ξ∫

Du coshm Ξ

= 1 − 1√
R0 − R1

∫
Dh

∫
Du ∂u(coshm Ξ tanh Ξ)∫

Du coshm Ξ

= 1 −
∫

Dh

∫
Du coshm Ξ[1 + (m− 1) tanh2 Ξ]∫

Du coshm Ξ .

Since the first term in the numerator of the integrand is equal to the denominator,
it simplifies and cancels out the additive 1. Eventually, we find

∂fτ
∂R1

= −(m− 1)
∫

Dh

∫
Du coshm Ξ tanh2 Ξ∫

Du coshm Ξ . (C.10)
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Let us now compute the derivatives of the local free energy fC . To simplify the
procedure we have developed a similar technology with respect to the other free
energy. In fact, as mentioned before, there is a certain symmetry between the two
free energies, and one could already guess the final result for the derivatives of fC .
The symmetry relays on the fact that the role of the function cosh is played by the
integral function Iβ,1, and, the argument of the exponential function g1 defined in
Eq. (6.72) is the counterpart of Ξ.

We split the computation, by first considering the derivatives of Imβ,1 in the
1RSB parameters, in order to have some results ready for use when computing the
derivatives of fC . For the derivative in MD we have

∂MD
Imβ,1 = mIm−1

β,1

∫
dCdC ∂MD

gβ,1 = mImβ,1

∫
dCdCgβ,1 |C|2

2
Iβ,1

= m

2 I
m
β,1⟨|C|2⟩1,

for the derivative in M0

∂M0I
m
β,1 = mImβ,1

∫
dCdCgβ,1

[
1

2
√

M0
ℜ(Cz) − 1

2
√

M1−M0
ℜ(Cw)

]
Iβ,1

= m

2
√

M0
Imβ,1⟨ℜ(Cz)⟩1 − m

2
√

M1 − M0
⟨ℜ(Cw)⟩1,

and similarly for the derivative in M1:

∂M1I
m
β,1 = m

2 I
m
β,1⟨|C|2⟩1 + m

2
√

M1 − M0
Imβ,1⟨ℜ(Cw)⟩1

Given these preliminary results, we can compute the derivatives of the local free
energy. The case of the diagonal element MD is the simplest one: we immediately
find

∂fC
∂MD

= 1
2m

∫
D [zz]

∫
D [ww]Imβ,1⟨|C|2⟩1∫

D [ww]Imβ,1
. (C.11)

For the derivative with respect to M0, we proceed as follows

∂fC
∂M0

= 1
m

∫
D [zz]

∫
D [ww]∂M0I

m
β,1∫

D [ww]Imβ,1

= 1
2
√

M0

[∫
D [zz]z2

∫
D [ww]Imβ,1⟨C⟩1∫

D [ww]Imβ,1
+
∫

D [zz]z2

∫
D [ww]Imβ,1⟨C⟩1∫

D [ww]Imβ,1

]

− 1
2
√

M1 − M0

[∫
D [zz]

∫
D [ww]w2 I

m
β,1⟨C⟩1∫

D [ww]Imβ,1
+
∫

D [zz]
∫

D [ww]w2 I
m
β,1⟨C⟩1∫

D [ww]Imβ,1

]

Similarly to the RS case, the two couples of terms inside square brackets are equal,
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after changing variables o C ↔ C, z ↔ z and w ↔ w, hence we have

∂fC
∂M0

= 1√
M0

∫
D [zz]z2

∫
D [ww]Imβ,1⟨C⟩1∫

D [ww]Imβ,1
− 1√

M1 − M0

∫
D [zz]

∫
D [ww]w2 I

m
β,1⟨C⟩1∫

D [ww]Imβ,1

= 1√
M0

∫ D [zz]
∫

D [ww]∂z
(
Imβ,1⟨C⟩1

)
∫

D [ww]Imβ,1
−
∫

D [zz]
∫

D [ww]Imβ,1⟨C⟩1
∫

D [ww]∂zImβ,1(∫
D [ww]Imβ,1

)2


− 1√

M1 − M0

∫
D [zz]

∫
D [ww]∂w

(
Imβ,1⟨C⟩1

)
∫

D [ww]Imβ,1

where formal integration by parts has been performed in z for the first term (the
derivative has been already distributed) and in w for the second one. Notice the
perfect symmetry with the corresponding computation performed on the other free
energy. We now have to compute the derivatives in z and w, which correspond to the
derivatives in h, u in the case of fτ . Since, in analogy with the case of the function
Ξ, the dependence of the function gβ,1 on z and w is of the same kind, both the
derivatives in z and w of more complex objects which have gβ,1 as an argument yield
the same result a part from a coefficient, coming from the derivative of the exponent
argument in the expression of gβ,1, i.e. cz,w = {

√
M0,

√
M1 − M0}. Therefore, we

can compactly write

∂z,wI
m
β,1 = mcz,w

2 ⟨C⟩1

∂z,w
(
Imβ,1⟨C⟩g1

)
= cz,w

2 Imβ,1

(
⟨|C|2⟩1 + |⟨C⟩1|2

)
.

By considering this result, the only term that survives in the derivative of fC with
respect to M0 is second one in the last step of our computation. This leads to the
following result

∂fC
∂M0

= −m

2

∫
D [zz]

∣∣∣∣∣
∫

D [ww]Imβ,1⟨C⟩1∫
D [ww]Imβ,1

∣∣∣∣∣
2

(C.12)

With an analogous computation, the derivative of fC with respect to M1 yields the
result

∂fC
∂M1

= m− 1
2

∫
D [zz]

∫
D [ww]Imβ,1|⟨C⟩1|2∫

D [ww]Imβ,1
(C.13)

A nice remark, which catches the eye by looking at Eqs. (C.11), (C.12) and (C.13),
is that there is a correspondence between the position of the parameter in a 1RSB
(or more in general RSB) matrix and the level of integration at which the square
modulus appears in the derivatives of the free energy with respect to that parameter:
the more internal is the parameter position, the more internal is the level where the
square modulus appears. This hierarchical correspondence can be seen also in the
derivatives of the free energy fτ in Eqs. (C.9) and (C.10); in this case the derivative
with respect to diagonal term RD is one, coherently with the fact that the square
modulus of Ising spins is one.
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Now that we have computed all the derivatives of the free energies in the
action (6.75), we can write the self-consistency equations, by assembling all the
partial results:

∂A1RSB
∂RD

= 0 → − 1 + ∂s1
∂RD

= 0

∂A1RSB
∂R0

= 0 → m

∫
Dh

(∫
Du coshm Ξ tanh Ξ∫

Du coshm Ξ

)2
+ ∂s1
∂R0

= 0

∂A1RSB
∂R1

= 0 → − (m− 1)
∫

Dh

∫
Du coshm Ξ tanh2 Ξ∫

Du coshm Ξ + ∂s1
∂R1

= 0

∂A1RSB
∂MD

= 0 → 1
2m

∫
D [zz]

∫
D [ww]Imβ,1⟨|C|2⟩1∫

D [ww]Imβ,1
+ ∂s1
∂MD

= 0

∂A1RSB
∂M0

= 0 → − m

2

∫
D [zz]

∣∣∣∣∣
∫

D [ww]Imβ,1⟨C⟩1∫
D [ww]Imβ,1

∣∣∣∣∣
2

+ ∂s1
∂M0

= 0

∂A1RSB
∂M1

= 0 → m− 1
2

∫
D [zz]

∫
D [ww]Imβ,1|⟨C⟩1|2∫

D [ww]Imβ,1
+ ∂s1
∂M1

= 0

where, by using the shorthand notation A = R − M, the derivatives of the entropic
term read
∂s1
∂RD

= − ∂s1
∂MD

= A0
(AD + (m− 1)A1 −mA0)2 − 1

m

1
AD + (m− 1)A1 −mA0

− m− 1
m

1
AD − A1

∂s1
∂R0

= − ∂s1
∂M0

= −m A0
(AD + (m− 1)A1 −mA0)2

∂s1
∂R1

= − ∂s1
∂M1

= (m− 1)
[

A0
(AD + (m− 1)A1 −mA0)2 − 1

m

1
AD + (m− 1)A1 −mA0

− 1
m

1
AD − A1

]
.

In order write a more compact set of equations, it is convenient to use the algebric
constraint Eq. (6.40c), which has to be written in the 1RSB ansatz for this purpose.
To visualize the constraint in the 1RSB case, let us write it in matrix form, for the
simple case of n = 4 and m = 2:

AD A1 A0 A0
A1 AD A0 A0
A0 A0 AD A1
A0 A0 A1 AD




1 q1 q0 q0
q1 1 q0 q0
q0 q0 1 q1
q0 q0 q1 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (C.14)

We find the following three independent equations, by considering the product of the
first line of A respectively with the first, the second and the (m+ 1)-th column of Q

AD + (m− 1)A1q1 + (n−m)A0q0 = 1
A1 + ADq1 + (m− 2)A1q1 + (n−m)A0q0 = 0

ADq0 + (m− 1)A1q0 + A0 + (m− 1)A0q1 + (n− 2m)A0q0 = 0,



C.2 1RSB equations 179

which in the limit n → 0 reduce to

AD + (m− 1)A1q1 −mA0q0 = 1 (C.15a)
A1 + ADq1 + (m− 2)A1q1 −mA0q0 = 0 (C.15b)

ADq0 + (m− 1)A1q0 + A0 + (m− 1)A0q1 − 2mA0q0 = 0. (C.15c)

Note that from the first two equations one finds

q1 = 1 − 1
AD − A1

.

Moreover, by subtracting the first equation to the third one and using the expression
of q1, one finds the following expression for q0:

q0 = 1 − 1
m

1
AD + (m− 1)A1 −mA0

− m− 1
m

1
AD − A1

.

Now, we can proceed as in the RS case: the first equation of the set, which contains
the derivatives in the diagonal element RD, can be eliminated after using it in all
the other equations. Then, by using the definitions of q0 and q1, after some algebra,
we finally get to the nicer and more familiar set of equations

q0 =
∫

Dh

(∫
Du coshm Ξ tanh Ξ∫

Du coshm Ξ

)2

q1 =
∫

Dh

∫
Du coshm Ξ tanh2 Ξ∫

Du coshm Ξ

1 = 1
2

∫
D [zz]

∫
D [ww]Imβ,1⟨|C|2⟩1∫

D [ww]Imβ,1

q0 = 1
2

∫
D [zz]

∣∣∣∣∣
∫

D [ww]Imβ,1⟨C⟩1∫
D [ww]Imβ,1

∣∣∣∣∣
2

q1 = 1
2

∫
D [zz]

∫
D [ww]Imβ,1|⟨C⟩1|2∫

D [ww]Imβ,1
,

which has to be completed by the three algebraic relations (C.15) among the 1RSB
parameters.
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