
An Ogden-like formulation incorporating phase-field
fracture in elastomers: from brittle to pseudo-ductile

failures

Abstract

Over the past 50 years Ogden model has been widely used in material
modelling due to its ability to match accurately the experimental data on
elastomers at large strain, as well as for its mathematical properties, such
as polyconvexity.In this paper these peculiarities are exploited to formulate
a finite strain model that incorporates, through the phase-field approach
recently proposed in [? ], a cohesive damage mechanism which leads to the
progressive degradation of the material stiffness and to failure under tension.
By properly tailoring the constitutive parameters the model is capable of
encompassing a wide range of effects from brittle to pseudo-ductile failure
modes. A plane stress problem is formulated to test the model against the
experiments on double-network elastomers, which display a pseudo-ductile
damage behaviour at large strain, as well as conventional rubber compounds
with brittle failures. As such the proposed model is applicable to fracture
coalescence and propagation in a wide range of materials.

Keywords: Large strain, phase-field fracture, hyperelasticity, elastomer

1. Introduction

Over the past 50 years the phenomenological hyperelastic model pro-
posed by Ogden for compressibile [? ] and incompressibile [? ] elastomers
has been successfully adopted for a variety of materials including rubber [?
? ? ? ], nematic elastomers [? ? ], foams [? ? ], biological tissues [?
? ? ] and even carbon nanotubes [? ]. The main feature of the Ogden
model is that it postulates a form of the strain energy density in terms of
the principal stretches rather than the classical invariants of strain, making
the closed form expression of the tangent moduli easily calculable [? ] and
the model easily implementable in finite element algorithms. In addition,
the model satisfies policonvexity.
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The strain energy density is written as the sum of three separate func-
tions of the principal stretches λ1, λ2 and λ3:

ϕ(λ1, λ2, λ3) =
3∑

a=1

ϕ̃(λa), with ϕ̃(λa) =
N∑

n=1

µn
αn

(λαn
a − 1) ,

making it adherent to the so-called Valanis–Landel split [? ]. Each term
ϕ̃(λa) represents the elastic energy of a nonlinear spring undergoing a stretch
λa; the corresponding stiffness µnαn can be tailored to describe all aspects
of the rubber elastic response, starting from the initial softening for mod-
erate strains, to the stress hardening at large strains. For most quasi-static
experiments on rubber, indeed, three terms in the series give an excellent
correlation with stress-strain data [? ].

The remarkable properties of the Ogden model are exploited in this pa-
per to formulate a theory for the cohesive failure of elastomeric materials
at large strain. The hyperelastic energy (??) is used in conjunction with
a phase-field variable to describe the mechanisms which lead to the soften-
ing behaviour and to the progressive degradation of the material stiffness
at large strain. The degradation function, weighing the elastic energy re-
duction due to damage, is formulated according to a recent proposal in [?
] capable of describing brittle and quasi-brittle failure modes. In defining
the model, we have followed the phase-field approach introduced in [? ],
where the fracture problem was formulated as a free-discontinuity minimum
problem. The variational formulation of fracture was approximated in [?
] by a regularized problem that operates on a functional defined on con-
tinuous fields, with fracture replaced by the so-called phase-field variable.
Acting like a damage variable, the phase-field assumes values between 0 and
1, with 0 for sound material and 1 for the fractured material, and its evolu-
tion describes the coalescence and propagation of cracks [? ? ? ]. As the
phase-field increases, the stiffness of the material reduces, vanishing when
the damage variable reaches 1. A non-local term, proportional to the gra-
dient of the phase-field, is incorporated into the internal energy functional
and it plays the role of localization limiter by penalizing abrupt damage
variations [? ]. The gradient contribution automatically introduces an in-
ternal length, that in the present formulation is a constitutive parameter, to
be calibrated through experimental data [? ], and it makes the model size
dependent. Smoothness properties of such a phase-field approach allow for
straightforward standard finite elements implementation, and no remeshing
or ad-hoc numerical strategies need to be used, making the solution of the
numerical problem robust and independent of the mesh used in the finite
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element simulations.
Over the years, many contributions in the literature have dealt with

phase-field formulations for brittle materials, but a model incorporating brit-
tle and cohesive failures at large strain is still missing. A first approach to
define phase-field fracture within the framework of finite elasticity was pro-
posed in [? ]. Following works have dealt with rate-independent fracture [?
] and with the inclusion of viscous effects in [? ]. A multiplicative splitting
of the stretch into tensile and compressive parts was proposed in [? ] to
describe fracture mechanisms induced by tensile stress states. Cavitation
processes in elastomers, with voids coalescing and developing into fractures,
were reproduced in [? ] by using a specific nonlinear polyconvex strain
energy density. A phase-field model for the description of cavitation was
also proposed in [? ] and improved in [? ], according to the experimental
evidence of [? ? ].A bottom-up multi-scale approach was followed in [?
]. It was assumed that the internal energy at the micro-scale is composed
by an entropic contribution due to the polymer chains configurational en-
tropy, and an energetic contribution due to bond deformation, such that
the latter contribution drives crack nucleation, initiation and propagation.
Then, bridging the microscopic assumptions to the macro-scale, a contin-
uum model was obtained where fracture was approximated by a phase field.
A phase-field model was also proposed in [? ] based on the micro-mechanics
of polydisperse elastomer networks, that is, distributions of polymeric chains
with different lengths.

Although elastomers are capable of sustaining large deformations, most
of the time their failure is brittle, and such a peculiarity potentially reduces
the range of applications. To overcome this limitation new elastomeric com-
pounds are being developed with increased ductility and durability, usually
achieved by tailoring the material microstructure to have a progressive dam-
age process which only gradually leads to fracture. These failure modes are
usually observed in highly filled elastomers, in which the mechanism of cohe-
sive failure is activated at the filler-matrix interface [? ], or multiple-network
elastomers, where the presence of the additional filler network leads to a
strong localized softening, due to rupture of covalent bonds and coalescence
of defects [? ? ].

A versatile phase-field model should be able to model the brittle failure
mode of conventional elastomer as well as the cohesive failure of double-
network compounds without using any information on the material mi-
crostructure, in the spirit of the Ogden’s phenomenological approach. With
this intent, we have complemented an Ogden-like strain energy density with
the degradation function introduced in [? ]. In this latter paper brittle and

3



quasi-brittle failures were captured within the context of infinitesimal elas-
ticity, with a model able to reproduce the softening laws frequently adopted
in the literature for quasi-brittle solids, e.g., linear, exponential or hyper-
bolic. As such the popular phase-field models for brittle fracture, e.g., [? ],
[? ], were recovered as particular examples.

The extension of the formulation [? ] would allow the description of all
the relevant failure modes seen in elastomers but requires the mechanical
meaning of certain constitutive parameters to be reinterpreted. Indeed, their
rule played in the context of linear elasticity is lost in case of large strains.
For such a reason, a fundamental task of this work is to comprehend the
influence of the constitutive parameters on the damage evolution modes in
order to draw a clear picture of the predictive potentiality of the model.
Analytical and numerical estimates are determined to correlate the shape of
damage energy and degradation functions to the predicted damage modes.
To focus on this, no further modelling ingredients, like thermal or viscous
contributions, are included into the formulation, by assuming that crack
propagation is rate independent. Indeed, viscous effects in fracture evolution
are negligible for low rates of tearing, as shown in [? ]. Furthermore, we
only consider fracture processes induced by tensile stress states, although
crack opening under compressive loadings can be avoided by introducing
the same elastic energy splitting used in [? ? ? ]. The optimal constitutive
parameters of the model are calibrated by studying the one-dimensional
problem of a bar under traction, that allows us to solve the problem in
semi-analytical form.

The structure of the paper is the following. Section 2 is devoted to the
formulation of the three-dimensional model in a consistent thermodynamic
framework. It addresses the theoretical aspect of the proposed phase-field
theory. Section 3 is devoted to the calibration of the model parameter by
solving the one-dimensional problem of a bar under traction. The numeri-
cal solutions of some prototypical examples are presented and discussed in
Section 4, including a through comparison of the model prediction with the
experimental data in [? ]. Concluding remarks are drawn in Section 5.

2. Model formulation

In this Section we aim at formulating the nonlinear elastic model with
damage in a three-dimensional plane stress settings, before carrying out in
Sec. ?? a sensitivity analysis by considering the response of a bar under
traction. The approach adopted to equilibrium is based on a unilateral
minimality principle under the condition of irreversibility of the damage
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field. The same approach has been widely adopted in plasticity [? ? ? ],
plasticity with damage [? ? ] and cohesive damage [? ? ].

Throughout the paper we will assume that all fields are sufficiently
smooth so that all the calculations can be performed. For a precise defi-
nition of the functional spaces needed the reader is referred to [? ].

A note on the notation. In the following small bold letters will be
used for points or vectors, whereas capital bold letters for tensors. The
inner product between two vectors or two tensors of the same order will be
indicated by a dot, such as a·b =

∑
i aibi orA·B =

∑
i,j AijBij . An overdot

will indicate the material time derivative, whereas a prime will indicate the
derivative with respect to the independent variable, e.g., the position x or
the variable d.

2.1. State variables

We identify a body with a region Ω0 of the three-dimensional Euclidean
space E , that occupies at some time instant t = 0, which we denote as the
reference configuration. The external boundary ∂Ω0 is divided into a subset
∂Ωu

0 in which displacement is applied, and a complementary boundary ∂Ωt
0

in which surface forces are present. The deformation of the body is the
bijective orientation-preserving map p : Ω0× [0, t] → E which assigns at each
point x ∈ Ω0 a point y = p(x, t) in the deformed configuration; accordingly
we set Ωt = p(Ω0, t) as the deformed configuration of the body.

At each material point x, the state of the continuum is identified by
the displacement field u(x, t) and by an additional scalar field d(x, t), that
represents the damage variable, such that d = 0 for the virgin material and
d = 1 for the fully damaged one; in this formulation, d is a Lagrangean
parameter defined on the reference configuration Ω0. We further denote by
U the space of kinematically admissible displacement field

u(x, t) ∈ U := {u : u(x, t) = u∗ ∀x ∈ ∂Ωu
0},

and with D the set of the admissible damage field

d(x, t) ∈ D := {d : d(x, t) ∈ [0, 1]}.

We denote the deformation gradient by F = I +∇u, where ∇· = ∂·
∂x is the

gradient operator defined with respect to the reference coordinates x and I
is the unit tensor.

The variations ũ and d̃ will be used in the application of the minimality
principle to derive the governing equations of the problem. These have
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to satisfy homogeneous boundary conditions, and as such belong to the
following sets

ũ(x, t) ∈ Ũ := {ũ(x, t) = 0 ∀x ∈ ∂Ωu
0},

d̃(x, t) ∈ D̃ := {d̃ : d̃(x, t) ≥ 0 for almost all x ∈ Ω0},

the latter being the convex cone of positive damage rate. As it will be
apparent in the following sections, in the present formulation the damage
variable can only increase (no–healing).

For the sake of conciseness the explicit dependence on the position x and
time t will be omitted from all variables, except when needed.

2.2. Energy functional

The behaviour of the continuum is characterized at each material point
x and at each time instant t by two state variables {u, d} in U ×D , and by
a state function φ, which gives the energy density at each material point;
φ depends on the local strain F(x), on the value of the damage variable
d(x) and on the local value of damage gradient ∇d(x), with the following
functional form

φ(∇u, d,∇d) =

Elastic energy︷ ︸︸ ︷
ψ(I+∇u, d)+

Fracture energy︷ ︸︸ ︷
Gc

c b
η(d) + b

Gc

c
|∇d|2,

composed by three terms:

� ψ(I+∇u, d) is the elastic energy in the damage state d;

� Gcη(d)/(c b) can be interpreted as the fracture energy during a homo-
geneous damage process with ∇d = 0;

� bGc|∇d|2/c is the nonlocal term which limits the possibility of damage
localization without any energetic cost (see for instance [? ]); such a
term introduces an intrinsic length scale which controls the size of the
damage localization zone.

The second and third terms in Eq. (??) constitute the non-local fracture
energy density, in which the constitutive parameter Gc is the critical elastic
energy release rate, b represents an internal length that regularizes the sharp
crack and c := 4

∫ 1
0

√
η(d) dd is a scaling parameter [? ]. The relationship

between the state function φ and the free energy density of such a material
is discussed in Remark 2 of Sec. 2.3.
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We further assume that the elastic strain energy density ψ can be mul-
tiplicative decomposed as

ψ(I+∇u, d) = ω(d) ψ0(I+∇u) ,

in which ψ0(I+∇u) is the elastic energy density of the neat material, and
ω(d) is a monotonically decreasing energetic degradation function describing
the degradation of the stored energy with evolving damage. The bulk strain
energy density ψ0 is a continuous isotropic function such that ψ0(·) is frame
indifferent. Such a requirement implies that, for any given deformation F,
one has ψ0(Q

TFQ) = ψ0(F) (isotropic response) and ψ0(Q
TF) = ψ0(F)

(frame indifference) for every rotation matrix Q.
The energetic degradation function ω(d) plays an important role in de-

termining the properties of the material, and, consistently with the experi-
mental observation, we assume that

ω′(d) < 0 and ω(0) = 1, ω(1) = 0, ω′(1) = 0 ,

where the latter constraint ensures that the energetic fracture converges
to a finite value, if the damage converges to the fully broken state (see [?
]).1 Motivated by the analysis presented in [? ], the following form for the
degradation function ω is considered

ω(d) :=
(1− d)2

(1− d)2 + a1 d(1 + a2 d+ a2a3 d2)
,

where a1, a2 and a3 are constitutive parameters, whose calibration allows
the description of different fracture modes from brittle to pseudo-ductile as
shown in Sec. ?? with uniaxial numerical tests. The chosen form of ω heavily
affect the softening behaviour once crack is initiated.

The dissipated energy density plays a significant role in the evolution
of the damage as well. We assume η(d) to have the following quadratic
expression

η(d) = 2 d− d2,

in a way that η(0) = 0 and η(1) = 1. With this assumption, the scaling
parameter c becomes c = 4

∫ 1
0

√
2d− d2 dd = π. We point out that different

1In the numerical examples carried out in Sec. ?? a small positive value of the degrada-
tion function is assumed when the material is fully broken. This is a standard technique
to guarantee that the numerical problem remains well-posed for broken specimen.
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choices can be made for the function η(d); the interested reader is referred
to [? ] for a full account of the different possibilities.

With the definition (??) of the state variable φ, we are in the position
of defining the total energy stored in the material during the deformation
process. For each admissible pair (u, d) ∈ U × D , the total energy of the
continuum is

I(u, d) =
∫
Ω0

φ(∇u, d,∇d)−
∫
Ω0

b0 · u−
∫
∂Ωt

0

t0 · u,

b0 and t0 being the forces per unit of reference volume and area respectively,
the latter applied on the part of the boundary ∂Ωt

0. These latter terms
represent (minus) the work expended by the external forces.

Ogden–like strain energy. Considering the incompressibility of rubbery poly-
mers, the elastic strain energy density that appears in (??) can be decom-
posed into isochoric and volumetric parts,

ψ0(F) = ψiso
0 (F) + U(J),

where F = J−1/3F and J = det(F). In this contribution, however, we only
consider plane stress cases meaning that the unknown pressure field associ-
ated to the incompressibility constraint J = 1 can always be determined via
substitution in the out-of-plane deformation [? ].

In the spirit of Ogden’s phenomenological model, we formulate the strain
energy density in terms of principal stretches λ1, λ2 and λ3 of F. In doing
so, we set J = 1, and λ3 = (λ1λ2)

−1 and we follow [? ] on assuming the
following form2 of ψ0

ψ0 = ϕ(λ1, λ2) =

N∑
n=1

µn
αn

(λαn
1 + λαn

2 + (λ1λ2)
−αn − 3),

where we have called ϕ the elastic energy density expressed in terms of the
two independent principal stretches λ1 and λ2, from which we have omitted
the dependence on F. It is noted that the formulation (??) satisfies both
frame invariance and isotropy.

2Such an assumption is equivalent on assuming that the elastomer deforms in a perfectly
incompressible way even after damage has occurred. This simplification could indeed be
removed by coupling compressibility and damage growth, which however is not addressed
in the present work.
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In Eq. (??) N is a positive constant, usually N = 3 for most experiments
on rubber, and µn and αn are material constants such that µnαn > 0 and∑N

n=1 µnαn = 2µ, µ being the shear modulus of the material.
As a reference for the calculations in the next sections, we compute

the Piola stress tensor, that is the dual quantity to ∇ũ in this energetic
formulation (??). With the definition of the Ogden’s energy (??), and the
hypothesis that λ3 = (λ1λ2)

−1, we obtain

S =
∂ψ

∂F
= ω

2∑
i=1

ϕ,i ni ⊗Ni , ∥ni∥ = ∥Ni∥ = 1,

and

ϕ,1 :=
∂ϕ

∂λ1
=

N∑
n=1

µn
(
λαn−1
1 − (λ1λ2)

−αn−1λ2
)

ϕ,2 :=
∂ϕ

∂λ2
=

N∑
n=1

µn
(
λαn−1
2 − (λ1λ2)

−αn−1λ1
)

are the derivatives of the strain energy density ϕ(λ1, λ2) with respect to
the principal stretches obtained by using the relationships reported in [?
]. The directions {n1,n2, e3} are the eigenvectors of the left stretch tensor
V (V2 = FFT), and {N1,N2, e3} are the ones of the right stretch tensor
U (U2 = FTF), whereas e3 is assumed to be the direction of plane stress
perpendicular either to {n1,n2} and to {N1,N2}.

2.3. Governing equations

The derivation of the governing equations of the problem, including the
damage evolution, is carried out following the classical variational approach
to fracture mechanics (see for instance [? ] or [? ]) which consists of:

1. the damage irreversibility condition ḋ(x, t) ≥ 0 and d(x, 0) = 0,

2. a stability criterion, which is indeed a necessary condition for the uni-
lateral minimality condition on the functional (??),

3. the energy balance principle, that states that the total energy at time
t is equal to the work of the external forces up to time t.

A posteriori it is shown that, under the imposed constitutive assumptions,
the dissipation inequality, that is the second principle of thermodynamics,
is also satisfied.
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Stability condition.. Starting from an undamaged state at t = 0, we say that
the process evolves through stable equilibrium configurations if and only if
at each time instant the system attains a local minimum of the total energy
(??). This leads us on introducing the following stability condition:

For each t > 0 , {u, d} ∈ U × D is stable iff

∀{ũ, d̃} ∈ Ũ × D̃ , ∃h̄ > 0 : ∀h ∈ [0, h̄], I(u, d) ≤ I(u+ hũ, d+ hd̃),

with the initial condition d(x, 0) = 0.
The variational inequality (??) is satisfied if the Gâteaux derivative of the

functional I at {u, d} is positive for each set of test functions, in particular
d̃ being in the convex cone defined by D̃ . Formally we write

DI(u, d)[ũ, d̃] ≥ 0, ∀{ũ, d̃} ∈ Ũ × D̃ ,

with

DI(u, d)[ũ, d̃] =
∫
Ω0

(
S · ∇ũ− Σ d̃+ q · ∇d̃

)
−
∫
Ω0

b0 · ũ+

∫
Ωt

0

t0 · ũ,

where the dual quantities S, Σ and q are obtained from the energy density
(??) as

S =
∂ψ

∂F
= ω

2∑
i=1

ϕ,i ni ⊗Ni (Piola stress tensor)

Σ = −∂φ
∂d

= −ω′ϕ− Gc

πb
η′ (Energy release rate density)

q =
∂φ

∂∇d
=

2Gcb

π
∇d (Damage flux vector)

the Piola stress S being given by the constitutive equation (??) in terms of
the principal stretches λ1, λ2.

Upon substitution of (??)-(??)-(??) into (??) and integration by parts,
the variational inequality (??) gives∫

Ω0

(
DivS+ b0

)
· ũ+

∫
∂Ωt

0

(
t0 − Sn

)
· ũ = 0,

−
∫
Ω0

(Divq+Σ) d̃+

∫
∂Ω0

(q · n) d̃ ≥ 0,

where latter is evaluated as inequality since d̃ belongs to the convex cone D̃ .
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By the classical localization argument, we obtain from (??) the standard
macroscopic balance equation with boundary conditions

DivS+ b0 = 0, on Ω0,

Sn = t, on ∂Ωt
0,

and from (??) the damage threshold condition

Divq+Σ ≤ 0, on Ω0,

q · n ≥ 0, on ∂Ω0,

with the corresponding flux condition on the boundary.
On using the definition of the energy release rate (??) and of the damage

flux vector (??), we can rewrite the damage threshold condition (??)1 as

f(∇u, d,∆d) :=
Gc

π

(
2 b∆d− 1

b
η′(d)

)
− ω′(d)ψ0(I+∇u) ≤ 0,

where we have defined the so-called damage yield function f . In the interior
region where damage has yet to occur one has ω′(0)ψ0(I+∇u) > −Gc

π bη
′(0)

and since ω′(d) < 0 the elastic energy density ψ0 is bounded.
We should remark once more that the damage threshold condition (??) is
indeed a necessary condition for the state {u, d} to be stable. Indeed if
(??) is satisfied everywhere in the domain as a strict inequality, then the
derivative (??) is strictly positive, and {u, d} is a stable state; on the other
hand, if there are points in which the damage yield function is zero, then the
stability of the state is given by the second derivative of the functional I.
This latter case will be discussed in Sec. ?? for the one-dimensional problem
of a bar under traction.

Energy balance.. On assuming that the evolution is smooth in time, the
energy balance principle requires that the rate of the internal energy equals
the working of external forces at each time instant, that is

d

dt

∫
Ω0

φ(∇u, d,∇d) =
∫
Ω0

b0 · u̇+

∫
Ωt

0

t0 · u̇,

which, upon using the macroscopic balance (??), gives∫
Ω0

− (Divq+Σ) ḋ+

∫
∂Ω0

(q · n) ḋ = 0.

Since each integrand is non negative by the balance equation (??), and
the damage irreversibility condition requires that ḋ ≥ 0, the above energy
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balance equation is satisfied if its integrands vanish. These requests give the
Kuhn-Tucker conditions for the threshold function (??):f(∇u, d,∆d) = 0, if ḋ > 0,

f(∇u, d,∆d) < 0, if ḋ = 0,

supplemented by Neumann-type boundary condition ∇d · n = 0 on ∂Ω0.

Remark 1 (Evolution problem).. The evolution problem arising from stabil-
ity condition and energy balance is usually solved numerically in an incre-
mental form. The problem is discretized in time, and at each time step
the rates {u̇, ḋ} are computed through a staggered minimization scheme ob-
tained by alternating the minimization between u̇ and ḋ, keeping the other
variable constant. This numerical procedure is indeed a standard approach
to solve variational problems like the present one (see for instance [? ]).

Remark 2 (Energy dissipation).. The second principle of thermodynamics
requires that, for each admissible state {u, d}, the external working be equal
to or larger than the rate of the free energy, i.e.,

δ =

∫
Ω0

b0 · u̇+

∫
Ωt

0

t0 · u̇− d

dt

∫
Ω0

F ≥ 0,

where F = F(∇u, d,∇d) is the free energy density. On using the energy
balance equation (??) and the definitions (??) and (??)-(??), the dissipation
inequality (??) is satisfied if(

S− ∂F
∂F

)
· ∇u̇−

(
Σ+

∂F
∂d

)
ḋ+

(
q− ∂F

∂∇d

)
· ∇ḋ ≥ 0.

If we assume that S and q are energetic

S =
∂F
∂F

, q =
∂F
∂∇d

,

and that Σ is made of elastic and dissipative terms

Σ = Σel +Σdiss, with Σel = −∂F
∂d

and Σdiss = −Gc

πb
η′,

inequality (??) reduces to
Gc

πb
η′ḋ ≥ 0,
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that is satisfied since η′ = 2(1− d) ≥ 0 from the definition in Eq. (??). By
comparing (??) and (??) with (??)-(??), we obtain the expression of the
free-energy density

F(u, d,∇d) = ψ(I+∇u, d) +
1

π
Gc b|∇d|2.

Here, by following the approach in [? ], we have assumed that the damage
non-local energy is stored. However, its thermodynamic nature is still de-
bated. In [? ? ? ], it is assumed that is a dissipative term. This assumption
is motivated by the fact that the sum of the second and third term in (??)
tends to the fracture energy when the internal length b goes to zero.

Remark 3 (Internal length).. The internal length b in Eq. (??) can be related
to the damage bandwidth ℓf at complete fracture, that is the support of the
damage function when max {d} = 1, by solving the equilibrium problem of a
fractured bar with a passing-through transversal crack. In this case, strains
vanish because the bar is broken into two parts, and the strain energy density
ϕ nullifies. Thus the balance equation (??)1 reduces to 2 b∆d− 1

bη
′(d) = 0.

On integrating it over a line orthogonal to the crack surface (see [? ] or [?
] for details on the calculation), it gives

b =
ℓf

2
∫ 1
0

1√
η(d)

dd
,

that, by assuming the quadratic expression of η(d) in (??), reduces to

b =
ℓf
π
.

2.4. Recap of all modelling equations

By following the classical approach to variational fracture mechanics
enunciated in the three principles ??., ??. and ??. of Sec. ?? we have
arrived at the following equations governing the macroscopic balance

Macroscopic balance: DivS+ b0 = 0 on Ω0

Sn = t0 on ∂Ω0

together with Kuhn-Tucker conditions for the damage evolution problem

Damage irreversibility: ḋ(x, t) ≥ 0

Damage threshold: f(∇u, d,∆d) ≤ 0

Energy balance: f(∇u, d,∆d)ḋ = 0
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with initial condition d(x, 0) = 0. The Piola stress tensor S and the damage
threshold function f are

S = ω
2∑

i=1

ϕ,i ni ⊗Ni ,

f = Gc

( 2

π2
ℓf ∆d−

1

ℓf
η′
)
− ω′ϕ ,

with ni and Ni eigenvectors of the left and right Cauchy–Green strain ten-
sors, and

ϕ =
N∑

n=1

µn
αn

(λαn
1 + λαn

2 + (λ1λ2)
−αn − 3) ,

ω =
(1− d)2

(1− d)2 + a1 d(1 + a2 d+ a2a3 d2)
,

η = 2 d− d2 .

The constitutive parameters included into the formulation are the elastic
moduli µn and exponents αn of the strain energy density ϕ, the fracture
energy release rate Gc, the internal length ℓf , and the polynomial coefficients
a1, a2 and a3 of the degradation function ω. In the next Sect. ??, strategies
to calibrate the constitutive parameters are discussed.

3. 1D tension test

In order to fully exploit the capabilities of the proposed model, we now
study the problem of a bar under tension. Such a simplified example will
allows us to solve the governing equations in semi-analytical form, and assess
thoroughly the role of the different constitutive coefficients that appears in
the model.

3.1. Problem definition

We consider a bar of length ℓ and cross-section area A0. The reference
configuration is described through a triad of orthonormal vector {e1, e2, e3},
with e1 being the main axis of the bar and e3 the thickness direction, i.e.,

Ω0 = {x : x = x1 e1 + x2 e2 + x3 e3, x1 ∈ (0, ℓ),
(
x2, x3) ∈ A0}.

14



To solve the equilibrium problem, we make the following ansätze on the
deformation gradient

F(x1) = λ(x1) e1 ⊗ e1 +
1√
λ(x1)

(
e2 ⊗ e2 + e3 ⊗ e3

)
,

such that the principal stretches are λ1 = λ(x1), λ2 = λ3 = (λ(x1))
−1/2,

J = 1, and all fields depend only on the longitudinal coordinate x1, which,
from now on, we call x without the risk of confusion.

The displacement of the bar axis is u(x), and the longitudinal stretch
λ(x) can be computed from the latter via

λ(x) = 1 + u′(x) ,

with the boundary conditions

u(0) = 0, u(ℓ) = εℓ,

with ε ≥ 0 a control parameter, that represents the dimensionless displace-
ment applied at the right end side of the bar. In (??) we have indicated
with a prime ′ the derivative with respect to the variable x.

We assume the damage field to be constant within the bar cross-section,
so that it depends only on the abscissa x, i.e., d = d(x) and satisfies homo-
geneous boundary conditions at both ends, i.e.,

d(0) = d(ℓ) = 0,

meaning that no crack can appear at the extremities. Indeed, cracks near
the clamping are avoided in the experiments by using dog-bone shaped spec-
imen.

In this 1D-setting, the energy density of the bar takes the following form

φ(λ, d, d′) = ω(d)ϕ̂(λ) +Gc

( 1

ℓf
η(d) +

ℓf
π2

d′ 2
)
,

where we have indicated by ϕ̂(λ) = ϕ(λ, λ−1/2) the reduced strain energy
density of the bulk solid defined in Eq. (??) as a function of the only variable
λ. For the sake or readability the hat will be dropped in the following.

The stress field corresponding to the deformation gradient (??) can be
computed from (??) on substituting λ1 = λ and λ2 = λ−1/2 and on noting
that the right- and left- eigenvectors coincide, i.e., n1 = N1 = e1, n2 = N2 =
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e2. The only non zero component of the Piola stress is the one directed along
the bar main axis, i.e., S = Se1 · e1, with

S = ωϕ′,

that, by applying the definition of the Ogden’s strain energy density, gives

S = ω
N∑

n=1

µn
λ

(
λαn − λ−

αn
2
)
.

The macroscopic balance equation (??) can be rewritten as

S′(x) = 0,

meaning that the stress is constant along the bar. The reduced damage
threshold condition (??)2 with the deformation (??) yields the following
form of the one-dimensional threshold function

f(λ, d, d′′) = Gc

(2ℓf
π2

d′′ − 1

ℓf
η′(d)

)
− ω′(d)ϕ(λ) ≤ 0.

3.2. Incremental Evolution

Following the analysis in [? ], we now solve the incremental evolution
problem for both displacement and damage variables starting from a known
solution {u, d} achieved at a certain time instant t. In doing so, we assume
a uniform discretization of the time axis, we call τ the time step, and we
expand both displacement and damage fields at the first order in τ :

u(x, t+ τ) = u(x, t) + τ u̇(x, t), d(x, t+ τ) = d(x, t) + τ ḋ(x, t),

such that

u̇(0, t) = 0, u̇(ℓ, t) = ε̇ℓ, ḋ(0, t) = 0, ḋ(ℓ, t) = 0.

with ε̇ the rate of the applied displacement at the right end of the bar.
At each time instant the solution of the incremental problem requires the

evaluation of the unknown rates {u̇, ḋ} obtained by imposing the stability
condition (??) and the energy balance condition (??) for the solution {u+
τ u̇, d+ τ ḋ}.

The total energy functional (??), with null volume forces, is expanded
at the second order as

I(u+τ u̇, d+τ ḋ) ≃ I(u, d)+τ İ(u, d, u̇, ḋ)+1

2
τ2 Ï(u, d, u̇, ḋ) = I(u, d)+τ J (u̇, ḋ),
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in which we have defined the following functional of the displacement and
damage rates

J (u̇, ḋ) = A0

∫ ℓ

0

[
ωϕ′u̇′ + (ω′ϕ+

Gc

ℓf
η′)ḋ+

2

π2
Gcℓfd

′ḋ′
]
dx

+
1

2
τA0

∫ ℓ

0

[
ωϕ′′u̇′2 + (ω′′ϕ+

Gc

ℓf
η′′)ḋ2 + 2ω′ϕ′u̇′ḋ+

2

π2
Gcℓf ḋ

′2]dx.
Stability and energy balance, expressed by relations (??) and (??) in the

three-dimensional formulation of Sec. ??, are rewritten in the following form

DJ (u̇, ḋ)[˜̇u,
˜̇
d] ≥ 0, for any {˜̇u, ˜̇d} such that ˜̇u =

˜̇
d = 0 at x = 0, l, and

˜̇
d ≥ 0,

d

dτ
I(u+ τ u̇, d+ τ ḋ) =

d

dτ

(
τ J (u̇, ḋ)

)
= 0.

By performing calculations analogous to those followed in Sect. ?? to deduce
the governing equations (??) and (??) from the stability condition (??), and
the evolution relations (??) from the energy balance (??), we obtain the
following macroscopic evolution equation

S′ + τ Ṡ′ =
d

dx
(ωϕ′) + τ

d

dx
(ωϕ′′u̇′ + ω′ϕ′ḋ ) = 0,

together with the set of Kuhn-Tucker conditions that govern the evolution
of the damage field

ḋ ≥ 0, f + τ ḟ ≤ 0, (f + τ ḟ) ḋ = 0,

with ḟ computed from (??) as

ḟ = −ω′ϕ′λ̇−
(Gc

ℓf
η′′ + ω′′ϕ

)
ḋ+

2

π2
Gcℓf ḋ

′′ .

These conditions state that, at each point, the damage can increase only if
the yield function f + τ ḟ is equal to zero.

3.3. Damage onset

At the beginning of the loading process the damage is zero, and the bar
is stretched elastically. The balance equation (??) shows that the stress
and the corresponding deformation are homogeneous along the bar. In this
initial phase the damage yield condition (??) is not satisfied, i.e., f < 0.
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The elastic stage terminates when damage appears, meaning that f = 0
somewhere along the bar. The stretch λo corresponding to the damage onset
is evaluated from (??) as

ϕ(λo) = −Gc

ℓf

η′(0)

ω′(0)
.

At this time instant, say to, one can solve the incremental evolution
problem of Sec. ?? by assuming the following form of the series expansion
(??)

u(x, to + τ) = ε(to)x+ τ u̇o(x), d(x, to + τ) = τ ḋo(x),

since the stretch at the onset is homogeneous, λo = 1+ε(to), and the damage
is null, d(x, to) = 0; in addition, u̇o and ḋo satisfy the boundary conditions
(??). At the step to+ τ , the stretch becomes λ(x, to+ τ) = 1+ εo+ τ λ̇o(x),
such that λ̇o(x) = u̇′o(x), which is a function of x due to the varying damage
profile. A subscript ”o” is used to indicate, here and henceforth, that the
corresponding variable is evaluated at time to.
The incremental stress in the bar is approximated at the first order in τ
from the definition of the one-dimensional Piola stress (??)

S = ω(τ ḋo) ϕ
′(λo + τ λ̇o) ≃ So + τ Ṡo,

with
So = ϕ′o, and Ṡo = ωo ϕ

′
o ḋo + ϕ′′o λ̇o.

Since the zero order stress So is constant along the bar, the macroscopic
balance (??) yields (Ṡo)

′ = 0, meaning that also Ṡo is homogeneous. The
damage threshold condition f = 0 is verified both at t = to and t = to + τ ,
thus the incremental threshold (??) is zero at both zero-th and first orders;
the latter gives

2

π2
Gc ℓf ḋo

′′
(x)−

(
ω′′
oϕo +

Gc

ℓf
η′′o
)
ḋo(x) = ϕ′o λ̇o(x)

which is, indeed, a second order differential equation for the damage rates
{λ̇o, ḋo}. The rhs of (??) can be transformed by using the definition of Ṡo in
(??); after some manipulations we arrive at a differential equation in terms
of the variable ḋo:

2

π2
Gc ℓf ḋo

′′(x)− j ḋo(x) =
ω′
oϕ

′
o

ϕ′′o
Ṡo, with j = ω′′

oϕo−
ω′2
o ϕ

′2
o

ϕ′′o
+
Gc

ℓf
η′′o .
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where the rhs is now independent of x. If we introduce the internal lengths

ℓi = 2

√
2Gc ℓf
|j|

, ℓs =
ω′2
o ϕ

′2
o

ϕ′′o|j|
ℓi,

Eq. (??) can be rewritten in the following form

ḋo
′′
(x)− sign(j)

(2π
ℓi

)2
ḋo(x) =

(2π
ℓi

)2
√
ℓs
ℓi

Ṡo√
ϕ′′o|j|

,

which is a second order differential equation in the variable x of the unknown
rate ḋo to be solved with the boundary conditions ḋo(0) = 0 and ḋo(ℓ) = 0.
The analytical approach used to solve this equation, as well as the expression
of the solutions can be found in Appendix. According to the sign of j, and,
in case of j < 0, to the ratios ℓ/ℓi and ℓ/ℓs, different solutions are found.
A schematic representation of the different regimes is given in Fig. ??. It is
possible to distinguish full-size and localized fracture initiations, depending
on whether the support of ḋo is the entire bar or a sub-region of length
ℓi < ℓ. Moreover, the evolution regime can be stress-hardening if Ṡo > 0,
or stress-softening if Ṡo < 0. As shown in Fig. ??, for j < 0, four different
regions are found in the plane (ℓ/ℓi, ℓ/ℓs), each characterized by a different
damage evolution.

In case of localized solution (region c.), the bar must be longer than ℓi
to have damage localization in a sub-region of length ℓi, and smaller than
ℓs to avoid brittle failure. These requirements express the size sensitivity of
the model: as the size of the bar increases, the response moves from pseudo-
ductile to brittle. If we suppose damage localization at to, the slope ko of
the curve S = S(ε) is obtained from Eq. (??)2

ko =
dS

dε

∣∣∣∣
to

=
Ṡo
ε̇o

=
ωoϕ

′′
o

1− ℓs/ℓ
,

that has a negative value and decreases as ℓ increases; in particular ko → −∞
for ℓ→ ℓs.

On integrating (??) over (0, ℓ) and rearranging the terms, we obtain the
displacement rate at the end-section

u̇o(ℓ) = ℓε̇o = v̇o + ẇo with v̇o = ℓ
Ṡo
ϕ′′o

, and ẇo = −ω
′
oϕ

′
o

ϕ′′o

∫ ℓ

0
ḋodx,

which is the sum of two contributions: v̇o is the displacement rate due to
elastic stretching, and ẇo is the displacement rate induced by the fracture
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opening. In case of localized ḋo (case c., with ℓi ≤ ℓ ≤ ℓs), the fracture
opening rate is

ẇo =
ℓs

1− ℓs/ℓ
ε̇o.

Let w = w(t) be the displacement accounting for fracture opening in a frac-
ture evolution process. Using (??)2 and (??), we can evaluate the derivative
of S with respect to w at fracture initiation as

k̂o =
dS

dw

∣∣∣∣
to

=
Ṡo
ẇo

= −ϕ
′′
o

ℓs
.

The coefficient k̂o represents the initial slope of the so-called cohesive curve
S = S(w), which describes the specific failure mode of the material. Since
the cohesive law S = S(w) is an intrinsic property of the material, k̂o does
not depend on the length ℓ, differently from (??).

So
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ḋ ḋ ḋ ḋ
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Figure 1: Different damage evolution regimes obtained from Eq. (??) for j ≥ 0 (left) and
j < 0 (right).

3.4. Cohesive fracture

In this section we define a strategy to estimate the cohesive curve S =
S(w), that characterizes the fracture opening process. The function S(w)
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is usually assigned a-priori in standard formulations of cohesive fracture
mechanics [? ? ]), whereas in the proposed variational approach is obtained
from the peculiar form of the fracture energy.

We suppose that, at a certain time instant of the evolution process, dam-
age is localized in a sub-region (0, 2x∗), with x∗ < ℓ/2 the half-bandwidth
length, and that it has attained the maximum value d∗ at x = x∗. The
proposed procedure allows us to determine the length x∗, the stress S, the
functions d and λ, the fracture opening w, as well as the corresponding
strain ε in terms of d∗ by integrating the balance equations (??) and (??).

We suppose that, at each material point, the stretch λ is the superposi-
tion of an elastic λe and fracture λf stretches

λ = λf λe,

where λe would be the homogeneous stretch obtained from S if d were zero;
as such, it can be evaluated from the constitutive equation of the undamaged
material by

ϕ′(λe) = S.

The fracture opening w, that is the displacement at x = ℓ produced by the
damage occurrence is

w =

∫ λeℓ

0

(
λf(xe)− 1

)
dxe =

∫ ℓ

0
(λ− λe) dx = (1 + ε)ℓ− λeℓ.

Within the damage region (0, 2x∗), the damage threshold condition (??)
is evaluated as an equality and

ω′ϕ+Gc

(
1

ℓf
η′ −

2ℓf
π2

d′′
)

= 0,

On multiplying all terms by d′ and on integrating over (0, x), with x ≤ x∗,
previous equation gives

Gc

(
1

ℓf
η −

2ℓf
π2

d′2
)
+

∫ x

0

dω

dx̂
ϕ dx̂ = 0.

where the latter term is rewritten by integration by parts as∫ x

0

dω

dx̂
ϕ dx̂ = ωϕ− ϕ(λe)−

∫ x

0
ωϕ′

dλ

dx̂
dx̂ = ωϕ− ϕ(λe)− (λ− λe)S,

since S = ωϕ′ is constant along the bar. Equation (??) becomes

Gc

(
1

ℓf
η −

2ℓf
π2

d′2
)
+ ωϕ− ϕ(λe)− (λ− λe)S = 0.
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At x = x∗, where the maximum damage is attained, d′(x∗) = 0 and previous
equation further simplifies into

Gc

ℓf
η(d∗) + ω(d∗)ϕ(λ∗)− ϕ(λe)− (λ∗ − λe)S

∗ = 0,

where quantities evaluated at x = x∗ are labelled by an asterisk. In (??), the
stretches λ∗ and λe are worked out by inversion of the constitutive equations

ω(d∗)ϕ′(λ∗)− S∗ = 0, ϕ′(λe)− S∗ = 0.

For any assigned value of d∗ ∈ [0, 1], the triplet {λ∗, λe, S∗} solves the set of
equations (??) and (??). Once S∗ is determined, the profiles of d and λ at
points x ∈ [0, x∗] can be evaluated from (??), here rewritten in the following
form

d′ =
1

ℓf
h(d, d∗), with h(d, d∗) := π

√
ℓf
Gc

[ω(d)ϕ(λ)− ϕ(λe)− f∗(λ− λe)] + η,

where λ is the solution of the equation

ω(d)ϕ′(λ)− S∗ = 0.

Upon inversion of Eq. (??), one obtains the expression of x in terms of the
damage profile and of the maximum damage d∗,

x(d, d∗) =

∫ d

0

ℓf

h(d̂, d∗)
dd̂,

and the stretch λ at x is the solution of (??). The half-bandwidth length is
obtained from the above relation by assigning d = d∗

x∗ =

∫ d∗

0

ℓf

h(d̂, d∗)
dd̂,

and the fracture opening w is determined from (??), once λ, λe and x∗ are
known. Upon inversion of the equation, also the assigned stretch can be
computed

ε = λe +
w

ℓ
− 1.

To conclude, the above procedure can be implemented numerically through
the following steps:

i. Assign the value d∗ of the maximum damage.
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ii. Solve equations (??) and (??) to determine S∗, λ∗ and λe.

iii. Discretize the damage range [0, d∗], and, for any di of the discretized
set, determine the position xi from (??). The discrete profile of d =
d(x) is given by the pairs (xi, di).

iv. Determine λi at point xi from (??). The discrete profile of λ = λ(x)
is drawn by points (xi, λi). At points x > 2x∗ the stretch is equal to
λe.

v. Determine w from (??).

Previous algorithm allows the cohesive curve S = S(w) to be evaluated
at discrete points, by iterating the scheme for different d∗ ∈ [0, 1]. The
damage evolution determined through this procedure is based on the balance
equations (??) and (??). It is pointed out that the numerical simulations of
Sec. ?? are indeed obtained by solving the full evolution problem of Sec. ??
by finite elements. Although the approaches are different, the estimate of the
cohesive curve obtained through steps (i)− (v) gave accurate enough results
to catch the qualitative behaviour of the model. As such, the proposed
numerical scheme represents an useful tool to explore the variety of damage
mechanisms. In the next section, these results are used to assess the effects
of the different constitutive parameters on the damage evolution modes.
Criteria for parameters calibration will be also discussed.

3.5. Physical interpretation of the cohesive parameters

The constitutive coefficients a1, a2 and a3 that appear in the energy
degradation function ω, as defined in (??), are put in relation to specific
properties of cohesive fracture evolution, to give them a clear physical mean-
ings and to allow their robust evaluation from the experimental data. In the
following calculations, the elastic coefficients µn and αn, the fracture energy
release rate Gc, and the internal length ℓf are supposed to be known.

The coefficients a1, a2 in (??) can be tailored from the model response
at the damage onset. At this time instant λf = 1, λe = λo and the stress So
is known. Since do = 0, the functions ω and η at to are

η(0) = 0, ω(0) = 1, η′(0) = 2, ω′(0) = −a1,
η′′(0) = −2, ω′′(0) = 2a1(a1 − a2 − 2).

Therefore, one has:
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1. a1 is determined by the limit elastic stretch λo through relation (??),
which, once inverted, gives

a1 = 2
Gc

ϕo ℓf
.

2. a2, that appears in ω′′(0), is made dependent on the slope k̂o of the
cohesive curve (??) at the damage onset, i.e.,

k̂o = − ϕ′′2o
2a21S

2
o

√
|j|3

2Gc ℓf
, with j = 2a1(a1−a2−2)ϕo−

a21S
2
o

ϕ′′o
− 2Gc

ℓf
,

where j is negative, as the formula is evaluated for the localized dam-
age case (case c. in Sec. ??). From (??), a2 has the following expression

a2 =
1

2a1ϕo

[(
−2a21S

2
o

ϕ′′2o

√
2Gc ℓf k̂o

)2/3

+ 2a1(a1 − 2)ϕo −
a21S

2
o

ϕ′′o
+

2Gc

ℓf

]
.

3. a3 multiplies the third-order term in the polynomial (??), thus it
mainly influences states with a large damage. In [? ], indeed, a3
was related to the displacement jump w̃ at complete fracture of the
specimen through the formula

a3 =
1

a2

[
1

2

(
w̃So
2Gc

)2

− (1 + a2)

]
.

Since this relation was derived within the context of linear elasticity,
it cannot be straightforwardly extended to the finite strain case. Ac-
cordingly, it is just used to obtain an estimate of the parameter a3.
For damage occurring at small strains, formula (??) provides the exact
value to assign to a3 in order for the fracture jump to be w̃. On the
contrary, for damage onset at large strains it gives only an approxi-
mate value. Further insights can indeed be gained by the drawing of
the cohesive curve, as discussed in the following.

To better highlight the role of the different cohesive parameters we now
consider two different forms of the Ogden elastic strain energy density with
different elastic parameters: one with N = 1 in the series (??)3 and µ1 =
2.2 MPa, α1 = 2, that we call quadratic energy ϕA , the other with N = 2
and {µ1, µ2} = {4.8, 0.01} Mpa and {α1, α2} = {1.2, 5.1}, say ϕB . As shown
in Fig. ??, such a choice of the elastic coefficients represents two plausible
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elastic response of a rubbery material, the former has a linear Piola stress
at large stretches, whereas the latter shows the stress hardening at large
stretches typical of elastomers.
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0

5

10

15

λ
λo

So
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S
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Figure 2: Piola stress S versus (elastic) stretch λ for the two strain energies ϕA and ϕB .

The cohesive curves S = S(w) corresponding to these elastic energies
are shown in Figs. ?? for ℓf = 5 mm and different values of the parameters

Gc, k̂o and a3. For a given Gc, the values of k̂o and w̃ are assigned by
supposing that the cohesive law is linear with the fracture opening S =

− S2
o

2Gc
w + So, an expression which is the simplest triangular cohesive curve.

Accordingly, k̂o = − S2
o

2Gc
and w̃ = 2Gc

So
. The coefficients a1, a2 and a3

are derived from (??), (??) and (??). For low values of Gc, the cohesive
curves recover the linear law when the energy density ϕA is used, whereas
they deviate from linearity as Gc is increased. When the two terms energy
density ϕB is considered, linearity is lost, as shown by the dashed curves
of Fig. ??a. In this case, the curves initially decrease with lower slope,
attaining larger values of stress. Then, they exhibit snap-back branches
that are more pronounced for increasing values of Gc. The initial raising
of the curve and the presence of a snap-back tail, indicated with a star in
the figure, depends on the specific shape of ϕB , that has a convex branch
where stiffness grows as stretches increase (see Fig. ??). This determines the
fracture properties of the material. Indeed the softening process of fracture
requires a larger stress for crack opening in the initial stage, and, when the
snap-back branch is encountered, it stops due to the complete rupture of
the specimen. As a consequence the recovery in the elastic stiffness for large
stretches induces an increased stiffness in the initial phase of crack opening
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and a brittle response in the final stage of the fracture evolution. A way
to reduce the snap-back tails in the cohesive curves is to increase the initial
slope k̂o. This is shown in Fig. ??(b), where cohesive curves for different
values of k̂o are plotted by keeping the fracture toughness Gc = 60 MPa mm
and a3 = −0.6851 constant.

It is noted that also the parameter a3 influences the softening process,
as shown in Fig. ??(c,d). By scrutinizing the curves of Fig. ??(c), one can
notice that a decrease of a3 < 0 has two distinct effects: (i) the negative
slope of the curve is increased in its initial part, and (ii.) the displacement
w at the snap-back is increased, with the final stage of brittle failure being
reduced. The curves in Fig. ??(d) are drawn for a fixed value of k̂o which
is ten times larger than that of curves of Fig. ??(c). In this case, the
coefficient a3 influences the final part of the cohesive curves: large negative
values of a3 raise the curve tail, reducing the snap-back up to its complete
disappearance. It turns out that the final catastrophic fracture is replaced
by a recovery of stiffness that allows the material to further bear stresses.

As a result, coefficients a1 and a2 can be assigned through formulas (??)
and (??), which relate them to the limit elastic stretch λo and to the initial
slope of the cohesive curve k̂o, respectively. The calibration of a3 is more
troublesome. The estimate in Eq. (??) gives an initial value of the paramter,
yet the choice of a more appropriate value can be obtained only after having
numerically examined the cohesive curves, as those in Figs. ??(c,d). The
qualitative behaviour observed for increasing value of a3 is a stretching of
the cohesive curve with the consequent reduction or even removal of the
final brittle fracture.

We finally remark that the model proposed in [? ] is indeed size-
independent as shown in [? ]. However, in the proposed extension to finite
elasticity, this independence is only partially maintained: the fracture ac-
tivation stress So and the initial slope k̂o of the cohesive curve still do not
dependent on ℓf , but the shape of the softening cohesive curve S = S(w)
does. As a result, the convergence of the model to the cohesive fracture
is lost, meaning that the model should be interpreted as a damage model
in which the internal length is a constitutive parameter representing the
length of the transition zone (process zone). Such a parameter may be di-
rectly calibrated through ad-hoc experiments as the one reported in [? ].
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Figure 3: Cohesive curves for: (a) different values of the parameter Gc in case of energy
densities ϕA (solid-line) and ϕB (dashed-line);(b) different k̂o and fixed Gc = 60 MPa and
a3 = −0.6851; (b,c) different a3 and fixed Gc = 60 MPa and k̂o = −0.2058 MPa/mm in
(b) and k̂o = −2.0580 MPa/mm in (c).

4. Numerical Examples

The variational model (??)-(??) was implemented in the finite element
open-source framework FEniCS®[? ].

The displacement and damage fields were projected over a piecewise
affine finite element space (Lagrange elements) by using the same mesh do-
main. As the energy functional I defined in (??) for the general formulation
and in (??) for the simple tension incremental problem is separately convex
in each variable, an alternate minimization algorithm in the variables u and
d was implemented. At a given time step, the solution of the iterative evo-
lution of Sec. ?? was achieved iterating on the following subproblems until
convergence:

1. The minimization of I with respect to u at fixed d is an unconstrained
optimization problem solved as a nonlinear elastic problem with the
prescribed boundary conditions through the Newton-Raphson method;
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Figure 4: Geometry of the rectangular specimen with details of the mesh made of about
12.000 Lagrange triangular elements. The height of the specimen was kept fixed in all
numerical tests, whereas different lengths ℓ = {6, 13, 20} mm were considered.

2. The minimization of I with respect to d at fixed u is a unilateral con-
strained optimization problem, which was solved through TAO (Tool-
kit for Advanced Optimization).

Further details on the numerical implementation can be found in [? ]. Sim-
ulations on both 1D or 2D geometries were carried out, although the results
shown in the paper refer to the latter.

Two numerical examples are discussed in the following. As a first bench-
mark problem, we consider a rectangular test specimen subjected to tensile
loadings. This example has twofold purpose: assessing the sensitivity of
the model with respect to the different constitutive parameters and demon-
strating the ability of the proposed modelling framework of capturing the
large-strain behaviour of double network elastomers [? ]. Afterwards, we use
a double edge notched specimen in tension to validate the model prediction
up to the specimen rupture with respect to the experiments on conventional
elastomers reported in [? ].

The rectangular specimen used to carry out the sensitivity analysis is
shown in Fig. ?? together with boundary conditions and details of the mesh.
This latter was made up of 12.000 Lagrange triangular elements. The height
of the specimen was kept fixed at 4 mm, whereas three different lengths were
considered ℓ = {6, 13, 20} mm. In all simulations two different sets of elastic
parameters were used to assess the effects of the particular form of the
Ogden energy on the fracture properties of the material, that correspond to
the energies ϕA and ϕB in Fig. ??; the other constitutive parameters are the
ones in Tab. ?? except where stated. We point out that the coefficients a1,
a2 and a3 were obtained from Gc, k̂o and w̃ by using the formulas (??), (??)
and (??).
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Table 1: Constitutive parameters used in the numerical examples.

Elastic
ϕA : µ1 = 2.2 MPa α1 = 2
ϕB : {µ1, µ2} = {4.8, 0.01} MPa {α1, α2} = {1.2, 5.1}

Fracture

ℓf = 5 mm, Gc = 60 MPa mm, λo = 2.4, k̂o = −0.21 MPa/mm

ϕA : a3 = −0.57, ϕB : a3 = −0.68

The Piola stress S in terms of overall strain ε as well as the damage
profiles along the mean axis of the bar are plotted in Figs. ?? and ?? for the
two energy densities ϕA and ϕB and different values of the energy release
rate Gc.

By increasing values of Gc, the maximum strain attained at rupture
grows with a larger region in which a pseudo-ductile response is achieved.
With the energy ϕA , the response with Gc = 20 MPa mm (green curve in
Fig. ??) shows a sudden drop in the stress caused by an abrupt damage
growth at the end of the elastic stage, that almost immediately reaches
values close to 1 as shown by the green damage profiles in the figure. The
resulting overall behaviour is brittle. For larger values of Gc, the drop in
the stress is smoothed out with cohesive-like softening curves; in terms of
damage this behaviour is produced by the phase field variable progressively
growing and enlarging.

For the elastic coefficients in the energy ϕB , brittle and cohesive re-
sponses are obtained for Gc = 20 and 40 MPa mm, respectively. For Gc = 60
MPa mm, the specimen exhibits a pseudo-ductile behaviour in which two
response stages are clearly observed: a softening branch with a low slope,
followed by a sudden drop in the stress. As the damage profiles show, in
the first stage of moderate softening, the damage grows slowly whilst ex-
panding trough the bar. At the end of this phase, the damage has covered
the entire domain and has reached its maximum value of 0.3. Thereafter
damage immediately increases producing the rupture of the specimen with
the resulting stress rapidly decreasing to zero.

Since the gradient term in the fracture energy make the model size
dependent, the effect of specimen length is analysed in Fig. ?? for ℓ =
{6, 13, 20} mm. The results indicates that when ℓ is comparable with the
internal length ℓf = 5 mm the response is cohesive, whereas sufficiently
long bars displays a brittle or quasi-brittle failure for both the energies ϕA

(Fig. ??a) and ϕB (Fig. ??b).
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Figure 5: Influence of the energy release rate Gc in the case of elastic energy ϕA . Piola
stress S versus overall strain ε for Gc = {20, 40, 60} MPa mm. The insets show the damage
profiles d evaluated on the mean axis of the bar at the different stretch levels indicated by
dots on each curve.

In Fig. ??, the dependency of the material response on the slope of
the cohesive curve k̂o is also investigated. This constitutive parameter is
directly related through Eq. (??) to a2. As the results show, k̂o controls the
stress decrease at the damage onset, and regulates the softening branch with
moderate slope, that is associated to a process of damage propagation over
the whole domain. Large value of k̂o may induce snap-back of the cohesive
curve, with a subsequent discontinuous drop in the stress. Simulations start
with values of k̂o in Tab. ?? (blue curve in the figure), with a cohesive–like
behaviour for both the energies ϕA (Fig. ??a) and ϕB (Fig. ??b).

Finally, the influence of coefficient a3 is analysed in Fig. ??. The
green curve corresponds to the value of a3 = −0.68 in Fig. ??(b) (with
k̂o = −2 MPa/mm), whereas the others are obtained by increasing a3 by
a factor of 2 and 4, respectively, such that a3 = {−0.68,−1.36,−2.72}. As
pointed out in Sec. ??, increasing values of a3 lead to a recovery of the ma-
terial stiffness, with a consequent transition from a softening (green curve)
to a hardening responses (orange and blue curves). In all cases, it is seen a
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Figure 6: Influence of the energy release rate Gc in the case of elastic energy ϕB . Piola
stress S versus overall strain ε for Gc = {20, 40, 60} MPa mm. The insets show the damage
profiles d evaluated on the mean axis of the bar at the different stretch levels indicated by
dots on each curve.

significant stress drop at the end of the elastic phase, that corresponds to
the sudden occurrence of a localized damage in the central part of the speci-
men, with the phase field variable reaching 0.2. Thereafter different damage
evolution regimes are seen: for the green curve (a3 = −0.68) the damage in-
creases sharply in the central part of the specimen until it reaches the value
of 1 meaning that the specimen is completely broken; on the contrary, the or-
ange and blue curves show a rather limited increase in the damage intensity,
d < 0.4, yet the support of the phase field variable enlarges, up to the point
where the damage occupies the entire bar. This type of evolution resembles
a sort of ”plastic-wave” that propagates inside the bar (damage-wave in this
case) and has indeed been observed in double-network elastomers. As a
general remark for the model behaviour, in all simulations it was observed
that the rate of damage growth is proportional to the slope of the soften-
ing branch. Furthermore, a broadening of the damage localization zone is
observed when the softening branch is convex, whereas a concave softening
branch produces damage localization is narrow regions.
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Figure 7: Size dependency of the model. Piola stress vs. strain curves for different bar
lengths ℓ = {6, 13, 20} mm and elastic energies ϕA (a) and ϕB (b).

Having shown the main features of the proposed model, we are now in
the position of comparing the model prediction against the experimental
data on double network elastomers. The experiments used to calibrate the
model are the ones reported in [? ], where a cross-linked elastomer was first
swollen in monomer and subsequently polymerized to create the so-called
double network. This novel class of elastomers displays unique mechanical
features due to the combined use of a stretchy matrix with a stiff filler
network, that make the compound fails in a controlled, pseudo-ductile way,
at large strain.

These peculiarities are readily seen from the data in Fig. ?? where the Pi-
ola stress, S, is plotted against the normalized displacement at bar’s end, ε.
The initial part of the curve resembles the typical response of an elastomeric
material with a pronounced nonlinear elastic behaviour. The elastic phase
terminates at about ε = 1.4 where a sharp decrease in the stress appears.
Microscopically this drop corresponds to the emergence of a very localized
damage region. By continuing loading, the applied force remains constant
and the stress-strain plot shows a plateau for a wide range of stretches.
The formation of a neck and its propagation along the specimen is observed
in this region. When necking has expanded all over the sample, at about
ε = 4.2, the damage start increasing uniformly, yet the overall stiffness of
the sample grows. This behaviour is a competition between the stress soft-
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Figure 8: Influence of the cohesive parameters k̂o. Piola stress vs. strain for different
values of the cohesive curve slope k̂o = {−0.2,−0.5,−2} MPa/mm and elastic energies ϕA

(a) and ϕB (b).

Table 2: Constitutive parameters used for the fitting of the experimental data in Fig. ??.

Elastic
{µ1, µ2} = {4.6, 0.012} MPa {α1, α2} = {1.2, 5.5}

Fracture

ℓf = 5 mm, Gc = 100 MPa mm, λo = 2.4, k̂o = −0.37 MPa/mm, a3 = −4.73

ening induced by the damage and the stiffening caused by the intact polymer
chains being almost completely stretched. Such a peculiar behaviour for an
elastomer was reported for the first time in [? ].

Remarkably the proposed model is able to capture the main features
seen in the experimental data as the fitting in Fig. ?? proves. The stress-
strain plot displays three different curves along with the experimental points
represented by open orange circles: the continuous orange curve, is the
output of the model and has all the main characteristics of the experimental
response, including the initial nonlinear elastic regime, the stress peak with
the subsequent stress plateau and the stiffness increase at large strain. The
green and orange dashed curves are indeed the elastic stresses of each of the
two terms in the Ogden model (??) with the parameters {µ1, α1, µ2, α2} in
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Figure 9: Influence of the fracture parameter a3. Piola stress vs. strain for a3 =
{−0.68,−1.36,−2.72} with the elastic parameters in ϕB . The insets show the damage
profile at the different strain levels indicated by dots on the stress-strain curve.

Tab. ??: at each material point, the elastic stress is the superposition of
the response of two nonlinear springs, one with {µ1, α1} = {4.6 MPa, 1.2},
that controls the response at low strains (dashed orange curve), and the
other with {µ2, α2} = {0.012 MPa, 5.5} is activated at high strain and is
responsible for the strain hardening seen in the experiments (dashed green
curve). In this sense the model resembles the microscopical model proposed
in [? ] where a two-phase material model was considered. The insets in
Fig. ?? shows the damage field obtained from the numerical simulations at
different level of strains. At the position designated with (a) in Fig. ??, the
sudden appearance of a localized damage produces the drop in the stress
seen in the experiments, that corresponds to the occurrence of a necked
region in the central part of the specimen, as shown in Fig. ?? (see Fig. S5
in [? ]. The corresponding strain level ε = 1.4 is used to calibrate the value
of the parameter λo. At increasing level of strains, the necking enlarges with
constant maximum value up to the stretch at which it has filled the whole
specimen (region (b) in the figure). Thereafter (region (c)) the damage value
starts increasing and at ε = 4.55 was d = 0.33. The hardening behaviour is
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Figure 10: Piola stress S versus overall strain ε for a double network elastomers: open
circles - experimental data from [? ], orange continuous curve - model prediction, dashed
curve - response of purely elastic model. The fitting is achieved with the model parameters
in Tab. ??. The insets show the damage profile along the specimen middle axis at the
strain levels (a), (b) and (c) indicated in the plot.

achieved in the model by taking the absolute value of a3 to be large enough
(a3 = −4.73 in this case).

In order to highlight the capability of the model to describe also the
unloading process, unloading curves at different strain levels are shown in
Fig. ??. The unloading branches follows a path with lower tangent stiff-
nesses due to the occurrence of damage, as also see in the the experimental
data in [? ]; as was also expected, no residual strains are observed at the
complete unloading of the specimen. During the subsequent loading path,
the curve perfectly follows the branch with lower stiffness up to the stress
level at which damage starts increasing again. At a high strain levels, this
additional reduction of stress is compensated by the elastic energy, that
produces the stiffness increase seen at ε > 300%, corresponding to the ex-
perimental situation of the elastomer network being completely unfolded.
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Figure 11: Deformed configuration of the rectangular specimen used for fitting the data
in Fig. ??. The plateau in the stress-strain curves corresponds to the propagation of a
necking region along the bar. The colormap represents the damage intensity, red being
the damage with higher damage. propagation of a damage wave in the central part of the
specimen was observed in the experimental data in [? ] (see Fig. S5 therein).

The final numerical benchmark of the model corresponds to the deforma-
tion of a double notch tension specimen that is normally used to estimate
the critical fracture energy (see for instance [? ? ]). The dimensions of
the specimen, boundary conditions and mesh for this configuration are dis-
played in Fig. ??a and correspond to the experiments carried out in [? ],
with different lengths of the notch as shown in the insets (the same data
was used as a benchmark problem in [? ? ]). The constitutive parame-
ters used in the simulation are those in Tab. ?? with the elastic energy ϕA

and fracture parameters a1 = 1.03, a2 = 32.13 and a3 = −0.81. These
parameters are indeed coherent with those reported in [? ] to fit the same
experimental data. Figure ??b shows the stress-strain curves that displays
typical brittle response expected from elastomers in this type of test. The
numerical results show a very narrow cohesive region in which the damage
rapidly propagates between the notches up to the point at which it occupies
the entire width and immediately jumps to 1, leading to the catastrophic
failure of the specimen. The corresponding deformed configurations are
shown in Fig. ?? at different levels of the overall strain. At ū = 63.005 mm
the specimen is completely broken and, in fact, the material in the central
part of the specimen is completely broken having reached a valued of d close
to 1, with the lateral parts being almost unloaded.
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Table 3: Constitutive parameters used for the fitting of the experimental data in Fig. ??.

Elastic
µ1 = 0.23 MPa α1 = 2

Fracture

ℓf = 3.14 mm, Gc = 3.15 MPa mm, λo = 4.4, k̂o = −9.53 MPa/mm, a3 = −0.81
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Figure 12: Geometry, mesh and boundary conditions of the double notch tensions speci-
men (left). Comparison of force-displacement curves with the constitutive parameters in
Tab. ?? and different notch semi-lengths {12, 26, 20, 24, 28} mm from [? ].
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Figure 13: Deformed configuration of the double notch tension specimen used for the
numerical experiment in Fig. ?? with notch semi-length 12 mm. The colormap represents
the intensity of the damage field; at final step, regions where d ≥ 0.99 were removed from
the plot.
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5. Conclusions

We have presented a phenomenological phase-field model for the cohe-
sive failure of elastomers at large strain. The elastic response of the model
is described through an Ogden-like strain energy density, which has the ad-
vantage of accurately matching the quasi-static response of many materials
up to significant strains. Fracture was incorporated by complementing the
Ogden formulation with a phase-field variable, whose evolution was derived
in a consistent thermodynamic framework by invoking the three principles
of damage irreversibility, stability conditions and energy balance. The frac-
ture energy was defined according to a recent proposal in [? ] in terms of 5
constitutive parameters: the energy release rate Gc, the internal length ℓf ,
that represents the size of the fracture process zone, and 3 coefficients a1,
a2 and a3 that defines the energetic degradation function responsible of the
stiffness decrease induced by damage. Analytical and numerical results were
used to establish the connection between shape of damage energy, degrada-
tion function and damage evolution modes. In particular, a1 is related to
the stretch at the damage onset in the one-dimensional test, a2 depends
on the slope of the cohesive curve, which is normally considered a mate-
rial property, and, finally, a3 influences the displacement jump at complete
specimen fracture. By properly tuning these constitutive parameters, the
model was capable of matching a variety of fracture modes including brittle
and pseudo-ductile failures, whereas most of the phase field models at large
strain currently available in the literature can only describe brittle fracture.
The application to double-network elastomers as well as conventional rubber
compounds were discussed in the paper with reference to the experiments in
[? ] and [? ]. The model was able to accurately capture the main features of
the fracture process, such as the necking propagation and hardening stage
at large strains for double network elastomers, and brittle failure modes for
conventional rubber compounds. Compared to other approach in the liter-
ature (such as [? ]), the model does not use any information on the material
microstructure, and so it is suitable for a large class of materials including
biological tissues.

The derivations were carried out by enforcing plane stress condition and
perfect incompressibility of the matrix. However, experimental evidence
shows that fracture may occur due to the coalescence of voids and the sub-
sequent propagation of the defects, that may lead to a reduction of the ap-
parent bulk modulus. Therefore, further development of the model include
the possibility of degrading with the phase-field variable both volumetric
and isochoric parts of the energy. In addition, since viscous effects may
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become significant during the propagation of fractures, the incorporation of
viscoelastic effects appears of paramount importance to correctly describe
the dynamic evolution of fracture in elastomeric compounds.
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Appendix A. Damage evolution regimes

An equation similar to (??) was already studied in [? ] for a small strain
model (see equation (31) in [? ]). The solution strategy exploited there
can be equally applied to the large strain analysis carried out in this paper.
In particular, the following steps allows us to calculate the unknown rates
{u̇o, ḋo}: (i) first ḋo is determined in terms of Ṡo by solving (??); thereafter

(ii) Ṡo is determined by evaluating the mean value, i.e., < · >= 1
ℓ

∫ ℓ
0 ·dx, of

both the sides of Eq. (??)2, that gives

Ṡo = ω′
o ϕ

′
o <ḋo> +ϕ′′o ε̇o,

where we made use of the fact that Ṡo is constant along the bar and <
λ̇o >= ε̇o by the boundary condition (??); finally, (iii) u is determined by
integration of (??)2 expressed in terms of λ̇o = u̇′o. Different solutions are
found depending on the sign of j and on the ratio between length ℓ and the
internal lengths ℓi and ℓs, and their analytical expressions are itemized in
the following.

a. For j ≥ 0, the solution obtained by applying the procedure (i), (ii)
and (iii) is

ḋo(x) = − ω′
oϕ

′
o

j(1+ <g> ℓs/ℓi)
ε̇o g(x), and Ṡo =

ϕ′′

1+ <g> ℓs/ℓi
ε̇o,

with

g(x) = 1−
cosh

(
π(ℓ− 2x)/ℓi

)
cosh(πℓ/ℓi)

, and <g>= 1− ℓi
πℓ

tanh
(πℓ
ℓi

)
.

Damage evolution is full-size in a regime of stress-hardening.
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b. For j < 0 and ℓi ≥ ℓ, the solution is

ḋo(x) = − ω′ϕ′

j(1− <g> ℓs/ℓi)
ε̇og(x), and Ṡo =

ωϕ′′o
1− <g> ℓs/ℓi

ε̇o

with

g(x) = 1−
cos

(
π(ℓ− 2x)/ℓi)

cos(πℓ/ℓi)
, and <g>= 1− ℓi

πℓ
tan

(πℓ
ℓi

)
.

Solution ḋo is full-size and two evolution regimes are obtained:

b.1. if ℓi > 2ℓ, the regime is stress-hardening, since <g> < 0;

b.2. if ℓ < ℓi ≤ 2ℓ, the regime is stress-softening, being <g> > 0. In
this case, the condition

<g> ≥ ℓi/ℓs

must be satisfied to have ḋo ≥ 0 everywhere.

c. For j < 0 and ℓi < ℓ, the solution has the expression (??), with

g(x) =

{
1− cos(2πx/ℓi), if 0 < x < ℓi,
0, if x ≥ ℓi,

and <g>= ℓi/ℓ.

and so is localized in a portion of length ℓi (localized solution), and the
evolution regime is stress-softening. Even in this case, the inequality

ℓ ≤ ℓs

has to be fulfilled to have ḋo ≥ 0.

It can be proved that inequalities (??) and (??) are necessary conditions
for stability of the evolution problem (see [? ]); indeed they guarantee
non-negativeness of the second variation of the functional (??). If stability
conditions are not satisfied, the bar fails catastrophically at the time instant
to, experiencing brittle fracture.
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